National Library of Energy BETA

Sample records for holyoke water power

  1. Holyoke, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    district.12 US Recovery Act Smart Grid Projects in Holyoke, Massachusetts ISO New England, Incorporated Smart Grid Project Registered Energy Companies in Holyoke,...

  2. City of Holyoke, Massachusetts (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    City of Holyoke, Massachusetts (Utility Company) Jump to: navigation, search Logo: Holyoke City of Name: Holyoke City of Abbreviation: HGED Place: Massachusetts Phone Number: (413)...

  3. EIS-0092: Conversion to Coal, Holyoke Water Power Company, Mt. Tom Generating Station Unit 1 Holyoke, Hampden County, Massachusetts

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration prepared this statement to assess the environmental impacts of prohibiting Unit 1 of the Mt. Tom Generation Station Unit 1 from using either natural gas or petroleum products as a primary energy source, which would result in the utility burning low-sulfur coal.

  4. Holyoke, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    a stub. You can help OpenEI by expanding it. Holyoke is a city in Hampden County, Massachusetts. It falls under Massachusetts's 1st congressional district.12 US Recovery Act...

  5. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary PowerEnergy Conversion EfficiencyWater Power Water Power Tara Camacho-Lopez 2016-06-01T22:32:54+00:00 Enabling a successful water power industry. Hydropower ...

  6. Holyoke Gas & Electric- Commercial Energy Conservation Loan Program

    Broader source: Energy.gov [DOE]

    Holyoke Gas & Electric's Commercial Energy Conservation Program offers zero interest loans to its commercial customers who are making energy efficiency improvements to facilities. The...

  7. Holyoke Gas & Electric - Commercial Energy Efficiency Loan Program...

    Broader source: Energy.gov (indexed) [DOE]

    Utility Administrator Holyoke Gas and Electric Department Website http:www.hged.comhtmlincentiveprograms.htmlCommercialAssist State Massachusetts Program Type Loan...

  8. Holyoke Gas & Electric- Residential Energy Conservation Loan Program

    Broader source: Energy.gov [DOE]

    The Holyoke Gas & Electric (HG&E) Residential Energy Conservation Program provides residential customers with loans to help make energy saving improvements to eligible homes. The loan...

  9. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Power Sandia's 117-scale WEC device with being tested in the maneuvering and ... EC, News, Renewable Energy, Water Power Sandia National Laboratories Uses Its Wave Energy ...

  10. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  11. EIS-0092: Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Conversion to Coal, Holyoke Water Power Company, Mt. Tom Generating Station Unit 1 Holyoke, Hampden County, Massachusetts

  12. Berkshire Wind Power Cooperative | Open Energy Information

    Open Energy Info (EERE)

    Power Cooperative Jump to: navigation, search Name: Berkshire Wind Power Cooperative Place: Holyoke, Massachusetts Sector: Wind energy Product: The Berkshire Wind Power Cooperative...

  13. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ...016-03-01T17:12:00+00:00 March 1st, 2016|News, News & Events, Water Power, Workshops|0 Comments Read More Wave energy distribution example Permalink Gallery Sandia releases 2nd ...

  14. Wind & Water Power Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Water Power Newsletter - Sandia Energy Energy Search Icon Sandia Home Locations Contact ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  15. Water Power Personnel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  16. Water Power Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  17. WATER POWER SOLAR POWER WIND POWER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    get curren WATER POWER SOLAR POWER WIND POWER Be part of the Clean Energy Generation! YOUR HOUSE BIOMASS ENERGY GEOTHERMAL ENERGY Clean energy can come from the sun. 2 The energy in wind can make electricity. We can make energy with moving water. Bioenergy comes from plants we can turn into fuel. Logs Wood Chips Straw Corn Switchgrass We can use energy from the earth to heat and cool our homes. Check out these cool websites to learn more about clean energy! Energy Information Administration

  18. Sandia Energy - Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Events, Partnership, Renewable Energy, Systems Analysis, Systems Engineering, Water Power WEC-Sim Code Development Meeting at the National Renewable Energy Laboratory...

  19. Water Power Program: Publications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Hydropower Market Report Details Bookmark & Share View Related Welcome to the Water Power Program Publication and Product Library. This library will allow you to find...

  20. Water Power | Open Energy Information

    Open Energy Info (EERE)

    Get Involved Help Apps Datasets Community Login | Sign Up Search Gateway Edit History Water Power (Redirected from Water) Jump to: navigation, search Water Power Community Forum...

  1. Sandia Energy - Conventional Water Power: Technology Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Development Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Technology Development Conventional Water Power: Technology...

  2. Water Power Program News

    SciTech Connect (OSTI)

    2012-01-19

    News stories about conventional hydropower and marine and hydrokinetic technologies from the U.S. Department of Energy, the Office of Energy Efficiency and Renewable Energy, the Wind and Water Power Program, and other federal agencies.

  3. Water Power News

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    858936+791+7+343Water Power News en Energy Department Awards 10.5 Million for Next-Generation Marine Energy Systems http:energy.goveerearticlesenergy-department-awards-105-...

  4. Water Power | Open Energy Information

    Open Energy Info (EERE)

    Get Involved Help Apps Datasets Community Login | Sign Up Search Gateway Edit History Water Power Jump to: navigation, search Water Power Community Forum Provides the community...

  5. Federal Incentives for Water Power

    SciTech Connect (OSTI)

    2013-04-05

    This factsheet lists the major federal incentives for water power technologies available as of April 2013.

  6. Sandia Energy - Conventional Water Power: Market Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Acceleration Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Market Acceleration Conventional Water Power: Market AccelerationTara...

  7. Explore Water Power Careers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power Careers Explore Water Power Careers America's oldest and largest source of renewable power is water. To this end, the Water Power Program, part of the Wind and Water ...

  8. Water Power Program At-A-Glance

    Broader source: Energy.gov (indexed) [DOE]

    WATER POWER TECHNOLOGIES WATER POWER TECHNOLOGIES FY 2017 BUDGET AT-A-GLANCE The Water Power Program is committed to developing and deploying a portfolio of innovative technologies ...

  9. NREL: Water Power Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects NREL's water power R&D projects support industry efforts to develop and deploy cost-effective water power technologies and to better understand the value and potential of conventional hydropower generation and pumped storage hydropower facilities. Here are some examples of current R&D projects focused on achieving these objectives: Testing and Standards Computer-Aided Engineering Resource Characterization Economic and Power System Modeling and Analysis Printable Version Water

  10. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: Water power Type Term Title Author Replies Last Post...

  11. Researching power plant water recovery

    SciTech Connect (OSTI)

    2008-04-01

    A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

  12. NREL: Water Power Research - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities NREL supports the development of marine and hydrokinetic technologies and hydropower R&D through the U.S. Department of Energy's Water Power Program. Our activities span a wide spectrum of disciplines, including fluid mechanics; dynamics, structures, and fatigue; power systems and electronics; resource assessment and mapping; economic analysis; and grid interconnection. Read more about NREL's water power R&D capabilities: Design Review and Analysis Device and Component

  13. DOE Wind and Water Power Technologies Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind and Water Power Technologies Office - Sandia Energy Energy Search Icon Sandia Home ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  14. Sandia Energy - Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, a backward--bent duct buoy (BBDB) oscillating water column wave energy converter design. The team from HMRC included Tom Walsh, Brian Holmes, Florent Thiebaut, Neil...

  15. Cogeneration of water and power

    SciTech Connect (OSTI)

    Sephton, H.H.; Frank, K.F.

    1997-09-01

    Need of pure water in areas of limited supply has driven the development of technologies to permit recycling of available water and to generate new water supplies by purifying saline resources. These technologies include sedimentation, filtration, softening, ion exchange, electrodialysis, reverse osmosis and distillation. Some of these developments serve needs of the power industry, others evolved due to the synergistic relationship between generating water and power. Large plant seawater desalination depend on this synergism for best economy, especially in Southern California and the Middle East. Applying new processes promise to drive down the cost of desalinated water, based on recently improved thermal efficiencies and on capital cost reductions. Cogeneration with these processes provides new mutual benefits for power and water technologies.

  16. Director, Water Power Technologies Office

    Broader source: Energy.gov [DOE]

    This position is located in the Water Power Technologies Office (WPTO) in the Office of Energy Efficiency and Renewable Energy (EERE). The mission of EERE is to create and sustain American...

  17. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: marine energy Type Term Title Author Replies Last...

  18. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: Wave Type Term Title Author Replies Last Post sort...

  19. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: ocean energy Type Term Title Author Replies Last...

  20. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: current energy Type Term Title Author Replies Last...

  1. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: DOE Type Term Title Author Replies Last Post sort...

  2. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: CBS Type Term Title Author Replies Last Post sort...

  3. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: Current Type Term Title Author Replies Last Post...

  4. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: community Type Term Title Author Replies Last Post...

  5. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: LCOE Type Term Title Author Replies Last Post sort...

  6. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: Cost Type Term Title Author Replies Last Post sort...

  7. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: gateway Type Term Title Author Replies Last Post...

  8. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: levelized cost of energy Type Term Title Author...

  9. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: forum Type Term Title Author Replies Last Post sort...

  10. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: Tidal Type Term Title Author Replies Last Post sort...

  11. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term > Water Power Forum Content Group Activity By term Q & A Feeds Term: numerical modeling Type Term Title Author Replies...

  12. WATER POWER FOR A CLEAN ENERGY FUTURE

    Office of Environmental Management (EM)

    WATER POWER FOR A CLEAN ENERGY FUTURE March 2016 WATER POWER PROGRAM WATER POWER PROGRAM Building a Clean Energy Economy Leading the world in clean energy is critical to ...

  13. Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet provides an overview of the Department of Energy's Wind and Water Power Program's water power research activities.

  14. Funding Opportunity Announcement for Water Power Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunity Announcement for Water Power Manufacturing Funding Opportunity Announcement for Water Power Manufacturing April 11, 2014 - 11:23am Addthis On April 11, 2014, ...

  15. Redlands Water & Power Company | Open Energy Information

    Open Energy Info (EERE)

    Redlands Water & Power Company Jump to: navigation, search Name: Redlands Water & Power Company Place: Colorado Website: www.redlandswaterandpower.com Outage Hotline: 970-243-2173...

  16. NREL: Water Power Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Power Research NREL's water power technologies research leverages 35 years of experience developing renewable energy technologies to support the U.S. Department of Energy ...

  17. Electric Power Generation and Water Use Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Generation and Water Use Data - Sandia Energy Energy Search Icon Sandia Home ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  18. Water Power Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power Events Water Power Events Below is an industry calendar with meetings, conferences, and webinars of interest to the conventional hydropower and marine and hydrokinetic technology communities.

  19. Water Power Events | Department of Energy

    Office of Environmental Management (EM)

    Water Power Events Water Power Events Below is an industry calendar with meetings, conferences, and webinars of interest to the conventional hydropower and marine and hydrokinetic...

  20. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  1. Water reactive hydrogen fuel cell power system

    SciTech Connect (OSTI)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  2. NREL: Water Power Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Below are news stories related to NREL water power research. Subscribe to the RSS feed RSS . Learn about RSS. August 18, 2016 NREL Announces Round Two Selections for the DOE Small Business Vouchers Pilot The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) will help 12 companies advance their technologies under the second round of DOE's Small Business Vouchers (SBV) pilot. July 22, 2016 NREL's Kurtz, Tegen Honored for Clean Energy Leadership The U.S. Clean Energy

  3. NREL: Water Power Research - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Access NREL publications on water power research. Snowberg, D., and Weber, J. 2015. Marine and Hydrokinetic Technology Development Risk Management Framework. NREL/TP-5000-63258. National Renewable Energy Laboratory (NREL), Golden, CO (US). Tom, N., Lawson, M., Yu, Y., and Wright, A. 2015. Preliminary Analysis of an Oscillating Surge Wave Energy Converter with Controlled Geometry: Preprint. NREL/CP-5000-64545. NREL, Golden, CO (US). Jenne, D. S.,Yu, Y. H., and Neary, V. 2015.

  4. Water Power Program Budget | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in fiscal year 2016 (FY16) funds for the Water Power Program to research and develop ... increase generation at existing water resources infrastructures, in addition to ...

  5. 2009 Water Power Peer Review Report

    SciTech Connect (OSTI)

    Murphy, Michael; Higgins, Mark; Reed, Mike

    2011-04-01

    This report contains the findings of the 2009 Water Power Peer Review Panel, as well as the Water Power Program's responses to those findings. This Peer Review focused on the Program's marine and hydrokinetic energy projects.

  6. Water power | OpenEI Community

    Open Energy Info (EERE)

    Water power Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 28 March, 2013 - 15:16 OpenEI launches new Water Power Gateway and Community Forum community...

  7. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Water Power Forum > Posts by term Content Group Activity By term Q & A Feeds CBS (1) community (1) Cost (1) Current (1) current energy (1) DOE (1) forum...

  8. Case Study - Glendale Water and Power

    Broader source: Energy.gov (indexed) [DOE]

    Glendale Water and Power March 19, 2012 1 A digital photo frame is part of Glendale Water and Power's (GWP's) in-home display pilot that is enabling customers to track their usage ...

  9. Water Power: 2009 Peer Review Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind and Water Power Program 2009 Peer Review Report November 2009 U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind and Water Power Program 2009 ...

  10. The Department of Energy's Water Power Program

    Office of Environmental Management (EM)

    Department of Energy's Water Power Program OAS-M-14-07 June 2014 U.S. Department of Energy ... Report on "The Department of Energy's Water Power Program" BACKGROUND The Department ...

  11. Federal Incentives for Water Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    This fact sheet describes the federal incentives available as of April 2013 for the development of water power technologies.

  12. NREL: Water Power Research - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Water Power Research Home Capabilities Projects Research Staff Publications Working with Us News Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to

  13. Marietta Power & Water- Residential Energy Efficiency Rebate

    Office of Energy Efficiency and Renewable Energy (EERE)

    Marietta Power & Water provides rebates for electric water heaters ($250) and electric and dual-fuel heat pumps ($150). If both a water heater and heat pump are installed simultaneously, a...

  14. Water Power News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power News Water Power News RSS July 26, 2016 Energy Department Releases New Hydropower Vision Report and $9.8 Million in Funding to Support the Future of Hydropower in the United States WASHINGTON - The U.S. Department of Energy (DOE) today released a new report looking at the future of hydropower through 2050. July 26, 2016 Funding Opportunity Announcement: Innovative Technologies to Advance Non-Powered Dam and Pumped-Storage Hydropower Development The Energy Department's Water Power

  15. Wind Power Today, 2010, Wind and Water Power Program (WWPP)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

  16. Pasadena Water and Power- Solar Power Installation Rebate

    Broader source: Energy.gov [DOE]

    Pasadena Water & Power (PWP) offers its electric customers a rebate for photovoltaic (PV) installations, with a goal of helping to fund the installation of 14 megawatts (MW) of solar power by...

  17. 2015 Key Water Power Program and National Laboratory Accomplishments...

    Broader source: Energy.gov (indexed) [DOE]

    Water Power Program and National Laboratory Accomplishments 2015 Key Water Power Program and National Laboratory Accomplishments | 1 | 2015 Key Water Power Program and National ...

  18. Water Power Program Peer Review Meeting Agenda | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Peer Review Meeting Agenda Water Power Program Peer Review Meeting Agenda The Water Power Program Peer Review Meeting brought together program staff and water power ...

  19. 2015 Key Water Power Program and National Laboratory Accomplishments...

    Energy Savers [EERE]

    2015 Key Water Power Program and National Laboratory Accomplishments Slideshow 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow 2015 Key Water Power ...

  20. Water Power Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power Program Water Power Program Hydropower Vision: A New Chapter for America's 1st Renewable Electricity Source Hydropower Vision: A New Chapter for America's 1st Renewable Electricity Source Through the Hydropower Vision, the U.S. Department of Energy's Wind and Water Power Technologies Office has led a first-of-its-kind comprehensive analysis to evaluate future pathways for low-carbon, renewable hydropower, focused on continued technical evolution, increased energy market value, and

  1. 2014 Water Power Program Peer Review Report

    SciTech Connect (OSTI)

    none,

    2014-08-18

    The Water Power Peer Review Meeting was held February 24-28, 2014 in Arlington, VA. Principle investigators from the Energy Department National Laboratories, academic, and industry representatives presented the progress of their DOE-funded research. This report documents the formal, rigorous evaluation process and findings of nine independent reviewers who examined the technical, scientific, and business results of 96 projects of the Water Power Program, as well as the productivity and management effectiveness of the Water Power Program itself.

  2. Water Power Information Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power Information Resources Water Power Information Resources How Hydropower Works How Hydropower Works See a detailed view of the inside of a hydropower energy generation system. Read more Marine and Hydrokinetic Technology Database on OpenEI Marine and Hydrokinetic Technology Database on OpenEI The DOE Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy. Read more The following resources about water power technologies

  3. Case Study - Glendale Water and Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glendale Water and Power March 19, 2012 1 A digital photo frame is part of Glendale Water and Power's (GWP's) in-home display pilot that is enabling customers to track their usage without having to go online to access the data. Glendale, California Municipal Invests in Smart Grid to Enhance Customer Services and Improve Operational Efficiencies City-owned Glendale Water and Power (GWP) has completed its smart meter installation and is implementing a suite of new offerings to improve operational

  4. NREL: Water Power Research - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working with Us NREL works with industry in a public-private contracting environment to research, design, and build advanced water power technologies. NREL's National Wind ...

  5. 2011 Water Power Technologies Peer Review Report

    SciTech Connect (OSTI)

    Zayas, Jose; Reed, Michael

    2012-06-01

    This report provides findings from the peer review meeting held in November 2011 to review the progress and accomplishments of the Energy Department Water Power Program.

  6. Funding Opportunity Announcement for Water Power Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Competitive Marine and Hydrokinetic (MHK) Demonstrations at the Navy's Wave Energy Test Site (WETS) Water Power Program About the Program Research & Development...

  7. Water Power News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    four entities selected to receive 7.4 million to spur innovation of next-generation water power component technologies, designed for manufacturability and built specifically...

  8. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Features > Groups Content Group Activity By term Q & A Feeds Content type Blog entry Discussion Document Event Poll Question Keywords Author Apply...

  9. Thermoelectric Power Plant Water Needs and Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... been developing an analysis for a potential combined system that includes a coal-fired power plant, a geologic carbon storage system, water extraction from a saline formation, ...

  10. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    This fact sheet provides an overview of the Department of Energy's Wind and Water Power Program's water power research activities.

  11. Loveland Water & Power- Refrigerator Recycling Program

    Broader source: Energy.gov [DOE]

    Loveland Water & Power is providing an incentive for customers to recycle older, working refrigerators. Interested customers can call the utility to arrange a time to pick up the old...

  12. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Water Power Forum Home > Groups Content Group Activity By term Q & A Feeds Share your own status updates, and follow the updates & activities of others by creating your own...

  13. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    OpenEI Type Term Title Author Replies Last Post sort icon Blog entry OpenEI OpenEI launches new Water Power Gateway and Community Forum Graham7781 28 Mar 2013 - 15:16...

  14. Water Power News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gases. April 16, 2014 Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices The Energy Department announces two projects as part of a larger effort...

  15. Thermoelectric Power Plant Water Needs and Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 1 (Shallow) Site, San Juan Power Plant 1 ... Water Treatment, and Electricity Cost Scenarios 1 ... (e.g., 10,000 grams of salt per 1,000,000 grams of ...

  16. Water Power for a Clean Energy Future

    SciTech Connect (OSTI)

    2013-04-12

    This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable energy generated using hydropower technologies and marine and hydrokinetic technologies.

  17. Water Power News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    News Water Power News Below are news stories about conventional hydropower and marine and hydrokinetic technologies from the U.S. Department of Energy, the Office of Energy Efficiency and Renewable Energy, the Water Power Program, and other federal agencies. Recent News July 26, 2016 Energy Department Releases New Hydropower Vision Report and $9.8 Million in Funding to Support the Future of Hydropower in the United States WASHINGTON - The U.S. Department of Energy (DOE) today released a new

  18. Water Power Program: Marine and Hydrokinetic Technologies

    Broader source: Energy.gov [DOE]

    Pamphlet that describes the Office of EERE's Water Power Program in fiscal year 2009, including the fiscal year 2009 funding opportunities, the Small Business Innovation Research and Small Business Technology Transfer Programs, the U.S. hydrodynamic testing facilities, and the fiscal year 2008 Advanced Water Projects awards.

  19. DOEs Wind & Water Power Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's Wind & Water Power Program Overview Jose Zayas Program Manager Wind and Water Power Program June 28, 2012 2 | Wind and Water Power Program eere.energy.gov Administration & ...

  20. 2014 Water Power Peer Review Report Cover | Department of Energy

    Office of Environmental Management (EM)

    Peer Review Report Cover 2014 Water Power Peer Review Report Cover 2014 Water Power Peer Review Report Cover.JPG More Documents & Publications NOWEGIS Report Cover Water Power For...

  1. Wind Power Career Chat, Wind And Water Power Program (WWPP)

    Wind Powering America (EERE)

    WIND AND WATER POWER PROGRAM Wind Power Career Chat Overview Students will learn about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. In

  2. Wind and Water Power Technologies Office Position Available:...

    Energy Savers [EERE]

    Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer Wind and Water Power Technologies Office Position Available: Marine and ...

  3. Conventional Hydropower Technologies, Wind And Water Power Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Environmental Impacts of Increased Hydroelectric Development at Existing Dams Hydropower ...

  4. Water Use in the Development and Operations of Geothermal Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is...

  5. The Subcommittee on Water, Power, and Oceans House Committee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Subcommittee on Water, Power, and Oceans House Committee on Natural Resources The Subcommittee on Water, Power, and Oceans House Committee on Natural Resources Testimony of ...

  6. Water Power R&D Opportunity: Energy Department Announces $125...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power R&D Opportunity: Energy Department Announces 125 Million for Transformational Energy Projects Water Power R&D Opportunity: Energy Department Announces 125 Million for ...

  7. Affordable Solar Hot Water and Power LLC | Open Energy Information

    Open Energy Info (EERE)

    Water and Power LLC Jump to: navigation, search Name: Affordable Solar Hot Water and Power LLC Place: Dothan, Alabama Zip: 36305 Sector: Solar Product: Solar and Energy Efficiency...

  8. Miyi County Wantan Water and Electric Power Development Co Ltd...

    Open Energy Info (EERE)

    Wantan Water and Electric Power Development Co Ltd Jump to: navigation, search Name: Miyi County Wantan Water and Electric Power Development Co. Ltd Place: Panzhihua, Sichuan...

  9. South Feather Water and Power Agency | Open Energy Information

    Open Energy Info (EERE)

    South Feather Water and Power Agency Jump to: navigation, search Name: South Feather Water and Power Agency Place: California Website: southfeather.com Outage Hotline: (530)...

  10. Direct Power and Water Corporation | Open Energy Information

    Open Energy Info (EERE)

    Power and Water Corporation Jump to: navigation, search Name: Direct Power and Water Corporation Place: Albuquerque, New Mexico Zip: 87107 Product: DP&W is specialised in...

  11. Los Angeles Department of Water & Power | Open Energy Information

    Open Energy Info (EERE)

    Los Angeles Department of Water & Power Jump to: navigation, search Name: Los Angeles Department of Water & Power Place: California Phone Number: 800-342-5397 Website:...

  12. Gansu Zhongyuan Water Conservancy and Hydro Power Plant Development...

    Open Energy Info (EERE)

    Water Conservancy and Hydro Power Plant Development Co Ltd Jump to: navigation, search Name: Gansu Zhongyuan Water Conservancy and Hydro Power Plant Development Co. Ltd. Place:...

  13. Guangdong Global Power and Water Industries Ltd | Open Energy...

    Open Energy Info (EERE)

    Global Power and Water Industries Ltd Jump to: navigation, search Name: Guangdong Global Power and Water Industries Ltd Place: Meizhou, Guangdong Province, China Sector: Solar...

  14. City of Glendale Water Power | Open Energy Information

    Open Energy Info (EERE)

    Power Jump to: navigation, search Name: City of Glendale Water & Power Place: Glendale, California Zip: 91206 Product: California-based water and electrical utility. The utility is...

  15. Water Power Program: Program Plans, Implementation, and Results

    Energy Savers [EERE]

    Water Power Program HOME ABOUT RESEARCH & DEVELOPMENT FINANCIAL OPPORTUNITIES INFORMATION RESOURCES NEWS EVENTS EERE Water Power Program About Key Activities Plans,...

  16. Western Water and Power Production WWPP | Open Energy Information

    Open Energy Info (EERE)

    Water and Power Production WWPP Jump to: navigation, search Name: Western Water and Power Production (WWPP) Place: Albuquerque, New Mexico Zip: 88340 Sector: Biomass Product:...

  17. Burbank Water and Power Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    Water and Power Smart Grid Project Jump to: navigation, search Project Lead Burbank Water and Power Country United States Headquarters Location Burbank, California Recovery Act...

  18. National Renewable Energy Laboratory Wind and Water Power Small...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Renewable Energy Laboratory Wind and Water Power Small Business Voucher Open House National Renewable Energy Laboratory Wind and Water Power Small Business Voucher Open...

  19. 2015 Key Water Power Program and National Laboratory Accomplishments...

    Broader source: Energy.gov (indexed) [DOE]

    2015 Key Water Power Program and National Laboratory Accomplishments Report The U.S. Department of Energy (DOE) Water Power Program is committed to developing and deploying a ...

  20. Water Use in the Development and Operations of Geothermal Power...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operation of Geothermal Power Plants GETEM ...

  1. 2014 Water Power Program Peer Review Compiled Presentations:...

    Office of Environmental Management (EM)

    Hydropower Technologies 2014 Water Power Program Peer Review Compiled Presentations: Hydropower Technologies The U.S. Department of Energy Water Power Program conducted the 2014 ...

  2. Water Power Program Peer Reviews | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    recent Water Power Program Peer Review: 2014 Hydropower Technologies Compiled Presentations 2014 Marine and Hydrokinetic Technologies Compiled Presentations 2014 Water Power ...

  3. Water Use in the Development and Operation of Geothermal Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operation of Geothermal Power Plants Water Use in the Development and Operation of Geothermal Power Plants This report summarizes what is currently known about the life cycle water ...

  4. Subscribe to Water Power Program News Updates | Department of...

    Office of Environmental Management (EM)

    News Subscribe to Water Power Program News Updates Subscribe to Water Power Program News Updates The Office of Energy Efficiency and Renewable Energy (EERE) offers a breaking ...

  5. Before the Subcommittee on Water and Power - House Natural Resources...

    Energy Savers [EERE]

    the Subcommittee on Water and Power - House Natural Resources Committee Before the Subcommittee on Water and Power - House Natural Resources Committee Testimony of Christopher M. ...

  6. Before the Subcommittee on Water, Power, and Oceans - House Natural...

    Energy Savers [EERE]

    Water, Power, and Oceans - House Natural Resources Committee Before the Subcommittee on Water, Power, and Oceans - House Natural Resources Committee Testimony of Kenneth E. Legg, ...

  7. Water Use in the Development and Operations of Geothermal Power...

    Energy Savers [EERE]

    Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is ...

  8. Before the Subcommittee on Water and Power - House Natural Resources...

    Energy Savers [EERE]

    House Natural Resources Committee Before the Subcommittee on Water and Power - House ... More Documents & Publications Before The Subcommittee on Water and Power - House Energy ...

  9. Conventional Hydropower Technologies, Wind And Water Power Program...

    Energy Savers [EERE]

    Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US ...

  10. Before The Subcommittee on Water and Power - House Energy and...

    Energy Savers [EERE]

    The Subcommittee on Water and Power - House Energy and Natural Resources Committee Before The Subcommittee on Water and Power - House Energy and Natural Resources Committee ...

  11. Before the Subcommittee on Water and Power - Committee on Natural...

    Energy Savers [EERE]

    More Documents & Publications Before the House Natural Resources Subcommittee on Water and Power Before Subcommittee on Water and Power - House Committee on Natural Resources ...

  12. Kangding Hualong Water Resources Electric Power Investment Co...

    Open Energy Info (EERE)

    Hualong Water Resources Electric Power Investment Co Ltd Jump to: navigation, search Name: Kangding Hualong Water Resources & Electric Power Investment Co., Ltd. Place: Ganzi...

  13. About the Water Power Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Water Power Program About the Water Power Program About the Water Power Program The U.S. Department of Energy's (DOE) Water Power Program is committed to developing and deploying a portfolio of innovative technologies for clean, domestic power generation from resources such as hydropower, waves, and tides. What We Do Leading the world in clean energy is critical to strengthening the American economy, and the Water Power Program is at the forefront of the nation's clean energy frontier.

  14. Water Power Program Contacts and Organization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Program » Water Power Program Contacts and Organization Water Power Program Contacts and Organization The Wind and Water Power Technologies Office within the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE) supports the development, deployment, and commercialization of wind and water power technologies. The Wind and Water Power Technologies Office is one Office that contains two distinct Programs: wind and water. The Wind Program and the

  15. Factsheet that lists the major federal incentives for water power...

    Broader source: Energy.gov (indexed) [DOE]

    The U.S. Department of Energy's (DOE's) Water Power Program works to accelerate the deployment of water power technologies such as hydro- power, wave, tidal, and current devices. ...

  16. 2015 Key Water Power Program and National Laboratory Accomplishments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Slideshow | Department of Energy 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow 2015 Key Water Power Program and National Laboratory Accomplishments Report 1 of 28 2015 Key Water Power Program and National Laboratory Accomplishments Report By accelerating the development of markets for hydropower and marine and hydrokinetic (MHK) projects, the Water Power Program is striving to

  17. 2015 Key Water Power Program and National Laboratory Accomplishments Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power Program and National Laboratory Accomplishments 2015 Key Water Power Program and National Laboratory Accomplishments | 1 | 2015 Key Water Power Program and National Laboratory Accomplishments The U.S. Department of Energy (DOE) Water Power Program is committed to developing and deploying a portfolio of innovative technologies and market solutions for clean, domestic power generation from water resources across the United States. By accelerating the development of markets for

  18. 2015 Key Water Power Program and National Laboratory Accomplishments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Slideshow | Department of Energy 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow Addthis 2015 Key Water Power Program and National Laboratory Accomplishments Report 1 of 28 2015 Key Water Power Program and National Laboratory Accomplishments Report By accelerating the development of markets for hydropower and marine and hydrokinetic (MHK) projects, the Water Power Program is striving

  19. Water Power for a Clean Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power for a Clean Energy Future Water Power for a Clean Energy Future This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable energy generated using hydropower and marine and hydrokinetic technologies. Accomplishments Report: Water Power for a Clean Energy Future (9.59 MB) More Documents & Publications Before the Subcommittee on Water and Power - Senate Committee on

  20. Cogeneration of water and power (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Cogeneration of water and power Citation Details In-Document Search Title: Cogeneration of water and power Need of pure water in areas of limited supply has driven the ...

  1. NREL: Water Power Research - Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Characterization Building on its success in wind resource characterization and assessment, the National Renewable Energy Laboratory (NREL) has extended its capabilities to the field of water power. NREL's team of scientists, engineers and computer experts has broad experience in physical oceanography, meteorology, modeling, data analysis, and Geographic Information Systems. Many years of experience in wind assessment have enabled NREL to develop the skills and methodologies to evaluate

  2. Federal Incentives for Water Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Incentives for Water Power Federal Incentives for Water Power This factsheet lists some of the major federal incentives for water power technologies available as of April 2014. Federal Incentives for Water Power (3.62 MB) More Documents & Publications Federal Incentives for Wind Power Deployment Recovery Act Incentives for Wind Energy Equipment Manufacturing Qualified Energy Conservation Bond (QECB) Update: New Guidance from the U.S. Department of Treasury and the Internal Revenue

  3. Loveland Water & Power- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Loveland Water & Power, in conjunction with the Platte River Power Authority provides businesses incentives for new construction projects and existing building retrofits. The Electric...

  4. Before House Subcommittee on Water and Power - Committee on Natural...

    Broader source: Energy.gov (indexed) [DOE]

    Subcommittee on Water and Power - Committee on Natural Resources By: Steven Wright, Administrator, Bonneville Power Administration 3-20-12WrightBPAFT0.pdf More Documents &...

  5. Before The Subcommittee on Water and Power - House Committee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    E. Mainzer, Administrator, Bonneville Power Administration Before The Subcommittee on Water and Power - House Committee on Natural Resources PDF icon 3-25-14ElliotMainzer FT...

  6. Before the Subcommittee on Water and Power - House Natural Resources...

    Broader source: Energy.gov (indexed) [DOE]

    K. Drummond, Administrator, Bonneville Power Administration Before the Subcommittee on Water and Power - House Natural Resources Committee 4-16-13WilliamDrummond FT HNR More...

  7. Consolidated Water Power Company CWPCo | Open Energy Information

    Open Energy Info (EERE)

    CWPCo Jump to: navigation, search Name: Consolidated Water Power Company (CWPCo) Place: Wisconsin Sector: Hydro Product: Wisconsin-based owner and operator of hydroelectric power...

  8. Loveland Water & Power - Commercial and Industrial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    250 Office Lighting: 5 - 20 SensorsControls: 7 - 90 Summary Loveland Water & Power, in conjunction with the Platte River Power Authority provides businesses...

  9. Glendale Water and Power- Energy Efficiency Appliance Rebate Program

    Broader source: Energy.gov [DOE]

    Glendale Water and Power (GPW) offers the Smart Home Energy and Water Saving Rebate Program that includes several incentives for residential customers to improve the energy efficiency of...

  10. Los Angeles Department of Water Power LADWP | Open Energy Information

    Open Energy Info (EERE)

    LADWP Jump to: navigation, search Name: Los Angeles Department of Water & Power (LADWP) Place: Los Angeles, CA, California Zip: 90012 Product: Municipal utility serving the water...

  11. Vera Water & Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Vera Water and Power offers several rebates to electric customers who purchase and install energy efficient equipment. Rebates are available for water heaters, windows, heat pumps, clothes washer,...

  12. Water Power Program: 2011 Peer Review Report | Department of...

    Office of Environmental Management (EM)

    Program: 2011 Peer Review Report Water Power Program: 2011 Peer Review Report This document contains the peer review panel's observations and findings, responses from the Water ...

  13. WIND AND WATER POWER TECHNOLOGIES OFFICE Pacific Northwest National...

    Office of Environmental Management (EM)

    For more information, visit: water.energy.gov DOEEE-1166 * January 2015 WIND AND WATER POWER TECHNOLOGIES OFFICE Pacific Northwest National Laboratory's Tethys: A Knowledge ...

  14. Water Power Program: 2010 Peer Review Report | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program: 2010 Peer Review Report Water Power Program: 2010 Peer Review Report This document contains the peer review panel's observations and findings, responses from the Water ...

  15. Conventional Hydropower Technologies, Wind And Water Power Program...

    Office of Environmental Management (EM)

    (DOE's) Water Power Program supports the development of technologies that can harness the ... Conventional hydropower refers to the use of dams or impoundments to store water in a ...

  16. Water Power: 2009 Peer Review Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    represents the 2009 Water Power Peer Review Panel's observations and findings, response from the Water Program to these findings, and supporting meeting materials including an ...

  17. Wind and Water Power Program Realignment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Water Power Program Realignment Wind and Water Power Program Realignment February 24, 2012 - 10:38am Addthis This is an excerpt from the First Quarter 2012 edition of the Wind ...

  18. Superior Water, Light and Power Co | Open Energy Information

    Open Energy Info (EERE)

    Superior Water, Light and Power Co Jump to: navigation, search Name: Superior Water, Light and Power Co Place: Wisconsin Phone Number: 715-394-2200 Website: www.swlp.com Outage...

  19. Safe Harbor Water Power Corp | Open Energy Information

    Open Energy Info (EERE)

    Harbor Water Power Corp Jump to: navigation, search Name: Safe Harbor Water Power Corp Place: Pennsylvania Phone Number: 1-800-692-6328 Website: www.shwpc.com Outage Hotline:...

  20. Live Webinar on the Funding Opportunity for Water Power Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE)

    On April 23, 2014 from 11:00 AM - 1:00 PM MDT, the Water Power Program will hold a live webinar to provide information to potential applicants for the Water Power Manufacturing Funding Opportunity...

  1. Before Subcommittee on Water and Power - House Committee on Natural...

    Broader source: Energy.gov (indexed) [DOE]

    on Water and Power - House Committee on Natural Resources PDF icon 4-16-13MarkGabriel FT HNR More Documents & Publications Before The Subcommittee on Water and Power - ...

  2. Water Power For a Clean Energy Future Cover Photo | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For a Clean Energy Future Cover Photo Water Power For a Clean Energy Future Cover Photo Image icon Water Power For a Clean Energy Future Cover.JPG More Documents & Publications ...

  3. 2014 Water Power Peer Review Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Review Report 2014 Water Power Peer Review Report The Water Power Peer Review Meeting was held February 24-28, 2014 in Arlington, VA. Principle investigators from the Energy ...

  4. Pasadena Water and Power- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Prior to purchasing equipment, contact Pasadena Water & Power for incentive availability information on the Energy Efficiency Partnering Program.

  5. Before the House Natural Resources Subcommittee on Water and Power |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Natural Resources Subcommittee on Water and Power Before the House Natural Resources Subcommittee on Water and Power Before the House Natural Resources Subcommittee on Water and Power By: Jon Worthington, Administrator, SWPA Subject: DOE Fiscal Year 2012 Budget Request 3-15-11_Final_Testimony_(Worthington)_(SWPA).pdf (48.62 KB) More Documents & Publications Before The Subcommittee on Water and Power - House Committee on Natural Resources Before the Subcommittee on

  6. Geothermal Power Plants — Meeting Water Quality and Conservation Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    U.S. geothermal power plants can easily meet federal, state, and local water quality and conservation standards.

  7. Before the Subcommittee on Water and Power - House Natural Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Committee | Department of Energy Kenneth E. Legg, Administrator SEPA 4-16-13_Kenneth_Legg FT HNR (47.42 KB) More Documents & Publications Before The Subcommittee on Water and Power - House Energy and Natural Resources Committee Before the Subcommittee on Water and Power - Committee on Natural Resources Before the Subcommittee on Water, Power, and Oceans - House Natural Resources Committee

  8. Wind Power Today, 2010, Wind and Water Power Program (WWPP) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Wind Power Today, 2010, Wind and Water Power Program (WWPP) Wind Power Today, 2010, Wind and Water Power Program (WWPP) Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program. 47531.pdf (6.07 MB) More Documents & Publications Federal Interagency Wind Turbine Radar Interference Mitigation Strategy Wind Program Accomplishments Final Report DE-EE0005380 - Assessment of

  9. U.S. Department of Energy Wind and Water Power Program Funding...

    Energy Savers [EERE]

    OFFSHORE WIND PROJECTS Fiscal Years 2006 - 2015 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE 1 ...

  10. U.S. Department of Energy Wind and Water Power Program Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OFFSHORE WIND PROJECTS Fiscal Years 2006 - 2016 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE 1 ...

  11. U.S. Department of Energy Wind and Water Power Program Funding...

    Broader source: Energy.gov (indexed) [DOE]

    MARINE AND HYDROKINETIC ENERGY PROJECTS Fiscal Years 2008 - 2015 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE 2 WIND AND WATER POWER ...

  12. U.S. Department of Energy Wind and Water Power Program Funding...

    Broader source: Energy.gov (indexed) [DOE]

    OFFSHORE WIND PROJECTS Fiscal Years 2006 - 2015 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE 1...

  13. 18 CFR Conservation of Power and Water Resources | Open Energy...

    Open Energy Info (EERE)

    Conservation of Power and Water Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 18 CFR Conservation of Power and...

  14. Before The Subcommittee on Water and Power - House Committee...

    Broader source: Energy.gov (indexed) [DOE]

    A. Gabriel, Administrator, Western Area Power Administration Before The Subcommittee on Water and Power - House Committee on Natural Resources 3-25-14MarkGabriel FT HNR.pdf More...

  15. Los Angeles Department of Water & Power | Open Energy Information

    Open Energy Info (EERE)

    Power (Redirected from LADWP) Jump to: navigation, search Name: Los Angeles Department of Water & Power Place: California Phone Number: 800-342-5397 Website: www.ladwp.com Twitter:...

  16. 2015 Key Water Power Program and National Laboratory Accomplishments Report

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Water Power Program is committed to developing and deploying a portfolio of innovative technologies and market solutions for clean, domestic power generation...

  17. Conventional Hydropower Technologies, Wind And Water Power Program (WWPP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Fact Sheet) | Department of Energy Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US Department of Energy conducts research on conventional hydropower technologies to increase generation and improve existing means of generating hydroelectricity. Conventional Hydropower Technologies (511.99 KB) More Documents & Publications Water Power for a Clean Energy

  18. Wind and Water Power Technologies Office Position Available: Marine and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrokinetic General Engineer | Department of Energy Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer Wind and Water Power Technologies Office Position Available: Marine and Hydrokinetic General Engineer April 7, 2016 - 5:07pm Addthis The Wind and Water Power Technologies Office is seeking applicants for a new position available within the office. See below for more information. Job title: General Engineer-Marine and Hydrokinetic (MHK)

  19. Before The Subcommittee on Water and Power - House Committee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Committee on Natural Resources Before The Subcommittee on Water and Power - House Committee on Natural Resources Testimony of Christopher M. Turner, Administrator, Southwestern ...

  20. Before the Subcommittee on Water, Power, and Oceans House Natural...

    Office of Environmental Management (EM)

    House Natural Resources Committee Before the Subcommittee on Water, Power, and Oceans House Natural Resources Committee Testimony of Elliot E. Mainzer, Administrator, Bonneville...

  1. Los Angeles Department of Water & Power | Open Energy Information

    Open Energy Info (EERE)

    California (Utility Company)) Jump to: navigation, search Name: Los Angeles Department of Water & Power Place: California Phone Number: 800-342-5397 Website: www.ladwp.com Twitter:...

  2. Water Power for a Clean Energy Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable...

  3. 2014 Water Power Program Peer Review Compiled Presentations:...

    Broader source: Energy.gov (indexed) [DOE]

    The U.S. Department of Energy Water Power Program conducted the 2014 peer review meeting ... Resource Characterization MHK Water Resource Characterization-Joel Cline, U.S. Department ...

  4. Water Power Program Peer Review Meeting Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Program Peer Review Agenda Meeting objectives: Review and evaluate the strategy and goals of the Water Program Review and evaluate the progress and accomplishments of the ...

  5. NREL: Water Power Research - Economic and Power System Modeling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The model represents the initial capital investment of offshore projects, considering project size, water depth, distance from shore, and turbine technology. NREL also develops ...

  6. NREL: Water Power Research - Economic and Power System Modeling and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Economic and Power System Modeling and Analysis NREL's Economic Analysis and power system modeling integrates data from device deployment and programmatic research into deployment and scenario models to quantify the economic and societal benefits of developing cost-competitive marine and hydrokinetic systems. It also identifies policy mechanisms, market designs, and supply chain needs to support various deployment scenarios, provide information and training to potential members of

  7. NREL: Water Power Research - Research Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A photo of beep blue ocean water with small waves rolling across the surface of the water. Photo courtesy of grapestock, iStockphoto Research Staff Here you will find contact ...

  8. Water Power Program Contacts and Organization

    SciTech Connect (OSTI)

    2012-01-19

    This organizational chart shows the management of the water team and cross-cutting functions in the program.

  9. Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    Breakdown Structure Draft MHK LCOE Reporting Guidance Draft Worldwide 'Power exchanges' Hi Vanessa-I connected wit... 2013 projects and funding more Group members (24) Managers:...

  10. WIND AND WATER POWER TECHNOLOGIES OFFICE

    Broader source: Energy.gov (indexed) [DOE]

    available annual report summarizing key trends in the U.S. wind power market, with a ... 3 Report Contents * Installation trends * Industry trends * Technology trends * ...

  11. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

  12. Musings on Water (and Power) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Musings on Water (and Power) Musings on Water (and Power) January 9, 2012 - 4:46pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory Yes, this is energy related, very directly in my case. My household water comes from a well, and every drop of water that I use in the house has to be pumped out of the ground by an electrically operated pump; therefore, the less water I use, the less the pump has to operate, and the less electricity is used. (This is true for municipal

  13. Water recovery using waste heat from coal fired power plants.

    SciTech Connect (OSTI)

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  14. NREL: Water Power Research - Resource Characterization Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources are represented by a color range from blue to red depending on the intensity of the waves. NREL's Marine and Hydrokinetic Atlas displaying the wave power density for ...

  15. NREL: Water Power Research - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration High-voltage transmission lines and towers silouetted against a blue sky with the first glow of the rising sun on the horizon behind them. The national need for transmission improvements will have a direct impact on the effective use of renewable energy sources. For marine and hydrokinetic technologies to play a larger role in supplying the nation's energy needs, integration into the U.S. power grid is an important challenge to address. Efficient integration of variable power

  16. Water Power. 2010 Peer Review Report

    SciTech Connect (OSTI)

    Murphy, Michael; Higgins, Mark; Reed, Michael

    2010-10-01

    This document is the peer review panel’s observations and findings, response from the Water Program to these, and supporting meeting materials including an agenda and participants list.

  17. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE

  18. The use of water in a fusion power core

    SciTech Connect (OSTI)

    Tillack, M. S.; Humrickhouse, P. W.; Malang, S.; Rowcliffe, A. F.

    2015-02-01

    Water has both advantages and disadvantages as a coolant in conceptual designs of future fusion power plants. In the United States, water has not been chosen as a fusion power core coolant for decades. Researchers in other countries continue to adopt water in their designs, in some cases as the leading or sole candidate. In this article, we summarize the technical challenges resulting from the choice of water coolant and the differences in approach and assumptions that lead to different design decisions amongst researchers in this field.

  19. Update on use of mine pool water for power generation.

    SciTech Connect (OSTI)

    Veil, J. A.; Puder, M. G.; Environmental Science Division

    2006-09-30

    In 2004, nearly 90 percent of the country's electricity was generated at power plants using steam-based systems (EIA 2005). Electricity generation at steam electric plants requires a cooling system to condense the steam. With the exception of a few plants using air-cooled condensers, most U.S. steam electric power plants use water for cooling. Water usage occurs through once-through cooling or as make-up water in a closed-cycle system (generally involving one or more cooling towers). According to a U.S. Geological Survey report, the steam electric power industry withdrew about 136 billion gallons per day of fresh water in 2000 (USGS 2005). This is almost the identical volume withdrawn for irrigation purposes. In addition to fresh water withdrawals, the steam electric power industry withdrew about 60 billion gallons per day of saline water. Many parts of the United States are facing fresh water shortages. Even areas that traditionally have had adequate water supplies are reaching capacity limits. New or expanded steam electric power plants frequently need to turn to non-traditional alternate sources of water for cooling. This report examines one type of alternate water source-groundwater collected in underground pools associated with coal mines (referred to as mine pool water in this report). In 2003, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) funded Argonne National Laboratory (Argonne) to evaluate the feasibility of using mine pool water in Pennsylvania and West Virginia. That report (Veil et al. 2003) identified six small power plants in northeastern Pennsylvania (the Anthracite region) that had been using mine pool water for over a decade. It also reported on a pilot study underway at Exelon's Limerick Generating Station in southeastern Pennsylvania that involved release of water from a mine located about 70 miles upstream from the plant. The water flowed down the Schuylkill River and augmented the natural flow so that

  20. Minnesota Power- Solar-Thermal Water Heating Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings;...

  1. Corona Department of Water & Power- Solar Partnership Rebate Program

    Broader source: Energy.gov [DOE]

    Corona Department of Water & Power is providing rebates for residential and commercial photovoltaic (PV) systems. The rebate amount for 2015 is $0.78 per watt up to $2,340 for residential...

  2. Loveland Water & Power- Home Energy Audit Rebate Program

    Broader source: Energy.gov [DOE]

    Loveland Water & Power (LWP) is providing an incentive for customers living in single-family detached homes or attached townhouses that wish to upgrade the energy efficiency of eligible homes....

  3. Water Use in the Development and Operations of Geothermal Power...

    Broader source: Energy.gov (indexed) [DOE]

    ... In the U.S. around 40% of all freshwater withdrawals are for thermoelectric application (GAO, 2009). For conventional power plants, water is used in the steam turbine, for removing ...

  4. Glendale Water and Power- Small Business Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Glendale Water and Power offers incentives to small business customers (monthly electric bill is less than $3,000) to encourage energy efficiency through the Smart Business Energy Saving Upgrade...

  5. GreyStone Power- Solar Water Heating Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    GreyStone Power, an electricity cooperative serving 103,000 customers in Georgia, introduced a solar water heating rebate in March 2009. This $500 rebate is available to customers regardless of...

  6. Burbank Water and Power- Residential and Commercial Solar Support Program

    Broader source: Energy.gov [DOE]

    Burbank Water and Power (BWP) offers customers an up-front capacity-based rebate for photovoltaic (PV) systems up to 30 kW. These incentives decline over time as defined capacity goals are met, e...

  7. Pasadena Water and Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Pasadena Water and Power (PWP) offers rebates to residential customers on a wide variety of energy efficient technologies. Customers who purchase equipment from retailers located in Pasadena...

  8. Burbank Water & Power- Business Bucks Energy Efficiency Grant Program

    Broader source: Energy.gov [DOE]

    Burbank Water and Power (BWP) offers the Business Bucks Grant Program to its small and mid-sized business customers for installation of energy efficient equipment. Businesses with monthly...

  9. Glendale Water and Power- Large Business Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Glendale Water and Power (GWP) offers a rebate to its medium and large business customers with electric bills of more than $3000 per month (electric usage of 250,000 kWh annually ~ $36,000 per year...

  10. Fiscal Year 2011 Water Power Program Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE)

    In November 2011, the Water Power Program held their Annual Peer Review Meeting in Alexandria, Virginia. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic...

  11. City Water Light and Power- Solar Rewards Program

    Broader source: Energy.gov [DOE]

    City Water, Light and Power  (CWLP) is offering residential and commercial customers a $500 per kilowatt (kW) rebate for installing solar photovoltaic (PV) systems with a maximum rebate of up to $2...

  12. 2014 Water Power Program Peer Review Compiled Presentations: Hydropower

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Hydropower Technologies 2014 Water Power Program Peer Review Compiled Presentations: Hydropower Technologies The U.S. Department of Energy Water Power Program conducted the 2014 peer review meeting on hydropower technologies February 25-27. The compiled 2014 Hydropower Technologies Peer Review Presentations listed below are available for download. Existing Hydropower Existing Hydropower-Michael Reed, U.S. Department of Energy National Hydropower Asset

  13. 2014 Water Power Program Peer Review Compiled Presentations: Marine and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrokinetic Technologies | Department of Energy Marine and Hydrokinetic Technologies 2014 Water Power Program Peer Review Compiled Presentations: Marine and Hydrokinetic Technologies The U.S. Department of Energy Water Power Program conducted the 2014 peer review meeting on marine and hydrokinetic technologies February 24-27. The compiled 2014 Marine and Hydrokinetic Technologies Peer Review Presentations listed below are available for download. Introduction Marine and Hydrokinetics

  14. Use of reclaimed water for power plant cooling.

    SciTech Connect (OSTI)

    Veil, J. A.; Environmental Science Division

    2007-10-16

    Freshwater demands are steadily increasing throughout the United States. As its population increases, more water is needed for domestic use (drinking, cooking, cleaning, etc.) and to supply power and food. In arid parts of the country, existing freshwater supplies are not able to meet the increasing demands for water. New water users are often forced to look to alternative sources of water to meet their needs. Over the past few years, utilities in many locations, including parts of the country not traditionally water-poor (e.g., Georgia, Maryland, Massachusetts, New York, and North Carolina) have needed to reevaluate the availability of water to meet their cooling needs. This trend will only become more extreme with time. Other trends are likely to increase pressure on freshwater supplies, too. For example, as populations increase, they will require more food. This in turn will likely increase demands for water by the agricultural sector. Another example is the recent increased interest in producing biofuels. Additional water will be required to grow more crops to serve as the raw materials for biofuels and to process the raw materials into biofuels. This report provides information about an opportunity to reuse an abundant water source -- treated municipal wastewater, also known as 'reclaimed water' -- for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Innovations for Existing Plants research program (Feeley 2005). This program initiated an energy-water research effort in 2003 that includes the availability and use of 'nontraditional sources' of water for use at power plants. This report represents a unique reference for information on the use of reclaimed water for power plant cooling. In particular, the database of reclaimed water user facilities described in Chapter 2 is the first comprehensive national effort to identify and catalog those

  15. USE of mine pool water for power plant cooling.

    SciTech Connect (OSTI)

    Veil, J. A.; Kupar, J. M .; Puder, M. G.

    2006-11-27

    Water and energy production issues intersect in numerous ways. Water is produced along with oil and gas, water runs off of or accumulates in coal mines, and water is needed to operate steam electric power plants and hydropower generating facilities. However, water and energy are often not in the proper balance. For example, even if water is available in sufficient quantities, it may not have the physical and chemical characteristics suitable for energy or other uses. This report provides preliminary information about an opportunity to reuse an overabundant water source--ground water accumulated in underground coal mines--for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), which has implemented a water/energy research program (Feeley and Ramezan 2003). Among the topics studied under that program is the availability and use of ''non-traditional sources'' of water for use at power plants. This report supports NETL's water/energy research program.

  16. Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy into Wave and Tidal Ocean Power: 15% Water Power by 2030 Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 January 27, 2012 - 11:30am Addthis A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology A map generated by Georgia Tech's tidal energy resource database

  17. Water Power Program FY 2017 Budget At-A-Glance | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Us Water Power Program FY 2017 Budget At-A-Glance Water Power Program FY 2017 Budget At-A-Glance The Water Power Program is committed to developing and deploying a ...

  18. Wind and Water Power Technologies FY'14 Budget At-a-Glance |...

    Office of Environmental Management (EM)

    and Water Power Technologies FY'14 Budget At-a-Glance Wind and Water Power Technologies FY'14 Budget At-a-Glance Wind and Water Power Technologies FY'14 Budget At-a-Glance, a ...

  19. Water Power Program FY 2015 Budget At-A-Glance | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Budget At-A-Glance Water Power Program FY 2015 Budget At-A-Glance The Water Power Program, part of the Wind and Water Power Technologies Office, leads efforts in developing ...

  20. Water Power for a Clean Energy Future (Fact Sheet), Wind and...

    Broader source: Energy.gov (indexed) [DOE]

    fact sheet provides an overview of the Department of Energy's Wind and Water Power Program's water power research activities. 51315.pdf (662.58 KB) More Documents & Publications ...

  1. Water Power for a Clean Energy Future (Fact Sheet), Wind and...

    Broader source: Energy.gov (indexed) [DOE]

    for a Clean Energy Future Water power is the nation's largest source of clean, domestic, ... Water power technologies fall into two broad categories: conventional hydropower and ...

  2. U.S. Department of Energy Wind and Water Power Program Funding...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Office Funding in the United States: HYDROPOWER PROJECTS Fiscal Years 2008 - 2015 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE ...

  3. EERE Water Power Technologies FY 2016 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power Program is committed to developing and deploying a portfolio of innovative technologies and market solutions for clean, domestic power generation from water resources ...

  4. U.S. Department of Energy Wind and Water Power Program Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Funding in the United States: HYDROPOWER PROJECTS Fiscal Years 2008 - 2014 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE ...

  5. Radiolysis Concerns for Water Shielding in Fission Surface Power Applications

    SciTech Connect (OSTI)

    Schoenfeld, Michael P.; Anghaie, Samim

    2008-01-21

    This paper presents an overview of radiolysis concerns with regard to water shields for fission surface power. A review of the radiolysis process is presented and key parameters and trends are identified. From this understanding of the radiolytic decomposition of water, shield pressurization and corrosion are identified as the primary concerns. Existing experimental and modeling data addressing concerns are summarized. It was found that radiolysis of pure water in a closed volume results in minimal, if any net decomposition, and therefore reduces the potential for shield pressurization and corrosion.

  6. Water Extraction from Coal-Fired Power Plant Flue Gas

    SciTech Connect (OSTI)

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or

  7. Water vulnerabilities for existing coal-fired power plants.

    SciTech Connect (OSTI)

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were evaluated. The first type

  8. Application of membrane technology to power generation waters

    SciTech Connect (OSTI)

    Tang, T.L.D.; Chu, T.J.; Boroughs, R.D.

    1980-03-01

    Three membrane technlogies (reverse osmosis, ultrafiltration, and electrodialysis) for wastewater treatment and reuse at electric generating power plants were examined. Recirculating condenser water, ash sluice water, coal pile drainage, boiler blowdown and makeup treatment wastes, chemical cleaning wastes, wet SO/sub 2/ scrubber wastes, and miscellaneous wastes were studied. In addition, membrane separation of toxic substances in wastewater was also addressed. Waste characteristics, applicable regulations, feasible membrane processes, and cost information were analyzed for each waste stream. A users' guide to reverse osmosis was developed and is provided in an appendix.

  9. NREL: Wind Research - Wind and Water Power Fact Sheets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind and Water Power Fact Sheets The capabilities for research at the National Wind Technology Center (NWTC) are numerous. Below you will find fact sheets about the many facilities and capabilities at the NWTC, including field testing research, modeling and simulation, and the Wind-Wildlife Impacts Literature Database. Fact Sheet Cover 35 Years of Innovation: Leading the Way to a Clean Energy Future Fact Sheet Cover Wind-Wildlife Impacts Literature Database (WILD) Fact Sheet Cover NREL Software

  10. NREL: Water Power Research - Design Review and Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Review and Analysis NREL is leveraging its 35 years of experience in renewable energy technologies to accelerate the development of robust and efficient water power devices and components. As part of this effort, NREL researchers provide industry partners with design reviews and analyses. In addition to design reviews, NREL offers technical assistance to solve specific technical problems and conducts parallel research to provide a foundation for the increasingly complex engineering

  11. Water Use in the Development and Operations of Geothermal Power Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies. geothermal_water_use_draft.pdf

  12. Water Use in the Development and Operations of Geothermal Power Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies.

  13. Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices

    Broader source: Energy.gov [DOE]

    The Energy Department announces two projects as part of a larger effort to deploy innovative technologies for clean, domestic power generation from water power resources.

  14. OpenEI launches new Water Power Gateway and Community Forum ...

    Open Energy Info (EERE)

    OpenEI launches new Water Power Gateway and Community Forum Home > Groups > Water Power Forum Graham7781's picture Submitted by Graham7781(2017) Super contributor 28 March, 2013 -...

  15. PH adjustment of power plant cooling water with flue gas/fly...

    Office of Scientific and Technical Information (OSTI)

    PH adjustment of power plant cooling water with flue gasfly ash Citation Details In-Document Search Title: PH adjustment of power plant cooling water with flue gasfly ash A...

  16. Water Power Program FY 2016 Budget At-A-Glance | Department of...

    Office of Environmental Management (EM)

    6 Budget At-A-Glance Water Power Program FY 2016 Budget At-A-Glance The Water Power Program is committed to developing and deploying a portfolio of innovative technologies and ...

  17. EERE Success Story-From Flour to Grits, a Water-Powered Mill...

    Energy Savers [EERE]

    From Flour to Grits, a Water-Powered Mill Keeps on Grinding EERE Success Story-From Flour to Grits, a Water-Powered Mill Keeps on Grinding July 7, 2015 - 12:15pm Addthis EERE ...

  18. Water Use in the Development and Operation of Geothermal Power Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Operation of Geothermal Power Plants Water Use in the Development and Operation of Geothermal Power Plants This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies.

  19. Before the Senate Energy and Natural Resources Subcommittee on Water and Power

    Broader source: Energy.gov [DOE]

    Subject: Water Resources Bills, S. 499 and S. 519 By: Derrick Moe, Regional Manager Western Area Power Administration

  20. Before the Subcommittee on Water and Power - Committee on Natural Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Kenneth Legg, Administrator, Southeastern Area Power Administration Subject: Subject: FY 2013 Spending and Missions of the Power Marketing Administrations 3-20-12_Legg_SEPA_FT_1.pdf (41.28 KB) More Documents & Publications Before the Subcommittee on Water and Power - House Natural Resources Committee Before the House Natural Resources Subcommittee on Water and Power Before The Subcommittee on Water and Power - House Energy and Natural Resources Committee

  1. Before the Subcommittee on Water and Power - Committee on Natural Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy James McDonald Administrator, Southwestern Area Power Administration Subject: Subject: FY 2013 Spending and Missions of the Power Marketing Administrations 3-20-12_McDonald_SWPA_FT_0.pdf (50.68 KB) More Documents & Publications Before the Subcommittee on Water and Power - House Natural Resources Committee Before The Subcommittee on Water and Power - House Committee on Natural Resources The Subcommittee on Water, Power, and Oceans House Committee on Natural

  2. Cooling Water Issues and Opportunities at U.S. Nuclear Power Plants,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 2010 | Department of Energy Cooling Water Issues and Opportunities at U.S. Nuclear Power Plants, December 2010 Cooling Water Issues and Opportunities at U.S. Nuclear Power Plants, December 2010 Energy and water are both essential to sustainable development and economic productivity. Ample supplies of water are essential to energy production, and water management is dependent on ample supplies of energy for water treatment and transportation. The critical nexus between energy and

  3. Before the House Subcommittee on Water and Power

    Broader source: Energy.gov [DOE]

    Subject: H.R. 1719 By: Gregory K. Delwiche, Senior Vice President Of Power Services, Bonneville Power Administration

  4. Before the House Natural Resources Subcommittee on Water and Power

    Broader source: Energy.gov [DOE]

    Subject: H.R. 4349, "Hoover Power Allocation Act of 2009" By: Timothy Meeks, Administrator Western Area Power Administration

  5. Before the House Natural Resources Subcommittee on Water and Power

    Broader source: Energy.gov [DOE]

    Subject: Federal Power Marketing Administration Borrowing Authority 
By: Timothy J. Meeks Administrator, Western Area Power Administration

  6. The Subcommittee on Water, Power, and Oceans House Committee on Natural

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources | Department of Energy The Subcommittee on Water, Power, and Oceans House Committee on Natural Resources The Subcommittee on Water, Power, and Oceans House Committee on Natural Resources Testimony of Christopher M. Turner, Administrator Southwest Power Administration Before the Subcommittee on Water, Power, and Oceans House Committee on Natural Resources 3-24-15_Christopher_Turner FT HNR.pdf (59.99 KB) More Documents & Publications Before the House Natural Resources

  7. Year in Review: Celebrating Wind Energy and Water Power | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Year in Review: Celebrating Wind Energy and Water Power Year in Review: Celebrating Wind Energy and Water Power December 22, 2015 - 4:01pm Addthis Year in Review: Celebrating Wind Energy and Water Power Sarah Wagoner Sarah Wagoner Communications Specialist, Wind and Water Power Technologies Office Renewable energy from wind and water had a big year in 2015. The wind industry continues to grow the American clean energy economy one megawatt at a time, and this past year, the price of

  8. Secretary Chu Announces more than $200 Million for Solar and Water Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy more than $200 Million for Solar and Water Power Technologies Secretary Chu Announces more than $200 Million for Solar and Water Power Technologies April 22, 2010 - 12:00am Addthis WASHINGTON, DC - On the 40th Anniversary of Earth Day, U.S. Department of Energy Secretary Steven Chu announced that the Department will invest more than $200 million over five years to expand and accelerate the development, commercialization, and use of solar and water power

  9. Inter-Agency Agreement Signed between DOE's Wind and Water Power Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Carderock Inter-Agency Agreement Signed between DOE's Wind and Water Power Program and Carderock - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid

  10. NREL: Water Power Research - Computer-Aided Engineering Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Tools Computer simulation of a floating point absorber in water. The water is represented by blue and red stripes. The absorber is represented by a red disk above water ...

  11. Community Water Pump and Treatment Facility PV Solar Power Project

    Office of Environmental Management (EM)

    200,000 kWhyear PROJECT LOCATION SITE DETAILS Water Pump and Treatment Facility Sole provider of water to Pueblo and its 5,000 residents 1 pump house, 2 water ...

  12. U.S. Department of Energy Wind and Water Power Program Funding...

    Broader source: Energy.gov (indexed) [DOE]

    MARINE AND HYDROKINETIC ENERGY PROJECTS Fiscal Years 2008 - 2015 WIND AND WATER POWER ... Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE), ...

  13. From Flour to Grits, a Water-Powered Mill Keeps on Grinding | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy From Flour to Grits, a Water-Powered Mill Keeps on Grinding From Flour to Grits, a Water-Powered Mill Keeps on Grinding June 30, 2015 - 2:02pm Addthis From Flour to Grits, a Water-Powered Mill Keeps on Grinding Sarah Wagoner Sarah Wagoner Communications Specialist, Wind and Water Power Technologies Office A mill owned and operated for six generations by the Weisenberger family has been grinding grains in the heart of Kentucky since the Civil War. In 1862, August Weisenberger emigrated

  14. 4 Must-Have MHK Tools to Help Unlock the Power of Water | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4 Must-Have MHK Tools to Help Unlock the Power of Water 4 Must-Have MHK Tools to Help Unlock the Power of Water March 11, 2014 - 12:00pm Addthis Watch the video above to learn how marine and hydrokinetic technologies can harness energy from waves, tides, and river and ocean currents to generate electricity. Hoyt Battey Market Acceleration and Deployment Program Manager, Wind and Water Power Technologies Office MORE RESOURCES Learn more about the water power assessments and the

  15. Water Use in the Development and Operation of Geothermal Power...

    Broader source: Energy.gov (indexed) [DOE]

    ... Appendix C - Summary of Water Consumption for Electricity Generation Technologies ... are on the low end of the water consumption spectrum, as illustrated here. ...

  16. NREL: Water Power Research - Device and Component Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL houses the nation's premier laboratory facilities for testing offshore wind and water ... to obtain high-resolution measurements in the laboratory and open water test sites. ...

  17. Microsoft PowerPoint - Aluminum Concentrations in Storm Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Title: Solid and Dissolved Phase Aluminum in Storm Water Runoff on the Pajarito Plateau, Poster, Individual Permit for Storm Water, NPDES Permit No. NM0030759 Author(s): ...

  18. Impact of drought on U.S. steam electric power plant cooling water intakes and related water resource management issues.

    SciTech Connect (OSTI)

    Kimmell, T. A.; Veil, J. A.; Environmental Science Division

    2009-04-03

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements their overall research effort by evaluating water availability at power plants under drought conditions. While there are a number of competing demands on water uses, particularly during drought conditions, this report focuses solely on impacts to the U.S. steam electric power plant fleet. Included are both fossil-fuel and nuclear power plants. One plant examined also uses biomass as a fuel. The purpose of this project is to estimate the impact on generation capacity of a drop in water level at U.S. steam electric power plants due to climatic or other conditions. While, as indicated above, the temperature of the water can impact decisions to halt or curtail power plant operations, this report specifically examines impacts as a result of a drop in water levels below power plant submerged cooling water intakes. Impacts due to the combined effects of excessive temperatures of the returned cooling water and elevated temperatures of receiving waters (due to high ambient temperatures associated with drought) may be examined in a subsequent study. For this study, the sources of cooling water used by the U.S. steam electric power plant fleet were examined. This effort entailed development of a database of power plants and cooling water intake locations and depths for those plants that use surface water as a source of cooling water. Development of the database and its general characteristics are described in Chapter 2 of this report. Examination of the database gives an indication of how low water levels can drop before cooling water intakes cease to function. Water level drops are evaluated against a number of different power plant characteristics, such as the nature of the water source (river vs. lake or reservoir) and type

  19. Supercritical Water Reactor Cycle for Medium Power Applications

    SciTech Connect (OSTI)

    BD Middleton; J Buongiorno

    2007-04-25

    Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency {ge}20%; Steam turbine outlet quality {ge}90%; and Pumping power {le}2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump

  20. Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  1. Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  2. 2014 Water Power Program Peer Review: Marine and Hydrokinetic Technologies, Compiled Presentations (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Marine and Hydrokinetic Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

  3. 2014 Water Power Program Peer Review: Hydropower Technologies, Compiled Presentations (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Hydropower Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

  4. NREL: Water Power Research - Computer-Aided Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation that illustrates the flow patterns of water, represented by red circles and dots, around several two-bladed current turbines that appear to e floating in blue water. ...

  5. Integration of a "Passive Water Recovery" MEA into a Portable DMFC Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supply | Department of Energy a "Passive Water Recovery" MEA into a Portable DMFC Power Supply Integration of a "Passive Water Recovery" MEA into a Portable DMFC Power Supply Download slides from the presentation by the University of North Florida at the July 17, 2012, Fuel Cell Technologies Program webinar, "Fuel Cells for Portable Power." Integration of a "Passive Water Recovery" MEA into a Portable DMFC Power Supply Webinar Slides (6.16 MB) More

  6. Simultaneous production of desalinated water and power using a hybrid-cycle OTEC plant

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1987-05-01

    A systems study for simultaneous production of desalinated water and electric power using the hybrid-cycle OTEC system was carried out. The hybrid cycle is a combination of open and closed-cycle OTEC systems. A 10 MWe shore-based hybrid-cycle OTEC plant is discussed and corresponding operating parameters are presented. Design and plant operating criteria for adjusting the ratio of water production to power generation are described and their effects on the total system were evaluated. The systems study showed technical advantages of the hybrid-cycle power system as compared to other leading OTEC systems for simultaneous production of desalinated water and electric power generation.

  7. Before the House Natural Resources Subcommittee on Water and Power

    Broader source: Energy.gov [DOE]

    Subject: Investment in Small Hydropower: Prospects of Expanding Low-Impact and Affordable Hydropower Generation in the West By: Sonya Baskerville, Manager of National Relations Bonneville Power Administration

  8. Water Power Forum - Q & A | OpenEI Community

    Open Energy Info (EERE)

    Breakdown Structure Draft MHK LCOE Reporting Guidance Draft Worldwide 'Power exchanges' Hi Vanessa-I connected wit... 2013 projects and funding more Group members (24) Managers:...

  9. GreenPower Trap Water-Muffler System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GreenPower Trap Water-Muffler System GreenPower Trap Water-Muffler System This hydrated EGR system reduces NOx and enhances fuel efficiency, and the DPF is catalyzed by the fuel-borne catalyst generated by the oil-borne catalyst system deer09_rim.pdf (118.32 KB) More Documents & Publications DPF -"Hydrated EGR" Fuel Saver System GreenPowerTM Trap-Muffler

  10. Finding Alternative Water Sources for Power Plants with Google Earth

    Office of Energy Efficiency and Renewable Energy (EERE)

    Sobering news from experts: Rising populations, regional droughts, and decreasing groundwater levels are draining the nation’s fresh water supply. What plant operators need is a system that catalogs in one place nontraditional water sources that can be used for electricity production instead of valuable, limited fresh water. Now, thanks to a Department of Energy (DOE)-supported project, there’s an app for that.

  11. Wind Power Answer In Times of Water Scarcity (Presentation)

    SciTech Connect (OSTI)

    Flowers, L.; Reategui, S.

    2010-05-25

    Strategic energy planning is paramount during times of dramatic population growth, global warming, increasing energy demands, and concerns over energy security, food security, and economic development. Recent concerns over water scarcity have moved the energy-water issue to the forefront of energy options discussions. This presentation describes the current water challenges in the United States and presents a case for wind energy as one way to mitigate the problem of water scarcity in several U.S. regions while providing a clean and sustainable economic future for America.

  12. City Water Light and Power - Residential Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    Clothes Washers Water Heaters Heat Pumps Building Insulation Maximum Rebate Building Insulation: 500 Program Info Sector Name Utility Administrator Energy Services Office Website...

  13. Water management for hydroelectric power generation at Matera and Kidatu in Tanzania

    SciTech Connect (OSTI)

    Matondo, J.I.; Rutashobya, D.G.

    1995-12-31

    The major sources of power in Tanzania are hydropower and thermo power. Most of the hydroelectric power is generated in the Great Ruaha river system (280 MW) and in the Pangani river system (46 MW). However, the generated power (hydro and thermo) does not meet the power demand and as a result, an accute power shortage occurred in August 1992. This paper explores the hydropower generation mechanism at Mtera and Kidatu hydroelectric power plants. It also looks into what measures could have been taken in order to avoid the massive power shedding which officially lasted for about six months, although unofficially, power shedding was continued well beyond that period. Strategies for future water management in the Great Ruaha river system for efficient generation of power are also presented.

  14. Recent content in Water Power Forum | OpenEI Community

    Open Energy Info (EERE)

    - 11:43 Question 2013 projects and funding Vanessa.gregory 13 Dec 2013 - 09:12 Question Hi Vanessa-I connected wit... NickL 13 Dec 2013 - 14:38 Answer Worldwide 'Power exchanges'...

  15. Before the House Subcommittee on Water and Power

    Broader source: Energy.gov [DOE]

    Subject: Western Area Power Administration’s Borrowing Authority (H.R. 2915) By: Lauren Azar, 
Senior Advisor, 
Office Of The Secretary Of Energy, U.S. Department Of Energy

  16. Upcoming Funding Opportunity for Water Power Manufacturing | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Efficiency by Equipment Health Monitoring with Virtual Intelligent Sensing | Department of Energy Disaggregated power consumption charts. Image courtesy of Oak Ridge National Laboratory and BTO Reviews. Disaggregated power consumption charts. Image courtesy of Oak Ridge National Laboratory and BTO Reviews. Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: -- University of Tennessee - Knoxville, TN -- Richman Surrey Inc. - Scottsdale, AZ DOE Funding: $995,00 Project

  17. Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas

    SciTech Connect (OSTI)

    Dexin Wang

    2012-03-31

    The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

  18. Marine & Hydrokinetic Technologies, Wind and Water Power Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These centers, one run by Oregon State University and the University of Washington and one by the University of Hawaii, are planned with open-water test berths as well as ...

  19. Wind and Water Power Program - Wind Power Opens Door To Diverse Opportunities (Green Jobs)

    SciTech Connect (OSTI)

    2010-04-01

    The strong projected growth of wind power will require a stream of trained and qualified workers to manufacture, construct, operate, and maintain the wind energy facilities.

  20. 384 Power plant waste water sampling and analysis plan

    SciTech Connect (OSTI)

    Hagerty, K.J.; Knotek, H.M.

    1995-01-01

    This document presents the 384 Power House Sampling and Analysis Plan. The Plan describes sampling methods, locations, frequency, analytes, and stream descriptions. The effluent streams from 384, were characterized in 1989, in support of the Stream Specific Report (WHC-EP-0342, Addendum 1).

  1. 43 U.S.C. 485h New Projects; Sale of Water and Electric Power...

    Open Energy Info (EERE)

    43 U.S.C. 485h New Projects; Sale of Water and Electric Power Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal...

  2. Title 16 USC 796 Regulation of the Development of Water Power...

    Open Energy Info (EERE)

    6 Regulation of the Development of Water Power and Resources Definitions Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 16...

  3. NMS 74-6-4 Duties and Powers of the Water Quality Control Commission...

    Open Energy Info (EERE)

    -4 Duties and Powers of the Water Quality Control Commission Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: NMS 74-6-4 Duties...

  4. Wind and Water Power Modeling and Simulation at the NWTC (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-02-01

    Researchers and engineers at the National Wind Technology Center have developed a wide range of computer modeling and simulation tools to support the wind and water power industries with state-of-the-art design and analysis capabilities.

  5. pH Adjustment of Power Plant Cooling Water with Flue Gas/ Fly Ash - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search pH Adjustment of Power Plant Cooling Water with Flue Gas/ Fly Ash Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (801 KB) Technology Marketing SummaryIncreased recycling of power plant cooling water calls for low-cost means of preventing the formation of calcium carbonate and silicate scale. Hardness (Ca and Mg) and silica are two of

  6. Water Power Calculator Temperature and Analog Input/Output Module Ambient Temperature Testing

    SciTech Connect (OSTI)

    Mark D. McKay

    2011-02-01

    Water Power Calculator Temperature and Analog input/output Module Ambient Temperature Testing A series of three ambient temperature tests were conducted for the Water Power Calculator development using the INL Calibration Laboratorys Tenney Environmental Chamber. The ambient temperature test results demonstrate that the Moore Industries Temperature Input Modules, Analog Input Module and Analog Output Module, ambient temperature response meet or exceed the manufactures specifications

  7. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

  8. EIS-0141: Washington Water Power/B.C. Hydro Transmission Interconnection Project

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of constructing and operating a double-circuit 230-kilovolt electrical transmission line that would link the electrical systems of the Washington Water Power Company and the British Columbia Hydro and Power Authority.

  9. Optimization Under Uncertainty for Water Consumption in a Pulverized Coal Power Plant

    SciTech Connect (OSTI)

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2009-01-01

    Pulverized coal (PC) power plants are widely recognized as major water consumers whose operability has started to be affected by drought conditions across some regions of the country. Water availability will further restrict the retrofitting of existing PC plants with water-expensive carbon capture technologies. Therefore, national efforts to reduce water withdrawal and consumption have been intensified. Water consumption in PC plants is strongly associated to losses from the cooling water cycle, particularly water evaporation from cooling towers. Accurate estimation of these water losses requires realistic cooling tower models, as well as the inclusion of uncertainties arising from atmospheric conditions. In this work, the cooling tower for a supercritical PC power plant was modeled as a humidification operation and used for optimization under uncertainty. Characterization of the uncertainty (air temperature and humidity) was based on available weather data. Process characteristics including boiler conditions, reactant ratios, and pressure ratios in turbines were calculated to obtain the minimum water consumption under the above mentioned uncertainties. In this study, the calculated conditions predicted up to 12% in reduction in the average water consumption for a 548 MW supercritical PC power plant simulated using Aspen Plus. Optimization under uncertainty for these large-scale PC plants cannot be solved with conventional stochastic programming algorithms because of the computational expenses involved. In this work, we discuss the use of a novel better optimization of nonlinear uncertain systems (BONUS) algorithm which dramatically decreases the computational requirements of the stochastic optimization.

  10. Optimization under Uncertainty for Water Consumption in a Pulverized Coal Power Plant

    SciTech Connect (OSTI)

    Juan M. Salazar; Stephen E. Zitney; Urmila Diwekar

    2009-01-01

    Pulverized coal (PC) power plants are widely recognized as major water consumers whose operability has started to be affected by drought conditions across some regions of the country. Water availability will further restrict the retrofitting of existing PC plants with water-expensive carbon capture technologies. Therefore, national efforts to reduce water withdrawal and consumption have been intensified. Water consumption in PC plants is strongly associated to losses from the cooling water cycle, particularly water evaporation from cooling towers. Accurate estimation of these water losses requires realistic cooling tower models, as well as the inclusion of uncertainties arising from atmospheric conditions. In this work, the cooling tower for a supercritical PC power plant was modeled as a humidification operation and used for optimization under uncertainty. Characterization of the uncertainty (air temperature and humidity) was based on available weather data. Process characteristics including boiler conditions, reactant ratios, and pressure ratios in turbines were calculated to obtain the minimum water consumption under the above mentioned uncertainties. In this study, the calculated conditions predicted up to 12% in reduction in the average water consumption for a 548 MW supercritical PC power plant simulated using Aspen Plus. Optimization under uncertainty for these large-scale PC plants cannot be solved with conventional stochastic programming algorithms because of the computational expenses involved. In this work, we discuss the use of a novel better optimization of nonlinear uncertain systems (BONUS) algorithm which dramatically decreases the computational requirements of the stochastic optimization.

  11. New Research Facility to Remove Hurdles to Offshore Wind and Water Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Research Facility to Remove Hurdles to Offshore Wind and Water Power Development New Research Facility to Remove Hurdles to Offshore Wind and Water Power Development January 10, 2013 - 1:59pm Addthis This is an excerpt from the Fourth Quarter 2012 edition of the Wind Program R&D Newsletter. Virginia Beach, Virginia - A new U.S. Department of Energy (DOE) research facility could help bring the United States closer to generating power from the winds and

  12. The development of a subsea power transmission system for deep water boosting applications

    SciTech Connect (OSTI)

    Godinho, C.A.; Campagnac, L.A.; Nicholson, A.; Magalhaes, W.M.

    1996-12-31

    This paper presents the development of a subsea power transmission in medium voltage and variable frequency, as a key system for application of Boosting Technology and, more particularly, for Electrical Submersible Pumping in deep water wells. The focuses of this paper are mainly on the design and manufacture of subsea power cables and transformers for 1,000 m water depth. The production from a subsea well equipped with ESP`s is a fact since October/94, with the first installation in the Campos Basin, Brazil. The development of the subsea power transmission in medium voltage and variable frequency will allow the installation of a Boosting System in deep water at long distance (25 km or more) from the production platform. The design and manufacture of subsea power cables and subsea power transformers, as well as the integration of the complete power system is a result of a Technological Cooperation Agreement with Tronic, Pirelli, Siemens A.G. and Siemens Brazil. As a result from this agreement subsea power cables up to 12/20 kV voltage level, conductor sizes from 35 to 150 mm{sup 2}, oil filled subsea power transformer rated at 750 kVA, nominal voltage ratio 10,000/3,000 V and the electrical connectors to X-tree will be developed and manufactured.

  13. COOLING WATER ISSUES AND OPPORTUNITIES AT U.S. NUCLEAR POWER PLANTS

    SciTech Connect (OSTI)

    Gary Vine

    2010-12-01

    This report has been prepared for the Department of Energy, Office of Nuclear Energy (DOE-NE), for the purpose of providing a status report on the challenges and opportunities facing the U.S. commercial nuclear energy industry in the area of plant cooling water supply. The report was prompted in part by recent Second Circuit and Supreme Court decisions regarding cooling water system designs at existing thermo-electric power generating facilities in the U.S. (primarily fossil and nuclear plants). At issue in the courts have been Environmental Protection Agency regulations that define what constitutes “Best Technology Available” for intake structures that withdraw cooling water that is used to transfer and reject heat from the plant’s steam turbine via cooling water systems, while minimizing environmental impacts on aquatic life in nearby water bodies used to supply that cooling water. The report was also prompted by a growing recognition that cooling water availability and societal use conflicts are emerging as strategic energy and environmental issues, and that research and development (R&D) solutions to emerging water shortage issues are needed. In particular, cooling water availability is an important consideration in siting decisions for new nuclear power plants, and is an under-acknowledged issue in evaluating the pros and cons of retrofitting cooling towers at existing nuclear plants. Because of the significant ongoing research on water issues already being performed by industry, the national laboratories and other entities, this report relies heavily on ongoing work. In particular, this report has relied on collaboration with the Electric Power Research Institute (EPRI), including its recent work in the area of EPA regulations governing intake structures in thermoelectric cooling water systems.

  14. Fish-Friendly Turbine Making a Splash in Water Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fish-Friendly Turbine Making a Splash in Water Power Fish-Friendly Turbine Making a Splash in Water Power October 21, 2011 - 10:29am Addthis A computer simulation of the Alden Fish-Friendly Turbine. A computer simulation of the Alden Fish-Friendly Turbine. Rajesh Dham Hydropower Technology Team Lead How does it work? The Alden turbine has three blades, no gaps, is bigger and rotates more slowly than typical hydro turbines. At peak performance, an Alden turbine should convert about 94 percent of

  15. Water Use in the Development and Operations of Geothermal Power Plants

    Office of Environmental Management (EM)

    Water Power News Water Power News RSS September 9, 2016 The Energy Department's marine and hydrokinetic (MHK) portfolio-commonly known as wave and tidal energy-is one of the more up-and-coming renewable energy sources being explored on an international scale. Energy Department Leads International Efforts to Unlock Ocean Energy The U.S. Department of Energy's marine and hydrokinetic (MHK) portfolio-commonly known as wave and tidal energy-is one of the more up-and-coming renewable energy sources

  16. A NOVEL CONCEPT FOR REDUCING WATER USAGE AND INCREASING EFFICIENCY IN POWER GENERATION

    SciTech Connect (OSTI)

    Shiao-Hung Chiang; Guy Weismantel

    2004-03-01

    The objective of the project is to apply a unique ice thermal storage (ITS) technology to cooling the intake air to gas turbines used for power generation. In Phase I, the work includes theoretical analysis, computer simulation, engineering design and cost evaluation of this novel ITS technology. The study includes two typical gas turbines (an industrial and an aeroderivative type gas turbine) operated at two different geographic locations: Phoenix, AZ and Houston, TX. Simulation runs are performed to generate data for both power output (KW) and heat rate (Btu/KWh) as well as water recovery (acre ft/yr) in terms of intake air temperature and humidity based on weather data and turbine performance curves. Preliminary engineering design of a typical equipment arrangement for turbine inlet air-cooling operation using the ITS system is presented. A cost analysis has been performed to demonstrate the market viability of the ITS technology. When the ITS technology is applied to gas turbines, a net power gain up to 40% and a heat rate reduction as much as 7% can be achieved. In addition, a significant amount of water can be recovered (up to 200 acre-ft of water per year for a 50 MW turbine). The total cost saving is estimated to be $500,000/yr for a 50 MW gas turbine generator. These results have clearly demonstrated that the use of ITS technology to cool the intake-air to gas turbines is an efficient and cost effective means to improve the overall performance of its power generation capacity with an important added benefit of water recovery in power plant operation. Thus, further development of ITS technology for commercial applications in power generation, particularly in coal-based IGCC power plants is warranted.

  17. Dynamic effect of sodium-water reaction in fast flux test facility power addition sodium pipes

    SciTech Connect (OSTI)

    Huang, S.N.; Anderson, M.J.

    1990-03-01

    The Fast Flux Facility (FFTF) is a demonstration and test facility of the sodium-cooled fast breeder reactor. A power addition'' to the facility is being considered to convert some of the dumped, unused heat into electricity generation. Components and piping systems to be added are sodium-water steam generators, sodium loop extensions from existing dump heat exchangers to sodium-water steam generators, and conventional water/steam loops. The sodium loops can be subjected to the dynamic loadings of pressure pulses that are caused by postulated sodium leaks and subsequent sodium-water reaction in the steam generator. The existing FFTF secondary pipes and the new power addition sodium loops were evaluated for exposure to the dynamic effect of the sodium-water reaction. Elastic and simplified inelastic dynamic analyses were used in this feasibility study. The results indicate that both the maximum strain and strain range are within the allowable limits. Several cycles of the sodium-water reaction can be sustained by the sodium pipes that are supported by ordinary pipe supports and seismic restraints. Expensive axial pipe restraints to withstand the sodium-water reaction loads are not needed, because the pressure-pulse-induced alternating bending stresses act as secondary stresses and the pressure pulse dynamic effect is a deformation-controlled quantity and is self-limiting. 14 refs., 7 figs., 3 tabs.

  18. Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities

    SciTech Connect (OSTI)

    C. McGowin; M. DiFilippo; L. Weintraub

    2006-06-30

    Tree ring studies indicate that, for the greater part of the last three decades, New Mexico has been relatively 'wet' compared to the long-term historical norm. However, during the last several years, New Mexico has experienced a severe drought. Some researchers are predicting a return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters to supplement current fresh water supplies for power plant operation and cooling and other uses. The U.S. Department of Energy's National Energy Technology Laboratory sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. These were (1) an assessment of using water produced with oil and gas as a supplemental supply for the San Juan Generating Station (SJGS); (2) a field evaluation of the wet-surface air cooling (WSAC) system at SJGS; and (3) the development of a ZeroNet systems analysis module and an application of the Watershed Risk Management Framework (WARMF) to evaluate a range of water shortage management plans. The study of the possible use of produced water at SJGS showed that produce water must be treated to justify its use in any reasonable quantity at SJGS. The study identified produced water volume and quality, the infrastructure needed to deliver it to SJGS, treatment requirements, and delivery and treatment economics. A number of produced water treatment alternatives that use off-the-shelf technology were evaluated along with the equipment needed for water treatment at SJGS. Wet surface air-cooling (WSAC) technology was tested at the San Juan Generating Station (SJGS) to determine its capacity to cool power plant circulating water using degraded water. WSAC is a commercial cooling technology and has been used for many years to cool and/or condense process fluids. The purpose of the pilot test was to determine if WSAC

  19. High power water load for microwave and millimeter-wave radio frequency sources

    DOE Patents [OSTI]

    Ives, R. Lawrence; Mizuhara, Yosuke M.; Schumacher, Richard V.; Pendleton, Rand P.

    1999-01-01

    A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.

  20. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    SciTech Connect (OSTI)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the full FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.

  1. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  2. Natural gas powered rotary water chiller development. Phase 1. Final report, September 1991-June 1993

    SciTech Connect (OSTI)

    Sanborn, D.F.; Lakowske, R.L.; Byars, M.

    1993-06-01

    Objectives of the project were to evaluate performance and marketability of a rotary engine driven screw compressor for water chiller applications. Choice of a rotary engine was aimed at rotary compressor. Initial testing done with modified stock 13B rotary engine and experimental open compressor. Engine torque not sufficient for 70 ton compressor. Analysis concluded 50 ton best match for air cooled applications and 60 ton best for water cooled to get highest gas COP. Market analysis covered total water chiller market assuming relative costs of power would lead to gas cooling sales. Allowable cost premium for 3 yr payback determined for areas of country. Premium cost of 100 ton air cooled unit estimated and compared to market allowable premiums. Concluded product acceptance will be primarily in niche markets with high local electric power demand charges.

  3. Water energy resources of the United States with emphasis on low head/low power resources

    SciTech Connect (OSTI)

    Hall, Douglas G.; Cherry, Shane J.; Reeves, Kelly S.; Lee, Randy D.; Carroll, Gregory R.; Sommers, Garold L.; Verdin, Kristine L.

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Survey’s Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated. Results for each of the 20 hydrologic regions are presented in Appendix A, and similar presentations for each of the 50 states are made in Appendix B.

  4. Institutional impediments to using alternative water sources in thermoelectric power plants.

    SciTech Connect (OSTI)

    Elcock, D.

    2011-08-03

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Obtaining adequate water supplies for cooling and other operations at a reasonable cost is a key factor in siting new and maintaining existing thermoelectric power plant operations. One way to reduce freshwater consumption is to use alternative water sources such as reclaimed (or recycled) water, mine pool water, and other nontraditional sources. The use of these alternative sources can pose institutional challenges that can cause schedule delays, increase costs, or even require plants to abandon their plans to use alternative sources. This report identifies and describes a variety of institutional challenges experienced by power plant owners and operators across the country, and for many of these challenges it identifies potential mitigating approaches. The information comes from publically available sources and from conversations with power plant owners/operators familiar with using alternative sources. Institutional challenges identified in this investigation include, but are not limited to, the following: (1) Institutional actions and decisions that are beyond the control of the power plant. Such actions can include changes in local administrative policies that can affect the use of reclaimed water, inaccurate growth projections regarding the amount of water that will be available when needed, and agency workloads and other priorities that can cause delays in the permitting and approval processes. (2) Developing, cultivating, and maintaining institutional relationships with the purveyor(s) of the alternative water source, typically a municipal wastewater treatment plant (WWTP), and with the

  5. Selection of a suitable reactor type for water desalination and power generation in Saudi Arabia

    SciTech Connect (OSTI)

    Hussein, F.M.

    1988-03-01

    Selection of a reactor type suitable for water desalination and power generation is a complex process that involves the evaluation of many criteria and requires the professional judgment of many experts in different fields. A reactor type that is suitable for one country might not be suitable for another. This is especially true in the case of Saudi Arabia because of its strategic location, the nature of its land and people, and its moderate technological situation. A detailed study using a computer code based on Saaty's mathematical pairwise comparison technique and developed in a previous study was carried out to find the most suitable reactor for water desalination and power generation in Saudi Arabia from among five potential types: boiling water reactors (BWRs), pressurized water reactors, CANDU heavy water reactors (HWRs), steam-generating heavy water reactors (SGHWRs), and high-temperature gas-cooled reactors. It was concluded that the CANDU HWR is the most suitable type for this purpose followed first by the BWR, then the SGHWR.

  6. Effect of makeup water properties on the condenser fouling in power planr cooling system

    SciTech Connect (OSTI)

    Safari, I.; Walker, M.; Abbasian, J.; Arastoopour, H.; Hsieh, M-K.; Dzombak, D.; Miller, D.

    2011-01-01

    The thermoelectric power industry in the U.S. uses a large amount of fresh water. As available freshwater for use in thermoelectric power production becomes increasingly limited, use of nontraditional water sources is of growing interest. Utilization of nontraditional water, in cooling systems increases the potential for mineral precipitation on heat exchanger surfaces. In that regard, predicting the accelerated rate of scaling and fouling in condenser is crucial to evaluate the condenser performance. To achieve this goal, water chemistry should be incorporated in cooling system modeling and simulation. This paper addresses the effects of various makeup water properties on the cooling system, namely pH and aqueous speciation, both of which are important factors affecting the fouling rate in the main condenser. Detailed modeling of the volatile species desorption (i.e. CO{sub 2} and NH{sub 3}), the formation of scale in the recirculating system, and the relationship between water quality and the corresponding fouling rates is presented.

  7. Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.

    SciTech Connect (OSTI)

    Elcock, D.

    2011-05-09

    Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and

  8. DESIGN OF HYBRID POWER GENERATION CYCLES EMPLOYING AMMONIA-WATER-CARBON DIOXIDE MIXTURES

    SciTech Connect (OSTI)

    Ashish Gupta

    2002-06-01

    A power cycle generates electricity from the heat of combustion of fossil fuels. Its efficiency is governed by the cycle configuration, the operating parameters, and the working fluid. Typical. designs use pure water as the fluid. in the last two decades, hybrid cycles based on ammonia-water, and carbon-dioxide mixtures as the working fluid have been proposed. These cycles may improve the power generation efficiency of Rankine cycles by 15%. Improved efficiency is important for two reasons: it lowers the cost of electricity being produced, and by reducing the consumption of fossil fuels per unit power, it reduces the generation of environmental pollutants. The goal of this project is to develop a computational optimization-based method for the design and analysis of hybrid bottoming power cycles to minimize the usage of fossil fuels. The development of this methodology has been achieved by formulating this task as that of selecting the least cost power cycle design from all possible configurations. They employ a detailed thermodynamic property prediction package they have developed under a DOE-FETC grant to model working fluid mixtures. Preliminary results from this work suggest that a pure NH{sub 3} cycle outperforms steam or the expensive Kalina cycle.

  9. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect (OSTI)

    Kent Zammit; Michael N. DiFilippo

    2005-01-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Produced water is generated nationally as a byproduct of oil and gas production. Seven states generate 90 percent of the produced water in the continental US. About 37 percent of the sources documented in the US Geological Survey's (USGS) Produced Waters Database have a TDS of less than 30,000 mg/l. This is significant because produced water treatment for reuse in power plants was found to be very costly above 30,000 mg/l TDS. For the purposes of this report, produced water treatment was assessed using the technologies evaluated for the San Juan Generating Station (SJGS) in Deliverable 3, Treatment and Disposal Analysis. Also, a methodology was developed to readily estimate capital and operating costs for produced water treatment. Two examples are presented to show how the cost estimating methodology can be used to evaluate the cost of treatment of produced water at power plants close to oil and gas production.

  10. A study of out-of-phase power instabilities in boiling water reactors

    SciTech Connect (OSTI)

    March-Leuba, J.; Blakeman, E.D.

    1988-06-20

    This paper presents a study of the stability of subcritical neutronic modes in boiling water reactors that can result in out-of-phase power oscillations. A mechanism has been identified for this type of oscillation, and LAPUR code has been modified to account for it. Numerical results show that there is a region in the power-flow operating map where an out-or-phase stability mode is likely even if the core-wide mode is stable. 4 refs., 7 figs.

  11. Water use in the development and operation of geothermal power plants.

    SciTech Connect (OSTI)

    Clark, C. E.; Harto, C. B.; Sullivan, J. L.; Wang, M. Q.

    2010-09-17

    Geothermal energy is increasingly recognized for its potential to reduce carbon emissions and U.S. dependence on foreign oil. Energy and environmental analyses are critical to developing a robust set of geothermal energy technologies. This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies. The results of the life cycle analysis are summarized in a companion report, Life Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems. This report is divided into six chapters. Chapter 1 gives the background of the project and its purpose, which is to inform power plant design and operations. Chapter 2 summarizes the geothermal electricity generation technologies evaluated in this study, which include conventional hydrothermal flash and binary systems, as well as enhanced geothermal systems (EGS) that rely on engineering a productive reservoir where heat exists but water availability or permeability may be limited. Chapter 3 describes the methods and approach to this work and identifies the four power plant scenarios evaluated: a 20-MW EGS plant, a 50-MW EGS plant, a 10-MW binary plant, and a 50-MW flash plant. The two EGS scenarios include hydraulic stimulation activities within the construction stage of the life cycle and assume binary power generation during operations. The EGS and binary scenarios are assumed to be air-cooled power plants, whereas the flash plant is assumed to rely on evaporative cooling. The well field and power plant design for the scenario were based on simulations using DOE's Geothermal Economic Technology Evaluation Model (GETEM). Chapter 4 presents the water requirements for the power plant life cycle for the scenarios evaluated. Geology, reservoir

  12. Storing carbon dioxide in saline formations : analyzing extracted water treatment and use for power plant cooling.

    SciTech Connect (OSTI)

    Dwyer, Brian P.; Heath, Jason E.; Borns, David James; Dewers, Thomas A.; Kobos, Peter Holmes; Roach, Jesse D.; McNemar, Andrea; Krumhansl, James Lee; Klise, Geoffrey T.

    2010-10-01

    In an effort to address the potential to scale up of carbon dioxide (CO{sub 2}) capture and sequestration in the United States saline formations, an assessment model is being developed using a national database and modeling tool. This tool builds upon the existing NatCarb database as well as supplemental geological information to address scale up potential for carbon dioxide storage within these formations. The focus of the assessment model is to specifically address the question, 'Where are opportunities to couple CO{sub 2} storage and extracted water use for existing and expanding power plants, and what are the economic impacts of these systems relative to traditional power systems?' Initial findings indicate that approximately less than 20% of all the existing complete saline formation well data points meet the working criteria for combined CO{sub 2} storage and extracted water treatment systems. The initial results of the analysis indicate that less than 20% of all the existing complete saline formation well data may meet the working depth, salinity and formation intersecting criteria. These results were taken from examining updated NatCarb data. This finding, while just an initial result, suggests that the combined use of saline formations for CO{sub 2} storage and extracted water use may be limited by the selection criteria chosen. A second preliminary finding of the analysis suggests that some of the necessary data required for this analysis is not present in all of the NatCarb records. This type of analysis represents the beginning of the larger, in depth study for all existing coal and natural gas power plants and saline formations in the U.S. for the purpose of potential CO{sub 2} storage and water reuse for supplemental cooling. Additionally, this allows for potential policy insight when understanding the difficult nature of combined potential institutional (regulatory) and physical (engineered geological sequestration and extracted water system

  13. Candidate for solar power : a novel desalination technology for coal bed methane produced water.

    SciTech Connect (OSTI)

    Hanley, Charles J.; Andelman, Marc; Hightower, Michael M.; Sattler, Allan Richard

    2005-03-01

    Laboratory and field developments are underway to use solar energy to power a desalination technology - capacitive deionization - for water produced by remote Coal Bed Methane (CBM) natural gas wells. Due to the physical remoteness of many CBM wells throughout the Southwestern U.S., as shown in Figure 1, this approach may offer promise. This promise is not only from its effectiveness in removing salt from CBM water and allowing it to be utilized for various applications, but also for its potentially lower energy consumption compared to other technologies, such as reverse osmosis. This, coupled with the remoteness (Figure 1) of thousands of these wells, makes them more feasible for use with photovoltaic (solar, electric, PV) systems. Concurrent laboratory activities are providing information about the effectiveness and energy requirements of each technology under various produced water qualities and water reuse applications, such as salinity concentrations and water flows. These parameters are being used to driving the design of integrated PV-powered treatment systems. Full-scale field implementations are planned, with data collection and analysis designed to optimize the system design for practical remote applications. Early laboratory studies of capacitive deionization have shown promise that at common CBM salinity levels, the technology may require less energy, is less susceptible to fouling, and is more compact than equivalent reverse osmosis (RO) systems. The technology uses positively and negatively charged electrodes to attract charged ions in a liquid, such as dissolved salts, metals, and some organics, to the electrodes. This concentrates the ions at the electrodes and reduces the ion concentrations in the liquid. This paper discusses the results of these laboratory studies and extends these results to energy consumption and design considerations for field implementation of produced water treatment using photovoltaic systems.

  14. Development and Demonstration of a Modeling Framework for Assessing the Efficacy of Using Mine Water for Thermoelectric Power Generation

    SciTech Connect (OSTI)

    2010-03-01

    Thermoelectric power plants use large volumes of water for condenser cooling and other plant operations. Traditionally, this water has been withdrawn from the cleanest water available in streams and rivers. However, as demand for electrical power increases it places increasing demands on freshwater resources resulting in conflicts with other off stream water users. In July 2002, NETL and the Governor of Pennsylvania called for the use of water from abandoned mines to replace our reliance on the diminishing and sometimes over allocated surface water resource. In previous studies the National Mine Land Reclamation Center (NMLRC) at West Virginia University has demonstrated that mine water has the potential to reduce the capital cost of acquiring cooling water while at the same time improving the efficiency of the cooling process due to the constant water temperatures associated with deep mine discharges. The objectives of this project were to develop and demonstrate a user-friendly computer based design aid for assessing the costs, technical and regulatory aspects and potential environmental benefits for using mine water for thermoelectric generation. The framework provides a systematic process for evaluating the hydrologic, chemical, engineering and environmental factors to be considered in using mine water as an alternative to traditional freshwater supply. A field investigation and case study was conducted for the proposed 300 MW Beech Hollow Power Plant located in Champion, Pennsylvania. The field study based on previous research conducted by NMLRC identified mine water sources sufficient to reliably supply the 2-3,000gpm water supply requirement of Beech Hollow. A water collection, transportation and treatment system was designed around this facility. Using this case study a computer based design aid applicable to large industrial water users was developed utilizing water collection and handling principals derived in the field investigation and during previous

  15. Concentrating Solar Power and Water Issues in the U.S. Southwest

    SciTech Connect (OSTI)

    Bracken, N.; Macknick, J.; Tovar-Hastings, A.; Komor, P.; Gerritsen, M.; Mehta, S.

    2015-03-01

    Concentrating solar power (CSP) systems utilize the sun's energy to create heat that is used to generate electrical power. CSP systems in the United States are installed primarily in the Southwest, with 92% of plants that are operational, under construction, or under development located in three western states--Arizona, California, and Nevada. This report provides an overview of CSP development in these states, or the 'Southwest' for the purposes of this discussion, with a particular focus on the water supply issues associated with CSP. The Western Governors' Association (WGA) commissioned staff from the Western States Water Council (WSWC) to collaborate with staff from the National Renewable Energy Laboratory (NREL) to prepare this report. The WGA has long supported the effective management of the West's water resources, as well as the development of a clean, diverse, reliable, and affordable energy supply consisting of traditional and renewable energy resources. This report is specifically intended to help inform these goals, especially as WGA continues to underwrite a Regional Transmission Expansion Planning project, undertaken by the WSWC and the Western Electricity Coordinating Council (WECC), to better understand energy development within the existing and future water resource constraints of the West. This report builds upon earlier research conducted by NREL, the University of Colorado-Boulder, and Stanford University that was supported through the Joint Institute for Strategic Energy Analysis (JISEA) and presents information gathered through extensive research and literature reviews, as well as interviews and outreach with state water administrators and energy regulators, WECC and other experts familiar with CSP development in the Southwest.

  16. Wind and Water Power Modeling and Simulation at the NWTC (Fact Sheet), NREL(National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind and Water Power Modeling and Simulation at the NWTC Researchers at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) have developed a variety of computer modeling and simulation software tools to support the wind and water power industries and research communities with state-of-the-art design and analysis capabilities. Computer modeling and simulations allow designers to analyze many factors affecting wind turbines and plants, at a fraction of the

  17. Integration of a "Passive Water Recovery" MEA into a Portable DMFC Power Supply

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a "Passive Water Recovery" MEA into a Portable DMFC Power Supply This presentation does not contain any proprietary, confidential, or otherwise restricted information Presentation Outline: DMFC Background UNF Passive Water Recovery MEA UNF Portable Power Supply Performance Next Steps Much of the work presented is the result of DOE collaboration and funding: 1. New MEA Materials for Improved DMFC Performance, Durability, and Cost 2. Advanced Direct Methanol Fuel Cell for Mobile

  18. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    SciTech Connect (OSTI)

    Knutson, Chad; Dastgheib, Seyed A.; Yang, Yaning; Ashraf, Ali; Duckworth, Cole; Sinata, Priscilla; Sugiyono, Ivan; Shannon, Mark A.; Werth, Charles J.

    2012-07-01

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO2 enhanced oil recovery (CO2-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO2-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter

  19. Wetland Water Cooling Partnership: The Use of Constructed Wetlands to Enhance Thermoelectric Power Plant Cooling and Mitigate the Demand of Surface Water Use

    SciTech Connect (OSTI)

    Apfelbaum, Steven; Duvall, Kenneth; Nelson, Theresa; Mensing, Douglas; Bengtson, Harlan; Eppich, John; Penhallegon, Clayton; Thompson, Ry

    2013-09-30

    Through the Phase I study segment of contract #DE-NT0006644 with the U.S. Department of Energy’s National Energy Technology Laboratory, Applied Ecological Services, Inc. and Sterling Energy Services, LLC (the AES/SES Team) explored the use of constructed wetlands to help address stresses on surface water and groundwater resources from thermoelectric power plant cooling and makeup water requirements. The project objectives were crafted to explore and develop implementable water conservation and cooling strategies using constructed wetlands (not existing, naturally occurring wetlands), with the goal of determining if this strategy has the potential to reduce surface water and groundwater withdrawals of thermoelectric power plants throughout the country. Our team’s exploratory work has documented what appears to be a significant and practical potential for augmenting power plant cooling water resources for makeup supply at many, but not all, thermoelectric power plant sites. The intent is to help alleviate stress on existing surface water and groundwater resources through harvesting, storing, polishing and beneficially re-using critical water resources. Through literature review, development of conceptual created wetland plans, and STELLA-based modeling, the AES/SES team has developed heat and water balances for conventional thermoelectric power plants to evaluate wetland size requirements, water use, and comparative cooling technology costs. The ecological literature on organism tolerances to heated waters was used to understand the range of ecological outcomes achievable in created wetlands. This study suggests that wetlands and water harvesting can provide a practical and cost-effective strategy to augment cooling waters for thermoelectric power plants in many geographic settings of the United States, particularly east of the 100th meridian, and in coastal and riverine locations. The study concluded that constructed wetlands can have significant positive

  20. Knowledge and abilities catalog for nuclear power plant operators: boiling water reactors

    SciTech Connect (OSTI)

    Not Available

    1986-09-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWR) (NUREG-1123) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog and Examiners' Handbook for Developing Operator Licensing Examinations (NUREG-1121) will cover those topics listed under Title 10, Code of Federal Regulations, Part 55. The BWR Catalog contains approximately 7000 knowledge and ability (K/A) statements for ROs and SROs at boiling water reactors. Each K/A statement has been rated for its importance to the safe operation of the plant in a manner ensuring personnel and public health and safety. The BWR K/A Catalog is organized into five major sections: Plant-wide Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Function, Emergency and Abnormal Plant Evolutions, Components, and Theory. The BWR Catalog represents a modification of the form and content of the K/A Catalog for Nuclear Power Plant Operators: Pressurized Water Reactors (NUREG-1122). First, categories of knowledge and ability statements have been redefined. Second, the scope of the definition of emergency and abnormal plant evolutions has been revised in line with a symptom-based approach. Third, K/As related to the operational applications of theory have been incorporated into the delineations for both plant systems and emergency and abnormal plant evolutions, while K/As pertaining to theory fundamental to plant operation have been delineated in a separate theory section. Finally, the components section has been revised.

  1. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    SciTech Connect (OSTI)

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core.

  2. Energy penalty analysis of possible cooling water intake structurerequirements on existing coal-fired power plants.

    SciTech Connect (OSTI)

    Veil, J. A.; Littleton, D. J.; Gross, R. W.; Smith, D. N.; Parsons, E.L., Jr.; Shelton, W. W.; Feeley, T. J.; McGurl, G. V.

    2006-11-27

    Section 316(b) of the Clean Water Act requires that cooling water intake structures must reflect the best technology available for minimizing adverse environmental impact. Many existing power plants in the United States utilize once-through cooling systems to condense steam. Once-through systems withdraw large volumes (often hundreds of millions of gallons per day) of water from surface water bodies. As the water is withdrawn, fish and other aquatic organisms can be trapped against the screens or other parts of the intake structure (impingement) or if small enough, can pass through the intake structure and be transported through the cooling system to the condenser (entrainment). Both of these processes can injure or kill the organisms. EPA adopted 316(b) regulations for new facilities (Phase I) on December 18, 2001. Under the final rule, most new facilities could be expected to install recirculating cooling systems, primarily wet cooling towers. The EPA Administrator signed proposed 316(b) regulations for existing facilities (Phase II) on February 28, 2002. The lead option in this proposal would allow most existing facilities to achieve compliance without requiring them to convert once-through cooling systems to recirculating systems. However, one of the alternate options being proposed would require recirculating cooling in selected plants. EPA is considering various options to determine best technology available. Among the options under consideration are wet-cooling towers and dry-cooling towers. Both types of towers are considered to be part of recirculating cooling systems, in which the cooling water is continuously recycled from the condenser, where it absorbs heat by cooling and condensing steam, to the tower, where it rejects heat to the atmosphere before returning to the condenser. Some water is lost to evaporation (wet tower only) and other water is removed from the recirculating system as a blow down stream to control the building up of suspended and

  3. Before The Subcommittee on Water and Power- House Energy and Natural Resources Committee

    Office of Energy Efficiency and Renewable Energy (EERE)

    Subject: Proposed FY 2015 Budget for the Southeastern Power Administration By: Kenneth E. Legg, Administrator, Southeastern Power Administration

  4. Before House Subcommittee on Water and Power- Committee on Natural Resources

    Broader source: Energy.gov [DOE]

    Subject: FY 2013 Spending and Missions of the Power Marketing Administrations By: Steven Wright, Administrator, Bonneville Power Administration

  5. Before The Subcommittee on Water and Power- House Committee on Natural Resources

    Broader source: Energy.gov [DOE]

    Subject: Proposed FY 2015 Budget for the Western Area Power Administration By: Mark A. Gabriel, Administrator, Western Area Power Administration

  6. Before The Subcommittee on Water and Power- House Committee on Natural Resources

    Broader source: Energy.gov [DOE]

    Subject: Proposed FY 2015 Budget for Southwestern Power Administration By: Christopher M. Turner, Administrator, Southwestern Power Administration

  7. Los Angeles Department of Water and Power Electric and Hybrid Vehicle Program site operator program

    SciTech Connect (OSTI)

    1998-02-01

    During the term of the above mentioned agreement, the Los Angeles Department of Water and Power (LADWP), a municipal utility serving the citizens of Los Angeles, marked its tenth year of involvement in testing and promoting electric vehicles as part of Los Angeles` overall air quality improvement program, and as a means of improving the regions` economic competitiveness through the creation of new industries. LADWP maintained and operated twenty electric vehicles (EVs) during the test period. These vehicles consisted of six G-Vans, four Chrysler TEVans, five U.S. Electricar pickup trucks, and five U.S. Electricar Prizms. LADWP`s electric transportation program also included infrastructure, public transit development, public and awareness, and legislative and regulatory activities.

  8. Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants

    SciTech Connect (OSTI)

    Woo, H.H.; Lu, S.C.

    1981-09-15

    Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

  9. Expanding the potential for saline formations : modeling carbon dioxide storage, water extraction and treatment for power plant cooling.

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    The National Water, Energy and Carbon Sequestration simulation model (WECSsim) is being developed to address the question, 'Where in the current and future U.S. fossil fuel based electricity generation fleet are there opportunities to couple CO{sub 2} storage and extracted water use, and what are the economic and water demand-related impacts of these systems compared to traditional power systems?' The WECSsim collaborative team initially applied this framework to a test case region in the San Juan Basin, New Mexico. Recently, the model has been expanded to incorporate the lower 48 states of the U.S. Significant effort has been spent characterizing locations throughout the U.S. where CO{sub 2} might be stored in saline formations including substantial data collection and analysis efforts to supplement the incomplete brine data offered in the NatCarb database. WECSsim calculates costs associated with CO{sub 2} capture and storage (CCS) for the power plant to saline formation combinations including parasitic energy costs of CO{sub 2} capture, CO{sub 2} pipelines, water treatment options, and the net benefit of water treatment for power plant cooling. Currently, the model can identify the least-cost deep saline formation CO{sub 2} storage option for any current or proposed coal or natural gas-fired power plant in the lower 48 states. Initial results suggest that additional, cumulative water withdrawals resulting from national scale CCS may range from 676 million gallons per day (MGD) to 30,155 MGD depending on the makeup power and cooling technologies being utilized. These demands represent 0.20% to 8.7% of the U.S. total fresh water withdrawals in the year 2000, respectively. These regional and ultimately nation-wide, bottom-up scenarios coupling power plants and saline formations throughout the U.S. can be used to support state or national energy development plans and strategies.

  10. LOS ANGELES DEPARTMENT OF WATER AND POWER FUEL CELL DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    William W. Glauz

    2004-03-26

    The Los Angeles Department of Water and Power (LADWP) is currently one of the most active electric utility companies in deploying fuel cell technology. Fuel cells offer many benefits and are now used as an alternative to traditional internal combustion engines in power generation. In continuing it's role as the leader in fuel cell deploying, LADWP installed a Phosphoric Acid Fuel Cell (PAFC) in February 2002 at its Main Street service center. The goal of this project is to evaluate the PAFC's performance and cost benefits. This will provide LADWP an insight for future deployment of fuel cell technology. The fuel cell ran smoothly through the first year of operation with very high efficiency and availability, and only with some minor setbacks. The Main street fuel cell project is funded by LADWP with partial grant funding from the Department of Defense's Climate Change Fuel Cell Buydown Program. The technical evaluation and the benefit-cost evaluation of the Main Street fuel cell are both examined in this report.

  11. Final environmental impact statement, Washington Water Power/B.C. Hydro Transmission Interconnection Project

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    Washington Water Power (WWP) proposes to construct and operate an electric transmission line that would connect with the electrical system of the British Columbia Hydro and Power Authority (B.C. Hydro). The project would be composed of a double-circuit, 230-kilovolt (kV) transmission line from WWP`s existing Beacon Substation located northeast of Spokane, Washington to the international border located northwest of Metaline Falls, Washington. The original Presidential permit application and associated proposed route presented in the draft environmental impact statement (DEIS) have been modified to terminate at the Beacon Substation, instead of WWP`s initially proposed termination point at the planned Marshall Substation located southwest of Spokane. A supplemental draft EIS was prepared and submitted for review to not only examine the new proposed 5.6 miles of route, but to also compare the new Proposed Route to the other alternatives previously analyzed in the DEIS. This final EIS (FEIS) assesses the environmental effects of the proposed transmission line through construction, operation, maintenance, and abandonment activities and addresses the impacts associated with the Proposed Action, Eastern Alternative, Western Alternative, Northern Crossover Alternative, Southern Crossover Alternative, and No Action Alternative. The FEIS also contains the comments received and the responses to these comments submitted on the DEIS and Supplemental DEIS.

  12. Solar-powered electrodialysis. Part 2. Design of a solar-powered, electrodialysis system for desalting remote, brackish water sources. Final report

    SciTech Connect (OSTI)

    Lundstrom, J.E.; Socha, M.M.; Lynch, J.D.

    1983-04-01

    The critical components in the design of a solar-powered, electrodialysis (SPED) plant have been evaluated and technology developed to combine ED equipment with a photovoltaic (PV) array. The plant design developed in Part II is simplified from the Part I design in three areas. First, the system uses a flat-panel PV aray rather than PV concentrators. Second, the system voltage is maintained at the voltage corresponding to the peak power output of the array which is essentially independent of the level of solar insolation. The third simplification is in the flow diagram for the plant where the number of pumps and variable flow valves has been reduced to two of each. The proposed system is expected to provide a reliable supply of fresh water from a brackish water source with minimum maintenance. In certain applications where grid power is unavailable and fuel costs exceed $.40 per liter, the solar-powered plant is expected to provide lower cost water today.

  13. Water Use in Parabolic Trough Power Plants: Summary Results from WorleyParsons' Analyses

    SciTech Connect (OSTI)

    Turchi, C. S.; Wagner, M. J.; Kutscher, C. F.

    2010-12-01

    The National Renewable Energy Laboratory (NREL) contracted with WorleyParsons Group, Inc. to examine the effect of switching from evaporative cooling to alternative cooling systems on a nominal 100-MW parabolic trough concentrating solar power (CSP) plant. WorleyParsons analyzed 13 different cases spanning three different geographic locations (Daggett, California; Las Vegas, Nevada; and Alamosa, Colorado) to assess the performance, cost, and water use impacts of switching from wet to dry or hybrid cooling systems. NREL developed matching cases in its Solar Advisor Model (SAM) for each scenario to allow for hourly modeling and provide a comparison to the WorleyParsons results.Our findings indicate that switching from 100% wet to 100% dry cooling will result in levelized cost of electricity (LCOE) increases of approximately 3% to 8% for parabolic trough plants throughout most of the southwestern United States. In cooler, high-altitude areas like Colorado's San Luis Valley, WorleyParsons estimated the increase at only 2.5%, while SAM predicted a 4.4% difference. In all cases, the transition to dry cooling will reduce water consumption by over 90%. Utility time-of-delivery (TOD) schedules had similar impacts for wet- and dry-cooled plants, suggesting that TOD schedules have a relatively minor effect on the dry-cooling penalty.

  14. Deep water pipeline intervention work with an acoustically controlled power module

    SciTech Connect (OSTI)

    Conter, A.; Launaro, F.; Bigoni, G.

    1995-12-31

    The stabilisation of submarine pipeline free spans along uneven sea bottoms is conventionally performed using technologies such as gravel dumping, post trenching, matresses installation etc.. A new technology has been developed to support free spans along the 26 inches Transmed Gas Pipelines crossing the Sicily Channel in water depths ranging from 50m to 510m. This technology is based on the pipeline mechanical supports {open_quotes}Atlantis{close_quotes} and their installation module {open_quotes}Pegaso{close_quotes} and was developed having in mind requirements such as short installation time, system redundancy, operational flexibility and simple interface with the support vessel. The installation time reduction is achieved by automatic operational procedures which are acoustically controlled from surface. Power is stored inside two dedicated battery packs placed onboard Pegaso; no umbilical cable is necessary so that a vessel equipped with a normal crane is enough to launch and operate the system. Marine operations carried out in 1993 showed that a support can be installed in about one hour; in good weather conditions three Atlantis were installed in 24 hours including deck operations for recharging the battery packs; as a total sixteen supports were installed along the 4th and 5th Transmed Gas Pipelines. The system has proved to be a cost effective and flexible alternative to conventional technologies for free span support, especially in deep waters. A cost/benefit analysis also shows the breakeven point of the new technology versus gravel dumping.

  15. Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors, Revision 1

    SciTech Connect (OSTI)

    1995-08-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner`s Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized into six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section.

  16. A Novel, Safe, and Environmentally Friendly Technology for Water Production Through Recovery of Rejected Thermal Energy From Nuclear Power Plants

    SciTech Connect (OSTI)

    Khalil, Yehia F.; Elimelech, Menachem

    2006-07-01

    In this work, we describe a novel design that utilizes seawater and a portion of rejected heat from a nuclear plant's steam cycle to operate a water desalination system using forward osmosis technology. Water produced from this process is of sufficient quality to be readily used to supply plant demands for continuous makeup water. The proposed process minimizes the environmental concerns associated with thermal pollution of public waters and the resulting adverse impact on marine ecology. To demonstrate the technical feasibility of this conceptual design of a water treatment process, we discuss a case study as an example to describe how the proposed design can be implemented in a nuclear power station with a once--through cooling system that discharges rejected heat to an open sound seawater as its ultimate heat sink. In this case study, the station uses a leased (vendor owned and operated) onsite water treatment system that demineralizes and polishes up to 500-gpm of city water (at 100 ppm TDS) to supply high-quality makeup water (< 0.01 ppm TDS) to the plant steam system. The objectives of implementing the new design are three fold: 1) forego current practice of using city water as the source of plant makeup water, thereby reducing the nuclear station's impact on the region's potable water supply by roughly 100 million gallons/year, 2) minimize the adverse impact of discharging rejected heat into the open sound seawater and, hence, protect the marine ecology, and 3) eliminate the reliance on external vendor that owns and operates the onsite water treatment system, thereby saving an annual fixed cost of $600 K plus 6 cents per 1,000 gallons of pure water. The design will also eliminate the need for using two double-path reverse osmosis (RO) units that consume 425 kW/h of electric power to operate two RO pumps (480 V, 281.6 HP, and 317.4 amps). (authors)

  17. Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

  18. American National Standard: design requirements for light water reactor spent fuel storage facilities at nuclear power plants

    SciTech Connect (OSTI)

    Not Available

    1983-10-07

    This standard presents necessary design requirements for facilities at nuclear power plants for the storage and preparation for shipment of spent fuel from light-water moderated and cooled nuclear power stations. It contains requirements for the design of fuel storage pool; fuel storage racks; pool makeup, instrumentation and cleanup systems; pool structure and integrity; radiation shielding; residual heat removal; ventilation, filtration and radiation monitoring systems; shipping cask handling and decontamination; building structure and integrity; and fire protection and communication.

  19. Before the Subcommittee on Water, Power, and Oceans- House Natural Resources Committee

    Broader source: Energy.gov [DOE]

    Subject: Proposed FY 2016 Spending, Priorities, and Mission of the Southeastern Power Administration By: Kenneth E. Legg, Administrator Southeastern Power Administration

  20. Climate mitigation’s impact on global and regional electric power sector water use in the 21st Century

    SciTech Connect (OSTI)

    Dooley, James J.; Kyle, G. Page; Davies, Evan

    2013-08-05

    Over the course of this coming century, global electricity use is expected to grow at least five fold and if stringent greenhouse gas emissions controls are in place the growth could be more than seven fold from current levels. Given that the electric power sector represents the second largest anthropogenic use of water and given growing concerns about the nature and extent of future water scarcity driven by population growth and a changing climate, significant concern has been expressed about the electricity sector’s use of water going forward. In this paper, the authors demonstrate that an often overlooked but absolutely critical issue that needs to be taken into account in discussions about the sustainability of the electric sector’s water use going forward is the tremendous turn over in electricity capital stock that will occur over the course of this century; i.e., in the scenarios examined here more than 80% of global electricity production in the year 2050 is from facilities that have not yet been built. The authors show that because of the large scale changes in the global electricity system, the water withdrawal intensity of electricity production is likely to drop precipitously with the result being relatively constant water withdrawals over the course of the century even in the face of the large growth in electricity usage. The ability to cost effectively reduce the water intensity of power plants with carbon dioxide capture and storage systems in particular is key to constraining overall global water use.

  1. Before the Subcommittee on Water and Power- House Natural Resources Committee

    Broader source: Energy.gov [DOE]

    Subject: FY 2014 Budget Request for the Bonneville Power Administration By: William K. Drummond, Administrator, BPA

  2. Before The Subcommittee on Water and Power- House Committee on Natural Resources

    Broader source: Energy.gov [DOE]

    Subject: Proposed Fiscal Year 2015 Budget By: Elliot E. Mainzer, Administrator, Bonneville Power Administration

  3. Before Subcommittee on Water and Power- House Committee on Natural Resources

    Broader source: Energy.gov [DOE]

    Subject: FY 2014 Budget Request for the Western Area Power Administration By: Mark Gabriel, Administrator, WAPA

  4. Before the Subcommittee on Water and Power- House Natural Resources Committee

    Broader source: Energy.gov [DOE]

    Subject: Fiscal Year 2014 Budget for Southwestern Power Administration By: Christopher M. Turner, Administrator, SWPA

  5. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Maine

    SciTech Connect (OSTI)

    2008-10-01

    Analysis of the expected impacts of 1000 MW of wind power in Maine, including economic benefits, CO2 emissions reductions, and water conservation.

  6. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Arizona

    SciTech Connect (OSTI)

    2008-10-01

    Analysis of the expected impacts of 1000 MW of wind power in Arizona, including economic benefits, CO2 emissions reductions, and water conservation.

  7. Accident source terms for Light-Water Nuclear Power Plants. Final report

    SciTech Connect (OSTI)

    Soffer, L.; Burson, S.B.; Ferrell, C.M.; Lee, R.Y.; Ridgely, J.N.

    1995-02-01

    In 1962 tile US Atomic Energy Commission published TID-14844, ``Calculation of Distance Factors for Power and Test Reactors`` which specified a release of fission products from the core to the reactor containment for a postulated accident involving ``substantial meltdown of the core``. This ``source term``, tile basis for tile NRC`s Regulatory Guides 1.3 and 1.4, has been used to determine compliance with tile NRC`s reactor site criteria, 10 CFR Part 100, and to evaluate other important plant performance requirements. During the past 30 years substantial additional information on fission product releases has been developed based on significant severe accident research. This document utilizes this research by providing more realistic estimates of the ``source term`` release into containment, in terms of timing, nuclide types, quantities and chemical form, given a severe core-melt accident. This revised ``source term`` is to be applied to the design of future light water reactors (LWRs). Current LWR licensees may voluntarily propose applications based upon it.

  8. NREL's Water Power Software Makes a Splash; NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    WEC-Sim is a DOE-funded software tool being jointly developed by NREL and SNL. WEC-Sim computationally models wave energy converters (WEC), devices that generate electricity using movement of water systems such as oceans, rivers, etc. There is great potential for WECs to generate electricity, but as of yet, the industry has yet to establish a commercially viable concept. Modeling, design, and simulations tools are essential to the successful development of WECs. Commercial WEC modeling software tools can't be modified by the user. In contrast, WEC-Sim is a free, open-source, and flexible enough to be modified to meet the rapidly evolving needs of the WEC industry. By modeling the power generation performance and dynamic loads of WEC designs, WEC-Sim can help support the development of new WEC devices by optimizing designs for cost of energy and competitiveness. By being easily accessible, WEC-Sim promises to help level the playing field in the WEC industry. Importantly, WEC-Sim is also excellent at its job! In 2014, WEC-Sim was used in conjunction with NREL’s FAST modeling software to win a hydrodynamic modeling competition. WEC-Sim and FAST performed very well at predicting the motion of a test device in comparison to other modeling tools. The most recent version of WEC-Sim (v1.1) was released in April 2015.

  9. Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources: Appendix C - Validation Study

    SciTech Connect (OSTI)

    Hall, Douglas

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Surveys Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated.

  10. An Innovative System for the Efficient and Effective Treatment of Non-Traditional Waters for Reuse in Thermoelectric Power Generation

    SciTech Connect (OSTI)

    John Rodgers; James Castle

    2008-08-31

    This study assessed opportunities for improving water quality associated with coal-fired power generation including the use of non-traditional waters for cooling, innovative technology for recovering and reusing water within power plants, novel approaches for the removal of trace inorganic compounds from ash pond effluents, and novel approaches for removing biocides from cooling tower blowdown. This research evaluated specifically designed pilot-scale constructed wetland systems for treatment of targeted constituents in non-traditional waters for reuse in thermoelectric power generation and other purposes. The overall objective of this project was to decrease targeted constituents in non-traditional waters to achieve reuse criteria or discharge limitations established by the National Pollutant Discharge Elimination System (NPDES) and Clean Water Act (CWA). The six original project objectives were completed, and results are presented in this final technical report. These objectives included identification of targeted constituents for treatment in four non-traditional water sources, determination of reuse or discharge criteria for treatment, design of constructed wetland treatment systems for these non-traditional waters, and measurement of treatment of targeted constituents in non-traditional waters, as well as determination of the suitability of the treated non-traditional waters for reuse or discharge to receiving aquatic systems. The four non-traditional waters used to accomplish these objectives were ash basin water, cooling water, flue gas desulfurization (FGD) water, and produced water. The contaminants of concern identified in ash basin waters were arsenic, chromium, copper, mercury, selenium, and zinc. Contaminants of concern in cooling waters included free oxidants (chlorine, bromine, and peroxides), copper, lead, zinc, pH, and total dissolved solids. FGD waters contained contaminants of concern including arsenic, boron, chlorides, selenium, mercury

  11. Before the Senate Energy and Natural Resources Subcommittee on Water and Power

    Broader source: Energy.gov [DOE]

    Subject: S. 2891, proposed legislation to allocate and expand the availability of hydro-electric power generated Hoover Dam, among other purposes By: Timothy Meeks, Administrator Western Area Power Administration

  12. Application of Pulsed Electrical Fields for Advanced Cooling and Water Recovery in Coal-Fired Power Plant

    SciTech Connect (OSTI)

    Young Cho; Alexander Fridman

    2009-04-02

    The overall objective of the present work was to develop technologies to reduce freshwater consumption in a cooling tower of coal-based power plant so that one could significantly reduce the need of make-up water. The specific goal was to develop a scale prevention technology based an integrated system of physical water treatment (PWT) and a novel filtration method so that one could reduce the need for the water blowdown, which accounts approximately 30% of water loss in a cooling tower. The present study investigated if a pulsed spark discharge in water could be used to remove deposits from the filter membrane. The test setup included a circulating water loop and a pulsed power system. The present experiments used artificially hardened water with hardness of 1,000 mg/L of CaCO{sub 3} made from a mixture of calcium chloride (CaCl{sub 2}) and sodium carbonate (Na{sub 2}CO{sub 3}) in order to produce calcium carbonate deposits on the filter membrane. Spark discharge in water was found to produce strong shockwaves in water, and the efficiency of the spark discharge in cleaning filter surface was evaluated by measuring the pressure drop across the filter over time. Results showed that the pressure drop could be reduced to the value corresponding to the initial clean state and after that the filter could be maintained at the initial state almost indefinitely, confirming the validity of the present concept of pulsed spark discharge in water to clean dirty filter. The present study also investigated the effect of a plasma-assisted self-cleaning filter on the performance of physical water treatment (PWT) solenoid coil for the mitigation of mineral fouling in a concentric counterflow heat exchanger. The self-cleaning filter utilized shockwaves produced by pulse-spark discharges in water to continuously remove scale deposits from the surface of the filter, thus keeping the pressure drop across the filter at a relatively low value. Artificial hard water was used in the

  13. Water Budget Managers Report to Northwest Power Planning Council, 1986 Annual Report.

    SciTech Connect (OSTI)

    Karr, Malcolm; DeHart, Michele

    1986-12-01

    In addition to management of the Water Budget, the Water Budget Managers and FPC staff developed and directed the Smolt Monitoring and Water Budget Evaluation Programs of Section 304(d) of the Fish and Wildlife Program. The fishery agencies and tribes also authorized the Water Budget Managers to coordinate agency and tribal system operational requests throughout the year, including spill management for fish passage. This report summarizes Water Budget Manager activities in implementing program measures, including 1986 flow conditions, water budget usage and spill management, and the in-season management portion of the 1986 Smolt Monitoring Program including data management.

  14. Fuzzy Logic Controller Architecture for Water Level Control in Nuclear Power Plant Steam Generator (SG) Using ANFIS Training Method

    SciTech Connect (OSTI)

    Vosoughi, Naser; Naseri, Zahra

    2002-07-01

    Since suitable control of water level can greatly enhance the operation of a power station, a Fuzzy logic controller architecture is applied to show desired control of the water level in a Nuclear steam generator. with regard to the physics of the system, it is shown that two inputs, a single output and the least number of rules (9 rules) are considered for a controller, and the ANFIS training method is employed to model functions in a controlled system. By using ANFIS training method, initial member functions will be trained and appropriate functions are generated to control water level inside the steam generators while using the stated rules. The proposed architecture can construct an input output mapping based on both human knowledge (in from of Fuzzy if then rules) and stipulated input output data. In this paper with a simple test it has been shown that the architecture fuzzy logic controller has a reasonable response to one step input at a constant power. Through computer simulation, it is found that Fuzzy logic controller is suitable, especially for the water level deviation and abrupt steam flow disturbances that are typical in the existing power plant. (authors)

  15. Water Budget Managers Report to Northwest Power Planning Council, 1985 Annual Report.

    SciTech Connect (OSTI)

    Karr, Malcolm H., Maher, Mark

    1985-11-01

    1985 was the third year of operation of the Water Budget Center under the guidance and supervision of the fishery agencies and tribal Water Budget Managers, and the second year of formal water budget implementation. The Water Budget Managers also directed the Smolt Monitoring and Water Budget Evaluation Programs of Section 304(d) of the Fish and wildlife Program. The Water Budget Managers work to implement policies and priorities of the state and federal fishery agencies and Indian tribes in carrying out applicable measures of the Fish and Wildlife Program. This report summarizes Water Budget Manager activities in implementing program measures, including 1985 flow conditions, water budget usage and spill management and problems encountered, and the 1985 Smolt Monitoring Program and preliminary results. Recommendations are included.

  16. Light Water Reactor Sustainability Program Power Uprate Research and Development Strategy

    SciTech Connect (OSTI)

    Hongbin Zhang

    2011-09-01

    The economic incentives for low-cost electricity generation will continue to drive more plant owners to identify safe and reliable methods to increase the electrical power output of the current nuclear power plant fleet. A power uprate enables a nuclear power plant to increase its electrical output with low cost. However, power uprates brought new challenges to plant owners and operators. These include equipment damage or degraded performance, and unanticipated responses to plant conditions, etc. These problems have arisen mainly from using dated design and safety analysis tools and insufficient understanding of the full implications of the proposed power uprate or from insufficient attention to detail during the design and implementation phase. It is essential to demonstrate that all required safety margins have been properly retained and the existing safety level has been maintained or even increased, with consideration of all the conditions and parameters that have an influence on plant safety. The impact of the power uprate on plant life management for long term operation is also an important issue. Significant capital investments are required to extend the lifetime of an aging nuclear power plant. Power uprates can help the plant owner to recover the investment costs. However, plant aging issues may be aggravated by the power uprate due to plant conditions. More rigorous analyses, inspections and monitoring systems are required.

  17. Interruptible service system: A demand-side management application for the City of Los Angeles Department of Water & Power

    SciTech Connect (OSTI)

    Leblanc, M.; Sweeney, D.

    1994-12-31

    The Los Angeles Department of Water & Power (LADWP) instituted an electric rate schedule, A3-B, for its largest industrial power consumers in 1985. The A3 rate provides these LADWP customers (2000 Kilowatts or more users) a significant savings on their electric service rate. LADWP benefits by having the capability to interrupt the industrial customer`s load after giving them a 10 minute warning notice of interruption. The Interruptible Service System (ISS) automates this formerly manual process and allows for continuous monitoring of the power used of the power system`s largest power consumers. An ISS remote terminal unit (RTU) is installed at each customer`s site. This RTU communicates with a master computer (desktop PC) at LADWP`s Energy Control Center (ECC). The ECC initiates control, monitoring, and interrupt operations involving all customers on the ISS rate. Communication between the master computer and the various ISS customer RTUs will be accomplished via Pacific Bell Telephone`s advanced digital network (ADN). Future Plans include expansion to monitoring and control of co-generation facilities and monitoring of other large industrial customer power consumption.

  18. NREL's Water Power Software Makes a Splash (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open-source software provides essential modeling and simulation help in water power research and development. Researchers at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center are continuing their work on the Wave Energy Converter SIMulator (WEC-Sim), a free, open-source software modeling tool being jointly developed by NREL and Sandia National Laboratories. WEC-Sim promises to help level the playing field in the wave energy converter (WEC) industry. WEC-Sim allows

  19. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect (OSTI)

    Michael N. DiFilippo

    2004-08-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Deliverable 1 presents a general assessment of produced water generation in the San Juan Basin in Four Corners Area of New Mexico. Oil and gas production, produced water handling and disposal, and produced water quantities and chemistry are discussed. Legislative efforts to enable the use of this water at SJGS are also described.

  20. Sidestream treatment of high silica cooling water and reverse osmosis desalination in geothermal power generation

    SciTech Connect (OSTI)

    Mindler, A.B.; Bateman, S.T.

    1981-01-19

    Bench scale and pilot plant test work has been performed on cooling water for silica reduction and water reuse, at DOE's Raft River Geothermal Site, Malta, Idaho in cooperation with EG and G (Idaho), Inc. Technical supervision was by Permutit. A novel process of rusting iron shavings was found effective and economical in reducing silica to less than 20 mg/l. Reverse Osmosis was investigated for water reuse after pretreatment and ion exchange softening.

  1. Water Power Technologies Office FY 2015 Budget At-A-Glance

    Broader source: Energy.gov (indexed) [DOE]

    Environmental Protection Agency (EPA) built a successful water conservation program and reduced potable water use through a series of initiatives at EPA laboratories. EPA completed projects in all of the U.S. Department of Energy (DOE) Federal Energy Management Program's (FEMP) 14 Best Management Practice (BMP) categories. The projects highlighted below demonstrate EPA's ability to reduce water use in the laboratory/medical equipment BMP category by implementing vacuum pump and steam steril-

  2. Technology, safety and costs of decommissioning a reference boiling water reactor power station: Comparison of two decommissioning cost estimates developed for the same commercial nuclear reactor power station

    SciTech Connect (OSTI)

    Konzek, G.J.; Smith, R.I. )

    1990-12-01

    This study presents the results of a comparison of a previous decommissioning cost study by Pacific Northwest Laboratory (PNL) and a recent decommissioning cost study of TLG Engineering, Inc., for the same commercial nuclear power reactor station. The purpose of this comparative analysis on the same plant is to determine the reasons why subsequent estimates for similar plants by others were significantly higher in cost and external occupational radiation exposure (ORE) than the PNL study. The primary purpose of the original study by PNL (NUREG/CR-0672) was to provide information on the available technology, the safety considerations, and the probable costs and ORE for the decommissioning of a large boiling water reactor (BWR) power station at the end of its operating life. This information was intended for use as background data and bases in the modification of existing regulations and in the development of new regulations pertaining to decommissioning activities. It was also intended for use by utilities in planning for the decommissioning of their nuclear power stations. The TLG study, initiated in 1987 and completed in 1989, was for the same plant, Washington Public Supply System's Unit 2 (WNP-2), that PNL used as its reference plant in its 1980 decommissioning study. Areas of agreement and disagreement are identified, and reasons for the areas of disagreement are discussed. 31 refs., 3 figs., 22 tabs.

  3. Use of Produced Water in Recirculating Cooling Systems at Power Generating Facilities

    SciTech Connect (OSTI)

    Kent Zammit; Michael N. DiFilippo

    2005-07-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. This deliverable describes possible test configurations for produced water demonstration projects at SJGS. The ability to host demonstration projects would enable the testing and advancement of promising produced water treatment technologies. Testing is described for two scenarios: Scenario 1--PNM builds a produced water treatment system at SJGS and incorporates planned and future demonstration projects into the design of the system. Scenario 2--PNM forestalls or decides not to install a produced water treatment system and would either conduct limited testing at SJGS (produced water would have to be delivered by tanker trucked) or at a salt water disposal facility (SWD). Each scenario would accommodate demonstration projects differently and these differences are discussed in this deliverable. PNM will host a demonstration test of water-conserving cooling technology--Wet Surface Air Cooling (WSAC) using cooling tower blowdown

  4. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect (OSTI)

    Michael N. DiFilippo

    2004-08-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Deliverable 2 focuses on transportation--the largest obstacle to produced water reuse in the San Juan Basin (the Basin). Most of the produced water in the Basin is stored in tanks at the well head and must be transported by truck to salt water disposal (SWD) facilities prior to injection. Produced water transportation requirements from the well head to SJGS and the availability of existing infrastructure to transport the water are discussed in this deliverable.

  5. Purchase and Installation of a Geothermal Power Plant to Generate Electricity Using Geothermal Water Resources

    Broader source: Energy.gov [DOE]

    Project objectives: Demonstrate technical and financial feasibility of the use of an existing low-temperature geothermal resource for combined heat and power; and Maintain and enhance existing geothermal district heating operation.

  6. Inter-Agency Agreement Signed between DOE's Wind and Water Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The Department of Energy (DOE) has launched a multiple-year effort to validate the extent to which control strategies can increase the power produced by resonant wave-energy ...

  7. Evaluation of the Effectiveness of a New Technology for Extraction of Insoluble Impurities from Nuclear Power Plant Steam Generators with Purge Water

    SciTech Connect (OSTI)

    Bud'ko, I. O.; Zhukov, A. G.

    2013-11-15

    An experimental technology for the removal of insoluble impurities from a horizontal steam generator with purge water during planned shutdowns of the power generating unit is improved through a more representative determination of the concentration of impurities in the purge water ahead of the water cleanup facility and a more precise effective time for the duration of the purge process. Tests with the improved technique at power generating unit No. 1 of the Rostov Nuclear Power Plant show that the efficiency with which insoluble impurities are removed from the steam generator volume was more than two orders of magnitude greater than under the standard regulations.

  8. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arizona (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arizona. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Arizona to be $1.15 billion, annual CO2 reductions are estimated at 2.0 million tons, and annual water savings are 818 million gallons.

  9. EERE Success Story—From Flour to Grits, a Water-Powered Mill Keeps on Grinding

    Broader source: Energy.gov [DOE]

    By 1913, the old mill had become structurally unsound and was demolished and later rebuilt. The family also replaced the water wheel with more efficient twin hydropower turbine and generator units,...

  10. From Flour to Grits, a Water-Powered Mill Keeps on Grinding

    Broader source: Energy.gov [DOE]

    By 1913, the old mill had become structurally unsound and was demolished and later rebuilt. The family also replaced the water wheel with more efficient twin hydropower turbine and generator units,...

  11. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production

    SciTech Connect (OSTI)

    Philip MacDonald; Jacopo Buongiorno; James Sterbentz; Cliff Davis; Robert Witt; Gary Was; J. McKinley; S. Teysseyre; Luca Oriani; Vefa Kucukboyaci; Lawrence Conway; N. Jonsson: Bin Liu

    2005-02-13

    The supercritical water reactor (SCWR) has been the object of interest throughout the nuclear Generation IV community because of its high potential: a simple, direct cycle, compact configuration; elimination of many traditional LWR components, operation at coolant temperatures much higher than traditional LWRs and thus high thermal efficiency. It could be said that the SWR was viewed as the water counterpart to the high temperature gas reactor.

  12. Natural Circulation in Water Cooled Nuclear Power Plants Phenomena, models, and methodology for system reliability assessments

    SciTech Connect (OSTI)

    Jose Reyes

    2005-02-14

    In recent years it has been recognized that the application of passive safety systems (i.e., those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. In 1991 the IAEA Conference on ''The Safety of Nuclear Power: Strategy for the Future'' noted that for new plants the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate''.

  13. Developing an industrial end-use forecast: A case study at the Los Angeles department of water and power

    SciTech Connect (OSTI)

    Mureau, T.H.; Francis, D.M.

    1995-05-01

    The Los Angeles Department of Water and Power (LADWP) uses INFORM 1.0 to forecast industrial sector energy. INFORM 1.0 provides an end-use framework that can be used to forecast electricity, natural gas or other fuels consumption. Included with INFORM 1.0 is a default date set including the input data and equations necessary to solve each model. LADWP has substituted service area specific data for the default data wherever possible. This paper briefly describes the steps LADWP follows in developing those inputs and application in INFORM 1.0.

  14. Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report

    SciTech Connect (OSTI)

    Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

    1980-03-01

    Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and water heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.

  15. Internet Based, GIS Catalog of Non-Traditional Sources of Cooling Water for Use at America's Coal-Fired Power Plants

    SciTech Connect (OSTI)

    J. Daniel Arthur

    2011-09-30

    In recent years, rising populations and regional droughts have caused coal-fired power plants to temporarily curtail or cease production due to a lack of available water for cooling. In addition, concerns about the availability of adequate supplies of cooling water have resulted in cancellation of plans to build much-needed new power plants. These issues, coupled with concern over the possible impacts of global climate change, have caused industry and community planners to seek alternate sources of water to supplement or replace existing supplies. The Department of Energy, through the National Energy Technology Laboratory (NETL) is researching ways to reduce the water demands of coal-fired power plants. As part of the NETL Program, ALL Consulting developed an internet-based Catalog of potential alternative sources of cooling water. The Catalog identifies alternative sources of water, such as mine discharge water, oil and gas produced water, saline aquifers, and publicly owned treatment works (POTWs), which could be used to supplement or replace existing surface water sources. This report provides an overview of the Catalog, and examines the benefits and challenges of using these alternative water sources for cooling water.

  16. Hydropower Vision: Task Force Charter V2 06/09/2014 U.S. Department of Energy Wind and Water Power Technologies Office - Hydropower Vision Project 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower Vision: Task Force Charter V2 06/09/2014 U.S. Department of Energy Wind and Water Power Technologies Office - Hydropower Vision Project 1 Hydropower Vision: Task Force Charter Hydropower Vision Defined The U.S. Department of Energy (DOE) Wind and Water Power Technologies Office is looking toward the future of the hydropower community in developing a long-range national Hydropower Vision in close coordination with industry, agencies, and stakeholders. This landmark vision will

  17. Influence of coal ash and slag dumping on dump waste waters of the Kostolac power plants (Serbia)

    SciTech Connect (OSTI)

    Popovic, A.; Djinovic, J.

    2006-10-01

    The content of selected trace and major elements in the river water used for transport, as well as in the subcategories of the waste waters (overflow and drainage) were analyzed in order to establish the influence of transport and dumping of coal ash and slag from the 'Kostolac A' and 'Kostolac B' power plants located 100 km from Belgrade (Serbia). It was found that during transport of coal ash and slag to the dump, the water used for transport becomes enriched with manganese, nickel, zinc, chromium, vanadium, titanium, cobalt, arsenic, aluminum, and silicon, while more calcium, iron, cadmium, and lead are adsorbed by the ash and slag than is released from them. There is also an equilibrium between the release and adsorption processes of copper and magnesium during transport. The vertical penetration of the water used for transport results in a release of calcium, magnesium, manganese, and cadmium to the environment, while iron, nickel, zinc, chromium, copper, lead, vanadium, titanium, cobalt, and arsenic are adsorbed by the fractions of coal ash and slag in the dump.

  18. Removal of Radionuclides from Waste Water at Fukushima Daiichi Nuclear Power Plant: Desalination and Adsorption Methods - 13126

    SciTech Connect (OSTI)

    Kani, Yuko; Kamosida, Mamoru; Watanabe, Daisuke; Asano, Takashi; Tamata, Shin

    2013-07-01

    Waste water containing high levels of radionuclides due to the Fukushima Daiichi Nuclear Power Plant accident, has been treated by the adsorption removal and reverse-osmosis (RO) desalination to allow water re-use for cooling the reactors. Radionuclides in the waste water are collected in the adsorbent medium and the RO concentrate (RO brine) in the water treatment system currently operated at the Fukushima Daiichi site. In this paper, we have studied the behavior of radionuclides in the presently applied RO desalination system and the removal of radionuclides in possible additional adsorption systems for the Fukushima Daiichi waste water treatment. Regarding the RO desalination system, decontamination factors (DFs) of the elements present in the waste water were obtained by lab-scale testing using an RO unit and simulated waste water with non-radioactive elements. The results of the lab-scale testing using representative elements showed that the DF for each element depended on its hydrated ionic radius: the larger the hydrated ionic radius of the element, the higher its DF is. Thus, the DF of each element in the waste water could be estimated based on its hydrated ionic radius. For the adsorption system to remove radionuclides more effectively, we studied adsorption behavior of typical elements, such as radioactive cesium and strontium, by various kinds of adsorbents using batch and column testing. We used batch testing to measure distribution coefficients (K{sub d}s) for cesium and strontium onto adsorbents under different brine concentrations that simulated waste water conditions at the Fukushima Daiichi site. For cesium adsorbents, K{sub d}s with different dependency on the brine concentration were observed based on the mechanism of cesium adsorption. As for strontium, K{sub d}s decreased as the brine concentration increased for any adsorbents which adsorbed strontium by intercalation and by ion exchange. The adsorbent titanium oxide had higher K{sub d}s and it

  19. Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management

    SciTech Connect (OSTI)

    David Dzombak; Radisav Vidic; Amy Landis

    2012-06-30

    Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by

  20. Use of Air2Air Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2009-06-30

    This program was undertaken to build and operate the first Air2Air{trademark} Water Conservation Cooling Tower at a power plant, giving a validated basis and capability for water conservation by this method. Air2Air{trademark} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10%-25% annually, depending on the cooling tower location (climate).

  1. The shallow water equations as a hybrid flow model for the numerical and experimental analysis of hydro power stations

    SciTech Connect (OSTI)

    Ostermann, Lars; Seidel, Christian

    2015-03-10

    The numerical analysis of hydro power stations is an important method of the hydraulic design and is used for the development and optimisation of hydro power stations in addition to the experiments with the physical submodel of a full model in the hydraulic laboratory. For the numerical analysis, 2D and 3D models are appropriate and commonly used.The 2D models refer mainly to the shallow water equations (SWE), since for this flow model a large experience on a wide field of applications for the flow analysis of numerous problems in hydraulic engineering already exists. Often, the flow model is verified by in situ measurements. In order to consider 3D flow phenomena close to singularities like weirs, hydro power stations etc. the development of a hybrid fluid model is advantageous to improve the quality and significance of the global model. Here, an extended hybrid flow model based on the principle of the SWE is presented. The hybrid flow model directly links the numerical model with the experimental data, which may originate from physical full models, physical submodels and in-situ measurements. Hence a wide field of application of the hybrid model emerges including the improvement of numerical models and the strong coupling of numerical and experimental analysis.

  2. Before the Subcommittee on Water, Power, and Oceans House Natural Resources

    Office of Environmental Management (EM)

    Energy Melanie Kenderdine, Director of the Office of Energy Policy and Systems Analysis, and Energy Counselor to the Secretary of Energy Before the Senate Energy and Natural Resources Committee 5-1-14_Melanie_Kenderdine FT SENR.pdf (614.4 KB) More Documents & Publications An Assessment of Heating Fuels And Electricity Markets During the Winters of 2013-2014 and 2014-2015 Before the House Subcommittee on Energy and Power - Committee on Energy and Commerce QER - Comment of Katy Eiseman 1

  3. Feasibility Assessment of the Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants: Main Report and Appendix A

    Broader source: Energy.gov [DOE]

    Main Report and Appendix A: Evaluates water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources, DOE/ID-11111, April 2004 to identify which could feasibly be developed using a set of feasibility criteria. The gross power potential of the sites estimated in the previous study was refined to determine the realistic hydropower potential of the sites using a set of development criteria assuming they are developed as low power (less than 1 MWa) or small hydro (between 1 and 30 MWa) projects.

  4. Economic Benefits, Carbon Dioxide (CO2) Emissions Reduction, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Georgia (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Georgia. We forecast the cumulative economic benefits from 1000 MW of development in Georgia to be $2.1 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,628 million gallons.

  5. PH adjustment of power plant cooling water with flue gas/fly ash

    SciTech Connect (OSTI)

    Brady, Patrick V.; Krumhansl, James L.

    2015-09-22

    A system including a vessel including a heat source and a flue; a turbine; a condenser; a fluid conduit circuit disposed between the vessel, the turbine and the condenser; and a diverter coupled to the flue to direct a portion of an exhaust from the flue to contact with a cooling medium for the condenser water. A method including diverting a portion of exhaust from a flue of a vessel; modifying the pH of a cooling medium for a condenser with the portion of exhaust; and condensing heated fluid from the vessel with the pH modified cooling medium.

  6. Preliminary structural design conceptualization for composite rotor for verdant power water current turbine

    SciTech Connect (OSTI)

    Paquette, J. A.

    2012-03-01

    Sandia National Laboratories (SNL) and Verdant Power Inc. (VPI) have partnered under a Cooperative Research and Development Agreement (CRADA) to develop a new kinetic hydropower rotor. The rotor features an improved hydrodynamic and structural design which features state-of-the-art technology developed for the wind industry. The new rotor will have higher energy capture, increased system reliability, and reduction of overall cost of energy. This project was divided into six tasks: (1) Composite Rotor Project Planning and Design Specification; (2) Baseline Fatigue Testing and Failure analysis; (3) Develop Blade/Rotor Performance Model; (4) Hydrofoil Survey and Selection; (5) FEM Structural Design; and (6) Develop Candidate Rotor Designs and Prepare Final Report.

  7. water scarcity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  8. water savings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  9. water infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  10. Water Demand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  11. drinking water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drinking water - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  12. Water Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Security - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  13. Summary and bibliography of safety-related events at boiling-water nuclear power plants as reported in 1980

    SciTech Connect (OSTI)

    McCormack, K.E.; Gallaher, R.B.

    1982-03-01

    This document presents a bibliography that contains 100-word abstracts of event reports submitted to the US Nuclear Regulatory Commission concerning operational events that occurred at boiling-water-reactor nuclear power plants in 1980. The 1547 abstracts included on microfiche in this bibliography describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. These abstracts are arranged alphabetically by reactor name and then chronologically for each reactor. Full-size keyword and permuted-title indexes to facilitate location of individual abstracts are provided following the text. Tables that summarize the information contained in the bibliography are also provided. The information in the tables includes a listing of the equipment items involved in the reported events and the associated number of reports for each item. Similar information is given for the various kinds of instrumentation and systems, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction).

  14. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    SciTech Connect (OSTI)

    Edward K. Levy; Nenad Sarunac; Wei Zhang

    2004-10-01

    This is the seventh Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture, prior to firing in a pulverized coal boiler. Coal drying experiments were performed with lignite and Powder River Basin coals to determine the effects of inlet air moisture level on the equilibrium relationship between coal moisture and exit air relative humidity and temperature. The results show that, for lignite, there is a slight dependence of equilibrium moisture on inlet humidity level. However, the equilibrium relationship for PRB coal appears to be independent of inlet air humidity level. The specific equilibrium model used for computing lignite coal dryer performance has a significant effect on the prediction accuracy for exit air relative humidity; but its effects on predicted coal product moisture, exit air temperature and specific humidity are minimal. Analyses were performed to determine the effect of lignite product moisture on unit performance for a high temperature drying system. With this process design, energy for drying is obtained from the hot flue gas entering the air preheater and the hot circulating cooling water leaving the steam condenser. Comparisons were made to the same boiler operating with lignite which had been dried off-site.

  15. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Maine (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Maine. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Maine to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,387 million gallons.

  16. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in North Carolina (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in North Carolina. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in North Carolina to be $1.1 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,558 million gallons.

  17. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

  18. Utilization of municipal wastewater for cooling in thermoelectric power plants: Evaluation of the combined cost of makeup water treatment and increased condenser fouling

    SciTech Connect (OSTI)

    Walker, Michael E.; Theregowda, Ranjani B.; Safari, Iman; Abbasian, Javad; Arastoopour, Hamid; Dzombak, David A.; Hsieh, Ming-Kai; Miller, David C.

    2013-10-01

    A methodology is presented to calculate the total combined cost (TCC) of water sourcing, water treatment and condenser fouling in the recirculating cooling systems of thermoelectric power plants. The methodology is employed to evaluate the economic viability of using treated municipal wastewater (MWW) to replace the use of freshwater as makeup water to power plant cooling systems. Cost analyses are presented for a reference power plant and five different tertiary treatment scenarios to reduce the scaling tendencies of MWW. Results indicate that a 550 MW sub-critical coal fired power plant with a makeup water requirement of 29.3 ML/day has a TCC of $3.0 - 3.2 million/yr associated with the use of treated MWW for cooling. (All costs USD 2009). This translates to a freshwater conservation cost of $0.29/kL, which is considerably lower than that of dry air cooling technology, $1.5/kL, as well as the 2020 conservation cost target set by the U.S. Department of Energy, $0.74/kL. Results also show that if the available price of freshwater exceeds that of secondary-treated MWW by more than $0.13-0.14/kL, it can be economically advantageous to purchase secondary MWW and treat it for utilization in the recirculating cooling system of a thermoelectric power plant.

  19. Water

    Office of Energy Efficiency and Renewable Energy (EERE)

     The U.S. Department of Energy (DOE) leads the growing global effort to tap the power of the ocean's waves and tides, while supporting innovations to optimize U.S. hydropower production. DOE's...

  20. Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power. [Ocean Thermal Energy Conversion (OTEC)

    SciTech Connect (OSTI)

    Rabas, T.; Panchal, C.; Genens, L.

    1990-01-01

    There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. This paper describes different OTEC plants that can supply various mixes of desalinated water and vapor -- the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs were appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed -- 40-inch high-density polyethylene pipe at Keahole Point in Hawaii. 30 refs., 6 figs., 8 tabs.

  1. Power | OpenEI Community

    Open Energy Info (EERE)

    Home Water Power Forum Description: Forum for information related to the Water Power Gateway The Water Power Community Forum provides you with a way to engage with other people in...

  2. Holyoke Gas & Electric - Residential Energy Efficiency Loan Program...

    Broader source: Energy.gov (indexed) [DOE]

    Info Sector Name Utility Administrator Customer Service Website http:www.hged.comhtmlenergyconservation1.html State Massachusetts Program Type Loan Program Summary The...

  3. Stationary Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  4. Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets

    DOE Patents [OSTI]

    Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S

    2013-02-12

    A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.

  5. Sandia Energy Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ?p34831 http:energy.sandia.govwave-energy-device-modeling-developing-a-117-scaled-modelfeed 0 New Small Business Voucher Pilot Opens http:energy.sandia.gov...

  6. Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources: Appendix A - Assessment Results by Hydrologic Region

    SciTech Connect (OSTI)

    Hall, Douglas

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Survey’s Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated. Results for each of the 20 hydrologic regions are presented in Appendix A

  7. Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources: Appendix B - Assessment Results by State

    SciTech Connect (OSTI)

    Hall, Douglas

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Surveys Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated. Results for for each of the 50 states are made in Appendix B.

  8. Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources: Appendix B - Assessment Results by State

    SciTech Connect (OSTI)

    Hall, Douglas

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Survey’s Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated. Results for for each of the 50 states are made in Appendix B.

  9. Concentrating Solar Power (CSP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  10. Power Towers for Utilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  11. BONNEVILLE POWER ADMINISTRATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exit signs, kitchen equipment, network power management, power strips, showerheads, clothes washers, water heaters and ag stock tanks. Check IM for detailed requirements. c....

  12. Light Water Reactor Sustainability Program: Computer-based procedure for field activities: results from three evaluations at nuclear power plants

    SciTech Connect (OSTI)

    Oxstrand, Johanna; Bly, Aaron; LeBlanc, Katya

    2014-09-01

    Nearly all activities that involve human interaction with the systems of a nuclear power plant are guided by procedures. The paper-based procedures (PBPs) currently used by industry have a demonstrated history of ensuring safety; however, improving procedure use could yield tremendous savings in increased efficiency and safety. One potential way to improve procedure-based activities is through the use of computer-based procedures (CBPs). Computer-based procedures provide the opportunity to incorporate context driven job aids, such as drawings, photos, just-in-time training, etc into CBP system. One obvious advantage of this capability is reducing the time spent tracking down the applicable documentation. Additionally, human performance tools can be integrated in the CBP system in such way that helps the worker focus on the task rather than the tools. Some tools can be completely incorporated into the CBP system, such as pre-job briefs, placekeeping, correct component verification, and peer checks. Other tools can be partly integrated in a fashion that reduces the time and labor required, such as concurrent and independent verification. Another benefit of CBPs compared to PBPs is dynamic procedure presentation. PBPs are static documents which limits the degree to which the information presented can be tailored to the task and conditions when the procedure is executed. The CBP system could be configured to display only the relevant steps based on operating mode, plant status, and the task at hand. A dynamic presentation of the procedure (also known as context-sensitive procedures) will guide the user down the path of relevant steps based on the current conditions. This feature will reduce the user’s workload and inherently reduce the risk of incorrectly marking a step as not applicable and the risk of incorrectly performing a step that should be marked as not applicable. As part of the Department of Energy’s (DOE) Light Water Reactors Sustainability Program

  13. PowerPoint Presentation

    Energy Savers [EERE]

    Spilling of Water DroughtWet Years Completion delays M&I Water Use 2 ... to power over a reasonable period of years." 3 Pay annual costs first: ...

  14. The utilization of excess wind-electric power from stock water pumping systems to heat a sector of the stock tank

    SciTech Connect (OSTI)

    Nydahl, J.E.; Carlson, B.O.

    1996-12-31

    On the high plains, a wind-electric stock water pumping system produces a significant amount of excess power over the winter months due to intense winds and the decreased water consumption by cattle. The University of Wyoming is developing a multi-tasking system to utilize this excess energy to resistively heat a small sector of the stock tank at its demonstration/experimental site. This paper outlines the detailed heat transfer analysis that predicted drinking water temperature and icing conditions. It also outlines the optimization criteria and the power produced by the Bergey 1500 wind electric system. Results show that heating a smaller insulated tank inserted into the larger tank would raise the drinking water temperature by a maximum of 6.7 {degrees}C and eliminate icing conditions. The returns associated with the additional cattle weight gain, as a result of the consumption of warmer water, showed that system modification costs would be recovered the first year. 12 refs., 11 figs., 2 tabs.

  15. Feasibility assessment of the water energy resources of the United States for new low power and small hydro classes of hydroelectric plants: Appendix B - Assessment results by state

    SciTech Connect (OSTI)

    Hall, Douglas

    2006-01-01

    Water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources, DOE/ID-11111, April 2004 were evaluated to identify which could feasibly be developed using a set of feasibility criteria. The gross power potential of the sites estimated in the previous study was refined to determine the realistic hydropower potential of the sites using a set of development criteria assuming they are developed as low power (less than 1 MWa) or small hydro (between 1 and 30 MWa) projects. The methodologies for performing the feasibility assessment and estimating hydropower potential are described. The results for the country in terms of the number of feasible sites, their total gross power potential, and their total hydropower potential are presented. The spatial distribution of the feasible potential projects is presented on maps of the conterminous U.S. and Alaska and Hawaii. Results summaries for each of the 50 states are presented in Appendix B. The results of the study are also viewable using a Virtual Hydropower Prospector geographic information system application accessible on the Internet at: http://hydropower.inl.gov/prospector.

  16. Feasibility assessment of the water energy resources of the United States for new low power and small hydro classes of hydroelectric plants: Main report and Appendix A

    SciTech Connect (OSTI)

    Hall, Douglas G.; Reeves, Kelly S.; Brizzee, Julie; Lee, Randy D.; Carroll, Gregory R.; Sommers, Garold L.

    2006-01-01

    Water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources, DOE/ID-11111, April 2004 were evaluated to identify which could feasibly be developed using a set of feasibility criteria. The gross power potential of the sites estimated in the previous study was refined to determine the realistic hydropower potential of the sites using a set of development criteria assuming they are developed as low power (less than 1 MWa) or small hydro (between 1 and 30 MWa) projects. The methodologies for performing the feasibility assessment and estimating hydropower potential are described. The results for the country in terms of the number of feasible sites, their total gross power potential, and their total hydropower potential are presented. The spatial distribution of the feasible potential projects is presented on maps of the conterminous U.S. and Alaska and Hawaii. Results summaries for each of the 50 states are presented in an appendix. The results of the study are also viewable using a Virtual Hydropower Prospector geographic information system application accessible on the Internet at: http://hydropower.inl.gov/prospector.

  17. Feasibility Assessment of Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants

    SciTech Connect (OSTI)

    Douglas G. Hall

    2006-01-01

    Water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources, DOE/ID-11111, April 2004 were evaluated to identify which could feasibly be developed using a set of feasibility criteria. The gross power potential of the sites estimated in the previous study was refined to determine the realistic hydropower potential of the sites using a set of development criteria assuming they are developed as low power (less than 1 MW) or small hydro (between 1 and 30 MW) projects. The methodologies for performing the feasibility assessment and estimating hydropower potential are described. The results for the country in terms of the number of feasible sites, their total gross power potential, and their total hydropower potential are presented. The spatial distribution of the feasible potential projects is presented on maps of the conterminous U.S. and Alaska and Hawaii. Results summaries for each of the 50 states are presented in an appendix. The results of the study are also viewable using a Virtual Hydropower Prospector geographic information system application accessible on the Internet at: http://hydropower.inl.gov/prospector.

  18. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  19. CX-009532: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Holyoke Substation Transformer Replacement CX(s) Applied: B4.6 Date: 12/11/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  20. Impact on the steam electric power industry of deleting Section 316(a) of the Clean Water Act: Energy and environmental impacts

    SciTech Connect (OSTI)

    Veil, J.A.; VanKuiken, J.C.; Folga, S.; Gillette, J.L.

    1993-01-01

    Many power plants discharge large volumes of cooling water. In some cases, the temperature of the discharge exceeds state thermal requirements. Section 316(a) of the Clean Water Act (CWA) allows a thermal discharger to demonstrate that less stringent thermal effluent limitations would still protect aquatic life. About 32% of the total steam electric generating capacity in the United States operates under Section 316(a) variances. In 1991, the US Senate proposed legislation that would delete Section 316(a) from the CWA. This study, presented in two companion reports, examines how this legislation would affect the steam electric power industry. This report quantitatively and qualitatively evaluates the energy and environmental impacts of deleting the variance. No evidence exists that Section 316(a) variances have caused any widespread environmental problems. Conversion from once-through cooling to cooling towers would result in a loss of plant output of 14.7-23.7 billion kilowatt-hours. The cost to make up the lost energy is estimated at $12.8-$23.7 billion (in 1992 dollars). Conversion to cooling towers would increase emission of pollutants to the atmosphere and water loss through evaporation. The second report describes alternatives available to plants that currently operate under the variance and estimates the national cost of implementing such alternatives. Little justification has been found for removing the 316(a) variance from the CWA.

  1. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Progress Report for Work Through September 2003, 2nd Annual/8th Quarterly Report

    SciTech Connect (OSTI)

    Philip E. MacDonald

    2003-09-01

    The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation-IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% vs. about 33% efficiency for current Light Water Reactors, LWRs) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus the need for recirculation and jet pumps, a pressurizer, steam generators, steam separators and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies, LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which is also in use around the world.

  2. Organic Rankine-Cycle Power Systems Working Fluids Study: Topical report No. 3, 2-methylpyridine/water

    SciTech Connect (OSTI)

    Cole, R.L.; Demirgian, J.C.; Allen, J.W.

    1987-09-01

    A mixture of 35 mole percent (mol %) 2-methylpyridine and 65 mol % water was tested at 575, 625, and 675/degree/F in a dynamic loop. Samples of the degraded fluid were chemically analyzed to determine the identities of major degradation products and the quantity of degradation. Computed degradation rates were found to be higher than those for Fluorinol 85 or toluene. For this reason (and other reasons, related to fluid handling), other fluids are recommended as the first choice for service in organic Rankine-cycle systems in preference to 2-methylpyridine/water. 7 refs., 39 figs., 39 tabs.

  3. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, Progress Report for Work Through September 2002, 4th Quarterly Report

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth

    2002-09-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR. The Generation IV Roadmap effort has identified the thermal spectrum SCWR (followed by the fast spectrum SCWR) as one of the advanced concepts that should be developed for future use. Therefore, the work in this NERI project is addressing both types of SCWRs.

  4. Sandia Energy - Water Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas...

  5. water for energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  6. water service provider

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  7. energy-water interdependency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    water interdependency - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  8. "smart water" infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smart water" infrastructure - Sandia Energy Energy Search Icon Sandia Home Locations ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  9. Energy-Water Nexus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy-Water Nexus - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  10. Water Monitoring & Treatment Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  11. Energy/Water Nexus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  12. Water Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  13. FINAL REPORT WIND POWER WARM SPRINGS RESERVATION TRIBAL LANDS DOE GRANT NUMBER DE-FG36-07GO17077 SUBMITTED BY WARM SPRINGS POWER & WATER ENTERPRISES A CORPORATE ENTITY OF THE CONFEDERATED TRIBES OF WARM SPRINGS WARM SPRINGS, OREGON

    SciTech Connect (OSTI)

    Jim Manion; Michael Lofting; Wil Sando; Emily Leslie; Randy Goff

    2009-03-30

    Wind Generation Feasibility Warm Springs Power and Water Enterprises (WSPWE) is a corporate entity owned by the Confederated Tribes of the Warm Springs Reservation, located in central Oregon. The organization is responsible for managing electrical power generation facilities on tribal lands and, as part of its charter, has the responsibility to evaluate and develop renewable energy resources for the Confederated Tribes of Warm Springs. WSPWE recently completed a multi-year-year wind resource assessment of tribal lands, beginning with the installation of wind monitoring towers on the Mutton Mountains site in 2003, and collection of on-site wind data is ongoing. The study identified the Mutton Mountain site on the northeastern edge of the reservation as a site with sufficient wind resources to support a commercial power project estimated to generate over 226,000 MWh per year. Initial estimates indicate that the first phase of the project would be approximately 79.5 MW of installed capacity. This Phase 2 study expands and builds on the previously conducted Phase 1 Wind Resource Assessment, dated June 30, 2007. In order to fully assess the economic benefits that may accrue to the Tribes through wind energy development at Mutton Mountain, a planning-level opinion of probable cost was performed to define the costs associated with key design and construction aspects of the proposed project. This report defines the Mutton Mountain project costs and economics in sufficient detail to allow the Tribes to either build the project themselves or contract with a developer under the most favorable terms possible for the Tribes.

  14. Long Term Field Development of a Surfactant Modified Zeolite/Vapor Phase Bioreactor System for Treatment of Produced Waters for Power Generation

    SciTech Connect (OSTI)

    Lynn Katz; Kerry Kinney; Robert Bowman; Enid Sullivan; Soondong Kwon; Elaine Darby; Li-Jung Chen; Craig Altare

    2007-12-31

    ) Evaluate the capability of an SMZ/MBR system to remove carboxylates and BTEX from produced water in a field trial. Laboratory experiments were conducted to provide a better understanding of each component of the SMZ/VPB and SMZ/MBR process. Laboratory VPB studies were designed to address the issue of influent variability and periodic operation (see DE-FC26-02NT15461). These experiments examined multiple influent loading cycles and variable concentration loadings that simulate air sparging as the regeneration option for the SMZ system. Two pilot studies were conducted at a produced water processing facility near Farmington, New Mexico. The first field test evaluated SMZ adsorption, SMZ regeneration, VPB buffering, and VPB performance, and the second test focused on MBR and SMZ/MBR operation. The design of the field studies were based on the results from the previous field tests and laboratory studies. Both of the biological treatment systems were capable of removing the BTEX constituents in the laboratory and in the field over a range of operating conditions. For the VPB, separation of the BTEX constituents from the saline aqueous phase yielded high removal efficiencies. However, carboxylates remained in the aqueous phase and were not removed in the combined VPB/SMZ system. In contrast, the MBR was capable of directly treating the saline produced water and simultaneously removing the BTEX and carboxylate constituents. The major limitation of the MBR system is the potential for membrane fouling, particularly when the system is treating produced water under field conditions. The combined process was able to effectively pretreat water for reverse osmosis treatment and subsequent downstream reuse options including utilization in power generation facilities. The specific conclusions that can be drawn from this study are summarized.

  15. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Southwestern), to severely limit power generation at Denison to conserve water storage. ... "In fact, 2013 was the lowest year for generation since the project went online in 1945." ...

  16. Energy 101: Hydroelectric Power

    Broader source: Energy.gov [DOE]

    Learn how hydroelectric power, or hydropower, captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

  17. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Power Overview Unique Capabilities * SEAWOLF laboratoryfield oscillatory-flow sediment transport testing * Sandia Lake Facility - potential for large scale wave testing * ...

  18. Development and experience of large conductor cable 35-kV joints at the Los Angeles Department of Water and Power

    SciTech Connect (OSTI)

    Calderon, F.; Findon, E.J. )

    1990-01-01

    The Los Angeles Department of Water and Power (LADWP) places a high priority on developing its distribution system in the most reliable and cost-effective manner. At higher distribution voltages, such as 34.5-kV, jointing systems which are easily, consistently, and quickly installed by both utility and contracted personnel offer significant economic advantages. With increasing loads and higher load densities at LADWP, the use of 34.5-kV, cross-linked polyethylene (CLP) aluminum, 1000-kcmil cable is becoming more common to meet customer load requirements. Two methods of jointing this large conductor cable were historically used, although each method had limitations. This paper provides an overview of LADWP's distribution system, past jointing techniques, the investigation and evaluation of alternate approaches, and the field experience with the joint selected for use.

  19. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect (OSTI)

    Zaltash, Abdolreza; Petrov, Andrei Y; Linkous, Randall Lee; Vineyard, Edward Allan

    2007-01-01

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient

  20. Ecological safety of tidal-power projects

    SciTech Connect (OSTI)

    Fedorov, M. P.; Shilin, M. B.

    2010-07-15

    The operating regime of tidal power plants requires ecological monitoring of their associated water area.

  1. PowerSlicing to determine fluorescence lifetimes of water-soluble organic matter derived from soils, plant biomass, and animal manures

    SciTech Connect (OSTI)

    Ohno, Tsutomu; Wang, Zheming; Bro, Rasmus

    2008-04-01

    Time-resolved fluorescence spectroscopy was used to characterize water-soluble organic matter (WSOM) which plays an important role in soil ecosystem processes. WSOM was extracted from plant biomass, animal manures, and soils from controlled cropping systems studies with known histories of organic amendments. Lifetime constants were derived using the multi-way PowerSlicing method which provides a non-iterative, multi-exponential fitting of decay profiles. The lifetimes obtained by PowerSlicing were not significantly different from those obtained using the traditional discrete components analysis. The three components attributed to WSOM had lifetimes of 0.38 0.14, 2.110.72, and 7.081.18 ns which are in agreement with previous lifetimes reported for humic substances. This study provides further support for the new paradigm for the structure of soil organic matter where the organic matter is composed of low-molecular-weight components held together by hydrogen bonding and hydrophobic interactions.

  2. Concentrating Solar Power Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Basics Many power plants today use fossil fuels as a heat source to boil water. The steam from the boiling water spins a large turbine, which drives a generator to produce electricity. However, a new generation of power plants with concentrating solar power systems uses the sun as a heat source. The three main types of concentrating solar power systems are: linear concentrator, dish/engine, and power tower systems. Linear concentrator systems collect the sun's energy

  3. Water Success Stories | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    emissions-free, and cost-effective water power open new possibilities for this reliable, renewable resource. Explore EERE's water power success stories below. July 29, 2015 The...

  4. Preliminary studies on the heat exchanger option for S-CO{sub 2} power conversion cycle coupled to water cooled SMR

    SciTech Connect (OSTI)

    Ahn, Y.; Lee, J.; Lee, J. I.

    2012-07-01

    For more than a half century, the steam Rankine cycle had been the major power conversion cycle for a nuclear power plant. However, as the interest on the next generation reactors grows, a variety of alternative power conversion systems have been studied. Among them, the S-CO{sub 2} cycle (Supercritical carbon dioxide Brayton cycle) is considered as a promising candidate due to several benefits such as 1) Relatively high thermal efficiency at relatively low turbine inlet temperature, 2) High efficiency with simple lay-out 3) Compactness of turbo-machineries. 4) Compactness of total cycle combined with PCHE (Printed Circuit Heat Exchanger). According to the conventional classification of heat exchangers (HE), there are three kind of HE, 1) Tubular HEs, 2) Plate-type HEs, 3) Extended surface HEs. So far, the researcher has mostly assumed PCHE type HE for the S-CO{sub 2} cycle due to its compactness with reasonably low pressure drop. However, PCHE is currently one of the most expensive components in the cycle, which can have a negative effect on the economics of the cycle. Therefore, an alternative for the HE should be seriously investigated. By comparing the operating condition (pressure and temperature) there are three kind of HE in the S-CO{sub 2} cycle, 1) IHX (Intermediate Heat exchanger) 2) Recuperator and 3) Pre-cooler. In each heat exchanger, hot side and cold side coolants are different, i.e. reactor coolant to S-CO{sub 2} (IHX), S-CO{sub 2} to S-CO{sub 2}(Recuperator), S-CO{sub 2} to water (Pre-cooler). By considering all the attributes mentioned above, all existing types of heat exchangers are compared to find a possible alternative to PCHE. The comparing factors are 1) Size(volume), 2) Cost. Plate fin type HEs are considered to be the most competitive heat exchanger regarding the size and the cost after some improvements on the design limit are made. (authors)

  5. Water Power Program Budget History

    SciTech Connect (OSTI)

    2012-01-19

    On this page you can learn more about the Program's budget for this current fiscal year, as well as budgets in previous fiscal years.

  6. Microsoft PowerPoint - Arkansa River System Operation.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control * * Navigation Navigation * * Hydroelectric Power Hydroelectric Power * * Water ... surcharge surcharge Navigation lock and dams Navigation lock and dams Navigation lock ...

  7. Nuclear Power & Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power & Engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  8. Water Availability, Cost, and Use

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  9. Energy and Water Data Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  10. Energeticals power plant engineering | Open Energy Information

    Open Energy Info (EERE)

    generation in the field of solid Biomass, deep and shallow geothermal energy and water power. References: energeticals power plant engineering1 This article is a stub....

  11. Concentrating Solar Power Commercial Application Study: Reducing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Commercial Application Study: Reducing Water Consumption of Concentrating Solar Power Electricity Generation Report to Congress U.S. Department of Energy ...

  12. The impact of fuel cladding failure events on occupational radiation exposures at nuclear power plants: Case study, PWR (pressurized-water reactor) during an outage

    SciTech Connect (OSTI)

    Moeller, M.P.; Martin, G.F.; Kenoyer, J.L.

    1987-08-01

    This report is the second in a series of case studies designed to evaluate the magnitude of increase in occupational radiation exposures at commercial US nuclear power plants resulting from small incidents or abnormal events. The event evaluated is fuel cladding failure, which can result in elevated primary coolant activity and increased radiation exposure rates within a plant. For this case study, radiation measurements were made at a pressurized-water reactor (PWR) during a maintenance and refueling outage. The PWR had been operating for 22 months with fuel cladding failure characterized as 105 pin-hole leakers, the equivalent of 0.21% failed fuel. Gamma spectroscopy measurements, radiation exposure rate determinations, thermoluminescent dosimeter (TLD) assessments, and air sample analyses were made in the plant's radwaste, pipe penetration, and containment buildings. Based on the data collected, evaluations indicate that the relative contributions of activation products and fission products to the total exposure rates were constant over the duration of the outage. This constancy is due to the significant contribution from the longer-lived isotopes of cesium (a fission product) and cobalt (an activation product). For this reason, fuel cladding failure events remain as significant to occupational radiation exposure during an outage as during routine operations. As documented in the previous case study (NUREG/CR-4485 Vol. 1), fuel cladding failure events increased radiation exposure rates an estimated 540% at some locations of the plant during routine operations. Consequently, such events can result in significantly greater radiation exposure rates in many areas of the plant during the maintenance and refueling outages than would have been present under normal fuel conditions.

  13. PowerPoint Presentation

    Office of Environmental Management (EM)

    Validation of Hydrogen Exchange Methodology on Molecular Sieves for Tritium Removal from Contaminated Water Gregg A. Morgan Fall 2014 Tritium Focus Group, Idaho Falls, ID September 23-25, 2014 SRNL-STI-2014-00422-S 2 Background * Tritium contaminated water is a critical issue for nuclear power reactors, especially when ground water becomes contaminated. * Planned tritium plants for ITER and other fusion energy applications will have large volumes of tritium contaminated water - potentially

  14. Feasibility Assessment of the Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants: Main Report and Appendix A

    Broader source: Energy.gov [DOE]

    Main Report and Appendix A evaluate water energy resource sites identified in the resource assessment study reported in Water Energy Resources of the United States with Emphasis on Low Head/Low...

  15. Microsoft PowerPoint - SWT.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    defer to the hydropower generation, the Secretary shall ... on the rates for hydroelectric power. reallocation on ... Plan - - Two Low water Dams Proposed Two Low water Dams ...

  16. Water Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Water Success Stories en Catching a Wave: Innovative Wave Energy Device Surfs for Power in Hawaii http:energy.goveeresuccess-storiesarticlescatching-wave-innovative-wave-en...

  17. ARM Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Water Vapor IOP The SGP CART site will host the third ARM water vapor IOP on September 18-October 8, 2000. The CART site is home to a powerful array of instruments capable of ...

  18. Power Electronics and Controls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronics and Controls - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  19. Power Towers for Utilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Towers for Utilities - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  20. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  1. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  2. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  3. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  4. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  5. Power Device Packaging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. ape023wang2010p.pdf (2.42 MB) More Documents & Publications Power Device Packaging Power Device Packaging Direct Water-Cooled Power Electronics Substrate Packaging

  6. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2011-12-31

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  7. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  8. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  9. Integration of a "Passive Water Recovery" MEA into a Portable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a "Passive Water Recovery" MEA into a Portable DMFC Power Supply Integration of a "Passive Water Recovery" MEA into a Portable DMFC Power Supply Download slides from the ...

  10. Before the House Natural Resources Subcommittee on Water and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (71.99 KB) More Documents & Publications Before the House Natural Resources Subcommittee on Water and Power Before the House Natural Resources Subcommittee on Water and Power

  11. Before the House Natural Resources Subcommittee on Water and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Before the Senate Energy and Natural Resources Subcommittee on Water and Power Before the House Natural Resources Subcommittee on Water and Power Before...

  12. Before the House Natural Resources Subcommittee on Water and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Before the House Natural Resources Subcommittee on Water and Power Before House Subcommittee on Water and Power - Committee on Natural...

  13. Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy reve

    SciTech Connect (OSTI)

    Jager, Yetta; Smith, Brennan T

    2008-02-01

    Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy revenue, while meeting other legal water requirements. Reservoir optimization schemes used in practice do not seek flow regimes that maximize aquatic ecosystem health. Here, we review optimization studies that considered environmental goals in one of three approaches. The first approach seeks flow regimes that maximize hydropower generation, while satisfying legal requirements, including environmental (or minimum) flows. Solutions from this approach are often used in practice to operate hydropower projects. In the second approach, flow releases from a dam are timed to meet water quality constraints on dissolved oxygen (DO), temperature and nutrients. In the third approach, flow releases are timed to improve the health of fish populations. We conclude by suggesting three steps for bringing multi-objective reservoir operation closer to the goal of ecological sustainability: (1) conduct research to identify which features of flow variation are essential for river health and to quantify these relationships, (2) develop valuation methods to assess the total value of river health and (3) develop optimal control softwares that combine water balance modelling with models that predict ecosystem responses to flow.

  14. Energy-Water Overview

    U.S. Energy Information Administration (EIA) Indexed Site

    Overview of Emerging Issues and Challenges DOE/EIA 2010 Energy Conference Mike Hightower Sandia National Laboratories mmhight@sandia.gov, 505-844-5499 Energy and Water are ... Interdependent Water for Energy and Energy for Water Energy and power production require water: * Thermoelectric cooling * Hydropower * Energy minerals extraction/mining * Fuel Production (fossil fuels, H 2 , biofuels) * Emission control Water production, processing, distribution, and end-use require energy: * Pumping *

  15. Preliminary results of calculations for heavy-water nuclear-power-plant reactors employing {sup 235}U, {sup 233}U, and {sup 232}Th as a fuel and meeting requirements of a nonproliferation of nuclear weapons

    SciTech Connect (OSTI)

    Ioffe, B. L.; Kochurov, B. P.

    2012-02-15

    A physical design is developed for a gas-cooled heavy-water nuclear reactor intended for a project of a nuclear power plant. As a fuel, the reactor would employ thorium with a small admixture of enriched uranium that contains not more than 20% of {sup 235}U. It operates in the open-cycle mode involving {sup 233}U production from thorium and its subsequent burnup. The reactor meets the conditions of a nonproliferation of nuclear weapons: the content of fissionable isotopes in uranium at all stages of the process, including the final one, is below the threshold for constructing an atomic bomb, the amount of product plutonium being extremely small.

  16. Energy 101: Hydroelectric Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric Power Energy 101: Hydroelectric Power Addthis Description Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses. Topic Water Text Version Below is the text version for the Energy 101: Hydroelectric Power video: The video opens with the words "Energy 101: Hydroelectric Power." This is followed by a montage of rivers and streams, then a shot of an older water wheel. People have been capturing the energy

  17. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    SciTech Connect (OSTI)

    Simmons, Kevin L.; Ramuhalli, Pradeep; Brenchley, David L.; Coble, Jamie B.; Hashemian, Hash; Konnik, Robert; Ray, Sheila

    2012-09-14

    The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), NDE instrumentation development, universities, commercial NDE services and cable manufacturers, and Electric Power Research Institute (EPRI). The motivation for the R&D roadmap comes from the need to address the aging management of in-containment cables at nuclear power plants (NPPs).

  18. Perovskite Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Perovskite Power 1663 Los Alamos science and technology magazine Latest Issue:October 2015 past issues All Issues submit Perovskite Power A breakthrough in the production of...

  19. power-take-off system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power-take-off system - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  20. Addressing the Water and Energy Nexus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water and Energy Nexus - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  1. Mapping Water Availability in the Western US

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Water Availability in the Western US - Sandia Energy Energy Search Icon Sandia ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  2. decreasing water input and waste generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    decreasing water input and waste generation - Sandia Energy Energy Search Icon Sandia Home ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  3. Geothermal/Water Use | Open Energy Information

    Open Energy Info (EERE)

    Water Use < Geothermal(Redirected from Water Use) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid...

  4. Geothermal/Water Use | Open Energy Information

    Open Energy Info (EERE)

    Water Use < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid Connection Environment Water...

  5. Floating Oscillating Water Column Reference Model Completed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Floating Oscillating Water Column Reference Model Completed - Sandia Energy Energy Search ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  6. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monday Tuesday Wednesday Thursday Friday Saturday Sunday Generation Schedules Southwestern provides a current day schedule - online using the links to the left and by telephone at 866-494-1993 - to keep the public informed about estimated generation at the projects from which we schedule power. Note that the number of megawatts to be generated, and consequently, the rate at which water is released at each project, is subject to change as demand for power increases or decreases. In addition, the

  7. Village power in Thailand

    SciTech Connect (OSTI)

    Bergey, M.

    1997-12-01

    This paper presents an overview of the electric power system in Thailand. 99% of the country is electrified, but much of this is with diesel generators which leaves high costs but a high level of service. The paper discusses renewable energy projects which have been sited in the country, and examples of hybrid systems which have been retrofit into existing diesel generator systems. Photovoltaic and hydroelectric power projects are described. Dedicated systems have been installed for water pumping and battery charging applications.

  8. Enabling Wind Power Nationwide

    SciTech Connect (OSTI)

    Jose, Zayas; Michael, Derby; Patrick, Gilman; Ananthan, Shreyas; Lantz, Eric; Cotrell, Jason; Beck, Fredic; Tusing, Richard

    2015-05-01

    Leveraging this experience, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has evaluated the potential for wind power to generate electricity in all 50 states. This report analyzes and quantifies the geographic expansion that could be enabled by accessing higher above ground heights for wind turbines and considers the means by which this new potential could be responsibly developed.

  9. PowerPoint Presentation

    U.S. Energy Information Administration (EIA) Indexed Site

    Addressing the Environmental Impacts of the Power Sector 2011 EIA Energy Conference April 26, 2011 Sam Napolitano U.S. EPA Context * EPA has recently proposed regulations governing air emissions, coal ash handling, and cooling water intakes for power plants. * The regulations address years of uncertainty (in some cases decades) and are designed to address harmful pollution and other impacts under existing law and mandates established by Congress. * Several rules respond to Court direction. * The

  10. Concentrating Solar Power: Power Towers

    Office of Energy Efficiency and Renewable Energy (EERE)

    This video provides an overview of the principles, applications, and benefits of generating electricity using power towers, a concentrating solar power (CSP) technology. A brief animation explains...

  11. Bonneville Power Administration Overview As of December 1, 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5% Tacoma Power (Preference) 4% Alcoa Inc (DSI) 4% Powerex Corp. (Independent Power Producer) 4% Clark Public Utilities (Preference) 4% Eugene Water & Electric Board...

  12. Mechanical Analysis of High Power Internally Cooled Annular Fuel...

    Office of Scientific and Technical Information (OSTI)

    Title: Mechanical Analysis of High Power Internally Cooled Annular Fuel Annular fuel with internal flow is proposed to allow higher power density in pressurized water reactors. The ...

  13. Mid America Advanced Power Solutions | Open Energy Information

    Open Energy Info (EERE)

    MAAPS specializes in solar electric (PV), solar thermal, solar water heating, wind power, hydrogen power, efficiency lighting, and induction lighting products. These products are...

  14. Second Annual Electric Power Research Institute/Sandia Photovoltaic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ... HomeConcentrating Solar Power, Distribution Grid Integration, Energy, Facilities, Grid ...

  15. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    SciTech Connect (OSTI)

    Simmons, K.L.; Ramuhali, P.; Brenchley, D.L.; Coble, J.B.; Hashemian, H.M.; Konnick, R.; Ray, S.

    2012-09-01

    Executive Summary [partial] The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. A workshop was held to gather subject matter experts to develop the NDE R&D Roadmap for Cables. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, and NDE instrumentation development from the U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), universities, commercial NDE service vendors and cable manufacturers, and the Electric Power Research Institute (EPRI).

  16. Solar thermal power system

    SciTech Connect (OSTI)

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  17. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JULY 2014

    Energy Savers [EERE]

    ... COMPANY REACTOR SIZE (MWE) APPLICATION EXPECTED DC SUBMITTAL DATE Light Water Reactors Babcock &Wilcox mPower, Inc. mPower SMR 180 DCCP TBD Holtec International SMR-160 160 DC Q4 ...

  18. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY OCTOBER 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... COMPANY REACTOR SIZE (MWE) APPLICATION EXPECTED DC SUBMITTAL DATE Light Water Reactors Babcock &Wilcox mPower, Inc. mPower SMR 180 DC TBD Holtec International SMR-160 160 DC TBD ...

  19. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JULY 2015

    Broader source: Energy.gov (indexed) [DOE]

    ... COMPANY R EACTOR SIZE (MWE) APPLICATION EXPECTED DC SUBMITTAL DATE Light Water Reactors Babcock &Wilcox mPower, Inc. mPower SMR 180 DC TBD Holtec International SMR-160 160 DC TBD ...

  20. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY APRIL 2015

    Energy Savers [EERE]

    ... COMPANY R EACTOR SIZE (MWE) APPLICATION EXPECTED DC SUBMITTAL DATE Light Water Reactors Babcock &Wilcox mPower, Inc. mPower SMR 180 DCCP TBD Holtec International SMR-160 160 DC Q4 ...