National Library of Energy BETA

Sample records for holy cross energy

  1. Holy Cross Energy- WE CARE Renewable Energy Rebate Program

    Broader source: Energy.gov [DOE]

    Holy Cross Energy's WE CARE (With Efficiency, Conservation And Renewable Energy) Program offers an incentive for customers who install renewable energy generation for net metering at their premises...

  2. Holy Cross Energy- WE CARE Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Holy Cross offers a wide variety of prescriptive rebates for energy efficient equipment purchased by its commercial customers. Equipment must be replacing existing working equipment to qualify. The...

  3. Holy Cross Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey: EnergyHolly Springs,Nebraska:Holtville,

  4. College of the Holy Cross Math 125, Fall 2008

    E-Print Network [OSTI]

    Jones, Rafe

    College of the Holy Cross Math 125, Fall 2008 Prof. Jones December 2, 2008 Exam 3 Name: 56tv Total #12;Math 125 Exam 3 2 1. [12 points] Let f be the function whose graph is pictured below (note need to estimate some endpoints. y ~((x) SI 1>0) f

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Holy Cross Energy- WE CARE Renewable Energy Rebate Program Holy Cross Energy's WE CARE (With Efficiency, Conservation And Renewable Energy) Program offers an incentive for...

  6. Energy Efficiency: The New Holy Grail of Data Management Systems Research

    E-Print Network [OSTI]

    Liskov, Barbara

    Energy Efficiency: The New Holy Grail of Data Management Systems Research Stavros Harizopoulos HP energy-friendly hardware. Despite the growing body of research in power management techniques, there has been little work to date on energy efficiency from a data management software per- spective

  7. HolyName Housing Cooperation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea, CaliforniaHessWindMassachusetts:HolstonHolyName

  8. Toward the Holy Grail of Perfect Information: Lessons Learned Implementing an Energy Information System in a Commercial Building

    E-Print Network [OSTI]

    Kircher, Kevin

    2010-01-01

    Toward the Holy Grail of Perfect Information: Lessonsof California. Toward the Holy Grail of Perfect Information:

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential, Low Income Residential Savings Category: Solar Thermal Electric, Solar Photovoltaics, Wind (All), Wind (Small), Anaerobic Digestion Holy Cross Energy- WE CARE...

  10. Energy Efficiency: The New Holy Grail of Data Management Systems Research

    E-Print Network [OSTI]

    Harizopoulos, Stavros; Meza, Justin; Ranganathan, Parthasarathy

    2009-01-01

    Energy costs are quickly rising in large-scale data centers and are soon projected to overtake the cost of hardware. As a result, data center operators have recently started turning into using more energy-friendly hardware. Despite the growing body of research in power management techniques, there has been little work to date on energy efficiency from a data management software perspective. In this paper, we argue that hardware-only approaches are only part of the solution, and that data management software will be key in optimizing for energy efficiency. We discuss the problems arising from growing energy use in data centers and the trends that point to an increasing set of opportunities for software-level optimizations. Using two simple experiments, we illustrate the potential of such optimizations, and, motivated by these examples, we discuss general approaches for reducing energy waste. Lastly, we point out existing places within database systems that are promising for energy-efficiency optimizations and ...

  11. In Search of the Holy Grail

    E-Print Network [OSTI]

    Herbert, MD, Mel

    2007-01-01

    We long for the Holy Grail, the number needed to treat ofC ommentary The Holy Grail, Genes and Number Needed toChristian mythology, the Holy Grail was the dish, plate, or

  12. Diagrammatic computation of multi-Higgs processes at very high energies: scaling F holy grail with MadGraph

    E-Print Network [OSTI]

    Valentin V. Khoze

    2015-04-21

    At very high energies scattering amplitudes in a spontaneously broken gauge theory into multi-particle final states are known to grow factorially with the number of particles produced. Using simple scalar field theory models with and without the VEV, we compute total cross-sections with up to 7 particles in the final state at the leading order in perturbation theory with MadGraph. By exploring the known scaling properties of the multi-particle rates with the number of particles, we determine from these the general $n$-point cross-sections in the large-$n$ limit. In the high-multiplicity regime we are considering, n>>1 and lambda n=fixed, the perturbation theory becomes strongly coupled with the higher-order loop effects contributing increasing powers of lambda n. In the approximation where only the leading loop effects are included, we show that the corresponding perturbative cross-sections grow exponentially and ultimately violate perturbative unitarity. This occurs at surprisingly low energy scales ~50 TeV with multiplicities above ~130. It is expected that a repair mechanism or an extension of the theory has to set-in before these scales are reached, possibly involving a novel non-perturbative dynamics in the a priori weakly coupled theory.

  13. Diagrammatic computation of multi-Higgs processes at very high energies: scaling F holy grail with MadGraph

    E-Print Network [OSTI]

    Khoze, Valentin V

    2015-01-01

    At very high energies scattering amplitudes in a spontaneously broken gauge theory into multi-particle final states are known to grow factorially with the number of particles produced. Using simple scalar field theory models with and without the VEV, we compute total cross-sections with up to 7 particles in the final state at the leading order in perturbation theory with MadGraph. By exploring the known scaling properties of the multi-particle rates with the number of particles, we determine from these the general $n$-point cross-sections in the large-$n$ limit. In the high-multiplicity regime we are considering, n>>1 and lambda n=fixed, the perturbation theory becomes strongly coupled with the higher-order loop effects contributing increasing powers of lambda n. In the approximation where only the leading loop effects are included, we show that the corresponding perturbative cross-sections grow exponentially and ultimately violate perturbative unitarity. This occurs at surprisingly low energy scales ~50 TeV ...

  14. Toward the Holy Grail of Perfect Information: Lessons Learned Implementing an Energy Information System in a Commercial Building

    E-Print Network [OSTI]

    Kircher, Kevin

    2010-01-01

    of Energy. 2010. Net-Zero Energy Commercial Buildingas carbon neutrality or net-zero energy, will be willing to

  15. Impact of Energy Disaggregation on Consumer Behavior

    E-Print Network [OSTI]

    Chakravarty, Prateek; Gupta, Abahy

    2013-01-01

    Is disaggregation the holy grail of energy ef?ciency? Theis called the Holy Grail 1 of energy efficiency. You cannotIs disaggregation the holy grail of energy ef?ciency? The

  16. SEARCHING FOR THE HOLY GRAIL OF LEARNING OUTCOMES

    E-Print Network [OSTI]

    Douglass, John A

    2012-01-01

    Paper * SEARCHING FOR THE HOLY GRAIL OF LEARNING OUTCOMES **The search for the Holy Grail to measure learning gainsTHOMSON and ZHAO: The Holy Grail of Learning Outcomes

  17. Toward the Holy Grail of Perfect Information: Lessons Learned Implementing an Energy Information System in a Commercial Building

    E-Print Network [OSTI]

    Kircher, Kevin

    2010-01-01

    decreasing the energy and carbon footprint of a building ortrack their personal carbon footprint and compare it to that

  18. The Holy Hanuman Prof. Volker Sommer

    E-Print Network [OSTI]

    Lummaa, Virpi

    The Holy Hanuman Prof. Volker Sommer Department of Anthropology University College London Contributed by Dr. Sommer in association with his talk 4/12/03 for the Southern California Primate Research

  19. Constraint Programming: In Pursuit of the Holy Grail Roman Bartk

    E-Print Network [OSTI]

    Qu, Rong

    Constraint Programming: In Pursuit of the Holy Grail Roman Barták Charles University, Faculty Programming represents one of the closest approaches computer science has yet made to the Holy Grail

  20. Representing holy foolishness: an investigation of the holy fool as a critical figure in European cinema 

    E-Print Network [OSTI]

    Birzache, Alina Gabriela

    2013-07-05

    In this thesis I investigate the evolving figure of the holy fool as a critical figure in European cinema. Three national cinemas - Soviet and post-Soviet cinema, French cinema, and Danish cinema – form the primary focus ...

  1. Counterintuitive transitions between crossing energy levels

    E-Print Network [OSTI]

    A. A. Rangelov; J. Piilo; N. V. Vitanov

    2010-10-06

    We calculate analytically the probabilities for intuitive and counterintuitive transitions in a three-state system, in which two parallel energies are crossed by a third, tilted energy. The state with the tilted energy is coupled to the other two states in a chainwise linkage pattern with constant couplings of finite duration. The probability for a counterintuitive transition is found to increase with the square of the coupling and decrease with the squares of the interaction duration, the energy splitting between the parallel energies, and the tilt (chirp) rate. Physical examples of this model can be found in coherent atomic excitation and optical shielding in cold atomic collisions.

  2. Fusion cross sections at deep subbarrier energies

    E-Print Network [OSTI]

    K. Hagino; N. Rowley; M. Dasgupta

    2003-02-12

    A recent publication reports that heavy-ion fusion cross sections at extreme subbarrier energies show a continuous change of their logarithmic slope with decreasing energy, resulting in a much steeper excitation function compared with theoretical predictions. We show that the energy dependence of this slope is partly due to the asymmetric shape of the Coulomb barrier, that is its deviation from a harmonic shape. We also point out that the large low-energy slope is consistent with the surprisingly large surface diffusenesses required to fit recent high-precision fusion data.

  3. Ecclesiastical Influence on the Legend of the Holy Grail

    E-Print Network [OSTI]

    Crawford, Nelson A. Jr

    1914-01-01

    KU ScholarWorks | The University of Kansas Pre-1923 Dissertations and Theses Collection Ecclesiastical Influence on the Legend of the Holy Grail 1914 by N. A. Crawford, Jr. This work was digitized by the Scholarly Communications program staff... in the KU Libraries’ Center for Digital Scholarship. http://kuscholarworks.ku.edu ** —«•' w •v ICCLESIASTICAL INFLUENCE OK THE LEO^D OP THE HOLY GRAIL. A thesis submitted to tho Department of English and the Faculty of tho Graduate School...

  4. Holy Technology Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River PowerHeckertHidrotermicaPowerHochtiefCorporation

  5. Increasing Hydrodynamic Efficiency by Reducing Cross-Beam Energy...

    Office of Scientific and Technical Information (OSTI)

    Increasing Hydrodynamic Efficiency by Reducing Cross-Beam Energy Transfer in Direct-Drive-Implosion Experiments Citation Details In-Document Search Title: Increasing Hydrodynamic...

  6. Optimizing minimum free-energy crossing points in solution: Linear...

    Office of Scientific and Technical Information (OSTI)

    Optimizing minimum free-energy crossing points in solution: Linear-response free energyspin-flip density functional theory approach Citation Details In-Document Search Title:...

  7. (Have we found the Holy Grail?) Panel at MT-Summit 2003

    E-Print Network [OSTI]

    Wu, Dekai

    (Have we found the Holy Grail?) Panel at MT-Summit 2003 #12;The HKUST Leading Question Translation? If not, is the Holy Grail just around the corner? Translation Are we just about done? #12;Dekai Wu, MT

  8. Energy dependence of the total photoproduction cross section at HERA

    E-Print Network [OSTI]

    Aharon Levy

    2008-07-01

    The energy dependence of the total photon-proton cross-section is determined from data collected with the ZEUS detector at HERA with two different proton beam energies.

  9. Neutrino-Nucleon Cross section in Ultra High Energy Regime

    E-Print Network [OSTI]

    Bora, Kalpana

    2015-01-01

    Neutrino Physics is now entering precision era and neutrino-nucleon cross sections are an im- portant ingredient in all neutrino oscillation experiments. Specially, precise knowledge of neutrino- nucleon cross sections in Ultra High Energy (UHE) regime (TeV-PeV) is becoming more important now, as several experiments worldwide are going to observe processes involving such UHE neutrinos. In this work, we present new results on neutrino-nucleon cross-sections in this UHE regime, using QCD.

  10. La Crosse County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: EnergyKulpsville,LEDSGP/activities <LEDSGP/hometrainingLPG Electrical,Crosse

  11. Cross-impacts analysis development and energy policy analysis applications

    SciTech Connect (OSTI)

    Roop, J.M.; Scheer, R.M.; Stacey, G.S.

    1986-12-01

    Purpose of this report is to describe the cross-impact analysis process and microcomputer software developed for the Office of Policy, Planning, and Analysis (PPA) of DOE. First introduced in 1968, cross-impact analysis is a technique that produces scenarios of future conditions and possibilities. Cross-impact analysis has several unique attributes that make it a tool worth examining, especially in the current climate when the outlook for the economy and several of the key energy markets is uncertain. Cross-impact analysis complements the econometric, engineering, systems dynamics, or trend approaches already in use at DOE. Cross-impact analysis produces self-consistent scenarios in the broadest sense and can include interaction between the economy, technology, society and the environment. Energy policy analyses that couple broad scenarios of the future with detailed forecasting can produce more powerful results than scenario analysis or forecasts can produce alone.

  12. Sub-barrier Fusion Cross Sections with Energy Density Formalism

    E-Print Network [OSTI]

    F. Muhammad Zamrun; K. Hagino; N. Takigawa

    2006-06-07

    We discuss the applicability of the energy density formalism (EDF) for heavy-ion fusion reactions at sub-barrier energies. For this purpose, we calculate the fusion excitation function and the fusion barrier distribution for the reactions of $^{16}$O with $^{154,}$$^{144}$Sm,$^{186}$W and $^{208}$Pb with the coupled-channels method. We also discuss the effect of saturation property on the fusion cross section for the reaction between two $^{64}$Ni nuclei, in connection to the so called steep fall-off phenomenon of fusion cross sections at deep sub-barrier energies.

  13. Absence of Energy Level Crossing for the Ground State Energy of the Rabi Model

    E-Print Network [OSTI]

    Masao Hirokawa; Fumio Hiroshima

    2012-07-17

    The Hamiltonian of the Rabi model is considered. It is shown that the ground state energy of the Rabi Hamiltonian is simple for all values of the coupling strength, which implies the ground state energy does not cross other energy

  14. Low-energy exclusive cross sections and inclusive production of identified charged hadrons with Babar

    E-Print Network [OSTI]

    Heller, Barbara

    Low-energy exclusive cross sections and inclusive production of identified charged hadrons of low-energy exclusive e+e- cross sections, and recent results on the inclusive production of identified the cross sections to be measured at low energy and over an extended energy range. In addition, we present

  15. Lowry Crossing, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 Jump to: navigation, search ToolWellsLowry Crossing,

  16. Symmetry energy and nucleon-nucleon cross sections

    E-Print Network [OSTI]

    Martin Veselsky; Yu-Gang Ma

    2013-03-11

    The extension of the Boltzmann-Uehling-Uhlenbeck model of nucleus-nucleus collision is presented. The isospin-dependent nucleon-nucleon cross sections are estimated using the proper volume extracted from the equation of state of the nuclear matter transformed into the form of the Van der Waals equation of state. The results of such simulations demonstrate the dependence on symmetry energy which typically varies strongly from the results obtained using only the isospin-dependent mean-field. The evolution of the n/p multiplicity ratio with angle and kinetic energy, in combination with the elliptic flow of neutrons and protons, provides a suitable set of observables for determination of the density dependence of the symmetry energy. The model thus provides an environment for testing of equations of state, used for various applications in nuclear physics and astrophysics.

  17. City of La Crosse, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtdEllsworth,Hoisington,Kasota, MinnesotaKansasCrosse, Kansas

  18. Holy Mother of Chiri Mountain: A Female Mountain Spirit in Korea

    E-Print Network [OSTI]

    Stiller, Maya

    2011-01-01

    pilgrimage route in Chiri mountain. The images have informedCSW upda te OCTOBER 2011 The Holy Mother of Chiri Mountain aFemale Mountain Spirit in Korea by Maya Stiller UCLA Center

  19. Crossed-beam energy transfer in direct-drive implosions

    SciTech Connect (OSTI)

    Seka, W; Edgell, D H; Michel, D T; Froula, D H; Goncharov, V N; Craxton, R S; Divol, L; Epstein, R; Follett, R; Kelly, J H; Kosc, T Z; Maximov, A V; McCrory, R L; Meyerhofer, D D; Michel, P; Myatt, J F; Sangster, T C; Shvydky, A; Skupsky, S

    2012-05-22

    Direct-drive-implosion experiments on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have showed discrepancies between simulations of the scattered (non-absorbed) light levels and measured ones that indicate the presence of a mechanism that reduces laser coupling efficiency by 10%-20%. This appears to be due to crossed-beam energy transfer (CBET) that involves electromagnetic-seeded, low-gain stimulated Brillouin scattering. CBET scatters energy from the central portion of the incoming light beam to outgoing light, reducing the laser absorption and hydrodynamic efficiency of implosions. One-dimensional hydrodynamic simulations including CBET show good agreement with all observables in implosion experiments on OMEGA. Three strategies to mitigate CBET and improve laser coupling are considered: the use of narrow beams, multicolor lasers, and higher-Z ablators. Experiments on OMEGA using narrow beams have demonstrated improvements in implosion performance.

  20. The Crossings, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |Information 5th congressionalNIESLook at

  1. La Crosse, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: EnergyKulpsville,LEDSGP/activities <LEDSGP/hometrainingLPG

  2. Cross County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)|Alabama:Crofton, Maryland: EnergyCrosby County,

  3. Cross Lanes, West Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)|Alabama:Crofton, Maryland: EnergyCrosby County,Lanes, West

  4. Cross Plains, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)|Alabama:Crofton, Maryland: EnergyCrosby County,Lanes,

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHoly Cross Energy- WE CARE

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHoly Cross Energy- WE CARENet

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHoly Cross Energy- WE

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHoly Cross Energy- WESystem

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHoly Cross Energy- WESystemSolar

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHoly Cross Energy-

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHoly Cross Energy-Florida Power

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHoly Cross Energy-Florida

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHoly Cross Energy-FloridaCity of

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHoly Cross Energy-FloridaCity

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHoly CrossUSDA- Rural Energy for

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHoly CrossUSDA- Rural Energy

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHoly CrossUSDA- Rural EnergyNet

  18. MEASURING FUSION CROSS-SECTIONS FOR THE C SYSTEM AT NEAR BARRIER ENERGIES

    E-Print Network [OSTI]

    de Souza, Romualdo T.

    MEASURING FUSION CROSS-SECTIONS FOR THE 20 O + 12 C SYSTEM AT NEAR BARRIER ENERGIES Michael Rudolph Michael Rudolph MEASURING FUSION CROSS-SECTIONS FOR THE 20 O + 12 C SYSTEM AT NEAR BARRIER ENERGIES The fusion of neutron-rich 20 O on 12 C at energies in the range of 20 MeV Elab 41 MeV was measured

  19. Holy Name Central Catholic School Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea, CaliforniaHessWindMassachusetts:Holston

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet Metering TheSolarNVProperty TaxState EnergyRhodeAnaheim PublicHoly Cross

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHoly Cross

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHoly CrossUSDA- Rural

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHoly CrossUSDA- RuralBusiness

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHoly CrossUSDA- RuralBusinessCity

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHoly CrossUSDA-

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHoly CrossUSDA-Property Tax

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHoly CrossUSDA-Property TaxCity

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHoly CrossUSDA-Property

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHoly Cross Energy- WE CARE

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHoly Cross Energy- WE

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHoly Cross Energy- WECity of

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHoly Cross Energy- WECity

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHoly Cross Energy-

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHoly Cross Energy-Net

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHoly CrossDollar and Energy

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHoly CrossDollarEnergy

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHoly CrossDollarEnergyCape

  18. Dual energy imaging in mammography: Cross-talk study in a Si array detector

    E-Print Network [OSTI]

    Ramello, Luciano

    Dual energy imaging in mammography: Cross-talk study in a Si array detector G. Baldazzi a , D-monochromatic peaks are shown in Fig. 1. 2. Experimental setup The apparatus for dual energy mammography

  19. Hawaii Clean Energy Initiative Permit to Cross or Enter the State...

    Open Energy Info (EERE)

    Hawaii Clean Energy Initiative Permit to Cross or Enter the State Energy Corridor Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance...

  20. Steering quantum transitions between three crossing energy levels

    E-Print Network [OSTI]

    S. S. Ivanov; N. V. Vitanov

    2007-11-27

    We calculate the propagator and the transition probabilities for a coherently driven three-state quantum system. The energies of the three states change linearly in time, whereas the interactions between them are pulse-shaped. We derive a highly accurate analytic approximation by assuming independent pairwise Landau-Zener transitions occurring instantly at the relevant avoided crossings, and adiabatic evolution elsewhere. Quantum interferences are identified, which occur due to different possible evolution paths in Hilbert space between an initial and a final state. A detailed comparison with numerical results for Gaussian-shaped pulses demonstrates a remarkable accuracy of the analytic approximation. We use the analytic results to derive estimates for the half-width of the excitation profile, and for the parameters required for creation of a maximally coherent superposition of the three states. These results are of potential interest in ladder climbing in alkali atoms by chirped laser pulses, in quantum rotors, in transitions between Zeeman sublevels of a J=1 level in a magnetic field, and in control of entanglement of a pair of spin-1/2 particles. The results for the three-state system can be generalized, without essential difficulties, to higher dimensions.

  1. Experimental balance energies and isospin-dependent nucleon-nucleon cross-sections

    E-Print Network [OSTI]

    Sanjeev Kumar; Rajni; Suneel Kumar

    2010-09-28

    The effect of different isospin-dependent cross-section on directed flow is studied for variety of systems(for which experimental balance energies are available) using an isospin-dependent Quantum Molecular Dynamic (IQMD) model. We show that balance energies are sensitive towards isospin-dependent cross-sections for light systems, while nearly no effect exist for heavier nuclei. A reduced cross-section $\\sigma = 0.9\\sigma_{NN}$ with stiff equation of state is able to explain experimental balance energies in most of systems. A power law behaviour is also given for the mass dependence of balance energy, which also follow N/Z dependence.

  2. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2007 1 Cross-layer Energy and Delay Optimization in

    E-Print Network [OSTI]

    Cui, Shuguang "Robert"

    the tradeoff between the two energy elements. Specifically, we use interference-free TDMA as the medium access the energy consumption per bit for data transmission from source to destination, energy minimization requiresIEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2007 1 Cross-layer Energy and Delay Optimization

  3. GRACE-1: Cross-Layer Adaptation for Multimedia Quality and Battery Energy

    E-Print Network [OSTI]

    Nahrstedt, Klara

    GRACE-1: Cross-Layer Adaptation for Multimedia Quality and Battery Energy Wanghong Yuan, Member need to support multimedia quality with limited battery energy. To address this challenging problem's energy consumption up to 31.4 percent while providing better or the same video quality. Index Terms--Energy

  4. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kerby, Leslie M.; Mashnik, Stepan G.

    2015-05-14

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore »the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHoly Cross

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHoly CrossDollar and

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHoly CrossDollar

  8. GRACE: Cross-Layer Adaptation for Multimedia Quality and Battery Energy

    E-Print Network [OSTI]

    Nahrstedt, Klara

    1 GRACE: Cross-Layer Adaptation for Multimedia Quality and Battery Energy Wanghong Yuan, Klara multimedia data need to support multimedia quality with limited battery energy. To address this challenging reduces the laptop's energy consumption by 1.4% to 31.4% while providing better or same video quality

  9. On two-parameter models of photon cross sections: Application to dual-energy CT imaging

    SciTech Connect (OSTI)

    Williamson, Jeffrey F.; Li Sicong; Devic, Slobodan; Whiting, Bruce R.; Lerma, Fritz A.

    2006-11-15

    The goal of this study is to evaluate the theoretically achievable accuracy in estimating photon cross sections at low energies (20-1000 keV) from idealized dual-energy x-ray computed tomography (CT) images. Cross-section estimation from dual-energy measurements requires a model that can accurately represent photon cross sections of any biological material as a function of energy by specifying only two characteristic parameters of the underlying material, e.g., effective atomic number and density. This paper evaluates the accuracy of two commonly used two-parameter cross-section models for postprocessing idealized measurements derived from dual-energy CT images. The parametric fit model (PFM) accounts for electron-binding effects and photoelectric absorption by power functions in atomic number and energy and scattering by the Klein-Nishina cross section. The basis-vector model (BVM) assumes that attenuation coefficients of any biological substance can be approximated by a linear combination of mass attenuation coefficients of two dissimilar basis substances. Both PFM and BVM were fit to a modern cross-section library for a range of elements and mixtures representative of naturally occurring biological materials (Z=2-20). The PFM model, in conjunction with the effective atomic number approximation, yields estimated the total linear cross-section estimates with mean absolute and maximum error ranges of 0.6%-2.2% and 1%-6%, respectively. The corresponding error ranges for BVM estimates were 0.02%-0.15% and 0.1%-0.5%. However, for photoelectric absorption frequency, the PFM absolute mean and maximum errors were 10.8%-22.4% and 29%-50%, compared with corresponding BVM errors of 0.4%-11.3% and 0.5%-17.0%, respectively. Both models were found to exhibit similar sensitivities to image-intensity measurement uncertainties. Of the two models, BVM is the most promising approach for realizing dual-energy CT cross-section measurement.

  10. Measurements of ultra-low-energy electron scattering cross sections of atoms and molecules

    SciTech Connect (OSTI)

    Kitajima, M.; Shigemura, K.; Kurokawa, M. [Department of Chemistry, Tokyo Institute of Technology, 152-8551 Tokyo (Japan); Odagiri, T. [Department of Physics, Sophia University, 102-8554 Tokyo, Japan and Department of Chemistry, Tokyo Institute of Technology, 152-8551 Tokyo (Japan); Kato, H.; Hoshino, M.; Tanaka, H. [Department of Physics, Sophia University, 102-8554 Tokyo (Japan); Ito, K. [Photon Factory, Institute of Materials Structure Science, 305-0801 Tsukuba (Japan)

    2014-03-05

    A new experimental technique for the total cross section measurements of ultra-low energy electron collisions with atoms and molecules utilizing the synchrotron radiation is presented. The technique employs a combination of the penetrating field technique and the threshold photoionization of rare gas atoms using the synchrotron radiation as an electron source in order to produce a high resolution electron beam at very low energy. Absolute total cross sections for electron scattering from He, Ne, Ar, Kr, and Xe in the energy region from extremely low electron energy to 20 eV are presented.

  11. MHK Technologies/Uppsala Cross flow Turbine | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050Enermar <OMIS DTocardo <Cross flow Turbine <

  12. Compact Cross-Dipole Sonic (CXD) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercial Jump to: navigation,source HistoryCross-Dipole

  13. Quantifying the Level of Cross-State Renewable Energy Transactions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    methods for data collection are Renewable Energy Certificate (REC) tracking and power flow estimates. Data from regional REC tracking systems, state agencies, and utility...

  14. Healthy Zero Energy Buildings (HZEB) Program - Cross-Sectional...

    Office of Scientific and Technical Information (OSTI)

    development of new, science-based commercial building ventilation rate standards that balance the dual objectives of increasing energy efficiency and maintaining acceptable indoor...

  15. Energy-Aware Spectrum Sensing in Cognitive Wireless Sensor Networks: a Cross Layer Approach

    E-Print Network [OSTI]

    Shihada, Basem

    Energy-Aware Spectrum Sensing in Cognitive Wireless Sensor Networks: a Cross Layer Approach Luca-power wireless motes [6] and thus introduces significant energy overhead. In order to meet power constraints Stabellini and Jens Zander Wireless@KTH, The Royal Institute of Technology, Electrum 418, SE-164 40 Kista

  16. Fusion cross sections for 6,7Li + 24Mg reactions at energies below and above the barrier

    E-Print Network [OSTI]

    M. Ray; A. Mukherjee; M. K. Pradhan; Ritesh Kshetri; M. Saha Sarkar; R. Palit; I. Majumdar; P. K. Joshi; H. C. Jain; B. Dasmahapatra

    2008-05-07

    Measurement of fusion cross sections for the 6,7Li + 24Mg reactions by the characteristic gamma-ray method has been done at energies from below to well above the respective Coulomb barriers. The fusion cross sections obtained from these gamma-ray cross sections for the two systems are found to agree well with the total reaction cross sections at low energies. The decrease of fusion cross sections with increase of energy is consistent with the fact that other channels, in particular breakup open up with increase of bombarding energy. This shows that there is neither inhibition nor enhancement of fusion cross sections for these systems at above or below the barrier. The critical angular momenta (lcr) deduced from the fusion cross sections are found to have an energy dependence similar to other Li - induced reactions.

  17. Cross sections for electron scattering by propane in the low- and intermediate-energy ranges

    SciTech Connect (OSTI)

    Souza, G. L. C. de; Lee, M.-T.; Sanches, I. P.; Rawat, P.; Iga, I.; Santos, A. S. dos; Machado, L. E.; Sugohara, R. T.; Brescansin, L. M.; Homem, M. G. P.; Lucchese, R. R.

    2010-07-15

    We present a joint theoretical-experimental study on electron scattering by propane (C{sub 3}H{sub 8}) in the low- and intermediate-energy ranges. Calculated elastic differential, integral, and momentum transfer as well as total (elastic + inelastic) and total absorption cross sections are reported for impact energies ranging from 2 to 500 eV. Also, experimental absolute elastic cross sections are reported in the 40- to 500-eV energy range. A complex optical potential is used to represent the electron-molecule interaction dynamics. A theoretical method based on the single-center-expansion close-coupling framework and corrected by the Pade approximant is used to solve the scattering equations. The experimental angular distributions of the scattered electrons are converted to absolute cross sections using the relative flow technique. The comparison of our calculated with our measured results, as well as with other experimental and theoretical data available in the literature, is encouraging.

  18. Energy dependence of potential barriers and its effect on fusion cross-sections

    E-Print Network [OSTI]

    A. S. Umar; C. Simenel; V. E. Oberacker

    2014-01-28

    Couplings between relative motion and internal structures are known to affect fusion barriers by dynamically modifying the densities of the colliding nuclei. The effect is expected to be stronger at energies near the barrier top, where changes in density have longer time to develop than at higher energies. Quantitatively, modern TDHF calculations are able to predict realistic fusion thresholds. However, the evolution of the potential barrier with bombarding energy remains to be confronted with the experimental data. The aim is to find signatures of the energy dependence of the barrier by comparing fusion cross-sections calculated from potentials obtained at different bombarding energies with the experimental data. This comparison is made for the $^{40}$Ca+$^{40}$Ca and $^{16}$O+$^{208}$Pb systems. Fusion cross-sections are computed from potentials calculated with the density-constrained TDHF method. The couplings decrease the barrier at low-energy in both cases. A deviation from the Woods-Saxon nuclear potential is also observed at the lowest energies. In general, fusion cross-sections around a given energy are better reproduced by the potential calculated at this energy. The coordinate-dependent mass plays a crucial role for the reproduction of sub-barrier fusion cross-sections. Effects of the energy dependence of the potential can be found in experimental barrier distributions only if the variation of the barrier is significant in the energy-range spanned by the distribution. It appears to be the case for $^{16}$O+$^{208}$Pb but not for $^{40}$Ca+$^{40}$Ca. These results show that the energy dependence of the barrier predicted in TDHF calculations is realistic. This confirms that the TDHF approach can be used to study the couplings between relative motion and internal degrees of freedom in heavy-ion collisions.

  19. Cross-State Renewable Portfolio Standard Compliance | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartmentEnergyEvery Thanksgiving,is designed asAMORev.

  20. Cross-cutting Technologies for Advanced Biofuels | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartmentEnergyEvery Thanksgiving,is designed

  1. Average Neutron Total Cross Sections in the Unresolved Energy Range From ORELA High Resolutio Transmission Measurements

    SciTech Connect (OSTI)

    Derrien, H

    2004-05-27

    Average values of the neutron total cross sections of {sup 233}U, {sup 235}U, {sup 238}U, and {sup 239}Pu have been obtained in the unresolved resonance energy range from high-resolution transmission measurements performed at ORELA in the past two decades. The cross sections were generated by correcting the effective total cross sections for the self-shielding effects due to the resonance structure of the data. The self-shielding factors were found by calculating the effective and true cross sections with the computer code SAMMY for the same Doppler and resolution conditions as for the transmission measurements, using an appropriate set of resonance parameters. Our results are compared to results of previous measurements and to the current ENDF/B-VI data.

  2. Disappearing Pens Cross Out Petroleum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of Energy2EM's Cleanup |Disappearing Pens

  3. Energy Secretary Bodman Tours Alabama Red Cross Facility and Attends

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative SolarSavings Performance ContractingTour

  4. Renewable Energy Cross Sectoral Assessments Terms of Reference | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETEREFURecentCenter Jump to: navigation,

  5. Spray Combustion Cross-Cut Engine Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4EnergySolidof2 SpecialSpent FuelTime |ofProgram Reach2

  6. Spray Combustion Cross-Cut Engine Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4EnergySolidof2 SpecialSpent FuelTime |ofProgram Reach21

  7. Eikonal contributions to ultra high energy neutrino-nucleon cross sections in low scale gravity models

    E-Print Network [OSTI]

    E. M. Sessolo; D. W. McKay

    2008-11-18

    We calculate low scale gravity effects on the cross section for neutrino-nucleon scattering at center of mass energies up to the Greisen-Zatsepin-Kuzmin (GZK) scale, in the eikonal approximation. We compare the cases of an infinitely thin brane embedded in n=5 compactified extra-dimensions, and of a brane with a physical tension M_{S}=1 TeV and M_{S}=10 TeV. The extra dimensional Planck scale M_{D} is set at 10^{3} GeV and 2\\times10^{3} GeV. We also compare our calculations with neutral current standard model calculations in the same energy range, and compare the thin brane eikonal cross section to its saddle point approximation. New physics effects enhance the cross section by orders of magnitude on average. They are quite sensitive to M_{S} and M_{D} choices, though much less sensitive to n.

  8. Total cross section of neutron-proton scattering at low energies in quark-gluon model

    E-Print Network [OSTI]

    V. A. Abramovsky; N. V. Radchenko

    2011-07-30

    We show that analysis of nonrelativistic neutron-proton scattering in a framework of relativistic QCD based quark model can give important information about QCD vacuum structure. In this model we describe total cross section of neutron-proton scattering at kinetic energies of projectile neutron from 1 eV up to 1 MeV.

  9. Stress dependence of cross slip energy barrier for face-centered cubic nickel

    E-Print Network [OSTI]

    Cai, Wei

    Stress dependence of cross slip energy barrier for face-centered cubic nickel Keonwook Kang a , Jie-centered cubic (FCC) nickel as a function of multiple stress components is predicted by both continuum line tension and discrete atomistic models. Contrary to Escaig's claim that the Schmid stress component has

  10. Unified Green's function retrieval by cross-correlation; connection with energy principles Roel Snieder,1,

    E-Print Network [OSTI]

    Snieder, Roel

    Unified Green's function retrieval by cross-correlation; connection with energy principles Roel Snieder,1, * Kees Wapenaar,2 and Ulrich Wegler3 1 Center for Wave Phenomena and Department of Geophysics of Technology, 2600 GA Delft, The Netherlands 3 Institut für Geophysik und Geologie, Universität Leipzig

  11. Cross section of high-energy photon splitting in the electric fields of heavy atoms

    E-Print Network [OSTI]

    R. N. Lee; A. I. Milstein; V. M. Strakhovenko

    1998-04-24

    Various differential cross sections of high-energy photon splitting in the electric fields of heavy atoms are calculated exactly in the parameter \\al. The consideration is based on the quasiclassical approach applicable for small angles between all photon momenta. The expressions obtained are valid for arbitrary transverse momenta of final photons . The detailed investigation of the process is performed taking into account the effect of screening . The exact cross section turns out to be noticeably smaller than the result obtained in the Born approximation.

  12. Is the Spectrum of Gravitational Waves the "Holy Grail" of Inflation?

    E-Print Network [OSTI]

    Robert H. Brandenberger

    2011-04-18

    It is often said that detecting a spectrum of primordial gravitational waves via observing B-mode polarization of the Cosmic Microwave Background is the "Holy Grail" of inflation. The purpose of this short note is to point out that it is indeed of immense scientific interest to search for a signal of gravitational waves in B-mode polarization. However, rather than proving that inflation is the right paradigm of early universe cosmology, a positive signal of direct primordial B-mode polarization might well be due to other sources than inflation. In fact, a careful characterization of the spectrum of B-mode polarization might even falsify the inflationary paradigm.

  13. Is the Spectrum of Gravitational Waves the "Holy Grail" of Inflation?

    E-Print Network [OSTI]

    Brandenberger, Robert H

    2011-01-01

    It is often said that detecting a spectrum of primordial gravitational waves via observing B-mode polarization of the Cosmic Microwave Background is the "Holy Grail" of inflation. The purpose of this short note is to point out that it is indeed of immense scientific interest to search for a signal of gravitational waves in B-mode polarization. However, rather than proving that inflation is the right paradigm of early universe cosmology, a positive signal of direct primordial B-mode polarization might well be due to other sources than inflation. In fact, a careful characterization of the spectrum of B-mode polarization might even falsify the inflationary paradigm.

  14. High-energy suppression of the Higgsstrahlung cross-section in the Minimal Composite Higgs Model

    E-Print Network [OSTI]

    Katy Hartling; Heather E. Logan

    2013-02-05

    If the Higgs boson is composite, signs of this compositeness should appear via a formfactor-like suppression of Higgs scattering cross sections at momentum transfers above the compositeness scale. We explore this by computing the cross section for e+e- ---> ZH (Higgsstrahlung) in a warped five-dimensional gauge-Higgs unification model known as the Minimal Composite Higgs Model (MCHM). We observe that the Higgsstrahlung cross section in the MCHM is strongly suppressed compared to that in the Standard Model at center-of-mass energies above the scale of the first Kaluza-Klein excitations, due to cancellations among the contributions of successive Z boson Kaluza-Klein modes. We also show that the magnitude and sign of the coupling of the first Kaluza-Klein mode can be measured at a future electron-positron collider such as the proposed International Linear Collider or Compact Linear Collider.

  15. Ultrahigh energy predictions of proton-air cross sections from accelerator data: An update

    SciTech Connect (OSTI)

    Block, M. M. [Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (United States)

    2011-11-01

    At {radical}(s)=57{+-}7 TeV, the Pierre Auger Observatory (PAO) measured the p-air inelastic production cross section, {sigma}{sub p-air}{sup prod}=475{+-}22(stat){+-}{sub 15}{sup 20}(syst) mb, assuming a proton cosmic ray beam with a 25% helium contamination. From a Glauber calculation, they found the inelastic pp cross section, {sigma}{sub inel}=90{+-}7(stat){+-}{sub 11}{sup 9}(syst){+-}1.5(Glaub) mb. Our parameterization of pp and pp total cross sections, {sigma}{sub tot}, using analyticity constraints and unitarity gives accurate extrapolations to ultrahigh energies, and after using a Glauber calculation, accurate predictions for {sigma}{sub p-air}{sup prod}. We find (i) a pp total cross section, {sigma}{sub tot}=133.4{+-}1.6 mb and (ii) {sigma}{sub p-air}{sup prod}=483{+-}3 mb, independently determining a 19% helium contamination. Using our 57 TeV value for pp {sigma}{sub tot}[M. M. Block and F. Halzen, arXiv:1109-2041], we find a pp inelastic cross section, {sigma}{sub inel}=92.9{+-}1.6 mb, agreeing with POA.

  16. Cross sections for neutron-deuteron elastic scattering in the energy range 135-250 MeV

    E-Print Network [OSTI]

    E. Ertan; T. Akdogan; M. B. Chtangeev; W. A. Franklin; P. A. M. Gram; M. A. Kovash; J. L. Matthews; M. Yuly

    2012-11-22

    We report new measurements of the neutron-deuteron elastic scattering cross section at energies from 135 to 250 MeV and center-of-mass angles from $80^\\circ$ to $130^\\circ$. Cross sections for neutron-proton elastic scattering were also measured with the same experimental setup for normalization purposes. Our $nd$ cross section results are compared with predictions based on Faddeev calculations including three-nucleon forces, and with cross sections measured with charged particle and neutron beams at comparable energies.

  17. Estimation of charm production cross section in hadronic interactions at high energies

    E-Print Network [OSTI]

    G. M. Vereshkov; Yu. F. Novoseltsev

    2004-04-24

    Results of processing experimental data on charm production in hadron-hadron interactions are presented. The analysis is carried out within the frame of phenomenological model of diffraction production and quark statistics based on additive quark model (AQM). In low energy region sqrt s = 20 - 40GeV, the cross sections si_ {pN to c bar cX} (s), si_ {pi N to c bar cX} (s) are fitted by logarithmic function with the parameters connected by relationship of AQM. At collider energies 200, 540, 900, 1800 GeV, the values of si_{bar pp to c bar cX} (s) were obtained by a quark statistics method from the data on diffraction dissociation. It is established, that logarithmic function with universal numerical parameters describes the whole set of low-energy and high-energy data with high accuracy. The expected values of cross sections are si_{pp to c bar cX} = 250 pm 40 mu b and 355 pm 57 mu b at TEVATRON energy sqrt {s} = 1.96 TeV and LHC energy sqrt {s} = 14 TeV accordingly. Opportunities of use of the obtained results for calibration of a flux of "prompt" muons in high-energy component of cosmic rays are discussed.

  18. Dicke-Type Energy Level Crossings in Cavity-Induced Atom Cooling: Another Superradiant Cooling

    E-Print Network [OSTI]

    Masao Hirokawa

    2008-12-19

    This paper is devoted to energy-spectral analysis for the system of a two-level atom coupled with photons in a cavity. It is shown that the Dicke-type energy level crossings take place when the atom-cavity interaction of the system undergoes changes between the weak coupling regime and the strong one. Using the phenomenon of the crossings we develop the idea of cavity-induced atom cooling proposed by the group of Ritsch, and we lay mathematical foundations of a possible mechanism for another superradiant cooling in addition to that proposed by Domokos and Ritsch. The process of our superradiant cooling can function well by cavity decay and by control of the position of the atom, at least in (mathematical) theory, even if there is neither atomic absorption nor atomic emission of photons.

  19. The Cross Section of 3He(3He,2p)4He measured at Solar Energies

    E-Print Network [OSTI]

    The LUNA Collaboration; M. Junker; A. D'Alessandro; S. Zavatarelli; C. Arpesella; E. Bellotti; C. Broggini; P. Corvisiero; G. Fiorentini; A. Fubini; G. Gervino; U. Greife; C. Gustavino; J. Lambert; P. Prati; W. S. Rodney; C. Rolfs; F. Strieder; H. P. Trautvetter; D. Zahnow

    1998-02-06

    We report on the results of the \\hethet\\ experiment at the underground accelerator facility LUNA (Gran Sasso). For the first time the lowest projectile energies utilized for the cross section measurement correspond to energies below the center of the solar Gamow peak ($E_{\\rm 0}$=22 keV). The data provide no evidence for the existence of a hypothetical resonance in the energy range investigated. Although no extrapolation is needed anymore (except for energies at the low-energy tail of the Gamow peak), the data must be corrected for the effects of electron screening, clearly observed the first time for the \\hethet\\ reaction. The effects are however larger than expected and not understood, leading presently to the largest uncertainty on the quoted $S_{\\rm b}(E_{\\rm 0})$ value for bare nuclides (=5.40 MeV b).

  20. Indirect Determination of the 230Th(n,f) and 231Th(n,f) Cross Sections for Thorium-Based Nuclear Energy Systems

    E-Print Network [OSTI]

    Stroberg, S.R.

    2012-01-01

    n,f) Cross Sections for Thorium-Based Nuclear Energy Systemsf ) Cross Sections for Thorium-Based Nuclear Energy Systemsbenchmark- ing of advanced thorium-based nuclear reactor

  1. Ultrasimple calculation of very-low-energy momentum-transfer and rotational-excitation cross sections: e-N2 scattering

    E-Print Network [OSTI]

    Morrison, Michael A.

    Ultrasimple calculation of very-low-energy momentum-transfer and rotational-excitation cross energies. We apply this method to the calculation of e-N2 momentum-transfer and rotational excitation cross. INTRODUCTION Integral elastic, momentum transfer, and rotational exci- tation cross sections at energies below

  2. Cross sections for neutron-deuteron elastic scattering in the energy range 135–250 MeV

    E-Print Network [OSTI]

    Ertan, E.

    We report new measurements of the neutron-deuteron elastic scattering cross section at energies from 135 to 250 MeV and center-of-mass angles from 80[degrees] to 130[degrees]. Cross sections for neutron-proton elastic ...

  3. Universality of high-energy absorption cross sections for black holes

    SciTech Connect (OSTI)

    Decanini, Yves [Equipe Physique Theorique, SPE, UMR 6134 du CNRS et de l'Universite de Corse, Universite de Corse, Faculte des Sciences, B.P. 52, F-20250 Corte (France); Esposito-Farese, Gilles [GReCO, Institut d'Astrophysique de Paris, UMR 7095 du CNRS et de l'Universite Pierre et Marie Curie-Paris 6, 98bis boulevard Arago, F-75014 Paris (France); Folacci, Antoine [Equipe Physique Theorique, SPE, UMR 6134 du CNRS et de l'Universite de Corse, Universite de Corse, Faculte des Sciences, B.P. 52, F-20250 Corte (France); Centre de Physique Theorique, UMR 6207 du CNRS et des Universites Aix-Marseille 1 et 2 et de l'Universite du Sud Toulon-Var, CNRS-Luminy Case 907, F-13288 Marseille (France)

    2011-02-15

    We consider the absorption problem for a massless scalar field propagating in static and spherically symmetric black holes of arbitrary dimension endowed with a photon sphere. For this wide class of black holes, we show that the fluctuations of the high-energy absorption cross section are totally and very simply described from the properties (dispersion relation and damping) of the waves trapped near the photon sphere and therefore, in the eikonal regime, from the characteristics (orbital period and Lyapunov exponent) of the null unstable geodesics lying on the photon sphere. This is achieved by using Regge pole techniques. They permit us to make an elegant and powerful resummation of the absorption cross section and to extract then all the physical information encoded in the sum over the partial wave contributions. Our analysis induces moreover some consequences concerning Hawking radiation which we briefly report.

  4. Cross Calibration of Telescope Optical Throughput Efficiencies using Reconstructed Shower Energies for the Cherenkov Telescope Array

    E-Print Network [OSTI]

    Mitchell, A M W; Hofmann, W; Bernloehr, K

    2015-01-01

    For reliable event reconstruction of Imaging Atmospheric Cherenkov Telescopes (IACTs), calibration of the optical throughput efficiency is required. Within current facilities, this is achieved through the use of ring shaped images generated by muons. Here, a complementary approach is explored, achieving cross calibration of elements of IACT arrays through pairwise comparisons between telescopes, focussing on its applicability to the upcoming Cherenkov Telescope Array (CTA). Intercalibration of telescopes of a particular type using eventwise comparisons of shower image amplitudes has previously been demonstrated to recover the relative telescope optical responses. A method utilising the reconstructed energy as an alternative to image amplitude is presented, enabling cross calibration between telescopes of varying types within an IACT array. Monte Carlo studies for two plausible CTA layouts have shown that this calibration procedure recovers the relative telescope response efficiencies at the few percent level.

  5. Test of statistical model cross section calculations for $\\alpha$-induced reactions on $^{107}$Ag at energies of astrophysical interest

    E-Print Network [OSTI]

    Yalcin, C; Rauscher, T; Kiss, G G; Özkan, N; Güray, R T; Halász, Z; Szücs, T; Fülöp, Zs; Korkulu, Z; Somorjai, E

    2015-01-01

    Astrophysical reaction rates, which are mostly derived from theoretical cross sections, are necessary input to nuclear reaction network simulations for studying the origin of $p$ nuclei. Past experiments have found a considerable difference between theoretical and experimental cross sections in some cases, especially for ($\\alpha$,$\\gamma$) reactions at low energy. Therefore, it is important to experimentally test theoretical cross section predictions at low, astrophysically relevant energies. The aim is to measure reaction cross sections of $^{107}$Ag($\\alpha$,$\\gamma$)$^{111}$In and $^{107}$Ag($\\alpha$,n)$^{110}$In at low energies in order to extend the experimental database for astrophysical reactions involving $\\alpha$ particles towards lower mass numbers. Reaction rate predictions are very sensitive to the optical model parameters and this introduces a large uncertainty into theoretical rates involving $\\alpha$ particles at low energy. We have also used Hauser-Feshbach statistical model calculations to s...

  6. Cross-border transfer of climate change mitigation technologies : the case of wind energy from Denmark and Germany to India

    E-Print Network [OSTI]

    Mizuno, Emi, Ph. D. Massachusetts Institute of Technology

    2007-01-01

    This research investigated the causal factors and processes of international development and diffusion of wind energy technology by examining private sector cross-border technology transfer from Denmark and Germany to India ...

  7. Energy and Bandwidth-Efficient Key Distribution in Wireless Ad-Hoc Networks: A Cross-Layer

    E-Print Network [OSTI]

    Poovendran, Radha

    ) multicast group (MG) update messages, and (d) average update energy. For each metric, we formulate1 Energy and Bandwidth-Efficient Key Distribution in Wireless Ad-Hoc Networks: A Cross, and GC transmissions, while significantly reducing the energy and bandwidth consumption of the network

  8. REMEMBERING TOM PHELAN ~ THE FUTURE OF ENERGY ~ RECREATING A CROSS-COUNTRY JOURNEY Alumni Magazine~Spring 2006

    E-Print Network [OSTI]

    Linhardt, Robert J.

    REMEMBERING TOM PHELAN ~ THE FUTURE OF ENERGY ~ RECREATING A CROSS-COUNTRY JOURNEY Alumni Magazine was renovated extensively in the 1990s, earning the 1996 Historical Education Building Award from and organizations. 22 The Future of Energy As calls for energy independence increase, Rensselaer alumni explore

  9. A review of "The Variorum Edition of the Poetry of John Donne: The Holy Sonnets." by Gary A. Stringer gen. ed. 

    E-Print Network [OSTI]

    Albert C. Labriola

    2006-01-01

    A. Stringer, gen. ed. The Variorum Edition of the Poetry of John Donne: The Holy Sonnets, Volume 7, Part 1. Bloomington: Indiana University Press, 2005. cvii + 606 pp. $59.95. Review by ALBERT C. LABRIOLA, DUQUESNE UNIVERSITY. This volume...

  10. The holy light: a study of natural light in Hindu temples in the southern region of Tamilnadu, India (7th century AD to 17th century AD) 

    E-Print Network [OSTI]

    Mukherji, Anuradha

    2001-01-01

    This thesis discusses the phenomenon of natural light that becomes the holy light in sacred architecture. In pursuing this investigation the study addressed three major objectives. First, to understand the significance of religion in the treatment...

  11. Maximum Likelihood method for ultrahigh energy cosmic ray cross correlations with astrophysical sources

    E-Print Network [OSTI]

    Ronnie Jansson; Glennys R. Farrar

    2007-08-20

    We extend the Maximum Likelihood method used by HiRes to study cross correlations between a catalog of candidate astrophysical sources and Ultrahigh Energy Cosmic Rays (UHECRs), to allow for differing source luminosities. Our approach permits individual sources to be ranked according to their likelihood of having emitted the correlated UHECRs. We test both old and new method by simulations for various scenarios. We conclude that there are 9 true correlation between HiRes UHECRs and known BLLacs, with a 6*10^-5 probability of such a correlation arising by chance.

  12. Prediction of the energy dependence of molecular fragmentation cross sections for collisions of swift protons with ethane and acetylene

    SciTech Connect (OSTI)

    Cabrera-Trujillo, Remigio; Sabin, John R.; Deumens, Erik; Oehrn, Yngve

    2005-04-01

    We report the energy-dependent fragmentation cross sections for several of the more likely fragmentation channels for protons with up to 10 keV impact energy colliding with acetylene and ethane. We find that the predominant channels are those which involve the dissociation of a carbon-hydrogen bond, and we find that the cross sections for these channels are maximum in the low-projectile-energy region. The cross sections for fragmentation involving dissociation of a C-C bond are an order of magnitude smaller and peak at somewhat higher projectile energy. Although there are no experimental values with which to compare, it appears that selection of projectile energy can be used to influence branching ratios in proton-hydrocarbon collisions and, by implication, in other ion-molecule and atom-molecule collisions.

  13. ORLIB: a computer code that produces one-energy group, time- and spatially-averaged neutron cross sections

    SciTech Connect (OSTI)

    Blink, J.A.; Dye, R.E.; Kimlinger, J.R.

    1981-12-01

    Calculation of neutron activation of proposed fusion reactors requires a library of neutron-activation cross sections. One such library is ACTL, which is being updated and expanded by Howerton. If the energy-dependent neutron flux is also known as a function of location and time, the buildup and decay of activation products can be calculated. In practice, hand calculation is impractical without energy-averaged cross sections because of the large number of energy groups. A widely used activation computer code, ORIGEN2, also requires energy-averaged cross sections. Accordingly, we wrote the ORLIB code to collapse the ACTL library, using the flux as a weighting function. The ORLIB code runs on the LLNL Cray computer network. We have also modified ORIGEN2 to accept the expanded activation libraries produced by ORLIB.

  14. Energy and Bandwidth-Efficient Key Distribution in Wireless Ad-Hoc Networks: A Cross-Layer

    E-Print Network [OSTI]

    Lazos, Loukas

    messages, and (d) average update energy. For each metric, we formulate an optimization problem and show1 Energy and Bandwidth-Efficient Key Distribution in Wireless Ad-Hoc Networks: A Cross metrics: (a) member key storage, (b) group controller (GC) transmissions, (c) multicast group (MG) update

  15. Test of statistical model cross section calculations for $?$-induced reactions on $^{107}$Ag at energies of astrophysical interest

    E-Print Network [OSTI]

    C. Yalcin; Gy. Gyürky; T. Rauscher; G. G. Kiss; N. Özkan; R. T. Güray; Z. Halász; T. Szücs; Zs. Fülöp; Z. Korkulu; E. Somorjai

    2015-04-07

    Astrophysical reaction rates, which are mostly derived from theoretical cross sections, are necessary input to nuclear reaction network simulations for studying the origin of $p$ nuclei. Past experiments have found a considerable difference between theoretical and experimental cross sections in some cases, especially for ($\\alpha$,$\\gamma$) reactions at low energy. Therefore, it is important to experimentally test theoretical cross section predictions at low, astrophysically relevant energies. The aim is to measure reaction cross sections of $^{107}$Ag($\\alpha$,$\\gamma$)$^{111}$In and $^{107}$Ag($\\alpha$,n)$^{110}$In at low energies in order to extend the experimental database for astrophysical reactions involving $\\alpha$ particles towards lower mass numbers. Reaction rate predictions are very sensitive to the optical model parameters and this introduces a large uncertainty into theoretical rates involving $\\alpha$ particles at low energy. We have also used Hauser-Feshbach statistical model calculations to study the origin of possible discrepancies between prediction and data. An activation technique has been used to measure the reaction cross sections at effective center of mass energies between 7.79 MeV and 12.50 MeV. Isomeric and ground state cross sections of the ($\\alpha$,n) reaction were determined separately. The measured cross sections were found to be lower than theoretical predictions for the ($\\alpha$,$\\gamma$) reaction. Varying the calculated averaged widths in the Hauser-Feshbach model, it became evident that the data for the ($\\alpha$,$\\gamma$) and ($\\alpha$,n) reactions can only be simultaneously reproduced when rescaling the ratio of $\\gamma$- to neutron width and using an energy-dependent imaginary part in the optical $\\alpha$+$^{107}$Ag potential.......

  16. Direct measurement of the 15N(p,gamma)16O total cross section at novae energies

    E-Print Network [OSTI]

    D Bemmerer; A Caciolli; R Bonetti; C Broggini; F Confortola; P Corvisiero; H Costantini; Z Elekes; A Formicola; Zs Fulop; G Gervino; A Guglielmetti; C Gustavino; Gy Gyurky; M Junker; B Limata; M Marta; R Menegazzo; P Prati; V Roca; C Rolfs; C Rossi Alvarez; E Somorjai; O Straniero

    2009-02-04

    The 15N(p,gamma)16O reaction controls the passage of nucleosynthetic material from the first to the second carbon-nitrogen-oxygen (CNO) cycle. A direct measurement of the total 15N(p,gamma)16O cross section at energies corresponding to hydrogen burning in novae is presented here. Data have been taken at 90-230 keV center-of-mass energy using a windowless gas target filled with nitrogen of natural isotopic composition and a bismuth germanate summing detector. The cross section is found to be a factor two lower than previously believed.

  17. Hawaii Clean Energy Initiative Permit to Cross or Enter the State Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynnMassachusetts:Ohio: EnergyMinnesota:Havre deBioEnergy LLCOpenCorridor

  18. Translational energy dependence of cross sections for reactions of OH? (H2O) n with CO2 and SO2

    E-Print Network [OSTI]

    Hierl, Peter M.; Paulson, John F.

    1984-01-01

    A tandem mass spectrometer has been used to measure cross sections for reactions of the solvated negative ions OH?(H2O) n , where 0?n?3, with the neutral molecules CO2 and SO2 over the range of reactant translational energy ...

  19. PROBLEM DEPENDENT DOPPLER BROADENING OF CONTINUOUS ENERGY CROSS SECTIONS IN THE KENO MONTE CARLO COMPUTER CODE

    SciTech Connect (OSTI)

    Hart, S. W. D.; Maldonado, G. Ivan; Celik, Cihangir; Leal, Luiz C

    2014-01-01

    For many Monte Carlo codes cross sections are generally only created at a set of predetermined temperatures. This causes an increase in error as one moves further and further away from these temperatures in the Monte Carlo model. This paper discusses recent progress in the Scale Monte Carlo module KENO to create problem dependent, Doppler broadened, cross sections. Currently only broadening the 1D cross sections and probability tables is addressed. The approach uses a finite difference method to calculate the temperature dependent cross-sections for the 1D data, and a simple linear-logarithmic interpolation in the square root of temperature for the probability tables. Work is also ongoing to address broadening theS (alpha , beta) tables. With the current approach the temperature dependent cross sections are Doppler broadened before transport starts, and, for all but a few isotopes, the impact on cross section loading is negligible. Results can be compared with those obtained by using multigroup libraries, as KENO currently does interpolation on the multigroup cross sections to determine temperature dependent cross-sections. Current results compare favorably with these expected results.

  20. THE HOLY SEE, SOCIAL JUSTICE, AND INTERNATIONAL TRADE LAW: ASSESSING THE SOCIAL MISSION OF THE CHURCH IN THE GATT-WTO SYSTEM

    E-Print Network [OSTI]

    Ihuoma, Alphonsus Anaele Iyke

    2014-05-31

    in the international arena for the purpose of raising the moral voice of the Catholic Church on issues that concern the human person. This mission takes the Holy See to the United Nations and other international and regional organizations. The focus here is the General...

  1. ISW-Galaxy Cross Correlation:A probe of Dark Energy clustering and distribution of Dark Matter tracers

    E-Print Network [OSTI]

    Khosravi, Shahram; Baghram, Shant

    2015-01-01

    The Integrated Sachs Wolfe (ISW) cross correlation with the galaxy distribution in late time is a promising tool to constrain the dark energy properties. In this work we study the effect of dark energy clustering on the ISW-galaxy cross correlation. Indicating the fact that the bias parameter between the distribution of the galaxies and the underlying dark matter introduce a degeneracy and complications. We argue that as the time of the galaxy's host halo formation is different from the observation time, we have to consider the evolution of the halo bias parameter. We indicate that any deviation from $\\Lambda$CDM model will change the evolution of the bias as well. Also we show that the halo bias strongly depends on the sub-sample of galaxies which is chosen for cross correlation. We show that joint kernel of ISW effect and the galaxy distribution have the dominant effect on the observed signal, accordingly we can enhance the signal of a specific dark energy model by choosing an appropriate tracer. More speci...

  2. Fusion cross sections for the {sup 9}Be+{sup 124}Sn reaction at energies near the Coulomb barrier

    SciTech Connect (OSTI)

    Parkar, V. V.; Palit, R.; Sharma, Sushil K.; Naidu, B. S.; Santra, S.; Mahata, K.; Ramachandran, K.; Joshi, P. K.; Rath, P. K.; Trivedi, T.; Raghav, A.

    2010-11-15

    The complete and incomplete fusion cross sections for {sup 9}Be+{sup 124}Sn reaction have been deduced using the online {gamma}-ray measurement technique. Complete fusion at energies above the Coulomb barrier was found to be suppressed by {approx}28% compared to the coupled-channels calculations and is in agreement with the systematics of L. R. Gasques et al. [Phys. Rev. C 79, 034605 (2009)]. Study of the projectile dependence for fusion on a {sup 124}Sn target shows that, for {sup 9}Be nuclei, the enhancement at below-barrier energies is substantial compared to that of tightly bound nuclei.

  3. Estimation of the breakup cross sections in $^6$He+$^{12}$C reaction within high-energy approximation and microscopic optical potential

    E-Print Network [OSTI]

    E. V. Zemlyanaya; V. K. Lukyanov; K. V. Lukyanov

    2010-12-06

    The breakup cross sections in the reaction $^6$He+$^{12}$C are calculated at about 40 MeV/nucleon using the high-energy approximation (HEA) and with the help of microscopic optical potentials (OP) of interaction with the target nucleus $^{12}$C of the projectile nucleus fragments $^4$He and 2n. Considering the di-neutron $h$=2n as a single particle the relative motion $h\\alpha$ wave function is estimated so that to explain both the separation energy of $h$ in $^6$He and the rms radius of the latter. The stripping and absorbtion total cross sections are calculated and their sum is compared with the total reaction cross section obtained within a double-folding microscopic OP for the $^6$He+$^{12}$C scattering. It is concluded that the breakup cross sections contribute in about 50% of the total reaction cross section.

  4. Expectations for {sup 12}C and {sup 16}O induced fusion cross sections at energies of astrophysical interest.

    SciTech Connect (OSTI)

    Jiang, C. L.; Rehm, K. E.; Back, B. B.; Janssens, R.V.F; Physics

    2007-01-12

    The extrapolations of cross sections for fusion reactions involving {sup 12}C and {sup 16}O nuclei down to energies relevant for explosive stellar burning have been reexamined. Based on a systematic study of fusion in heavier systems, it is expected that a suppression of the fusion process will also be present in these light heavy-ion systems at extreme sub-barrier energies due to the saturation properties of nuclear matter. Previous phenomenological extrapolations of the S factor for light heavy-ion fusion based on optical model calculations may therefore have overestimated the corresponding reaction rates. A new 'recipe' is proposed to extrapolate S factors for light heavy-ion reactions to low energies taking the hindrance behavior into account. It is based on a fit to the logarithmic derivative of the experimental cross section which is much less sensitive to overall normalization discrepancies between different data sets than other approaches. This method, therefore, represents a significant improvement over other extrapolations. The impact on the astrophysical reaction rates is discussed.

  5. Expectations for {sup 12}C and {sup 16}O induced fusion cross sections at energies of astrophysical interest

    SciTech Connect (OSTI)

    Jiang, C. L.; Rehm, K. E.; Back, B. B.; Janssens, R. V. F. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2007-01-15

    The extrapolations of cross sections for fusion reactions involving {sup 12}C and {sup 16}O nuclei down to energies relevant for explosive stellar burning have been reexamined. Based on a systematic study of fusion in heavier systems, it is expected that a suppression of the fusion process will also be present in these light heavy-ion systems at extreme sub-barrier energies due to the saturation properties of nuclear matter. Previous phenomenological extrapolations of the S factor for light heavy-ion fusion based on optical model calculations may therefore have overestimated the corresponding reaction rates. A new ''recipe'' is proposed to extrapolate S factors for light heavy-ion reactions to low energies taking the hindrance behavior into account. It is based on a fit to the logarithmic derivative of the experimental cross section which is much less sensitive to overall normalization discrepancies between different data sets than other approaches. This method, therefore, represents a significant improvement over other extrapolations. The impact on the astrophysical reaction rates is discussed.

  6. Optimizing minimum free-energy crossing points in solution: Linear-response free energy/spin-flip density functional theory approach

    SciTech Connect (OSTI)

    Minezawa, Noriyuki

    2014-10-28

    Examining photochemical processes in solution requires understanding the solvent effects on the potential energy profiles near conical intersections (CIs). For that purpose, the CI point in solution is determined as the crossing between nonequilibrium free energy surfaces. In this work, the nonequilibrium free energy is described using the combined method of linear-response free energy and collinear spin-flip time-dependent density functional theory. The proposed approach reveals the solvent effects on the CI geometries of stilbene in an acetonitrile solution and those of thymine in water. Polar acetonitrile decreases the energy difference between the twisted minimum and twisted-pyramidalized CI of stilbene. For thymine in water, the hydrogen bond formation stabilizes significantly the CI puckered at the carbonyl carbon atom. The result is consistent with the recent simulation showing that the reaction path via this geometry is open in water. Therefore, the present method is a promising way of identifying the free-energy crossing points that play an essential role in photochemistry of solvated molecules.

  7. Zero-Crossing Angle in the Np Analyzing Power at Medium Energies and its Relation to Charge Symmetry 

    E-Print Network [OSTI]

    Bhatia, T. S.; Glass, G.; Hiebert, John C.; Northcliffe, L. C.; Tippens, W. B.; Bonner, BE; Simmons, J. E.; Hollas, C. L.; Newsom, C. R.; Riley, P. J.; Ransome, R. D.

    1981-01-01

    VOLUME 24, NUMBER 2 AUGUST 1981 Zero-crossing angle in the np analyzing power at medium energies and its relation to charge symmetry T. S. Bhatia, G. Glass, J. C. Hiebert, L. C. Northcliffe, and W. B. Tippens Texas AdlM University, College Station..., Texas 77843 B. E. Bonner and J. E. Simmons Los Alantos National Laboratory, Los Alanios, New Mexico 87545 C. L. Hollas, C. R. Newsom, ' P. J. Riley, and R. D. Ransome University of'Texas, Austi?, Texas 787I2 (Received 21 April 1981) The angle...

  8. Low Energy Neutrino Cross Sections: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This large collection of low-energy (less than 30 GEV) neutrino cross sections is extracted from the results of many experiments from 1973 through 2002. The experiments, facilities, and collaborations include ANL, BNL, and FNAL in the U.S., along with CERN, Gargamelle, SKAT, LSND, and others. The data are presented in both tabular and plotted formats. The Durham High Energy Physics Database Group makes these data available in one place, easy to access and compare. The data are also included in the Durham HEP Reaction Data Database, which can be searched at http://hepdata.cedar.ac.uk/reaction

  9. Benefits of creating a cross-country data framework for energy efficiency

    SciTech Connect (OSTI)

    Katzman, Alex; McNeil, Michael; Pantano, Stephen

    2013-10-15

    As manufacturers now sell a similar range of consumer electronics and home appliances to major markets around the world, the task of identifying a product’s energy efficiency rating has usually been the responsibility of each country and its respective government agency. This has led to a multitude of energy efficiency testing procedures, ratings, and certifications, resulting in disparate data being captured on identical products. Furthermore, lack of consistent product identification criteria means product energy performance is not easily connected to relevant information about the product such as market availability, price or real world energy consumption. This paper presents a new data standard for reporting energy performance and related product information that can be adopted internationally. To inform the development of this standard, we explore the existing energy efficiency market data for the two example products of TVs and Room Air Conditioners. This paper discusses current/future use cases of appliance level energy efficiency data across all stakeholders, including consumers, retailers/manufacturers, global standards organizations, third party service providers, and regulatory agencies. It also explains the key benefits of moving to a common international data framework for energy efficiency, such as: 1) a centralized product information repository for comparing energy use, ratings/certifications, and pricing data 2) improved access to relevant consumer electronics and appliance data to facilitate new policy development and harmonization across markets 3) enablement of retailers and other third parties to embed actionable energy efficiency information as part of the consumer experience.

  10. The Benefits of Creating a Cross-Country Data Framework for Energy Efficiency

    SciTech Connect (OSTI)

    Katzman, Alex; McNeil, Michael; Pantano, Stephen

    2013-09-11

    As manufacturers now sell a similar range of consumer electronics and home appliances to major markets around the world, the task of identifying a product?s energy efficiency rating has usually been the responsibility of each country and its respective government agency. This has led to a multitude of energy efficiency testing procedures, ratings, and certifications, resulting in disparate data being captured on identical products. Furthermore, lack of consistent product identification criteria means product energy performance is not easily connected to relevant information about the product such as market availability, price or real world energy consumption. This paper presents a new data standard for reporting energy performance and related product information that can be adopted internationally. To inform the development of this standard, we explore the existing energy efficiency market data for the two example products of TVs and Room Air Conditioners. This paper discusses current/future use cases of appliance level energy efficiency data across all stakeholders, including consumers, retailers/manufacturers, global standards organizations, third party service providers, and regulatory agencies. It also explains the key benefits of moving to a common international data framework for energy efficiency, such as: 1) a centralized product information repository for comparing energy use, ratings/certifications, and pricing data 2) improved access to relevant consumer electronics and appliance data to facilitate new policy development and harmonization across markets 3) enablement of retailers and other third parties to embed actionable energy efficiency information as part of the consumer experience.

  11. Energy Dependence of exotic nuclei production cross sections by photofission reaction in GDR range

    E-Print Network [OSTI]

    Bhowmick, Debasis; Atta, Debasis; Basu, D N; Chakrabarti, Alok

    2015-01-01

    Photofission of actinides is studied in the region of nuclear excitation energies that covers the entire giant dipole resonance (GDR) region. The mass distributions of $^{238}$U photofission fragments have been explored theoretically for eight different endpoint bremsstrahlung energies from 11.5 MeV to 67.7 MeV which correspond to average photon energy of 9.09 MeV to 15.90 MeV. Among these energies, the 29.1 MeV corresponds to the average photon energy of 13.7$\\pm$0.3 MeV which coincides with GDR peak for $^{238}$U photofission. The integrated yield of $^{238}$U photofission as well as charge distribution of photofission products are calculated and its role in producing nuclei and their neutron-richness is investigated.

  12. Measurement of low energy neutrino cross sections with the PEANUT experiment

    SciTech Connect (OSTI)

    Russo, A. [INFN, Sez. di Napoli (Italy)

    2011-11-23

    The PEANUT experiment was designed to study neutrino interactions in the few GeV range using the NuMi beam at Fermilab. The detector uses a hybrid technique, being made of nuclear emulsions and scintillator trackers. Emulsion films act as a tracking device and they are interleaved with lead plates used as neutrino target. The detector is designed to reconstruct the topology of neutrino interactions at the single particle level. We present here the full reconstruction and analysis of a sample of 147 neutrino interactions occurred in the PEANUT detector and the measurement of the quasi-elastic, resonance and deep-inelastic contributions to the total charged current cross-section. This technique could be applied for the beam monitoring for future neutrino facilities.

  13. Optimal Coordination of Distributed Energy Resources in Isolated Power Systems: A Cross-Time Scale Perspective 

    E-Print Network [OSTI]

    Mayhorn, Ebony T

    2015-08-09

    This dissertation investigates the problem of optimally coordinating distributed energy resources (DERs) in isolated power systems. It is motivated by the recent efforts worldwide of integrating large amounts of renewable generation into power grids...

  14. Monte Carlo Electromagnetic Cross Section Production Method for Low Energy Charged Particle Transport Through Single Molecules 

    E-Print Network [OSTI]

    Madsen, Jonathan R

    2013-08-13

    energies. This paper presents developments for a novel approach, which to our knowledge has never been done before, to reducing the homogenous water approximation. The purpose of our work is to develop of a completely self-consistent computational method...

  15. Cyanine dyes with high-absorbance cross section as donor chromophores in energy transfer labels

    DOE Patents [OSTI]

    Glazer, A.N.; Mathies, R.A.; Hung, S.C.; Ju, J.

    1998-12-29

    Cyanine dyes are used as the donor fluorophore in energy transfer labels in which light energy is absorbed by a donor fluorophore and transferred to an acceptor fluorophore which responds to the transfer by emitting fluorescent light for detection. The cyanine dyes impart an unusually high sensitivity to the labels thereby improving their usefulness in a wide variety of biochemical procedures, particularly nucleic acid sequencing, nucleic acid fragment sizing, and related procedures. 22 figs.

  16. Cross-correlation of WMAP 3rd year and the SDSS DR4 galaxy survey: new evidence for Dark Energy

    E-Print Network [OSTI]

    Cabre, A; Manera, M; Fosalba, P; Castander, F

    2006-01-01

    We cross-correlate the third-year WMAP data with galaxy samples extracted from the SDSS DR4 covering 13% of the sky, increasing by a factor of 3.7 the volume sampled in previous analyses. The new measurements confirm a positive cross-correlation with higher significance (total signal-to-noise of about 4.7). The correlation as a function of angular scale is well fitted by the integrated Sachs-Wolfe (ISW) effect for LCDM flat FRW models with a cosmological constant (w=-1). The combined analysis of different samples gives Omega_L=0.75-0.80 (68% Confidence Level, CL) or 0.70-0.82 (95% CL). We find that the best fit Omega_L decreases from 0.82 to 0.75 (95% CL) when we increase the median redshift of the galaxy sample from z~0.3 to z~0.5. The quick drop of the measured signal with z is too fast for the LCDM cosmology. The data can be better reconciled with a model with an effective dark energy equation of state w<-1.5. Such phantom cosmology reduces by up to ~20% the amplitude of the lower multipoles of the CMB ...

  17. Cross sections for proton-induced reactions on Pd isotopes at energies relevant for the {gamma} process

    SciTech Connect (OSTI)

    Dillmann, I.; Coquard, L.; Domingo-Pardo, C.; Kaeppeler, F.; Marganiec, J.; Uberseder, E.; Giesen, U.; Heiske, A.; Feinberg, G.; Hentschel, D.; Hilpp, S.; Leiste, H.; Rauscher, T.; Thielemann, F.-K.

    2011-07-15

    Proton-activation reactions on natural and enriched palladium samples were investigated via the activation technique in the energy range of E{sub p}=2.75-9 MeV, close to the upper end of the respective Gamow window of the {gamma} process. We have determined cross sections for {sup 102}Pd(p, {gamma}){sup 103}Ag, {sup 104}Pd(p, {gamma}){sup 105}Ag, and {sup 105}Pd(p, n){sup 105}Ag, as well as partial cross sections of {sup 104}Pd(p, n){sup 104}Ag{sup g}, {sup 105}Pd(p, {gamma}){sup 106}Ag{sup m}, {sup 106}Pd(p, n){sup 106}Ag{sup m}, and {sup 110}Pd(p, n){sup 110}Ag{sup m} with uncertainties between 3% and 15% for constraining theoretical Hauser-Feshbach rates and for direct use in {gamma}-process calculations.

  18. Measurement of the 187Re(?,n)190Ir reaction cross section at sub-Coulomb energies using the Cologne Clover Counting Setup

    E-Print Network [OSTI]

    P. Scholz; A. Endres; A. Hennig; L. Netterdon; H. W. Becker; J. Endres; J. Mayer; U. Giesen; D. Rogalla; F. Schlüter; S. G. Pickstone; K. O. Zell; A. Zilges

    2015-01-07

    Uncertainties in adopted models of particle+nucleus optical-model potentials directly influence the accuracy in the theoretical predictions of reaction rates as they are needed for reaction-network calculations in, for instance, {\\gamma}-process nucleosynthesis. The improvement of the {\\alpha}+nucleus optical-model potential is hampered by the lack of experimental data at astrophysically relevant energies especially for heavier nuclei. Measuring the Re187({\\alpha},n)Ir190 reaction cross section at sub-Coulomb energies extends the scarce experimental data available in this mass region and helps understanding the energy dependence of the imaginary part of the {\\alpha}+nucleus optical-model potential at low energies. Applying the activation method, after the irradiation of natural rhenium targets with {\\alpha}-particle energies of 12.4 to 14.1 MeV, the reaction yield and thus the reaction cross section were determined via {\\gamma}-ray spectroscopy by using the Cologne Clover Counting Setup and the method of {\\gamma}{\\gamma} coincidences. Cross-section values at five energies close to the astrophysically relevant energy region were measured. Statistical model calculations revealed discrepancies between the experimental values and predictions based on widely used {\\alpha}+nucleus optical-model potentials. However, an excellent reproduction of the measured cross-section values could be achieved from calculations based on the so-called Sauerwein-Rauscher {\\alpha}+nucleus optical-model potential. The results obtained indicate that the energy dependence of the imaginary part of the {\\alpha}+nucleus optical-model potential can be described by an exponential decrease. Successful reproductions of measured cross sections at low energies for {\\alpha}-induced reactions in the mass range 141{\\leq}A{\\leq}187 confirm the global character of the Sauerwein-Rauscher potential.

  19. Total and partial capture cross sections in reactions with deformed nuclei at energies near and below the Coulomb barrier

    SciTech Connect (OSTI)

    Kuzyakin, R. A., E-mail: rkuzyakin@theor.jinr.ru; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V. [Joint Institute for Nuclear Research (Russian Federation)

    2013-06-15

    Within the quantum diffusion approach, the capture of a projectile nucleus by a target nucleus is studied at bombarding energies above and below the Coulomb barrier. The effects of deformation of interacting nuclei and neutron transfer between them on the total and partial capture cross sections and the mean angular momentum of the captured system are studied. The results obtained for the {sup 16}O + {sup 112}Cd, {sup 152}Sm, and {sup 184}W; {sup 19}F +{sup 175}Lu; {sup 28}Si +{sup 94,100}Mo and {sup 154}Sm; {sup 40}Ca +{sup 96}Zr; {sup 48}Ca+ {sup 90}Zr; and {sup 64}Ni +{sup 58,64}Ni, {sup 92,96}Zr, and {sup 100}Mo reactions are in good agreement with available experimental data.

  20. Validation of Nuclear Criticality Safety Software and 27 energy group ENDF/B-IV cross sections

    SciTech Connect (OSTI)

    Lee, B.L. Jr.

    1994-08-01

    The validation documented in this report is based on calculations that were executed during June through August 1992, and was completed in June 1993. The statistical analyses in Appendix C and Appendix D were completed in October 1993. This validation gives Portsmouth NCS personnel a basis for performing computerized KENO V.a calculations using the Martin Marietta Nuclear Criticality Safety Software. The first portion of the document outlines basic information in regard to validation of NCSS using ENDF/B-IV 27-group cross sections on the IBM 3090 at ORNL. A basic discussion of the NCSS system is provided, some discussion on the validation database and validation in general. Then follows a detailed description of the statistical analysis which was applied. The results of this validation indicate that the NCSS software may be used with confidence for criticality calculations at the Portsmouth Gaseous Diffusion Plant. When the validation results are treated as a single group, there is 95% confidence that 99.9% of future calculations of similar critical systems will have a calculated K{sub eff} > 0.9616. Based on this result the Portsmouth Nuclear Criticality Safety Department has adopted the calculational acceptance criteria that a k{sub eff} + 2{sigma} {le} 0.95 is safety subcritical. The validation of NCSS on the IBM 3090 at ORNL was extended to include NCSS on the IBM 3090 at K-25.

  1. New analysis of the low-energy $?^\\pm p$ differential cross sections of the CHAOS Collaboration

    E-Print Network [OSTI]

    Evangelos Matsinos; Günther Rasche

    2015-06-18

    In a previous paper, we reported the results of a partial-wave analysis of the pion-nucleon ($\\pi N$) differential cross sections (DCSs) of the CHAOS Collaboration and came to the conclusion that the angular distribution of their $\\pi^+ p$ data sets is incompatible with the rest of the modern (meson-factory) database. The present work, re-addressing this issue, has been instigated by a number of recent improvements in our analysis, namely regarding the inclusion of the theoretical uncertainties when investigating the reproduction of experimental data sets on the basis of a given `theoretical' solution, modifications in the parameterisation of the form factors of the proton and of the pion entering the electromagnetic part of the $\\pi N$ amplitude, and the inclusion of the effects of the variation of the $\\sigma$-meson mass when fitting the ETH model of the $\\pi N$ interaction to the experimental data. The new analysis of the CHAOS DCSs confirms our earlier conclusions and casts doubt on the value for the $\\pi N$ $\\Sigma$ term, which Stahov, Clement, and Wagner have extracted from these data.

  2. Cross section standards for neutron-induced gamma-ray production in the MeV energy range.

    SciTech Connect (OSTI)

    Nelson, R. O. (Ronald O.); Fotiadis, N. (Nikolaos); Devlin, M. J. (Matthew J.); Becker, J. A. (John A.); Garrett, P. E. (Paul E.); Younes, W. (Walid)

    2004-01-01

    Gamma-ray cross section standards for neutron-induced reactions are important in enabling the accurate determination of absolute cross sections from relative measurements of gamma-ray production. In our work we observed a need for improvement in these standards. In particular there are large discrepancies between evaluations of the {sup nat}Fe(n,n{sub 1}'{gamma}) cross section for the 847-keV gamma ray. We have performed (1) absolute cross section measurements, (2) measurements relative to the {sup nat}Cr(n,n{sub 1}'{gamma}) 1434-keV gamma ray, and (3) comparisons using measured total and elastic scattering cross sections to refine our knowledge of the Fe cross section and the closely linked inelastic channel cross section for Fe. Calculation of integral tests of the cross section libraries may indicate that adjustment of the angular distributions of the neutron elastic and inelastic scattering may be needed.

  3. Extended Optical Model Analyses of Elastic Scattering, Direct Reaction, and Fusion Cross Sections for the 9Be + 208Pb System at Near-Coulomb-Barrier Energies

    E-Print Network [OSTI]

    W. Y. So; S. W. Hong; B. T. Kim; T. Udagawa

    2005-09-27

    Based on the extended optical model approach in which the polarization potential is decomposed into direct reaction (DR) and fusion parts, simultaneous $\\chi^{2}$ analyses are performed for elastic scattering, DR, and fusion cross section data for the $^{9}$Be+$^{208}$Pb system at near-Coulomb-barrier energies. Similar $\\chi^{2}$ analyses are also performed by only taking into account the elastic scattering and fusion data as was previously done by the present authors, and the results are compared with those of the full analysis including the DR cross section data as well. We find that the analyses using only elastic scattering and fusion data can produce very consistent and reliable predictions of cross sections particularly when the DR cross section data are not complete. Discussions are also given on the results obtained from similar analyses made earlier for the $^{9}$Be+$^{209}$Bi system.

  4. Cross-sector policy research: insights from the UK energy and transport sectors

    E-Print Network [OSTI]

    Peake, Stephen Robert

    1993-10-26

    : Insights from the UK energy and transport sectors Stephen Robert Peake Darwin College, Cambridge UNIVERSITY I ltBRARY J CAMBRIDGE A dissertation submitted to the University of Cambridge for the Degree of Doctor of Philosophy. June 1993 Dedication... . To Sarah and Charlie, for all their love and support. Declaration. I declare that except for commonly understood and accepted ideas, or where specific reference is made, the work reported in this dissertation is my own. It includes nothing which...

  5. Single-Well and Cross-Well Resistivity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium de Provence SASSinem Geothermal PowerResistivity Jump

  6. Cross-Dipole Acoustic Log At Alum Area (Moos & Ronne, 2010) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)|Alabama:Crofton, Maryland: EnergyCrosby

  7. Optical models from low-energy s-, p- and d-wave cross sections

    SciTech Connect (OSTI)

    Johnson, C.H.

    1984-01-01

    From transmission measurements with good resolution at low energies one can obtain data on the optical model potential (OMP) for individual partical waves by first making a multilevel analysis to isolate the partial waves and then averaging for comparison to the OMP. For each J..pi.. the averaging yields two quantities which are related to the amplitude and phase of the OMP scattering function or, alternatively, to the volume integrals of the real and imaginary potentials. Historically, the experimental average have been represented by the s- and p-wave strength functions, S/sub 0/ and S/sub 1/, and the s-wave scattering radius R'. To make full use of data from modern time-of-flight facilities such as ORELA it is necessary to re-examine the averaging procedure in order to extend it upward both in energy and neutron l-value. This averaging is discussed and applied to data on /sup 30/Si, /sup 32/S, /sup 34/S, /sup 40/Ca, /sup 60/Ni, /sup 86/Kr and /sup 208/Pb. The resulting OMP shows a systematic real potential with some indication of a parity dependence. The imaginary potential shows considerable fluctuations indicating the importance of nuclear structure at neutron eneries below 1 MeV. A coupled channel OMP is also discussed for some of the nulei. 19 references.

  8. Heavy quarkonium production at collider energies: Partonic cross section and polarization

    SciTech Connect (OSTI)

    Qiu, Jian -Wei [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., Stony Brook, NY (United States); Kang, Zhong -Bo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ma, Yan -Qing [Univ. of Maryland, College Park, MD (United States); Peking Univ., Beijing (China); Sterman, George [Stony Brook Univ., Stony Brook, NY (United States)

    2015-01-01

    We calculate the O(?łs) short-distance, QCD collinear-factorized coefficient functions for all partonic channels that include the production of a heavy quark pair at short distances. This provides the first power correction to the collinear-factorized inclusive hadronic production of heavy quarkonia at large transverse momentum, pT, including the full leading-order perturbative contributions to the production of heavy quark pairs in all color and spin states employed in NRQCD treatments of this process. We discuss the role of the first power correction in the production rates and the polarizations of heavy quarkonia in high-energy hadronic collisions. The consistency of QCD collinear factorization and nonrelativistic QCD factorization applied to heavy quarkonium production is also discussed.

  9. Heavy quarkonium production at collider energies: Partonic cross section and polarization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qiu, Jian -Wei; Kang, Zhong -Bo; Ma, Yan -Qing; Sterman, George

    2015-01-27

    We calculate the O(?łs) short-distance, QCD collinear-factorized coefficient functions for all partonic channels that include the production of a heavy quark pair at short distances. Thus, this provides the first power correction to the collinear-factorized inclusive hadronic production of heavy quarkonia at large transverse momentum, pT, including the full leading-order perturbative contributions to the production of heavy quark pairs in all color and spin states employed in NRQCD treatments of this process. We discuss the role of the first power correction in the production rates and the polarizations of heavy quarkonia in high-energy hadronic collisions. The consistency of QCD collinearmore »factorization and nonrelativistic QCD factorization applied to heavy quarkonium production is also discussed.« less

  10. Cross-cutting Technologies for Advanced Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy eere.energy.gov 2 Cross-cutting Technology Areas: Feedstock Supply and Logistics growth, harvesting, delivery Analysis economic, life-cycle, resource...

  11. Calculations of atomic sputtering and displacement cross-sections in solid elements by electrons with energies from threshold to 1. 5 MV

    SciTech Connect (OSTI)

    Bradley, C.R.

    1988-12-01

    The kinetics of knock-on collisions of relativistic electrons with nuclei and details of the numerical evaluation of differential, recoil, and total Mott cross-sections are reviewed and discussed. The effects of electron beam induced displacement and sputtering, in the transmission electron microscope (TEM) environment, on microanalysis are analyzed with particular emphasis placed on the removal of material by knock-on sputtering. The mass loss predicted due to transmission knock-on sputtering is significant for many elements under conditions frequently encountered in microanalysis. Total Mott cross-sections are tabulated for all naturally occurring solid elements up to Z = 92 at displacement energies of one, two, four, and five times the sublimation energy and for accelerating voltages accessible in the transmission electron microscope. Fortran source code listings for the calculation of the differential Mott cross-section as a function of electron scattering angle (dMottCS), as a function of nuclear recoil angle (RECOIL), and the total Mott cross-section (TOTCS) are included. 48 refs., 21 figs., 12 tabs.

  12. Measurement of the Total Cross Section for Hadronic Production by e+e- Annihilation at Energies between 2.6-5 Gev

    E-Print Network [OSTI]

    J. Z. Bai

    1999-08-11

    Using the upgraded Beijing Spectrometer (BESII), we have measured the total cross section for $e^+e^-$ annihilation into hadronic final states at center-of-mass energies of 2.6, 3.2, 3.4, 3.55, 4.6 and 5.0 GeV. Values of $R$, $\\sigma(e^+e^-\\to {hadrons})/\\sigma(e^+e^-\\to\\mu^+\\mu^-)$, are determined.

  13. Determination of the cross sections of (n,2n), (n,gamma) nuclear reactions on germanium isotopes at the energy of neutrons 13.96 MeV

    E-Print Network [OSTI]

    S. V. Begun; O. G. Druzheruchenko; O. O. Pupirina; V. K. Tarakanov

    2007-01-23

    The cross sections of 70Ge(n,2n)69Ge, 72Ge(n,2n)71Ge, 76Ge(n,gamma)77(g+0.21m)Ge, 76Ge(n,2n)75Ge nuclear reactions were measured at the energy of neutrons 13.96(6) MeV by activation method with gamma-ray and X-ray spectra studies.

  14. Toward the Holy Grail of Perfect Information: Lessons Learned Implementing an Energy Information System in a Commercial Building

    E-Print Network [OSTI]

    Kircher, Kevin

    2010-01-01

    The wireless sensor network (WSN) consists of 55 devices (Some motes in the B90 WSN transmit power data, others act asmotes. We chose to use a WSN as part of the EIS for two

  15. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    E-Print Network [OSTI]

    The SciBooNE Collaboration; G. Cheng; C. Mariani; J. L. Alcaraz-Aunion; S. J. Brice; L. Bugel; J. Catala-Perez; J. M. Conrad; Z. Djurcic; U. Dore; D. A. Finley; A. J. Franke; C. Giganti; a J. J. Gomez-Cadenas; P. Guzowski; A. Hanson; Y. Hayato; K. Hiraide; G. Jover-Manas; G. Karagiorgi; T. Katori; Y. K. Kobayashi; T. Kobilarcik; H. Kubo; Y. Kurimoto; W. C. Louis; P. F. Loverre; L. Ludovici; K. B. M. Mahn; S. Masuike; K. Matsuoka; V. T. McGary; W. Metcalf; G. B. Mills; G. Mitsuka; Y. Miyachi; S. Mizugashira; C. D. Moore; Y. Nakajima; T. Nakaya; R. Napora; P. Nienaber; D. Orme; M. Otani; A. D. Russell; F. Sanchez; M. H. Shaevitz; T. -A. Shibata; M. Sorel; R. J. Stefanski; H. Takei; H. -K. Tanaka; M. Tanaka; R. Tayloe; I. J. Taylor; R. J. Tesarek; Y. Uchida; R. Van de Water; J. J. Walding; M. O. Wascko; H. B. White; M. Yokoyama; G. P. Zeller; E. D. Zimmerman

    2011-07-29

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2{\\sigma}/dpd{\\Omega} = (5.34 \\times 0.76) mb/(GeV/c \\times sr) for p + Be -> K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared to Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85\\times0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.

  16. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, G.

    2011-07-28

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2?/dpd? = (5.34 ±0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared tomore »Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 ± 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.« less

  17. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, G [Columbia U.; Mariani, C [Columbia U.; Alcaraz-Aunion, J L [Barcelona, IFAE; Brice, S J [Fermilab; Bugel, L [MIT; Catala-Perez, J [Valencia U.; Conrad, J M [MIT; Djurcic, Z [Columbia U.; Dore, U [Banca di Roma; INFN, Rome; Finley, D A [Fermilab; Franke, A J [Columbia U.; Banca di Roma; INFN, Rome

    2011-07-28

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2?/dpd? = (5.34 ±0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared to Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 ± 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.

  18. Measurement of the inelastic cross section in proton-lead collisions at a centre-of-mass energy per nucleon pair of 5.02 TeV

    E-Print Network [OSTI]

    CMS Collaboration

    2015-09-13

    The inelastic hadronic cross section in proton-lead collisions at a centre-of-mass energy per nucleon pair of 5.02 TeV is measured with the CMS detector at the LHC. The data sample, corresponding to an integrated luminosity of 12.6 +/- 0.4 inverse nanobarns, has been collected with an unbiased trigger for inclusive particle production. The cross section is obtained from the measured number of proton-lead collisions with hadronic activity produced in the pseudorapidity ranges 3contributions, experimental acceptance, and other instrumental effects. The inelastic cross section is measured to be sigma[inel,pPb]=2061 +/- 3 (stat) +/- 34 (syst) +/- 72 (lum) mb. Various Monte Carlo generators, commonly used in heavy ion and cosmic ray physics, are found to reproduce the data within uncertainties. The value of sigma[inel,pPb] is compatible with that expected from the proton-proton cross section at 5.02 TeV scaled up within a simple Glauber approach to account for multiple scatterings in the lead nucleus, indicating that further net nuclear corrections are small.

  19. Stalking the 'Holy Grail'

    E-Print Network [OSTI]

    Brady, Margret

    2005-01-01

    Scientists, working 100 metres underground with the world's most powerful accelerator machine, are getting ready to hunt one of science's most elusive and mysterious particles - Higg Boson (3 pages)

  20. Hadronic Total Cross Sections (R) in E+E- Interactions: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Whalley, M. R.

    A comprehensive compilation of experimental data on total hadronic cross sections, and R ratios, in e+e- interactions is presented. Published data from the Novosibirsk, Orsay, Frascati, SLAC, CORNELL, DESY, KEK and CERN e+e- colliders on both exclusive and inclusive final particle states are included from threshold energies to the highest LEP energies. The data are presented in tabular form supplemented by compilation plots of different exclusive final particle states and of different energy regions. (Taken from abstract of paper, A Compilation of Data on Hadronic Total Cross Sections in E+E- Interactions, M.R. Whalley, Journal of Physics G (Nuclear and Particle Physics), Volume 29, Number 12A, 2003). The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. The data are also included in the Durham HEP Reaction Data Database, which can be searched at http://hepdata.cedar.ac.uk/reaction

  1. R-matrix analysis of the {sup 240}Pu neutron cross sections in the thermal to 5700 eV energy range

    SciTech Connect (OSTI)

    Derrien, H.; Bouland, O.; Larson, N.M.; Leal, L.C.

    1997-08-01

    Resonance analysis of high resolution neutron transmission data and of fission cross sections were performed in the neutron energy range from the thermal regions to 5,700 eV by using the Reich-Moore Bayesian code SAMMY. The experimental data base is described and the method of analysis is given. The experimental data were carefully examined in order to identify more resonances than those found in the current evaluated data files. The statistical properties of the resonance parameters are given. A new set of the average values of the parameters is proposed, which could be used for calculation of the average cross sections in the unresolved resonance region. The resonance parameters are available IN ENDF-6 format at the national or international data centers.

  2. Absolute cross sections for the dissociation of hydrogen cluster ions in high-energy collisions with helium atoms

    E-Print Network [OSTI]

    Eden, S; Farizon, M; Louc, S; Märk, T D; Ouaskit, S; Samraoui, K; Tabet, J

    2006-01-01

    Absolute dissociation cross sections are reported for Hn+ clusters of varied mass (n = 3, 5, ..., 35) following collisions with He atoms at 60 keV / amu. Initial results have been published in a previous brief report for a smaller range of cluster sizes [Ouaskit et al., Phys. Rev. A 49, 1484 (1994)]. The present extended study includes further experimental results, reducing the statistical errors associated with the absolute cross sections. The previously suggested quasi-linear dependence of the Hn+ dissociation cross sections upon n is developed with reference to expected series of geometrical shells of H2 molecules surrounding an H3+ core. Recent calculations identify n = 9 as corresponding to the first closed H2 shell [e.g. Stich et al., J. Chem. Phys. 107, 9482 (1997)]. Recurrence of the distinct characteristics observed in the dissociation cross section dependence upon cluster size around n = 9 provides the basis for the presently proposed subsequent closed shells at n = 15, 21, 27, and 33, in agreement ...

  3. Low-energy cross section of the 7Be(p,g)8B solar fusion reaction from Coulomb dissociation of 8B

    E-Print Network [OSTI]

    F. Schuemann; S. Typel; F. Hammache; F. Uhlig; K. Suemmerer; I. Boettcher; D. Cortina; A. Foerster; M. Gai; H. Geissel; U. Greife; E. Grosse; N. Iwasa; P. Koczon; B. Kohlmeyer; R. Kulessa; H. Kumagai; N. Kurz; M. Menzel; T. Motobayashi; H. Oeschler; A. Ozawa; M. Ploskon; W. Prokopowicz; E. Schwab; P. Senger; F. Strieder; C. Sturm; Zhi-Yu Sun; G. Surowka; A. Wagner; W. Walus

    2005-11-17

    Final results from an exclusive measurement of the Coulomb breakup of 8B into 7Be+p at 254 A MeV are reported. Energy-differential Coulomb-breakup cross sections are analyzed using a potential model of 8B and first-order perturbation theory. The deduced astrophysical S_17 factors are in good agreement with the most recent direct 7Be(p,gamma)8B measurements and follow closely the energy dependence predicted by the cluster-model description of 8B by Descouvemont. We extract a zero-energy S_17 factor of 20.6 +- 0.8 (stat) +- 1.2 (syst) eV b.

  4. Simultaneous Optical Model Analyses of Elastic Scattering, Breakup, and Fusion Cross Section Data for the $^{6}$He + $^{209}$Bi System at Near-Coulomb-Barrier Energies

    E-Print Network [OSTI]

    B. T. Kim; W. Y. So; S. W. Hong; T. Udagawa

    2001-11-22

    Based on an approach recently proposed by us, simultaneous $\\chi^{2}$-analyses are performed for elastic scattering, direct reaction (DR) and fusion cross sections data for the $^{6}$He+$^{209}$Bi system at near-Coulomb-barrier energies to determine the parameters of the polarization potential consisting of DR and fusion parts. We show that the data are well reproduced by the resultant potential, which also satisfies the proper dispersion relation. A discussion is given of the nature of the threshold anomaly seen in the potential.

  5. R-matrix calculation of integral and differential cross sections for low-energy electron impact excitations of N2 molecule

    E-Print Network [OSTI]

    Motomichi Tashiro; Keiji Morokuma

    2006-12-21

    Low-energy electron impact excitations of N$_2$ molecules are studied using the fixed-bond R-matrix method based on state-averaged complete active space SCF orbitals. Thirteen target electronic states of N$_2$ are included in the model within a valence configuration interaction representations of the target states. Integrated as well as differential cross sections of the $A^{3} \\Sigma_{u}^{+}$, $B^{3} \\Pi_{g}$, $W^{3} \\Delta_{u}$, ${B'}^{3} \\Sigma_{u}^{-}$, ${a'}^{1} \\Sigma_{u}^{-}$, $a^{1} \\Pi_{g}$, $w^{1} \\Delta_{u}$ and $C^{3} \\Pi_{u}$ states are calculated and compared with the previous experimental measurements. These excitations, especially of the higher four states, have not been studied enough theoretically in the previous literature. In general, good agreements are observed both in the integrated and differential cross sections. However, some discrepancies are seen in the integrated cross sections of the $A^{3} \\Sigma_{u}^{+}$ and $C^{3} \\Pi_{u}$ states, especially around a peak structure.

  6. 3/3/2014 Big ideas for tinywindmills at UTA | EnergyBiz http://www.energybiz.com/article/14/03/big-ideas-tiny-windmills-uta 1/3

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    scientists who were inspired by a little girl's pinwheel. Electrical engineering professor J.C. Chiao The Future of Biogas A Renewable Resource Staff Writer Frontier of Energy Storage The Holy Grail Staff Writer involved because she has a lot of creative ideas," Chiao said. "She continues to generate creative, crazy

  7. Measurement of a complete set of nuclides, cross-sections and kinetic energies in spallation of 238U 1A GeV with protons

    E-Print Network [OSTI]

    P. Armbruster; J. Benlliure; M. Bernas; A. Boudard; E. Casarejos; S. Czajkowski; T. Enqvist; S. Leray; P. Napolitani; J. Pereira; F. Rejmund; M. -V. Ricciardi; K. -H. Schmidt; C. Stephan; J. Taieb; L. Tassan-Got; C. Volant

    2004-06-28

    Spallation residues and fission fragments from 1A GeV 238U projectiles irradiating a liquid hydrogen target were investigated by using the FRagment Separator at GSI for magnetic selection of reaction products including ray-tracing, energy-loss and time-of-flight techniques. The longitudinal-momentum spectra of identified fragments were analysed, and evaporation residues and fission fragments could be separated. For 1385 nuclides, production cross-sections covering 3 orders of magnitude with a mean accuracy of 15%, velocities in the U-rest frame and kinetic energies were determined. In the reaction all elements from uranium to nitrogen were found, each with a large number of isotopes.

  8. Measurement of three-jet production cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-05-27

    Double-differential three-jet production cross-sections are measured in proton–proton collisions at a centre-of-mass energy of ?s=7TeV using the ATLAS detector at the large hadron collider. The measurements are presented as a function of the three-jet mass (mjjj), in bins of the sum of the absolute rapidity separations between the three leading jets (|Y*|). Invariant masses extending up to 5 TeV are reached for 8*|11. Jets are identified using the anti-kt algorithm with two different jet radius parameters, R=0.4more »and R=0.6. The dominant uncertainty in these measurements comes from the jet energy scale. Next-to-leading-order QCD calculations corrected to account for non-perturbative effects are compared to the measurements. Good agreement is found between the data and the theoretical predictions based on most of the available sets of parton distribution functions, over the full kinematic range, covering almost seven orders of magnitude in the measured cross-section values.« less

  9. Measurement of three-jet production cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector

    E-Print Network [OSTI]

    ATLAS Collaboration

    2015-05-26

    Double-differential three-jet production cross-sections are measured in proton-proton collisions at a centre-of-mass energy of $\\sqrt{s} = 7$ TeV using the ATLAS detector at the Large Hadron Collider. The measurements are presented as a function of the three-jet mass $(m_{jjj})$, in bins of the sum of the absolute rapidity separations between the three leading jets $(|Y^\\ast|)$. Invariant masses extending up to 5 TeV are reached for $8integrated luminosity of 4.51 fb$^{-1}$. Jets are identified using the anti-$k_t$ algorithm with two different jet radius parameters, R=0.4 and R=0.6. The dominant uncertainty in these measurements comes from the jet energy scale. Next-to-leading-order QCD calculations corrected to account for non-perturbative effects are compared to the measurements. Good agreement is found between the data and the theoretical predictions based on most of the available sets of parton distribution functions, over the full kinematic range, covering almost seven orders of magnitude in the measured cross-section values.

  10. Measurement of three-jet production cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.; Abbott, B.; Abdallah, J.; Khalek, S. Abdel; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; et al

    2015-05-01

    Double-differential three-jet production cross-sections are measured in proton–proton collisions at a centre-of-mass energy of ?s = 7TeV using the ATLAS detector at the large hadron collider. The measurements are presented as a function of the three-jet mass (mjjj), in bins of the sum of the absolute rapidity separations between the three leading jets (|Y*|). Invariant masses extending up to 5 TeV are reached for 8*|–1. Jets are identified using the anti-kt algorithm with two different jet radiusmore »parameters, R = 0.4 and R = 0.6. The dominant uncertainty in these measurements comes from the jet energy scale. Next-to-leading-order QCD calculations corrected to account for non-perturbative effects are compared to the measurements. Good agreement is found between the data and the theoretical predictions based on most of the available sets of parton distribution functions, over the full kinematic range, covering almost seven orders of magnitude in the measured cross-section values.« less

  11. Drell-Yan Cross Sections: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stirling, W. J.; Whalley, M. R.

    A compilation of data on Drell-Yan cross sections above a lepton-pair mass of 4 GeV/c2 is presented. The relevant experiments at Fermilab and CERN are included dating from approximately 1977 to the present day, covering p, p and pi +or- beams on a variety of nuclear and hydrogen targets, with centre-of-mass energies from 8.6 GeV to 630 GeV. The type of data presented include d sigma /dm, d2 sigma /dm dx and d2 sigma /dm dy distributions as well as other variations of these, and also transverse momentum distributions. The data are compared with a standard theoretical model, and a phenomenological 'K-factor' for each set is calculated. (Taken from the abstract of A Compilation of Drell-Yan Cross sections, W.J. Stirling and M.R. Whalley, Journal of Physics G (Nuclear and Particle Physics), Volume 19, Data Review, 1993.) The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also included in the Durham HEP Reaction Data Database which can be searched at http://hepdata.cedar.ac.uk/reaction

  12. Low energy crossed beam study of the reaction H/sup +//sub 2/+Ne. -->. HNe/sup +/+H

    SciTech Connect (OSTI)

    Bilotta, R.M.; Farrar, J.M.

    1981-08-15

    We present a study of the title reaction over the relative translational energy range 0.87 to 4.05 eV. At all collision energies the products are formed with translational energy significantly in excess of the predictions of the spectator stripping model. Experiments performed with differing values of the reagent mean vibrational energy suggest that the high lying vibrational states of H/sup +//sub 2/ preferentially yield highly internally excited HNe/sup +/ products. We discuss the role of a gradual approach to the potential surface barrier as a mechanism for yielding highly translationally excited HNe/sup +/ products.

  13. Cross-correlation of WMAP 3rd year and the SDSS DR4 galaxy survey: new evidence for Dark Energy

    E-Print Network [OSTI]

    A. Cabre; E. Gaztanaga; M. Manera; P. Fosalba; F. Castander

    2006-07-25

    We cross-correlate the third-year WMAP data with galaxy samples extracted from the SDSS DR4 (SDSS4) covering 13% of the sky, increasing by a factor of 3.7 the volume sampled in previous analyses. The new measurements confirm a positive cross-correlation with higher significance (total signal-to-noise of about 4.7). The correlation as a function of angular scale is well fitted by the integrated Sachs-Wolfe (ISW) effect for LCDM flat FRW models with a cosmological constant. The combined analysis of different samples gives Omega_L=0.80-0.85$ (68% Confidence Level, CL) or $0.77-0.86$ (95% CL). We find similar best fit values for Omega_L for different galaxy samples with median redshifts of z ~0.3 and z ~0.5, indicating that the data scale with redshift as predicted by the LCDM cosmology (with equation of state parameter w=-1). This agreement is not trivial, but can not yet be used to break the degeneracy constraints in the w versus Omega_L plane using only the ISW data.

  14. Measurement of the inclusive jet cross section in proton-antiproton collisions at the center-of-mass energy of 1.96 TeV

    SciTech Connect (OSTI)

    Voutilainen, Mikko Antero; /Helsinki Inst. of Phys. /Helsinki U. of Tech. /Nebraska U. /Saclay

    2008-07-01

    This thesis studies the high-energy collisions of protons and antiprotons. The data used in the measurement were collected during 2004-2005 with the D0 detector at the Tevatron Collider of the Fermi National Accelerator Laboratory and correspond to 0.7 fb{sup -1} of integrated luminosity. High energy hadron collisions usually produce collimated sprays of particles called jets. The energy of the jets is measured using a liquid Argon-Uranium calorimeter and the production angle is determined with the help of silicon microstrip and scintillating fiber trackers. The inclusive jet cross section in proton-antiproton collisions is measured as a function of jet transverse momentum p{sub T} in six bins of jet rapidity at the center-of-mass energy {radical}s = 1.96 TeV. The measurement covers jet transerve momenta from 50 GeV up to 600 GeV and jet rapidities up to |y| = 2.4. The data are collected using a set of seven single jet triggers. Event and jet cuts are applied to remove non-physical backgrounds and cosmic-ray interactions. The data are corrected for jet energy calibration, cut and trigger efficiencies and finite jet p{sub T} resolution. The corrections are determined from data and the methods are tested with Monte Carlo simulation. The main experimental challenges in the measurement are the calibration of jet energies and the determination of the jet p{sub T} resolution. New methods are developed for the jet energy calibration that take into account physical differences between the {gamma}+jet and dijet calibration samples arising from quark and gluon jet differences. The uncertainty correlations are studied and provided as a set of uncertainty sources. The production of particle jets in hadron collisions is described by the theory of quantum chromodynamics (QCD). When the transverse jet momentum is large, the contributions from long-distance physics processes are small and the production rates of jets can be predicted by perturbative QCD. The inclusive jet cross section in p{bar p} collisions at large p{sub T} is directly sensitive to the strong coupling constant ({alpha}{sub s}) and the parton distribution functions (PDFs) of the proton. This measurement can be used to constrain the PDFs, in particular the gluon PDF at high proton momentum fraction x, and to look for quark substructure at the TeV scale. The data are compared to the theory predictions with perturbative QCD in the next-to-leading order precision and a good agreement between data and theory is observed.

  15. Classical dynamics and localization of resonances in the high energy region of the hydrogen atom in crossed fields

    E-Print Network [OSTI]

    Frank Schweiner; Jörg Main; Holger Cartarius; Günter Wunner

    2014-12-10

    When superimposing the potentials of external fields on the Coulomb potential of the hydrogen atom a saddle point appears, which is called the Stark saddle point. For energies slightly above the saddle point energy one can find classical orbits, which are located in the vicinity of this point. We follow those so-called quasi-Penning orbits to high energies and field strengths observing structural changes and uncovering their bifurcation behavior. By plotting the stability behavior of those orbits against energy and field strength the appearance of a stability apex is reported. A cusp bifurcation, located in the vicinity of the apex, will be investigated in detail. In this cusp bifurcation another orbit of similar shape is found, which becomes completely stable in the observed region of positive energy, i.e., in a region of parameter space, where the Kepler-like orbits located around the nucleus are already unstable. By quantum-mechanically exact calculations we prove the existence of signatures in quantum spectra belonging to those orbits. Husimi distributions are used to compare quantum-Poincar\\'e sections with the extension of the classical torus structure around the orbits. Since periodic orbit theory predicts that each classical periodic orbit contributes an oscillating term to photoabsorption spectra, we finally give an estimation for future experiments, which could verify the existence of the stable orbits.

  16. Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Sections for 6Li + 208Pb System at Near-Coulomb-Barrier Energies by using Folding Potential

    E-Print Network [OSTI]

    W. Y. So; T. Udagawa; K. S. Kim; S. W. Hong; B. T. Kim

    2006-12-13

    Based on the extended optical model approach in which the polarization potential is decomposed into direct reaction (DR) and fusion parts, simultaneous $\\chi^{2}$ analyses are performed for elastic scattering and fusion cross section data for the $^{6}$Li+$^{208}$Pb system at near-Coulomb-barrier energies. A folding potential is used as the bare potential. It is found that the real part of the resultant DR part of the polarization potential is repulsive, which is consistent with the results from the Continuum Discretized Coupled Channel (CDCC) calculations and the normalization factors needed for the folding potentials. Further, it is found that both DR and fusion parts of the polarization potential satisfy separately the dispersion relation.

  17. Solar fusion cross sections Eric G. Adelberger

    E-Print Network [OSTI]

    Bahcall, John

    production. We provide best values for the low-energy cross-section factors and, wherever possible, estimates Karlheinz Langanke University of Aarhus, DK-8000, Aarhus C, Denmark Tohru Motobayashi Department of Physics on the nuclear-fusion cross sections that are most important for solar energy generation and solar neutrino

  18. Use of the nuclear model code GNASH to calculate cross section data at energies up to 100 MeV

    SciTech Connect (OSTI)

    Young, P.G.; Chadwick, M.B.; Bosoian, M.

    1992-01-01

    The nuclear theory code GNASH has been used to calculate nuclear data for incident neutrons, protons, and deuterons at energies up to 100 MeV. Several nuclear models and theories are important in the 10--100 MeV energy range, including Hauser-Feshbach statistical theory, spherical and deformed optical model, preequilibrium theory, nuclear level densities, fission theory, and direct reaction theory. In this paper we summarize general features of the models in GNASH and describe the methodology utilized to determine relevant model parameters. We illustrate the significance of several of the models and include comparisons with experimental data for certain target materials that are important in applications.

  19. Use of the nuclear model code GNASH to calculate cross section data at energies up to 100 MeV

    SciTech Connect (OSTI)

    Young, P.G.; Chadwick, M.B.; Bosoian, M.

    1992-12-01

    The nuclear theory code GNASH has been used to calculate nuclear data for incident neutrons, protons, and deuterons at energies up to 100 MeV. Several nuclear models and theories are important in the 10--100 MeV energy range, including Hauser-Feshbach statistical theory, spherical and deformed optical model, preequilibrium theory, nuclear level densities, fission theory, and direct reaction theory. In this paper we summarize general features of the models in GNASH and describe the methodology utilized to determine relevant model parameters. We illustrate the significance of several of the models and include comparisons with experimental data for certain target materials that are important in applications.

  20. Proposed rulemaking on the storage and disposal of nuclear waste. Cross-statement of the United States Department of Energy

    SciTech Connect (OSTI)

    None

    1980-09-05

    The US DOE cross-statement in the matter of proposed rulemaking in the storage and disposal of nuclear wastes is presented. It is concluded from evidence contained in the document that: (1) spent fuel can be disposed of in a manner that is safe and environmentally acceptable; (2) present plans for establishing geological repositories are an effective and reasonable means of disposal; (3) spent nuclear fuel from licensed facilities can be stored in a safe and environmentally acceptable manner on-site or off-site until disposal facilities are ready; (4) sufficient additional storage capacity for spent fuel will be established; and (5) the disposal and interim storage systems for spent nuclear fuel will be integrated into an acceptable operating system. It was recommended that the commission should promulgate a rule providing that the safety and environmental implications of spent nuclear fuel remaining on site after the anticipated expiration of the facility licenses involved need not be considered in individual facility licensing proceedings. A prompt finding of confidence in the nuclear waste disposal and storage area by the commission is also recommeded. (DMC)

  1. Validation of nuclear criticality safety software and 27 energy group ENDF/B-IV cross sections. Revision 1

    SciTech Connect (OSTI)

    Lee, B.L. Jr. [Battelle, Columbus, OH (United States); D`Aquila, D.M. [Lockheed Martin Utility Services, Inc., Oak Ridge, TN (United States)

    1996-01-01

    The original validation report, POEF-T-3636, was documented in August 1994. The document was based on calculations that were executed during June through August 1992. The statistical analyses in Appendix C and Appendix D were completed in October 1993. This revision is written to clarify the margin of safety being used at Portsmouth for nuclear criticality safety calculations. This validation gives Portsmouth NCS personnel a basis for performing computerized KENO V.a calculations using the Lockheed Martin Nuclear Criticality Safety Software. The first portion of the document outlines basic information in regard to validation of NCSS using ENDF/B-IV 27-group cross sections on the IBM3090 at ORNL. A basic discussion of the NCSS system is provided, some discussion on the validation database and validation in general. Then follows a detailed description of the statistical analysis which was applied. The results of this validation indicate that the NCSS software may be used with confidence for criticality calculations at the Portsmouth Gaseous Diffusion Plant. For calculations of Portsmouth systems using the specified codes and systems covered by this validation, a maximum k{sub eff} including 2{sigma} of 0.9605 or lower shall be considered as subcritical to ensure a calculational margin of safety of 0.02. The validation of NCSS on the IBM 3090 at ORNL was extended to include NCSS on the IBM 3090 at K-25.

  2. New analysis of the low-energy $\\pi^\\pm p$ differential cross sections of the CHAOS Collaboration

    E-Print Network [OSTI]

    Matsinos, Evangelos

    2015-01-01

    In a previous paper, we reported the results of a partial-wave analysis of the pion-nucleon ($\\pi N$) differential cross sections (DCSs) of the CHAOS Collaboration and came to the conclusion that the angular distribution of their $\\pi^+ p$ data sets is incompatible with the rest of the modern (meson-factory) database. The present work, re-addressing this issue, has been instigated by a number of recent improvements in our analysis, namely regarding the inclusion of the theoretical uncertainties when investigating the reproduction of experimental data sets on the basis of a given `theoretical' solution, modifications in the parameterisation of the form factors of the proton and of the pion entering the electromagnetic part of the $\\pi N$ amplitude, and the inclusion of the effects of the variation of the $\\sigma$-meson mass when fitting the ETH model of the $\\pi N$ interaction to the experimental data. The new analysis of the CHAOS DCSs confirms our earlier conclusions and casts doubt on the value for the $\\pi...

  3. Precision Measurements of d(d,p)t and d(d,n)^3He Total Cross Sections at Big-Bang Nucleosynthesis Energies

    E-Print Network [OSTI]

    D. S. Leonard; H. J. Karwowski; C. R. Brune; B. M. Fisher; E. J. Ludwig

    2006-06-01

    Recent Wilkinson Microwave Anisotropy Probe (WMAP) measurements have determined the baryon density of the Universe $\\Omega_b$ with a precision of about 4%. With $\\Omega_b$ tightly constrained, comparisons of Big Bang Nucleosynthesis (BBN) abundance predictions to primordial abundance observations can be made and used to test BBN models and/or to further constrain abundances of isotopes with weak observational limits. To push the limits and improve constraints on BBN models, uncertainties in key nuclear reaction rates must be minimized. To this end, we made new precise measurements of the d(d,p)t and d(d,n)^3He total cross sections at lab energies from 110 keV to 650 keV. A complete fit was performed in energy and angle to both angular distribution and normalization data for both reactions simultaneously. By including parameters for experimental variables in the fit, error correlations between detectors, reactions, and reaction energies were accurately tabulated by computational methods. With uncertainties around 2% +/- 1% scale error, these new measurements significantly improve on the existing data set. At relevant temperatures, using the data of the present work, both reaction rates are found to be about 7% higher than those in the widely used Nuclear Astrophysics Compilation of Reaction Rates (NACRE). These data will thus lead not only to reduced uncertainties, but also to modifications in the BBN abundance predictions.

  4. Level statistics for continuous energy spectra with application to the hydrogen atom in crossed electric and magnetic fields

    SciTech Connect (OSTI)

    Hegerfeldt, G.C.; Henneberg, R. (Institut fuer Theoretische Physik, University of Goettingen, D-37073 Goettingen (Germany))

    1994-05-01

    The statistical analysis of energy levels, a powerful tool in the study of quantum systems, is applicable to discrete spectra. Here we propose an approach to carry level statistics over to continuous energy spectra, paradoxical as this may sound at first. The approach proceeds in three steps, first a discretization of the spectrum by cutoffs, then a statistical analysis of the resulting discrete spectra, and finally a determination of the limit distributions as the cutoffs are removed. In this way the notions of Wigner and Poisson distributions for nearest-neighbor spacing (NNS), usually associated with quantum chaos and regularity, can be carried over to systems with a purely continuous energy spectrum. The approach is demonstrated for the hydrogen atom in perpendicular electric and magnetic fields. This system has a purely continuous energy spectrum from [minus][infinity] to [infinity]. Depending on the field parameters, we find for the NNS a Poisson or a Wigner distribution, or a transitional behavior. We also outline how to determine physically relevant resonances in our approach by a stabilization method.

  5. Neutron Total Cross Sections of {sup 235}U From Transmission Measurements in the Energy Range 2 keV to 300 keV and Statistical Model Analysis of the Data

    SciTech Connect (OSTI)

    Derrien, H.; Harvey, J.A.; Larson, N.M.; Leal, L.C.; Wright, R.Q.

    2000-05-01

    The average {sup 235}U neutron total cross sections were obtained in the energy range 2 keV to 330 keV from high-resolution transmission measurements of a 0.033 atom/b sample.1 The experimental data were corrected for the contribution of isotope impurities and for resonance self-shielding effects in the sample. The results are in very good agreement with the experimental data of Poenitz et al.4 in the energy range 40 keV to 330 keV and are the only available accurate experimental data in the energy range 2 keV to 40 keV. ENDF/B-VI evaluated data are 1.7% larger. The SAMMY/FITACS code 2 was used for a statistical model analysis of the total cross section, selected fission cross sections and data in the energy range 2 keV to 200 keV. SAMMY/FITACS is an extended version of SAMMY which allows consistent analysis of the experimental data in the resolved and unresolved resonance region. The Reich-Moore resonance parameters were obtained 3 from a SAMMY Bayesian fits of high resolution experimental neutron transmission and partial cross section data below 2.25 keV, and the corresponding average parameters and covariance data were used in the present work as input for the statistical model analysis of the high energy range of the experimental data. The result of the analysis shows that the average resonance parameters obtained from the analysis of the unresolved resonance region are consistent with those obtained in the resolved energy region. Another important result is that ENDF/B-VI capture cross section could be too small by more than 10% in the energy range 10 keV to 200 keV.

  6. State-resolved differential and integral cross sections for the reaction HD2\\HD,,v 3,j 07...D at 1.64 eV collision energy

    E-Print Network [OSTI]

    at 1.64 eV collision energy Brian D. Bean,a) James D. Ayers, Fe´lix Ferna´ndez-Alonso,b) and Richard N D2 HD(v 3,j 0­7) D at 1.64 0.05 eV collision energy. Although the integral cross sections do measurements of the hydro- gen exchange reaction are crucial to the understanding of this ``simplest'' of all

  7. North American Cross-Border

    E-Print Network [OSTI]

    Consumption in USA and Canada 21 Figure 8: Electricity Export as a Fraction of Domestic Consumption in USANorth American Cross-Border Electricity Trade Ian M. Loomis Virginia Center for Coal and Energy ii List of Tables ii List of Figures 1 EXECUTIVE SUMMARY 2 INTRODUCTION 5 ELECTRICITY GENERATION

  8. Semi-Inclusive Charged-Pion Electroproduction off Protons and Deuterons: Cross Sections, Ratios and Access to the Quark-Parton Model at Low Energies

    E-Print Network [OSTI]

    R. Asaturyan; R. Ent; H. Mkrtchyan; T. Navasardyan; V. Tadevosyan; G. S. Adams; A. Ahmidouch; T. Angelescu; J. Arrington; A. Asaturyan; O. K. Baker; N. Benmouna; C. Bertoncini; H. P. Blok; W. U. Boeglin; P. E. Bosted; H. Breuer; M. E. Christy; S. H. Connell; Y. Cui; M. M. Dalton; S. Danagoulian; D. Day; J. A. Dunne; D. Dutta; N. El Khayari; H. C. Fenker; V. V. Frolov; L. Gan; D. Gaskell; K. Hafidi; W. Hinton; R. J. Holt; T. Horn; G. M. Huber; E. Hungerford; X. Jiang; M. Jones; K. Joo; N. Kalantarians; J. J. Kelly; C. E. Keppel; V. Kubarovsky; Y. Li; Y. Liang; D. Mack; S. P. Malace; P. Markowitz; E. McGrath; P. McKee; D. G. Meekins; A. Mkrtchyan; B. Moziak; G. Niculescu; I. Niculescu; A. K. Opper; T. Ostapenko; P. E. Reimer; J. Reinhold; J. Roche; S. E. Rock; E. Schulte; E. Segbefia; C. Smith; G. R. Smith; P. Stoler; L. Tang; M. Ungaro; A. Uzzle; S. Vidakovic; A. Villano; W. F. Vulcan; M. Wang; G. Warren; F. R. Wesselmann; B. Wojtsekhowski; S. A. Wood; C. Xu; L. Yuan; X. Zheng

    2011-12-15

    A large set of cross sections for semi-inclusive electroproduction of charged pions ($\\pi^\\pm$) from both proton and deuteron targets was measured. The data are in the deep-inelastic scattering region with invariant mass squared $W^2$ > 4 GeV$^2$ and range in four-momentum transfer squared $2 pion production mechanisms. The x, z and $P_t^2$ dependences of several ratios (the ratios of favored-unfavored fragmentation functions, charged pion ratios, deuteron-hydrogen and aluminum-deuteron ratios for $\\pi^+$ and $\\pi^-$) have been studied. The ratios are found to be in good agreement with expectations based upon a high-energy quark-parton model description. We find the azimuthal dependences to be small, as compared to exclusive pion electroproduction, and consistent with theoretical expectations based on tree-level factorization in terms of transverse-momentum-dependent parton distribution and fragmentation functions. In the context of a simple model, the initial transverse momenta of $d$ quarks are found to be slightly smaller than for $u$ quarks, while the transverse momentum width of the favored fragmentation function is about the same as for the unfavored one, and both fragmentation widths are larger than the quark widths.

  9. Semi-Inclusive Charged-Pion Electroproduction off Protons and Deuterons: Cross Sections, Ratios and Access to the Quark-Parton Model at Low Energies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Asaturyan, R; Mkrtchyan, H; Navasardyan, T; Tadevosyan, V; Adams, G S; Ahmidouch, A; Angelescu, T; Arrington, J; Asaturyan, A; Baker, O K; Benmouna, N; Bertoncini, C; Blok, H P; Boeglin, W U; Bosted, P E; Breuer, H; Christy, M E; Connell, S H; Cui, Y; Dalton, M M; Danagoulian, S; Day, D; Dunne, J A; Dutta, D; El Khayari, N; Fenker, H C; Frolov, V V; Gan, L; Gaskell, D; Hafidi, K; Hinton, W; Holt, R J; Horn, T; Huber, G M; Hungerford, E; Jiang, X; Jones, M; Joo, K; Kalantarians, N; Kelly, J J; Keppel, C E; Kubarovsky, V; Li, Y; Liang, Y; Mack, D; Malace, S P; Markowitz, P; McGrath, E; McKee, P; Meekins, D G; Mkrtchyan, A; Moziak, B; Niculescu, G; Niculescu, I; Opper, A K; Ostapenko, T; Reimer, P E; Reinhold, J; Roche, J; Rock, S E; Schulte, E; Segbefia, E; Smith, C; Smith, G R; Stoler, P; Tang, L; Ungaro, M; Uzzle, A; Vidakovic, S; Villano, A; Vulcan, W F; Wang, M; Warren, G; Wesselmann, F R; Wojtsekhowski, B; Wood, S A; Xu, C; Yuan, L

    2012-01-11

    A large set of cross sections for semi-inclusive electroproduction of charged pions (?±) from both proton and deuteron targets was measured. The data are in the deep-inelastic scattering region with invariant mass squared W2 > 4 GeV2 and range in four-momentum transfer squared 2 2 2, and cover a range in the Bjorken scaling variable 0.2 t2 2. The invariant mass that goes undetected, Mx or W', is in the nucleon resonance region, W' t2 dependences of several ratios (the ratios of favored-unfavored fragmentation functions, charged pion ratios, deuteron-hydrogen and aluminum-deuteron ratios for ?+ and ?-) have been studied. The ratios are found to be in good agreement with expectations based upon a high-energy quark-parton model description. We find the azimuthal dependences to be small, as compared to exclusive pion electroproduction, and consistent with theoretical expectations based on tree-level factorization in terms of transverse-momentum-dependent parton distribution and fragmentation functions. In the context of a simple model, the initial transverse momenta of d quarks are found to be slightly smaller than for u quarks, while the transverse momentum width of the favored fragmentation function is about the same as for the unfavored one, and both fragmentation widths are larger than the quark widths.

  10. Semi-inclusive charged-pion electroproduction off protons and deuterons: Cross sections, ratios, and access to the quark-parton model at low energies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Asaturyan, R.; Ent, R.; Mkrtchyan, H.; Navasardyan, T.; Tadevosyan, V.; Adams, G. S.; Ahmidouch, A.; Angelescu, T.; Arrington, J.; Asaturyan, A.; et al

    2012-01-01

    A large set of cross sections for semi-inclusive electroproduction of charged pions (?±) from both proton and deuteron targets was measured. The data are in the deep-inelastic scattering region with invariant mass squared W2 > 4 GeV2 and range in four-momentum transfer squared 2 2 2, and cover a range in the Bjorken scaling variable 0.2 t2 2. The invariant mass that goes undetected, Mx or W',more »is in the nucleon resonance region, W' t2 dependences of several ratios (the ratios of favored-unfavored fragmentation functions, charged pion ratios, deuteron-hydrogen and aluminum-deuteron ratios for ?+ and ?-) have been studied. The ratios are found to be in good agreement with expectations based upon a high-energy quark-parton model description. We find the azimuthal dependences to be small, as compared to exclusive pion electroproduction, and consistent with theoretical expectations based on tree-level factorization in terms of transverse-momentum-dependent parton distribution and fragmentation functions. In the context of a simple model, the initial transverse momenta of d quarks are found to be slightly smaller than for u quarks, while the transverse momentum width of the favored fragmentation function is about the same as for the unfavored one, and both fragmentation widths are larger than the quark widths.« less

  11. Measurement of the Higgs boson production cross section at 7, 8 and 13 TeV center-of-mass energies in the $H\\rightarrow\\gamma\\gamma$ channel with the ATLAS detector

    E-Print Network [OSTI]

    The ATLAS collaboration

    2015-01-01

    Measurements of the fiducial cross section performed in the $H\\rightarrow\\gamma\\gamma$ decay channel are presented for Higgs boson production in proton-proton collisions at center-of-mass energies of 7, 8 and 13 TeV at the ATLAS experiment. Values for the measured total production cross section for a Standard Model Higgs boson are also given. The signal is extracted using a fit to the diphoton invariant-mass spectrum assuming that the natural width of the resonance is much smaller than the experimental resolution. The signal yield is corrected for the effects of detector efficiency and resolution. The measured cross sections, statistically limited, are in agreement with Standard Model expectation.

  12. Semi-inclusive charged-pion electroproduction off protons and deuterons: Cross sections, ratios, and access to the quark-parton model at low energies

    SciTech Connect (OSTI)

    Asaturyan, R.; Ent, R.; Mkrtchyan, H.; Navasardyan, T.; Tadevosyan, V.; Adams, G. S.; Ahmidouch, A.; Angelescu, T.; Arrington, J.; Asaturyan, A.; Baker, O. K.; Benmouna, N.; Bertoncini, C.; Blok, H. P.; Boeglin, W. U.; Bosted, P. E.; Breuer, H.; Christy, M. E.; Connell, S. H.; Cui, Y.; Dalton, M. M.; Danagoulian, S.; Day, D.; Dunne, J. A.; Dutta, D.; El Khayari, N.; Fenker, H. C.; Frolov, V. V.; Gan, L.; Gaskell, D.; Hafidi, K.; Hinton, W.; Holt, R. J.; Horn, T.; Huber, G. M.; Hungerford, E.; Jiang, X.; Jones, M.; Joo, K.; Kalantarians, N.; Kelly, J. J.; Keppel, C. E.; Kubarovsky, V.; Li, Y.; Liang, Y.; Mack, D.; Malace, S. P.; Markowitz, P.; McGrath, E.; McKee, P.; Meekins, D. G.; Mkrtchyan, A.; Moziak, B.; Niculescu, G.; Niculescu, I.; Opper, A. K.; Ostapenko, T.; Reimer, P. E.; Reinhold, J.; Roche, J.; Rock, S. E.; Schulte, E.; Segbefia, E.; Smith, C.; Smith, G. R.; Stoler, P.; Tang, L.; Ungaro, M.; Uzzle, A.; Vidakovic, S.; Villano, A.; Vulcan, W. F.; Wang, M.; Warren, G.; Wesselmann, F. R.; Wojtsekhowski, B.; Wood, S. A.; Xu, C.; Yuan, L.; Zheng, X.

    2012-01-01

    A large set of cross sections for semi-inclusive electroproduction of charged pions (?±) from both proton and deuteron targets was measured. The data are in the deep-inelastic scattering region with invariant mass squared W2 > 4 GeV2 and range in four-momentum transfer squared 2 < Q2 < 4 (GeV/c)2, and cover a range in the Bjorken scaling variable 0.2 < x < 0.6. The fractional energy of the pions spans a range 0.3 < z < 1, with small transverse momenta with respect to the virtual-photon direction, Pt2 < 0.2 (GeV/c)2. The invariant mass that goes undetected, Mx or W', is in the nucleon resonance region, W' < 2 GeV. The new data conclusively show the onset of quark-hadron duality in this process, and the relation of this phenomenon to the high-energy factorization ansatz of electron-quark scattering and subsequent quark ? pion production mechanisms. The x, z and Pt2 dependences of several ratios (the ratios of favored-unfavored fragmentation functions, charged pion ratios, deuteron-hydrogen and aluminum-deuteron ratios for ?+ and ?-) have been studied. The ratios are found to be in good agreement with expectations based upon a high-energy quark-parton model description. We find the azimuthal dependences to be small, as compared to exclusive pion electroproduction, and consistent with theoretical expectations based on tree-level factorization in terms of transverse-momentum-dependent parton distribution and fragmentation functions. In the context of a simple model, the initial transverse momenta of d quarks are found to be slightly smaller than for u quarks, while the transverse momentum width of the favored fragmentation function is about the same as for the unfavored one, and both fragmentation widths are larger than the quark widths.

  13. Asymptotic cross sections for composite projectile reactions 

    E-Print Network [OSTI]

    Neves, Andrea Marolt Pimenta

    1995-01-01

    The First Born Approximation has been used to compute excitation and ionization cross sections for ion-atom collisions involving two electrons at high energies. The projectile is treated semi-classically following a straight ...

  14. Trajectory surface hopping study of the O({sup 3}P) + C{sub 2}H{sub 2} reaction dynamics: Effect of collision energy on the extent of intersystem crossing

    SciTech Connect (OSTI)

    Rajak, Karunamoy; Maiti, Biswajit

    2014-01-28

    Intersystem crossing (ISC) dynamics plays an important role in determining the product branching in the O({sup 3}P) + C{sub 2}H{sub 2} reaction despite the necessarily small spin-orbit coupling constant values. In this study we investigate the effect of collision energy on the extent of the contribution of a spin non-conserving route through ISC dynamics to the product distributions at the initial collision energies 8.2, 9.5, and 13.1 kcal/mol. A direct dynamics trajectory surface hopping method is employed with potential energy surfaces generated at the unrestricted B3LYP/6-31G(d,p) level of theory to perform nonadiabatic dynamics. To make our calculation simpler, nonadibatic transitions were only considered at the triplet-singlet intersections. At the crossing points, Landau-Zener transition probabilities were calculated using spin-orbit coupling constant values computed at the same geometry. The Landau-Zener model for the title reaction is validated against a more rigorous Tully's fewest switches method and found to be working reasonably well as expected because of weak spin-orbit coupling. We have compared our results with the recent crossed molecular beam experiments and observed a very good agreement with respect to the primary product branching ratios. Our calculation revealed that there is no noticeable effect of the initial collision energy on the overall product distributions that corroborates the recent experimental findings. Our calculation indicates, however, that the extent of intersystem crossing contributions varies significantly with collision energy, needed to be verified, experimentally.

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet Metering TheSolarNVProperty TaxState EnergyRhodeAnaheim PublicHolyEnergy

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet Metering TheSolarNVProperty TaxState EnergyRhodeAnaheim PublicHolyEnergySmall

  17. Cross Sections: Key for Modeling Vasili Kharchenko

    E-Print Network [OSTI]

    Johnson, Robert E.

    electrons H+ Heq+ Oq+ Sq+ ions H C He O N S energetic neutral atoms Energy relaxation of fast particles; non-thermal · Energy deposition by ENAs precipitating into planetary atmospheres Computational Methods: · Quantum scattering dominates · Angular dependence are also important at thermal energies. · Total cross section may

  18. Systematic study of the experimental measurements on $J/\\psi$ cross section and kinematic distribution in $p+p$ collisions at different energies

    E-Print Network [OSTI]

    Zha, Wangmei; Ma, Rongrong; Ruan, Lijuan; Tang, Zebo; Xu, Zhangbu; Yang, Chi; Yang, Qian; Yang, Shuai

    2015-01-01

    The world experimental data on cross section and kinematic distribution in $p+p$ and $p+A$ collisions at $\\sqrt{s}$ = 6.8 - 7000 GeV are examined in systematic way. The $\\sqrt{s}$ dependence of the inclusive cross section, rapidity and transverse momentum distributions are studied phenomenologically. We explore empirical formulas to obtain the total cross section, rapidity and transverse momentum ($p_{T}$) distribution. This is crucial for the interpretation of A$+$A $J/\\psi$ results at RHIC when the $p+p$ reference data are not available. In addition, the cross section at mid-rapidity and transverse momentum distributions in $p+p$ collisions at $\\sqrt{s}$ = 39 and 62.4 GeV are evaluated.

  19. Systematic study of the experimental measurements on $J/?$ cross section and kinematic distribution in $p+p$ collisions at different energies

    E-Print Network [OSTI]

    Wangmei Zha; Bingchu Huang; Rongrong Ma; Lijuan Ruan; Zebo Tang; Zhangbu Xu; Chi Yang; Qian Yang; Shuai Yang

    2015-06-30

    The world experimental data on cross section and kinematic distribution in $p+p$ and $p+A$ collisions at $\\sqrt{s}$ = 6.8 - 7000 GeV are examined in systematic way. The $\\sqrt{s}$ dependence of the inclusive cross section, rapidity and transverse momentum distributions are studied phenomenologically. We explore empirical formulas to obtain the total cross section, rapidity and transverse momentum ($p_{T}$) distribution. This is crucial for the interpretation of A$+$A $J/\\psi$ results at RHIC when the $p+p$ reference data are not available. In addition, the cross section at mid-rapidity and transverse momentum distributions in $p+p$ collisions at $\\sqrt{s}$ = 39 and 62.4 GeV are evaluated.

  20. Updated Measurement of the Single Top Quark Production Cross Section and $V{tb}$ in the Missing Transverse Energy Plus Jets Topology in $p\\bar{p}$ Collisions at $\\sqrt{s} = 1.96$ TeV

    E-Print Network [OSTI]

    CDF Collaboration; T. Aaltonen; S. Amerio; D. Amidei; A. Anastassov; A. Annovi; J. Antos; G. Apollinari; J. A. Appel; T. Arisawa; A. Artikov; J. Asaadi; W. Ashmanskas; B. Auerbach; A. Aurisano; F. Azfar; W. Badgett; T. Bae; A. Barbaro-Galtieri; V. E. Barnes; B. A. Barnett; P. Barria; P. Bartos; M. Bauce; F. Bedeschi; S. Behari; G. Bellettini; J. Bellinger; D. Benjamin; A. Beretvas; A. Bhatti; K. R. Bland; B. Blumenfeld; A. Bocci; A. Bodek; D. Bortoletto; J. Boudreau; A. Boveia; L. Brigliadori; C. Bromberg; E. Brucken; J. Budagov; H. S. Budd; K. Burkett; G. Busetto; P. Bussey; P. Butti; A. Buzatu; A. Calamba; S. Camarda; M. Campanelli; F. Canelli; B. Carls; D. Carlsmith; R. Carosi; S. Carrillo; B. Casal; M. Casarsa; A. Castro; P. Catastini; D. Cauz; V. Cavaliere; A. Cerri; L. Cerrito; Y. C. Chen; M. Chertok; G. Chiarelli; G. Chlachidze; K. Cho; D. Chokheli; A. Clark; C. Clarke; M. E. Convery; J. Conway; M. Corbo; M. Cordelli; C. A. Cox; D. J. Cox; M. Cremonesi; D. Cruz; J. Cuevas; R. Culbertson; N. d'Ascenzo; M. Datta; P. de Barbaro; L. Demortier; L. Marchese; M. Deninno; F. Devoto; M. D'Errico; A. Di Canto; B. Di Ruzza; J. R. Dittmann; M. D'Onofrio; S. Donati; M. Dorigo; A. Driutti; K. Ebina; R. Edgar; A. Elagin; R. Erbacher; S. Errede; B. Esham; S. Farrington; J. P. Fernández Ramos; R. Field; G. Flanagan; R. Forrest; M. Franklin; J. C. Freeman; H. Frisch; Y. Funakoshi; C. Galloni; A. F. Garfinkel; P. Garosi; H. Gerberich; E. Gerchtein; S. Giagu; V. Giakoumopoulou; K. Gibson; C. M. Ginsburg; N. Giokaris; P. Giromini; V. Glagolev; D. Glenzinski; M. Gold; D. Goldin; A. Golossanov; G. Gomez; G. Gomez-Ceballos; M. Goncharov; O. González López; I. Gorelov; A. T. Goshaw; K. Goulianos; E. Gramellini; C. Grosso-Pilcher; R. C. Group; J. Guimaraes da Costa; S. R. Hahn; J. Y. Han; F. Happacher; K. Hara; M. Hare; R. F. Harr; T. Harrington-Taber; K. Hatakeyama; C. Hays; J. Heinrich; M. Herndon; A. Hocker; Z. Hong; W. Hopkins; S. Hou; R. E. Hughes; U. Husemann; M. Hussein; J. Huston; G. Introzzi; M. Iori; A. Ivanov; E. James; D. Jang; B. Jayatilaka; E. J. Jeon; S. Jindariani; M. Jones; K. K. Joo; S. Y. Jun; T. R. Junk; M. Kambeitz; T. Kamon; P. E. Karchin; A. Kasmi; Y. Kato; W. Ketchum; J. Keung; B. Kilminster; D. H. Kim; H. S. Kim; J. E. Kim; M. J. Kim; S. B. Kim; S. H. Kim; Y. K. Kim; Y. J. Kim; N. Kimura; M. Kirby; K. Knoepfel; K. Kondo; D. J. Kong; J. Konigsberg; A. V. Kotwal; M. Kreps; J. Kroll; M. Kruse; T. Kuhr; M. Kurata; A. T. Laasanen; S. Lammel; M. Lancaster; K. Lannon; G. Latino; H. S. Lee; J. S. Lee; S. Leo; S. Leone; J. D. Lewis; A. Limosani; E. Lipeles; A. Lister; H. Liu; Q. Liu; T. Liu; S. Lockwitz; A. Loginov; A. Lucŕ; D. Lucchesi; J. Lueck; P. Lujan; P. Lukens; G. Lungu; J. Lys; R. Lysak; R. Madrak; P. Maestro; S. Malik; G. Manca; A. Manousakis-Katsikakis; F. Margaroli; P. Marino; K. Matera; M. E. Mattson; A. Mazzacane; P. Mazzanti; R. McNulty; A. Mehta; P. Mehtala; C. Mesropian; T. Miao; D. Mietlicki; A. Mitra; H. Miyake; S. Moed; N. Moggi; C. S. Moon; R. Moore; M. J. Morello; A. Mukherjee; Th. Muller; P. Murat; M. Mussini; J. Nachtman; Y. Nagai; J. Naganoma; I. Nakano; A. Napier; J. Nett; C. Neu; T. Nigmanov; L. Nodulman; S. Y. Noh; O. Norniella; L. Oakes; S. H. Oh; Y. D. Oh; I. Oksuzian; T. Okusawa; R. Orava; L. Ortolan; C. Pagliarone; E. Palencia; P. Palni; V. Papadimitriou; W. Parker; G. Pauletta; M. Paulini; C. Paus; T. J. Phillips; E. Pianori; J. Pilot; K. Pitts; C. Plager; L. Pondrom; S. Poprocki; K. Potamianos; F. Prokoshin; A. Pranko; F. Ptohos; G. Punzi; I. Redondo Fernández; P. Renton; M. Rescigno; F. Rimondi; L. Ristori; A. Robson; T. Rodriguez; S. Rolli; M. Ronzani; R. Roser; J. L. Rosner; F. Ruffini; A. Ruiz; J. Russ; V. Rusu; W. K. Sakumoto; Y. Sakurai; L. Santi; K. Sato; V. Saveliev; A. Savoy-Navarro; P. Schlabach; E. E. Schmidt; T. Schwarz; L. Scodellaro; F. Scuri; S. Seidel; Y. Seiya; A. Semenov; F. Sforza; S. Z. Shalhout; T. Shears; P. F. Shepard; M. Shimojima; M. Shochet; I. Shreyber-Tecker; A. Simonenko; K. Sliwa; J. R. Smith; F. D. Snider; V. Sorin; H. Song; M. Stancari; R. St. Denis; D. Stentz; J. Strologas; Y. Sudo; A. Sukhanov; I. Suslov; K. Takemasa; Y. Takeuchi; J. Tang; M. Tecchio; P. K. Teng; J. Thom; E. Thomson; V. Thukral; D. Toback; S. Tokar; K. Tollefson; T. Tomura; D. Tonelli; S. Torre; D. Torretta; P. Totaro; M. Trovato; F. Ukegawa; S. Uozumi; F. Vázquez; G. Velev; C. Vellidis; C. Vernieri; M. Vidal; R. Vilar; J. Vizán; M. Vogel; G. Volpi; P. Wagner; R. Wallny; S. M. Wang; D. Waters; W. C. Wester III; D. Whiteson; A. B. Wicklund; S. Wilbur; H. H. Williams; J. S. Wilson; P. Wilson; B. L. Winer; P. Wittich; S. Wolbers; H. Wolfe; T. Wright; X. Wu; Z. Wu; K. Yamamoto; D. Yamato; T. Yang; U. K. Yang; Y. C. Yang; W. -M. Yao; G. P. Yeh; K. Yi; J. Yoh; K. Yorita; T. Yoshida; G. B. Yu; I. Yu; A. M. Zanetti; Y. Zeng; C. Zhou; S. Zucchelli

    2014-10-21

    An updated measurement of the single top quark production cross section is presented using the full data set collected by the Collider Detector at Fermilab (CDF) and corresponding to 9.5 fb${}^{-1}$ of integrated luminosity from proton-antiproton collisions at 1.96 TeV center-of-mass energy. The events selected contain an imbalance in the total transverse energy, jets identified as originating from $b$ quarks, and no identified leptons. The sum of the $s$- and $t$-channel single top quark cross sections is measured to be $3.53_{-1.16}^{+1.25}$ pb and a lower limit on $V_{tb}$ of 0.63 is obtained at the 95% credibility level. These measurements are combined with previously reported CDF results obtained from events with an imbalance in total transverse energy, jets identified as originating from $b$ quarks, and exactly one identified lepton. The combined cross section is measured to be $3.02_{-0.48}^{+0.49}$ pb and a lower limit on $V{tb}$ of 0.84 is obtained at the 95% credibility level.

  1. Measurement of the Cross Section Asymmetry of the Reaction gp-->pi0p in the Resonance Energy Region Eg = 0.5 - 1.1 GeV

    E-Print Network [OSTI]

    F. V. Adamian; A. Yu. Buniatian; G. S. Frangulian; P. I. Galumian; V. H. Grabski; A. V. Hairapetian; H. H. Hakopian; V. K. Hoktanian; J. V. Manukian; A. M. Sirunian; A. H. Vartapetian; H. H. Vartapetian; V. G. Volchinsky; R. A. Arndt; I. I. Strakovsky; R. L. Workman

    2000-11-08

    The cross section asymmetry Sigma has been measured for the photoproduction of pi0-mesons off protons, using polarized photons in the energy range Eg = 0.5 - 1.1 GeV. The CM angular coverage is Theta = 85 - 125 deg with energy and angle steps of 25 MeV and 5 deg, respectively. The obtained Sigma data, which cover the second and third resonance regions, are compared with existing experimental data and recent phenomenological analyses. The influence of these measurements on such analyses is also considered.

  2. Low-energy crossed-beam study of the proton-transfer reaction HCO/sup +/ + H/sub 2/O. -->. H/sub 3/O/sup +/ + CO. [75 eV electron beams

    SciTech Connect (OSTI)

    Moryl, J.E.; Farrar, J.M.

    1982-05-27

    We present a crossed-beam study of the title reaction over the relative energy range 0.64 to 4.04 eV. The reactively scattered H/sub 3/O/sup +/ products are formed exclusively in a very narrow angular range in the backward direction relative to the incoming HCO/sup +/ projectile. The product translational energy distributions indicate that the fraction of the total available energy appearing in product translation increases from 45% at a collision energy 0.64 eV to 73% at 4.04 eV. We argue that deviations from predictions of the spectator stripping model can be correlated with the HCO/sup +/ reagent state preparation, an argument consistent with our observations on the related H/sub 2//sup +/ + H/sub 2/O system (J. Phys. Chem., 85, 1515 (1981)).

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet Metering TheSolarNVProperty TaxState EnergyRhodeAnaheim PublicHoly

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHoly

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHolyTacoma Power- Commercial

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHolyTacoma Power-

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHolyTacoma Power-USDA- Rural

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHolyTacoma Power-USDA-

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHolyTacoma Power-USDA-SCE-

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHolyTacoma Power-USDA-SCE-Large

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHolyTacoma

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHolyTacomaOption- Property

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHolyTacomaOption- PropertyAnaheim

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHolyTacomaOption-

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHolyTacomaOption-Revolving Loan

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNet MeteringCityDollar and EnergyAlternative andHolyTacomaOption-Revolving

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHolyNetDollar and Energy

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHolyNetDollar and EnergyCity

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke EnergyRenewableMassachusettsCity ofBusiness IncentiveAlexandria Light andLarge EnergyRenewableSpring ValleyHoly

  20. Measurements of absolute single differential cross section (SDCS)

    E-Print Network [OSTI]

    Zouros, Theo

    , Office of Basic Energy Sciences, Of­ fice of Energy research, U.S. Department of Energy, Hu­ man Capital and Mobility Program of the EU and the Greek Ministry of Industry, Energy and Technology. SIMION Tuning EnergyMeasurements of absolute single differential cross section (SDCS) [Left] and percentage energy res

  1. 70Ge(p,gamma)71As and 76Ge(p,n)76As cross sections for the astrophysical p process: sensitivity of the optical proton potential at low energies

    E-Print Network [OSTI]

    G. G. Kiss; Gy. Gyurky; Z. Elekes; Zs. Fulop; E. Somorjai; T. Rauscher; M. Wiescher

    2007-11-07

    The cross sections of the 70Ge(p,gamma)71As and 76Ge(p,n)76As reactions have been measured with the activation method in the Gamow window for the astrophysical p process. The experiments were carried out at the Van de Graaff and cyclotron accelerators of ATOMKI. The cross sections have been derived by measuring the decay gamma-radiation of the reaction products. The results are compared to the predictions of Hauser-Feshbach statistical model calculations using the code NON-SMOKER. Good agreement between theoretical and experimental S factors is found. Based on the new data, modifications of the optical potential used for low-energy protons are discussed.

  2. Total Cross Sections for Neutron Scattering

    E-Print Network [OSTI]

    C. R. Chinn; Ch. Elster; R. M. Thaler; S. P. Weppner

    1994-10-19

    Measurements of neutron total cross-sections are both extensive and extremely accurate. Although they place a strong constraint on theoretically constructed models, there are relatively few comparisons of predictions with experiment. The total cross-sections for neutron scattering from $^{16}$O and $^{40}$Ca are calculated as a function of energy from $50-700$~MeV laboratory energy with a microscopic first order optical potential derived within the framework of the Watson expansion. Although these results are already in qualitative agreement with the data, the inclusion of medium corrections to the propagator is essential to correctly predict the energy dependence given by the experiment.

  3. A nuclear cross section data handbook

    SciTech Connect (OSTI)

    Fisher, H.O.M.

    1989-12-01

    Isotopic information, reaction data, data availability, heating numbers, and evaluation information are given for 129 neutron cross-section evaluations, which are the source of the default cross sections for the Monte Carlo code MCNP. Additionally, pie diagrams for each nuclide displaying the percent contribution of a given reaction to the total cross section are given at 14 MeV, 1 MeV, and thermal energy. Other information about the evaluations and their availability in continuous-energy, discrete-reaction, and multigroup forms is provided. The evaluations come from ENDF/B-V, ENDL85, and the Los Alamos Applied Nuclear Science Group T-2. Graphs of all neutron and photon production cross-section reactions for these nuclides have been categorized and plotted. 21 refs., 5 tabs.

  4. Beryllium and Graphite High-Accuracy Total Cross-Section Measurements in the Energy Range from 24 to 900 keV

    E-Print Network [OSTI]

    Danon, Yaron

    cross section and has been used as a neutron reflector in compact high flux reactors such as the Ad- vanced Test Reactor1 ~ATR!. Because of its low atomic mass, beryllium can also be used as a moderator, and its light weight makes it favorable in space applications.1 Beryllium also has applications in fusion

  5. Measurement of the inelastic pp cross-section at a centre-of-mass energy of ?s = 7 TeV

    E-Print Network [OSTI]

    Counts, Ian Thomas Hunt

    The cross-section for inelastic proton-proton collisions, with at least one prompt long-lived charged particle of transverse momentum p [subscript T] > 0.2GeV/c in the pseudorapidity range 2.0 < ? < 4.5, is measured by the ...

  6. Update of the e^+e^-\\to?^+?^- cross section measured by SND detector in the energy region 400<\\sqrt{s}<1000 MeV

    E-Print Network [OSTI]

    M. N. Achasov; K. I. Beloborodov; A. V. Berdyugin; A. G. Bogdanchikov; A. V. Bozhenok; A. D. Bukin; D. A. Bukin; T. V. Dimova; V. P. Druzhinin; V. B. Golubev; A. A. Korol; S. V. Koshuba; E. V. Pakhtusova; S. I. Serednyakov; Yu. M. Shatunov; V. A. Sidorov; Z. K. Silagadze; A. N. Skrinsky; Yu. A. Tikhonov; A. V. Vasiljev

    2006-05-05

    The corrected cross section of the e^+e^-\\to\\pi^+\\pi^- process measured in the SND experiment at the VEPP-2M e^+e^- collider is presented. The update is necessary due to a flaw in the e^+e^-\\to\\pi^+\\pi^- and e^+e^-\\to\\mu^+\\mu^- Monte Carlo events generators used previously in data analysis.

  7. Neutron physics of the Re/Os clock. II. The (n,n{sup '}) cross section of {sup 187}Os at 30 keV neutron energy

    SciTech Connect (OSTI)

    Mosconi, M.; Heil, M.; Kaeppeler, F.; Plag, R.; Mengoni, A.

    2010-07-15

    The inelastic neutron-scattering cross section of {sup 187}Os has been determined in a time-of-flight experiment at the Karlsruhe 3.7-MV Van de Graaff accelerator. An almost monoenergetic beam of 30-keV neutrons was produced at the threshold of the {sup 7}Li(p,n){sup 7}Be reaction. Information on the inelastic channel is required for reliable calculations of the so-called stellar enhancement factor, by which the laboratory cross section of {sup 187}Os must be corrected in order to account for the thermal population of low-lying excited states at the temperatures of s-process nucleosynthesis, in particular of the important state at 9.75 keV. This correction represents a crucial step in the interpretation of the {sup 187}Os/{sup 187}Re pair as a cosmochronometer.

  8. Neutron Resonance Parameters of 238U and the Calculated Cross Sections from the Reich-Moore Analysis of Experimental Data in the Neutron Energy Range from 0 keV to 20 keV

    SciTech Connect (OSTI)

    Derrien, H

    2005-12-05

    The neutron resonance parameters of {sup 238}U were obtained from a SAMMY analysis of high-resolution neutron transmission measurements and high-resolution capture cross section measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA) in the years 1970-1990, and from more recent transmission and capture cross section measurements performed at the Geel Linear Accelerator (GELINA). Compared with previous evaluations, the energy range for this resonance analysis was extended from 10 to 20 keV, taking advantage of the high resolution of the most recent ORELA transmission measurements. The experimental database and the method of analysis are described in this report. The neutron transmissions and the capture cross sections calculated with the resonance parameters are compared with the experimental data. A description is given of the statistical properties of the resonance parameters and of the recommended values of the average parameters. The new evaluation results in a slight decrease of the effective capture resonance integral and improves the prediction of integral thermal benchmarks by 70 pcm to 200 pcm.

  9. Measurement of the state-specific differential cross section for the H D2~HD(v 4, J 3) D reaction at a collision energy

    E-Print Network [OSTI]

    Zare, Richard N.

    . The photolysis of HI at 212.8 nm initiates the H D2 reaction. The HD v 4, J 3 velocity distribution is determined resonance VSDR ,16 velocity-aligned photo- fragment dynamics,17 and photoinitiated bulb reactions.22 It hasMeasurement of the state-specific differential cross section for the H D2~HD(v 4, J 3) D reaction

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive Program BelowPublic BenefitsDollar andCentral GeorgiaHoly

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHoly

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHolyNet Metering The ACC

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHolyNet Metering The

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHolyNet Metering TheUSDA-

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHolyNet Metering

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHolyNet MeteringLow-Interest

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHolyNet

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHolyNetDollar and

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHolyNetDollar andState

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHolyNetDollar

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHolyNetDollarSmall Business

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTherNetBusiness Incentive ProgramLocalRenewable PortfolioHolyNetDollarSmall

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDuke Energy Progress- Commercial andMarin County-SmallLocal GovernmentInterconnection Standards InterconnectionHoly

  4. MODELING AND FISSION CROSS SECTIONS FOR AMERICIUM.

    SciTech Connect (OSTI)

    ROCHMAN, D.; HERMAN, M.; OBLOZINSKY, P.

    2005-05-01

    This is the final report of the work performed under the LANL contract on the modeling and fission cross section for americium isotopes (May 2004-June 2005). The purpose of the contract was to provide fission cross sections for americium isotopes with the nuclear reaction model code EMPIRE 2.19. The following work was performed: (1) Fission calculations capability suitable for americium was implemented to the EMPIRE-2.19 code. (2) Calculations of neutron-induced fission cross sections for {sup 239}Am to {sup 244g}Am were performed with EMPIRE-2.19 for energies up to 20 MeV. For the neutron-induced reaction of {sup 240}Am, fission cross sections were predicted and uncertainties were assessed. (3) Set of fission barrier heights for each americium isotopes was chosen so that the new calculations fit the experimental data and follow the systematics found in the literature.

  5. Unitary limit in crossed Andreev transport

    E-Print Network [OSTI]

    I. A. Sadovskyy; G. B. Lesovik; V. M. Vinokur

    2015-04-10

    Crossed Andreev reflection splitting a Cooper pair into the metal through spatially separated terminals as two spin and energy entangled electrons is one of the most promising approaches to generation of entangled electron pairs. However, while the conventional (local) Andreev reflection occurs with the probability of unity, the probability of crossed Andreev reflection is significantly suppressed. We propose a one-dimensional model capturing main features of the hybrid normal metal-superconductor setups used in experiments, which allows to achieve a unitary limit of crossed Andreev transport, i.e. splitting of Cooper pairs with the 100% efficiency. We calculate and analyze electron-to-hole transmission probability, differential conductance, and cross-correlations of currents passing through different terminals thus putting the ideas of maximum possible outcome on a firm analytical basis.

  6. Electrostatic-plasma-wave energy flux

    E-Print Network [OSTI]

    Amendt, P.; Rostoker, N.

    1984-01-01

    would reduce cross- field wave-energy convection since theor cross-field leakage of wave energy are ap- that thefeature of cross-field wave-energy transport, previous con-

  7. Energy Information Handbook: Applications for Energy-Efficient Building Operations

    E-Print Network [OSTI]

    Granderson, Jessica

    2013-01-01

    and display building energy data. iii Glossary Energy1) How to interpret energy data, to improve efficiency andutility bills or interval energy data. Longitudinal Cross-

  8. Choosing between Blue Cross plans...

    E-Print Network [OSTI]

    Burke, Peter

    Choosing between Blue Cross plans... ...when you have Medicare PresentedPresented By Glenn. Medicare and UC II. Medicare and Anthem Blue Cross III. Plan Comparisons · Pros/Cons · Medical coverage will automatically be enrolled in Part D by Blue Cross No additional Part D premium · Blue Cross members have

  9. Measurement of the Single Top Quark Cross Section in the Lepton Plus Jets Final State in Proton-Antiproton Collisions at a Center of Mass Energy of 1.96 TeV Using the CDF II Detector

    SciTech Connect (OSTI)

    Wu, Zhenbin

    2012-01-01

    We present a measurement of the single top quark cross section in the lepton plus jets final state using an integrated luminosity corresponding to 7.5~\\text{fb}^{-1} of p\\bar p collision data collected by the Collider Detector at Fermilab. The single top candidate events are identified by the signature of a charged lepton, large missing transverse energy, and two or three jets with at least one of them identified as originating from a bottom quark. A new Monte Carlo generator \\textsc{powheg} is used to model the single top quark production processes, which include {s}-channel, {t}-channel, and {Wt}-channel. A neural network multivariate method is exploited to discriminate the single top quark signal from the comparatively large backgrounds. We measure a single top production cross section of $3.04^{+0.57}_{-0.53}$ (\\mathrm{stat.~+~syst.}) pb assuming $m_{\\rm top}=172.5$~GeV/$c^2$. In addition, we extract the CKM matrix element value $|V_{tb}|=0.96\\pm 0.09~(\\mathrm{stat.~+~syst.})\\pm 0.05~(\\mathrm{theory})$ and set a lower limit of |V_{tb}|>0.78 at the 95\\% credibility level.

  10. Path forward for dosimetry cross sections

    SciTech Connect (OSTI)

    Griffin, P.J. [Sandia National Laboratories, Albuquerque, NM 87185-1146 (United States); Peters, C.D. [Sandia Staffing Alliance, Albuquerque, NM 87110 (United States)

    2011-07-01

    In the 1980's the dosimetry community embraced the need for a high fidelity quantification of uncertainty in nuclear data used for dosimetry applications. This led to the adoption of energy-dependent covariance matrices as the accepted manner of quantifying the uncertainty data. The trend for the dosimetry community to require high fidelity treatment of uncertainty estimates has continued to the current time where requirements on nuclear data are codified in standards such as ASTM E 1018. This paper surveys the current state of the dosimetry cross sections and investigates the quality of the current dosimetry cross section evaluations by examining calculated-to-experimental ratios in neutron benchmark fields. In recent years more nuclear-related technical areas are placing an emphasis on uncertainty quantification. With the availability of model-based cross sections and covariance matrices produced by nuclear data codes, some nuclear-related communities are considering the role these covariance matrices should play. While funding within the dosimetry community for cross section evaluations has been very meager, other areas, such as the solar-related astrophysics community and the US Nuclear Criticality Safety Program, have been supporting research in the area of neutron cross sections. The Cross Section Evaluation Working Group (CSEWG) is responsible for the creation and maintenance of the ENDF/B library which has been the mainstay for the reactor dosimetry community. Given the new trends in cross section evaluations, this paper explores the path forward for the US nuclear reactor dosimetry community and its use of the ENDF/B cross-sections. The major concern is maintenance of the sufficiency and accuracy of the uncertainty estimate when used for dosimetry applications. The two major areas of deficiency in the proposed ENDF/B approach are: 1) the use of unrelated covariance matrices in ENDF/B evaluations and 2) the lack of 'due consideration' of experimental data in the evaluation. (authors)

  11. Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Section Data for the 9Be+28Si, 144Sm, and 208Pb Systems at Near-Coulomb-Barrier Energies using Double Folding Potential

    E-Print Network [OSTI]

    W. Y. So; T. Udagawa; K. S. Kim; S. W. Hong; B. T. Kim

    2010-03-14

    Based on the extended optical model with the double folding potential, in which the polarization potential is decomposed into direct reaction (DR) and fusion parts, simultaneous $\\chi^{2}$ analyses are performed of elastic scattering and fusion cross section data for the $^{9}$Be+$^{28}$Si, $^{144}$Sm, and $^{208}$Pb systems at near-Coulomb-barrier energies. We find that the real part of the resultant DR part of the polarization potential is systematically repulsive for all the targets considered, which is consistent with the results deduced from the Continuum Discretized Coupled Channel (CDCC) calculations taking into account the polarization effects due to breakup. Further, it is found that both DR and fusion parts of the extracted polarization potentials satisfy the dispersion relation.

  12. Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Section Data for the $^{12}$C+$^{208}$Pb System at Near-Coulomb-Barrier Energies by using a Folding Potential

    E-Print Network [OSTI]

    W. Y. So; T. Udagawa; S. W. Hong; B. T. Kim

    2008-01-15

    Simultaneous $\\chi^{2}$ analyses are performed for elastic scattering and fusion cross section data for the $^{12}$C+$^{208}$Pb system at near-Coulomb-barrier energies by using the extended optical model approach in which the polarization potential is decomposed into direct reaction (DR) and fusion parts. Use is made of the double folding potential as a bare potential. It is found that the experimental elastic scattering and fusion data are well reproduced without introducing any normalization factor for the double folding potential and also that both DR and fusion parts of the polarization potential determined from the $\\chi^{2}$ analyses satisfy separately the dispersion relation. Furthermore, it is shown that the imaginary parts of both DR and fusion potentials at the strong absorption radius change very rapidly, which results in a typical threshold anomaly in the total imaginary potential as observed with tightly bound projectiles such as $\\alpha$-particle and $^{16}$O.

  13. The $?^* ?^*$ total cross section in NLA BFKL

    E-Print Network [OSTI]

    Dmitry Yu. Ivanov; Beatrice Murdaca; Alessandro Papa

    2014-11-16

    We study the $\\gamma^* \\gamma^*$ total cross section in the NLA BFKL approach. We have extracted the NLO corrections to the photon impact factor from two recent papers of Balitsky and Chirilli and Chirilli and Kovchegov and used them to build several representations of the total cross section, equivalent within the NLA. We have combined these different representations with two among the most common methods for the optimization of a perturbative series, namely PMS and BLM, and compared their behavior with the energy with the only available experimental data, those from the LEP2 collider.

  14. Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Section Data for the 7Li+208Pb System at Near-Coulomb-Barrier Energies using the Folding Potential

    E-Print Network [OSTI]

    W. Y. So; T. Udagawa; K. S. Kim; S. W. Hong; B. T. Kim

    2007-06-05

    Simultaneous $\\chi^{2}$ analyses previously made for elastic scattering and fusion cross section data for the $^{6}$Li+$^{208}$Pb system is extended to the $^{7}$Li+$^{208}$Pb system at near-Coulomb-barrier energies based on the extended optical model approach, in which the polarization potential is decomposed into direct reaction (DR) and fusion parts. Use is made of the double folding potential as a bare potential. It is found that the experimental elastic scattering and fusion data are well reproduced without introducing any normalization factor for the double folding potential and that both the DR and fusion parts of the polarization potential determined from the $\\chi^{2}$ analyses satisfy separately the dispersion relation. Further, we find that the real part of the fusion portion of the polarization potential is attractive while that of the DR part is repulsive except at energies far below the Coulomb barrier energy. A comparison is made of the present results with those obtained from the Continuum Discretized Coupled Channel (CDCC) calculations and a previous study based on the conventional optical model with a double folding potential. We also compare the present results for the $^7$Li+$^{208}$Pb system with the analysis previously made for the $^{6}$Li+$^{208}$Pb system.

  15. Measurement of the Single Top Quark Production Cross Section and |V[subscript tb]| in Events with One Charged Lepton, Large Missing Transverse Energy, and Jets at CDF

    E-Print Network [OSTI]

    Aaltonen, T.

    We report a measurement of single top quark production in proton-antiproton collisions at a center-of-mass energy of ?s = 1.96??TeV using a data set corresponding to 7.5??fb[superscript -1] of integrated luminosity collected ...

  16. A high-intensity, pulsed supersonii:, carbon source aivith C("Pi> kinetic energies of 0.08-0.7 eV for crossed beam experiments

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    1 A high-intensity, pulsed supersonii:, carbon source aivith C("Pi> kinetic energies of 0.08-0.7 e the laser pulse, the pulsed valve, and a chopper wheel located 40 mm after the laser ablation. Neither. INTRODUCTION Chemical reactions of ground state atomic carbon C(3Pj) play a major role in combustion processes

  17. CROSS SECTION MEASUREMENTS FOR CHARM PRODUCTION BY MUONS AND PHOTONS

    E-Print Network [OSTI]

    Clark, A.R.

    2013-01-01

    Production by Muons and Photons A.Rc Clark, K.J, Johnson,section for 178(100)-GeV photons is 750 _ ) nb, too small tohigh-energy rise in the photon-nucleon total cross sectiono

  18. Coulomb dissociation of 8B and the low-energy cross section of the 7Be(p,gamma)8B solar fusion reaction

    E-Print Network [OSTI]

    F. Schuemann; F. Hammache; S. Typel; F. Uhlig; K. Suemmerer; I. Boettcher; D. Cortina; A. Foerster; M. Gai; H. Geissel; U. Greife; N. Iwasa; P. Koczon; B. Kohlmeyer; R. Kulessa; H. Kumagai; N. Kurz; M. Menzel; T. Motobayashi; H. Oeschler; A. Ozawa; M. Ploskon; W. Prokopowicz; E. Schwab; P. Senger; F. Strieder; C. Sturm; Zhi-Yu Sun; G. Surowka; A. Wagner; W. Walus

    2003-06-04

    An exclusive measurement of the Coulomb breakup of 8B into 7Be+p at 254 A MeV allowed to study the angular correlations of the breakup particles. These correlations demonstrate clearly that E1 multipolarity dominates and that E2 multipolarity can be neglected. By using a simple single-particle model for 8B and treating the breakup in first-order perturbation theory, we extract a zero-energy S factor of S-(17)(0) = 18.6 +- 1.2 +- 1.0 eV b.

  19. Measurements of the total cross sections for Higgs boson production combining the $H \\to \\gamma \\gamma$ and $H \\to ZZ^* \\to 4\\ell$ decay channels at 7, 8 and 13 TeV center-of-mass energies with the ATLAS detector

    E-Print Network [OSTI]

    The ATLAS collaboration

    2015-01-01

    Measurements of total cross sections are presented for Higgs boson production in proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider. The data correspond to 4.5 fb$^{-1}$ collected at the center-of-mass energy of 7 TeV, 20.3 fb$^{-1}$ at 8 TeV, and most recently 3.2 fb$^{-1}$ at 13 TeV. Cross sections are obtained from measured $H \\to \\gamma\\gamma$ and $H \\to ZZ^{*} \\to 4\\ell$ event yields, which are combined accounting for detector effects, fiducial acceptances and branching fractions. The total Higgs boson production cross sections are measured to be $34^{+11}_{-10}$ pb, $33.3^{+5.8}_{-5.5}$ pb, and $24^{+21}_{-18}$ pb for center-of-mass energies of 7, 8 and 13 TeV, respectively. These measurements are compared to state-of-the-art Standard Model theoretical predictions.

  20. CrossConnects Bioinformatics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding in Actinide SandwichCray eraSkillsCross-Sector Sign In

  1. Healthy Zero Energy Buildings (HZEB) Program - Cross-Sectional Study of Contaminant Levels, Source, Strengths, and Ventilation Rates in Retail Stores

    SciTech Connect (OSTI)

    Chan, Wanyu R.; Sidheswaran, Meera; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William

    2014-02-01

    This field study measured ventilation rates and indoor air quality parameters in 21 visits to retail stores in California. The data was collected to guide the development of new, science-based commercial building ventilation rate standards that balance the dual objectives of increasing energy efficiency and maintaining acceptable indoor air quality. Data collection occurred between September 2011 and March 2013. Three types of stores participated in this study: grocery stores, furniture/hardware stores, and apparel stores. Ventilation rates and indoor air contaminant concentrations were measured on a weekday, typically between 9 am and 6 pm. Ventilation rates measured using a tracer gas decay method exceeded the minimum requirement of California’s Title 24 Standard in all but one store. Even though there was adequate ventilation according to Title 24, concentrations of formaldehyde, acetaldehyde, and acrolein exceeded the most stringent chronic health guidelines. Other indoor air contaminants measured included carbon dioxide (CO{sub 2}), carbon monoxide (CO), ozone (O{sub 3}), and particulate matter (PM). Concentrations of CO{sub 2} were kept low by adequate ventilation, and were assumed low also because the sampling occurred on a weekday when retail stores were less busy. CO concentrations were also low. The indoor-outdoor ratios of O{sub 3} showed that the first-order loss rate may vary by store trade types and also by ventilation mode (mechanical versus natural). Analysis of fine and ultrafine PM measurements showed that a substantial portion of the particle mass in grocery stores with cooking-related emissions was in particles less than 0.3 ?m. Stores without cooking as an indoor source had PM size distributions that were more similar indoors and outdoors. The whole-building emission rates of volatile organic compounds (VOCs) and PM were estimated from the measured ventilation rates and indoor and outdoor contaminant concentrations. Mass balance models were then used to determine the ventilation rates, filtration strategies, or source reductions needed to maintain indoor contaminant concentrations below reference levels. Several scenarios of potential concern were considered: (i) formaldehyde levels in furniture/hardware stores, (ii) contaminants associated with cooking (e.g., PM, acrolein, and acetaldehyde) in grocery stores, and (iii) outdoor contaminants (e.g., PM and O{sub 3}) impacting stores that use natural ventilation. Estimated formaldehyde emission rates suggest that retail stores would need to ventilate at levels far exceeding the current Title 24 requirement to lower indoor concentrations below California’s stringent formaldehyde reference level. Given the high costs of providing ventilation but only modest chronic health benefit is expected, effective source control is an attractive alternative, as demonstrated by some retail stores in this study. Predictions showed that grocery stores need MERV 13 air filters, instead of MERV 8 filters that are more commonly used, to maintain indoor PM at levels that meet the chronic health standards for PM. Exposure to acrolein is a potential health concern in grocery stores, and should be addressed by increasing the use of kitchen range hoods or improving their contaminant removal efficiency. In stores that rely on natural ventilation, indoor PM can be a health concern if the stores are located in areas with high outdoor PM. This concern may be addressed by switching to mechanical ventilation when the outdoor air quality is poor, while continuing natural ventilation when outdoor air quality is good.

  2. The Standard Model cross-over on the lattice

    E-Print Network [OSTI]

    D'Onofrio, Michela

    2015-01-01

    With the physical Higgs mass the Standard Model symmetry restoration phase transition is a smooth cross-over. We study the thermodynamics of the cross-over using numerical lattice Monte Carlo simulations of an effective SU(2) X U(1) gauge + Higgs theory, significantly improving on previously published results. We measure the Higgs field expectation value, thermodynamic quantities like pressure, energy density, speed of sound and heat capacity, and screening masses associated with the Higgs and Z fields. While the cross-over is smooth, it is very well defined with a width of only approximately 5 GeV. We measure the cross-over temperature from the maximum of the susceptibility of the Higgs condensate, with the result $T_c = 159.5 \\pm 1.5$ GeV. Outside of the narrow cross-over region the perturbative results agree well with non-perturbative ones.

  3. The Standard Model cross-over on the lattice

    E-Print Network [OSTI]

    Michela D'Onofrio; Kari Rummukainen

    2015-08-28

    With the physical Higgs mass the Standard Model symmetry restoration phase transition is a smooth cross-over. We study the thermodynamics of the cross-over using numerical lattice Monte Carlo simulations of an effective SU(2) X U(1) gauge + Higgs theory, significantly improving on previously published results. We measure the Higgs field expectation value, thermodynamic quantities like pressure, energy density, speed of sound and heat capacity, and screening masses associated with the Higgs and Z fields. While the cross-over is smooth, it is very well defined with a width of only approximately 5 GeV. We measure the cross-over temperature from the maximum of the susceptibility of the Higgs condensate, with the result $T_c = 159.5 \\pm 1.5$ GeV. Outside of the narrow cross-over region the perturbative results agree well with non-perturbative ones.

  4. Uncertainty quantification in fission cross section measurements at LANSCE

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tovesson, F.

    2015-01-09

    Neutron-induced fission cross sections have been measured for several isotopes of uranium and plutonium at the Los Alamos Neutron Science Center (LANSCE) over a wide range of incident neutron energies. The total uncertainties in these measurements are in the range 3–5% above 100 keV of incident neutron energy, which results from uncertainties in the target, neutron source, and detector system. The individual sources of uncertainties are assumed to be uncorrelated, however correlation in the cross section across neutron energy bins are considered. The quantification of the uncertainty contributions will be described here.

  5. Uncertainty quantification in fission cross section measurements at LANSCE

    SciTech Connect (OSTI)

    Tovesson, F. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-01-01

    Neutron-induced fission cross sections have been measured for several isotopes of uranium and plutonium at the Los Alamos Neutron Science Center (LANSCE) over a wide range of incident neutron energies. The total uncertainties in these measurements are in the range 3–5% above 100 keV of incident neutron energy, which results from uncertainties in the target, neutron source, and detector system. The individual sources of uncertainties are assumed to be uncorrelated, however correlation in the cross section across neutron energy bins are considered. The quantification of the uncertainty contributions will be described here.

  6. A Hart Energy Publication When science crosses

    E-Print Network [OSTI]

    Newcastle upon Tyne, University of

    support decisions GLOBAL EXPLORATION & PRODUCTION NEWS · TECHNOLOGY UPDATES · ANALYSIS SeaQuest: When and the world's navies, the oil industry probably has more exposure to and familiarity with the offshore SubseaProduction Systems: Technology adds practicality Formation Evaluation/Logging: Efficient systems

  7. Cross Capital AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation EU-UNDP ClimatePublicCriteriumCrookston

  8. Electrostatic-plasma-wave energy flux

    E-Print Network [OSTI]

    Amendt, P.; Rostoker, N.

    1984-01-01

    would reduce cross- field wave-energy convection since theor cross-field leakage of wave energy are ap- that thecomposition of electrostatic-wave-energy field degrees of

  9. 10B Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPO Retirees withEnergy Special4Title

  10. 10B Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPO Retirees withEnergy Special4Titleα, X)

  11. 10Be Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPO Retirees withEnergy Special4Titleα,0Be(p, X)

  12. 11B Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPO Retirees withEnergyLi1-1 11.0127-I

  13. 11B Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPO Retirees withEnergyLi1-1 11.0127-Iα, X)

  14. 11C Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPO Retirees withEnergyLi1-1 11.0127-Iα,

  15. Navasota river crossings in a selected area 

    E-Print Network [OSTI]

    Andrews, George Thomas

    1994-01-01

    crossings at Bundrick Bridge, McRee's Bridge, Mesa Crossing, Davis Bridge and Fuqua Crossing, which are not in use today. We have located four other crossings that at this time remain nameless. The location of crossings must be determined through the use...

  16. Automatic Thesaurus Construction for Cross Generation Corpus

    E-Print Network [OSTI]

    Ido, Dagan

    4 Automatic Thesaurus Construction for Cross Generation Corpus HADAS ZOHAR, CHAYA LIEBESKIND for semiautomatic thesaurus construction, for a cross generation, cross genre, and cross cultural corpus. Semiautomatic thesaurus construction is a complex task, and applying it on a cross generation corpus brings its

  17. Measurement of electron neutrino CCQE-like cross-section in MINERvA

    E-Print Network [OSTI]

    Jeremy Wolcott; for the MINERvA collaboration

    2015-01-21

    The electron-neutrino charged-current quasi-elastic (CCQE) cross-section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino cross-section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino cross-section, but to date there has been no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments. We present a preliminary result from the MINERvA experiment on the first measurement of an exclusive reaction in few-GeV electron neutrino interactions, namely, the cross-section for a CCQE-like process. The result is given both as differential cross-sections vs. the electron energy, electron angle, and $Q^{2}$, as well as a total cross-section vs. neutrino energy.

  18. Cross Domain Mathematical Concept Formation 

    E-Print Network [OSTI]

    Steel, Graham; Colton, Simon; Bundy, Alan; Walsh, Toby

    2000-01-01

    Many interesting concepts in mathematics are essentially "cross-domain" in nature, relating objects from more than one area of mathematics, e.g. prime order groups. These concepts are often vital to the formation of a ...

  19. Physics' holy grail remains a mystery

    E-Print Network [OSTI]

    MacDermid, A

    2000-01-01

    Nobel prize. Professor Peter Higgs gave his name to the Higgs boson - his proposition for its existence was sketched on a blackboard in Edinburgh 30 years ago (1 page).

  20. Relative collision cross-sections of organic molecules

    SciTech Connect (OSTI)

    Roussis, S.G.; Fedora, J.W. [Sarnia Research Centre (Canada)

    1994-12-31

    Quantitative relationships between various ions in MS/MS experiments require the knowledge of the total collision cross-sections of the precursor ions. Precursor ions with different masses or chemical structures may have different cross-sections for collision-induced dissociation and ion loss upon collision with a target molecule. The absolute total collision cross-section is difficult to measure directly. Its determination is highly dependent on the collision system and the instrumental parameters. It depends on the kinetic energy of the ion, the pumping efficiency and the acceptance angle of the instrument. However, for the same mass spectrometer the instrumental parameters are constant. Relative collision cross-sections can be thus obtained for collisions of different organic molecules with the same target gas.

  1. Measurements of Neutron Induced Cross Sections at the Oak Ridge Electron Linear Accelerator

    SciTech Connect (OSTI)

    Guber, K.H.; Harvey, J.A.; Hill, N.W.; Koehler, P.E.; Leal, L.C.; Sayer, R.O.; Spencer, R.R.

    1999-09-20

    We have used the Oak Ridge Electron Linear Accelerator (ORELA) to measure neutron total and the fission cross sections of 233U in the energy range from 0.36 eV to ~700 keV. We report average fission and total cross sections. Also, we measured the neutron total cross sections of 27Al and Natural chlorine as well as the capture cross section of Al over an energy range from 100 eV up to about 400 keV.

  2. Measure it, See it, Manage it: Using Real Time Data to Benchmark, Optimize, and Sustain System Energy Efficiency

    E-Print Network [OSTI]

    Taranto, Thomas; McKane, Aimee; Amon, Ricardo; Maulhardt, Michael

    2008-01-01

    for industrial cross - cutting energy systems (motor -energy efficiency of existing, cross-cutting industrial systems (motor-industrial cross-cutting systems (motor-driven, steam, process heating) continue to offer significant opportunities for energy

  3. CDF/ANAL/TOP/PUB/8272 Measurement of the t t Production Cross Section in SecVtx-and Neural

    E-Print Network [OSTI]

    Quigg, Chris

    CDF/ANAL/TOP/PUB/8272 Measurement of the t #22; t Production Cross Section in SecVtx- and Neural) We present a measurement of the p#22;p ! t #22; t production cross section at p s = 1:96 Te production cross section at such energies is a basic measurement o#11;ering insight into top quark physics

  4. 21073CAMENABC 5/11 Anthem Blue Cross is the trade name of Blue Cross of California. Anthem Blue Cross and Anthem Blue Cross Life and Health Insurance Company are independent licensees of the Blue Cross Association.

    E-Print Network [OSTI]

    Mease, Kenneth D.

    21073CAMENABC 5/11 Anthem Blue Cross is the trade name of Blue Cross of California. Anthem Blue Cross and Anthem Blue Cross Life and Health Insurance Company are independent licensees of the Blue Cross Association. ® ANTHEM is a registered trademark of Anthem Insurance Companies, Inc. The Blue Cross

  5. Regenerator cross arm seal assembly

    DOE Patents [OSTI]

    Jackman, Anthony V. (Indianapolis, IN)

    1988-01-01

    A seal assembly for disposition between a cross arm on a gas turbine engine block and a regenerator disc, the seal assembly including a platform coextensive with the cross arm, a seal and wear layer sealingly and slidingly engaging the regenerator disc, a porous and compliant support layer between the platform and the seal and wear layer porous enough to permit flow of cooling air therethrough and compliant to accommodate relative thermal growth and distortion, a dike between the seal and wear layer and the platform for preventing cross flow through the support layer between engine exhaust and pressurized air passages, and air diversion passages for directing unregenerated pressurized air through the support layer to cool the seal and wear layer and then back into the flow of regenerated pressurized air.

  6. Elastic Cross Sections for Electron Collisions with Molecules Relevant to Plasma Processing

    SciTech Connect (OSTI)

    Yoon, J.-S.; Song, M.-Y.; Kato, H.; Hoshino, M.; Tanaka, H.; Brunger, M. J.; Buckman, S. J.; Cho, H.

    2010-09-15

    Absolute electron-impact cross sections for molecular targets, including their radicals, are important in developing plasma reactors and testing various plasma processing gases. Low-energy electron collision data for these gases are sparse and only the limited cross section data are available. In this report, elastic cross sections for electron-polyatomic molecule collisions are compiled and reviewed for 17 molecules relevant to plasma processing. Elastic cross sections are essential for the absolute scale conversion of inelastic cross sections, as well as for testing computational methods. Data are collected and reviewed for elastic differential, integral, and momentum transfer cross sections and, for each molecule, the recommended values of the cross section are presented. The literature has been surveyed through early 2010.

  7. February 2010 Border Crossing Improvements,

    E-Print Network [OSTI]

    McShea, Daniel W.

    ], 2008a) (Figure 1). As border traffic grows, public agencies continue to try to identify innovative ways makers better understand and prioritize ways to improve border crossing benefit-cost analysis. Figure 1), the central idea is that policies that lower travel prices (e.g., reduce congestion) are likely to encourage

  8. Neutron cross sections of the isomeric nuclei KPrn, Sr81m,and Nbgam

    E-Print Network [OSTI]

    Shlyakhter, Ilya

    Neutron cross sections of the isomeric nuclei KPrn, Sr81m,and Nbgam NJ. V. Petrov and A. I. Fiz. 23, 1186-1189 (June 1976) Inelastic neutron acceleration and retardation cross sections is on the order of tenths of a barn. For the Srs7mnucleus the mean energy given to a neutron in a single collision

  9. Inelastic cross sections from gamma-ray measurements

    SciTech Connect (OSTI)

    Nelson, Ronald Owen [Los Alamos National Laboratory

    2010-12-06

    Measurements of gamma rays following neutron induced reactions have been studied with the Germanium Array for Neutron-induced Excitations (GEANIE) at the Los Alamos Neutron Science Center (LANSCE) for many years. Gamma-ray excitation functions and coincidence studies provide insight into nuclear reaction mechanisms as well as expanding our knowledge of energy levels and gamma-rays. Samples studied with Ge detectors at LANSCE range from Be to Pu. Fe, Cr and Ti have been considered for use as reference cross sections. An overview of the measurements and efforts to create a reliable neutron-induced gamma-ray reference cross section will be presented.

  10. Measurement of inclusive jet cross sections in photoproduction at HERA

    E-Print Network [OSTI]

    Adloff, C; Andrieu, B; Anthonis, T; Astvatsatourov, A; Babaev, A; Bähr, J; Baranov, P S; Barrelet, E; Bartel, Wulfrin; Baumgartner, S; Becker, J; Beckingham, M; Beglarian, A; Behnke, O; Belousov, A; Berger, C; Berndt, T; Bizot, J C; Böhme, J; Boudry, V; Braunschweig, W; Brisson, V; Broker, H B; Brown, D P; Bruncko, Dusan; Büsser, F W; Bunyatyan, A; Burrage, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Caron, S; Cassol-Brunner, F; Chekelian, V; Clarke, D; Collard, Caroline; Contreras, J G; Coppens, Y R; Coughlan, J A; Cousinou, M C; Cox, B E; Cozzika, G; Cvach, J; Dainton, J B; Dau, W D; Daum, K; Davidsson, M; Delcourt, B; Delerue, N; Demirchyan, R A; de Roeck, A; De Wolf, E A; Diaconu, C A; Dingfelder, J; Dixon, P; Dodonov, V; Dowell, John D; Dubak, A; Duprel, C; Eckerlin, G; Eckstein, D; Efremenko, V; Egli, S; Eichler, R; Eisele, Franz; Eisenhandler, Eric F; Ellerbrock, M; Elsen, E; Erdmann, M; Erdmann, W; Faulkner, P J W; Favart, L; Fedotov, A; Felst, R; Ferencei, J; Ferron, S; Fleischer, M; Fleischmann, P; Fleming, Y H; Flucke, G; Flügge, G; Fomenko, A; Foresti, I; Formánek, J; Franke, G; Frising, G; Gabathuler, Erwin; Gabathuler, K; Garvey, J; Gassner, J; Gayler, J; Gerhards, R; Gerlich, C; Ghazaryan, S; Görlich, L; Gogitidze, N; Grab, C; Grabskii, V; Grässler, Herbert; Greenshaw, T; Grindhammer, G; Haidt, Dieter; Hajduk, L; Haller, J; Heinemann, B; Heinzelmann, G; Henderson, R C W; Hengstmann, S; Henschel, H; Henshaw, O; Heremans, R; Herrera-Corral, G; Herynek, I; Hildebrandt, M; Hilgers, M; Hiller, K H; Hladky, J; Hoting, P; Hoffmann, D; Horisberger, R P; Hovhannisyan, A V; Ibbotson, M; Issever, C; Jacquet, M; Jaffré, M; Janauschek, L; Janssen, X; Jemanov, V; Jönsson, L B; Johnson, C; Johnson, D P; Jones, M A S; Jung, H; Kant, D; Kapichine, M; Karlsson, M; Karschnick, O; Katzy, J; Keil, F; Keller, N; Kennedy, J; Kenyon, Ian Richard; Kiesling, C; Kjellberg, P; Klein, M; Kleinwort, C; Kluge, T; Knies, G; Koblitz, B; Kolya, S D; Korbel, V; Kostka, P; Koutouev, R; Koutov, A; Kroseberg, J; Krüger, K; Kuhr, T; Lamb, D; Landon, M P J; Lange, W; Lastoviicka, T; Laycock, P; Lebailly, E; Lebedev, A; Leiner, B; Lemrani, R; Lendermann, V; Levonian, S; List, B; Lobodzinska, E; Lobodzinski, B; Loginov, A; Loktionova, N A; Lubimov, V; Lüders, S; Lüke, D; Lytkin, L; Malden, N; Malinovskii, E I; Mangano, S; Marage, P; Marks, J; Marshall, R; Martyn, H U; Martyniak, J; Maxfield, S J; Meer, D; Mehta, A; Meier, K; Meyer, A B; Meyer, H; Meyer, J; Michine, S; Mikocki, S; Milstead, D; Mohrdieck, S; Mondragón, M N; Moreau, F; Morozov, A; Morris, J V; Müller, K; Murn, P; Nagovizin, V; Naroska, Beate; Naumann, J; Naumann, T; Newman, P R; Niebergall, F; Niebuhr, C B; Nix, O; Nowak, G; Nozicka, M; Olivier, B; Olsson, J E; Ozerov, D; Panassik, V; Pascaud, C; Patel, G D; Peez, M; Pérez, E; Petrukhin, A; Phillips, J P; Pitzl, D; Pöschl, R; Potachnikova, I; Povh, B; Rauschenberger, J; Reimer, P; Reisert, B; Risler, C; Rizvi, E; Robmann, P; Roosen, R; Rostovtsev, A A; Rusakov, S V; Rybicki, K; Sankey, D P C; Sauvan, E; Schatzel, S; Scheins, J; Schilling, F P; Schleper, P; Schmidt, D; Schmidt, S; Schmitt, S; Schneider, M; Schoeffel, L; Schöning, A; Schörner-Sadenius, T; Schröder, V; Schultz-Coulon, H C; Schwanenberger, C; Sedlak, K; Sefkow, F; Shevyakov, I; Shtarkov, L N; Sirois, Y; Sloan, Terence; Smirnov, P; Soloviev, Yu; South, D; Spaskov, V N; Specka, A E; Spitzer, H; Stamen, R; Stella, B; Stiewe, J; Strauch, I; Straumann, U; Chechelnitskii, S; Thompson, G; Thompson, P D; Tomasz, F; Traynor, D; Truöl, P; Tsipolitis, G; Tsurin, I; Turnau, J; Turney, J E; Tzamariudaki, E; Uraev, A; Urban, M; Usik, A; Valkár, S; Valkárová, A; Vallée, C; Van Mechelen, P; Vargas-Trevino, A; Vasilev, S; Vazdik, Ya A; Veelken, C; Vest, A; Vichnevski, A; Volchinski, V; Wacker, K; Wagner, J; Wallny, R; Waugh, B; Weber, G; Weber, R; Wegener, D; Werner, C; Werner, N; Wessels, M; Wiesand, S; Winde, M; Winter, G G; Wissing, C; Wobisch, M; Woerling, E E; Wünsch, E; Wyatt, A C; Zácek, J; Zaleisak, J; Zhang, Z; Zhokin, A; Zomer, F; Zur Nedden, M

    2003-01-01

    Inclusive jet cross sections are measured in photoproduction at HERA using the H1 detector. The data sample of e+ p -> e+ + jet + X events in the kinematic range of photon virtualities Q^2 < 1 GeV^2 and photon-proton centre-of-mass energies 95 < W_gammap < 285 GeV represents an integrated luminosity of 24.1 pb^-1. Jets are defined using the inclusive k_T algorithm. Single- and multi-differential cross sections are measured as functions of jet transverse energy E_T^jet and pseudorapidity \\eta^jet in the domain 5 < E_T^jet < 75 GeV and -1 < \\eta^jet < 2.5. The cross sections are found to be in good agreement with next-to-leading order perturbative QCD calculations corrected for fragmentation and underlying event effects. The cross section differential in E_T^jet, which varies by six orders of magnitude over the measured range, is compared with similar distributions from p pbar colliders at equal and higher energies.

  11. KSI's Cross Insulated Core Transformer Technology

    SciTech Connect (OSTI)

    Uhmeyer, Uwe [Kaiser Systems, Inc, 126 Sohier Road, Beverly, MA 01915 (United States)

    2009-08-04

    Cross Insulated Core Transformer (CCT) technology improves on Insulated Core Transformer (ICT) implementations. ICT systems are widely used in very high voltage, high power, power supply systems. In an ICT transformer ferrite core sections are insulated from their neighboring ferrite cores. Flux leakage is present at each of these insulated gaps. The flux loss is raised to the power of stages in the ICT design causing output voltage efficiency to taper off with increasing stages. KSI's CCT technology utilizes a patented technique to compensate the flux loss at each stage of an ICT system. Design equations to calculate the flux compensation capacitor value are presented. CCT provides corona free operation of the HV stack. KSI's CCT based High Voltage power supply systems offer high efficiency operation, high frequency switching, low stored energy and smaller size over comparable ICT systems.

  12. Cross Roads, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation EU-UNDP ClimatePublicCriteriumCrookstonRoads,

  13. Measurements of the Higgs boson production cross section at 7, 8 and 13 TeV centre-of-mass energies and search for new physics at 13 TeV in the $H \\rightarrow ZZ^* \\rightarrow \\ell^+ \\ell^? \\ell'^+ \\ell'^?$ final state with the ATLAS detector

    E-Print Network [OSTI]

    The ATLAS collaboration

    2015-01-01

    Preliminary results for Higgs boson production in $pp$ collisions at a centre-of-mass energy of 13 TeV performed by the ATLAS Collaboration in the decay channel $H \\rightarrow ZZ^* \\rightarrow \\ell^+ \\ell^? \\ell'^+ \\ell'^?$, where $\\ell,\\ell^{'}=e\\text{ or }\\mu$, are presented. These results are based on an integrated luminosity of 3.2 fb$^{-1}$ collected in 2015 by the ATLAS detector at the LHC. The fiducial cross section after the selection cuts is reported as well as the total cross section, compared to new and updated results obtained at centre-of-mass energies of 7 and 8 TeV, repectively. Dark matter production in association with a Higgs boson decaying to $H \\rightarrow ZZ^* \\rightarrow 4\\ell$ is searched for in events with large missing transverse momentum. Moreover, a search for a heavy Higgs boson in the $H \\rightarrow ZZ^* \\rightarrow 4\\ell$ channel is performed for the mass range 200 to 1000 GeV assuming a narrow intrinsic width.

  14. Blue Cross Blue Shield Major Medical Program

    E-Print Network [OSTI]

    Blue Cross Blue Shield Major Medical Program Carnegie-Mellon University Group 50387-02 Effective January 1, 2010 Printed August, 2010 Highmark Blue Cross Blue Shield is an Independent Licensee of the Blue Cross and Blue Shield Association. #12;#12;Language Assistance Services Available for Multiple

  15. Laser cross-flow gas system

    DOE Patents [OSTI]

    Duncan, D.B.

    1992-11-24

    A method and laser apparatus are disclosed which provide for a cross-flow of gas near one end of a laser discharge tube. The cross-flow of gas causes a concentration gradient which affects diffusion of contaminants in the discharge tube towards the cross-flow of the gas, which contaminants are then withdrawn from the discharge tube. 1 figure.

  16. Cross Sections for (α, X)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding in Actinide SandwichCray eraSkills Master'sCrookerCross

  17. Cross-sector Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding in Actinide SandwichCray eraSkillsCross-Sector Sign In

  18. SNL RML recommended dosimetry cross section compendium

    SciTech Connect (OSTI)

    Griffin, P.J.; Kelly, J.G.; Luera, T.F.; VanDenburg, J.

    1993-11-01

    A compendium of dosimetry cross sections is presented for use in the characterization of fission reactor spectrum and fluence. The contents of this cross section library are based upon the ENDF/B-VI and IRDF-90 cross section libraries and are recommended as a replacement for the DOSCROS84 multigroup library that is widely used by the dosimetry community. Documentation is provided on the rationale for the choice of the cross sections selected for inclusion in this library and on the uncertainty and variation in cross sections presented by state-of-the-art evaluations.

  19. U-073: Bugzilla Flaws Permit Cross-Site Scripting and Cross-Site Request Forgery Attacks

    Broader source: Energy.gov [DOE]

    Several vulnerabilities were reported in Bugzilla. A remote user can conduct cross-site scripting attacks.

  20. Cross Sections for the Electron Activation of Gamma-Ray Fluorescence

    E-Print Network [OSTI]

    Silviu Olariu; Agata Olariu; Yoshiaki Ito; Takeshi Mukoyama

    2000-06-26

    We report cross sections for the direct excitation of gamma-ray transitions up to 200 keV by the transient electromagnetic fields of electrons from a beam, for incident kinetic energies of 500 keV and 5 MeV. The cross sections for the electron activation of gamma-ray fluorescence are of the order of 300 nanobarns for an electron incident kinetic energy of 500 keV, and are of the order of 10 microbarns for an electron incident kinetic energy of 5 MeV. The electron excitation of nuclear transitions may lead to the development of pulsed sources of gamma radiation of narrowly defined energy.

  1. On the Wong cross section and fusion oscillations

    E-Print Network [OSTI]

    N. Rowley; K. Hagino

    2015-03-26

    We re-examine the well-known Wong formula for heavy-ion fusion cross sections. Although this celebrated formula yields almost exact results for single-channel calculations for relatively heavy systems such as $^{16}$O+$^{144}$Sm, it tends to overestimate the cross section for light systems such as $^{12}$C+$^{12}$C. We generalise the formula to take account of the energy dependence of the barrier parameters and show that the energy-dependent version gives results practically indistinguishable from a full quantal calculation. We then examine the deviations arising from the discrete nature of the intervening angular momenta, whose effect can lead to an oscillatory contribution to the excitation function. We recall some compact, analytic expressions for these oscillations, and highlight the important physical parameters that give rise to them. Oscillations in symmetric systems are discussed, as are systems where the target and projectile identities can be exchanged via a strong transfer channel.

  2. On the Wong cross section and fusion oscillations

    E-Print Network [OSTI]

    Rowley, N

    2015-01-01

    We re-examine the well-known Wong formula for heavy-ion fusion cross sections. Although this celebrated formula yields almost exact results for single-channel calculations for relatively heavy systems such as $^{16}$O+$^{144}$Sm, it tends to overestimate the cross section for light systems such as $^{12}$C+$^{12}$C. We generalise the formula to take account of the energy dependence of the barrier parameters and show that the energy-dependent version gives results practically indistinguishable from a full quantal calculation. We then examine the deviations arising from the discrete nature of the intervening angular momenta, whose effect can lead to an oscillatory contribution to the excitation function. We recall some compact, analytic expressions for these oscillations, and highlight the important physical parameters that give rise to them. Oscillations in symmetric systems are discussed, as are systems where the target and projectile identities can be exchanged via a strong transfer channel.

  3. Inclusive jet cross-section measurement at CDF

    SciTech Connect (OSTI)

    Norniella, Olga; /Barcelona, IFAE

    2007-05-01

    The CDF Collaboration has measured the inclusive jet cross section using 1992-93 collider data at 1.8 TeV. The CDF measurement is in very good agreement with NLO QCD predictions for transverse energies (E{sub T}) below 200 GeV. However, it is systematically higher than NLO QCD predictions for E{sub T} above 200 GeV.

  4. Measurement of the top quark pair production cross section in proton-antiproton collisions at a center of mass energy of 1.96 TeV, hadronic top decays with the D0 detector

    SciTech Connect (OSTI)

    Hegeman, Jeroen Guido; /Twente U. Tech., Enschede

    2009-01-16

    Of the six quarks in the standard model the top quark is by far the heaviest: 35 times more massive than its partner the bottom quark and more than 130 times heavier than the average of the other five quarks. Its correspondingly small decay width means it tends to decay before forming a bound state. Of all quarks, therefore, the top is the least affected by quark confinement, behaving almost as a free quark. Its large mass also makes the top quark a key player in the realm of the postulated Higgs boson, whose coupling strengths to particles are proportional to their masses. Precision measurements of particle masses for e.g. the top quark and the W boson can hereby provide indirect constraints on the Higgs boson mass. Since in the standard model top quarks couple almost exclusively to bottom quarks (t {yields} Wb), top quark decays provide a window on the standard model through the direct measurement of the Cabibbo-Kobayashi-Maskawa quark mixing matrix element V{sub tb}. In the same way any lack of top quark decays into W bosons could imply the existence of decay channels beyond the standard model, for example charged Higgs bosons as expected in two-doublet Higgs models: t {yields} H{sup +}b. Within the standard model top quark decays can be classified by the (lepton or quark) W boson decay products. Depending on the decay of each of the W bosons, t{bar t} pair decays can involve either no leptons at all, or one or two isolated leptons from direct W {yields} e{bar {nu}}{sub e} and W {yields} {mu}{bar {nu}}{sub {mu}} decays. Cascade decays like b {yields} Wc {yields} e{bar {nu}}{sub e}c can lead to additional non-isolated leptons. The fully hadronic decay channel, in which both Ws decay into a quark-antiquark pair, has the largest branching fraction of all t{bar t} decay channels and is the only kinematically complete (i.e. neutrino-less) channel. It lacks, however, the clear isolated lepton signature and is therefore hard to distinguish from the multi-jet QCD background. It is important to measure the cross section (or branching fraction) in each channel independently to fully verify the standard model. Top quark pair production proceeds through the strong interaction, placing the scene for top quark physics at hadron colliders. This adds an additional challenge: the huge background from multi-jet QCD processes. At the Tevatron, for example, t{bar t} production is completely hidden in light q{bar q} pair production. The light (i.e. not bottom or top) quark pair production cross section is six orders of magnitude larger than that for t{bar t} production. Even including the full signature of hadronic t{bar t} decays, two b-jets and four additional jets, the QCD cross section for processes with similar signature is more than five times larger than for t{bar t} production. The presence of isolated leptons in the (semi)leptonic t{bar t} decay channels provides a clear characteristic to distinguish the t{bar t} signal from QCD background but introduces a multitude of W- and Z-related backgrounds.

  5. Cross correlation surveys with the Square Kilometre Array

    E-Print Network [OSTI]

    Kirk, Donnacha; Abdalla, Filipe B; Bull, Philip; Joachimi, Benjamin

    2015-01-01

    By the time that the first phase of the Square Kilometre Array is deployed it will be able to perform state of the art Large Scale Structure (LSS) as well as Weak Gravitational Lensing (WGL) measurements of the distribution of matter in the Universe. In this chapter we concentrate on the synergies that result from cross-correlating these different SKA data products as well as external correlation with the weak lensing measurements available from CMB missions. We show that the Dark Energy figures of merit obtained individually from WGL/LSS measurements and their independent combination is significantly increased when their full cross-correlations are taken into account. This is due to the increased knowledge of galaxy bias as a function of redshift as well as the extra information from the different cosmological dependences of the cross-correlations. We show that the cross-correlation between a spectroscopic LSS sample and a weak lensing sample with photometric redshifts can calibrate these same photometric re...

  6. Cross-section measurement of the $^{130}$Ba(p,$?$)$^{131}$La reaction for $?$-process nucleosynthesis

    E-Print Network [OSTI]

    L. Netterdon; A. Endres; G. G. Kiss; J. Mayer; T. Rauscher; P. Scholz; K. Sonnabend; Zs. Török; A. Zilges

    2014-09-27

    A measurement of total cross-section values of the $^{130}$Ba(p,$\\gamma$)$^{131}$La reaction at low proton energies allows a stringent test of statistical model predictions with different proton+nucleus optical model potentials. Since no experimental data are available for proton-capture reactions in this mass region around A~$\\approx$~130, this measurement can be an important input to test the global applicability of proton+nucleus optical model potentials. The total reaction cross-section values were measured by means of the activation method. After the irradiation with protons, the reaction yield was determined by use of $\\gamma$-ray spectroscopy using two clover-type high-purity germanium detectors. In total, cross-section values for eight different proton energies could be determined in the energy range between 3.6 MeV $\\leq E_p \\leq$ 5.0 MeV, thus, inside the astrophysically relevant energy region. The measured cross-section values were compared to Hauser-Feshbach calculations using the statistical model codes TALYS and SMARAGD with different proton+nucleus optical model potentials. With the semi-microscopic JLM proton+nucleus optical model potential used in the SMARAGD code, the absolute cross-section values are reproduced well, but the energy dependence is too steep at the lowest energies. The best description is given by a TALYS calculation using the semi-microscopic Bauge proton+nucleus optical model potential using a constant renormalization factor.

  7. Cross-Section Fluctuations in Chaotic Scattering

    E-Print Network [OSTI]

    B. Dietz; H. L. Harney; A. Richter; F. Schaefer; H. A. Weidenmueller

    2009-12-22

    For the theoretical prediction of cross-section fluctuations in chaotic scattering, the cross-section autocorrelation function is needed. That function is not known analytically. Using experimental data and numerical simulations, we show that an analytical approximation to the cross-section autocorrelation function can be obtained with the help of expressions first derived by Davis and Boose. Given the values of the average S-matrix elements and the mean level density of the scattering system, one can then reliably predict cross-section fluctuations.

  8. Plasma Turbulence Simulations Reveal Promising Insight for Fusion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Laboratory) With the potential to provide clean, safe, and abundant energy, nuclear fusion has been called the "holy grail" of energy production. But harnessing...

  9. Production Cross Section of Neutron-Rich Calcium Isotopes in Heavy Ion Collisions

    E-Print Network [OSTI]

    Donghong Zhang; Wenjie Xie; Jun Su; Fengshou Zhang

    2015-03-27

    Based on the isospin-dependent quantum molecular dynamics model along with the GEMINI model, heavy-ion collisions at intermediate energies are studied. We calculate the production cross sections of different fragments for reactions of 112Sn+112Sn and 124Sn+124Sn at different beam energies. The species and production cross sections of neutron-rich isotopes are generally dependent on the isospin of the system and the incident energies. The nucleon 48Ca and 54Ca are more productive for the neutron-rich system at 30 to 150 MeV/nucleon.

  10. Bayou pipeline crossing requires helical pilings

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This paper discusses a routine inspection by Transcontinental Gas Pipe Line Corp. which revealed the approximately 100 ft of its 30-in gas pipeline in St. Landry Parish, La., had become suspended. The situation occurred in the West Atchafalaya Floodway after periods of heavy rain produced strong currents that scoured the soil from around and below the pipeline. To protect the pipeline from possible damage from overstressing, Transco awarded a lump-sum contract to Energy Structures Inc., Houston, to design and install pipeline supports. The pipeline supports engineered by ESI used helical-screw pilings instead of conventional driven pilings. The helical piles were manufactured by A.B. Chance Co., Centralia, Mo. Typically, helical pilings consist of steel pipe ranging from 3.5- to 8-in. diameter pipe with one or more helixes welded onto the pipe. Selection of the proper piling cross-section was based on design loads and soil conditions at the project locations. length was determined by the amount of pipeline suspension and on-site soil conditions.

  11. Turbulent Cascade at 1 AU in High Cross-Helicity Flows

    SciTech Connect (OSTI)

    Smith, Charles W.; Stawarz, Joshua E.; Vasquez, Bernard J.; Forman, Miriam A.; MacBride, Benjamin T.

    2009-11-13

    Analysis of the scaling of the mixed third moments of velocity and magnetic fluctuations in the solar wind plasma, and the energy cascade rates derived from the scaling, reveal a strong dependence on the amount of cross-field correlation between the velocity and magnetic field fluctuations. When the correlation is greater than about 75%, the cascade rate of the outward-propagating (majority) component, and of the total energy and the cross-helicity are surprisingly negative. This indicates a back transfer of energy from small to large scales within the inertial range of the dominant outward-propagating component. It is clear that the transfer of energy acts to reinforce the dominance of the outward-propagating (majority) component and may explain, in part, the persistent observations of large cross-field correlations that have been a defining aspect of solar wind physics for almost 40 years.

  12. Numerical simulation of detonation processes in a variable cross-section chamber

    E-Print Network [OSTI]

    Texas at Arlington, University of

    in a combustion chamber with variable cross- sections are numerically simulated for a hydrogen­air reacting flow facilities [2]. The pri- mary advantage of detonation combustion as com- pared to deflagration is its rapid energy release. This rapid energy release allows the design of pulse detona- tion engines with high

  13. Differential Photoproduction Cross Sections of the Sigma0(1385), Lambda(1405), and Lambda(1520)

    SciTech Connect (OSTI)

    Moriya, Kei [Indiana U.; Schumacher, Reinhard A. [Carnegie Mellon U.

    2013-10-01

    We report the exclusive photoproduction cross sections for the Sigma(1385), Lambda(1405), and Lambda(1520) in the reactions gamma + p -> K+ + Y* using the CLAS detector for energies from near the respective production thresholds up to a center-of-mass energy W of 2.85 GeV. The differential cross sections are integrated to give the total exclusive cross sections for each hyperon. Comparisons are made to current theoretical models based on the effective Lagrangian approach and fitted to previous data. The accuracy of these models is seen to vary widely. The cross sections for the Lambda(1405) region are strikingly different for the Sigma+pi-, Sigma0 pi0, and Sigma- pi+ decay channels, indicating the effect of isospin interference, especially at W values close to the threshold.

  14. QER- Comment of Peter Cross

    Broader source: Energy.gov [DOE]

    To whom it may concern: We live in Orange, MA, which is one of the towns through which a natural gas pipeline (Kinder Morgan Co.) is proposed to go on its way to Dracut, MA. We are aware that these 30-inch pipelines have on average one leak every 8 miles or so, and we know there will be more than 8 miles of the line in our town if it is approved. Although we are not abutting property owners, we are opposed to the fracking techniques used to extract the gas that will be in this pipeline, primarily because of danger to water supplies. Additionally, we feel as though we're enabling and supporting these techniques by not speaking out about transporting the products of this process. And, just in case you think we are "not in my backyard "people, we SUPPORT both wind and solar power installations - we have both rather close to us! Thanks for taking our opinions into consideration. Peter and Candace Cross, Orange, MA

  15. Recirculating cross-correlation detector

    DOE Patents [OSTI]

    Andrews, W.H. Jr.; Roberts, M.J.

    1985-01-18

    A digital cross-correlation detector is provided in which two time-varying signals are correlated by repetitively comparing data samples stored in digital form to detect correlation between the two signals. The signals are sampled at a selected rate converted to digital form, and stored in separate locations in separate memories. When the memories are filled, the data samples from each memory are first fed word-by-word through a multiplier and summing circuit and each result is compared to the last in a peak memory circuit and if larger than the last is retained in the peak memory. Then the address line to leading signal memory is offset by one byte to affect one sample period delay of a known amount in that memory and the data in the two memories are then multiplied word-by-word once again and summed. If a new result is larger than a former sum, it is saved in the peak memory together with the time delay. The recirculating process continues with the address of the one memory being offset one additional byte each cycle until the address is shifted through the length of the memory. The correlation between the two signals is indicated by the peak signal stored in the peak memory together with the delay time at which the peak occurred. The circuit is faster and considerably less expensive than comparable accuracy correlation detectors.

  16. Measurement of the ?(1S) production cross-section in pp collisions at ?s = 7 TeV in ATLAS

    E-Print Network [OSTI]

    Taylor, Frank E.

    A measurement of the cross-section for ?(1S)??[superscript +]?[superscript ?] production in proton–proton collisions at centre of mass energy of 7 TeV is presented. The cross-section is measured as a function of the ?(1S) ...

  17. Measurement of ??-induced charged-current neutral pion production cross sections on mineral oil at Ev?0.5–2.0 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Mauger, C.; McGary, V. T.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Mousseau, J.; Nelson, R. H.; Nienaber, P.; Nowak, J. A.; Osmanov, B.; Ouedraogo, S.; Patterson, R. B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; Van de Water, R. G.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.

    2011-03-01

    Using a custom 3-Cerenkov ring fitter, we report cross sections for ??-induced charged-current single ?? production on mineral oil (CH?) from a sample of 5810 candidate events with 57% signal purity over an energy range of 0.5–2.0 GeV. This includes measurements of the absolute total cross section as a function of neutrino energy, and flux-averaged differential cross sections measured in terms of Q˛, ?? kinematics, and ?? kinematics. The sample yields a flux-averaged total cross section of (9.2±0.3stat±1.5syst)×10?ł? cm˛/CH˛ at mean neutrino energy of 0.965 GeV.

  18. Measurement of ??-induced charged-current neutral pion production cross sections on mineral oil at Ev?0.5–2.0 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; et al

    2011-03-23

    Using a custom 3-Cerenkov ring fitter, we report cross sections for ??-induced charged-current single ?? production on mineral oil (CH?) from a sample of 5810 candidate events with 57% signal purity over an energy range of 0.5–2.0 GeV. This includes measurements of the absolute total cross section as a function of neutrino energy, and flux-averaged differential cross sections measured in terms of Q˛, ?? kinematics, and ?? kinematics. The sample yields a flux-averaged total cross section of (9.2±0.3stat±1.5syst)×10?ł? cm˛/CH˛ at mean neutrino energy of 0.965 GeV.

  19. Cross section for charmonium absorption by nucleons 

    E-Print Network [OSTI]

    Liu, W.; Ko, Che Ming; Lin, ZW.

    2002-01-01

    The cross section for J/psi absorption by nucleons is studied using a gauged SU(4) hadronic Lagrangian but with empirical particle masses, which has been used previously to study the cross sections for J/psi absorption by pion and rho meson...

  20. Motivation Selection CC Cross Sections Summary Charged Current DIS Cross Sections with a

    E-Print Network [OSTI]

    Raval, Amita

    Motivation Selection CC Cross Sections Summary Charged Current DIS Cross Sections polarised e+ 21st April 2010 1 / 15 #12;Motivation Selection CC Cross Sections Summary Charged Current Interaction: Motivation Extraction of MW d2(e+p) dxdQ2 = (1 + P) × G2 F M4 W 2(Q2 + M2 W )2 u + c + (1 - y)2

  1. Tomography of lensing cross power spectra

    E-Print Network [OSTI]

    Masahiro Takada; Martin White

    2004-09-14

    By obtaining photometric redshift information, tomography allows us to cross-correlate galaxy ellipticities in different source redshift bins. The cross-correlation is non-vanishing because the different bins share much of the foreground mass distribution from which, over Gpc scales, the lensing signal is built. If the redshift bins are thick enough however, the cross-correlations are insensitive to contamination from the intrinsic alignments of galaxies since these fall off rapidly on scales larger than a few tens of Mpc. We forecast how lensing tomography using only the cross-power spectra can constrain cosmological parameters compared to tomography including the auto-spectra. It is shown that the parameter errors are degraded by only O(10%) for 5 or more source redshift bins. Thus, the cross-power spectrum tomography can be a simple, model-independent means of reducing the intrinsic alignment contamination while retaining most of the constraints on cosmology.

  2. Federal Energy Management Program FY14 Budget At-a-Glance

    Office of Environmental Management (EM)

    FEDERAL ENERGY MANAGEMENT PROGRAM FY14 BUDGET AT-A-GLANCE The Federal Energy Management Program (FEMP) helps the federal agencies achieve cross agency priority (CAP) energy and...

  3. Cross-correlation cosmography with HI intensity mapping

    E-Print Network [OSTI]

    Pourtsidou, Alkistis; Crittenden, Robert

    2015-01-01

    The cross-correlation of a foreground density field with two different background convergence fields can be used to measure cosmographic distance ratios and constrain dark energy parameters. We investigate the possibility of performing such measurements using a combination of optical galaxy surveys and HI intensity mapping surveys, with emphasis on the performance of the planned Square Kilometre Array (SKA). Using HI intensity mapping to probe the foreground density tracer field and/or the background source fields has the advantage of excellent redshift resolution and a longer lever arm achieved by using the lensing signal from high redshift background sources. Our results show that, for our best SKA-optical configuration of surveys, a constant equation of state for dark energy can be constrained to $\\simeq 8\\%$ for a sky coverage $f_{\\rm sky}=0.5$ and assuming a $\\sigma(\\Omega_{\\rm DE})=0.03$ prior for the dark energy density parameter.

  4. Measurement of the Isolated Prompt Photon Production Cross Section in pp Collisions at [square root] s=7??TeV

    E-Print Network [OSTI]

    Alver, Burak Han

    The differential cross section for the inclusive production of isolated prompt photons has been measured as a function of the photon transverse energy ET? [E subscript Tau superscript gamma] in pp collisions at ?s=7??[square ...

  5. Low energy crossed beam study of the proton transfer reactions of H/sub 3/O/sup +/ with CH/sub 3/OH and C/sub 2/H/sub 5/OH

    SciTech Connect (OSTI)

    Moryl, J.E.; Creasy, W.R.; Farrar, J.M.

    1985-03-01

    We present a study of the title reactions over the range from 0.76 to 2.75 eV for proton transfer to methanol and at 0.99 and 1.84 eV for the ethanol system. The dynamics of proton transfer are direct at all collision energies, with the ionic products scattered in the backward direction relative to the incoming ion. The average fraction of the available energy appearing in product translation increases from 0.25 for CH/sub 3/OH/sub 2//sup +/ production at 0.76 eV to 0.44 at 2.75 eV. At 0.99 eV, the corresponding fraction for protonation of ethanol is 0.26 and increases to 0.49 at 1.84 eV. The translational energy distributions show depletion of intensity at low values of E/sub T/', suggestive of unimolecular decay of the protonated alcohols via C--O bond cleavage and elimination of H/sub 2/ across the C--O bond. Isotope effect measurements for protonation of CH/sub 3/OD and subsequent elimination of H/sub 2/ vs HD indicate the importance of a large hydride transfer contribution to the isotope effect. These results, along with statistical calculations, are employed to estimate the exit channel barrier with elimination process. Anomalously large elimination isotope effects (k/sub H//sub 2//k/sub H//sub D/ = 7) arise because of the near confluence of the CO bond cleavage and HD elimination thresholds. We find that the H/sub 2/ elimination barrier lies between 2.8 and 2.9 eV, within experimental error equal to the endothermicity of the C--O bond cleavage reaction. This result is in agreement with recent calculations of Nobes and Radom and explains the nonoccurrence of the condensation reaction between CH/sub 3//sup +/ and H/sub 2/O.

  6. Absolute total and partial dissociative cross sections of pyrimidine at electron and proton intermediate impact velocities

    SciTech Connect (OSTI)

    Wolff, Wania Luna, Hugo; Sigaud, Lucas; Montenegro, Eduardo C.; Tavares, Andre C.

    2014-02-14

    Absolute total non-dissociative and partial dissociative cross sections of pyrimidine were measured for electron impact energies ranging from 70 to 400 eV and for proton impact energies from 125 up to 2500 keV. MOs ionization induced by coulomb interaction were studied by measuring both ionization and partial dissociative cross sections through time of flight mass spectrometry and by obtaining the branching ratios for fragment formation via a model calculation based on the Born approximation. The partial yields and the absolute cross sections measured as a function of the energy combined with the model calculation proved to be a useful tool to determine the vacancy population of the valence MOs from which several sets of fragment ions are produced. It was also a key point to distinguish the dissociation regimes induced by both particles. A comparison with previous experimental results is also presented.

  7. Measurement of the neutron capture cross section of {sup 15}N J

    SciTech Connect (OSTI)

    MeiBner, N.J.; Schatz, H.; Herndl, H.; Wiescher, M.

    1995-10-01

    Neutron capture reactions on fight nuclei may be of considerable importance for the s-process nucleosynthesis in red giant stars as well as in inhomogeneous big bang scenarios and high entropy supernovae neutrino bubbles. To determine the reaction rates for such different temperature conditions, the cross sections need to be known for a wide energy range. The reaction {sup 15}N(n,{gamma}) represents an important link in the reaction seququences for the production of heavier isotopes in such scenarios. At high temperature conditions, the cross section is not only influenced by a non resonant a-wave contribution but also by a non resonant p-wave contribution and higher energy resonances. The (n,{gamma}) cross section has been measured at the Forschungszentrum Karlsruhe for different neutron energies using a fast cyclic neutron activation technique. The technique and the results will be presented.

  8. Neutron cross section standards and instrumentation. Annual report

    SciTech Connect (OSTI)

    Wasson, O.A.

    1993-07-01

    The objective of this interagency program is to provide accurate neutron interaction measurements for the US Department of Energy nuclear programs which include waste disposal, fusion, safeguards, defense, fission, and personnel protection. These measurements are also useful to other energy programs which indirectly use the unique properties of the neutron for diagnostic and analytical purposes. The work includes the measurement of reference cross sections and related neutron data employing unique facilities and capabilities at NIST and other laboratories as required; leadership and participation in international intercomparisons and collaborations; the preservation of standard reference deposits and the development of improved neutron detectors and measurement methods. A related and essential element of the program is critical evaluation of neutron interaction data including international coordinations. Data testing of critical data for important applications is included. The program is jointly supported by the Department of Energy and the National Institute of Standards and Technology. This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the third year of this three-year interagency agreement. The proposed program and required budget for the following three years are also presented. The program continues the shifts in priority instituted in order to broaden the program base.

  9. Optimization of multi-group cross sections for fast reactor analysis

    SciTech Connect (OSTI)

    Chin, M. R.; Manalo, K. L.; Edgar, C. A.; Paul, J. N.; Molinar, M. P.; Redd, E. M.; Yi, C.; Sjoden, G. E.

    2013-07-01

    The selection of the number of broad energy groups, collapsed broad energy group boundaries, and their associated evaluation into collapsed macroscopic cross sections from a general 238-group ENDF/B-VII library dramatically impacted the k eigenvalue for fast reactor analysis. An analysis was undertaken to assess the minimum number of energy groups that would preserve problem physics; this involved studies using the 3D deterministic transport parallel code PENTRAN, the 2D deterministic transport code SCALE6.1, the Monte Carlo based MCNP5 code, and the YGROUP cross section collapsing tool on a spatially discretized MOX fuel pin comprised of 21% PUO{sub 2}-UO{sub 2} with sodium coolant. The various cases resulted in a few hundred pcm difference between cross section libraries that included the 238 multi-group reference, and cross sections rendered using various reaction and adjoint weighted cross sections rendered by the YGROUP tool, and a reference continuous energy MCNP case. Particular emphasis was placed on the higher energies characteristic of fission neutrons in a fast spectrum; adjoint computations were performed to determine the average per-group adjoint fission importance for the MOX fuel pin. This study concluded that at least 10 energy groups for neutron transport calculations are required to accurately predict the eigenvalue for a fast reactor system to within 250 pcm of the 238 group case. In addition, the cross section collapsing/weighting schemes within YGROUP that provided a collapsed library rendering eigenvalues closest to the reference were the contribution collapsed, reaction rate weighted scheme. A brief analysis on homogenization of the MOX fuel pin is also provided, although more work is in progress in this area. (authors)

  10. Maximum likelihood method for cross-correlations with astrophysical sources

    SciTech Connect (OSTI)

    Jansson, Ronnie; Farrar, Glennys R, E-mail: rj486@nyu.edu, E-mail: gf25@nyu.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States)

    2008-06-15

    We generalize the maximum likelihood-type method used to study cross-correlations between a catalog of candidate astrophysical sources and ultrahigh energy cosmic rays (UHECRs), to allow for differing source luminosities. The new method is applicable to any sparse dataset such as UHE gamma rays or astrophysical neutrinos. Performance of the original and generalized techniques is evaluated in simulations of various scenarios. Applying the new technique to data, we find an excess correlation of about nine events between HiRes UHECRs and known BLLacs, with a 6 Multiplication-Sign 10{sup -5} probability of such a correlation arising by chance.

  11. Maximum Likelihood Method for Cross Correlations with Astrophysical Sources

    E-Print Network [OSTI]

    Ronnie Jansson; Glennys R. Farrar

    2008-06-18

    We generalize the Maximum Likelihood-type method used to study cross correlations between a catalog of candidate astrophysical sources and Ultrahigh Energy Cosmic Rays (UHECRs), to allow for differing source luminosities. The new method is applicable to any sparse data set such as UHE gamma rays or astrophysical neutrinos. Performance of the original and generalized techniques is evaluated in simulations of various scenarios. Applying the new technique to data, we find an excess correlation of about 9 events between HiRes UHECRs and known BLLacs, with a 6*10^-5 probability of such a correlation arising by chance.

  12. Final Report - Nucelar Astrophysics & Neutron Cross Section Measurements

    SciTech Connect (OSTI)

    Carlton, Robert F

    2009-12-01

    This enduring research program of 28 years has taken advantage of the excellent research facility of ORELA at Oak Ridge National Laboratory. The fruitful collaborations include a number of scientists from ORNL and some from LASL. This program which has ranged from nuclear structure determinations to astrophysical applications has resulted in the identification and/or the refinement of the nuclear properties of more than 5,000 nuclear energy levels or compound energy states. The nuclei range from 30Si to 250Cf, the probes range from thermal to 50 MeV neutrons, and the studies range from capture gamma ray spectra to total and differential scattering and absorption cross sections. Specific target nuclei studied include the following: 120Sn 124Sn 125Sn 113Sn 115Sn 117Sn 119Sn 249Cf 33S 34S 249Bk 186Os 187Os 188Os 30Si 32S 40Ca 48Ca 60Ni 54Fe 86Kr 88Sr 40Ar 122Sn 90Zr 122Sn(n,?) 208Pb 204Pb 52Cr 54Cr 50Cr 53Cr As can be seen, we have studied, on average, more than one isotope per year of grant funding and have focused on exploiting those elements having multiple isotopes in order to investigate systematic trends in nuclear properties, for the purpose of providing more stringent tests of the nuclear spherical optical model with a surface imaginary potential. We have investigated an l-dependence of the real-well depth of the spherical optical model; we have used these measurements to deduce the existence of doorway states in the compound nucleus; and in the total cross section measurements we have, in addition to resonance energies and widths, obtained values for the level density and neutron strength function. Due to the high neutron energy resolution of the ORELA and in some cases the addition of differential scattering cross section data, we have been able to disaggregate the spin states and provide level spacing and strength function for each partial wave in the neutron-nucleus interaction, in some cases up to d5/2. In the following we will summarize the most recent analyses of neutron total cross section measurements, some of which have not been previously reported.

  13. Reaction Cross Section in Heavy-Ion Collisions

    E-Print Network [OSTI]

    Cheuk-Yin Wong

    2012-12-05

    Previously a compact formula for total reaction cross section for heavy-ion collisions as a function of energy was obtained by treating the angular momentum $l$ as a continuous variable. The accuracy of the continuum approximation is assessed and corrections are evaluated. The accuracy of the compact equation can be improved by a simple modification, if a higher accuracy is required. Simple rules to determine the barrier heights and the penetration probability for the $l$ partial wave from experimental data are presented, for the collision of identical or non-identical light nuclei.

  14. Measurements of the Top Quark Pair-Production Cross Section

    E-Print Network [OSTI]

    Frank-Peter Schilling

    2013-02-19

    Measurements of the inclusive and differential cross section for the production of top quark pairs in proton-(anti)proton collision at center-of-mass energies of 1.96, 7.0 and 8.0 TeV are presented and compared with the latest theory predictions and Monte-Carlo models. In addition, first measurements of the production of top quark pairs in association with additional jets or with a boson are highlighted. All measurements are in good agreement with the Standard Model.

  15. CROSS VALIDATION OF SATELLITE RADIATION TRANSFER MODELS DURING SWERA PROJECT

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy Resources JumpCIA-The WorldISES- 2003 CROSS

  16. Total Cross Sections as a Surrogate for Neutron Capture: An Opportunity to Accurately Constrain (n,?) Cross Sections for Nuclides Beyond the Reach of Direct Measurements

    SciTech Connect (OSTI)

    Koehler, Paul E.

    2014-03-05

    There are many (n,?) cross sections of great interest to radiochemical diagnostics and to nuclear astrophysics which are beyond the reach of current measurement techniques, and likely to remain so for the foreseeable future. In contrast, total neutron cross sections currently are feasible for many of these nuclides and provide almost all the information needed to accurately calculate the (n,?) cross sections via the nuclear statistical model (NSM). I demonstrate this for the case of 151Sm; NSM calculations constrained using average resonance parameters obtained from total cross section measurements made in 1975, are in excellent agreement with recent 151Sm (n,?) measurements across a wide range of energy. Furthermore, I demonstrate through simulations that total cross section measurements can be made at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center for samples as small as 10?g. Samples of this size should be attainable for many nuclides of interest. Finally, I estimate that over half of the radionuclides identified ?20 years ago as having (n,?) cross sections of importance to s-process nucleosynthesis studies (24/43) and radiochemical diagnostics (11/19), almost none of which have been measured, can be constrained using this technique.

  17. Calculation and evaluation of cross-sections for p+184W reactions up to 200MeV

    E-Print Network [OSTI]

    Jianping Sun; Zhengjun Zhang; Yinlu Han

    2015-02-06

    The cross-sections of proton-induced reactions on 184W at incident proton energy below 200MeV are calculated and analyzed including reaction cross-sections, elastic scattering angular distributions, energy spectra and double differential cross section. Nuclear theoretical models which integrate the optical model, distorted born wave approximation theory, the intra-nuclear cascade model, the exciton model, the Hauser-Feshbach theory and the evaporation model are used in the reactions. Theoretical results are compared with the existent experimental data.

  18. Thermal Neutron Capture Cross Sections Of The Palladium Isotopes

    SciTech Connect (OSTI)

    Firestone, R. B. [Lawrence Berkeley National Laboratory Berkeley CA 94720 (United States); Krtiaka, M. [Faculty of Mathematics and Physics, Charles University V Holesovickach 2, CZ-180 00 Prague 8 (Czech Republic); McNabb, D. P.; Sleaford, B.; Agvaanluvsan, U. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Belgya, T.; Revay, Zs. [Institute of Isotope and Surface Chemistry H-1525, Budapest (Hungary)

    2006-03-13

    We have measured precise thermal neutron capture {gamma}-ray cross sections cry for all stable Palladium isotopes with the guided thermal neutron beam from the Budapest Reactor. The data were compared with other data from the literature and have been evaluated into the Evaluated Gamma-ray Activation File (EGAF). Total radiative neutron capture cross-sections {sigma}{gamma} can be deduced from the sum of transition cross sections feeding the ground state of each isotope if the decay scheme is complete. The Palladium isotope decay schemes are incomplete, although transitions deexciting low-lying levels are known for each isotope. We have performed Monte Carlo simulations of the Palladium thermal neutron capture deexcitation schemes using the computer code DICEBOX. This program generates level schemes where levels below a critical energy Ecrit are taken from experiment, and those above Ecrit are calculated by a random discretization of an a priori known level density formula {rho}(E,J{pi}). Level de-excitation branching intensities are taken from experiment for levels below Ecrit the capture state, or calculated for levels above Ecrit assuming an a priori photon strength function and applying allowed selection rules and a Porter-Thomas distribution of widths. The advantage of this method is that calculational uncertainties can be investigated systematically. Calculated feeding to levels below Ecrit can be normalized to the measured cross section deexciting those levels to determine the total radiative neutron cross-section {sigma}{gamma}. In this paper we report the cross section measurements {sigma}{gamma}[102Pd(n,{gamma})]=0.9{+-}0.3 b, {sigma}{gamma}[104Pd(n,{gamma})=0.61{+-}0.11 b, {sigma}{gamma}[105Pd(n,{gamma})]=2.1.1{+-}1.5 b, {sigma}{gamma}[106Pd(n,{gamma})]=0.36{+-}0.05 b, {sigma}{gamma}[108Pd(n,{gamma})(0)]=7.6{+-}0.6 b, {sigma}{gamma}[108Pd(n,{gamma})(189)]=0.185{+-}0.011 b, and {sigma}{gamma}[110Pd(n,{gamma})]=0.10{+-}0.03 b. We have also determined from our statistical calculations that the neutron capture states in 107Pd are best described as 2+[59(4)%]+3+[41(4)%]. Agreement with literature values was excellent in most cases. We found significant discrepancies between our results for 102Pd and 110Pd and earlier values that could be resolved by re-evaluation of the earlier results.

  19. Assessment of hydrocarbon electron-impact ionization cross section measurements for magnetic fusion

    E-Print Network [OSTI]

    Huber, Stefan E; Kendl, Alexander; Reiter, Detlev

    2011-01-01

    Partial ionization cross section experiments have been carried out recently at the University of Innsbruck for three types of hydrocarbons, i.e. acetylene, ethylene and propene. Cross section data fits are generated and compared to the compilation of earlier experimental data summarized in the online database HYDKIN [www.hydkin.de]. New data fits are brought into a suitable form to be incorporated into the database. In order to illuminate underlying dissociation mechanisms the energy dependence of branching ratios above energies of 20 - 30eV is reviewed in light of the present results. This is a pre-peer reviewed version which has been submitted to Contributions to Plasma Physics.

  20. NuTeV cross-section and structure function measurements

    SciTech Connect (OSTI)

    Donna Naples et al.

    2003-12-10

    The NuTeV experiment has obtained a unique high statistics sample of neutrino and antineutrino interactions using its high-energy sign-selected beam. Charged-current {nu} and {bar {nu}} differential cross sections are extracted. Neutrino-Iron structure functions, F{sub 2}(x, Q{sup 2}) and xF{sub 3}(x, Q{sup 2}), are determined by fitting the y-dependence of the differential cross sections. NuTeV has precise understanding of its hadron and muon energy scales, which improves the systematic precision of this measurement.

  1. Cross-Polarization Dynamics in Polycrystalline Samples

    E-Print Network [OSTI]

    Taylor, Robert E; Chim, Nicholas; Dybowski, Cecil

    2007-01-01

    Solid State NMR [9] S. R. Hartmann and E. L. Hahn, NuclearTwo-stage feature of Hartmann-Hahn cross relaxation incalibration of the Hartmann-Hahn match was experimentally

  2. Cross-Functional Project Teams Real Estate

    E-Print Network [OSTI]

    Kamat, Vineet R.

    Cross-Functional Project Teams · Planning · Real Estate · Programming · Architectural Design Director Hospital Design & Construction Real Estate Jerry Schulte Associate Director Construction & Design Projects (Design & Construction) · Real Estate & Leasing · Property Management · GIS/Space Info · Design

  3. Highly cross-linked nanoporous polymers

    DOE Patents [OSTI]

    Steckle, Jr., Warren P. (Los Alamos, NM); Apen, Paul G. (Los Alamos, NM); Mitchell, Michael A. (Los Alamos, NM)

    1998-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  4. Highly cross-linked nanoporous polymers

    DOE Patents [OSTI]

    Steckle, Jr., Warren P. (Los Alamos, NM); Apen, Paul G. (Los Alamos, NM); Mitchell, Michael A. (Los Alamos, NM)

    1997-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  5. Modified Empirical Parametrization of Fragmentation Cross Sections

    E-Print Network [OSTI]

    K. Sümmerer; B. Blank

    1999-11-17

    New experimental data obtained mainly at the GSI/FRS facility allow to modify the empirical parametrization of fragmentation cross sections, EPAX. It will be shown that minor modifications of the parameters lead to a much better reproduction of measured cross sections. The most significant changes refer to the description of fragmentation yields close to the projectile and of the memory effect of neutron-deficient projectiles.

  6. Measurements of the total and differential cross sections of Higgs boson production

    E-Print Network [OSTI]

    ATLAS Collaboration; The ATLAS collaboration

    2015-01-01

    We present measurements of the total and differential cross sections of Higgs boson production that were performed using 20.3 fb$^{-1}$ of $pp$ collisions produced by the Large Hadron Collider at a center-of-mass energy of $\\sqrt{s} = 8$ TeV and recorded by the ATLAS detector. Cross sections are obtained from measured $H \\to \\gamma\\gamma$ and $H \\to ZZ \\to 4 \\ell$ event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be: $\\sigma_{pp \\to H} = 33.0 \\pm 5.3 \\, (\\text{stat}) \\pm 1.6 \\, (\\text{sys})$ pb. The measurements are then compared to state-of-the-art predictions.

  7. Direct Determination of the Ionization Energies of PtC, PtO, and PtO2 with VUV Radiation

    E-Print Network [OSTI]

    Citir, Murat

    2008-01-01

    binary-encounter Bethe (BEB) method 37 correctly predictsthe ionization energy. 38,39 BEB cross sections for Pt andstill. 14 Our calculated (BEB) relative cross sections at

  8. Recent advances in modeling fission cross sections over intermediate...

    Office of Scientific and Technical Information (OSTI)

    Recent advances in modeling fission cross sections over intermediate structures Citation Details In-Document Search Title: Recent advances in modeling fission cross sections over...

  9. V-193: Barracuda SSL VPN Input Validation Hole Permits Cross...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Validation Flaw Permits Cross-Site Scripting Attacks T-701: Citrix Access Gateway Enterprise Edition Input Validation Flaw in Logon Portal Permits Cross-Site Scripting Attacks...

  10. U-252: Barracuda Web Filter Input Validation Flaws Permit Cross...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Barracuda Web Filter Input Validation Flaws Permit Cross-Site Scripting Attacks U-252: Barracuda Web Filter Input Validation Flaws Permit Cross-Site Scripting Attacks September...

  11. Calculation of nuclear reaction cross sections on excited nuclei...

    Office of Scientific and Technical Information (OSTI)

    Calculation of nuclear reaction cross sections on excited nuclei with the coupled-channels method Citation Details In-Document Search Title: Calculation of nuclear reaction cross...

  12. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    DOE Patents [OSTI]

    Balachandran, Uthamalingam (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL); Kleefisch, Mark S. (Naperville, IL); Kobylinski, Thaddeus P. (Lisle, IL); Udovich, Carl A. (Joliet, IL)

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  13. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cross-flow TUrbine Simulation) (52) CACTUS User's Manual (54) Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data (31) Cost Breakdown...

  14. Energy prices, production

    E-Print Network [OSTI]

    Bonilla, David

    This paper investigates economic incentives influencing the adoption of energy saving technology by industry, namely, CHP in UK and Dutch manufacturing sectors. The empirical analysis is based on a cross sectional time series econometric model...

  15. Extracting forward strong amplitudes from elastic differential cross sections

    E-Print Network [OSTI]

    Chen, C M; Johnson, M B; Johnson, Mikkel B.

    2001-01-01

    The feasibility of a model-independent extraction of the forward strong amplitude from elastic nuclear cross section data in the Coulomb-nuclear interference region is assessed for $\\pi$ and $K^+$ scattering at intermediate energies. Theoretically-generated "data" are analyzed to provide criteria for optimally designing experiments to measure these amplitudes, whose energy dependence (particularly that of the real parts) is needed for disentangling various sources of medium modifications of the projectile-nucleon interaction. The issues considered include determining the angular region over which to make the measurements, the role of the most forward angles measured, and the effects of statistical and systematic errors. We find that there is a region near the forward direction where Coulomb-nuclear interference allows reliable extraction of the strong forward amplitude for both pions and the $K^+$ from .3 to 1 GeV/c.

  16. Extracting forward strong amplitudes from elastic differential cross sections

    E-Print Network [OSTI]

    C. M. Chen; D. J. Ernst; Mikkel B. Johnson

    2001-07-11

    The feasibility of a model-independent extraction of the forward strong amplitude from elastic nuclear cross section data in the Coulomb-nuclear interference region is assessed for $\\pi$ and $K^+$ scattering at intermediate energies. Theoretically-generated "data" are analyzed to provide criteria for optimally designing experiments to measure these amplitudes, whose energy dependence (particularly that of the real parts) is needed for disentangling various sources of medium modifications of the projectile-nucleon interaction. The issues considered include determining the angular region over which to make the measurements, the role of the most forward angles measured, and the effects of statistical and systematic errors. We find that there is a region near the forward direction where Coulomb-nuclear interference allows reliable extraction of the strong forward amplitude for both pions and the $K^+$ from .3 to 1 GeV/c.

  17. Measurements of neutron capture cross section for {sup 207,208}Pb

    SciTech Connect (OSTI)

    Segawa, M.; Toh, Y.; Harada, H.; Kitatani, F.; Koizumi, M.; Fukahori, T.; Iwamoto, N.; Iwamoto, O. [Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Oshima, M. [Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan and Japan Chemical Analysis Center (Japan); Hatsukawa, Y. [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Nagai, Y. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Igashira, M. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Kamada, S. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550, Japan and National Maritime Research Institute (Japan); Tajika, M. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550, Japan and Hitachi Solutions, Ltd. (Japan)

    2014-05-02

    The neutron capture cross sections for {sup 207,208}Pb have been measured in the neutron energy region from 10 to 110 keV. The ?-rays cascaded from a capture state to the ground state or low-lying states of {sup 208,209}Pb were observed for the first time, using an anti-Compton Nal(Tl) spectrometer and a TOF method. The observed discrete ?-ray energy spectra enabled us to determine neutron capture cross sections for {sup 207,208}Pb with small systematic errors, since we could distinguish ?-ray of {sup 207,208}Pb(n,?) reactions from background ?-ray with use of the ?-ray spectra. The obtained cross sections include both contributions of resonance and direct capture components different from the previous TOF measurements.

  18. Symmetric charge-transfer cross sections of IIIa rare-earth-metal elements

    SciTech Connect (OSTI)

    Hashida, Masaki; Sakabe, Shuji; Izawa, Yasukazu [ARCBS, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan) and Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502 (Japan); Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan) and Institute for Laser Technology, 2-6 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2011-03-15

    Symmetric charge-transfer cross sections of IIIa rare-earth-metal elements (Sc, Y, and Gd) in the impact energy range of 30 to 1000 eV were measured for the first time. The experiments were performed with a crossed-beam apparatus that featured primary ion production by photoionization with a tunable dye laser. Comparing the cross sections of IIIa rare-earth-metal elements ({sigma}{sub Sc}, {sigma}{sub Y}, and {sigma}{sub Gd}) with those of alkali metals or helium {sigma}{sub 0}, we found that {sigma}{sub 0{approx_equal}{sigma}Sc}<{sigma}{sub Y}<{sigma}{sub Gd{approx_equal}}2{sigma}{sub 0}at an impact energy of 1000 eV.

  19. Upsilon cross section in p+p collisions at sqrt(s) = 200 GeV

    E-Print Network [OSTI]

    STAR Collaboration; B. I. Abelev; M. M. Aggarwal; Z. Ahammed; A. V. Alakhverdyants; B. D. Anderson; D. Arkhipkin; G. S. Averichev; J. Balewski; L. S. Barnby; S. Baumgart; D. R. Beavis; R. Bellwied; M. J. Betancourt; R. R. Betts; A. Bhasin; A. K. Bhati; H. Bichsel; J. Bielcik; J. Bielcikova; B. Biritz; L. C. Bland; B. E. Bonner; J. Bouchet; E. Braidot; A. V. Brandin; A. Bridgeman; E. Bruna; S. Bueltmann; I. Bunzarov; T. P. Burton; X. Z. Cai; H. Caines; M. Calderón de la Barca Sánchez; O. Catu; D. Cebra; R. Cendejas; M. C. Cervantes; Z. Chajecki; P. Chaloupka; S. Chattopadhyay; H. F. Chen; J. H. Chen; J. Y. Chen; J. Cheng; M. Cherney; A. Chikanian; K. E. Choi; W. Christie; P. Chung; R. F. Clarke; M. J. M. Codrington; R. Corliss; J. G. Cramer; H. J. Crawford; D. Das; S. Dash; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; M. DePhillips; A. A. Derevschikov; R. Derradi de Souza; L. Didenko; P. Djawotho; S. M. Dogra; X. Dong; J. L. Drachenberg; J. E. Draper; J. C. Dunlop; M. R. Dutta Mazumdar; L. G. Efimov; E. Elhalhuli; M. Elnimr; J. Engelage; G. Eppley; B. Erazmus; M. Estienne; L. Eun; O. Evdokimov; P. Fachini; R. Fatemi; J. Fedorisin; R. G. Fersch; P. Filip; E. Finch; V. Fine; Y. Fisyak; C. A. Gagliardi; D. R. Gangadharan; M. S. Ganti; E. J. Garcia-Solis; A. Geromitsos; F. Geurts; V. Ghazikhanian; P. Ghosh; Y. N. Gorbunov; A. Gordon; O. Grebenyuk; D. Grosnick; B. Grube; S. M. Guertin; A. Gupta; N. Gupta; W. Guryn; B. Haag; T. J. Hallman; A. Hamed; L-X. Han; J. W. Harris; J. P. Hays-Wehle; M. Heinz; S. Heppelmann; A. Hirsch; E. Hjort; A. M. Hoffman; G. W. Hoffmann; D. J. Hofman; R. S. Hollis; H. Z. Huang; T. J. Humanic; L. Huo; G. Igo; A. Iordanova; P. Jacobs; W. W. Jacobs; P. Jakl; C. Jena; F. Jin; C. L. Jones; P. G. Jones; J. Joseph; E. G. Judd; S. Kabana; K. Kajimoto; K. Kang; J. Kapitan; K. Kauder; D. Keane; A. Kechechyan; D. Kettler; D. P. Kikola; J. Kiryluk; A. Kisiel; A. G. Knospe; A. Kocoloski; D. D. Koetke; T. Kollegger; J. Konzer; M. Kopytine; I. Koralt; W. Korsch; L. Kotchenda; V. Kouchpil; P. Kravtsov; K. Krueger; M. Krus; L. Kumar; P. Kurnadi; M. A. C. Lamont; J. M. Landgraf; S. LaPointe; J. Lauret; A. Lebedev; R. Lednicky; C-H. Lee; J. H. Lee; W. Leight; M. J. LeVine; C. Li; L. Li; N. Li; W. Li; X. Li; X. Li; Y. Li; Z. Li; G. Lin; S. J. Lindenbaum; M. A. Lisa; F. Liu; H. Liu; J. Liu; T. Ljubicic; W. J. Llope; R. S. Longacre; W. A. Love; Y. Lu; G. L. Ma; Y. G. Ma; D. P. Mahapatra; R. Majka; O. I. Mall; L. K. Mangotra; R. Manweiler; S. Margetis; C. Markert; H. Masui; H. S. Matis; Yu. A. Matulenko; D. McDonald; T. S. McShane; A. Meschanin; R. Milner; N. G. Minaev; S. Mioduszewski; A. Mischke; M. K. Mitrovski; B. Mohanty; M. M. Mondal; D. A. Morozov; M. G. Munhoz; B. K. Nandi; C. Nattrass; T. K. Nayak; J. M. Nelson; P. K. Netrakanti; M. J. Ng; L. V. Nogach; S. B. Nurushev; G. Odyniec; A. Ogawa; H. Okada; V. Okorokov; D. Olson; M. Pachr; B. S. Page; S. K. Pal; Y. Pandit; Y. Panebratsev; T. Pawlak; T. Peitzmann; V. Perevoztchikov; C. Perkins; W. Peryt; S. C. Phatak; P. Pile; M. Planinic; M. A. Ploskon; J. Pluta; D. Plyku; N. Poljak; A. M. Poskanzer; B. V. K. S. Potukuchi; C. B. Powell; D. Prindle; C. Pruneau; N. K. Pruthi; P. R. Pujahari; J. Putschke; R. Raniwala; S. Raniwala; R. L. Ray; R. Redwine; R. Reed; J. M. Rehberg; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; A. Rose; C. Roy; L. Ruan; R. Sahoo; S. Sakai; I. Sakrejda; T. Sakuma; S. Salur; J. Sandweiss; E. Sangaline; J. Schambach; R. P. Scharenberg; N. Schmitz; T. R. Schuster; J. Seele; J. Seger; I. Selyuzhenkov; P. Seyboth; E. Shahaliev; M. Shao; M. Sharma; S. S. Shi; E. P. Sichtermann; F. Simon; R. N. Singaraju; M. J. Skoby; N. Smirnov; P. Sorensen; J. Sowinski; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; D. Staszak; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; A. A. P. Suaide; M. C. Suarez; N. L. Subba; M. Sumbera; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; T. J. M. Symons; A. Szanto de Toledo; J. Takahashi; A. H. Tang; Z. Tang; L. H. Tarini; T. Tarnowsky; D. Thein; J. H. Thomas; J. Tian; A. R. Timmins; S. Timoshenko; D. Tlusty; M. Tokarev; T. A. Trainor; V. N. Tram; S. Trentalange; R. E. Tribble; O. D. Tsai; J. Ulery; T. Ullrich; D. G. Underwood; G. Van Buren; M. van Leeuwen; G. van Nieuwenhuizen; J. A. Vanfossen Jr.; R. Varma; G. M. S. Vasconcelos; A. N. Vasiliev; F. Videbaek; Y. P. Viyogi; S. Vokal; S. A. Voloshin; M. Wada; M. Walker; F. Wang; G. Wang; H. Wang; J. S. Wang; Q. Wang; X. L. Wang; Y. Wang; G. Webb; J. C. Webb; G. D. Westfall; C. Whitten Jr.; H. Wieman; E. Wingfield; S. W. Wissink; R. Witt; Y. Wu; W. Xie; N. Xu; Q. H. Xu; W. Xu; Y. Xu; Z. Xu; L. Xue; Y. Yang; P. Yepes; K. Yip; I-K. Yoo; Q. Yue; M. Zawisza; H. Zbroszczyk; W. Zhan; S. Zhang; W. M. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; J. Zhao; C. Zhong; J. Zhou; W. Zhou; X. Zhu; Y. H. Zhu

    2010-05-10

    We report on a measurement of the Upsilon(1S+2S+3S) -> e+e- cross section at midrapidity in p+p collisions at sqrt(s)=200 GeV. We find the cross section to be 114 +/- 38 (stat.) +23,-24 (syst.) pb. Perturbative QCD calculations at next-to-leading order in the Color Evaporation Model are in agreement with our measurement, while calculations in the Color Singlet Model underestimate it by 2 sigma. Our result is consistent with the trend seen in world data as a function of the center-of-mass energy of the collision and extends the availability of Upsilon data to RHIC energies. The dielectron continuum in the invariant mass range near the Upsilon is also studied to obtain a combined cross section of Drell-Yan plus (b b-bar) -> e+e-.

  20. Absolute differential cross sections for elastic scattering of electrons from pyrimidine

    SciTech Connect (OSTI)

    Maljkovic, J. B.; Milosavljevic, A. R.; Sevic, D.; Marinkovic, B. P.; Blanco, F.

    2009-05-15

    Differential cross sections (DCSs) for elastic scattering of electrons from pyrimidine (C{sub 4}H{sub 4}N{sub 2}) are presented for incident energies from 50 to 300 eV. The measurements were performed using a cross beam technique, for scattering angles from 20 deg. to 110 deg. The relative DCSs were measured as a function of both the angle and incident energy and the absolute DCSs were determined using the relative flow method. The calculations of electron interaction cross sections are based on a corrected form of the independent-atom method, known as the screen corrected additivity rule procedure and using an improved quasifree absorption model. Calculated results agree very well with the experiment.

  1. Gallium Solar Neutrino Experiments: Absorption Cross sections, Neutrino spectra, and Predicted Event Rates

    E-Print Network [OSTI]

    John N. Bahcall

    1997-10-28

    Neutrino absorption cross sections for 71Ga are calculated for all solar neutrino sources with standard energy spectra, and for laboratory sources of 51Cr and 37Ar; the calculations include, where appropriate, the thermal energy of fusing solar ions and use improved nuclear and atomic data. The ratio, R, of measured (in GALLEX and SAGE) to calculated 51Cr capture rate is R = 0.95 +/- 0.07 (exp)} + ^{+0.04}_{-0.03} (theory). Cross sections are also calculated for specific neutrino energies chosen so that a spline fit determines accurately the event rates in a gallium detector even if new physics changes the energy spectrum of solar neutrinos. Theoretical uncertainties are estimated for cross sections at specific energies and for standard neutrino energy spectra. Standard energy spectra are presented for pp and CNO neutrino sources in the appendices. Neutrino fluxes predicted by standard solar models, corrected for diffusion, have been in the range 120 SNU to 141 SNU since 1968.

  2. HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 Cross-effects andCross-effects and

    E-Print Network [OSTI]

    Zevenhoven, Ron

    and clean coal technologyclean coal technology HotHot cold or furnacecold or furnace stackstack AFBCHELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 Cross-effects andCross-effects and total gas clean.153 Pulverised coal combustion and gas clean-upPulverised coal combustion and gas clean-up #12;HELSINKI

  3. Systematics of cross sections for target K-vacancy production in heavy ion collisions 

    E-Print Network [OSTI]

    Peng, Yong

    2007-04-25

    Cross sections for K-shell ionization by heavy ions have been determined from the measurements of target K x-ray yields. The measurements were performed with Ar, Kr, and Xe ions at energies from 2.5 to 25 MeV/amu and ...

  4. On the morphology of avoided crossings in the spectrum of irregular quantum systems

    SciTech Connect (OSTI)

    Yang, Xiazhou; Burgdoerfer, J.; Eschenazi, E. (Tennessee Univ., Knoxville, TN (USA). Dept. of Physics Oak Ridge National Lab., TN (USA))

    1990-01-01

    The deformation of the energy level spectra of quantum systems as a function of a control parameter governing the strength of a non- integrable perturbation can be determined by standard molecular dynamics techniques. This method is used to analyze the distribution and morphology of avoided crossings for a system of coupled Morse oscillators. 25 refs., 4 figs.

  5. Total cross sections for positron scattering from benzene, cyclohexane, and aniline

    SciTech Connect (OSTI)

    Zecca, Antonio; Moser, Norberto; Perazzolli, Chiara; Salemi, Alessandro; Brunger, Michael J.

    2007-08-15

    We use a linear transmission technique to measure total cross sections for positron scattering from benzene, cyclohexane, and aniline. In the case of cyclohexane, the energy range of the present study is 0.1-20 eV, while for benzene and aniline it is 0.2-20 eV. With respect to benzene and cyclohexane, comparison is made to the only other existing results we know of [Makochekanwa and co-workers, Phys. Rev. A 68, 032707 (2003); 72, 042705 (2005)]. Agreement with those data is only marginal, being particularly poor at the overlap lower energies. Unlike Kimura et al. [J. Phys. B 37, 1461 (2004)], we find the low-energy dependence of the positron-benzene total cross sections to be qualitatively similar to those found in the electron channel [Gulley et al., J. Phys. B 31, 2735 (1998)]. We believe that the present positron-aniline total cross sections represent the first time such data have been measured. These cross sections are almost identical to those we found for benzene, suggesting that substitution of hydrogen by the amine group on the aromatic ring is largely irrelevant to the scattering process in the energy regimes considered.

  6. ARM 2012 WORKSHOP 1 Cross-Layer Virtual Observers for Embedded

    E-Print Network [OSTI]

    Venkatasubramanian, Nalini

    to manufacturing process variability, exponentially increasing power dissipation and heating, as well as drastic-layer virtual observers and actuations with the aim of achieving improved reliability, performance, thermal stability, and reduced power and energy consumption applied across different layers of system stack. Cross

  7. Lauren Bains August 27, 2002 Differential Scattering Cross Sections of Photons Scattered

    E-Print Network [OSTI]

    Saskatchewan, University of

    Lauren Bains August 27, 2002 Differential Scattering Cross Sections of Photons Scattered from Compton scattering of high energy photons off of oxygen nuclei (Saskatchewan Accelerator Laboratory (SAL) Experiment 056). Nuclear Compton scattering occurs when a photon with some initial momentum interacts

  8. Directives Checklist and Cross-Reference Index as of 2-12-91

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1991-02-26

    The order transmits a checklist of current Department of Energy (DOE) and Headquarters (HQ) directives and a cross-reference index of DOE and HQ Orders published on or before 2-12-91. Cancels DOE O 0000.2c. Canceled by DOE N 1321.139.

  9. Measurement of the Isolated Prompt Photon Production Cross Section in pp Collisions at

    E-Print Network [OSTI]

    Yu, Shin-Shan Eiko

    Measurement of the Isolated Prompt Photon Production Cross Section in pp Collisions at ffiffiffi production of isolated prompt photons has been measured as a function of the photon transverse energy E complements deep- inelastic scattering, Drell-Yan pair production, and jet production measurements [1

  10. Precise neutron inelastic cross section measurements

    SciTech Connect (OSTI)

    Negret, Alexandru [Horia Hulubei National Institute for Physics and Nuclear Engineering, Reactorului 30, 077125 Bucharest-Magurele (Romania)

    2012-11-20

    The design of a new generation of nuclear reactors requires the development of a very precise neutron cross section database. Ongoing experiments performed at dedicated facilities aim to the measurement of such cross sections with an unprecedented uncertainty of the order of 5% or even smaller. We give an overview of such a facility: the Gamma Array for Inelastic Neutron Scattering (GAINS) installed at the GELINA neutron source of IRMM, Belgium. Some of the most challenging difficulties of the experimental approach are emphasized and recent results are shown.

  11. Anthem Blue Cross and Blue Shield 6740 North High St.

    E-Print Network [OSTI]

    Pittendrigh, Barry

    Anthem Blue Cross and Blue Shield 6740 North High St. Worthington, OH 43085 An independent licensee of the Blue Cross and Blue Shield Association...... Anthem Blue Cross and Blue Shield is the trade name of Community Insurance Company. ® Registered marks Blue Cross and Blue Shield Association. Date REPLY MUST

  12. Delay impacts of light rail transit grade crossings 

    E-Print Network [OSTI]

    Cline, James Curtiss

    1986-01-01

    with the cross i n g control operating independently of the other parts of the signal system. The LRT vehicles recei ve unconditional priority at a 1 1 times. The LRT system in this anal ysi s was depicted as operating on semi -exclusive right-of-way. Median... . 25 Figure 9. Isolated Crossing-Effect of Crossing Clearance Time . 26 Figure 10. Isolated Crossing-Effect of Roadway Cross-Section . . . 28 Figure 11. Isolated Crossing-Delay per Vehicle vs. Crossing Volume-to-Capacity Ratio-Scatter Plot . 30...

  13. Final report for CCS cross-layer reliability visioning study

    SciTech Connect (OSTI)

    Quinn, Heather M; Dehon, Andre; Carter, Nicj

    2010-12-20

    The geometric rate of improvement of transistor size and integrated circuit performance known as Moore's Law has been an engine of growth for our economy, enabling new products and services, creating new value and wealth, increasing safety, and removing menial tasks from our daily lives. Affordable, highly integrated components have enabled both life-saving technologies and rich entertainment applications. Anti-lock brakes, insulin monitors, and GPS-enabled emergency response systems save lives. Cell phones, internet appliances, virtual worlds, realistic video games, and mp3 players enrich our lives and connect us together. Over the past 40 years of silicon scaling, the increasing capabilities of inexpensive computation have transformed our society through automation and ubiquitous communications. Looking forward, increasing unpredictability threatens our ability to continue scaling integrated circuits at Moore's Law rates. As the transistors and wires that make up integrated circuits become smaller, they display both greater differences in behavior among devices designed to be identical and greater vulnerability to transient and permanent faults. Conventional design techniques expend energy to tolerate this unpredictability by adding safety margins to a circuit's operating voltage, clock frequency or charge stored per bit. However, the rising energy costs needed to compensate for increasing unpredictability are rapidly becoming unacceptable in today's environment where power consumption is often the limiting factor on integrated circuit performance and energy efficiency is a national concern. Reliability and energy consumption are both reaching key inflection points that, together, threaten to reduce or end the benefits of feature size reduction. To continue beneficial scaling, we must use a cross-layer, Jull-system-design approach to reliability. Unlike current systems, which charge every device a substantial energy tax in order to guarantee correct operation in spite of rare events, such as one high-threshold transistor in a billion or one erroneous gate evaluation in an hour of computation, cross-layer reliability schemes make reliability management a cooperative effort across the system stack, sharing information across layers so that they only expend energy on reliability when an error actually occurs. Figure 1 illustrates an example of such a system that uses a combination of information from the application and cheap architecture-level techniques to detect errors. When an error occurs, mechanisms at higher levels in the stack correct the error, efficiently delivering correct operation to the user in spite of errors at the device or circuit levels. In the realms of memory and communication, engineers have a long history of success in tolerating unpredictable effects such as fabrication variability, transient upsets, and lifetime wear using information sharing, limited redundancy, and cross-layer approaches that anticipate, accommodate, and suppress errors. Networks use a combination of hardware and software to guarantee end-toend correctness. Error-detection and correction codes use additional information to correct the most common errors, single-bit transmission errors. When errors occur that cannot be corrected by these codes, the network protocol requests re-transmission of one or more packets until the correct data is received. Similarly, computer memory systems exploit a cross-layer division of labor to achieve high performance with modest hardware. Rather than demanding that hardware alone provide the virtual memory abstraction, software page-fault and TLB-miss handlers allow a modest piece of hardware, the TLB, to handle the common-case operations on a cyc1e-by-cycle basis while infrequent misses are handled in system software. Unfortunately, mitigating logic errors is not as simple or as well researched as memory or communication systems. This lack of understanding has led to very expensive solutions. For example, triple-modular redundancy masks errors by triplicating computations in either time or area. T

  14. Assessment of Fission Product Cross-Section Data for Burnup Credit Applications

    SciTech Connect (OSTI)

    Leal, Luiz C; Derrien, Herve; Dunn, Michael E; Mueller, Don

    2007-12-01

    Past efforts by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), the Nuclear Regulatory Commission (NRC), and others have provided sufficient technical information to enable the NRC to issue regulatory guidance for implementation of pressurized-water reactor (PWR) burnup credit; however, consideration of only the reactivity change due to the major actinides is recommended in the guidance. Moreover, DOE, NRC, and EPRI have noted the need for additional scientific and technical data to justify expanding PWR burnup credit to include fission product (FP) nuclides and enable burnup credit implementation for boiling-water reactor (BWR) spent nuclear fuel (SNF). The criticality safety assessment needed for burnup credit applications will utilize computational analyses of packages containing SNF with FP nuclides. Over the years, significant efforts have been devoted to the nuclear data evaluation of major isotopes pertinent to reactor applications (i.e., uranium, plutonium, etc.); however, efforts to evaluate FP cross-section data in the resonance region have been less thorough relative to actinide data. In particular, resonance region cross-section measurements with corresponding R-matrix resonance analyses have not been performed for FP nuclides. Therefore, the objective of this work is to assess the status and performance of existing FP cross-section and cross-section uncertainty data in the resonance region for use in burnup credit analyses. Recommendations for new cross-section measurements and/or evaluations are made based on the data assessment. The assessment focuses on seven primary FP isotopes (103Rh, 133Cs, 143Nd, 149Sm, 151Sm, 152Sm, and 155Gd) that impact reactivity analyses of transportation packages and two FP isotopes (153Eu and 155Eu) that impact prediction of 155Gd concentrations. Much of the assessment work was completed in 2005, and the assessment focused on the latest FP cross-section evaluations available in the international nuclear data community as of March 2005. The accuracy of the cross-section data was investigated by comparing existing cross-section evaluations against available measured cross-section data. When possible, benchmark calculations were also used to assess the performance of the latest FP cross-section data. Since March 2005, the U.S. and European data projects have released newer versions of their respective data files. Although there have been updates to the international data files and to some degree FP data, much of the updates have included nuclear cross-section modeling improvements at energies above the resonance region. The one exception is improved ENDF/B-VII cross-section uncertainty data or covariance data for gadolinium isotopes. In particular, ENDF/B-VII includes improved 155Gd resonance parameter covariance data, but they are based on previously measured resonance data. Although the new covariance data are available for 155Gd, the conclusions of the FP cross-section data assessment of this report still hold in lieu of the newer international cross-section data files. Based on the FP data assessment, there is judged to be a need for new total and capture cross-section measurements and corresponding cross-section evaluations, in a prioritized manner, for the nine FPs to provide the improved information and technical rigor needed for criticality safety analyses.

  15. Measurement of charged current deep inelastic scattering cross sections with a longitudinally polarised electron beam at HERA

    E-Print Network [OSTI]

    ZEUS Collaboration

    2009-03-24

    Measurements of the cross sections for charged current deep inelastic scattering in e-p collisions with longitudinally polarised electron beams are presented. The measurements are based on a data sample with an integrated luminosity of 175 pb-1 collected with the ZEUS detector at HERA at a centre-of-mass energy of 318 GeV. The total cross section is given for positively and negatively polarised electron beams. The differential cross-sections dsigma/dQ2, dsigma/dx and dsigma/dy are presented for Q2>200 GeV2. The double-differential cross-section d2sigma/dxdQ2 is presented in the kinematic range 280cross sections are compared with the predictions of the Standard Model.

  16. Copper K-shell emission cross sections for laser–solid experiments

    SciTech Connect (OSTI)

    Davies, J. R.; Betti, R.; Nilson, P. M.; Solodov, A. A.

    2013-08-15

    Published measurements and models of the cross section for electrons causing K-shell emission from copper are reviewed to find a suitable expression to use when analyzing K{sub ?}-emission measurements in laser–solid experiments at peak intensities above 10{sup 18} W/cm{sup 2}. Few measurements exist in the 0.1- to 10-MeV electron energy range currently of interest, leaving a number of possible suitable models that are summarized here with a number of typing errors corrected. Two different limiting forms for the cross section at relativistic energies are used, and existing measurements do not give a clear indication as to which is correct. Comparison with the limiting form of electron stopping power indicates an alternative relativistic form and also that the density-effect correction will be important in copper above 10 MeV. For data analysis relying on relative K{sub ?} emission caused by electrons with energy much greater than the K-shell binding energy, the existing uncertainty in cross sections is unimportant, but it will be a source of uncertainty when using absolute values and for electron energies up to ?6× the binding energy. K-shell emission caused by photons and protons is also briefly reviewed.

  17. Averaging cross section data so we can fit it

    SciTech Connect (OSTI)

    Brown, D.

    2014-10-23

    The 56Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).

  18. Radioactive targets for neutron-induced cross section measurements

    SciTech Connect (OSTI)

    Kronenberg, A. (Andreas); Bond, E. M. (Evelyn M.); Glover, S. E. (Samuel E.); Rundberg, R. S. (Robert S.); Vieira, D. J. (David J.); Esch, E. I. (Ernst-Ingo); Reifarth, R. (Rene); Ullmann, J. L. (John L.); Haight, Robert C.; Rochmann, D. (Dimitri)

    2004-01-01

    Measurements using radioactive targets are important for the determination of key reaction path ways associated with the synthesis of the elements in nuclear astrophysics (sprocess), advanced fuel cycle initiative (transmutation of radioactive waste), and stockpile stewardship. High precision capture cross-section measurements are needed to interpret observations, predict elemental or isotopical ratios, and unobserved abundances. There are two new detector systems that are presently being commissioned at Los Alamos National Laboratory for very precise measurements of (n,{gamma}) and (n,f) cross-sections using small quantities of radioactive samples. DANCE (Detector for Advanced Neutron-Capture Experiments), a 4 {pi} gamma array made up of 160 BaF{sub 2} detectors, is designed to measure neutron capture cross-sections of unstable nuclei in the low-energy range (thermal to {approx}500 keV). The high granularity and high detection efficiency of DANCE, combined with the high TOF-neutron flux available at the Lujan Center provides a versatile tool for measuring many important cross section data using radioactive and isotopically enriched targets of about 1 milligram. Another powerful instrument is the Lead-slowing down spectrometer (LSDS), which will enable the measurement of neutron-induced fission cross-section of U-235m and other short-lived actinides in a energy range from 1-200 keV with sample sizes down to 10 nanograms. Due to the short half-life of the U-235m isomer (T{sub 1/2} = 26 minutes), the samples must be rapidly and repeatedly extracted from its {sup 239}Pu parent. Since {sup 239}Pu is itself highly fissile, the separation must not only be rapid, but must also be of very high purity (the Pu must be removed from the U with a decontamination factor >10{sup 12}). Once extracted and purified, the {sup 235m}U isomer would be electrodeposited on solar cells as a fission detector and placed within the LSDS for direct (n,f) cross section measurements. The production of radioactive targets of a few milligrams will be described as well as the containment for safe handling of these targets at the Lujan Center at LANSCE. To avoid any contamination, the targets are electrochemically fixed onto thin Ti foils and two foils are placed back to back to contain the radioactive material within. This target sandwich is placed in a cylinder made of aluminum with thin translucent windows made of Kapton. Actinides targets, such as {sup 234,235,236,238}U, {sup 237}Np, and {sup 239}Pu are prepared by electrodeposition or molecular plating techniques. Target thicknesses of 1-2 mg/cm{sup 2} with sizes of 1 cm{sup 2} or more have been made. Other targets will be fabricated from separation of irradiated isotopically enriched targets, such as {sup 155}Eu from {sup 154}Sm,{sup 171}Tm from {sup 170}Er, and {sup 147}Pm from {sup 146}Nd, which has been irradiated in the high flux reactor at ILL, Grenoble. A radioactive sample isotope separator (RSIS) is in the process of being commissioned for the preparation of other radioactive targets. A brief summary of these experiments and the radioactive target preparation technique will be given.

  19. Cultural Artifacts Cross Eras at the NNSS | Department of Energy

    Office of Environmental Management (EM)

    artifacts at the NNSS. Bower Cabin, on the NNSS, is a dwelling associated with mining dating to the early part of the 20th century. During the 1920s, writer B.M. Bower...

  20. Energy Secretary Bodman Tours Alabama Red Cross Facility and...

    Broader source: Energy.gov (indexed) [DOE]

    to commemorate a National Day of Prayer and Remembrance in honor of victims of Hurricane Katrina. "On this day of prayer and remembrance, our thoughts and prayers are with...

  1. Quantifying the Level of Cross-State Renewable Energy Transactions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7, 2011 |1 DOEAssurance forReviewDepartment of

  2. Category:Cross-Dipole Acoustic Log | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village,8199089°,Analytical

  3. MHK Projects/Morgan Bend Crossing Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf| OpenMauriceMississippi 6Morgan

  4. MHK Technologies/Cross Flow Turbine | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoosSloughAquantis < MHKAS 400Flow Turbine

  5. Cross-Dipole Acoustic Log | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation EU-UNDP

  6. Cross-Laminated Timber Panels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation EU-UNDPCross-Laminated Timber Panels Jump to:

  7. Increasing Hydrodynamic Efficiency by Reducing Cross-Beam Energy Transfer

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article)lasers(JournalatBaBar (Thesis/Dissertation) | SciTech6 :

  8. Competency Management and Cross-Cutting Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential54Strategic Programs

  9. Cross-linked structure of network evolution

    SciTech Connect (OSTI)

    Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Porter, Mason A.; CABDyN Complexity Centre, University of Oxford, Oxford, OX1 1HP ; Mucha, Peter J.; Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599

    2014-03-15

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  10. Testing (Validating?) Cross Sections with ICSBEP Benchmarks

    SciTech Connect (OSTI)

    Kahler, Albert C. III

    2012-06-28

    We discuss how to use critical benchmarks from the International Handbook of Evaluated Criticality Safety Benchmark Experiments to determine the applicability of specific cross sections to the end-user's problem of interest. Particular attention is paid to making sure the selected suite of benchmarks includes the user's range of applicability (ROA).

  11. Cross-Industry Issues in Nanomanufacturing

    E-Print Network [OSTI]

    Magee, Joseph W.

    Cross-Industry Issues in Nanomanufacturing National Institute of Standards and Technology of Standards and Technology are not subject to copyright. Copyrights to some portions of this report (including recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply

  12. Proton Radiography: Cross Section Measurements and Detector Development

    SciTech Connect (OSTI)

    Michael J. Longo; H. R. Gustafson: Durga Rajaram; Turgun Nigmanov

    2010-04-16

    Proton radiography has become an important tool for predicting the performance of stockpiled nuclear weapons. Current proton radiography experiments at LANSCE are confined to relatively small targets on the order of centimeters in size because of the low beam energy. LANL scientists have made radiographs with 12 and 24 GeV protons produced by the accelerator at Brookhaven National Laboratory. These energies are in the range required for hydrotest radiography. The design of a facility for hydrotest radiography requires knowledge of the cross sections for producing high-energy particles in the forward direction, which are incorporated into the Monte Carlo simulation used in designing the beam and detectors. There are few existing measurements of neutron production cross sections for proton-nuclei interactions in the 50 GeV range, and almost no data exist for forward neutron production, especially for heavy target nuclei. Thus the data from the MIPP EMCAL and HCAL, for which our group was responsible, are critical to proton radiography. Since neutrons and photons cannot be focused by magnets, they cause a background “fog” on the images. This problem can be minimized by careful design of the focusing system and detectors. The purpose of our research was to measure forward production of neutrons produced by high-energy proton beams striking a variety of targets. The forward-going particles carry most of the energy from a high-energy proton interaction, so these are the most important to proton radiography. This work was carried out in conjunction with the Fermilab E-907 (MIPP) collaboration. Our group was responsible for designing and building the E907 forward neutron and photon calorimeters. With the support of our Stewardship Science Academic Alliances grants, we were able to design, build, and commission the calorimeters on budget and ahead of schedule. The MIPP experiment accumulated a large amount of data in the first run that ended in early 2006. Our group has almost completed the analysis the forward neutron production data. Large dis-crepancies between our neutron production data and Monte Carlo expectations have been found.

  13. New measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    E-Print Network [OSTI]

    K. B. Grammer; R. Alarcon; L. Barrón-Palos; D. Blyth; J. D. Bowman; J. Calarco; C. Crawford; K. Craycraft; D. Evans; N. Fomin; J. Fry; M. Gericke; R. C. Gillis; G. L. Greene; J. Hamblen; C. Hayes; S. Kucuker; R. Mahurin; M. Maldonado-Velázquez; E. Martin; M. McCrea; P. E. Mueller; M. Musgrave; H. Nann; S. I. Penttilä; W. M. Snow; Z. Tang; W. S. Wilburn

    2015-04-24

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many body physics. Unfortunately, the pair correlation function $g(r)$ inferred from neutron scattering measurements of the differential cross section $d\\sigma \\over d\\Omega$ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43~meV and 16.1~meV on liquid hydrogen at 15.6~K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1~meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra non-equilibrium component of orthohydrogen. Liquid parahydrogen is also a widely-used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. We describe our measurements and compare them with previous work.

  14. Measurement of the production cross section for W-bosons in association with jets in pp collisions at ?s = 7 TeV with the ATLAS detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    This Letter reports on a first measurement of the inclusive W+jets cross section in proton–proton collisions at a centre-of-mass energy of 7 TeV at the LHC, with the ATLAS detector. Cross sections, in both the electron and ...

  15. Measurement of the Proton-Air Cross Section at ?s=57 TeV with the Pierre Auger Observatory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almeda, A.; Alvarez Castillo, J.; et al

    2012-08-10

    We report a measurement of the proton-air cross section for particle production at the center-of-mass energy per nucleon of 57 TeV. This is derived from the distribution of the depths of shower maxima observed with the Pierre Auger Observatory: systematic uncertainties are studied in detail. Analyzing the tail of the distribution of the shower maxima, a proton-air cross section of [505±22(stat)+28-36(syst)] mb is found.

  16. Solar fusion cross sections II: the pp chain and CNO cycles

    SciTech Connect (OSTI)

    Adelberger, E G; Bemmerer, D; Bertulani, C A; Chen, J -W; Costantini, H; Couder, M; Cyburt, R; Davids, B; Freedman, S J; Gai, M; Garcia, A; Gazit, D; Gialanella, L; Greife, U; Hass, M; Heeger, K; Haxton, W C; Imbriani, G; Itahashi, T; Junghans, A; Kubodera, K; Langanke, K; Leitner, D; Leitner, M; Marcucci, L E; Motobayashi, T; Mukhamedzhanov, A; Nollett, Kenneth M; Nunes, F M; Park, T -S; Parker, P D; Prati, P; Ramsey-Musolf, M J; Hamish Robertson, R G; Schiavilla, R; Simpson, E C; Snover, K A; Spitaleri, C; Strieder, F; Suemmerer, K; Trautvetter, R E; Tribble, R E; Typel, S; Uberseder, E; Vetter, P; Wiescher, M

    2011-04-01

    The available data on nuclear fusion cross sections important to energy generation in the Sun and other hydrogen-burning stars and to solar neutrino production are summarized and critically evaluated. Recommended values and uncertainties are provided for key cross sections, and a recommended spectrum is given for 8B solar neutrinos. Opportunities for further increasing the precision of key rates are also discussed, including new facilities, new experimental techniques, and improvements in theory. This review, which summarizes the conclusions of a workshop held at the Institute for Nuclear Theory, Seattle, in January 2009, is intended as a 10-year update and supplement to 1998, Rev. Mod. Phys. 70, 1265.

  17. e+ e- to Hadrons Cross-Sections at BaBar

    SciTech Connect (OSTI)

    Muller, David; /SLAC

    2011-11-30

    We present an overview of cross-section measurements at BABAR. In e{sup {+-}} {yields} few-body processes at a center-of-mass energy E{sub CM} = 10.6 GeV we make new QCD tests and the first observation of two-virtual-photon annihilations into hadrons. Studies at lower {radical}s, using radiative return, yield new/improved data on spectroscopy, form factors and the total hadronic cross section, an important input to calculations of g{sub {mu}}-2 and {alpha}(M{sub Z}). We also present an inclusive measurement of the running of {alpha}.

  18. Measurement of the Inclusive Jet Cross Section in pp Collisions at ?s=7 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; et al

    2011-09-01

    The inclusive jet cross section is measured in pp collisions with a center-of-mass energy of 7 TeV at the Large Hadron Collider using the CMS experiment. The data sample corresponds to an integrated luminosity of 34 pb?ą. The measurement is made for jet transverse momenta in the range 18–1100 GeV and for absolute values of rapidity less than 3. The measured cross section extends to the highest values of jet pT ever observed and, within the experimental and theoretical uncertainties, is generally in agreement with next-to-leading-order perturbative QCD predictions.

  19. Photoionization cross section measurements of the excited states of cobalt in the near-threshold region

    SciTech Connect (OSTI)

    Zheng, Xianfeng, E-mail: xfzheng@mail.ahnu.edu.cn; Zhou, Xiaoyu; Cheng, Zaiqi; Jia, Dandan; Qu, Zehua; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng [Institute of Atomic and Molecular Physics, Anhui Normal University, Wuhu, Anhui, 241000 (China)

    2014-10-15

    We present measurements of photoionization cross-sections of the excited states of cobalt using a two-color, two-step resonance ionization technique in conjunction with a molecular beam time of flight (TOF) mass spectrometer. The atoms were produced by the laser vaporization of a cobalt rod, coupled with a supersonic gas jet. The absolute photoionization cross-sections at threshold and near-threshold regions (0-1.2 eV) were measured, and the measured values ranged from 4.2±0.7 Mb to 10.5±1.8 Mb. The lifetimes of four odd parity energy levels are reported for the first time.

  20. Nuclear Matter Incompressibility Effect on the Cross Section of Fusion Reactions with a weakly bound projectile

    E-Print Network [OSTI]

    Seyyedi, S A

    2015-01-01

    Fusion reactions with a weakly bound projectile are studied using the double-folding model along with a repulsive interaction modifying term. Using this modified potential, including nuclear matter incompressibility effects, the fusion reaction cross sections and suppression parameters are calculated for 9Be +209Bi,208Pb,29Si and 27Al reactions. The results show that applying these effects at energies near the Coulomb barrier improves the agreement between the calculated and experimental cross sections, and modifies the mean values of the suppression parameter.

  1. Nuclear Matter Incompressibility Effect on the Cross Section of Fusion Reactions with a weakly bound projectile

    E-Print Network [OSTI]

    S. A. Seyyedi; H. Golnarkar

    2015-01-19

    Fusion reactions with a weakly bound projectile are studied using the double-folding model along with a repulsive interaction modifying term. Using this modified potential, including nuclear matter incompressibility effects, the fusion reaction cross sections and suppression parameters are calculated for 9Be +209Bi,208Pb,29Si and 27Al reactions. The results show that applying these effects at energies near the Coulomb barrier improves the agreement between the calculated and experimental cross sections, and modifies the mean values of the suppression parameter.

  2. Effect of strongly coupled plasma on photoionization cross section

    SciTech Connect (OSTI)

    Das, Madhusmita

    2014-01-15

    The effect of strongly coupled plasma on the ground state photoionization cross section is studied. In the non relativistic dipole approximation, cross section is evaluated from bound-free transition matrix element. The bound and free state wave functions are obtained by solving the radial Schrodinger equation with appropriate plasma potential. We have used ion sphere potential (ISP) to incorporate the plasma effects in atomic structure calculation. This potential includes the effect of static plasma screening on nuclear charge as well as the effect of confinement due to the neighbouring ions. With ISP, the radial equation is solved using Shooting method approach for hydrogen like ions (Li{sup +2}, C{sup +5}, Al{sup +12}) and lithium like ions (C{sup +3}, O{sup +5}). The effect of strong screening and confinement is manifested as confinement resonances near the ionization threshold for both kinds of ions. The confinement resonances are very much dependent on the edge of the confining potential and die out as the plasma density is increased. Plasma effect also results in appearance of Cooper minimum in lithium like ions, which was not present in case of free lithium like ions. With increasing density the position of Cooper minimum shifts towards higher photoelectron energy. The same behaviour is also true for weakly coupled plasma where plasma effect is modelled by Debye-Huckel potential.

  3. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find what youSummerEmployment Opportunities Thank you forEnergy

  4. ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementof EnergyQuality'Lean' System09 EMABMay 200810 U.S.

  5. V-084: RSA Archer eGRC Permits Cross-Site Scripting, Cross-Domain...

    Office of Environmental Management (EM)

    EMC RSA Archer GRC Open Redirection Weakness and Security Bypass Security Issue U-129: RSA enVision Bugs Permit Cross-Site Scripting, SQL Injection, and Directory Traversal Attacks...

  6. Measurement of the absolute differential cross section of proton-proton elastic scattering at small angles

    E-Print Network [OSTI]

    D. Mchedlishvili; D. Chiladze; S. Dymov; Z. Bagdasarian; S. Barsov; R. Gebel; B. Gou; M. Hartmann; A. Kacharava; I. Keshelashvili; A. Khoukaz; P. Kulessa; A. Kulikov; A. Lehrach; N. Lomidze; B. Lorentz; R. Maier; G. Macharashvili; S. Merzliakov; S. Mikirtychyants; M. Nioradze; H. Ohm; D. Prasuhn; F. Rathmann; V. Serdyuk; D. Schroer; V. Shmakova; R. Stassen; H. J. Stein; H. Stockhorst; I. I. Strakovsky; H. Ströher; M. Tabidze; A. Täschner; S. Trusov; D. Tsirkov; Yu. Uzikov; Yu. Valdau; C. Wilkin; R. L. Workman; P. Wüstner

    2015-10-21

    The differential cross section for proton-proton elastic scattering has been measured at a beam energy of 1.0 GeV and in 200 MeV steps from 1.6 to 2.8 GeV for centre-of-mass angles in the range from 12-16 degrees to 25-30 degrees, depending on the energy. Absolute normalisations of typically 3% were achieved by studying the energy losses of the circulating beam of the COSY storage ring as it passed repeatedly through the windowless hydrogen target of the ANKE magnetic spectrometer. It is shown that the data have a significant impact upon a partial wave analysis. After extrapolating the differential cross sections to the forward direction, the results are broadly compatible with the predictions of forward dispersion relations.

  7. Measurement of the absolute differential cross section of proton-proton elastic scattering at small angles

    E-Print Network [OSTI]

    Mchedlishvili, D; Dymov, S; Bagdasarian, Z; Barsov, S; Gebel, R; Gou, B; Hartmann, M; Kacharava, A; Keshelashvili, I; Khoukaz, A; Kulessa, P; Kulikov, A; Lehrach, A; Lomidze, N; Lorentz, B; Maier, R; Macharashvili, G; Merzliakov, S; Mikirtychyants, S; Nioradze, M; Ohm, H; Prasuhn, D; Rathmann, F; Serdyuk, V; Schroer, D; Shmakova, V; Stassen, R; Stein, H J; Stockhorst, H; Strakovsky, I I; Ströher, H; Tabidze, M; Täschner, A; Trusov, S; Tsirkov, D; Uzikov, Yu; Valdau, Yu; Wilkin, C; Workman, R L; Wüstner, P

    2015-01-01

    The differential cross section for proton-proton elastic scattering has been measured at a beam energy of 1.0 GeV and in 200 MeV steps from 1.6 to 2.8 GeV for centre-of-mass angles in the range from 12-16 degrees to 25-30 degrees, depending on the energy. Absolute normalisations of typically 3% were achieved by studying the energy losses of the circulating beam of the COSY storage ring as it passed repeatedly through the windowless hydrogen target of the ANKE magnetic spectrometer. It is shown that the data have a significant impact upon a partial wave analysis. After extrapolating the differential cross sections to the forward direction, the results are broadly compatible with the predictions of forward dispersion relations.

  8. Background-free balanced optical cross correlator

    DOE Patents [OSTI]

    Nejadmalayeri, Amir Hossein; Kaertner, Franz X

    2014-12-23

    A balanced optical cross correlator includes an optical waveguide, a first photodiode including a first n-type semiconductor and a first p-type semiconductor positioned about the optical waveguide on a first side of the optical waveguide's point of symmetry, and a second photodiode including a second n-type semiconductor and a second p-type semiconductor positioned about the optical waveguide on a second side of the optical waveguide's point of symmetry. A balanced receiver including first and second inputs is configured to produce an output current or voltage that reflects a difference in currents or voltages, originating from the first and the second photodiodes of the balanced cross correlator and fed to the first input and to the second input of the balanced receiver.

  9. Electron capture cross sections for stellar nucleosynthesis

    E-Print Network [OSTI]

    P. G. Giannaka; T. S. Kosmas

    2015-02-25

    In the first stage of this work, we perform detailed calculations for the cross sections of the electron capture on nuclei under laboratory conditions. Towards this aim we exploit the advantages of a refined version of the proton-neutron quasi-particle random-phase approximation (pn-QRPA) and carry out state-by-state evaluations of the rates of exclusive processes that lead to any of the accessible transitions within the chosen model space. In the second stage of our present study, we translate the above mentioned $e^-$-capture cross sections to the stellar environment ones by inserting the temperature dependence through a Maxwell-Boltzmann distribution describing the stellar electron gas. As a concrete nuclear target we use the $^{66}Zn$ isotope, which belongs to the iron group nuclei and plays prominent role in stellar nucleosynthesis at core collapse supernovae environment.

  10. Neutron capture on {sup 94}Zr: Resonance parameters and Maxwellian-averaged cross sections

    SciTech Connect (OSTI)

    Tagliente, G. [Istituto Nazionale di Fisica Nucleare (INFN), Bari (Italy); University of Gent (Belgium); Milazzo, P. M.; Fujii, K.; Abbondanno, U.; Belloni, F.; Moreau, C. [Istituto Nazionale di Fisica Nucleare (INFN), Trieste (Italy); Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Gunsing, F.; Pancin, J.; Perrot, L.; Plukis, A. [CEA/Saclay-IRFU, Gif-sur-Yvette (France); Alvarez, H.; Duran, I.; Paradela, C. [Universidade de Santiago de Compostela (Spain); Alvarez-Velarde, F.; Cano-Ott, D.; Embid-Segura, M. [Centro de Investigaciones Energeticas Medioambientales y Technologicas, Madrid (Spain)

    2011-07-15

    The neutron capture cross sections of the Zr isotopes play an important role in nucleosynthesis studies. The s-process reaction flow between the Fe seed and the heavier isotopes passes through the neutron magic nucleus {sup 90}Zr and through {sup 91,92,93,94}Zr, but only part of the flow extends to {sup 96}Zr because of the branching point at {sup 95}Zr. Apart from their effect on the s-process flow, the comparably small isotopic (n,{gamma}) cross sections make Zr also an interesting structural material for nuclear reactors. The {sup 94}Zr (n,{gamma}) cross section has been measured with high resolution at the spallation neutron source n{sub T}OF at CERN and resonance parameters are reported up to 60 keV neutron energy.

  11. Measurement of the inclusive isolated prompt photon cross-section in pp collisions at ?s = 7 TeV using 35 pb[superscript -1] of ATLAS data

    E-Print Network [OSTI]

    Taylor, Frank E.

    A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy ?s = 7 TeV is presented. The measurement covers the pseudorapidity ranges ...

  12. Ratio of isolated photon cross sections in p(p)over-bar collisions at root s=630 and 1800 GeV

    E-Print Network [OSTI]

    Baringer, Philip S.; Bean, Alice; Coppage, Don; Hebert, C.

    2001-12-01

    The inclusive cross section for production of isolated photons has been measured in p (p) over bar collisions at roots = 630 GeV with the DO detector at the Fermilab Tevatron Collider. The photons span a transverse energy ...

  13. Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at ?s = 8 TeV with ATLAS

    E-Print Network [OSTI]

    Taylor, Frank E.

    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of ?s = 8 TeV. The analysis is performed in the H ? ?? decay channel ...

  14. Comment on the $?^+$-production at high energy

    E-Print Network [OSTI]

    A. I. Titov; A. Hosaka; S. Date'; Y. Ohashi

    2004-09-15

    We show that the cross sections of the $\\Theta^+$-pentaquark production in different processes decrease with energy faster than the cross sections of production of the conventional three-quark hyperons. Therefore, the threshold region with the initial energy of a few GeV or less seemsto be more favorable for the production and experimental study of $\\Theta^+$-pentaquark.

  15. CH2D+, the Search for the Holy Grail

    E-Print Network [OSTI]

    Roueff, E; Lis, D C; Wootten, A; Marcelino, N; cernicharo, J; Tercero, B

    2013-01-01

    CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of K, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+ and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.

  16. 2003 Participating Schools Academy of the Holy Names

    E-Print Network [OSTI]

    Morris Lindsay Norman Megan O'Brien Sarah Phelan Steve Pinchook Katie Sutliff Coxsackie-Athens Elementary. Anthony John Jesmain, Jr. Student: Christopher Desmond Forts Ferry Elementary School Teacher: Mrs. Lynn

  17. POINT 2011: ENDF/B-VII.1 Beta2 Temperature Dependent Cross Section Library

    SciTech Connect (OSTI)

    Cullen, D E

    2011-04-07

    This report is one in the series of 'POINT' reports that over the years have presented temperature dependent cross sections for the then current version of ENDF/B. In each case I have used my personal computer at home and publicly available data and codes. I have used these in combination to produce the temperature dependent cross sections used in applications and presented in this report. I should mention that today anyone with a personal computer can produce these results. The latest ENDF/B-VII.1 beta2 data library was recently and is now freely available through the National Nuclear Data Center (NNDC), Brookhaven National Laboratory. This release completely supersedes all preceding releases of ENDF/B. As distributed the ENDF/B-VII.1 data includes cross sections represented in the form of a combination of resonance parameters and/or tabulated energy dependent cross sections, nominally at 0 Kelvin temperature. For use in our applications the ENDF/B-VII.1 library has been processed into cross sections at eight neutron reactor like temperatures, between 0 and 2100 Kelvin, in steps of 300 Kelvin (the exception being 293.6 Kelvin, for exact room temperature at 20 Celsius). It has also been processed to five astrophysics like temperatures, 1, 10, 100 eV, 1 and 10 keV. For reference purposes, 300 Kelvin is approximately 1/40 eV, so that 1 eV is approximately 12,000 Kelvin. At each temperature the cross sections are tabulated and linearly interpolable in energy. All results are in the computer independent ENDF-6 character format [R2], which allows the data to be easily transported between computers. In its processed form the POINT 2011 library is approximately 16 gigabyte in size and is distributed on one compressed DVDs (see, below for the details of the contents of each DVD).

  18. s.haszeldine@ed.ac.uk CCS Scotland, 14 May 2008 Cross Party Group Sci Tech,. Holyrood 1 Carbon Capture and Storage

    E-Print Network [OSTI]

    Haszeldine, Stuart

    Fossil fuel use doubles in next 30yr IEA 2004 World Energy outlook IF ........ by 2020, Scotland has 45 will still provide most of world energy #12;s.haszeldine@ed.ac.uk CCS Scotland, 14 May 2008 Cross Party Group Sci Tech,. Holyrood 3 World energy prediction (Business as usual) 0 1 000 2 000 3 000 4 000 5 000 6

  19. Contamination of early-type galaxy alignments to galaxy lensing-CMB lensing cross-correlation

    E-Print Network [OSTI]

    Chisari, Nora Elisa; Miller, Lance; Allison, Rupert

    2015-01-01

    Galaxy shapes are subject to distortions due to the tidal field of the Universe. The cross-correlation of galaxy lensing with the lensing of the Cosmic Microwave Background (CMB) cannot easily be separated from the cross-correlation of galaxy intrinsic shapes with CMB lensing. Previous work suggested that the intrinsic alignment contamination can be $15\\%$ of this cross-spectrum for the CFHT Stripe 82 (CS82) and Atacama Cosmology Telescope surveys. Here we re-examine these estimates using up-to-date observational constraints of intrinsic alignments at a redshift more similar to that of CS82 galaxies. We find a $\\approx$ $10\\%$ contamination of the cross-spectrum from red galaxies, with $\\approx$ $3\\%$ uncertainty due to uncertainties in the redshift distribution of source galaxies and the modelling of the spectral energy distribution. Blue galaxies are consistent with being unaligned, but could contaminate the cross-spectrum by an additional $9.5\\%$ within current $95\\%$ confidence levels. While our fiducial ...

  20. Gamow-Teller Unit Cross Sections for (t,3He) and (3He,t) Reactions

    E-Print Network [OSTI]

    G. Perdikakis; R. G. T. Zegers; Sam M. Austin; D. Bazin; C. Caesar; J. M. Deaven; A. Gade; D. Galaviz; G. Grinyer; C. J. Guess; C. Herlitzius; G. W. Hitt; M. E. Howard; R. Meharchand; S. Noji; H. Sakai; Y. Shimbara; E. E. Smith; C. Tur

    2011-02-01

    The proportionality between differential cross sections at vanishing linear momentum transfer and Gamow-Teller transition strength, expressed in terms of the \\textit{unit cross section} ($\\hat{\\sigma}_{GT}$) was studied as a function of target mass number for ($t$,$^{3}$He) and ($^{3}$He,$t$) reactions at 115 $A$MeV and 140 $A$MeV, respectively. Existing ($^{3}$He,$t$) and ($t$,$^{3}$He) data on targets with mass number $12\\leq A\\leq 120$ were complemented with new and reevaluated ($t$,$^{3}$He) data on proton, deuteron, $^{6}$Li and $^{12}$C targets. It was found that in spite of the small difference in beam energies between the two probes, the unit cross sections have a nearly identical and simple dependence on target mass number $A$, for $A\\geq 12$: $\\hat{\\sigma}_{GT}=109/A^{0.65}$. The factorization of the unit cross sections in terms of a kinematical factor, a distortion factor and the strength of the effective spin-isospin transfer nucleus-nucleus interaction was investigated. Simple phenomenological functions depending on mass number $A$ were extracted for the latter two. By comparison with plane and distorted-wave Born approximation calculations, it was found that the use of a short-range approximation for knock-on exchange contributions to the transition amplitude results in overestimated cross sections for reactions involving the composite ($^{3}$He,$t$) and ($t$,$^{3}$He) probes.

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    energy efficiency of motor systems. December 2001. Office of Industrialenergy management programs and Chapters 7 to 11 discuss the following cross- cutting industrial systems: steam systems, motor

  2. Cross-sectional imaging of spin injection into a semiconductor

    E-Print Network [OSTI]

    Loss, Daniel

    in a cross-sectional view and to separate the effects of spin diffusion and electron drift. Spintronics--the

  3. Correlations and the Cross Section of Exclusive ($e,e'p$) Reactions for $^{16}$O

    E-Print Network [OSTI]

    K. Amir-Azimi-Nili; J. M. Udias; H. Müther; L. D. Skouras; A. Polls

    1997-04-08

    The reduced cross section for exclusive ($e,e'p$) reactions has been studied in DWIA for the example of the nucleus $^{16}$O using a spectral function containing effects of correlations. The spectral function is evaluated directly for the finite nucleus starting from a realistic nucleon-nucleon interaction within the framework of the Green's function approach. The emphasis is focused on the correlations induced by excitation modes at low energies described within a model-space of shell-model configurations including states up to the $sdg$ shell. Cross sections for the $p$-wave quasi-hole transitions at low missing energies are presented and compared with the most recent experimental data. In the case of the so-called perpendicular kinematics the reduced cross section derived in DWIA shows an enhancement at high missing momenta as compared to the PWIA result. Furthermore the cross sections for the $s$- and $d$-wave quasi-hole transitions are presented and compared to available data at low missing momenta. Also in these cases, which cannot be described in a model without correlations, a good agreement with the experiment is obtained.

  4. Fragmentation cross sections of Fe^{26+}, Si^{14+} and C^{6+} ions of 0.3-10 A GeV on polyethylene, CR39 and aluminum targets

    E-Print Network [OSTI]

    S. Cecchini; T. Chiarusi; G. Giacomelli; M. Giorgini; A. Kumar; G. Mandrioli; S. Manzoor; A. R. Margiotta; E. Medinaceli; L. Patrizii; V. Popa; I. E. Qureshi; G. Sirri; M. Spurio; V. Togo

    2008-01-21

    We present new measurements of the total and partial fragmentation cross sections in the energy range 0.3-10 A GeV of 56Fe, 28Si and 12C beams on polyethylene, CR39 and aluminum targets. The exposures were made at BNL, USA and HIMAC, Japan. The CR39 nuclear track detectors were used to identify the incident and survived beams and their fragments. The total fragmentation cross sections for all targets are almost energy independent while they depend on the target mass. The measured partial fragmentation cross sections are also discussed.

  5. Fragmentation cross sections of Fe^{26+}, Si^{14+} and C^{6+} ions of 0.3-10 A GeV on CR39, polyethylene and aluminum targets

    E-Print Network [OSTI]

    Miriam Giorgini

    2008-12-01

    New measurements of the total and partial fragmentation cross sections in the energy range 0.3-10 A GeV of Fe^{26+}, Si^{14+} and C^{6+} beams on polyethylene, CR39 and aluminum targets are presented. The exposures were made at Brookhaven National Laboratory (BNL), USA, and Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. The CR39 nuclear track detectors were used to identify the incident and survived beams and their fragments. The total fragmentation cross sections for all targets are almost energy independent while they depend on the target mass. The measured partial fragmentation cross sections are also discussed.

  6. Using MiniBooNE neutral current elastic cross section results to constrain 3+1 sterile neutrino models

    E-Print Network [OSTI]

    Callum Wilkinson; Susan Cartwright; Lee Thompson

    2014-01-10

    The MiniBooNE Neutral Current Elastic (NCEL) cross section results are used to extract limits in the $\\Delta m^{2}-\\sin^{2}\\vartheta_{\\mu s}$ plane for a 3+1 sterile neutrino model with a mass splitting $0.1 \\leq \\Delta m^{2} \\leq 10.0$ eV$^{2}$. GENIE is used with a cross section model close to the one employed by MiniBooNE to make event rate predictions using simulations on the MiniBooNE target material CH$_{2}$. The axial mass is a free parameter in all fits. Sterile modifications to the flux and changes to the cross section in the simulation relate the two and allow limits to be set on sterile neutrino mixing using cross section results. The large axial mass problem makes it necessary for experiments to perform their own axial mass fits, but a prior fit to the same dataset could mask a sterile oscillation signal if the sterile and cross section model parameters are not independent. We find that for the NCEL dataset there are significant correlations between the sterile and cross section model parameters, making a fit to both models simultaneously necessary to get robust results. Failure to do this results in stronger than warranted limits on the sterile parameters. The general problems that the current uncertainty on charged-current quasi-elastic (CCQE) and NCEL cross sections at MiniBooNE energies pose for sterile neutrino measurements are discussed.

  7. Quantum Noise Filtering via Cross-Correlations

    E-Print Network [OSTI]

    Boaz Tamir; Eliahu Cohen

    2015-04-04

    Motivated by successful classical models for noise reduction, we suggest a quantum technique for filtering noise out of quantum states. The purpose of this paper is twofold: presenting a simple construction of quantum cross-correlations between two wave-functions, and presenting a scheme for a quantum noise filtering. We follow a well-known scheme in classical communication theory that attenuates random noise, and show that one can build a quantum analog by using non-trace-preserving operators. By this we introduce a classically motivated signal processing scheme to quantum information theory, which can help reducing quantum noise, and particularly, phase flip noise.

  8. Sur Cross-modal plasticity and cortical development 1 Rewiring cortex: Cross-modal plasticity and its implications for cortical

    E-Print Network [OSTI]

    Sur, Mriganka

    Sur Cross-modal plasticity and cortical development 1 Rewiring cortex: Cross-modal plasticity-modal plasticity and cortical development No of text pages: 37 No of figures: 5 Please address correspondence to: 617-253-9829 Email: msur@ai.mit.edu #12;Sur Cross-modal plasticity and cortical development 2

  9. Tables and graphs of electron-interaction cross sections from 10 eV to 100 GeV derived from the LLNL Evaluated Electron Data Library (EEDL), Z = 1--100

    SciTech Connect (OSTI)

    Perkins, S.T.; Cullen, D.E. ); Seltzer, S.M. , Gaithersburg, MD . Center for Radiation Research)

    1991-11-12

    Energy-dependent evaluated electron interaction cross sections and related parameters are presented for elements H through Fm (Z = 1 to 100). Data are given over the energy range from 10 eV to 100 GeV. Cross sections and average energy deposits are presented in tabulated and graphic form. In addition, ionization cross sections and average energy deposits for each shell are presented in graphic form. This information is derived from the Livermore Evaluated Electron Data Library (EEDL) as of July, 1991.

  10. Application of nuclear models to neutron nuclear cross section calculations

    SciTech Connect (OSTI)

    Young, P.G.

    1982-01-01

    Nuclear theory is used increasingly to supplement and extend the nuclear data base that is available for applied studies. Areas where theoretical calculations are most important include the determination of neutron cross sections for unstable fission products and transactinide nuclei in fission reactor or nuclear waste calculations and for meeting the extensive dosimetry, activation, and neutronic data needs associated with fusion reactor development, especially for neutron energies above 14 MeV. Considerable progress has been made in the use of nuclear models for data evaluation and, particularly, in the methods used to derive physically meaningful parameters for model calculations. Theoretical studies frequently involve use of spherical and deformed optical models, Hauser-Feshbach statistical theory, preequilibrium theory, direct-reaction theory, and often make use of gamma-ray strength function models and phenomenological (or microscopic) level density prescriptions. The development, application, and limitations of nuclear models for data evaluation are discussed, with emphasis on the 0.1 to 50 MeV energy range. (91 references).

  11. AFCI-2.0 Neutron Cross Section Covariance Library

    SciTech Connect (OSTI)

    Herman, M.; Herman, M; Oblozinsky, P.; Mattoon, C.M.; Pigni, M.; Hoblit, S.; Mughabghab, S.F.; Sonzogni, A.; Talou, P.; Chadwick, M.B.; Hale, G.M.; Kahler, A.C.; Kawano, T.; Little, R.C.; Yount, P.G.

    2011-03-01

    The cross section covariance library has been under development by BNL-LANL collaborative effort over the last three years. The project builds on two covariance libraries developed earlier, with considerable input from BNL and LANL. In 2006, international effort under WPEC Subgroup 26 produced BOLNA covariance library by putting together data, often preliminary, from various sources for most important materials for nuclear reactor technology. This was followed in 2007 by collaborative effort of four US national laboratories to produce covariances, often of modest quality - hence the name low-fidelity, for virtually complete set of materials included in ENDF/B-VII.0. The present project is focusing on covariances of 4-5 major reaction channels for 110 materials of importance for power reactors. The work started under Global Nuclear Energy Partnership (GNEP) in 2008, which changed to Advanced Fuel Cycle Initiative (AFCI) in 2009. With the 2011 release the name has changed to the Covariance Multigroup Matrix for Advanced Reactor Applications (COMMARA) version 2.0. The primary purpose of the library is to provide covariances for AFCI data adjustment project, which is focusing on the needs of fast advanced burner reactors. Responsibility of BNL was defined as developing covariances for structural materials and fission products, management of the library and coordination of the work; LANL responsibility was defined as covariances for light nuclei and actinides. The COMMARA-2.0 covariance library has been developed by BNL-LANL collaboration for Advanced Fuel Cycle Initiative applications over the period of three years, 2008-2010. It contains covariances for 110 materials relevant to fast reactor R&D. The library is to be used together with the ENDF/B-VII.0 central values of the latest official release of US files of evaluated neutron cross sections. COMMARA-2.0 library contains neutron cross section covariances for 12 light nuclei (coolants and moderators), 78 structural materials and fission products, and 20 actinides. Covariances are given in 33-energy groups, from 10?5 eV to 19.6 MeV, obtained by processing with LANL processing code NJOY using 1/E flux. In addition to these 110 files, the library contains 20 files with nu-bar covariances, 3 files with covariances of prompt fission neutron spectra (238,239,240-Pu), and 2 files with mu-bar covariances (23-Na, 56-Fe). Over the period of three years several working versions of the library have been released and tested by ANL and INL reactor analysts. Useful feedback has been collected allowing gradual improvements of the library. In addition, QA system was developed to check basic properties and features of the whole library, allowing visual inspection of uncertainty and correlations plots, inspection of uncertainties of integral quantities with independent databases, and dispersion of cross sections between major evaluated libraries. The COMMARA-2.0 beta version of the library was released to ANL and INL reactor analysts in October 2010. The final version, described in the present report, was released in March 2011.

  12. Proton-air cross section measurement with the ARGO-YBJ cosmic ray experiment

    E-Print Network [OSTI]

    The ARGO-YBJ Collaboration

    2009-04-27

    The proton-air cross section in the energy range 1-100 TeV has been measured by the ARGO-YBJ cosmic ray experiment. The analysis is based on the flux attenuation for different atmospheric depths (i.e. zenith angles) and exploits the detector capabilities of selecting the shower development stage by means of hit multiplicity, density and lateral profile measurements at ground. The effects of shower fluctuations, the contribution of heavier primaries and the uncertainties of the hadronic interaction models, have been taken into account. The results have been used to estimate the total proton-proton cross section at center of mass energies between 70 and 500 GeV, where no accelerator data are currently available.

  13. Actinide Targets for Neutron Cross Section Measurements

    SciTech Connect (OSTI)

    John D. Baker; Christopher A. McGrath

    2006-10-01

    The Advanced Fuel Cycle Initiative (AFCI) and the Generation IV Reactor Initiative have demonstrated a lack of detailed neutron cross-sections for certain "minor" actinides, those other than the most common (235U, 238U, and 239Pu). For some closed-fuel-cycle reactor designs more than 50% of reactivity will, at some point, be derived from "minor" actinides that currently have poorly known or in some cases not measured (n,?) and (n,f) cross sections. A program of measurements under AFCI has begun to correct this. One of the initial hurdles has been to produce well-characterized, highly isotopically enriched, and chemically pure actinide targets on thin backings. Using a combination of resurrected techniques and new developments, we have made a series of targets including highly enriched 239Pu, 240Pu, and 242Pu. Thus far, we have electrodeposited these actinide targets. In the future, we plan to study reductive distillation to achieve homogeneous, adherent targets on thin metal foils and polymer backings. As we move forward, separated isotopes become scarcer, and safety concerns become greater. The chemical purification and electodeposition techniques will be described.

  14. Integer spin resonance crossing at VEPP-4M with conservation of beam polarization

    E-Print Network [OSTI]

    Barladyan, A K; Glukhov, S A; Glukhovchenko, Yu M; Karnaev, S E; Levichev, E B; Nikitin, S A; Nikolaev, I B; Okunev, I N; Piminov, P A; Shamov, A G; Zhuravlev, A N

    2015-01-01

    A recently proposed method to preserve the electron beam polarization at the VEPP-4M collider during acceleration with crossing the integer spin resonance energy E=1763 MeV has been successfully applied. It is based on full decompensation of $ 0.6\\times3.3$ Tesla$\\times$meter integral of the KEDR detector longitudinal magnetic field due to s 'switched-off' state of the anti-solenoids.

  15. Total and partial cross sections of the $^{112}$Sn($?,?$)$^{116}$Te reaction measured via in-beam $?$-ray spectroscopy

    E-Print Network [OSTI]

    L. Netterdon; J. Mayer; P. Scholz; A. Zilges

    2015-03-17

    An extended database of experimental data is needed to address uncertainties of the nuclear-physics input parameters for Hauser-Feshbach calculations. Especially $\\alpha$+nucleus optical model potentials at low energies are not well known. The in-beam technique with an array of high-purity germanium (HPGe) detectors was successfully applied to the measurement of absolute cross sections of an ($\\alpha$,$\\gamma$) reaction on a heavy nucleus at sub-Coulomb energies. The total and partial cross-section values were measured by means of in-beam $\\gamma$-ray spectroscopy. Total and partial cross sections were measured at four different $\\alpha$-particle energies from $E_\\alpha = 10.5$ MeV to $E_\\alpha = 12$ MeV. The measured total cross-section values are in excellent agreement with previous results obtained with the activation technique, which proves the validity of the applied method. The experimental data was compared to Hauser-Feshbach calculations using the nuclear reaction code TALYS. A modified version of the semi-microscopic $\\alpha$+nucleus optical model potential OMP 3, as well as modified proton and $\\gamma$ widths, are needed in order to obtain a good agreement between experimental data and theory. It is found, that a model using a local modification of the nuclear-physics input parameters simultaneously reproduces total cross sections of the $^{112}$Sn($\\alpha$,$\\gamma$) and $^{112}$Sn($\\alpha$,p) reactions. The measurement of partial cross sections turns out to be very important in this case in order to apply the correct $\\gamma$-ray strength function in the Hauser-Feshbach calculations. The model also reproduces cross-section values of $\\alpha$-induced reactions on $^{106}$Cd, as well as of ($\\alpha$,n) reactions on $^{115,116}$Sn, hinting at a more global character of the obtained nuclear-physics input.

  16. Velocity autocorrelation in liquid para-hydrogen by quantum simulations for first-principle computations of the neutron cross sections

    E-Print Network [OSTI]

    Guarini, E; Bafile, U; Celli, M; Colognesi, D; Farhi, E; Calzavara, Y

    2015-01-01

    Accurate knowledge of the single-molecule (self) translational dynamics of liquid para-H2 is an essential requirement for the calculation of the neutron scattering properties of this important quantum liquid. We show that, by using Centroid Molecular Dynamics (CMD) quantum simulations of the velocity autocorrelation function, calculations of the total neutron cross section (TCS) remarkably agree with experimental data at the thermal and epithermal incident neutron energies where para-H2 dynamics is actually dominated by the self contributions. This result shows that a proper account of the quantum nature of the fluid, as provided by CMD, is a necessary and very effective condition to obtain the correct absolute-scale cross section values directly from first-principle computations of the double differential cross section, and without the need of introducing any empirically adjusted quantity. At subthermal incident energies, appropriate modeling of the para-H2 intermolecular (distinct) dynamics also becomes cru...

  17. Convergence of Legendre Expansion of Doppler-Broadened Double Differential Elastic Scattering Cross Section

    SciTech Connect (OSTI)

    Arbanas, Goran; Dunn, Michael E; Larson, Nancy M; Leal, Luiz C; Williams, Mark L

    2012-01-01

    Convergence properties of Legendre expansion of a Doppler-broadened double-differential elastic neutron scattering cross section of {sup 238}U near the 6.67 eV resonance at temperature 10{sup 3} K are studied. A variance of Legendre expansion from a reference Monte Carlo computation is used as a measure of convergence and is computed for as many as 15 terms in the Legendre expansion. When the outgoing energy equals the incoming energy, it is found that the Legendre expansion converges very slowly. Therefore, a supplementary method of computing many higher-order terms is suggested and employed for this special case.

  18. The E2 contribution to the 8B -> p + 7Be Coulomb dissociation cross section

    E-Print Network [OSTI]

    K. Langanke; T. D. Shoppa

    1994-02-02

    We have calculated the E1 and E2 contributions to the low-energy B-8 + Pb-208 -> p + Be-7 + Pb-208 Coulomb dissociation cross sections using the kinematics of a recent experiment at RIKEN. Using a potential model description of the Be-7 (p,gamma) B-8 reaction, we find that the E2 contributions cannot a priori be ignored in the analysis of the data. Its inclusion reduces the extracted Be-7 (p,gamma) B-8 S-factor at solar energies by about 25%.

  19. $^{12}$C+$^{16}$O sub-barrier radiative capture cross-section measurements

    E-Print Network [OSTI]

    A. Goasduff; S. Courtin; F. Haas; D. Lebhertz; D. G. Jenkins; C. Beck; J. Fallis; C. Ruiz; D. A. Hutcheon; P. -A. Amandruz; C. Davis; U. Hager; D. Ottewell; G. Ruprecht

    2011-07-06

    We have performed a heavy ion radiative capture reaction between two light heavy ions, $^{12}$C and $^{16}$O, leading to $^{28}$Si. The present experiment has been performed below Coulomb barrier energies in order to reduce the phase space and to try to shed light on structural effects. Obtained $\\gamma$-spectra display a previously unobserved strong feeding of intermediate states around 11 MeV at these energies. This new decay branch is not fully reproduced by statistical nor semi-statistical decay scenarii and may imply structural effects. Radiative capture cross-sections are extracted from the data.

  20. Crossed products and entropy of automorphisms

    E-Print Network [OSTI]

    Ciprian Pop; Roger R. Smith

    2003-04-16

    Let A be an exact C^*-algebra, let G be a locally compact group, and let (A,G,\\alpha) be a C*-dynamical system. Each automorphism \\alpha_g induces a spatial automorphism Ad_{\\lamba_g} on the reduced crossed product A\\times_\\alpha G. In this paper we examine the question, first raised by E. Stormer, of when the topological entropies of \\alpha_g and Ad_{\\alpha_g} coincide. This had been answered by N. Brown for the particular case of discrete abelian groups. Using different methods, we extend his result to a wider class of groups called locally [FIA]^-. This class includes all abelian groups, both discrete and continuous, as well as all compact groups.

  1. COMBINE7.1 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    SciTech Connect (OSTI)

    Woo Y. Yoon; David W. Nigg

    2009-08-01

    COMBINE7.1 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.1 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 fine-group cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko self-shielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those self-shielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.1 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a one-dimensional, discrete-ordinate transport code, is incoprated into COMBINE7.1. As an option, the 167 fine-group constants generated by COMBINE portion in the program can be used to cacluate regionwise spectra in the ANISN portion, all internally to reflect the one-dimensional transport correction. Results for the criticality validation calculations are included as a part of verification and validation.

  2. COMBINE7.0 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    SciTech Connect (OSTI)

    Woo Y. Yoon; David W. Nigg

    2008-09-01

    COMBINE7.0 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.0 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 finegroup cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko selfshielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those selfshielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.0 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a onedimensional, discrete-ordinate transport code, is incoprated into COMBINE7.0. As an option, the 167 fine-group constants generated by COMBINE portion in the program can be used to cacluate regionwise spectra in the ANISN portion, all internally to reflect the one-dimensional transport correction. Results for the criticality validation calculations are included as a part of verification and validation.

  3. SCWR Once-Through Calculations for Transmutation and Cross Sections

    SciTech Connect (OSTI)

    ganda, francesco

    2012-07-01

    It is the purpose of this report to document the calculation of (1) the isotopic evolution and of (2) the 1-group cross sections as a function of burnup of the reference Super Critical Water Reactor (SCWR), in a format suitable for the Fuel Cycle Option Campaign Transmutation Data Library. The reference SCWR design was chosen to be that described in [McDonald, 2005]. Super Critical Water Reactors (SCWR) are intended to operate with super-critical water (i.e. H2O at a pressure above 22 MPa and a temperature above 373oC) as a cooling – and possibly also moderating – fluid. The main mission of the SCWR is to generate lower cost electricity, as compared to current standard Light Water Reactors (LWR). Because of the high operating pressure and temperature, SCWR feature a substantially higher thermal conversion efficiency than standard LWR – i.e. about 45% versus 33%, mostly due to an increase in the exit water temperature from ~300oC to ~500oC – potentially resulting in a lower cost of generated electricity. The coolant remains single phase throughout the reactor and the energy conversion system, thus eliminating the need for pressurizers, steam generators, steam separators and dryers, further potentially reducing the reactor construction capital cost. The SCWR concept presented here is based on existing LWR technology and on a large number of existing fossil-fired supercritical boilers. However, it was concluded in [McDonald, 2005], that: “Based on the results of this study, it appears that the reference SCWR design is not feasible.” This conclusion appears based on the strong sensitivity of the design to small deviations in nominal conditions leading to small effects having a potentially large impact on the peak cladding temperature of some fuel rods. “This was considered a major feasibility issue for the SCWR” [McDonald, 2005]. After a description of the reference SCWR design, the Keno V 3-D single assembly model used for this analysis, as well as the calculated results, are presented. Additionally, the follwing information, presented in the appendixes, is intended to provide enough guidance that a researcher repeating the same task in the future should be able to obtain a vector of nuclei and cross sections ready for insertion into the transmutation library without any need for further instructions: (1) Complete TRITON/KENO-V input used for the analysis; (2) Inputs and detailed description of the usage of the OPUS utility, used to postproces and to extract the nuclei concentrations for the transmutation library; (3) Inputs and detailed description of the usage of the XSECLIST utility, used to postproces and to extract the 1-group cross sections for the transmutation library; (4) Details of an ad-hoc utility program developed to sort the nuclei and cross sections for the transmutation library.

  4. Isolated photon cross section in p(p)over-bar collisions at root s=1.8 TeV

    E-Print Network [OSTI]

    Baringer, Philip S.; Coppage, Don; Hebert, C.

    2000-03-01

    We report a new measurement of the cross section for the production of isolated photons with transverse energies (E-T(gamma)) above 10 GeV and pseudorapidities \\eta\\ < 2.5 in p (p) over bar collisions at root s = 1.8 TeV. ...

  5. Measurement of the WW plus WZ Production Cross Section Using the lepton plus jets Final State at CDF II

    E-Print Network [OSTI]

    Paus, Christoph M. E.

    We report two complementary measurements of the WW+WZ cross section in the final state consisting of an electron or muon, missing transverse energy, and jets, performed using pp[over-bar] collision data at [sqrt]s=1.96??TeV ...

  6. Cross sections for singly differential and total ionization of helium by electron impact Yong-Ki Kim

    E-Print Network [OSTI]

    Johnson, Walter R.

    with experiment at all incident and ejected electron energies and the compact analytic form of the cross sections importance in atomic collision theory, but also for a wide range of applications such as in fusion plasma diagnos- tics, modeling of semiconductor etching in plasma reactors, radiation effects on materials

  7. Measurement of the Inclusive Jet Cross Section in Pp Collisions at Sqrt[s]=7??TeV

    E-Print Network [OSTI]

    Alver, Burak Han

    The inclusive jet cross section is measured in pp collisions with a center-of-mass energy of 7 TeV at the Large Hadron Collider using the CMS experiment. The data sample corresponds to an integrated luminosity of 34??pb-1. ...

  8. Comparison of proton and helium induced M subshell X-ray production cross sections with the ECUSAR theory

    E-Print Network [OSTI]

    Bier, Martin

    Comparison of proton and helium induced M subshell X-ray production cross sections with the ECUSAR and helium ion energy range from 0.5 to 3 MeV on thin W, Au, Pb, Th and U targets. Ó 2013 Elsevier B.V. All laboratories for many years to characterise a broad range of sam- ples. Current PIXE detection systems

  9. Measurements of proton-induced radionuclide production cross sections to evaluate cosmic-ray activation of tellurium

    E-Print Network [OSTI]

    A. F. Barghouty; C. Brofferio; S. Capelli; M. Clemenza; O. Cremonesi; S. Cebrián; E. Fiorini; R. C. Haight; E. B. Norman; E. Previtali; B. J. Quiter; M. Sisti; A. R. Smith; S. A. Wender

    2012-12-11

    We have measured a large number of proton-induced radionuclide production cross sections from tellurium targets of natural isotopic composition at incident energies of 0.80, 1.4, and 23 GeV. The results of these measurements are compared to semi-empirical calculations.

  10. Measurement of the Cross Section for Prompt Isolated Diphoton Production Using the Full CDF Run II Data Sample

    E-Print Network [OSTI]

    Gomez-Ceballos, Guillelmo

    This Letter reports a measurement of the cross section for producing pairs of central prompt isolated photons in proton-antiproton collisions at a total energy ?s=1.96??TeV using data corresponding to 9.5??fb[superscript ...

  11. Simultaneous Heavy Flavor Fractions and Top Cross Section Measurement at the Collider Detector at Fermilab

    SciTech Connect (OSTI)

    Mathis, Mark J.; /Johns Hopkins U.

    2010-04-01

    This dissertation describes the measurement of the top pair production cross section, using data from proton-antiproton collisions at a center-of-mass energy of 1.96 TeV, with 2.7 {+-} 0.2 fb{sup -1} of data collected by the Collider Detector at Fermilab. Background contributions are measured concurrently with the top cross section in the b-tagged lepton-plus-jets sample using a kinematic fit, which simultaneously determines the cross sections and normalizations of t{bar t}, W + jets, QCD, and electroweak processes. This is the first application of a procedure of this kind. The top cross section is measured to be {sigma}{sub t{bar t}} = 7.64 {+-} 0.57(stat + syst) {+-} 0.45(lumi) pb and the Monte Carlo simulation scale factors K{sub Wb{bar b}} = 1.57 {+-} 0.25, K{sub Wc{bar c}} = 0.94 {+-} 0.79, K{sub Wc} = 1.9 {+-} 0.3, and K{sub Wq{bar q}} = 1.1 {+-} 0.3. These results are consistent with existing measurements using other procedures. More data will reduce the systematic uncertainties and will lead to the most precise of any single analysis to date.

  12. Calculations of the cross sections for the neutron acceleration, slowing down, and capture by the isomer "OmHf

    E-Print Network [OSTI]

    Shlyakhter, Ilya

    Calculations of the cross sections for the neutron acceleration, slowing down, and capture for the isomer lsomHf in the energy range of the incoming neutron from 1keV to 5 MeV. Below 0.7 MeV the energy transferred to the neutron in the collision is positive on the average, i.e., the isomer is acting

  13. Nonlinear acoustic waves in channels with variable cross sections

    E-Print Network [OSTI]

    Vladimir F. Kovalev; Oleg V. Rudenko

    2012-11-02

    The point symmetry group is studied for the generalized Webster-type equation describing non-linear acoustic waves in lossy channels with variable cross sections. It is shown that, for certain types of cross section profiles, the admitted symmetry group is extended and the invariant solutions corresponding to these profiles are obtained. Approximate analytic solutions to the generalized Webster equation are derived for channels with smoothly varying cross sections and arbitrary initial conditions.

  14. Measurement of diffraction dissociation cross sections in pp collisions at sqrt(s) = 7 TeV

    E-Print Network [OSTI]

    CMS Collaboration

    2015-07-14

    Measurements of diffractive dissociation cross sections in pp collisions at sqrt(s) = 7 TeV are presented in kinematic regions defined by the masses M[X] and M[Y] of the two final-state hadronic systems separated by the largest rapidity gap in the event. Differential cross sections are measured as a function of xi[X]= M[X]^2/s in the region -5.5 measured as a function of the width of the central pseudorapidity gap Delta eta for Delta eta > 3, log[10]M[X] > 1.1, and log[10]M[Y] > 1.1, a region dominated by DD. The cross sections integrated over these regions are found to be, respectively, 2.99 +/- 0.02 (stat) +0.32 -0.29 (syst) mb, 1.18 +/- 0.02 (stat) +/- 0.13 (syst) mb, and 0.58 +/- 0.01 (stat) +0.13 -0.11 (syst) mb, and are used to extract total SD and DD cross sections. In addition, the inclusive differential cross section, d sigma /d Delta eta[F], for events with a pseudorapidity gap adjacent to the edge of the detector, is measured over Delta eta[F] = 8.4 units of pseudorapidity. The results are compared to those of other experiments and to theoretical predictions, and found compatible with slowly-rising diffractive cross sections as a function of center-of-mass energy.

  15. Crossed-beam DC slice imaging of fluorine atom reactions with linear alkanes

    SciTech Connect (OSTI)

    Shi, Yuanyuan; Kamasah, Alexander; Joalland, Baptiste; Suits, Arthur G.

    2015-05-14

    We report the reaction dynamics of F atom with selected alkanes studied by crossed beam scattering with DC slice ion imaging. The target alkanes are propane, n-butane, and n-pentane. The product alkyl radicals are probed by 157 nm single photon ionization following reaction at a collision energy of ?10 kcal mol{sup ?1}. The analyzed data are compared with the corresponding theoretical studies. Reduced translational energy distributions for each system show similar trends with little of the reaction exoergicity appearing in translation. However, the pentane reaction shows a somewhat smaller fraction of available energy in translation than the other two, suggesting greater energy channeled into pentyl internal degrees of freedom. The center-of-mass angular distributions all show backscattering as well as sharp forward scattering that decreases in relative intensity with the size of the molecule. Possible reasons for these trends are discussed.

  16. Dynamics of CN+alkane reactions by crossed-beam dc slice imaging

    SciTech Connect (OSTI)

    Huang Cunshun; Li Wen; Estillore, Armando D.; Suits, Arthur G.

    2008-08-21

    The hydrogen atom abstraction reactions of CN (X {sup 2}{sigma}{sup +}) with alkanes have been studied using the crossed molecular beam technique with dc slice ion imaging at collision energies of 7.5 and 10.8 kcal/mol. The product alkyl radical images were obtained via single photon ionization at 157 nm for the reactions of CN (X {sup 2}{sigma}{sup +}) with n-butane, n-pentane, n-hexane, and cyclohexane. From analysis of the images, we obtained the center-of-mass frame product angular distributions and translational energy distributions directly. The results indicate that the products are largely backscattered and that most of the available energy ({approx}80%-85%) goes to the internal energy of the products. The reaction dynamics is discussed in light of recent kinetics data, theoretical calculations, and results for related halogen and oxygen atom reactions.

  17. Thermal Neutron Capture Cross Sections of the Palladium Isotopes

    E-Print Network [OSTI]

    2006-01-01

    CROSS SECTIONS OF THE PALLADIUM ISOTOPES R.B. Firestone ? ,? ? for all stable Palladium isotopes with the guidedscheme is complete. The Palladium isotope decay schemes are

  18. IDENTIFYING GENES CONTROLLING FERULATE CROSS-LINKING FORMATION...

    Office of Scientific and Technical Information (OSTI)

    will have a direct impact on the level of cross-linking and in turn impact biomass utility for forage and biofuel production. Our resultsaccomplishments for this...

  19. Neutron-induced fission cross section measurement of 233U, 241Am and 243Am in the energy range 0.5 MeV En 20 MeV at nTOF at CERN

    SciTech Connect (OSTI)

    Belloni, F.; Milazzo, P. M.; Calviani, M.; Colonna, N.; Mastinu, P. F.; Abbondanno, U.; Aerts, G.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P. A.; Audouin, L.; Barbagallo, M.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Calvino, F.; Cerutti, F.; Cano-Ott, D.; Capote, R.; Carrapico, C.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dolfini, R.; Domingo-Pardo, C.; Koehler, Paul; The n_TOF Collaboration,

    2012-01-01

    Neutron-induced fission cross section measurements of 233U, 243Am and 241Am relative to 235U have been carried out at the neutron time-of-flight facility n TOF at CERN. A fast ionization chamber has been employed. All samples were located in the same detector; therefore the studied elements and the reference 235U target are subject to the same neutron beam.

  20. Cross-linking of polytetrafluoroethylene during room-temperature irradiation

    SciTech Connect (OSTI)

    Pugmire, David L; Wetteland, Chris J; Duncan, Wanda S; Lakis, Rollin E; Schwartz, Daniel S

    2008-01-01

    Exposure of polytetrafluoroethylene (PTFE) to {alpha}-radiation was investigated to detennine the physical and chemical effects, as well as to compare and contrast the damage mechanisms with other radiation types ({beta}, {gamma}, or thermal neutron). A number of techniques were used to investigate the chemical and physical changes in PTFE after exposure to {alpha}-radiation. These techniques include: Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and fluorescence spectroscopy. Similar to other radiation types at low doses, the primary damage mechanism for the exposure of PTFE to {alpha}-radiation appears to be chain scission. Increased doses result in a change-over of the damage mechanism to cross-linking. This result is not observed for any radiation type other than {alpha} when irradiation is performed at room temperature. Finally, at high doses, PTFE undergoes mass-loss (via smallfluorocarbon species evolution) and defluorination. The amount and type of damage versus sample depth was also investigated. Other types of radiation yield damage at depths on the order of mm to cm into PTFE due to low linear energy transfer (LET) and the correspondingly large penetration depths. By contrast, the {alpha}-radiation employed in this study was shown to only induce damage to a depth of approximately 26 {mu}m, except at very high doses.

  1. Energy Deskbook

    SciTech Connect (OSTI)

    Glasstone, S

    1982-06-01

    The purpose of the Energy Deskbook is to serve as a convenient reference to definitions of energy-related terms and descriptions of current and potential energy sources and their utilization. The material is presented at a low technical level with emphasis on general principles, which are not difficult to understand, rather than technology. The entries vary in length from a few lines to several pages, according to circumstances. As a general rule, each topic is defined and outlined in the first paragraph; this may be followed by a more detailed treatment, as required. An important feature of the Deskbook is the use of boldface (heavy) type for cross references. Words in the text set in boldface are the titles of articles where the particular subjects are described.

  2. Ratios of multijet cross sections in p(p)over-bar collisions at root s=1.8 TeV

    E-Print Network [OSTI]

    Baringer, Philip S.; Bean, Alice; Coppage, Don; Hebert, C.

    2001-03-01

    We report on a study of the ratio of inclusive three-jet to inclusive two-jet production cross sections as a function of total transverse energy in p (p) over bar collisions at it center-of-mass energy roots = 1.8 TeV, ...

  3. Measurement of the tt-bar production cross section in pp-bar collisions at s?=1.96??TeV using secondary vertex b tagging

    E-Print Network [OSTI]

    Baringer, Philip S.; Bean, Alice; Coppage, Don; Gardner, J.; Moulik, Tania; Wilson, Graham Wallace; Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, M.

    2006-12-26

    We report a new measurement of the tt-bar production cross section in pp-bar collisions at a center-of-mass energy of 1.96 TeV using events with one charged lepton (electron or muon), missing transverse energy, and jets. Using 425??pb(?1) of data...

  4. Elastic and inelastic neutron scattering cross sections for fission reactor applications

    SciTech Connect (OSTI)

    Hicks, S. F.; Combs, B.; Downes, L.; Girgis, J.; Kersting, L. J.; Lueck, C. J.; McDonough, P. J.; Schniederjan, J.; Sidwell, L.; Sigillito, A. J. [Department of Physics, University of Dallas, Irving TX 75019 (United States); Chakraborty, A.; Crider, B. P.; Kumar, A.; McEllistrem, M. T.; Peters, E. E.; Prados-Estevz, F. M. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); Vanhoy, J. R.; Watts, D. [Department of Physics, United States Naval Academy, Annapolis MD 21402 (United States); Yates, S. W. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States) and Department of Chemistry, University of Kentucky, Lexington, KY 40506 (United States)

    2013-04-19

    Nuclear data important for the design and development of the next generation of light-water reactors and future fast reactors include neutron elastic and inelastic scattering cross sections on important structural materials, such as Fe, and on coolant materials, such as Na. These reaction probabilities are needed since neutron reactions impact fuel performance during irradiations and the overall efficiency of reactors. While neutron scattering cross sections from these materials are available for certain incident neutron energies, the fast neutron region, particularly above 2 MeV, has large gaps for which no measurements exist, or the existing uncertainties are large. Measurements have been made at the University of Kentucky Accelerator Laboratory to measure neutron scattering cross sections on both Fe and Na in the region where these gaps occur and to reduce the uncertainties on scattering from the ground state and first excited state of these nuclei. Results from measurements on Fe at incident neutron energies between 2 and 4 MeV will be presented and comparisons will be made to model calculations available from data evaluators.

  5. Measurement and QCD Analysis of Neutral and Charged Current Cross Sections at HERA

    E-Print Network [OSTI]

    Adloff, C; Andrieu, B; Anthonis, T; Astvatsatourov, A; Babaev, A; Bähr, J; Baranov, P S; Barrelet, E; Bartel, Wulfrin; Baumgartner, S; Becker, J; Beckingham, M; Beglarian, A; Behnke, O; Belousov, A; Berger, C; Berndt, T; Bizot, J C; Boudry, V; Braunschweig, W; Brisson, V; Broker, H B; Brown, D P; Bruncko, Dusan; Bunyatyan, A; Burrage, A; Buschhorn, G; Bystritskaya, L; Böhme, J; Büsser, F W; Campbell, A J; Cao, J; Caron, S; Cassol-Brunner, F; Chechelnitskii, S; Chekelian, V; Clarke, D; Collard, Caroline; Contreras, J G; Coppens, Y R; Coughlan, J A; Cousinou, M C; Cox, B E; Cozzika, G; Cvach, J; Dainton, J B; Dau, W D; Daum, K; Davidsson, M; De Wolf, E A; Delcourt, B; Delerue, N; Demirchyan, R A; Diaconu, C A; Dingfelder, J; Dixon, P; Dodonov, V; Dowell, John D; Dubak, A; Duprel, C; Eckerlin, G; Eckstein, D; Efremenko, V; Egli, S; Eichler, R; Eisele, F; Eisenhandler, E F; Ellerbrock, M; Elsen, E; Erdmann, M; Erdmann, W; Faulkner, P J W; Favart, L; Fedotov, A; Felst, R; Ferencei, J; Ferron, S; Fleischer, M; Fleischmann, P; Fleming, Y H; Flucke, G; Flügge, G; Fomenko, A; Foresti, I; Formánek, J; Franke, G; Frising, G; Gabathuler, Erwin; Gabathuler, K; Garvey, J; Gassner, J; Gayler, J; Gerhards, R; Gerlich, C; Ghazaryan, S; Gogitidze, N; Grab, C; Grabskii, V; Greenshaw, T; Grindhammer, G; Grässler, Herbert; Görlich, L; Haidt, Dieter; Hajduk, L; Haller, J; Heinemann, B; Heinzelmann, G; Henderson, R C W; Hengstmann, S; Henschel, H; Henshaw, O; Heremans, R; Herrera-Corral, G; Herynek, I; Hildebrandt, M; Hilgers, M; Hiller, K H; Hladky, J; Hoffmann, D; Horisberger, R P; Hoting, P; Hovhannisyan, A V; Ibbotson, M; Issever, C; Jacquet, M; Jaffré, M; Janauschek, L; Janssen, X; Jemanov, V; Johnson, C; Johnson, D P; Jones, M A S; Jung, H; Jönsson, L B; Kant, D; Kapichine, M; Karlsson, M; Karschnick, O; Katzy, J; Keil, F; Keller, N; Kennedy, J; Kenyon, I R; Kiesling, C; Kjellberg, P; Klein, M; Kleinwort, C; Kluge, T; Knies, G; Koblitz, B; Kolya, S D; Korbel, V; Kostka, P; Koutouev, R; Koutov, A; Kroseberg, J; Krüger, K; Kuhr, T; Lamb, D; Landon, M P J; Lange, W; Lastoviicka, T; Laycock, P; Lebailly, E; Lebedev, A; Leiner, B; Lemrani, R; Lendermann, V; Levonian, S; List, B; Lobodzinska, E; Lobodzinski, B; Loginov, A; Loktionova, N A; Lubimov, V; Lüke, D; Lytkin, L; Lüders, S; Malden, N; Malinovskii, E I; Mangano, S; Marage, P; Marks, J; Marshall, R; Martyn, H U; Martyniak, J; Maxfield, S J; Meer, D; Mehta, A; Meier, K; Meyer, A B; Meyer, H; Meyer, J; Michine, S; Mikocki, S; Milstead, D; Mohrdieck, S; Mondragón, M N; Moreau, F; Morozov, A; Morris, J V; Murn, P; Müller, K; Nagovizin, V; Naroska, Beate; Naumann, J; Naumann, T; Newman, P R; Niebergall, F; Niebuhr, C B; Nix, O; Nowak, G; Nozicka, M; Olivier, B; Olsson, J E; Ozerov, D; Panassik, V; Pascaud, C; Patel, G D; Peez, M; Petrukhin, A; Phillips, J P; Pitzl, D; Portheault, B; Potachnikova, I; Povh, B; Pérez, E; Pöschl, R; Rauschenberger, J; Reimer, P; Reisert, B; Risler, C; Rizvi, E; Robmann, P; Roosen, R; Rostovtsev, A A; Rusakov, S V; Rybicki, K; Sankey, D P C; Sauvan, E; Schatzel, S; Scheins, J; Schilling, F P; Schleper, P; Schmidt, D; Schmidt, S; Schmitt, S; Schneider, M; Schoeffel, L; Schröder, V; Schultz-Coulon, H C; Schwanenberger, C; Schöning, A; Schörner-Sadenius, T; Sedlak, K; Sefkow, F; Shevyakov, I; Shtarkov, L N; Sirois, Y; Sloan, T; Smirnov, P; Soloviev, Yu; South, D; Spaskov, V N; Specka, A E; Spitzer, H; Stamen, R; Stella, B; Stiewe, J; Strauch, I; Straumann, U; Thompson, G; Thompson, P D; Tomasz, F; Traynor, D; Truöl, P; Tsipolitis, G; Tsurin, I; Turnau, J; Turney, J E; Tzamariudaki, E; Uraev, A; Urban, M; Usik, A; Valkár, S; Valkárová, A; Vallée, C; Van Mechelen, P; Vargas-Trevino, A; Vasilev, S; Vazdik, Ya A; Veelken, C; Vest, A; Vichnevski, A; Volchinski; Wacker, K; Wagner, J; Wallny, R; Waugh, B; Weber, G; Weber, R; Wegener, D; Werner, C; Werner, N; Wessels, M; Wiesand, S; Winde, M; Winter, G G; Wissing, C; Wobisch, M; Woerling, E E; Wünsch, E; Wyatt, A C; Zaicek, J; Zaleisak, J; Zhang, Z; Zhokin, A; Zomer, F; Zur Nedden, M; de Roeck, A

    2003-01-01

    The inclusive e^+ p single and double differential cross sections for neutral and charged current processes are measured with the H1 detector at HERA. The data were taken in 1999 and 2000 at a centre-of-mass energy of \\sqrt{s} = 319 GeV and correspond to an integrated luminosity of 65.2 pb^-1. The cross sections are measured in the range of four-momentum transfer squared Q^2 between 100 and 30000 GeV^2 and Bjorken x between 0.0013 and 0.65. The neutral current analysis for the new e^+ p data and the earlier e^- p data taken in 1998 and 1999 is extended to small energies of the scattered electron and therefore to higher values of inelasticity y, allowing a determination of the longitudinal structure function F_L at high Q^2 (110 - 700 GeV^2). A new measurement of the structure function x F_3 is obtained using the new e^+ p and previously published e^\\pm p neutral current cross section data at high Q^2. These data together with H1 low Q^2 precision data are further used to perform new next-to-leading order QCD ...

  6. On the Conservation of Cross Helicity and Wave Action in Solar-Wind Models with Non-WKB Alfven Wave Reflection

    E-Print Network [OSTI]

    Chandran, Benjamin D G; Verscharen, Daniel; Klein, Kristopher G; Mallet, Alfred

    2015-01-01

    The interaction between Alfven-wave turbulence and the background solar wind affects the cross helicity in two ways. Non-WKB reflection converts outward-propagating Alfven waves into inward-propagating Alfven waves and vice versa, and the turbulence transfers momentum to the background flow. When both effects are accounted for, the total cross helicity is conserved. In the special case that the background density and flow speed are independent of time, the equations of cross-helicity conservation and total-energy conservation can be combined to recover a well-known equation derived by Heinemann and Olbert that has been interpreted as a non-WKB generalization of wave-action conservation. This latter equation (in contrast to cross-helicity and energy conservation) does not hold when the background varies in time.

  7. Measurement of the production and differential cross sections of W?W? bosons in association with jets in ppŻ collisions at s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.?A.; Arisawa, T.; Artikov, A.; et al

    2015-06-23

    We present a measurement of the W-boson-pair production cross section in ppŻ collisions at 1.96 TeV center-of-mass energy and the first measurement of the differential cross section as a function of jet multiplicity and leading-jet energy. The W?W? cross section is measured in the final state comprising two charged leptons and neutrinos, where either charged lepton can be an electron or a muon. Using data collected by the CDF experiment corresponding to 9.7 fb?ą of integrated luminosity, a total of 3027 collision events consistent with W?W? production are observed with an estimated background contribution of 1790 ± 190 events. Themore »measured total cross section is ?(ppŻ? W?W?) = 14.0 ± 0.6(stat)?1.2?1.0(syst) ± 0.8(lumi) pb, consistent with the standard model prediction.« less

  8. Proton induced fission of 181-Ta at relativistic energies

    E-Print Network [OSTI]

    Y. Ayyad; J. Benlliure; E. Casarejos; H. Álvarez-Pol; A. Bacquias; A. Boudard; M. Caamańo; T. Enqvist; V. Föhr; A. Keli?-Heil; K. Kezzar; S. Leray; C. Paradela; D. Pérez-Loureiro; R. Pleska?; D. Tarrío

    2012-03-07

    Total fission cross sections of 181-Ta induced by protons at different relativistic energies have been measured at GSI, Darmstadt. The inverse kinematics technique used together with a dedicated set-up, made it possible to determine these cross sections with high accuracy. The new data obtained in this experiment will contribute to the understanding of the fission process at high excitation energies. The results are compared with data from previous experiments and systematics for proton-induced fission cross sections.

  9. Unitary limit in crossed Andreev transport

    E-Print Network [OSTI]

    I. A. Sadovskyy; G. B. Lesovik; V. M. Vinokur

    2015-09-18

    One of the most promising approaches of generating spin- and energy-entangled electron pairs is splitting a Cooper pair into the metal through spatially separated terminals. Utilizing hybrid systems with the energy-dependent barriers at the superconductor-normal metal interfaces, one can achieve practically 100% efficiency outcome of entangled electrons. We investigate minimalistic one-dimensional model comprising a superconductor and two metallic leads and derive an expression for an electron-to-hole transmission probability as a measure of splitting efficiency. We find the conditions for achieving 100% efficiency and present analytical results for the differential conductance and differential noise.

  10. Anthem Blue Cross/Anthem Blue Cross Life and Health Insurance Company (P-NP) 6/13/2011 University of California

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Anthem Blue Cross/Anthem Blue Cross Life and Health Insurance Company (P-NP) 6/13/2011 University that all sections of the claim form are completed and mail to: Anthem Blue Cross Prescription Drug Program

  11. Experimental cross sections for L-shell x-ray production and ionization by protons

    SciTech Connect (OSTI)

    Miranda, Javier, E-mail: miranda@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F. 01000 (Mexico); Lapicki, Gregory [Department of Physics, East Carolina University, Greenville, NC 27858 (United States)

    2014-05-15

    Tables of compiled cross sections list data for production of individual line and total L x-rays as well as for ionization of L subshells and the total L shell. The present cumulative compilation covers some six decades of measurements on targets from {sub 10}Ne to {sub 95}Am bombarded by protons ranging from 10 keV to 1 GeV. It includes data published in the period 1954–1992 from tables published in this journal, cross sections that were not reported in those tables, and new data from works published after 1992. Existing empirical, semiempirical, and theoretical analyses based on, and relative to, the pre-1993 database are reviewed. The experimental details are summarized for pre-1993 articles that were not referenced in previous compilations and, continuing the practice of these compilations, for each new publication. Covering the period 1954–December 2012, the present tabulation collects (not counting 2519 new data for L{sub ?1,3,4}, L{sub ?2,15},L{sub ?1}, L{sub ?2,3}, and L{sub ?4,4{sup ?}} x ray production) circa 15 500 experimental cross sections and enlarges the database from the previously published tables by 94%. -- Highlights: •An updated database is presented, increasing by 94% the earlier pre-1993 database. •The update has 40% more data from the pre-1993 period, absent in prior compilations. •The growth and possible saturation in the number of data is illustrated. •Ionization cross sections are reconverted to x-ray production cross sections. •Elements and ion energies are identified where measurements are still necessary.

  12. Measurement of the production and differential cross sections of W[superscript +]W[superscript -] bosons in association with jets in p[bar over p] collisions at ?s = 1.96??TeV

    E-Print Network [OSTI]

    Aaltonen, T.

    We present a measurement of the W-boson-pair production cross section in p[bar over p] collisions at 1.96 TeV center-of-mass energy and the first measurement of the differential cross section as a function of jet multiplicity ...

  13. Cross Section and Transverse Single-Spin Asymmetry of $?$ Mesons in $p^{\\uparrow}+p$ Collisions at $\\sqrt{s}=200$ GeV at Forward Rapidity

    E-Print Network [OSTI]

    A. Adare; C. Aidala; N. N. Ajitanand; Y. Akiba; R. Akimoto; H. Al-Bataineh; J. Alexander; M. Alfred; A. Angerami; K. Aoki; N. Apadula; Y. Aramaki; H. Asano; E. T. Atomssa; R. Averbeck; T. C. Awes; B. Azmoun; V. Babintsev; M. Bai; G. Baksay; L. Baksay; N. S. Bandara; B. Bannier; K. N. Barish; B. Bassalleck; A. T. Basye; S. Bathe; V. Baublis; C. Baumann; A. Bazilevsky; M. Beaumier; S. Beckman; S. Belikov; R. Belmont; R. Bennett; A. Berdnikov; Y. Berdnikov; J. H. Bhom; D. Black; D. S. Blau; J. Bok; J. S. Bok; K. Boyle; M. L. Brooks; J. Bryslawskyj; H. Buesching; V. Bumazhnov; G. Bunce; S. Butsyk; S. Campbell; A. Caringi; C. -H. Chen; C. Y. Chi; M. Chiu; I. J. Choi; J. B. Choi; R. K. Choudhury; P. Christiansen; T. Chujo; P. Chung; O. Chvala; V. Cianciolo; Z. Citron; B. A. Cole; Z. Conesa del Valle; M. Connors; M. Csanád; T. Csörg?; T. Dahms; S. Dairaku; I. Danchev; K. Das; A. Datta; M. S. Daugherity; G. David; M. K. Dayananda; K. DeBlasio; K. Dehmelt; A. Denisov; A. Deshpande; E. J. Desmond; K. V. Dharmawardane; O. Dietzsch; L. Ding; A. Dion; J. H. Do; M. Donadelli; O. Drapier; A. Drees; K. A. Drees; J. M. Durham; A. Durum; D. Dutta; L. D'Orazio; S. Edwards; Y. V. Efremenko; F. Ellinghaus; T. Engelmore; A. Enokizono; H. En'yo; S. Esumi; K. O. Eyser; B. Fadem; N. Feege; D. E. Fields; M. Finger; M. Finger; \\, Jr.; F. Fleuret; S. L. Fokin; Z. Fraenkel; J. E. Frantz; A. Franz; A. D. Frawley; K. Fujiwara; Y. Fukao; T. Fusayasu; C. Gal; P. Gallus; P. Garg; I. Garishvili; H. Ge; F. Giordano; A. Glenn; H. Gong; M. Gonin; Y. Goto; R. Granier de Cassagnac; N. Grau; S. V. Greene; G. Grim; M. Grosse Perdekamp; Y. Gu; T. Gunji; H. Guragain; H. -Ĺ. Gustafsson; T. Hachiya; J. S. Haggerty; K. I. Hahn; H. Hamagaki; J. Hamblen; R. Han; S. Y. Han; J. Hanks; S. Hasegawa; E. Haslum; R. Hayano; X. He; M. Heffner; T. K. Hemmick; T. Hester; J. C. Hill; M. Hohlmann; R. S. Hollis; W. Holzmann; K. Homma; B. Hong; T. Horaguchi; D. Hornback; T. Hoshino; S. Huang; T. Ichihara; R. Ichimiya; Y. Ikeda; K. Imai; Y. Imazu; M. Inaba; A. Iordanova; D. Isenhower; M. Ishihara; M. Issah; D. Ivanischev; D. Ivanishchev; Y. Iwanaga; B. V. Jacak; S. J. Jeon; M. Jezghani; J. Jia; X. Jiang; J. Jin; B. M. Johnson; T. Jones; E. Joo; K. S. Joo; D. Jouan; D. S. Jumper; F. Kajihara; J. Kamin; J. H. Kang; J. S. Kang; J. Kapustinsky; K. Karatsu; M. Kasai; D. Kawall; M. Kawashima; A. V. Kazantsev; T. Kempel; J. A. Key; V. Khachatryan; A. Khanzadeev; K. Kihara; K. M. Kijima; J. Kikuchi; A. Kim; B. I. Kim; C. Kim; D. H. Kim; D. J. Kim; E. -J. Kim; H. -J. Kim; M. Kim; Y. -J. Kim; Y. K. Kim; E. Kinney; Á. Kiss; E. Kistenev; J. Klatsky; D. Kleinjan; P. Kline; T. Koblesky; L. Kochenda; M. Kofarago; B. Komkov; M. Konno; J. Koster; D. Kotov; A. Král; A. Kravitz; G. J. Kunde; K. Kurita; M. Kurosawa; Y. Kwon; G. S. Kyle; R. Lacey; Y. S. Lai; J. G. Lajoie; A. Lebedev; D. M. Lee; J. Lee; K. B. Lee; K. S. Lee; S. H. Lee; M. J. Leitch; M. A. L. Leite; M. Leitgab; X. Li; P. Lichtenwalner; P. Liebing; S. H. Lim; L. A. Linden Levy; T. Liška; H. Liu; M. X. Liu; B. Love; D. Lynch; C. F. Maguire; Y. I. Makdisi; M. Makek; M. D. Malik; A. Manion; V. I. Manko; E. Mannel; Y. Mao; H. Masui; F. Matathias; M. McCumber; P. L. McGaughey; D. McGlinchey; C. McKinney; N. Means; A. Meles; M. Mendoza; B. Meredith; Y. Miake; T. Mibe; A. C. Mignerey; K. Miki; A. J. Miller; A. Milov; D. K. Mishra; J. T. Mitchell; S. Miyasaka; S. Mizuno; A. K. Mohanty; P. Montuenga; H. J. Moon; T. Moon; Y. Morino; A. Morreale; D. P. Morrison; T. V. Moukhanova; T. Murakami; J. Murata; A. Mwai; S. Nagamiya; J. L. Nagle; M. Naglis; M. I. Nagy; I. Nakagawa; H. Nakagomi; Y. Nakamiya; K. R. Nakamura; T. Nakamura; K. Nakano; S. Nam; C. Nattrass; P. K. Netrakanti; J. Newby; M. Nguyen; M. Nihashi; T. Niida; R. Nouicer; N. Novitzky; A. S. Nyanin; C. Oakley; E. O'Brien; S. X. Oda; C. A. Ogilvie; M. Oka; K. Okada; Y. Onuki; J. D. Orjuela Koop; A. Oskarsson; M. Ouchida; H. Ozaki; K. Ozawa; R. Pak; V. Pantuev; V. Papavassiliou; I. H. Park; S. Park; S. K. Park; W. J. Park; S. F. Pate; L. Patel; M. Patel; H. Pei; J. -C. Peng; H. Pereira; D. V. Perepelitsa; G. D. N. Perera; D. Yu. Peressounko; J. Perry; R. Petti; C. Pinkenburg; R. Pinson; R. P. Pisani; M. Proissl; M. L. Purschke; H. Qu; J. Rak; I. Ravinovich; K. F. Read; S. Rembeczki; K. Reygers; D. Reynolds; V. Riabov; Y. Riabov; E. Richardson; N. Riveli; D. Roach; G. Roche; S. D. Rolnick; M. Rosati; C. A. Rosen; S. S. E. Rosendahl; Z. Rowan; J. G. Rubin; P. Ruži?ka; B. Sahlmueller; N. Saito; T. Sakaguchi; K. Sakashita; H. Sako; V. Samsonov; S. Sano; M. Sarsour; S. Sato; T. Sato; S. Sawada; B. Schaefer; B. K. Schmoll; K. Sedgwick; J. Seele; R. Seidl; A. Sen; R. Seto; P. Sett; A. Sexton; D. Sharma; I. Shein; T. -A. Shibata; K. Shigaki; M. Shimomura; K. Shoji; P. Shukla; A. Sickles; C. L. Silva; D. Silvermyr; C. Silvestre; K. S. Sim; B. K. Singh; C. P. Singh; V. Singh; M. Slune?ka

    2015-09-08

    We present a measurement of the cross section and transverse single-spin asymmetry ($A_N$) for $\\eta$ mesons at large pseudorapidity from $\\sqrt{s}=200$~GeV $p^{\\uparrow}+p$ collisions. The measured cross section for $0.5energies in overlapping $x_F$ ranges. Comparison of different particle species can help to determine the origin of the large observed asymmetries in $p^{\\uparrow}+p$ collisions.

  14. Measurement of the proton-air cross-section at $\\sqrt{s}=57$ TeV with the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Collaboration, Auger

    2012-08-01

    We report a measurement of the proton-air cross section for particle production at the center-of-mass energy per nucleon of 57 TeV. This is derived from the distribution of the depths of shower maxima observed with the Pierre Auger Observatory: systematic uncertainties are studied in detail. Analyzing the tail of the distribution of the shower maxima, a proton-air cross section of [505 {+-} 22(stat){sub -36}{sup +28}(syst)] mb is found.

  15. Measurement of the Proton-Air Cross Section at ?s=57 TeV with the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almeda, A.; Alvarez Castillo, J.; Alvarez-Muńiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Anti?i?, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Bohá?ová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceiçăo, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D’Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D’Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filip?i?, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leăo, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mi?anovi?, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; P?kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.

    2012-08-01

    We report a measurement of the proton-air cross section for particle production at the center-of-mass energy per nucleon of 57 TeV. This is derived from the distribution of the depths of shower maxima observed with the Pierre Auger Observatory: systematic uncertainties are studied in detail. Analyzing the tail of the distribution of the shower maxima, a proton-air cross section of [505±22(stat)+28-36(syst)] mb is found.

  16. Experimental Verification of Neutron Phenomenology in Lead and Transmutation by Adiabatic Resonance Crossing in Accelerator Driven Systems: a Short Summary

    E-Print Network [OSTI]

    Abánades, A; Andriamonje, Samuel A; Angelopoulos, Angelos; Apostolakis, Alcibiades J; Arnould, H; Belle, E; Bompas, C A; Brozzi, Delecurgo; Bueno, J; Buono, S; Carminati, F; Casagrande, Federico; Cennini, P; Collar, J I; Cerro, E; Del Moral, R; Díez, S; Dumps, Ludwig; Eleftheriadis, C; Embid, M; Fernández, R; Gálvez, J; García, J; Gelčs, C; Giorni, A; González, E; González, O; Goulas, I; Heuer, R D; Hussonnois, M; Kadi, Y; Karaiskos, P; Kitis, G; Klapisch, Robert; Kokkas, P; Lacoste, V; Le Naour, C; Lčpez, C; Loiseaux, J M; Martínez-Val, J M; Méplan, O; Nifenecker, H; Oropesa, J; Papadopoulos, I M; Pavlopoulos, P; Pérez-Enciso, E; Pérez-Navarro, A; Perlado, M; Placci, A; Poza, M; Revol, Jean Pierre Charles; Rubbia, Carlo; Rubio, J A; Sakelliou, L; Saldańa, F; Savvidis, E; Schussler, F; Sirvent, C; Tamarit, J; Trubert, D; Tzima, A; Viano, J B; Vieira, S L; Vlachoudis, V; Zioutas, Konstantin; CERN. Geneva. SPS and LEP Division

    2000-01-01

    The Transmutation by Adiabatic Resonance Crossing (TARC) experiment was carried out as PS211 at the CERN PS from 1996 to 1999. Energy and space distributions of spallation neutrons (from 2.5 and 3.57 GeV/c CERN proton beams) slowing down in a 3.3x3.3x3 m3 lead volume and neutron capture rates on long-lived fission fragements 99Tc and 129I demonstrate that Adiabatic Resonance Crossing (ARC) can be used to eliminate efficiently such nuclear waste and validate innovative simulation.

  17. Measurements of proton induced reaction cross sections on 120Te for the astrophysical p-process

    E-Print Network [OSTI]

    R. T. Güray; N. Özkan; C. Yalç?n; A. Palumbo; R. deBoer; J. Görres; P. J. Leblanc; S. O'Brien; E. Strandberg; W. P. Tan; M. Wiescher; Zs. Fülöp; E. Somorjai; H. Y. Lee; J. P. Greene

    2009-08-28

    The total cross sections for the 120Te(p,gamma)121I and 120Te(p,n)120I reactions have been measured by the activation method in the effective center-of-mass energies between 2.47 MeV and 7.93 MeV. The targets were prepared by evaporation of 99.4 % isotopically enriched 120Te on Aluminum and Carbon backing foils, and bombarded with proton beams provided by the FN tandem accelerator at the University of Notre Dame. The cross sections and $S$ factors were deduced from the observed gamma ray activity, which was detected off-line by two Clover HPGe detectors mounted in close geometry. The results are presented and compared with the predictions of statistical model calculations using the codes NON-SMOKER and TALYS.

  18. Measurement of the t tbar cross section at the Run II Tevatron using Support Vector Machines

    SciTech Connect (OSTI)

    Whitehouse, Benjamin Eric; /Tufts U.

    2010-08-01

    This dissertation measures the t{bar t} production cross section at the Run II CDF detector using data from early 2001 through March 2007. The Tevatron at Fermilab is a p{bar p} collider with center of mass energy {radical}s = 1.96 TeV. This data composes a sample with a time-integrated luminosity measured at 2.2 {+-} 0.1 fb{sup -1}. A system of learning machines is developed to recognize t{bar t} events in the 'lepton plus jets' decay channel. Support Vector Machines are described, and their ability to cope with a multi-class discrimination problem is provided. The t{bar t} production cross section is then measured in this framework, and found to be {sigma}{sub t{bar t}} = 7.14 {+-} 0.25 (stat){sub -0.86}{sup +0.61}(sys) pb.

  19. An Overview of the Methodologies for Cross

    E-Print Network [OSTI]

    Danon, Yaron

    Nuclear Data & Criticality Safety Reactor and Nuclear Systems Division Rensselaer Polytechnic Institute Nuclear Data Symposium for Criticality Safety and Reactor Applications April 27, 2011 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Nuclear Data Analysis and Evaluation · Why is needed? It provides

  20. THE NEUTRINO ENERGY & DIRECTION RESOLUTIONS IN THE INO-ICAL DETECTOR Moon Moon Devi

    E-Print Network [OSTI]

    Shyamasundar, R.K.

    THE NEUTRINO ENERGY & DIRECTION RESOLUTIONS IN THE INO-ICAL DETECTOR Moon Moon Devi India single pion events. The energy dependence of the cross sec- tion of these interactions are shown in Fig. 1 [2]. At lower energies (E