Powered by Deep Web Technologies
Note: This page contains sample records for the topic "holes time frame" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Black hole entanglement entropy regularized in a freely falling frame  

E-Print Network [OSTI]

We compute the black hole horizon entanglement entropy S_E for a massless scalar field, first with a hard cutoff and then with high frequency dispersion, both imposed in a frame that falls freely across the horizon. Using WKB methods, we find that S_E is finite for a hard cutoff or super-luminal dispersion, because the mode oscillations do not diverge at the horizon and the contribution of high transverse momenta is cut off by the angular momentum barrier. For sub-luminal dispersion the entropy depends on the behavior at arbitrarily high transverse momenta. In all cases it scales with the horizon area. For the hard cutoff it is linear in the cutoff, rather than quadratic. This discrepancy from the familiar result arises from the difference between the free-fall frame and the static frame in which a cutoff is usually imposed. In the super-luminal case the entropy scales with a fractional power of the cutoff that depends on the index of the dispersion relation. Implications for the possible relation between regularized entanglement entropy and the Bekenstein-Hawking entropy are discussed.

Ted Jacobson; Renaud Parentani

2007-07-09T23:59:59.000Z

2

Time (hole?) machines John Byron Manchak  

E-Print Network [OSTI]

Time (hole?) machines John Byron Manchak Department of Philosophy, University of Washington, Box machines Hole machines Time travel General relativity a b s t r a c t Within the context of general relativity, we consider a type of "time machine" and introduce the related "hole machine". We review what

Manchak, John

3

Framing Iran: The Islamic Revolution and the Green Movement as Told Through Time Magazine.  

E-Print Network [OSTI]

?? FRAMING IRAN: THE ISLAMIC REVOLUTION AND THE GREEN MOVEMENT AS TOLD THROUGH TIME MAGAZINE by Nadia Maiwandi This framing analysis was conducted to study… (more)

Maiwandi, Nadia

2013-01-01T23:59:59.000Z

4

On Space-Time Singularities, Holes, and Extensions  

E-Print Network [OSTI]

On Space-Time Singularities, Holes, and Extensions John Byron Manchak*y Here, we clarify the relationship among three space-time conditions of interest: geodesic completeness, hole. In what follows, we consider three space-time conditions of interest: geodesic completeness, hole

Manchak, John

5

Examining the Variability of Wind Power Output in the Regulation Time Frame: Preprint  

SciTech Connect (OSTI)

This work examines the distribution of changes in wind power for different time scales in the regulation time frame as well as the correlation of changes in power output for individual wind turbines in a wind plant.

Hodge, B. M.; Shedd, S.; Florita, A.

2012-08-01T23:59:59.000Z

6

Real-Time Frame-Dependent Watermarking in MPEG-2 Video  

E-Print Network [OSTI]

Real-Time Frame-Dependent Watermarking in MPEG-2 Video Chun-Shien Lu ?, Jan-Ru Chen y, and Kuo data. In particular, video watermarking deals with several issues that are unique to various types-time detection, bit-rate control, and resistance to watermark estimation attacks, will be addressed. Since video

Chen, Sheng-Wei

7

Distinguishing causal time from Minkowski time and a model for the black hole quantum eigenstates  

E-Print Network [OSTI]

A discussion is presented of the principle of black hole com- plementarity. It is argued that this principle could be viewed as a breakdown of general relativity, or alternatively, as the introduction of a time variable with multiple `sheets' or `branches' A consequence of the theory is that the stress-energy tensor as viewed by an outside observer is not simply the Lorentz-transform of the tensor viewed by an ingoing observer. This can serve as a justification of a new model for the black hole atmosphere, recently re-introduced. It is discussed how such a model may lead to a dynamical description of the black hole quantum states.

G. 't Hooft

1997-11-18T23:59:59.000Z

8

Parallel and real-time implementation of an acoustic echo canceller using oversampled wavelet frame algorithms  

E-Print Network [OSTI]

yields: f's-r(x) = Q~r, " Qp& ? && ? 8 &q (2 x r ' ) a 3 + Pd'?'Pq, ?, , rf(2'+'x ? r? P P+l, ly(2j+I (3+1, l ) 3 (3. 53) Comparing the $ terms, one can obtain the wavelet frame reconstruction relation: g [ c~i: p, ? &s ?, , + d~&: v. -sa.... Besides improving convergence duc to subband decorrelation, wavelet decomposition offers a, "divirle- and-conffucr" approach to meet the stringent filtcr length requirement. To cope with time-varying echoes, a channel probing engine is used to reset...

Tam, Pak-Yin

2012-06-07T23:59:59.000Z

9

The New York Times' Framing of Involvement of the Russian Federation in Arms and Nuclear Trade with the Islamic Republic of Iran in 2009-2011  

E-Print Network [OSTI]

This study examines the mediated portrait of nuclear and arms trade between Russia and Iran in The New York Times in 2009-2011, applying framing theory as a tool. I used three frames, pre-defined in earlier studies: ...

Bagiev, Artem

2012-05-31T23:59:59.000Z

10

Primordial black hole evolution in tensor-scalar cosmology  

E-Print Network [OSTI]

A perturbative analysis shows that black holes do not remember the value of the scalar field $\\phi$ at the time they formed if $\\phi$ changes in tensor-scalar cosmology. Moreover, even when the black hole mass in the Einstein frame is approximately unaffected by the changing of $\\phi$, in the Jordan-Fierz frame the mass increases. This mass increase requires a reanalysis of the evaporation of primordial black holes in tensor-scalar cosmology. It also implies that there could have been a significant magnification of the (Jordan-Fierz frame) mass of primordial black holes.

Ted Jacobson

1999-09-06T23:59:59.000Z

11

The data this time will be the Motorcycle Acceleration Data: A data frame giving a series of measurements of head acceleration  

E-Print Network [OSTI]

Cosines The data this time will be the Motorcycle Acceleration Data: A data frame giving a series of measurements of head acceleration in a simulated motorcycle accident, used to test crash helmets. Usage: data

Zeng, Donglin

12

Rotating Black Holes in Gauged Supergravities; Thermodynamics, Supersymmetric Limits, Topological Solitons and Time Machines  

E-Print Network [OSTI]

We study the thermodynamics of the recently-discovered non-extremal charged rotating black holes of gauged supergravities in five, seven and four dimensions, obtaining energies, angular momenta and charges that are consistent with the first law of thermodynamics. We obtain their supersymmetric limits by using these expressions together with an analysis of the AdS superalgebras including R-charges. We give a general discussion of the global structure of such solutions, and apply it in the various cases. We obtain new regular supersymmetric black holes in seven and four dimensions, as well as reproducing known examples in five and four dimensions. We also obtain new supersymmetric non-singular topological solitons in five and seven dimensions. The rest of the supersymmetric solutions either have naked singularities or naked time machines. The latter can be rendered non-singular if the asymptotic time is periodic. This leads to a new type of quantum consistency condition, which we call a Josephson quantisation condition. Finally, we discuss some aspects of rotating black holes in Godel universe backgrounds.

M. Cvetic; G. W. Gibbons; H. Lu; C. N. Pope

2005-11-09T23:59:59.000Z

13

Linear and nonlinear time series analysis of the black hole candidate Cygnus X-1  

E-Print Network [OSTI]

We analyze the variability in the X-ray lightcurves of the black hole candidate Cygnus X-1 by linear and nonlinear time series analysis methods. While a linear model describes the over-all second order properties of the observed data well, surrogate data analysis reveals a significant deviation from linearity. We discuss the relation between shot noise models usually applied to analyze these data and linear stochastic autoregressive models. We debate statistical and interpretational issues of surrogate data testing for the present context. Finally, we suggest a combination of tools from linear andnonlinear time series analysis methods as a procedure to test the predictions of astrophysical models on observed data.

J. Timmer; U. Schwarz; H. U. Voss; I. Wardinski; T. Belloni; G. Hasinger; M. van der Klis; Juergen Kurths

1999-11-10T23:59:59.000Z

14

White holes and eternal black holes  

E-Print Network [OSTI]

We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi- thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal.

Stephen D. H. Hsu

2011-11-16T23:59:59.000Z

15

Optimizing artificial lift operations through the use of wireless conveyed real time bottom hole data  

SciTech Connect (OSTI)

The use of an innovative wireless bottom hole pressure/temperature telemetry acquisition system in artificial lift operations can dramatically improve efficiency and optimize fluid producing rates in those wells. The tool is installed into the producing well in the vicinity of the perforations, measuring and transmitting the producing bottom hole pressures and temperatures to the surface for instantaneous control of the surface pumping motor speed. This insures the lowest possible fluid level back pressures, thus allowing for the highest possible fluid entry into the wellbore from that reservoir`s capacity. Operating costs per barrel are lowered since the maximum oil production can now be realized from existing wells. The telemetry tool is deployed with standard slickline equipment and is installed inside a well in a manner similar to ordinary pressure recorder tools. Several unique advantages of the tool are: (1) no moving parts; (2) no wireline to the surface; (3) real time measurement of bottom hole data; and (4) slickline retrievable. Future versions of the acquisition system tool will improve operating efficiency in the following ways: (1) Temperature monitoring and control of perforation scaling, tubular waxing, and tubular hydrating plugs. (2) Provide data necessary to create diagnostically predictive IPR curves through monitoring of reservoir in-flow rates. (3) Enabling early warning of water encroachment or lensing through fluid resistivity monitoring.

Campbell, B.; MacKinnon, J.; Bandy, T.R.; Hampton, T.

1996-12-31T23:59:59.000Z

16

Quantum time uncertainty in Schwarzschild-anti-de Sitter black holes  

SciTech Connect (OSTI)

The combined action of gravity and quantum mechanics gives rise to a minimum time uncertainty in the lowest order approximation of a perturbative scheme, in which quantum effects are regarded as corrections to the classical spacetime geometry. From the nonperturbative point of view, both gravity and quantum mechanics are treated on equal footing in a description that already contains all possible backreaction effects as those above in a nonlinear manner. In this paper, the existence or not of such minimum time uncertainty is analyzed in the context of Schwarzschild-anti-de Sitter black holes using the isolated horizon formalism. We show that from a perturbative point of view, a nonzero time uncertainty is generically present owing to the energy scale introduced by the cosmological constant, while in a quantization scheme that includes nonperturbatively the effects of that scale, an arbitrarily high time resolution can be reached.

Galan, Pablo; Mena Marugan, Guillermo A. [Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain); Garay, Luis J. [Departamento de Fisica Teorica II, Universidad Complutense de Madrid, 28040 Madrid (Spain); Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain)

2007-08-15T23:59:59.000Z

17

Real-time solar wind prediction based on SDO/AIA coronal hole data  

E-Print Network [OSTI]

We present an empirical model based on the visible area covered by coronal holes close to the central meridian in order to predict the solar wind speed at 1 AU with a lead time up to four days in advance with a 1hr time resolution. Linear prediction functions are used to relate coronal hole areas to solar wind speed. The function parameters are automatically adapted by using the information from the previous 3 Carrington Rotations. Thus the algorithm automatically reacts on the changes of the solar wind speed during different phases of the solar cycle. The adaptive algorithm has been applied to and tested on SDO/AIA-193A observations and ACE measurements during the years 2011-2013, covering 41 Carrington Rotations. The solar wind speed arrival time is delayed and needs on average 4.02 +/- 0.5 days to reach Earth. The algorithm produces good predictions for the 156 solar wind high speed streams peak amplitudes with correlation coefficients of cc~0.60. For 80% of the peaks, the predicted arrival matches within ...

Rotter, T; Temmer, M; Vrsnak, B

2015-01-01T23:59:59.000Z

18

Classical stability of black hole Cauchy horizons in two-dimensional asymptotically flat space-times  

E-Print Network [OSTI]

In this paper we analyse the stability of black hole Cauchy horizons arising in a class of 2d dilaton gravity models. It is shown that due to the characteristic asymptotic Rindler form of the metric of these models, time dependent gravitational perturbations generated in the external region do not necessarily blow-up when propagated along the Cauchy horizon. There exists, in fact, a region of nonzero measure in the space of the parameters characterizing the solutions such that both instability and mass inflation are avoided. This is a new result concerning asymptotically flat space-times, not shared by the well-known solutions of General Relativity. Despite this fact, however, quantum back-reaction seems to produce a scalar curvature singularity there.

A. Fabbri

1996-07-04T23:59:59.000Z

19

Simulation of Water Level Fluctuations in Kettle Holes Using a Time Series Model  

E-Print Network [OSTI]

online: 21 April 2011 # Society of Wetland Scientists 2011 Abstract Kettle holes are widespread in the future, conservation strategies for kettle holes should include the effects of climate change. Keywords). This number is comparable with the wetland loss in the United States (Dahl 1990; Johnston 1994), Japan

Kleyer, Michael

20

A Woman Framed  

E-Print Network [OSTI]

are changing. Allison, Mary Ann. “A Woman Framed”. http://21: 60- 64 ISSN: 2159-2926 A Woman Framed Mary Ann AllisonAllison, Mary Ann. “A Woman Framed”. http://

Allison, Mary Ann

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "holes time frame" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Changing quantum reference frames  

E-Print Network [OSTI]

We consider the process of changing reference frames in the case where the reference frames are quantum systems. We find that, as part of this process, decoherence is necessarily induced on any quantum system described relative to these frames. We explore this process with examples involving reference frames for phase and orientation. Quantifying the effect of changing quantum reference frames serves as a first step in developing a relativity principle for theories in which all objects including reference frames are necessarily quantum.

Matthew C. Palmer; Florian Girelli; Stephen D. Bartlett

2014-05-21T23:59:59.000Z

22

Stability of Gauss-Bonnet black holes in anti-de Sitter space-time against scalar field condensation  

SciTech Connect (OSTI)

We study the stability of static, hyperbolic Gauss-Bonnet black holes in (4+1)-dimensional anti-de Sitter (AdS) space-time against the formation of scalar hair. Close to extremality the black holes possess a near-horizon topology of AdS{sub 2}xH{sup 3} such that within a certain range of the scalar field mass one would expect that they become unstable to the condensation of an uncharged scalar field. We confirm this numerically and observe that there exists a family of hairy black hole solutions labeled by the number of nodes of the scalar field function. We construct explicit examples of solutions with a scalar field that possesses zero nodes, one node, and two nodes, respectively, and show that the solutions with nodes persist in the limit of Einstein gravity, i.e. for vanishing Gauss-Bonnet coupling. We observe that the interval of the mass for which scalar field condensation appears decreases with increasing Gauss-Bonnet coupling and/or with increasing node number.

Brihaye, Yves [Physique-Mathematique, Universite de Mons-Hainaut, 7000 Mons (Belgium); Hartmann, Betti [School of Engineering and Science, Jacobs University Bremen, 28759 Bremen (Germany)

2011-10-15T23:59:59.000Z

23

Frame-Semantic Parsing  

E-Print Network [OSTI]

Frame semantics is a linguistic theory that has been instantiated for English in the FrameNet lexicon. We solve the problem of frame-semantic parsing using a two-stage statistical model that takes lexical targets (i.e., ...

Das, Dipanjan

24

Lattice Black Holes  

E-Print Network [OSTI]

We study the Hawking process on lattices falling into static black holes. The motivation is to understand how the outgoing modes and Hawking radiation can arise in a setting with a strict short distance cutoff in the free-fall frame. We employ two-dimensional free scalar field theory. For a falling lattice with a discrete time-translation symmetry we use analytical methods to establish that, for Killing frequency $\\omega$ and surface gravity $\\kappa$ satisfying $\\kappa\\ll\\omega^{1/3}\\ll 1$ in lattice units, the continuum Hawking spectrum is recovered. The low frequency outgoing modes arise from exotic ingoing modes with large proper wavevectors that "refract" off the horizon. In this model with time translation symmetry the proper lattice spacing goes to zero at spatial infinity. We also consider instead falling lattices whose proper lattice spacing is constant at infinity and therefore grows with time at any finite radius. This violation of time translation symmetry is visible only at wavelengths comparable to the lattice spacing, and it is responsible for transmuting ingoing high Killing frequency modes into low frequency outgoing modes.

Steven Corley; Ted Jacobson

1998-03-26T23:59:59.000Z

25

Late-Time Dynamics of Scalar Fields on Rotating Black Hole Backgrounds  

E-Print Network [OSTI]

Motivated by results of recent analytic studies, we present a numerical investigation of the late-time dynamics of scalar test fields on Kerr backgrounds. We pay particular attention to the issue of mixing of different multipoles and their fall-off behavior at late times. Confining ourselves to the special case of axisymmetric modes with equatorial symmetry, we show that, in agreement with the results of previous work, the late-time behavior is dominated by the lowest allowed l-multipole. However the numerical results imply that, in general, the late-time fall-off of the dominating multipole is different from that in the Schwarzschild case, and seems to be incompatible with a result of a recently published analytic study.

William Krivan

1999-07-08T23:59:59.000Z

26

Investigating a Fluctuating-accretion Model for the Spectral-timing Properties of Accreting Black Hole Systems  

E-Print Network [OSTI]

The fluctuating accretion model of Lyubarskii (1997) and its extension by Kotov et al. (2001), seeks to explain the spectral-timing properties of the X-ray variability of accreting black holes in terms of inward-propagating mass accretion fluctuations produced at a broad range of radii. The fluctuations modulate the X-ray emitting region as they move inwards and can produce temporal-frequency-dependent lags between energy bands, and energy-dependent power spectral densities (PSDs) as a result of the different emissivity profiles, which may be expected at different X-ray energies. Here we use a simple numerical implementation to investigate in detail the X-ray spectral-timing properties of the model and their relation to several physically interesting parameters, namely the emissivity profile in different energy bands, the geometrical thickness and viscosity parameter of the accretion flow, the strength of damping on the fluctuations and the temporal coherence (measured by the `quality-factor', Q) of the fluctuations introduced at each radius. We find that a geometrically thick flow with large viscosity parameter is favoured, and confirm that the predicted lags are quite robust to changes in the emissivity profile, and physical parameters of the accretion flow, which may help to explain the similarity of the lag spectra in the low/hard and high/soft states of Cyg X-1. We also demonstrate the model regime where the light curves in different energy bands are highly spectrally coherent. We compare model predictions directly to X-ray data from the Narrow Line Seyfert~1 galaxy NGC 4051 and the BHXRB Cyg X-1 in its high/soft state and show that this general scheme can reproduce simultaneously the time lags and energy-dependence of the PSD.

P. Arevalo; P. Uttley

2005-12-15T23:59:59.000Z

27

Timing and Spectral Properties of X-ray Emission from the Converging Flows onto Black hole: Monte-Carlo Simulations  

E-Print Network [OSTI]

We demonstrate that a X-ray spectrum of a converging inflow (CI) onto a black hole is the sum of a thermal (disk) component and the convolution of some fraction of this component with the Comptonization spread (Green's) function. The latter component is seen as an extended power law at energies much higher than the characteristic energy of the soft photons. We show that the high energy photon production (source function) in the CI atmosphere is distributed with the characteristic maximum at about the photon bending radius, 1.5r_S, independently of the seed (soft) photon distribution. We show that high frequency oscillations of the soft photon source in this region lead to the oscillations of the high energy part of the spectrum but not of the thermal component. The high frequency oscillations of the inner region are not significant in the thermal component of the spectrum. We further demonstrate that Doppler and recoil effects (which are responsible for the formation of the CI spectrum) are related to the hard (positive) and soft (negative) time lags between the soft and hard photon energy channels respectively.

Philippe Laurent; Lev Titarchuk

2001-10-11T23:59:59.000Z

28

Resources, framing, and transfer p. 1 Resources, framing, and transfer  

E-Print Network [OSTI]

Resources, framing, and transfer p. 1 Resources, framing, and transfer David Hammer Departments. #12;Resources, framing, and transfer p. 2 Resources, framing, and transfer David Hammer, Andrew Elby of activating resources, a language with an explicitly manifold view of cognitive structure. In this chapter, we

Hammer, David

29

Surgery on frames  

E-Print Network [OSTI]

Ais a non-orthogonal subset of F with cardinality 2. Then A is rigid. 18 Proof. Suppose F = {xj}kj=1 is a unit norm tight frame and A = {x1,x2} is a non- orthogonal set which can be replaced by A? = {y1,y2} such that {y1,y2,x3,...,xk} is also a unit norm... that we have used include [2],[4],[5],[7],[11]. We have also used several textbooks and research monographs for basis theory and notation in the subjects of operator theory [18],[21],[22], matrix analysis [17],[27], and group representation [23]. Frames...

Nguyen, Nga Quynh

2009-05-15T23:59:59.000Z

30

Causal equivalence of frames  

E-Print Network [OSTI]

Major Subject: Mathematics August 2005 DOCTOR OF PHILOSOPHY in partial fulfillment of the requirements for the degree of Texas A&M University Submitted to the Office of Graduate Studies of TROY LEE HENDERSON, IV by A Dissertation CAUSAL EQUIVALENCE... to the Office of Graduate Studies of TROY LEE HENDERSON, IV by A Dissertation CAUSAL EQUIVALENCE OF FRAMES iii ABSTRACT Causal Equivalence of Frames. (August 2005) Troy Lee Henderson, IV, B.S., The University of Alabama; M.A., The University of Alabama Chair...

Henderson, Troy Lee, IV

2006-10-30T23:59:59.000Z

31

Piping flow erosion in water retaining structures: inferring erosion rates from hole erosion tests and quantifying the failure time  

E-Print Network [OSTI]

Piping flow erosion in water retaining structures: inferring erosion rates from hole erosion tests-en-Provence Cedex 5, France E-mail: stephane.bonelli@cemagref.fr Abstract The piping flow erosion process, involving structures. Such a pipe can be imputed to roots or burrows. The coefficient of erosion must be known in order

Paris-Sud XI, Université de

32

Conformal Frame Dependence of Inflation  

E-Print Network [OSTI]

Physical equivalence between different conformal frames in scalar-tensor theory of gravity is a known fact. However, assuming that matter minimally couples to the metric of a particular frame, which we call the matter Jordan frame, the matter point of view of the universe may vary from frame to frame. Thus, there is a clear distinction between gravitational sector (curvature and scalar field) and matter sector. In this paper, focusing on a simple power-law inflation model in the Einstein frame, two examples are considered; a super-inflationary and a bouncing universe Jordan frames. Then we consider a spectator curvaton minimally coupled to a Jordan frame, and compute its contribution to the curvature perturbation power spectrum. In these specific examples, we find a blue tilt at short scales for the super-inflationary case, and a blue tilt at large scales for the bouncing case.

Domènech, Guillem

2015-01-01T23:59:59.000Z

33

High Performance Commercial Fenestration Framing Systems  

SciTech Connect (OSTI)

A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial fenestration framing systems, by investigating new technologies that would improve the thermal performance of aluminum frames, while maintaining their structural and life-cycle performance. The project targeted an improvement of over 30% (whole window performance) over conventional commercial framing technology by improving the performance of commercial framing systems.

Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

2010-01-31T23:59:59.000Z

34

VIOLENT FRAMES IN ACTION  

SciTech Connect (OSTI)

We present a computational approach to radical rhetoric that leverages the co-expression of rhetoric and action features in discourse to identify violent intent. The approach combines text mining and machine learning techniques with insights from Frame Analysis and theories that explain the emergence of violence in terms of moral disengagement, the violation of sacred values and social isolation in order to build computational models that identify messages from terrorist sources and estimate their proximity to an attack. We discuss a specific application of this approach to a body of documents from and about radical and terrorist groups in the Middle East and present the results achieved.

Sanfilippo, Antonio P.; McGrath, Liam R.; Whitney, Paul D.

2011-11-17T23:59:59.000Z

35

Black Holes  

E-Print Network [OSTI]

Lecture notes for a 'Part III' course 'Black Holes' given in DAMTP, Cambridge. The course covers some of the developments in Black Hole physics of the 1960s and 1970s.

P. K. Townsend

1997-07-04T23:59:59.000Z

36

"Hybrid" Black Holes  

E-Print Network [OSTI]

We discuss a solution of the Einstein equations, obtained by gluing the external Kerr metric and the internal Weyl metric, describing an axisymmetric static vacuum distorted black hole. These metrics are glued at the null surfaces representing their horizons. For this purpose we use the formalism of massive thin null shells. The corresponding solution is called a "hybrid" black hole. The massive null shell has an angular momentum which is the origin of the rotation of the external Kerr spacetime. At the same time, the shell distorts the geometry inside the horizon. The inner geometry of the "hybrid" black hole coincides with the geometry of the interior of a non-rotating Weyl-distorted black hole. Properties of the "hybrid" black holes are briefly discussed.

Valeri P. Frolov; Andrei V. Frolov

2014-12-30T23:59:59.000Z

37

Time frames for geothermal project development  

SciTech Connect (OSTI)

Geothermal development can generally be broken down into distinct phases: Exploration and Leasing; Project Development And Feasibility Studies; Well Field Development; Project Finance, Construction and Start-up Operations; and Commercial Operations. Each phase represents different levels of cost and risk and different types of management teams that are needed to assess and manage the project and associated risk. Orderly transitions of management at each major phase are needed. Exploration programs are largely science based, the primary focus of the science based investigations should be to: secure the lease position, and develop sufficient information to identify and characterize an economical geothermal resource. Project development specialists build on the exploration data to: pull together a project design, develop a detailed cost estimate; prepare an environmental assessment; and collect all data needed for project financing. Construction specialist build from the development phase to: develop detailed engineering, procure equipment and materials, schedule and manage the facilities construction programs, and start and test the power plant. Operations specialists take over from construction during start-up and are responsible for sustainable and reliable operations of the resource and power generation equipment over the life of the project.

McClain, David W.

2001-04-17T23:59:59.000Z

38

Pushing the limits of CANPushing the limits of CAN --Scheduling frames with offsetsScheduling frames with offsets  

E-Print Network [OSTI]

60 70 80 90 100 5 2,5 0 110 5 2,5 0 Periods 20 ms 15 ms 10 ms Principle: desynchronize transmissions and size of the frame #12;4 System model (1/2)System model (1/2) ECU Frame Transmission request task Frame (2/2)System model (2/2) The offset of a message stream is the time at which the transmission request

Navet, Nicolas

39

Inertial Frames and Clock Rates  

E-Print Network [OSTI]

This article revisits the historiography of the problem of inertial frames. Specifically, the case of the twins in the clock paradox is considered to see that some resolutions implicitly assume inertiality for the non-accelerating twin. If inertial frames are explicitly identified by motion with respect to the large scale structure of the universe, it makes it possible to consider the relative inertiality of different frames.

Subhash Kak

2012-02-13T23:59:59.000Z

40

Hyperbolic Equations for Vacuum Gravity Using Special Orthonormal Frames  

E-Print Network [OSTI]

By adopting Nester's higher dimensional special orthonormal frames (HSOF) the tetrad equations for vacuum gravity are put into first order symmetric hyperbolic (FOSH) form with constant coefficients, independent of any time slicing or coordinate specialization.

Frank B. Estabrook; R. Steve Robinson; Hugo D. Wahlquist

2004-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "holes time frame" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Contrast from rotating frame relaxation by adiabatic pulses  

DOE Patents [OSTI]

This document discusses, among other things, a system and method for modulating transverse and longitudinal relaxation time contrast in a rotating frame based on a train of radio frequency pulses.

Michaeli, Shalom (St. Paul, MN); Garwood, Michael G. (Medina, MN); Ugurbil, Kamil (Minneapolis, MN); Sorce, Dennis J. (Cockeysville, MD)

2007-10-09T23:59:59.000Z

42

Ultrafast Photocurrent Measurement of the Escape Time of Electrons and Holes from Carbon Nanotube p-i-n Photodiodes  

E-Print Network [OSTI]

Ultrafast photocurrent measurements are performed on individual carbon nanotube p-i-n photodiodes. The photocurrent response to subpicosecond pulses separated by a variable time delay ?t shows strong photocurrent suppression ...

Gabor, Nathaniel M.

43

Black holes and gravitational waves in three-dimensional f(R) gravity  

E-Print Network [OSTI]

In the three-dimensional pure Einstein gravity, the geometries of the vacuum space-times are always trivial, and gravitational waves (gravitons) are strictly forbidden. For the first time, we find a vacuum circularly symmetric black hole with nontrivial geometries in $f(R)$ gravity theory, in which a true singularity appears. In this frame with nontrivial geometry, a perturbative gravitational wave does exist. Beyond the perturbative level, we make a constructive proof of the existence of a gravitational wave in $f(R)$ gravity, where the Birkhoff-like theorem becomes invalid. We find two classes of exact solutions of circularly symmetric pure gravitational wave radiation and absorption.

Hongsheng Zhang; Dao-Jun Liu; Xin-Zhou Li

2014-12-19T23:59:59.000Z

44

Advanced High-Speed Framing Camera Development for Fast, Visible Imaging Experiments  

SciTech Connect (OSTI)

The advances in high-voltage switching developed in this project allow a camera user to rapidly vary the number of output frames from 1 to 25. A high-voltage, variable-amplitude pulse train shifts the deflection location to the new frame location during the interlude between frames, making multiple frame counts and locations possible. The final deflection circuit deflects to five different frame positions per axis, including the center position, making for a total of 25 frames. To create the preset voltages, electronically adjustable {+-}500 V power supplies were chosen. Digital-to-analog converters provide digital control of the supplies. The power supplies are clamped to {+-}400 V so as not to exceed the voltage ratings of the transistors. A field-programmable gated array (FPGA) receives the trigger signal and calculates the combination of plate voltages for each frame. The interframe time and number of frames are specified by the user, but are limited by the camera electronics. The variable-frame circuit shifts the plate voltages of the first frame to those of the second frame during the user-specified interframe time. Designed around an electrostatic image tube, a framing camera images the light present during each frame (at the photocathode) onto the tube’s phosphor. The phosphor persistence allows the camera to display multiple frames on the phosphor at one time. During this persistence, a CCD camera is triggered and the analog image is collected digitally. The tube functions by converting photons to electrons at the negatively charged photocathode. The electrons move quickly toward the more positive charge of the phosphor. Two sets of deflection plates skew the electron’s path in horizontal and vertical (x axis and y axis, respectively) directions. Hence, each frame’s electrons bombard the phosphor surface at a controlled location defined by the voltages on the deflection plates. To prevent the phosphor from being exposed between frames, the image tube is gated off between exposures.

Amy Lewis, Stuart Baker, Brian Cox, Abel Diaz, David Glass, Matthew Martin

2011-05-11T23:59:59.000Z

45

A Method of Mass Measurement in Black Hole Binaries Using Timing and High Resolution X-ray Spectroscopy  

E-Print Network [OSTI]

In X-ray binaries, several percent of the compact object luminosity is intercepted by the surface of the normal companion and re-radiated through Compton reflection and the K-fluorescence. This reflected emission follows the variability of the compact object with a delay approximately equal to the orbital radius divided by the speed of light. This provides the possibility of measuring the orbital radius and thus substantially refining the compact object mass determination compared to using optical data alone. We demonstrate that it may be feasible to measure the time delay between the direct and reflected emission using cross-correlation of the light curves observed near the Kalpha line and above the K-edge of neutral iron. In the case of Cyg X-1, the time delay measurement is feasible with a 300--1000 ksec observation by a telescope with a 1000 cm^2 effective area near 6.4 keV and with a ~5eV energy resolution. With longer exposures, it may be possible to obtain mass constraints even if an X-ray source in the binary system lacks an optical counterpart.

A. Vikhlinin

1999-06-09T23:59:59.000Z

46

Framing Change: Social Movement Framing in University Living Wage Movements  

E-Print Network [OSTI]

of these living wage movements, two cases, Texas A&M University and Georgetown University, were selected for this study to examine through the lens of the social movement framing perspective. Data for the cases included interviews with activists and administrators...

Metcalf, Laurie D.

2010-01-14T23:59:59.000Z

47

Anholonomic frames in constrained dynamics  

E-Print Network [OSTI]

We demonstrate the usefulness of anholonomic frames in the contexts of nonholonomic and vakonomic systems. We take a consistently differential-geometric approach. As an application, we investigate the conditions under which the dynamics of the two systems will be consistent. A few illustrative examples confirm the results.

M. Crampin; T. Mestdag

2009-09-23T23:59:59.000Z

48

Newton-Cartan Gravity in Noninertial Reference Frames  

E-Print Network [OSTI]

We study properties of Newton-Cartan gravity under transformations into all noninertial, nonrelativistic reference frames. The set of these transformations has the structure of an infinite dimensional Lie group, called the Galilean line group, which contains as a subgroup the Galilei group. We show that the fictitious forces of noninertial reference frames are naturally encoded in the Cartan connection transformed under the Galilean line group. These noninertial forces, which are coordinate effects, do not contribute to the Ricci tensor which describes the curvature of Newtonian spacetime. We show that only the $00$-component of the Ricci tensor is non-zero and equal to ($4\\pi$ times) the matter density in any inertial or noninetial reference frame and that it leads to what may be called Newtonian ADM mass. While the Ricci field equation and Gauss law are both fulfilled by the same physical matter density in inertial and linearly accelerating reference frames, there appears a discrepancy between the two in rotating reference frames in that Gauss law holds for an effective mass density that differs from the physical matter density. This effective density has its origin in the simulated magnetic field that appears in rotating frames, highlighting a rather striking difference between linearly and rotationally accelerating reference frames. We further show that the dynamical equations that govern the simulated gravitational and magnetic fields have the same form as Maxwell's equations, a surprising conclusion given that these equations are well-known to obey special relativity (and $U(1)$-gauge symmetry), rather than Galilean symmetry.

Leo Rodriguez; James St. Germaine-Fuller; Sujeev Wickramasekara

2014-12-26T23:59:59.000Z

49

Relativeness in Quantum Gravity: Limitations and Frame Dependence of Semiclassical Descriptions  

E-Print Network [OSTI]

Consistency between quantum mechanical and general relativistic views of the world is a longstanding problem, which becomes particularly prominent in black hole physics. We develop a coherent picture addressing this issue by studying the quantum mechanics of an evolving black hole. After interpreting the Bekenstein-Hawking entropy as the entropy representing the degrees of freedom that are coarse-grained to obtain a semiclassical description from the microscopic theory of quantum gravity, we discuss the properties these degrees of freedom exhibit when viewed from the semiclassical standpoint. We are led to the conclusion that they show features which we call extreme relativeness and spacetime-matter duality---a nontrivial reference frame dependence of their spacetime distribution and the dual roles they play as the "constituents" of spacetime and as thermal radiation. We describe black hole formation and evaporation processes in distant and infalling reference frames, showing that these two properties allow u...

Nomura, Yasunori; Weinberg, Sean J

2014-01-01T23:59:59.000Z

50

Graphene and the Zermelo Optical Metric of the BTZ Black Hole  

E-Print Network [OSTI]

It is well known that the low energy electron excitations of the curved graphene sheet $\\Sigma$ are solutions of the massless Dirac equation on a 2+1 dimensional ultra-static metric on ${\\Bbb R} \\times \\Sigma$. An externally applied electric field on the graphene sheet induces a gauge potential which could be mimicked by considering a stationary optical metric of the Zermelo form, which is conformal to the BTZ black hole when the sheet has a constant negative curvature. The Randers form of the metric can model a magnetic field, which is related by a boost to an electric one in the Zermelo frame. We also show that there is fundamental geometric obstacle to obtaining a model that extends all the way to the black hole horizon.

M. Cvetic; G. W. Gibbons

2012-05-23T23:59:59.000Z

51

Dissipation flow-frames: particle, energy, thermometer  

E-Print Network [OSTI]

We associate the following physical co-mover conditions of to different frame choices: i) Eckart: particle flow, ii) Landau-Lifshitz: energy flow, iii) J\\"uttner: moving thermometer frame. The role of fixing a flow-frame is analysed with respect to local equilibrium concentrating on dissipative currents and forces in single component relativistic fluids. The special role of a "J\\"uttner frame" is explored and contrasted to the more common Eckart and Landau-Lifshitz choices.

Ván, P

2013-01-01T23:59:59.000Z

52

Dissipation flow-frames: particle, energy, thermometer  

E-Print Network [OSTI]

We associate the following physical co-mover conditions of to different frame choices: i) Eckart: particle flow, ii) Landau-Lifshitz: energy flow, iii) J\\"uttner: moving thermometer frame. The role of fixing a flow-frame is analysed with respect to local equilibrium concentrating on dissipative currents and forces in single component relativistic fluids. The special role of a "J\\"uttner frame" is explored and contrasted to the more common Eckart and Landau-Lifshitz choices.

P. Ván; T. S. Biró

2013-05-14T23:59:59.000Z

53

An Introduction to Frames Brody Dylan Johnson  

E-Print Network [OSTI]

An Introduction to Frames Brody Dylan Johnson St. Louis University 12 October 2010 Brody Dylan Johnson (St. Louis University) An Introduction to Frames 12 October 2010 1 / 36 #12;Overview This goal, etc. Brody Dylan Johnson (St. Louis University) An Introduction to Frames 12 October 2010 2 / 36 #12

Johnson, Brody Dylan

54

Spin Transport in non-inertial frame  

E-Print Network [OSTI]

The influence of acceleration and rotation on spintronic applications is theoretically investigated. In our formulation, considering a Dirac particle in a non-inertial frame, different spin related aspects are studied. The spin current appearing due to the inertial spin-orbit coupling (SOC) is enhanced by the interband mixing of the conduction and valence band states. Importantly, one can achieve a large spin current through the $\\vec{k}. \\vec{p}$ method in this non-inertial frame. Furthermore, apart from the inertial SOC term due to acceleration, for a particular choice of the rotation frequency, a new kind of SOC term can be obtained from the spin rotation coupling (SRC). This new kind of SOC is of Dresselhaus type and controllable through the rotation frequency. In the field of spintronic applications, utilizing the inertial SOC and SRC induced SOC term, theoretical proposals for the inertial spin filter, inertial spin galvanic effect are demonstrated. Finally, one can tune the spin relaxation time in semiconductors by tuning the non-inertial parameters.

Debashree Chowdhury; B. Basu

2014-04-09T23:59:59.000Z

55

Black Hole Interior Mass Formula  

E-Print Network [OSTI]

We argue by explicit computations that, although the area product, horizon radii product, entropy product and \\emph {irreducible mass product} of the event horizon and Cauchy horizon are universal, the \\emph{surface gravity product}, \\emph{surface temperature product} and \\emph{Komar energy product} of the said horizons do not seem to be universal for Kerr-Newman (KN) black hole space-time. We show the black hole mass formula on the \\emph{Cauchy horizon} following the seminal work by Smarr\\cite{smarr} for the outer horizon. We also prescribed the \\emph{four} laws of black hole mechanics for the \\emph{inner horizon}. New definition of the extremal limit of a black hole is discussed.

Parthapratim Pradhan

2014-05-06T23:59:59.000Z

56

Next Generation Advanced Framing - Building America Top Innovation...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Framing - Building America Top Innovation Next Generation Advanced Framing - Building America Top Innovation This photo shows advanced framing on a rim header and looking...

57

Advanced Framing Systems and Packages - Building America Top...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Framing Systems and Packages - Building America Top Innovation Advanced Framing Systems and Packages - Building America Top Innovation This photo shows advanced framing...

58

Absorption cross section of RN black hole  

E-Print Network [OSTI]

The behavior of a charged scalar field in the RN black hole space time is studied using WKB approximation. In the present work it is assumed that matter waves can get reflected from the event horizon. Using this effect, the Hawking temperature and the absorption cross section for RN black hole placed in a charged scalar field are calculated. The absorption cross section $\\sigma _{abs}$ is found to be inversely proportional to square of the Hawking temperature of the black hole.

Sini R.; V. C. Kuriakose

2007-08-23T23:59:59.000Z

59

Black Hole Complementarity in Gravity's Rainbow  

E-Print Network [OSTI]

We calculate the required energy for duplication of information in the context of black hole complementarity in the rainbow Schwarzschild black hole. The resultant energy can be written as the well-defined limit given by the conventional result for the vanishing rainbow parameter which characterizes the deformation of the relativistic dispersion relation in the freely falling frame. It shows that the duplication of information in quantum mechanics could be not allowed below a certain critical value of the rainbow parameter; however, it could be possible above the critical value of the rainbow parameter, so that the consistent formulation in the rainbow Schwarzschild black hole requires additional constraints or any other resolutions for the latter case.

Gim, Yongwan

2015-01-01T23:59:59.000Z

60

Topological Black Holes in Quantum Gravity  

E-Print Network [OSTI]

We derive the black hole solutions with horizons of non-trivial topology and investigate their properties in the framework of an approach to quantum gravity being an extension of Bohm's formulation of quantum mechanics. The solutions we found tend asymptotically (for large $r$) to topological black holes. We also analyze the thermodynamics of these space-times.

J. Kowalski-Glikman; D. Nowak-Szczepaniak

2000-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "holes time frame" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Geodesics and Geodesic Deviation in static Charged Black Holes  

E-Print Network [OSTI]

The radial motion along null geodesics in static charged black hole space-times, in particular, the Reissner-Nordstr\\"om and stringy charged black holes are studied. We analyzed the properties of the effective potential. The circular photon orbits in these space-times are investigated. We found that the radius of circular photon orbits in both charged black holes are different and differ from that given in Schwarzschild space-time. We studied the physical effects of the gravitational field between two test particles in stringy charged black hole and compared the results with that given in Schwarzschild and Reissner-Nordstr\\"om black holes.

Ragab M. Gad

2010-03-03T23:59:59.000Z

62

Black Hole Evaporation in the Presence of a Short Distance Cutoff  

E-Print Network [OSTI]

A derivation of the Hawking effect is given which avoids reference to field modes above some cutoff frequency $\\omega_c\\gg M^{-1}$ in the free-fall frame of the black hole. To avoid reference to arbitrarily high frequencies, it is necessary to impose a boundary condition on the quantum field in a timelike region near the horizon, rather than on a (spacelike) Cauchy surface either outside the horizon or at early times before the horizon forms. Due to the nature of the horizon as an infinite redshift surface, the correct boundary condition at late times outside the horizon cannot be deduced, within the confines of a theory that applies only below the cutoff, from initial conditions prior to the formation of the hole. A boundary condition is formulated which leads to the Hawking effect in a cutoff theory. It is argued that it is possible the boundary condition is {\\it not} satisfied, so that the spectrum of black hole radiation may be significantly different from that predicted by Hawking, even without the back-reaction near the horizon becoming of order unity relative to the curvature.

Ted Jacobson

1993-03-18T23:59:59.000Z

63

A two-point boundary value problem on a Lorentz manifold arising in A. Poltorak's concept of reference frame  

E-Print Network [OSTI]

In A. Poltorak's concept, the reference frame in General Relativity is a certain manifold equipped with a connection. The question under consideration here is whether it is possible to join two events in the space-time by a time-like geodesic if they are joined by a geodesic of the reference frame connection that has a time-like initial vector. This question is interpreted as whether an event belongs to the proper future of another event in the space-time in case it is so in the reference frame. For reference frames of two special types some geometric conditions are found under which the answer is positive.

Yu. E. Gliklikh; P. S. Zykov

2006-10-12T23:59:59.000Z

64

State-of-the-Art Highly Insulating Window Frames - Research and Market Review  

SciTech Connect (OSTI)

This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m{sup 2}K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC. The frame research review also shows examples of window frames developed in order to increase the energy efficiency of the frames and the glazings which the frames are to be used together with. The authors find that two main tracks are used in searching for better solutions. The first one is to minimize the heat losses through the frame itself. The result is that conductive materials are replaced by highly thermal insulating materials and air cavities. The other option is to reduce the window frame area to a minimum, which is done by focusing on the net energy gain by the entire window (frame, spacer and glazing). Literature shows that a window with a higher U-value may give a net energy gain to a building that is higher than a window with a smaller U-value. The net energy gain is calculated by subtracting the transmission losses through the window from the solar energy passing through the windows. The net energy gain depends on frame versus glazing area, solar factor, solar irradiance, calculation period and U-value. The frame research review also discusses heat transfer modeling issues related to window frames. Thermal performance increasing measures, surface modeling, and frame cavity modeling are among the topics discussed. The review shows that the current knowledge gives the basis for improving the calculation procedures in the calculation standards. At the same time it is room for improvement within some areas, e.g. to fully understand the natural convection effects inside irregular vertical frame cavities (jambs) and ventilated frame cavities.

Gustavsen, Arild; Jelle, Bjorn Petter; Arasteh, Dariush; Kohler, Christian

2007-01-01T23:59:59.000Z

65

Energy on black hole spacetimes  

E-Print Network [OSTI]

We consider the issue of defining energy for test particles on a background black hole spacetime. We revisit the different notions of energy as defined by different observers. The existence of a time-like isometry allows for the notion of a total conserved energy to be well defined, and subsequently the notion of a gravitational potential energy is also meaningful. We then consider the situation in which the test particle is adsorbed by the black hole, and analyze the energetics in detail. In particular, we show that the notion of horizon energy es defined by the isolated horizons formalism provides a satisfactory notion of energy compatible with the particle's conserved energy. As another example, we comment a recent proposal to define energy of the black hole as seen by an observer at rest. This account is intended to be pedagogical and is aimed at the level of and as a complement to the standard textbooks on the subject.

Alejandro Corichi

2012-07-18T23:59:59.000Z

66

Reference Frames, Gauge Transformations and Gravitomagnetism in the Post-Newtonian Theory of the Lunar Motion  

E-Print Network [OSTI]

We construct a set of reference frames for description of the orbital and rotational motion of the Moon. We use a scalar-tensor theory of gravity depending on two parameters of the parametrized post-Newtonian (PPN) formalism and utilize the concepts of the relativistic resolutions on reference frames adopted by the International Astronomical Union in 2000. We assume that the solar system is isolated and space-time is asymptotically flat. The primary reference frame has the origin at the solar-system barycenter (SSB) and spatial axes are going to infinity. The SSB frame is not rotating with respect to distant quasars. The secondary reference frame has the origin at the Earth-Moon barycenter (EMB). The EMB frame is local with its spatial axes spreading out to the orbits of Venus and Mars and not rotating dynamically in the sense that both the Coriolis and centripetal forces acting on a free-falling test particle, moving with respect to the EMB frame, are excluded. Two other local frames, the geocentric (GRF) and the selenocentric (SRF) frames, have the origin at the center of mass of the Earth and Moon respectively. They are both introduced in order to connect the coordinate description of the lunar motion, observer on the Earth, and a retro-reflector on the Moon to the observable quantities which are the proper time and the laser-ranging distance. We solve the gravity field equations and find the metric tensor and the scalar field in all frames. We also derive the post-Newtonian coordinate transformations between the frames and analyze the residual gauge freedom of the solutions of the field equations. We discuss the gravitomagnetic effects in the barycentric equations of the motion of the Moon and argue that they are beyond the current accuracy of lunar laser ranging (LLR) observations.

Yi Xie; Sergei Kopeikin

2009-11-23T23:59:59.000Z

67

Spectroscopy and Thermodynamics of MSW Black Hole  

E-Print Network [OSTI]

We study the thermodynamics and spectroscopy of a 2+1 dimensional black hole pro- posed by Mandal et. al1 . We put the background space time in Kruskal like co-ordinate and find period with respect to Euclidean time. Different thermodynamic quantities like entropy, specific heat, temperature etc are obtained. The adiabatic invariant for the black hole is found out and quantized using Bohr-Sommerfeld quantization rule. The study shows that the area spectrum of MSW black hole is equally spaced and the value of spacing is found to be h bar

Sebastian, Saneesh

2013-01-01T23:59:59.000Z

68

Spectroscopy and Thermodynamics of MSW Black Hole  

E-Print Network [OSTI]

We study the thermodynamics and spectroscopy of a 2+1 dimensional black hole pro- posed by Mandal et. al1 . We put the background space time in Kruskal like co-ordinate and find period with respect to Euclidean time. Different thermodynamic quantities like entropy, specific heat, temperature etc are obtained. The adiabatic invariant for the black hole is found out and quantized using Bohr-Sommerfeld quantization rule. The study shows that the area spectrum of MSW black hole is equally spaced and the value of spacing is found to be h bar

Saneesh Sebastian; V. C. Kuriakose

2013-09-02T23:59:59.000Z

69

Self-aligning biaxial load frame  

DOE Patents [OSTI]

An self-aligning biaxial loading apparatus for use in testing the strength of specimens while maintaining a constant specimen centroid during the loading operation. The self-aligning biaxial loading apparatus consists of a load frame and two load assemblies for imparting two independent perpendicular forces upon a test specimen. The constant test specimen centroid is maintained by providing elements for linear motion of the load frame relative to a fixed crosshead, and by alignment and linear motion elements of one load assembly relative to the load frame.

Ward, Michael B. (Idaho Falls, ID); Epstein, Jonathan S. (Idaho Falls, ID); Lloyd, W. Randolph (Idaho Falls, ID)

1994-01-01T23:59:59.000Z

70

Self-aligning biaxial load frame  

DOE Patents [OSTI]

An self-aligning biaxial loading apparatus for use in testing the strength of specimens while maintaining a constant specimen centroid during the loading operation. The self-aligning biaxial loading apparatus consists of a load frame and two load assemblies for imparting two independent perpendicular forces upon a test specimen. The constant test specimen centroid is maintained by providing elements for linear motion of the load frame relative to a fixed cross head, and by alignment and linear motion elements of one load assembly relative to the load frame. 3 figures.

Ward, M.B.; Epstein, J.S.; Lloyd, W.R.

1994-01-18T23:59:59.000Z

71

Black Hole Thermodynamics and Electromagnetism  

E-Print Network [OSTI]

We show a strong parallel between the Hawking, Beckenstein black hole Thermodynamics and electromagnetism: When the gravitational coupling constant transform into the electromagnetic coupling constant, the Schwarzchild radius, the Beckenstein temperature, the Beckenstein decay time and the Planck mass transform to respectively the Compton wavelength, the Hagedorn temperature, the Compton time and a typical elementary particle mass. The reasons underlying this parallalism are then discussed in detail.

Burra G. Sidharth

2005-07-15T23:59:59.000Z

72

Racial Framing and the Multiracial Movement  

E-Print Network [OSTI]

of the traditional white racist frame by the multiracial movement and the interest of whites in maintaining social domination resulted in the "mark all that apply" decision by the Office and Management and Budget....

Couch, Todd Christopher

2012-07-16T23:59:59.000Z

73

Light Steel Framing: Improving the Integral Design   

E-Print Network [OSTI]

Light Steel Framing has been extensively used in cold climate countries due to its good thermal and structural behaviour. Improved thermal behaviour results in positive environmental impact essential for sustainable ...

Amundarain, Aitor; Torero, Jose L; Usmani, Asif; Al-Remal, Ahmad M

2006-09-11T23:59:59.000Z

74

The Framing and Evaluation of Multiple Hypotheses  

E-Print Network [OSTI]

This study provides exploratory evidence on auditors’ framing and evaluation of hypotheses, identifies implications for improving audit decision-making and facilitates the interpretation of prior research. Prior studies ...

Mock, Theodore J.; Wright, Arnold; Srivastava, Rajendra P.; Lu, Hai

2008-01-01T23:59:59.000Z

75

Ductile Fuses for Special Concentrically Braced Frames  

E-Print Network [OSTI]

the braces to yield in a ductile manner while limiting the damage to the brace elements and the connections. Both fuse elements are intended to maintain frame strength under repeated cycles beyond yield both in tension and compression, providing balance...

Bonetti, Santiago Antonio

2008-01-01T23:59:59.000Z

76

Quantization and erasures in frame representations  

E-Print Network [OSTI]

Frame representations, which correspond to overcomplete generalizations to basis expansions, are often used in signal processing to provide robustness to errors. In this thesis robustness is provided through the use of ...

Boufounos, Petros T., 1977-

2006-01-01T23:59:59.000Z

77

Does Policy lead Mainstream Media? How Sources Framed the 2011 Egyptian Protests  

E-Print Network [OSTI]

Abstract This study uses a quantitative content analysis to determine the framing used by U.S. mainstream newspapers in media coverage of the 2011 Egyptian protests. The study examined 153 stories from The New York Times ...

Grimmer, Kristen E

2012-05-31T23:59:59.000Z

78

Quantum communication, reference frames and gauge theory  

E-Print Network [OSTI]

We consider quantum communication in the case that the communicating parties not only do not share a reference frame but use imperfect quantum communication channels, in that each channel applies some fixed but unknown unitary rotation to each qubit. We discuss similarities and differences between reference frames within that quantum communication model and gauge fields in gauge theory. We generalize the concept of refbits and analyze various quantum communication protocols within the communication model.

S. J. van Enk

2006-04-26T23:59:59.000Z

79

Optimal heat-reversible snap joints for frame-panel assembly in aluminum space frame automotive bodies  

E-Print Network [OSTI]

Optimal heat-reversible snap joints for frame-panel assembly in aluminum space frame automotive, snap-fit joints, aluminum space frame 1 INTRODUCTION Aluminum space frame (AFS) automotive bodies to dramatically improve the recyclability of aluminum space frame (ASF) bodies by enabling clean separation

Saitou, Kazuhiro "Kazu"

80

Black Hole Chemistry  

E-Print Network [OSTI]

The mass of a black hole has traditionally been identified with its energy. We describe a new perspective on black hole thermodynamics, one that identifies the mass of a black hole with chemical enthalpy, and the cosmological constant as thermodynamic pressure. This leads to an understanding of black holes from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. Both charged and rotating black holes exhibit novel chemical-type phase behaviour, hitherto unseen.

David Kubiznak; Robert B. Mann

2014-04-08T23:59:59.000Z

Note: This page contains sample records for the topic "holes time frame" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy conservation for dynamical black holes  

E-Print Network [OSTI]

An energy conservation law is described, expressing the increase in mass-energy of a general black hole in terms of the energy densities of the infalling matter and gravitational radiation. For a growing black hole, this first law of black-hole dynamics is equivalent to an equation of Ashtekar & Krishnan, but the new integral and differential forms are regular in the limit where the black hole ceases to grow. An effective gravitational-radiation energy tensor is obtained, providing measures of both ingoing and outgoing, transverse and longitudinal gravitational radiation on and near a black hole. Corresponding energy-tensor forms of the first law involve a preferred time vector which plays the role for dynamical black holes which the stationary Killing vector plays for stationary black holes. Identifying an energy flux, vanishing if and only if the horizon is null, allows a division into energy-supply and work terms, as in the first law of thermodynamics. The energy supply can be expressed in terms of area increase and a newly defined surface gravity, yielding a Gibbs-like equation, with a similar form to the so-called first law for stationary black holes.

Sean A. Hayward

2004-08-03T23:59:59.000Z

82

Vortex hair on AdS black holes  

E-Print Network [OSTI]

We analyse vortex hair for charged rotating asymptotically AdS black holes in the abelian Higgs model. We give analytical and numerical arguments to show how the vortex interacts with the horizon of the black hole, and how the solution extends to the boundary. The solution is very close to the corresponding asymptotically flat vortex, once one transforms to a frame that is non-rotating at the boundary. We show that there is a Meissner effect for extremal black holes, with the vortex flux being expelled from sufficiently small black holes. The phase transition is shown to be first order in the presence of rotation, but second order without rotation. We comment on applications to holography.

Gregory, Ruth; Kubiznak, David; Mann, Robert B; Wills, Danielle

2014-01-01T23:59:59.000Z

83

The effects of fastener hole defects  

E-Print Network [OSTI]

) August 1991 ABSTRACT The Effects of Fastener Hole Defects. (August 1991) Scot D. Andrews, B. S. , Texas A8rM University Chair of Advisory Committee: Dr. Orden O. Ochoa The influence of drilling-induced defects, such as delamination, on the fatigue... ambient and elevated temperature wet conditions. Specimens were tested in a bearing tension frame to static failure in order to measure the failure load and to calculate pin bearing stress. From static test results, a fatigue load was selected as 66...

Andrews, Scot D.

1991-01-01T23:59:59.000Z

84

Black hole fireworks: quantum-gravity effects outside the horizon spark black to white hole tunneling  

E-Print Network [OSTI]

We show that there is a classical metric satisfying the Einstein equations outside a finite spacetime region where matter collapses into a black hole and then emerges from a white hole. We compute this metric explicitly. We show how quantum theory determines the (long) time for the process to happen. A black hole can thus quantum-tunnel into a white hole. For this to happen, quantum gravity should affect the metric also in a small region outside the horizon: we show that contrary to what is commonly assumed, this is not forbidden by causality or by the semiclassical approximation, because quantum effects can pile up over a long time. This scenario alters radically the discussion on the black hole information puzzle.

Hal M. Haggard; Carlo Rovelli

2014-07-06T23:59:59.000Z

85

High frame rate CCD camera with fast optical shutter  

SciTech Connect (OSTI)

A high frame rate CCD camera coupled with a fast optical shutter has been designed for high repetition rate imaging applications. The design uses state-of-the-art microchannel plate image intensifier (MCPII) technology fostered/developed by Los Alamos National Laboratory to support nuclear, military, and medical research requiring high-speed imagery. Key design features include asynchronous resetting of the camera to acquire random transient images, patented real-time analog signal processing with 10-bit digitization at 40--75 MHz pixel rates, synchronized shutter exposures as short as 200pS, sustained continuous readout of 512 x 512 pixels per frame at 1--5Hz rates via parallel multiport (16-port CCD) data transfer. Salient characterization/performance test data for the prototype camera are presented, temporally and spatially resolved images obtained from range-gated LADAR field testing are included, an alternative system configuration using several cameras sequenced to deliver discrete numbers of consecutive frames at effective burst rates up to 5GHz (accomplished by time-phasing of consecutive MCPII shutter gates without overlap) is discussed. Potential applications including dynamic radiography and optical correlation will be presented.

Yates, G.J.; McDonald, T.E. Jr. [Los Alamos National Lab., NM (United States); Turko, B.T. [Lawrence Berkeley National Lab., CA (United States)

1998-09-01T23:59:59.000Z

86

Neutrino interaction with background matter in a noninertial frame  

E-Print Network [OSTI]

We study Dirac neutrinos propagating in rotating background matter. First we derive the Dirac equation for a single massive neutrino in the noninertial frame, where matter is at rest. This equation is written in the effective curved space-time corresponding to the corotating frame. We find the exact solution of the Dirac equation. The neutrino energy levels for ultrarelativistic particles are obtained. Then we discuss several neutrino mass eigenstates, with a nonzero mixing between them, interacting with rotating background matter. We derive the effective Schr\\"{o}dinger equation governing neutrino flavor oscillations in rotating matter. The new resonance condition for neutrino oscillations is obtained. We also examine the correction to the resonance condition caused by the matter rotation.

Dvornikov, Maxim

2015-01-01T23:59:59.000Z

87

Some remarks on black hole thermodynamics  

E-Print Network [OSTI]

Two thermodynamic "paradoxes" of black hole physics are re-examined. The first is that there is a thermal instability involving two coupled blackbody cavities containing two black holes, and second is that a classical black hole can swallow up entropy in the form of ambient blackbody photons without increasing its mass. The resolution of the second paradox by Bekenstein and by Hawking is re-visited. The link between Hawking radiation and Wigner's superluminal tunneling time is discussed using two equivalent Feynman diagrams, and Feynman's re-interpretation principle.

R. Y. Chiao

2011-02-04T23:59:59.000Z

88

ARS 41-1072 Licensing Time Frames | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,InformationWind EnergyPublic Utilities and Carriers72

89

Thermodynamics of Schrödinger black holes with hyperscaling violation  

E-Print Network [OSTI]

In this work, we follow Kim and Yamada (JHEP1107 (2011) 120) and utilize AdS in light-cone frame to derive thermodynamic and transport properties of two kinds of Schr\\"{o}dinger black holes with hyperscaling violation. In that case, we show entropy and temperature are depend on $\\theta$. In $\\theta=0$ we see our results are agree with the work of Kim and Yamada. We also construct R-charged black hole with hyperscaling violation and obtain thermodynamics and transport properties.

J. Sadeghi; B. Pourhassan; F. Pourasadollah

2012-11-06T23:59:59.000Z

90

Experimental and Numerical Examination of the Thermal Transmittance of High Performance Window Frames  

E-Print Network [OSTI]

one aluminum frame and one PVC frame), found from numericalcellular polyvinylchloride (PVC) frame. Hot box results aremade of polyvinylchloride (PVC) (Frame E). The two thermally

Gustavsen Ph.D., Arild

2010-01-01T23:59:59.000Z

91

A Black Hole Levitron  

E-Print Network [OSTI]

We study the problem of spatially stabilising four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes kept in external fields we find that taking a continuum limit of Denef et al's multi-center solutions provides a supergravity description of such backgrounds within which a black hole can be trapped in a given volume. This is realised by levitating a black hole over a magnetic dipole base. We comment on how such a construction resembles a mechanical Levitron.

Xerxes D. Arsiwalla; Erik P. Verlinde

2009-02-02T23:59:59.000Z

92

Dynamics of black holes  

E-Print Network [OSTI]

This is a review of current theory of black-hole dynamics, concentrating on the framework in terms of trapping horizons. Summaries are given of the history, the classical theory of black holes, the defining ideas of dynamical black holes, the basic laws, conservation laws for energy and angular momentum, other physical quantities and the limit of local equilibrium. Some new material concerns how processes such as black-hole evaporation and coalescence might be described by a single trapping horizon which manifests temporally as separate horizons.

Sean A. Hayward

2009-02-28T23:59:59.000Z

93

Quantum Black Holes Effects on the Shape of Extensive Air Showers  

E-Print Network [OSTI]

We investigate the possibility to find a characteristic TeV scale quantum black holes decay signature in the data recorded by cosmic rays experiments. TeV black holes can be produced via the collisions of ultra high energetic protons (E > $10^18$ eV) with nucleons the from atmosphere. We focus on the case when the black holes decay into two particles moving in the forward direction in the Earth reference frame (back-to-back in the center of mass reference frame) and induce two overlapping showers. When reconstructing both the energy and the shape of the resultant air shower, there is a significant difference between showers induced only via standard model interactions and showers produced via the back-to-back decay of black holes as intermediate states.

Nicusor Arsene; Lauretiu Ioan Caramete; Peter B. Denton; Octavian Micu

2014-07-08T23:59:59.000Z

94

Composite RCS frame systems: construction and peformance  

E-Print Network [OSTI]

The objective of this research program is to further evaluate the performance and constructability of reinforced concrete (RC) column-steel beam-slab systems (RCS) for use in low- to mid-rise space frame buildings located in regions of high wind...

Steele, John Phillip

2004-09-30T23:59:59.000Z

95

FULL ELECTROMAGNETIC FEL SIMULATION VIA THE LORENTZ-BOOSTED FRAME TRANSFORMATION  

SciTech Connect (OSTI)

Numerical electromagnetic simulation of some systems containing charged particles with highly relativistic directed motion can by speeded up by orders of magnitude by choice of the proper Lorentz-boosted frame. A particularly good application for calculation in a boosted frame isthat of short wavelength free-electron lasers (FELs) where a high energy electron beam with small fractional energy spread interacts with a static magnetic undulator. In the optimal boost frame (i.e., the ponderomotive rest frame), the red-shifted FEL radiation and blue-shifted undulator field have identical wavelengths and the number of required longitudinal grid cells and time-steps for fully electromagnetic simulation (relative to the laboratory frame) decrease by factors of gamma^2 each. In theory, boosted frame EM codes permit direct study of FEL problems for which the eikonal approximation for propagation of the radiation field and wiggler-period-averaging for the particle-field interaction may be suspect. We have adapted the WARP code to apply this method to several electromagnetic FEL problems including spontaneous emission, strong exponential gain in a seeded, single pass amplifier configuration, and emission from e-beams in undulators with multiple harmonic components. WARP has a standard relativistic macroparticle mover and a fully 3-D electromagnetic field solver. We discuss our boosted frame results and compare with those obtained using the ?standard? eikonal FEL simulation approach.

Fawley, William; Vay, Jean-Luc

2010-08-16T23:59:59.000Z

96

Topological Black Holes -- Outside Looking In  

E-Print Network [OSTI]

I describe the general mathematical construction and physical picture of topological black holes, which are black holes whose event horizons are surfaces of non-trivial topology. The construction is carried out in an arbitrary number of dimensions, and includes all known special cases which have appeared before in the literature. I describe the basic features of massive charged topological black holes in $(3+1)$ dimensions, from both an exterior and interior point of view. To investigate their interiors, it is necessary to understand the radiative falloff behaviour of a given massless field at late times in the background of a topological black hole. I describe the results of a numerical investigation of such behaviour for a conformally coupled scalar field. Significant differences emerge between spherical and higher genus topologies.

R. B. Mann

1997-09-15T23:59:59.000Z

97

A Quantum Material Model of Static Schwarzschild Black Holes  

E-Print Network [OSTI]

A quantum-mechanical prescription of static Einstein field equation is proposed in order to construct the matter-metric eigen-states in the interior of a static Schwarzschild black hole where the signature of space-time is chosen as (--++). The spectrum of the quantum states is identified to be the integral multiples of the surface gravity. A statistical explanation of black hole entropy is given and a quantisation rule for the masses of Schwarzschild black holes is proposed.

S. -T. Sung

1997-03-16T23:59:59.000Z

98

Texas Adapted Genetic Strategies for Beef Cattle X: Frame Score, Frame Size, and Weight  

E-Print Network [OSTI]

Body size is an important genetic factor in beef cattle production. Size is most accurately estimated by considering several factors, such as weight, skeletal size and body condition. Frame Scores are a way of estimating skeletal size based on hip...

Hammack, Stephen P.; Gill, Ronald J.

2009-04-02T23:59:59.000Z

99

Characterizing multipartite entanglement without shared reference frames  

E-Print Network [OSTI]

Multipartite entanglement constitutes one of the key resources in quantum information processing. We exploit correlation tensor norms to develop a framework for its experimental detection without the need for shared frames of reference. By bounding these norms for partially separable states and states of limited dimension we achieve an extensive characterization of entanglement in multipartite systems in an experimentally feasible way. Furthermore we show that both bi- and multipartite dimensionality of entanglement can be revealed by our methods.

Claude Klöckl; Marcus Huber

2014-11-19T23:59:59.000Z

100

Black Holes as Conformal Field Theories on Horizons  

E-Print Network [OSTI]

We show that any nonextreme black hole can be described by a state with $L_0=E_R$ in a $D=2$ chiral conformal field theory with central charge $c=12E_R$ where $E_R$ is the dimensionless Rindler energy of the black hole. The theory lives in the very near horizon region, i.e. around the origin of Rindler space. Black hole hair is the momentum along the Euclidean dimensionless Rindler time direction. As evidence, we show that $D$--dimensional Schwarzschild black holes and $D=2$ dilatonic ones that are obtained from them by spherical reduction are described by the same conformal field theory states.

Halyo, Edi

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "holes time frame" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Black holes in extra dimensions can decay on the bulk  

E-Print Network [OSTI]

In the extra dimensional theories, with TeV scale Plank constant, black holes may be produced in the Large Hadron Collider experiments. We have argued that in the d-dimensional black hole, the intrinsically 4-dimensional brane fields do not see the same geometry at the horizon, as in a 4-dimensional space-time. Kaluza-Klein modes invades the brane and surroundings and the brane fields can be considered as a thermal system at the temperature of the black hole. From energy and entropy consideration, we show that whether or not a six-dimensional black hole will decay by emitting Kaluza-Klein modes or the standard model particles, will depend on the length scale of the extra dimensions as well as on the mass of the black hole. For higher dimensional black holes, Kaluza-Klein modes will dominate the decay.

A. K. Chaudhuri

2003-01-08T23:59:59.000Z

102

Scattering of Sound Waves by a Canonical Acoustic Hole  

E-Print Network [OSTI]

This is a study of a monochromatic planar perturbation impinging upon a canonical acoustic hole. We show that acoustic hole scattering shares key features with black hole scattering. The interference of wavefronts passing in opposite senses around the hole creates regular oscillations in the scattered intensity. We examine this effect by applying a partial wave method to compute the differential scattering cross section for a range of incident wavelengths. We demonstrate the existence of a scattering peak in the backward direction, known as the glory. We show that the glory created by the canonical acoustic hole is approximately 170 times less intense than the glory created by the Schwarzschild black hole, for equivalent horizon-to-wavelength ratios. We hope that direct experimental observations of such effects may be possible in the near future.

Sam R. Dolan; Ednilton S. Oliveira; Luís C. B. Crispino

2009-04-06T23:59:59.000Z

103

Holes in Spectral Lines  

E-Print Network [OSTI]

The decay of an atom in the presence of a static perturbation is investigated. The perturbation couples a decaying state with a nondecaying state. A "hole" appears in the emission line at a frequency equal to the frequency ...

Fontana, Peter R.; Srivastava, Rajendra P.

1973-06-01T23:59:59.000Z

104

Charged Schrodinger black holes  

E-Print Network [OSTI]

We construct charged and rotating asymptotically Schrödinger black hole solutions of type IIB supergravity. We begin by obtaining a closed-form expression for the null Melvin twist of a broad class of type IIB backgrounds, ...

Adams, Allan

105

ON THE OVERSAMPLING OF AFFINE WAVELET FRAMES BRODY DYLAN JOHNSON  

E-Print Network [OSTI]

ON THE OVERSAMPLING OF AFFINE WAVELET FRAMES BRODY DYLAN JOHNSON Abstract. The properties, Saint Louis, Missouri 63130 (brody@math.wustl.edu). 1 #12;2 B. JOHNSON Bessel bound. We say two frames

Johnson, Brody Dylan

106

Multiplexing video streams using dual-frame video coding  

E-Print Network [OSTI]

novel idea for multiplexing video streams was to combine theLTR frames in dual-frame video coding with EqualSlope. T.Luthra, “Overview of the H.264/AVC video coding standard,”

Tiwari, M; Groves, T; Cosman, P C

2008-01-01T23:59:59.000Z

107

Helical superconducting black holes  

E-Print Network [OSTI]

We construct novel static, asymptotically $AdS_5$ black hole solutions with Bianchi VII$_0$ symmetry that are holographically dual to superconducting phases in four spacetime dimensions with a helical p-wave order. We calculate the precise temperature dependence of the pitch of the helical order. At zero temperature the black holes have vanishing entropy and approach domain wall solutions that reveal homogenous, non-isotropic dual ground states with emergent scaling symmetry.

Aristomenis Donos; Jerome P. Gauntlett

2012-05-17T23:59:59.000Z

108

Turbodrilling in the hot-hole environment  

SciTech Connect (OSTI)

Historically, geothermal and other types of hot-hole drilling have presented what seemed to be insurmountable barriers to efficient and extended use of downhole drilling motors, particularly those containing elastomeric bearing or motor components. Typical temperatures of 350 to 700/sup 0/F (177 to 371/sup 0/C) damage the elastomers and create other operating problems, reducing the life of the motors and their ability to drill efficiently. Recent innovations in turbodrill design have opened heretofore unrealized potentials and have allowed, for the first time, extended downhole drilling time in hot-hole conditions. The unique feature of this turbodrill is the lack of any elastomers or other temperature-sensitive materials. Its capabilities are matched closely to the requirements of drilling in elevated-temperature environments. The bearing assembly can withstand conditions encountered in typical geothermal formations and provides the performance necessary to stay in the hole. The result is increased rate of penetration (ROP) and more economical drilling.

Herbert, P.

1982-10-01T23:59:59.000Z

109

On Black Hole Entropy  

E-Print Network [OSTI]

Two techniques for computing black hole entropy in generally covariant gravity theories including arbitrary higher derivative interactions are studied. The techniques are Wald's Noether charge approach introduced recently, and a field redefinition method developed in this paper. Wald's results are extended by establishing that his local geometric expression for the black hole entropy gives the same result when evaluated on an arbitrary cross-section of a Killing horizon (rather than just the bifurcation surface). Further, we show that his expression for the entropy is not affected by ambiguities which arise in the Noether construction. Using the Noether charge expression, the entropy is evaluated explicitly for black holes in a wide class of generally covariant theories. Further, it is shown that the Killing horizon and surface gravity of a stationary black hole metric are invariant under field redefinitions of the metric of the form $\\bar{g}_{ab}\\equiv g_{ab} + \\Delta_{ab}$, where $\\Delta_{ab}$ is a tensor field constructed out of stationary fields. Using this result, a technique is developed for evaluating the black hole entropy in a given theory in terms of that of another theory related by field redefinitions. Remarkably, it is established that certain perturbative, first order, results obtained with this method are in fact {\\it exact}. The possible significance of these results for the problem of finding the statistical origin of black hole entropy is discussed.}

Ted Jacobson; Gungwon Kang; Robert C. Myers

1994-01-03T23:59:59.000Z

110

On the construction of Fermi-Walker transported frames  

E-Print Network [OSTI]

We consider tetrad fields as reference frames adapted to observers that move along arbitrary timelike trajectories in spacetime. By means of a local Lorentz transformation we can transform these frames into Fermi-Walker transported frames, which define a standard of non-rotation for accelerated observers. Here we present a simple prescription for the construction of Fermi-Walker transported frames out of an arbitrary set of tetrad fields.

J. W. Maluf; F. F. Faria

2008-04-15T23:59:59.000Z

111

Chromidio: an interface for color tracking with key frames in Max and Nato  

E-Print Network [OSTI]

11 QuickTime Movie Input 11 Interactive Color Picking 12 Key Frames 12 Useful Output 14 File Management 16 C.play I 6 IV I M P L E M E N T A T I O N A N D RESULTS 17 Chromidio User Interface 17 QuickTime Movie Display and Playback 22 vi i... CHAPTER Page Interactive Color Picking 26 Key Frame Management 27 Data Analysis and Output 32 Project File Management 36 C.play 39 User Interface 39 Mathematical Functions and F ilters 41 MIDI Implementations 44 Output : 46 Results Using C...

Tucker, Amy Rebecca

2002-01-01T23:59:59.000Z

112

Media Framing and Public Attitudes Toward Biofuels Ashlie Delshad  

E-Print Network [OSTI]

Media Framing and Public Attitudes Toward Biofuels Ashlie Delshad Department of Political Science between media framing and public opinion on the issue of biofuels--transportation fuels made from plants, animal products, or organic waste. First, the paper investigates how media framing of biofuels has

113

Explanation of the Random Lengths Framing Lumber Composite Price  

E-Print Network [OSTI]

Explanation of the Random Lengths Framing Lumber Composite Price May 10, 2006 The Random Lengths Framing Lumber Composite is a broad measure of price behavior in the U.S. framing lumber market) Western U.S., 2) Southern U.S., and 3) Canada. Thus, 33% of the Composite is comprised of Southern Pine

114

Gravity with a dynamical preferred frame  

E-Print Network [OSTI]

We study a generally covariant model in which local Lorentz invariance is broken "spontaneously" by a dynamical unit timelike vector field $u^a$---the "aether". Such a model makes it possible to study the gravitational and cosmological consequences of preferred frame effects, such as ``variable speed of light" or high frequency dispersion, while preserving a generally covariant metric theory of gravity. In this paper we restrict attention to an action for an effective theory of the aether which involves only the antisymmetrized derivative $\

Ted Jacobson; David Mattingly

2001-06-02T23:59:59.000Z

115

Geodesic Reduction via Frame Bundle Geometry  

E-Print Network [OSTI]

A manifold with an arbitrary affine connection is considered and the geodesic spray associated with the connection is studied in the presence of a Lie group action. In particular, results are obtained that provide insight into the structure of the reduced dynamics associated with the given invariant affine connection. The geometry of the frame bundle of the given manifold is used to provide an intrinsic description of the geodesic spray. A fundamental relationship between the geodesic spray, the tangent lift and the vertical lift of the symmetric product is obtained, which provides a key to understanding reduction in this formulation.

Ajit Bhand

2010-02-22T23:59:59.000Z

116

Russia's energy policy: A framing comment  

SciTech Connect (OSTI)

A prominent specialist on the Russian economy provides a framing comment on two preceding papers entitled 'Russia's Energy Policy' (by Vladimir Milov, Leonard Coburn, and Igor Danchenko) and 'Russia's Energy Policy: A Divergent View' (by Matthew J. Sagers). The author argues that Russia's current energy policy should be viewed as an outcome of competition between three overlapping programs. In this context, he identifies three policy models - the old Soviet, the liberal or oligarchic, and the most recent state capitalist. The latter is currently supported by President Putin, who prioritizes diversification of the country's economy at the expense of diminished investments in the oil and gas sector.

Aslund, A. [Institute for International Economics, Washington, DC (United States)

2006-05-15T23:59:59.000Z

117

Schwarzschild black hole in dark energy background  

E-Print Network [OSTI]

In this paper we present an exact solution of Einstein's field equations describing the Schwarzschild black hole in dark energy background. It is also regarded as an embedded solution that the Schwarzschild black hole is embedded into the dark energy space producing Schwarzschild-dark energy black hole. It is found that the space-time geometry of Schwarzschild-dark energy solution is non-vacuum Petrov type $D$ in the classification of space-times. We study the energy conditions (like weak, strong and dominant conditions) for the energy-momentum tensor of the Schwarzschild-dark energy solution. We also find that the energy-momentum tensor of the Schwarzschild-dark energy solution violates the strong energy condition due to the negative pressure leading to a repulsive gravitational force of the matter field in the space-time. It is shown that the time-like vector field for an observer in the Schwarzschild-dark energy space is expanding, accelerating, shearing and non-rotating. We investigate the surface gravity and the area of the horizons for the Schwarzschild-dark energy black hole.

Ngangbam Ishwarchandra; Ng. Ibohal; K. Yugindro Singh

2014-09-27T23:59:59.000Z

118

Frame Indifferent Formulation of Maxwell's Elastic Fluid and the Rational Continuum Mechanics of the Electromagnetic Field  

E-Print Network [OSTI]

We show that the linearized equations of the incompressible elastic medium admit a `Maxwell form' in which the shear component of the stress vector plays the role of the electric field, and the vorticity plays the role of the magnetic field. Conversely, the set of dynamic Maxwell equations are strict mathematical corollaries from the governing equations of the incompressible elastic medium. This suggests that the nature of `electromagnetic field' may actually be related to an elastic continuous medium. The analogy is complete if the medium is assumed to behave as fluid in shear motions, while it may still behave as elastic solid under compressional motions. Then the governing equations of the elastic fluid are re-derived in the Eulerian frame by replacing the partial time derivatives by the properly invariant (frame indifferent) time rates. The `Maxwell from' of the frame indifferent formulation gives the frame indifferent system that is to replace the Maxwell system. This new system comprises terms already present in the classical Maxwell equations, alongside terms that are the progenitors of the Biot--Savart, Oersted--Ampere's, and Lorentz--force laws. Thus a frame indifferent (truly covariant) formulation of electromagnetism is achieved from a single postulate that the electromagnetic field is a kind of elastic (partly liquid partly solid) continuum.

Christo I. Christov

2011-03-06T23:59:59.000Z

119

Extremal limits and black hole entropy  

E-Print Network [OSTI]

Taking the extremal limit of a non-extremal Reissner-Nordstr\\"om black hole (by externally varying the mass or charge), the region between the inner and outer event horizons experiences an interesting fate -- while this region is absent in the extremal case, it does not disappear in the extremal limit but rather approaches a patch of $AdS_2\\times S^2$. In other words, the approach to extremality is not continuous, as the non-extremal Reissner-Nordstr\\"om solution splits into two spacetimes at extremality: an extremal black hole and a disconnected $AdS$ space. We suggest that the unusual nature of this limit may help in understanding the entropy of extremal black holes.

Sean M. Carroll; Matthew C. Johnson; Lisa Randall

2009-01-08T23:59:59.000Z

120

Investigating Dark Energy with Black Hole Binaries  

E-Print Network [OSTI]

The accelerated expansion of the universe is ascribed to the existence of dark energy. Black holes accretion of dark energy induces a mass change proportional to the energy density and pressure of the background dark energy fluid. The time scale during which the mass of black holes changes considerably is too long relative to the age of the universe, thus beyond detection possibilities. We propose to take advantage of the modified black hole masses for exploring the equation of state $w[z]$ of dark energy, by investigating the evolution of supermassive black hole binaries on a dark energy background. Deriving the signatures of dark energy accretion on the evolution of binaries, we find that dark energy imprints on the emitted gravitational radiation and on the changes in the orbital radius of the binary can be within detection limits for certain supermassive black hole binaries. In this talk I describe how binaries can provide a useful tool in obtaining complementary information on the nature of dark energy, based on the work done with A.Kelleher.

Laura Mersini-Houghton; Adam Kelleher

2009-06-08T23:59:59.000Z

Note: This page contains sample records for the topic "holes time frame" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Black holes at accelerators.  

E-Print Network [OSTI]

ar X iv :h ep -p h/ 05 11 12 8v 3 6 A pr 2 00 6 Black Holes at Accelerators Bryan Webber Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK In theories with large extra dimensions and TeV-scale gravity, black holes... 2000 3000 Missing ET (GeV) Ar bi tra ry S ca le p p ? QCD SUSY 5 TeV BH (n=6) 5 TeV BH (n=2) (PT > 600 GeV) (SUGRA point 5) Figure 10: Missing transverse energy for various processes at the LHC. 4.2. Event Characteristics Turning from single...

Webber, Bryan R

122

Threshold bracing stiffness of two story frames  

E-Print Network [OSTI]

60 63 66 70 72 72 77 29 Variation of Ks with Ks for the Type D Frame Variation of P with K. A. l Block Flow Chart of the Main Program A. 2 The Different Subroutines. A. 3 Subroutine Functions A. 4 Program Listing. 81 85 96 99 100 107... properties are as follows: 168 in. (4267. 2 mm), Rs = 144 in. (3657. 6 mm) It = 40 in. " (16. 64 x 10 mms), I = 20 in. " (12. 49 x 10s mm") Iq = 60 in. (24. 97 x 10 mm ), Iq = 50 in. " (20. 81 x 10 mm ) At = 10 in. (6. 45 x 10 mm ), As = 6 in. (5. 8 x 10...

Khader, Ghassan Sudki

2012-06-07T23:59:59.000Z

123

Saha Equation in an Uniformly Accelerated Reference Frame and Some of Its Physical Implications  

E-Print Network [OSTI]

The Saha equations for the photo-ionization of hydrogen atoms and the electron positron pair production at high temperature are obtained in a reference frame undergoing a uniform accelerated motion in an otherwise flat Minkowski space-time geometry. Some of the physical implications of our findings are discussed.

Sanchari De; Somenath Chakrabarty

2014-12-06T23:59:59.000Z

124

Adaptive Display Algorithm for Interactive Frame Rates During Visualization of Complex Virtual Environments  

E-Print Network [OSTI]

-- viewing algorithms; I.3.5 Computational Geometry and Object Modeling -- geometric algorithms, object rates. Furthermore, the complexity of the portion of the model visible to the observer can be highly on any single frame time. Using the UC Berkeley Building Walkthrough System [5] and a model of Soda Hall

Singh, Jaswinder Pal

125

Laser bottom hole assembly  

DOE Patents [OSTI]

There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

2014-01-14T23:59:59.000Z

126

Black Hole Thermodynamics Today  

E-Print Network [OSTI]

A brief survey of the major themes and developments of black hole thermodynamics in the 1990's is given, followed by summaries of the talks on this subject at MG8 together with a bit of commentary, and closing with a look towards the future.

Ted Jacobson

1998-01-07T23:59:59.000Z

127

Quantum black hole inflation  

E-Print Network [OSTI]

In this paper we follow a new approach for particle creation by a localized strong gravitational field. The approach is based on a definition of the physical vacuum drawn from Heisenberg uncertainty principle. Using the fact that the gravitational field red-shifts the frequency modes of the vacuum, a condition on the minimum stregth of the gravitational field required to achieve real particle creation is derived. Application of this requirement on a Schwartzchid black hole resulted in deducing an upper limit on the region, outside the event horizon, where real particles can be created. Using this regional upper limit, and considering particle creation by black holes as a consequence of the Casimir effect, with the assumption that the created quanta are to be added to the initial energy, we deduce a natural power law for the development of the event horizon, and consequently a logarithmic law for the area spectrum of an inflating black hole. Application of the results on a cosmological model shows that if we start with a Planck-dimensional black hole, then through the process of particle creation we end up with a universe having the presently estimated critical density. Such a universe will be in a state of eternal inflation.

M. B. Altaie

2001-05-07T23:59:59.000Z

128

A Mechanism for Coronal Hole Jets  

E-Print Network [OSTI]

Bald patches are magnetic topologies in which the magnetic field is concave up over part of a photospheric polarity inversion line. A bald patch topology is believed to be the essential ingredient for filament channels and is often found in extrapolations of the observed photospheric field. Using an analytic source-surface model to calculate the magnetic topology of a small bipolar region embedded in a global magnetic dipole field, we demonstrate that although common in closed-field regions close to the solar equator, bald patches are unlikely to occur in the open-field topology of a coronal hole. Our results give rise to the following question: What happens to a bald patch topology when the surrounding field lines open up? This would be the case when a bald patch moves into a coronal hole, or when a coronal hole forms in an area that encompasses a bald patch. Our magnetostatic models show that, in this case, the bald patch topology almost invariably transforms into a null point topology with a spine and a fan. We argue that the time-dependent evolution of this scenario will be very dynamic since the change from a bald patch to null point topology cannot occur via a simple ideal evolution in the corona. We discuss the implications of these findings for recent Hinode XRT observations of coronal hole jets and give an outline of planned time-dependent 3D MHD simulations to fully assess this scenario.

D. A. N. Mueller; S. K. Antiochos

2008-04-24T23:59:59.000Z

129

State-of-the-Art Highly Insulating Window Frames - Research and Market Review  

E-Print Network [OSTI]

Goss. 1998. Local heat transfer in open frame cavities ofexamined the local heat transfer taking place in open frame

Gustavsen, Arild

2008-01-01T23:59:59.000Z

130

Nonlinear seismic response analysis of steel-concrete composite frames  

E-Print Network [OSTI]

formulation of nonlinear steel- concrete composite beam ele-Behaviour of Composite Steel and Concrete Struc- turalE. (2001). “Analysis of steel-concrete composite frames with

Barbato, Michele

2008-01-01T23:59:59.000Z

131

Department of Energy Quadrennial Technology Review Framing Document...  

Energy Savers [EERE]

of Energy Quadrennial Technology Review Framing Document More Documents & Publications Slide 1 QTR Ex Parte Communications Department of Energy Quadrennial Technology Review...

132

Gravitational-wave modes from precessing black-hole binaries  

E-Print Network [OSTI]

Gravitational waves from precessing black-hole binaries exhibit features that are absent in nonprecessing systems. The most prominent of these is a parity-violating asymmetry that beams energy and linear momentum preferentially along or opposite to the orbital angular momentum, leading to recoil of the binary. The asymmetry will appear as amplitude and phase modulations at the orbital frequency. For strongly precessing systems, it accounts for at least 3% amplitude modulation for binaries in the sensitivity band of ground-based gravitational-wave detectors, and can exceed 50% for massive systems. Such asymmetric features are also clearly visible when the waves are decomposed into modes of spin-weighted spherical harmonics, and are inherent in the waves themselves---rather than resulting from residual eccentricity in numerical simulations, or from mode-mixing due to precession. In particular, there is generically no instantaneous frame for which the mode decomposition will have any symmetry. We introduce a method to simplify the expressions for waveforms given in analytical relativity, which can be used to combine existing high-order waveforms for nonprecessing systems with expressions for the precessing contributions, leading to improved accuracy and a unified treatment of precessing and nonprecessing binaries. Using this method, it is possible to clarify the nature and the origins of the asymmetries and show the effects of asymmetry on recoils more clearly. We present post-Newtonian (PN) expressions for the waveform modes that include these terms, complete to the relative 2PN level in spin (proportional to $v^4/c^4$ times a certain combination of the spins). Comparing the results of those expressions to numerical results, we find good qualitative agreement. We also demonstrate how these expressions can be used to efficiently calculate waveforms for gravitational-wave astronomy.

Michael Boyle; Lawrence E. Kidder; Serguei Ossokine; Harald P. Pfeiffer

2014-09-22T23:59:59.000Z

133

BLACK HOLE AURORA POWERED BY A ROTATING BLACK HOLE  

SciTech Connect (OSTI)

We present a model for high-energy emission sources generated by a standing magnetohydrodynamical (MHD) shock in a black hole magnetosphere. The black hole magnetosphere would be constructed around a black hole with an accretion disk, where a global magnetic field could be originated by currents in the accretion disk and its corona. Such a black hole magnetosphere may be considered as a model for the central engine of active galactic nuclei, some compact X-ray sources, and gamma-ray bursts. The energy sources of the emission from the magnetosphere are the gravitational and electromagnetic energies of magnetized accreting matters and the rotational energy of a rotating black hole. When the MHD shock generates in MHD accretion flows onto the black hole, the plasma's kinetic energy and the black hole's rotational energy can convert to radiative energy. In this Letter, we demonstrate the huge energy output at the shock front by showing negative energy postshock accreting MHD flows for a rapidly rotating black hole. This means that the extracted energy from the black hole can convert to the radiative energy at the MHD shock front. When an axisymmetric shock front is formed, we expect a ring-shaped region with very hot plasma near the black hole; this would look like an 'aurora'. The high-energy radiation generated from there would carry to us the information for the curved spacetime due to the strong gravity.

Takahashi, Masaaki [Department of Physics and Astronomy, Aichi University of Education, Kariya, Aichi 448-8542 (Japan); Takahashi, Rohta, E-mail: takahasi@phyas.aichi-edu.ac.j [Cosmic Radiation Laboratory, Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

2010-05-15T23:59:59.000Z

134

Supermassive Black Holes  

E-Print Network [OSTI]

Supermassive black holes have generally been recognized as the most destructive force in nature. But in recent years, they have undergone a dramatic shift in paradigm. These objects may have been critical to the formation of structure in the early universe, spawning bursts of star formation and nucleating proto-galactic condensations. Possibly half of all the radiation produced after the Big Bang may be attributed to them, whose number is now known to exceed 300 million. The most accessible among them is situated at the Center of Our Galaxy. In the following pages, we will examine the evidence that has brought us to this point, and we will understand why many expect to actually image the event horizon of the Galaxy's central black hole within this decade.

Fulvio Melia

2007-05-10T23:59:59.000Z

135

Shape of black holes  

E-Print Network [OSTI]

It is well known that celestial bodies tend to be spherical due to gravity and that rotation produces deviations from this sphericity. We discuss what is known and expected about the shape of black holes' horizons from their formation to their final, stationary state. We present some recent results showing that black hole rotation indeed manifests in the widening of their central regions, limits their global shapes and enforces their whole geometry to be close to the extreme Kerr horizon geometry at almost maximal rotation speed. The results depend only on the horizon area and angular momentum. In particular they are entirely independent of the surrounding geometry of the spacetime and of the presence of matter satisfying the strong energy condition. We also discuss the the relation of this result with the Hoop conjecture.

Clement, María E Gabach

2015-01-01T23:59:59.000Z

136

Testing the general relativistic ''no-hair'' theorems using the galactic center black hole SgrA*  

E-Print Network [OSTI]

If a class of stars orbits the central black hole in our galaxy in short period (~ 0.1 year), high eccentricity (~ 0.9) orbits, they will experience precessions of their orbital planes induced by both relativistic frame-dragging and the quadrupolar gravity of the hole, at levels that could be as large as 10 microarcseconds per year, if the black hole is rotating faster than 1/2 of its maximum rotation rate. Astrometric observations of the orbits of at least two such stars can in principle lead to a determination of the angular momentum vector J of the black hole and its quadrupole moment Q_2. This could lead to a test of the general relativistic no-hair theorems, which demand that Q_2 = - J^2/M. Future high-precision adaptive infrared optics instruments make make such a fundamental test of the black-hole paradigm possible.

Clifford M. Will

2007-12-29T23:59:59.000Z

137

An Introduction to Filterbank Frames Brody Dylan Johnson  

E-Print Network [OSTI]

An Introduction to Filterbank Frames Brody Dylan Johnson St. Louis University October 19, 2010 Brody Dylan Johnson (St. Louis University) An Introduction to Filterbank Frames October 19, 2010 1 / 34 with integer sampling and then move on to consider work with rational sampling factors. Brody Dylan Johnson (St

Johnson, Brody Dylan

138

What is the reference frame of an accelerated observer?  

E-Print Network [OSTI]

The general construction of extended refrence frames for noninertial observers in flat space is studied. It is shown that, if the observer moves inertially before and after an arbitrary acceleration and rotation, the region where reference frames can coincide with an inertial system is bounded for final velocities exceeding 0.6 c.

K. -P. Marzlin

1998-03-12T23:59:59.000Z

139

CE 4990 -Construction Scheduling Week 1: Steel Frame Project  

E-Print Network [OSTI]

CE 4990 - Construction Scheduling Week 1: Steel Frame Project Fall 2011 January 13, 2012 Introduction You are a construction manager for a project to build a steel frame for an office building1 of 964 pre-fabricated structural steel members will be used in the construction. The standard bay size

Mukherjee, Amlan

140

Black hole evolution: I. Supernova-regulated black hole growth  

E-Print Network [OSTI]

The growth of a supermassive black hole (BH) is determined by how much gas the host galaxy is able to feed it, which in turn is controlled by the cosmic environment, through galaxy mergers and accretion of cosmic flows that time how galaxies obtain their gas, but also by internal processes in the galaxy, such as star formation and feedback from stars and the BH itself. In this paper, we study the growth of a 10^12 Msun halo at z=2, which is the progenitor of an archetypical group of galaxies at z=0, and of its central BH by means of a high-resolution zoomed cosmological simulation, the Seth simulation. We study the evolution of the BH driven by the accretion of cold gas in the galaxy, and explore the efficiency of the feedback from supernovae (SNe). For a relatively inefficient energy input from SNe, the BH grows at the Eddington rate from early times, and reaches self-regulation once it is massive enough. We find that at early cosmic times z>3.5, efficient feedback from SNe forbids the formation of a settled...

Dubois, Yohan; Silk, Joseph; Devriendt, Julien; Slyz, Adrianne; Teyssier, Romain

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "holes time frame" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Effects of Framing on the Thermal Performance of Wood and Steel-Framed Walls  

E-Print Network [OSTI]

members as well as insulation imperfections [13]. Building load calculation programs like Manual J [14] also does not incorporate these thermal anomalies. Previous ORNL research demonstrated that about 10% to 15% of the US residential energy consumption... of nominal 2x4 inch wood and steel-framed walls insulated with R-13 h·ft 2 ·ºF/BTU (3.5-in. thick) fiberglass batts were tested in the ORNL guarded hot box in accordance with ASTM C 1363. In these walls, nominal 2x4 inch wood or steel studs were constructed...

Kosny, J.; Yarbrough, D. W.; Childs, P.; Mohiuddin, S. A.

2006-01-01T23:59:59.000Z

142

Embeddings of the black holes in a flat space  

E-Print Network [OSTI]

We study the explicit embeddings of static black holes. We obtain two new minimal embeddings of the Schwarzchild-de Sitter metric which smoothly cover both horizons of this metric. The lines of time for these embeddings are more complicated than hyperbolas. Also we shortly discuss the possibility of using non-hyperbolic embeddings for calculation of the black hole Hawking temperature in the Deser and Levin approach.

A. A. Sheykin; D. A. Grad; S. A. Paston

2014-01-30T23:59:59.000Z

143

Electromagnetic wave scattering by Schwarzschild black holes  

E-Print Network [OSTI]

We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the electromagnetic scattering cross section, and show that they are in excellent agreement with analytical approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor and gravitational waves. We present a unified picture of the scattering of all massless fields for the first time.

Luís C. B. Crispino; Sam R. Dolan; Ednilton S. Oliveira

2009-05-20T23:59:59.000Z

144

Black holes in massive gravity  

E-Print Network [OSTI]

We review the black hole solutions of the ghost-free massive gravity theory and its bimetric extension and outline the main results on the stability of these solutions against small perturbations. Massive (bi)-gravity accommodates exact black hole solutions, analogous to those of General Relativity. In addition to these solutions, hairy black holes -- solutions with no correspondent in General Relativity -- have been found numerically, whose existence is a natural consequence of the absence of the Birkhoff's theorem in these theories. The existence of extra propagating degrees of freedom, makes the stability properties of these black holes richer and more complex than those of General Relativity. In particular, the bi-Schwarzschild black hole exhibits an unstable spherically symmetric mode, while the bi-Kerr geometry is also generically unstable, both against the spherical mode and against superradiant instabilities. If astrophysical black holes are described by these solutions, the superradiant instability o...

Babichev, Eugeny

2015-01-01T23:59:59.000Z

145

Black Hole's 1/N Hair  

E-Print Network [OSTI]

According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.

Gia Dvali; Cesar Gomez

2012-03-29T23:59:59.000Z

146

Light Loop Echoes and Blinking Black Holes  

E-Print Network [OSTI]

Radiation emitted near a black hole reaches the observer by multiple paths; and when this radiation varies in time, the time-delays between the various paths generate a "blinking" effect in the observed light curve L(t) or its auto-correlation function xi(T)= . For the particularly important "face-on" configuration (in which the hole is viewed roughly along its spin axis, while the emission comes roughly from its equatorial plane -- e.g. from the inner edge of its accretion disk, or from the violent flash of a nearby/infalling star) we calculate the blinking in detail by computing the time delay Delta t_{j}(r,a) and magnification mu_{j}(r,a) of the jth path (j=1,2,3,...), relative to the primary path (j=0), as a function of the emission radius r and black hole spin 0

147

Observational Evidence for Black Holes  

E-Print Network [OSTI]

Astronomers have discovered two populations of black holes: (i) stellar-mass black holes with masses in the range 5 to 30 solar masses, millions of which are present in each galaxy in the universe, and (ii) supermassive black holes with masses in the range 10^6 to 10^{10} solar masses, one each in the nucleus of every galaxy. There is strong circumstantial evidence that all these objects are true black holes with event horizons. The measured masses of supermassive black hole are strongly correlated with properties of their host galaxies, suggesting that these black holes, although extremely small in size, have a strong influence on the formation and evolution of entire galaxies. Spin parameters have recently been measured for a handful of black holes. Based on the data, there is an indication that the kinetic power of at least one class of relativistic jet ejected from accreting black holes may be correlated with black hole spin. If verified, it would suggest that these jets are powered by a generalized Penrose process mediated by magnetic fields.

Ramesh Narayan; Jeffrey E. McClintock

2014-07-20T23:59:59.000Z

148

Simulating merging binary black holes with nearly extremal spins  

SciTech Connect (OSTI)

Astrophysically realistic black holes may have spins that are nearly extremal (i.e., close to 1 in dimensionless units). Numerical simulations of binary black holes are important tools both for calibrating analytical templates for gravitational-wave detection and for exploring the nonlinear dynamics of curved spacetime. However, all previous simulations of binary-black-hole inspiral, merger, and ringdown have been limited by an apparently insurmountable barrier: the merging holes' spins could not exceed 0.93, which is still a long way from the maximum possible value in terms of the physical effects of the spin. In this paper, we surpass this limit for the first time, opening the way to explore numerically the behavior of merging, nearly extremal black holes. Specifically, using an improved initial-data method suitable for binary black holes with nearly extremal spins, we simulate the inspiral (through 12.5 orbits), merger and ringdown of two equal-mass black holes with equal spins of magnitude 0.95 antialigned with the orbital angular momentum.

Lovelace, Geoffrey [Center for Radiophysics and Space Research, Cornell University, Ithaca, New York, 14853 (United States); Scheel, Mark A.; Szilagyi, Bela [Theoretical Astrophysics 350-17, California Institute of Technology, Pasadena, California 91125 (United States)

2011-01-15T23:59:59.000Z

149

Acoustic white holes in flowing atomic Bose-Einstein condensates  

E-Print Network [OSTI]

We study acoustic white holes in a steadily flowing atomic Bose-Einstein condensate. A white hole configuration is obtained when the flow velocity goes from a super-sonic value in the upstream region to a sub-sonic one in the downstream region. The scattering of phonon wavepackets on a white hole horizon is numerically studied in terms of the Gross-Pitaevskii equation of mean-field theory: dynamical stability of the acoustic white hole is found, as well as a signature of a nonlinear back-action of the incident phonon wavepacket onto the horizon. The correlation pattern of density fluctuations is numerically studied by means of the truncated-Wigner method which includes quantum fluctuations. Signatures of the white hole radiation of correlated phonon pairs by the horizon are characterized; analogies and differences with Hawking radiation from acoustic black holes are discussed. In particular, a short wavelength feature is identified in the density correlation function, whose amplitude steadily grows in time since the formation of the horizon. The numerical observations are quantitatively interpreted by means of an analytical Bogoliubov theory of quantum fluctuations for a white hole configuration within the step-like horizon approximation.

Carlos Mayoral; Alessio Recati; Alessandro Fabbri; Renaud Parentani; Roberto Balbinot; Iacopo Carusotto

2010-09-30T23:59:59.000Z

150

RHIC | Black Holes?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1 20115, 2001 MediaBrookhavenBlack Holes at

151

Criteria, analysis, and design of braced and unbraced frames  

E-Print Network [OSTI]

. Goldberg (6, 7, 8) formulated procedures for studies on braced and unbraced frames using a set of slope deflection equations. By using methods, which are essentially similar to those used by Goldberg, but some what different in notat- ions, Lay (12...) formulated a procedure for studying framed structures. Both Goldberg and Lay used the so called stability functions, i. e. "s" and "c, " which represent re- duction of stiffness in a framed member subject to axial load. Lay carried the work a step further...

Earwood, Rodney Lee

2012-06-07T23:59:59.000Z

152

Price-Responsive Load (PRL) Program - Framing Paper No.1  

SciTech Connect (OSTI)

By definition, effective and efficient competitive markets need a supply side and a demand side. One criticism of electric restructuring efforts in many states is that most of the attention has been focused on the supply side, in a market focused on the short term. In general, the demand side of the market has been under-addressed. The objective of the New England Demand Response Initiative (NEDRI) is to develop a comprehensive, coordinated set of demand response programs for the New England regional power markets. NEDRI aims to maximize the capability of demand response to compete in the wholesale market and to improve the economic efficiency and environmental profile of the electric sector. To those ends, NEDRI is focusing its efforts in four interrelated areas: (1) ISO-level reliability programs, (2) Market-based price-responsive load programs, (3) Demand response at retail through pricing, rate design, and advanced metering, and (4) End-use energy efficiency resources as demand response. The fourth area, energy efficiency, is the subject of this framing paper. Energy efficiency reduces the energy used by specific end-use devices and systems, typically without affecting the level of service and without loss of amenity. Energy savings and peak load reductions are achieved by substituting technically more advanced equipment, processes, or operational strategies to produce the same or an improved level of end-use service with less electricity. In contrast, load management programs lower peak demand during specific, limited time periods by either (1) influencing the timing of energy use by shifting load to another time period, or (2) reducing the level of energy use by curtailing or interrupting the load, typically with some loss of service or amenity.

Goldman, Charles A.

2002-03-01T23:59:59.000Z

153

Real-time physics data-visualization system using Performer Chris Mitchella  

E-Print Network [OSTI]

techniques used both in the video-game industry and military flight simulators to achieve real-time frame

California at Los Angles, University of

154

Inertial blob-hole symmetry breaking in magnetised plasma filaments  

E-Print Network [OSTI]

Symmetry breaking between the propagation velocities of magnetised plasma filaments with large positive (blob) and negative (hole) amplitudes, as implied by a dimensional analysis scaling, is studied with global ("full-n") non-Boussinesq gyrofluid computations, which include finite inertia effects through nonlinear polarisation. Interchange blobs on a flat density background have higher inertia and propagate more slowly than holes. In the presence of a large enough density gradient, the effect is reversed: blobs accelerate down the gradient and holes are slowed in their propagation up the gradient. Drift wave blobs spread their initial vorticity rapidly into a fully developed turbulent state, whereas primary holes can remain coherent for many eddy turnover times. The results bear implications for plasma edge zonal flow evolution and tokamak scrape-off-layer transport.

Kendl, Alexander

2015-01-01T23:59:59.000Z

155

Optical black holes and solitons  

E-Print Network [OSTI]

We exhibit a static, cylindrically symmetric, exact solution to the Euler-Heisenberg field equations (EHFE) and prove that its effective geometry contains (optical) black holes. It is conjectured that there are also soliton solutions to the EHFE which contain black hole geometries.

Shawn Westmoreland

2010-12-21T23:59:59.000Z

156

Entropy of Lovelock Black Holes  

E-Print Network [OSTI]

A general formula for the entropy of stationary black holes in Lovelock gravity theories is obtained by integrating the first law of black hole mechanics, which is derived by Hamiltonian methods. The entropy is not simply one quarter of the surface area of the horizon, but also includes a sum of intrinsic curvature invariants integrated over a cross section of the horizon.

Ted Jacobson; Robert C. Myers

1993-05-06T23:59:59.000Z

157

Black Holes of Negative Mass  

E-Print Network [OSTI]

I demonstrate that, under certain circumstances, regions of negative energy density can undergo gravitational collapse into a black hole. The resultant exterior black hole spacetimes necessarily have negative mass and non-trivial topology. A full theory of quantum gravity, in which topology-changing processes take place, could give rise to such spacetimes.

R. B. Mann

1997-05-06T23:59:59.000Z

158

Electromagnetically-Induced Frame-Dragging around Astrophysical Objects  

E-Print Network [OSTI]

Frame dragging (Lense-Thirring effect) is generally associated with rotating astrophysical objects. However, it can also be generated by electromagnetic fields if electric and magnetic fields are simultaneously present. In most models of astrophysical objects, macroscopic charge neutrality is assumed and the entire electromagnetic field is characterized in terms of a magnetic dipole component. Hence, the purely electromagnetic contribution to the frame dragging vanishes. However, strange stars may posses independent electric dipole and neutron stars independent electric quadrupole moments that may lead to the presence of purely electromagnetic contributions to the frame dragging. Moreover, recent observations have shown that in stars with strong electromagnetic fields, the magnetic quadrupole may have a significant contribution to the dynamics of stellar processes. As an attempt to characterized and quantify the effect of electromagnetic frame-dragging in this kind of astrophysical objects, an analytic soluti...

Ruiz, Andrés F Gutiérrez

2015-01-01T23:59:59.000Z

159

Quantum geometrodynamical description of the Universe in different reference frames  

E-Print Network [OSTI]

Several years ago the so-called quantum geometrodynamics in extended phase space was proposed. The main role in this version of quantum geometrodynamics is given to a wave function that carries information about geometry of the Universe as well as about a reference frame in which this geometry is studied. We consider the evolution of a physical object (the Universe) in ``physical'' subspace of extended configurational space, the latter including gauge and ghost degrees of freedom. A measure of the ``physical'' subspace depends on a chosen reference frame, in particular, a small variation of a gauge-fixing function results in changing the measure. Thus, a transition to another gauge condition (another reference frame) leads to non-unitary transformation of a physical part of the wave function. From the viewpoint of the evolution of the Universe in the ``physical'' subspace a transition to another reference frame is an irreversible process that may be important when spacetime manifold has a nontrivial topology.

T. P. Shestakova

2002-05-16T23:59:59.000Z

160

Gesturing beyond the Frame: Transnational Trauma and US War Fiction  

E-Print Network [OSTI]

of Civilians in America’s Wars (New York: Oxford UniversityButler, Judith. Frames of War: When Is Life Grievable? NewRacial Melancholy in Vietnam War Representation. ” Arizona

Lahti, Ruth A. H.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "holes time frame" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Influence of Travelling Fires on a Concrete Frame   

E-Print Network [OSTI]

. Current structural fire design methods do not account for these types of fires. This paper applies a novel methodology for defining a family of possible heating regimes to a framed concrete structure using the concept of travelling fires. A finite...

Law, Angus; Stern-Gottfried, Jamie; Gillie, Martin; Rein, Guillermo

2011-01-01T23:59:59.000Z

162

Quasinormal frequencies of the Dirac field in the massless topological black hole  

E-Print Network [OSTI]

Motivated by the recent computations of the quasinormal frequencies of higher dimensional black holes we exactly calculate the quasinormal frequencies of the Dirac field propagating in D-dimensional (D > 4) massless topological black hole. From the exact values of the quasinormal frequencies for the fermion and boson fields we discuss whether the recently proposed bound on the relaxation time of a perturbed thermodynamical system is satisfied in D-dimensional massless topological black hole. Also we study the consequences of these results.

A. Lopez-Ortega

2010-06-25T23:59:59.000Z

163

Propagating Waves Recorded in the Steel, Moment-Frame Factor Building During Earthquakes  

E-Print Network [OSTI]

studies of damage to tall steel moment-frame buildings inan instrumented 15-story steel- frame building, EarthquakePropagating Waves in the Steel, Moment-Frame Factor Building

Kohler, Monica; Heaton, Thomas H.; Samuel C. Bradford

2007-01-01T23:59:59.000Z

164

The influence of media frames on the public's perception of biofuels.  

E-Print Network [OSTI]

??This study analyzes the frames Iowa newspapers used to report on the biofuels issue, and examines the extent to which these media frames are present… (more)

Chang, Shin-heng

2009-01-01T23:59:59.000Z

165

Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools  

E-Print Network [OSTI]

contours for one of the PVC frames studied by Gustavsen etframe with a polyvinyl chloride (PVC ) thermal breakand a PVC frame] were examined with air leakage rates of

Gustavsen, Arild

2009-01-01T23:59:59.000Z

166

Black holes with gravitational hair in higher dimensions  

SciTech Connect (OSTI)

A new class of vacuum black holes for the most general gravity theory leading to second order field equations in the metric in even dimensions is presented. These space-times are locally anti-de Sitter in the asymptotic region, and are characterized by a continuous parameter that does not enter in the conserve charges, nor it can be reabsorbed by a coordinate transformation: it is therefore a purely gravitational hair. The black holes are constructed as a warped product of a two-dimensional space-time, which resembles the r-t plane of the Banados-Teitelboim-Zanelli black hole, times a warp factor multiplying the metric of a D-2-dimensional Euclidean base manifold, which is restricted by a scalar equation. It is shown that all the Noether charges vanish. Furthermore, this is consistent with the Euclidean action approach: even though the black hole has a finite temperature, both the entropy and the mass vanish. Interesting examples of base manifolds are given in eight dimensions which are products of Thurston geometries, giving then a nontrivial topology to the black hole horizon. The possibility of introducing a torsional hair for these solutions is also discussed.

Anabalon, Andres [Departamento de Ciencias Facultad de Artes Liberales, Facultad de Ingenieria y Ciencias, Universidad Adolfo Ibanez, Vina Del Mar (Chile); Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1 D-14476 Golm (Germany); Canfora, Fabrizio [Centro de Estudios Cientificos (CECS), Casilla 1469 Valdivia (Chile); Giacomini, Alex; Oliva, Julio [Instituto de Ciencias Fisicas y Matematicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia (Chile)

2011-10-15T23:59:59.000Z

167

Black Hole Remnants and the Information Loss Paradox  

E-Print Network [OSTI]

Forty years after the discovery of Hawking radiation, its exact nature remains elusive. If Hawking radiation does not carry any information out from the ever shrinking black hole, it seems that unitarity is violated once the black hole completely evaporates. On the other hand, attempts to recover information via quantum entanglement lead to the firewall controversy. Amid the confusions, the possibility that black hole evaporation stops with a "remnant" has remained unpopular and is often dismissed due to some "undesired properties" of such an object. Nevertheless, as in any scientific debate, the pros and cons of any proposal must be carefully scrutinized. We fill in the void of the literature by providing a timely review of various types of black hole remnants, and provide some new thoughts regarding the challenges that black hole remnants face in the context of information loss paradox and its latest incarnation, namely the firewall controversy. The importance of understanding the role of curvature singularity is also emphasized, after all there remains a possibility that singularity cannot be cured even by quantum gravity. In this context a black hole remnant conveniently serves as a cosmic censor. We conclude that a remnant remains a possible end state of Hawking evaporation, and if it contains large interior geometry, may help to ameliorate information loss and the firewall paradox. We hope that this will raise some interests in the community to investigate remnants more critically but also more thoroughly.

Pisin Chen; Yen Chin Ong; Dong-han Yeom

2015-01-30T23:59:59.000Z

168

Alternate Explosions: Collapse and Accretion Events with Red Holes instead of Black Holes  

E-Print Network [OSTI]

A red hole is "just like a black hole" except it lacks an event horizon and a singularity. As a result, a red hole emits much more energy than a black hole during a collapse or accretion event. We consider how a red hole solution can solve the "energy crisis" and power extremely energetic gamma ray bursts and hypernovae.

James S. Graber

1999-08-10T23:59:59.000Z

169

Thermodynamics of regular black hole  

E-Print Network [OSTI]

We investigate thermodynamics for a magnetically charged regular black hole (MCRBH), which comes from the action of general relativity and nonlinear electromagnetics, comparing with the Reissner-Norstr\\"om (RN) black hole in both four and two dimensions after dimensional reduction. We find that there is no thermodynamic difference between the regular and RN black holes for a fixed charge $Q$ in both dimensions. This means that the condition for either singularity or regularity at the origin of coordinate does not affect the thermodynamics of black hole. Furthermore, we describe the near-horizon AdS$_2$ thermodynamics of the MCRBH with the connection of the Jackiw-Teitelboim theory. We also identify the near-horizon entropy as the statistical entropy by using the AdS$_2$/CFT$_1$ correspondence.

Yun Soo Myung; Yong-Wan Kim; Young-Jai Park

2008-09-21T23:59:59.000Z

170

Research on Calculation Method of Period and Deadline of Frame in Automotive Electronic and Information Integrated Control System  

E-Print Network [OSTI]

Research on Calculation Method of Period and Deadline of Frame in Automotive Electronic control, it is necessary to develop AEIICS (Automotive Electronic and Information Integrated Control-Words: Automotive electronic; In-vehicle network; Networked control; Temporal characteristic; Real-time; GCRT 1

Boyer, Edmond

171

Probing the Spacetime Around Supermassive Black Holes with Ejected Plasma Blobs  

E-Print Network [OSTI]

Millimeter-wavelength VLBI observations of the supermassive black holes in Sgr A* and M87 by the Event Horizon Telescope could potentially trace the dynamics of ejected plasma blobs in real time. We demonstrate that the trajectory and tidal stretching of these blobs can be used to test general relativity and set new constraints on the mass and spin of these black holes.

Christian, Pierre

2015-01-01T23:59:59.000Z

172

Density matrix of black hole radiation  

E-Print Network [OSTI]

Hawking's model of black hole evaporation is not unitary and leads to a mixed density matrix for the emitted radiation, while the Page model describes a unitary evaporation process in which the density matrix evolves from an almost thermal state to a pure state. We compare a recently proposed model of semiclassical black hole evaporation to the two established models. In particular, we study the density matrix of the outgoing radiation and determine how the magnitude of the off-diagonal corrections differs for the three frameworks. For Hawking's model, we find power-law corrections to the two-point functions that induce exponentially suppressed corrections to the off-diagonal elements of the full density matrix. This verifies that the Hawking result is correct to all orders in perturbation theory and also allows one to express the full density matrix in terms of the single-particle density matrix. We then consider the semiclassical theory for which the corrections, being non-perturbative from an effective field-theory perspective, are much less suppressed and grow monotonically in time. In this case, the R\\'enyi entropy for the outgoing radiation is shown to grow linearly at early times; but this growth slows down and the entropy eventually starts to decrease at the Page time. In addition to comparing models, we emphasize the distinction between the state of the radiation emitted from a black hole, which is highly quantum, and that of the radiation emitted from a typical classical black body at the same temperature.

Lasma Alberte; Ram Brustein; Andrei Khmelnitsky; A. J. M. Medved

2015-02-09T23:59:59.000Z

173

Fuel cell repeater unit including frame and separator plate  

DOE Patents [OSTI]

An example fuel cell repeater includes a separator plate and a frame establishing at least a portion of a flow path that is operative to communicate fuel to or from at least one fuel cell held by the frame relative to the separator plate. The flow path has a perimeter and any fuel within the perimeter flow across the at least one fuel cell in a first direction. The separator plate, the frame, or both establish at least one conduit positioned outside the flow path perimeter. The conduit is outside of the flow path perimeter and is configured to direct flow in a second, different direction. The conduit is fluidly coupled with the flow path.

Yamanis, Jean; Hawkes, Justin R; Chiapetta, Jr., Louis; Bird, Connie E; Sun, Ellen Y; Croteau, Paul F

2013-11-05T23:59:59.000Z

174

Fishing in Black Holes  

E-Print Network [OSTI]

The coordinate system $(\\bar{x},\\bar{t})$ defined by $r = 2m + K\\bar{x}- c K \\bar{t}$ and $t=\\bar{x}/cK - 1 /cK \\int_{r_a}^r (1- 2m/r + K^2)^{1/2} (1 - 2m/r)^{-1}dr$ allow us to write the Schwarzschild metric in the form: \\[ds^2=c^2 d\\bar{t}^2 + (W^2/K^2 - 2W/K) d\\bar{x}^2 + 2c (1 + W/K) d\\bar{x}d\\bar{t} - r^2 (d\\theta^2 + cos^2\\theta d\\phi^2)\\] with $W=(1 - 2m/r + K^2)^{1/2}$, in which the coefficients' pathologies are moved to $r_K = 2m/(1+K^2)$. This new coordinate system is used to study the entrance into a black hole of a rigid line (a line in which the shock waves propagate with velocity c).

A. Brotas

2006-09-01T23:59:59.000Z

175

Role of External Flow and Frame Invariance in Stochastic Thermodynamics  

E-Print Network [OSTI]

For configurational changes of soft matter systems affected or caused by external hydrodynamic flow, we identify applied work, exchanged heat, and entropy change on the level of a single trajectory. These expressions guarantee invariance of stochastic thermodynamics under a change of frame of reference. As criterion for equilibrium \\textit{vs.} nonequilibrium, zero \\textit{vs.} nonzero applied work replaces detailed balance \\textit{vs.} nonvanishing currents, since both latter criteria are shown to depend on the frame of reference. Our results are illustrated quantitatively by calculating the large deviation function for the entropy production of a dumbbell in shear flow.

Thomas Speck; Jakob Mehl; Udo Seifert

2007-12-03T23:59:59.000Z

176

Symmetric construction of reference-frame-free qudits  

E-Print Network [OSTI]

By exploiting a symmetric scheme for coupling $N$ spin-1/2 constituents (the physical qubits) to states with total angular momentum $N/2-1$, we construct rotationally invariant logical qudits of dimension $d=N-1$. One can encode all qudit states, and realize all qudit measurements, by this construction. The rotational invariance of all relevant objects enables one to transmit quantum information without having aligned reference frames between the parties that exchange the qudits. We illustrate the method by explicit constructions of reference-frame-free qubits and qutrits and, for the qubit case, comment on possible experimental implementations.

Jun Suzuki; Gelo Noel Macuja Tabia; Berthold-Georg Englert

2008-10-17T23:59:59.000Z

177

FRAMES Software System: Linking to the Statistical Package R  

SciTech Connect (OSTI)

This document provides requirements, design, data-file specifications, test plan, and Quality Assurance/Quality Control protocol for the linkage between the statistical package R and the Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES) Versions 1.x and 2.0. The requirements identify the attributes of the system. The design describes how the system will be structured to meet those requirements. The specification presents the specific modifications to FRAMES to meet the requirements and design. The test plan confirms that the basic functionality listed in the requirements (black box testing) actually functions as designed, and QA/QC confirms that the software meets the client’s needs.

Castleton, Karl J.; Whelan, Gene; Hoopes, Bonnie L.

2006-12-11T23:59:59.000Z

178

Rotor reference frame models of a multiloop 2-phase motor drive in brushless DC and microstepping modes  

SciTech Connect (OSTI)

This paper describes non-linear models of a 2-phase permanent magnet synchronous motor drive in brushless DC and microstepping modes. The models account for everything from the main power bus up to and including the mechanical load and velocity feedback loop. In particular, the models include the power electronics for each phase complete with their internal feedback loops. Classical state space averaged power electronics models are transformed to the rotor reference frame along with the usual electromechanical variables. Since SPICE linearizes the rotor reference frame model about shaft velocity, instead of shaft angle, frequency domain methods apply. The frequency domain analysis detects unstable interactions between torque angle and deliberate feedback within the drives. Time domain simulations using stator reference frame models confirm the results. All models are SPICE-compatible but were developed on Cadence`s Analog Workbench.

Chen, J.E. [Lockheed Missiles and Space Co. Inc., Sunnyvale, CA (United States)

1995-12-31T23:59:59.000Z

179

Two-Dimensional Computational Fluid Dynamics and Conduction Simulations of Heat Transfer in Horizontal Window Frames with Internal Cavities  

E-Print Network [OSTI]

window frames; To the left, a PVC window frame (S1) and toaluminum frame, S3 (left) and PVC frame, S4 (right) Figuremade of polyvinyl chloride (PVC) and two of aluminum. For

Gustavsen, Arlid

2008-01-01T23:59:59.000Z

180

Numerical analysis of masonry-infilled reinforced concrete frames subjected to seismic loads and experimental evaluation of retrofit techniques  

E-Print Network [OSTI]

infill Load ratio age at testing Concrete frame Infill paneltesting of masonry infilled reinforced concrete frame,” ASCE

Koutromanos, Ioannis

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "holes time frame" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Mutually refining DPCM system with applications in frame erasure channels  

E-Print Network [OSTI]

We consider the design of a mutually refining DPCM (MR-DPCM) system and its applications to frame erasure channels. MR-DPCM is a system that uses diversity to overcome channel impairments. In this thesis the design for a two channel system...

Sutharsan, Thirunathan

1996-01-01T23:59:59.000Z

182

Electromagnetic pump stator frame having power crossover struts  

DOE Patents [OSTI]

A stator frame for an electromagnetic pump includes a casing joined to a hub by a plurality of circumferentially spaced apart struts. At least one electrically insulated power crossover lead extends through the hub, through a crossover one of the struts, and through the casing for carrying electrical current therethrough.

Fanning, Alan W. (San Jose, CA); Olich, Eugene E. (Aptos, CA)

1995-01-01T23:59:59.000Z

183

On signal reconstruction from absolute value of frame coefficients  

E-Print Network [OSTI]

Edidinb a Siemens Corporate Research, 755 College Road East, Princeton, NJ 08540; b Department transformation from the initial Hilbert space to the space of coefficients obtained by taking the inner product frames, Further author information: Send correspondence to Radu Balan Radu Balan: E-mail: radu.balan@siemens

Casazza, Pete

184

Variations in diagnostic and prognostic framing in the EZLN movement  

E-Print Network [OSTI]

The Zapatista movement of southern Mexico has received little analytical attention focused on the myriad of writings issued by the movement. To help fill this gap, this study uses David Snow and Robert Benford’s concept of framing as a theoretical...

Pinnick, Aaron Corbett

2009-05-15T23:59:59.000Z

185

ON ALTERNATE DUAL FRAMES JIMMY DILLIES AND JULIEN GIOL  

E-Print Network [OSTI]

ON ALTERNATE DUAL FRAMES JIMMY DILLIES AND JULIEN GIOL Abstract. The set of alternate duals convenient to introduce the projection pX : l2 (J) - Im X l2 (J) 1 #12;2 JIMMY DILLIES AND JULIEN GIOL onto

Dillies, Jimmy

186

Seismic Retrofitting of RC Frames with RC Infilling  

E-Print Network [OSTI]

Seismic Retrofitting of RC Frames with RC Infilling SERIES Workshop: "Role of research infrastructures in seismic rehabilitation" 8 - 9 February 2012, Istanbul, Turkey C. Z. Chrysostomou, N. Kyriakides, P. Kotronis, P. Roussis, M. Poljansek, F. Taucer RC Infilling of Existing RC Structures for Seismic

187

Image Framing in Climate Change News Stories, p-1 Image Themes and Frames in U.S. Print News Stories about Climate Change  

E-Print Network [OSTI]

Image Framing in Climate Change News Stories, p-1 Image Themes and Frames in U.S. Print News Stories about Climate Change Stacy Rebich-Hespanha, Ronald E. Rice, Daniel R. Montello, Sean Retzloff, Sandrine Tien & João P. Hespanha Research on frames in climate change news coverage has advanced

Hespanha, João Pedro

188

Charged black holes in expanding Einstein-de Sitter universes  

E-Print Network [OSTI]

Inspired in a previous work by McClure and Dyer (Classical Quantum Gravity 23, 1971 (2006)), we analyze some solutions of the Einstein-Maxwell equations which were originally written to describe charged black holes in cosmological backgrounds. A detailed analysis of the electromagnetic sources for a sufficiently general metric is performed, and then we focus on deriving the electromagnetic four-current as well as the conserved electric charge of each metric. The charged McVittie solution is revisited and a brief study of its causal structure is performed, showing that it may represent a charged black hole in an expanding universe, with the black hole horizon being formed at infinite late times. Charged versions of solutions originally put forward by Vaidya (Vd) and Sultana and Dyer (SD) are also analyzed. It is shown that the charged Sultana-Dyer metric requires a global electric current, besides a central (pointlike) electric charge. With the aim of comparing to the charged McVittie metric, new charged solutions of Vd and SD type are considered. In these cases, the original mass and charge parameters are replaced by particular functions of the cosmological time. In the new generalized charged Vaidya metric the black hole horizon never forms, whereas in the new generalized Sultana-Dyer case both the Cauchy and the black hole horizons develop at infinite late times. A charged version of the Thakurta metric is also studied here. It is also a new solution. As in the charged Sultana-Dyer case, the natural source of the electromagnetic field is a central electric charge with an additional global electric current. The global structure is briefly studied and it is verified that the corresponding spacetime may represent a charged black hole in a cosmological background. All the solutions present initial singularities as found in the McVittie metric.

Manuela G. Rodrigues; Vilson T. Zanchin

2015-02-02T23:59:59.000Z

189

Comment on "Formation of Holes in Alkanethiol Monolayers on Gold"  

E-Print Network [OSTI]

microscopy (STM) images of al- kanethiolate monolayers on gold, one type of defect appears which does concentration.1 Fifth, the evolution of the holes appears to cease once the self-assembled monolayer (SAM) has the surface. They are not usually found very near existing step defects, and time-resolved STM images

Myrick, Michael Lenn

190

Reissner-Nordstrom black hole in dark energy background  

E-Print Network [OSTI]

In this paper we propose a stationary solution of Einstein's field equations describing Reissner-Nordstrom black hole in dark energy background. It is to be regarded as the Reissner-Nordstrom black hole is embedded into the dark energy solution producing Reissner-Nordstrom-dark energy black hole. We find that the space-time geometry of Reissner-Nordstrom-dark energy solution is Petrov type $D$ in the classification of space-times. It is also shown that the embedded space-time possesses an energy-momentum tensor of the electromagnetic field interacting with the dark energy having negative pressure. We find the energy-momentum tensor for dark energy violates the the strong energy condition due to the negative pressure, whereas that of the electromagnetic field obeys the strong energy condition. It is shown that the time-like vector field for an observer in the Reissner-Nordstrom-dark energy space is expanding, accelerating, shearing and non-rotating. We investigate the surface gravity of the horizons for the embedded dark energy black hole. The characteristic properties of relativistic dark energy based on the de Sitter solution is discussed in an appendix.

Ngangbam Ishwarchandra; Ng. Ibohal; K. Yugindro Singh

2014-11-29T23:59:59.000Z

191

Feedback Limits Rapid Growth of Seed Black Holes at High Redshift  

E-Print Network [OSTI]

Seed black holes formed in the collapse of population III stars have been invoked to explain the presence of supermassive black holes at high redshift. It has been suggested that a seed black hole can grow up to $10^{5\\sim 6}\\sunm$ through highly super-Eddington accretion for a period of $\\sim 10^{6\\sim 7}$ yr between redshift $z=20\\sim 24$. We studied the feedback of radiation pressure, Compton heating and outflow during the seed black hole growth. It is found that its surrounding medium fueled to the seed hole is greatly heated by Compton heating. For a super-critical accretion onto a $10^3\\sunm$ seed hole, a Compton sphere (with a temperature $\\sim 10^6$K) forms in a timescale of $1.6\\times 10^3$yr so that the hole is only supplied by a rate of $10^{-3}$ Eddington limit from the Compton sphere. Beyond the Compton sphere, the kinetic feedback of the strong outflow heats the medium at large distance, this leads to a dramatical decrease of the outer Bondi accretion onto the black hole and avoid the accumulation of the matter. The highly super-critical accretion will be rapidly halted by the strong feedback. The seed black holes hardly grow up at the very early universe unless the strong feedback can be avoided.

J. -M. Wang; Y. -M. Chen; C. Hu

2005-12-17T23:59:59.000Z

192

Thermal performance of steel-framed walls. Final report  

SciTech Connect (OSTI)

In wall construction, highly conductive members spaced along the wall, which allow higher heat transfer than that through less conductive areas, are referred to as thermal bridges. Thermal bridges in walls tend to increase heat loss and, under certain adverse conditions, can cause dust streaking (``ghosting``) on interior walls over studs due to temperature differentials, as well as condensation in and on walls. Although such adverse conditions can be easily avoided by proper thermal design of wall systems, these effects have not been well understood and thermal data has been lacking. Therefore, the present study was initiated to provide (1) a better understanding of the thermal behavior of steel-framed walls, (2) a set of R-values for typical wall constructions, and (3) information that could be used to develop improved methods of predicting R-values. An improved method for estimating R-value would allow an equitable comparison of thermal performance with other construction types and materials. This would increase the number of alternative materials for walls available to designers, thus allowing them to choose the optimum choice for construction. Twenty-three wall samples were tested in a calibrated hot box (ASTM C9761) to measure the thermal performance of steel-framed wall systems. The tests included an array of stud frame configurations, exterior sheathing and fiberglass batt insulations. Other studies have not included the use of insulating sheathing, which reduces the extent of the thermal bridges and improves total thermal performance. The purpose of the project was to provide measured R-values for commonly used steel-framed wall configurations and to improve R-value estimating methods. Test results were compared to R-value estimates using the parallel path method, the isothermal planes method and the ASHRAE Zone method. The comparison showed that the known procedures do not fully account for the three-dimensional effects created by steel framing in a wall.

Barbour, E. [NAHB Research Center, Inc., Upper Marlboro, MD (United States); Goodrow, J. [Holometrix, Inc., Bedford, MA (United States); Kosny, J.; Christian, J.E. [Oak Ridge National Lab., TN (United States)

1994-11-21T23:59:59.000Z

193

Isolated Horizons: A Generalization of Black Hole Mechanics  

E-Print Network [OSTI]

A set of boundary conditions defining a non-rotating isolated horizon are given in Einstein-Maxwell theory. A space-time representing a black hole which itself is in equilibrium but whose exterior contains radiation admits such a horizon . Physically motivated, (quasi-)local definitions of the mass and surface gravity of an isolated horizon are introduced. Although these definitions do not refer to infinity, the quantities assume their standard values in Reissner-Nordstrom solutions. Finally, using these definitions, the zeroth and first laws of black hole mechanics are established for isolated horizons.

Abhay Ashtekar; Christopher Beetle; Stephen Fairhurst

1998-12-18T23:59:59.000Z

194

Construction of a Penrose Diagram for an Accreting Black Hole  

E-Print Network [OSTI]

A Penrose diagram is constructed for a spatially coherent black hole that accretes at stepwise steady rates as measured by a distant observer from an initial state described by a metric of Minkowski form. Coordinate lines are computationally derived, and radial light-like trajectories verify the viability of the diagram. Coordinate dependencies of significant features, such as the horizon and radial mass scale, are clearly demonstrated on the diagram. The onset of a singularity at the origin is shown to open a new region in space-time that contains the interior of the black hole.

Beth A. Brown; James Lindesay

2008-11-04T23:59:59.000Z

195

Energy Associated with Schwarzschild Black Hole in a Magnetic Universe  

E-Print Network [OSTI]

In this paper we obtain the energy distribution associated with the Ernst space-time (geometry describing Schwarzschild black hole in Melvin's magnetic universe) in Einstein's prescription. The first term is the rest-mass energy of the Schwarzschild black hole, the second term is the classical value for the energy of the uniform magnetic field and the remaining terms in the expression are due to the general relativistic effect. The presence of the magnetic field is found to increase the energy of the system.

S. S. Xulu

2000-01-29T23:59:59.000Z

196

Residual sweeping effects in the swept frame of reference in Kinematic Simulations  

E-Print Network [OSTI]

It has been suggested that sweeping effects make Lagrangian properties in Kinematic Simulations (KS) unreliable. Here we show through a novel analysis based upon analysing neighbouring particle trajectories in a frame of reference moving with the large energy contining scales that the residual sweeping error in the turbulent pair diffusivity ($K$) in KS is $e_K\\sim dt/\\tau_s$, where $dt$ is the numerical timestep and $\\tau_s$ is the time scale of the sweeping through local eddies. Thus, provided that $dt\\ll \\tau_s$, then $e_K\\ll 1$ and the Lagrangian properties in KS are reliable.

Malik, Nadeem A

2015-01-01T23:59:59.000Z

197

Supercurrent: Vector Hair for an AdS Black Hole  

E-Print Network [OSTI]

In arXiv:0803.3295 [hep-th] a holographic black hole solution is discussed which exhibits a superconductor like transition. In the superconducting phase the black holes show infinite DC conductivity. This gives rise to the possibility of deforming the solutions by turning on a time independent current (supercurrent), without any electric field. This type of deformation does not exist for normal (non-superconducting) black holes, due to the no-hair theorems. In this paper we have studied such a supercurrent solution and the associated phase diagram. Interestingly, we have found a "special point" (critical point) in the phase diagram where the second order superconducting phase transition becomes first order. Supercurrent in superconducting materials is a well studied phenomenon in condensed matter systems. We have found some qualitative agreement with known results.

Pallab Basu; Anindya Mukherjee; Hsien-Hang Shieh

2008-09-26T23:59:59.000Z

198

Slant hole completion test (1991) sidetrack ``as built`` report  

SciTech Connect (OSTI)

During the summer of 1990, a slant hole test well, funded by the US Department of Energy, was drilled to 9,466 ft to evaluate the effectiveness of directional drilling in the tight, naturally fractured gas sands and coals of the Mesaverde Group. The surface location of the SHCT No. 1 is 700 ft south of the DOE Multiwell Experiment (MWX) site in Section 34, T6S, R94W, Garfield County, Colorado, approximately 7.5 miles west of Rifle. Mechanical problems following cementing of a production liner resulted in loss of the completion interval, and operations were suspended. In early 1991, DOE decided to sidetrack the hole to permit production testing of the lost interval. The sidetrack was designed to parallel the original wellbore, but to be drilled 1,000 ft to the east to minimize the chances of encountering formation damage from the original hole. The sidetrack, like the original hole, was to intersect the paludal lenticular sands and coals at 60{degrees} and to penetrate the underlying Cozzette sand horizonally. The sidetrack was spudded May 12, 1991. After re-entering the well in late 1991, early production testing of the Cozzette showed that the 300 ft of in-pay horizontal hole can produce at rate 5 to 10 times higher than vertical wells in the same area. This report contains the geological summary and sidetrack drilling operations summary.

Myal, F.R.

1992-05-01T23:59:59.000Z

199

Slant hole completion test (1991) sidetrack as built'' report  

SciTech Connect (OSTI)

During the summer of 1990, a slant hole test well, funded by the US Department of Energy, was drilled to 9,466 ft to evaluate the effectiveness of directional drilling in the tight, naturally fractured gas sands and coals of the Mesaverde Group. The surface location of the SHCT No. 1 is 700 ft south of the DOE Multiwell Experiment (MWX) site in Section 34, T6S, R94W, Garfield County, Colorado, approximately 7.5 miles west of Rifle. Mechanical problems following cementing of a production liner resulted in loss of the completion interval, and operations were suspended. In early 1991, DOE decided to sidetrack the hole to permit production testing of the lost interval. The sidetrack was designed to parallel the original wellbore, but to be drilled 1,000 ft to the east to minimize the chances of encountering formation damage from the original hole. The sidetrack, like the original hole, was to intersect the paludal lenticular sands and coals at 60{degrees} and to penetrate the underlying Cozzette sand horizonally. The sidetrack was spudded May 12, 1991. After re-entering the well in late 1991, early production testing of the Cozzette showed that the 300 ft of in-pay horizontal hole can produce at rate 5 to 10 times higher than vertical wells in the same area. This report contains the geological summary and sidetrack drilling operations summary.

Myal, F.R.

1992-05-01T23:59:59.000Z

200

A scale-free analysis of magnetic holes in the solar wind  

E-Print Network [OSTI]

Magnetic holes are isolated intervals of depleted interplanetary magnetic field (IMF) strength on timescales of several seconds to several hours. These intervals have been seen as often as several times per day in the ...

Stevens, M. L. (Michael Louis)

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "holes time frame" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Measuring the Black Hole Spin in Sgr A*  

E-Print Network [OSTI]

The polarized mm/sub-mm radiation from Sgr A* is apparently produced by a Keplerian structure whose peak emission occurs within several Schwarzschild radii (r_S=2GM/c^2) of the black hole. The Chandra X-ray counterpart, if confirmed, is presumably the self-Comptonized component from this region. In this paper, we suggest that sub-mm timing observations could yield a signal corresponding to the period P_0 of the marginally stable orbit, and therefore point directly to the black hole's spin a. Sgr A*'s mass is now known to be (2.6\\pm 0.2)\\times 10^6 M_\\odot (an unusually accurate value for supermassive black hole candidates), for which 2.7 minhole (a=0) should have P_0 ~ 20 min. The identification of the orbital frequency with the innermost stable circular orbit is made feasible by the transition from optically thick to thin emission at sub-mm wavelengths. With stratification in the emitter, the peak of the sub-mm bump in Sgr A*'s spectrum is thus produced at the smallest radius. We caution, however, that theoretical uncertainties in the structure of the emission region may still produce some ambiguity in the timing signal. Given that Sgr A*'s flux at $\

Fulvio Melia; Benjamin C. Bromley; Siming Liu; Christopher; K. Walker

2001-05-11T23:59:59.000Z

202

The Synchronic Frame of Photospheric Magnetic Flux: The Improved Synoptic Frame  

E-Print Network [OSTI]

of the middle panel). Because of the differential rotation of magnetic elements, the solar surface distribution from a synoptic chart do not cover the whole solar surface at any time within the period of one solar transpot models to predict better instantaneous photospheric field distribution on the portions of solar

Zhao, Xuepu

203

Entropy: From Black Holes to Ordinary Systems  

E-Print Network [OSTI]

Several results of black holes thermodynamics can be considered as firmly founded and formulated in a very general manner. From this starting point we analyse in which way these results may give us the opportunity to gain a better understanding in the thermodynamics of ordinary systems for which a pre-relativistic description is sufficient. First, we investigated the possibility to introduce an alternative definition of the entropy basically related to a local definition of the order in a spacetime model rather than a counting of microstates. We show that such an alternative approach exists and leads to the traditional results provided an equilibrium condition is assumed. This condition introduces a relation between a time interval and the reverse of the temperature. We show that such a relation extensively used in the black hole theory, mainly as a mathematical trick, has a very general and physical meaning here; in particular its derivation is not related to the existence of a canonical density matrix. Our dynamical approach of thermodynamic equilibrium allows us to establish a relation between action and entropy and we show that an identical relation exists in the case of black holes. The derivation of such a relation seems impossible in the Gibbs ensemble approach of statistical thermodynamics. From these results we suggest that the definition of entropy in terms of order in spacetime should be more general that the Boltzmann one based on a counting of microstates. Finally we point out that these results are obtained by reversing the traditional route going from the Schr\\"{o}dinger equation to statistical thermodynamics.

J. P. Badiali

2005-05-11T23:59:59.000Z

204

Universal cell frame for high-pressure water electrolyzer and electrolyzer including the same  

DOE Patents [OSTI]

Universal cell frame generic for use as an anode frame and as a cathode frame in a water electrolyzer. According to one embodiment, the universal cell frame includes a unitary annular member having a central opening. Four trios of transverse openings are provided in the annular member, each trio being spaced apart by about 90 degrees. A plurality of internal radial passageways fluidly interconnect the central opening and each of the transverse openings of two diametrically-opposed trios of openings, the other two trios of openings lacking corresponding radial passageways. Sealing ribs are provided on the top and bottom surfaces of the annular member. The present invention is also directed at a water electrolyzer that includes two such cell frames, one being used as the anode frame and the other being used as the cathode frame, the cathode frame being rotated 90 degrees relative to the anode frame.

Schmitt, Edwin W.; Norman, Timothy J.

2013-01-08T23:59:59.000Z

205

Horizon dynamics of distorted rotating black holes  

E-Print Network [OSTI]

We present numerical simulations of a Kerr black hole perturbed by a pulse of ingoing gravitational radiation. For strong perturbations we find up to five concentric marginally outer trapped surfaces. These trapped surfaces appear and disappear in pairs, so that the total number of such surfaces at any given time is odd. The world tubes traced out by the marginally outer trapped surfaces are found to be spacelike during the highly dynamical regime, approaching a null hypersurface at early and late times. We analyze the structure of these marginally trapped tubes in the context of the dynamical horizon formalism, computing the expansion of outgoing and incoming null geodesics, as well as evaluating the dynamical horizon flux law and the angular momentum flux law. Finally, we compute the event horizon. The event horizon is well-behaved and approaches the apparent horizon before and after the highly dynamical regime. No new generators enter the event horizon during the simulation.

Tony Chu; Harald P. Pfeiffer; Michael I. Cohen

2011-04-28T23:59:59.000Z

206

Hawking Emission and Black Hole Thermodynamics  

E-Print Network [OSTI]

A brief review of Hawking radiation and black hole thermodynamics is given, based largely upon hep-th/0409024.

Don N. Page

2006-12-18T23:59:59.000Z

207

On the nature of black hole entropy  

E-Print Network [OSTI]

I argue that black hole entropy counts only those states of a black hole that can influence the outside, and attempt (with only partial success) to defend this claim against various objections, all but one coming from string theory. Implications for the nature of the Bekenstein bound are discussed, and in particular the case for a holographic principle is challenged. Finally, a generalization of black hole thermodynamics to "partial event horizons" in general spacetimes without black holes is proposed.

Ted Jacobson

2000-01-13T23:59:59.000Z

208

Quantum Black Hole Formation in the BFSS Matrix Model  

E-Print Network [OSTI]

We study the various head-on collisions of two bunches of D0-branes and their real-time evolution in the BFSS matrix model in classical limit. For a various matrix size N respecting the 't Hooft scaling, we find quantitative evidence for the formation of a single bound state of D0-branes at late time, which is matrix model thermalization and dual to the formation of a larger black hole.

Sinya Aoki; Masanori Hanada; Norihiro Iizuka

2015-03-18T23:59:59.000Z

209

Photoionization microscopy in terms of local frame transformation theory  

E-Print Network [OSTI]

Two-photon ionization of an alkali-metal atom in the presence of a uniform electric field is investigated using a standardized form of local frame transformation and generalized quantum defect theory. The relevant long-range quantum defect parameters in the combined Coulombic plus Stark potential is calculated with eigenchannel R-matrix theory applied in the downstream parabolic coordinate $\\eta$. The present formulation permits us to express the corresponding microscopy observables in terms of the local frame transformation, and it gives a critical test of the accuracy of the Harmin-Fano theory permitting a scholastic investigation of the claims presented in Zhao {\\it et al.} [Phys. Rev. A 86, 053413 (2012)].

P. Giannakeas; F. Robicheaux; Chris H. Greene

2014-10-27T23:59:59.000Z

210

Towards hard X-ray imaging at GHz frame rate  

SciTech Connect (OSTI)

Gigahertz (GHz) imaging using hard X-rays ({approx}> 10 keV) can be useful to high-temperature plasma experiments, as well as research using coherent photons from synchrotron radiation and X-ray free electron lasers. GHz framing rate can be achieved by using multiple cameras through multiplexing. The advantages and trade-offs of single-photon detection mode, when no more than one X-ray photon is detected per pixel, are given. Two possible paths towards X-ray imaging at GHz frame rates using a single camera are (a) Avalanche photodiode arrays of high-Z materials and (b) Microchannel plate photomultipliers in conjunction with materials with large indices of refraction.

Wang, Zhehui [Los Alamos National Laboratory; Morris, Christopher [Los Alamos National Laboratory; Luo, Shengnian [Los Alamos National Laboratory; Kwiatkowski, Kris K. [Los Alamos National Laboratory; Kapustinsky, Jon S. [Los Alamos National Laboratory

2012-05-02T23:59:59.000Z

211

Towards hard x-ray imaging at GHz frame rate  

SciTech Connect (OSTI)

Gigahertz (GHz) imaging using hard x-rays ( Greater-Than-Or-Equivalent-To 10 keV) can be useful to high-temperature plasma experiments, as well as research and applications using coherent photons from synchrotron radiation and x-ray free electron lasers. GHz framing rate can be achieved by using multiple cameras through multiplexing. The advantages and trade-offs of single-photon detection mode, when no more than one x-ray photon is detected per pixel, are given. Two possible paths towards x-ray imaging at GHz frame rates using a single camera are: (a) avalanche photodiode arrays of high-Z materials and (b) microchannel plate photomultipliers in conjunction with materials with large indices of refraction.

Wang Zhehui; Morris, C. L.; Kapustinsky, J. S.; Kwiatkowski, K.; Luo, S.-N. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2012-10-15T23:59:59.000Z

212

Dark energy rest frame and the CMB dipole  

E-Print Network [OSTI]

If dark energy can be described as a perfect fluid, then, apart from its equation of state relating energy density and pressure, we should also especify the corresponding rest frame. Since dark energy is typically decoupled from the rest of components of the universe, in principle such a frame could be different from that of matter and radiation. In this work we consider the potential observable effects of the motion of dark energy and the possibility to measure the dark energy velocity relative to matter. In particular we consider the modification of the usual interpretation of the CMB dipole and its implications for the determination of matter bulk flows on very large scales. We also comment on the possible origin of a dark energy flow and its evolution in different models.

Antonio L. Maroto

2006-09-08T23:59:59.000Z

213

Communication channel of fermionic system in accelerated frame  

E-Print Network [OSTI]

In this article, we investigate the communication channel of fermionic system in an accelerated frame. We observe that at the infinite acceleration, the mutual information of single rail quantum channel coincides with that of double rail quantum channel, but those of classical ones reach different values. Furthermore, we find that at the infinite acceleration, the conditional entropy of single(or double) rail quantum channel vanishes, but those of classical ones may have finite values. In addition, we see that even when considering a method beyond the single mode approximation, the dual rail entangled state seems to provide better channel capacity than the single rail entangled state, unlike the bosonic case. Moreover, we find that the single-mode approximation is not sufficient to analyze the communication channel of fermionic system in an accelerated frame.

Jinho Chang; Younghun Kwon

2012-06-28T23:59:59.000Z

214

High precision, rapid laser hole drilling  

DOE Patents [OSTI]

A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

2013-04-02T23:59:59.000Z

215

Absorption cross section in Lifshitz black hole  

E-Print Network [OSTI]

We derive the absorption cross section of a minimally coupled scalar in the Lifshitz black hole obtained from the new massive gravity. The absorption cross section reduces to the horizon area in the low energy and massless limit of s-wave mode propagation, indicating that the Lifshitz black hole also satisfies the universality of low energy absorption cross section for black holes.

Taeyoon Moon; Yun Soo Myung

2012-10-05T23:59:59.000Z

216

Black holes in f(R) theories  

SciTech Connect (OSTI)

In the context of f(R) theories of gravity, we address the problem of finding static and spherically symmetric black hole solutions. Several aspects of constant curvature solutions with and without electric charge are discussed. We also study the general case (without imposing constant curvature). Following a perturbative approach around the Einstein-Hilbert action, it is found that only solutions of the Schwarzschild-(anti) de Sitter type are present up to second order in perturbations. Explicit expressions for the effective cosmological constant are obtained in terms of the f(R) function. Finally, we have considered the thermodynamics of black holes in anti-de Sitter space-time and found that this kind of solution can only exist provided the theory satisfies R{sub 0}+f(R{sub 0})<0. Interestingly, this expression is related to the condition which guarantees the positivity of the effective Newton's constant in this type of theories. In addition, it also ensures that the thermodynamical properties in f(R) gravities are qualitatively similar to those of standard general relativity.

Cruz-Dombriz, A. de la; Dobado, A.; Maroto, A. L. [Departamento de Fisica Teorica I, Universidad Complutense de Madrid, 28040 Madrid (Spain)

2009-12-15T23:59:59.000Z

217

The lifetime problem of evaporating black holes: mutiny or resignation  

E-Print Network [OSTI]

It is logically possible that regularly evaporating black holes exist in nature. In fact, the prevalent theoretical view is that these are indeed the real objects behind the curtain in astrophysical scenarios. There are several proposals for regularizing the classical singularity of black holes so that their formation and evaporation do not lead to information-loss problems. One characteristic is shared by most of these proposals: these regularly evaporating black holes present long-lived trapping horizons, with absolutely enormous evaporation lifetimes in whatever measure. Guided by the discomfort with these enormous and thus inaccessible lifetimes, we elaborate here on an alternative regularization of the classical singularity, previously proposed by the authors in an emergent gravity framework, which leads to a completely different scenario. In our scheme the collapse of a stellar object would result in a genuine time-symmetric bounce, which in geometrical terms amounts to the connection of a black-hole geometry with a white-hole geometry in a regular manner. The two most differential characteristics of this proposal are: i) the complete bouncing geometry is a solution of standard classical general relativity everywhere except in a transient region that necessarily extends beyond the gravitational radius associated with the total mass of the collapsing object; and ii) the duration of the bounce as seen by external observers is very brief (fractions of milliseconds for neutron-star-like collapses). This scenario motivates the search for new forms of stellar equilibrium different from black holes. In a brief epilogue we compare our proposal with a similar geometrical setting recently proposed by Haggard and Rovelli.

Carlos Barceló; Raúl Carballo-Rubio; Luis J. Garay; Gil Jannes

2015-02-09T23:59:59.000Z

218

Stability of Horava-Lifshitz Black Holes in the Context of AdS/CFT  

SciTech Connect (OSTI)

The anti-de Sitter/conformal field theory (AdS/CFT) correspondence is a powerful tool that promises to provide new insights toward a full understanding of field theories under extreme conditions, including but not limited to quark-gluon plasma, Fermi liquid, and superconductor. In many such applications, one typically models the field theory with asymptotically AdS black holes. These black holes are subjected to stringy effects that might render them unstable. Horava-Lifshitz gravity, in which space and time undergo different transformations, has attracted attention due to its power-counting renormalizability. In terms of AdS/CFT correspondence, Horava-Lifshitz black holes might be useful to model holographic superconductors with Lifshitz scaling symmetry. It is thus interesting to study the stringy stability of Horava-Lifshitz black holes in the context of AdS/CFT. We find that uncharged topological black holes in {lambda} = 1 Horava-Lifshitz theory are nonperturbatively stable, unlike their counterparts in Einstein gravity, with the possible exceptions of negatively curved black holes with detailed balance parameter {epsilon} close to unity. Sufficiently charged flat black holes for {epsilon} close to unity, and sufficiently charged positively curved black holes with {epsilon} close to zero, are also unstable. The implication to the Horava-Lifshitz holographic superconductor is discussed.

Ong, Yen Chin; /Taiwan, Natl. Taiwan U.; Chen, Pisin; /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC

2012-06-13T23:59:59.000Z

219

Synchronization of high speed framing camera and intense electron-beam accelerator  

SciTech Connect (OSTI)

A new trigger program is proposed to realize the synchronization of high speed framing camera (HSFC) and intense electron-beam accelerator (IEBA). The trigger program which include light signal acquisition radiated from main switch of IEBA and signal processing circuit could provide a trigger signal with rise time of 17 ns and amplitude of about 5 V. First, the light signal was collected by an avalanche photodiode (APD) module, and the delay time between the output voltage of APD and load voltage of IEBA was tested, it was about 35 ns. Subsequently, the output voltage of APD was processed further by the signal processing circuit to obtain the trigger signal. At last, by combining the trigger program with an IEBA, the trigger program operated stably, and a delay time of 30 ns between the trigger signal of HSFC and output voltage of IEBA was obtained. Meanwhile, when surface flashover occurred at the high density polyethylene sample, the delay time between the trigger signal of HSFC and flashover current was up to 150 ns, which satisfied the need of synchronization of HSFC and IEBA. So the experiment results proved that the trigger program could compensate the time (called compensated time) of the trigger signal processing time and the inherent delay time of the HSFC.

Cheng Xinbing; Liu Jinliang; Hong Zhiqiang; Qian Baoliang [College of Opto-electronic Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073 (China)

2012-06-15T23:59:59.000Z

220

Conflicting Frames : the dispute over the meaning of rolezinhos in Brazilian media  

E-Print Network [OSTI]

This research analyzes the battle of frames in the controversy surrounding rolezinhos- flashmobs organized by low-income youth in Brazilian shopping malls. To analyze the framing of these events, a corpus of 4,523 online ...

Goncalves, Alexandre A

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "holes time frame" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A study of owner preferences for steel and wood framed homes  

E-Print Network [OSTI]

that purchased steel framed homes (SFHS) and those households that purchased wood framed homes (WFHs). The objectives of the study were (1) to determine if there were any significant differences in the demographic profiles of the two study groups, (2...

Bateman, Bruce Whitney

1997-01-01T23:59:59.000Z

222

Seismic vulnerability of older reinforced concrete frame structures in Mid-America  

E-Print Network [OSTI]

This research quantifies the seismic vulnerability of older reinforced concrete frame structures located in Mid-America. After designing a representative three-story gravity load designed reinforced concrete frame structure, a nonlinear analytical...

Beason, Lauren Rae

2004-09-30T23:59:59.000Z

223

Identification, Model Updating, and Response Prediction of an Instrumented 15-Story Steel-Frame Building  

E-Print Network [OSTI]

A. , 1998. Ductile Design of Steel Structure, McGraw Hill,monitoring of the steel-frame UCLA Factor Building,an Instrumented 15-Story Steel-Frame Building Derek Skolnik,

Skolnik, Derek; Lei, Ying; Yu, Eunjong; Wallace, J W

2006-01-01T23:59:59.000Z

224

E-Print Network 3.0 - advanced lab frame Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

lab frame Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced lab frame Page: << < 1 2 3 4 5 > >> 1 John Ochsendorf Intro to Structural Design...

225

Key Elements of and Materials Performance Targets for Highly Insulating Window Frames  

E-Print Network [OSTI]

in light green. 2.5 Window Frame E (PVC) Window frame Eis polyvinyl chloride (PVC). We performed calculations forspacer = 0.25?0.1 W/(mK) ? pvc = 0.9 W/(mK), ? eff. ,spacer

Gustavsen, Arild

2012-01-01T23:59:59.000Z

226

Variational Results and Solutions in Gauge Gravity and a Bifurcation Analysis of Black Hole Orbital Dynamics  

E-Print Network [OSTI]

An analysis of all known spherically symmetric solutions to the field equations originating from the Riemann tensor quadratic curvature Lagrangian is presented. A new exact solution is found for the field equation originating from the "energy-momentum" equation of the gauge gravity theory. Imposing equivalence between the Palatini and standard variational field equations yields an algebraic condition that restricts the number spacetime solutions to gauge gravity. An analysis of a new spherically symmetric solution to the conformal gravity field equations is also presented. Point particle orbital dynamics in both the Schwarzschild and Reissner-Nordstrom black hole spacetimes are analyzed as 2-d conservative bifurcation phenomena. The Schwarzschild dynamics exhibit both saddle-center and transcritical bifurcation points and a calculation of periastron precession is presented that incorporates a phase-plane analysis of the relativistic equations of motion. Level curves of constant energy are illustrated for both timelike and null geodesics and a phase-plane analysis of dynamical invariance between the proper and coordinate time reference frames is discussed. The Reissner-Nordstrom dynamics exhibit saddle-center, transcritical, pseudo-transcritical, and additional bifurcations that combine all three previous bifurcations in various combinations. Periastron precession in the Reissner-Nordstrom spacetime is analyzed using the phase-plane and bifurcation techniques and extended to include a bifurcation point of the dynamics. A numerical solution at these parameter values illustrates that such orbits typically yield a much larger precession value compared to the standard value for timelike, precession. The acausal geodesics considered by Brigman are also discussed and their precession value is calculated.

Bruce Herold Dean

2013-12-29T23:59:59.000Z

227

Black Hole Evaporation as a Nonequilibrium Process  

E-Print Network [OSTI]

When a black hole evaporates, there arises a net energy flow from the black hole into its outside environment due to the Hawking radiation and the energy accretion onto black hole. Exactly speaking, due to the net energy flow, the black hole evaporation is a nonequilibrium process. To study details of evaporation process, nonequilibrium effects of the net energy flow should be taken into account. In this article we simplify the situation so that the Hawking radiation consists of non-self-interacting massless matter fields and also the energy accretion onto the black hole consists of the same fields. Then we find that the nonequilibrium nature of black hole evaporation is described by a nonequilibrium state of that field, and we formulate nonequilibrium thermodynamics of non-self-interacting massless fields. By applying it to black hole evaporation, followings are shown: (1) Nonequilibrium effects of the energy flow tends to accelerate the black hole evaporation, and, consequently, a specific nonequilibrium phenomenon of semi-classical black hole evaporation is suggested. Furthermore a suggestion about the end state of quantum size black hole evaporation is proposed in the context of information loss paradox. (2) Negative heat capacity of black hole is the physical essence of the generalized second law of black hole thermodynamics, and self-entropy production inside the matter around black hole is not necessary to ensure the generalized second law. Furthermore a lower bound for total entropy at the end of black hole evaporation is given. A relation of the lower bound with the so-called covariant entropy bound conjecture is interesting but left as an open issue.

Hiromi Saida

2008-11-11T23:59:59.000Z

228

Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools  

E-Print Network [OSTI]

Goss. (1998). “Local heat transfer in open frame cavities ofthe local heat transfer in cavities open to the exterior

Gustavsen, Arild

2009-01-01T23:59:59.000Z

229

Overview of the ARGOS X-ray framing camera for Laser MegaJoule  

SciTech Connect (OSTI)

Commissariat à l’Énergie Atomique et aux Énergies Alternatives has developed the ARGOS X-ray framing camera to perform two-dimensional, high-timing resolution imaging of an imploding target on the French high-power laser facility Laser MegaJoule. The main features of this camera are: a microchannel plate gated X-ray detector, a spring-loaded CCD camera that maintains proximity focus in any orientation, and electronics packages that provide remotely-selectable high-voltages to modify the exposure-time of the camera. These components are integrated into an “air-box” that protects them from the harsh environmental conditions. A miniaturized X-ray generator is also part of the device for in situ self-testing purposes.

Trosseille, C., E-mail: clement.trosseille@cea.fr; Aubert, D.; Auger, L.; Bazzoli, S.; Brunel, P.; Burillo, M.; Chollet, C.; Jasmin, S.; Maruenda, P.; Moreau, I.; Oudot, G.; Raimbourg, J.; Soullié, G.; Stemmler, P.; Zuber, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Beck, T. [CEA, DEN, CADARACHE, F-13108 St Paul lez Durance (France); Gazave, J. [CEA, DAM, CESTA, F-33116 Le Barp (France)

2014-11-15T23:59:59.000Z

230

Optimization in the Parikh-Wilczek tunneling model of Hawking radiation for Kerr-Newman Black Holes  

E-Print Network [OSTI]

In this short report, we investigate the mutual information hidden in the Parikh-Wilczek tunneling model of Hawking radiation for Kerr-Newman black holes. By assuming the radiation as an optimization process, we discuss its effect on time evolution of rotating (charged and uncharged) black holes. For uncharged rotating black holes evaporating under the maximum mutual information optimization, their scale invariant rotation parameter $a_*=a/M$ is almost constant at the early stage but rapidly increase at the very last stage of the evaluation process. The value of rotation parameter at the final state of evaporation depends on the initial condition of the black hole. We also found that the presence of electric charge can cause the black holes lose their angular momentum more rapidly than they lose mass. The charged-rotating black holes asymptotically approach a state which is described by $a_*= 0$ and $Q/M = 1$.

Auttakit Chatrabhuti; Khem Upathambhakul

2014-03-17T23:59:59.000Z

231

Mass without radiation: heavily obscured AGN, the X-ray Background and the Black Hole Mass Density  

E-Print Network [OSTI]

A recent revision of black hole scaling relations (Kormendy & Ho 2013), indicates that the local mass density in black holes should be increased by up to a factor of five with respect to previously determined values. The local black hole mass density is connected to the mean radiative efficiency of accretion through the time integral of the AGN volume density and a significant increase of the local black holes mass density would have interesting consequences on AGN accretion properties and demography. One possibility to explain a large black hole mass density is that most of the Black Hole growth is via radiatively inefficient channels such as super Eddington accretion, however, given the intrinsic degeneracies in the Soltan argument, this solution is not unique. Here we show how it is possible to accommodate a larger fraction of heavily buried, Compton thick AGN, without violating the limit imposed by the hard X-ray and mid-infrared backgrounds spectral energy density.

Comastri, A; Marconi, A; Risaliti, G; Salvati, M

2015-01-01T23:59:59.000Z

232

Journal of Embedded Computing 2 (2006) 93102 93 Frame packing algorithms for automotive  

E-Print Network [OSTI]

Journal of Embedded Computing 2 (2006) 93­102 93 IOS Press Frame packing algorithms for automotive Vandoeuvre-l `es-Nancy, France Abstract. The set of frames exchanged in automotive applications must meet two proposes algorithms for building off-line the set of frames in automotive communica- tions with the two

Navet, Nicolas

233

Cooling air recycling for gas turbine transition duct end frame and related method  

DOE Patents [OSTI]

A method of cooling a transition duct end frame in a gas turbine includes the steps of a) directing cooling air into the end frame from a region external of the transition duct and the impingement cooling sleeve; and b) redirecting the cooling air from the end frame into the annulus between the transition duct and the impingement cooling sleeve.

Cromer, Robert Harold (Johnstown, NY); Bechtel, William Theodore (Scotia, NY); Sutcu, Maz (Niskayuna, NY)

2002-01-01T23:59:59.000Z

234

Pinatubo fails to deepen the ozone hole  

SciTech Connect (OSTI)

When the Philippine volcano Pinatubo exploded last year, pumping the upper atmosphere full of find debris, researchers foresaw yet another assault on the stratosphere's beleaguered ozone layer. Some calculations of the effects of volcanic debris implied that as much as 25% to 30% of the ozone shield over temperature latitudes might be eaten away by the volcanic haze - five times the observed loss over the past decade. Early measurements didn't bear out that concern, but researchers weren't prepared to call off the alarm until the verdict came in from the most vulnerable part of the planet's ozone layer, the frigid stratosphere over Antarctica. Although the hole was more extensive than ever before, probably because of unusual weather patterns, total ozone bottomed out well above the record set last year - even a tad above the low levels seen in 1987, 1989, and 1990.

Kerr, R.A.

1992-10-15T23:59:59.000Z

235

Accelerating and rotating black holes  

E-Print Network [OSTI]

An exact solution of Einstein's equations which represents a pair of accelerating and rotating black holes (a generalised form of the spinning C-metric) is presented. The starting point is a form of the Plebanski-Demianski metric which, in addition to the usual parameters, explicitly includes parameters which describe the acceleration and angular velocity of the sources. This is transformed to a form which explicitly contains the known special cases for either rotating or accelerating black holes. Electromagnetic charges and a NUT parameter are included, the relation between the NUT parameter $l$ and the Plebanski-Demianski parameter $n$ is given, and the physical meaning of all parameters is clarified. The possibility of finding an accelerating NUT solution is also discussed.

J. B. Griffiths; J. Podolsky

2005-07-06T23:59:59.000Z

236

Next Generation Advanced Framing - Building America Top Innovation |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced Framing - Building America Top Innovation

237

Molecular-Frame Angular Distributions of Resonant Auger Electrons  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface of water. | EMSLMolecular-Frame

238

Molecular-Frame Angular Distributions of Resonant Auger Electrons  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface of water. |Molecular-Frame Angular

239

Molecular-Frame Angular Distributions of Resonant Auger Electrons  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fundProject8Mistakes toMolecular Structure ofMolecular-Frame

240

Down hole periodic seismic generator  

DOE Patents [OSTI]

A down hole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "holes time frame" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Backdraft: String Creation in an Old Schwarzschild Black Hole  

E-Print Network [OSTI]

We analyze string production in the background of a Schwarzschild black hole, after developing first quantized methods which capture string-theoretic nonadiabatic effects which can exceed naive extrapolations of effective field theory. Late-time infalling observers are strongly boosted in the near horizon region relative to early observers and formation matter. In the presence of large boosts in flat spacetime, known string and D-brane scattering processes exhibit enhanced string production, even for large impact parameter. This suggests the possibility that the nonadiabatic dynamics required to realize the firewall proposal of AMPS occurs for old black holes, with the late-time observer catalyzing the effect. After setting up this dynamical thought experiment, we focus on a specific case: the production of open strings stretched D-particles, at least one of which falls in late (playing the role of a late time observer). For relatively boosted D-branes, we precisely recover earlier results of Bachas, McAllister and Mitra which we generalize to brane trajectories in the black hole geometry. For two classes of late-time probes, we find a regime of significant non-adiabaticity by horizon crossing, assessing its dependence on the boost in each case. Closed string probes, as well as additional effects in D-brane scattering, may produce other significant non-adiabatic effects depending on the boost, something we leave for further work.

Eva Silverstein

2014-02-21T23:59:59.000Z

242

BSW process of the slowly evaporating charged black hole  

E-Print Network [OSTI]

In this paper, we study the BSW process of the slowly evaporating charged black hole. It can be found that the BSW process will also arise near black hole horizon when the evaporation of charged black hole is very slow. But now the background black hole does not have to be an extremal black hole, and it will be approximately an extremal black hole unless it is nearly a huge stationary black hole.

Liancheng Wang; Feng He; Xiangyun Fu

2015-02-09T23:59:59.000Z

243

Nano-electron beam induced current and hole charge dynamics through uncapped Ge nanocrystals  

SciTech Connect (OSTI)

Dynamics of hole storage in spherical Ge nanocrystals (NCs) formed by a two step dewetting/nucleation process on an oxide layer grown on an n-doped <001> silicon substrate is studied using a nano-electron beam induced current technique. Carrier generation is produced by an electron beam irradiation. The generated current is collected by an atomic force microscope--tip in contact mode at a fixed position away from the beam spot of about 0.5 {mu}m. This distance represents the effective diffusion length of holes. The time constants of holes charging are determined and the effect of the NC size is underlined.

Marchand, A.; El Hdiy, A.; Troyon, M. [Laboratoire de Recherche en Nanosciences, Bat. 6, case no 15, UFR Sciences, Universite de Reims Champagne Ardenne, 51687 Reims Cedex 2 (France); Amiard, G.; Ronda, A.; Berbezier, I. [IM2NP, Faculte des Sciences et Techniques, Campus de Saint Jerome - Case 142, Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20 (France)

2012-04-16T23:59:59.000Z

244

Entanglement entropy of black holes  

E-Print Network [OSTI]

The entanglement entropy is a fundamental quantity which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff which regulates the short-distance correlations. The geometrical nature of the entanglement entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in 4 and 6 dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as 't Hooft's brick wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields which non-minimally couple to gravity is emphasized. The holographic description of the entanglement entropy of the black hole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

Sergey N. Solodukhin

2011-04-19T23:59:59.000Z

245

Quantum Geometry and Black Holes  

E-Print Network [OSTI]

We present an overall picture of the advances in the description of black hole physics from the perspective of loop quantum gravity. After an introduction that discusses the main conceptual issues we present some details about the classical and quantum geometry of isolated horizons and their quantum geometry and then use this scheme to give a natural definition of the entropy of black holes. The entropy computations can be neatly expressed in the form of combinatorial problems solvable with the help of methods based on number theory and the use of generating functions. The recovery of the Bekenstein-Hawking law and corrections to it is explained in some detail. After this, due attention is paid to the discussion of semiclassical issues. An important point in this respect is the proper interpretation of the horizon area as the energy that should appear in the statistical-mechanical treatment of the black hole model presented here. The chapter ends with a comparison between the microscopic and semiclassical app...

G., J Fernando Barbero

2015-01-01T23:59:59.000Z

246

Charged spinning black holes as particle accelerators  

SciTech Connect (OSTI)

It has recently been pointed out that the spinning Kerr black hole with maximal spin could act as a particle collider with arbitrarily high center-of-mass energy. In this paper, we will extend the result to the charged spinning black hole, the Kerr-Newman black hole. The center-of-mass energy of collision for two uncharged particles falling freely from rest at infinity depends not only on the spin a but also on the charge Q of the black hole. We find that an unlimited center-of-mass energy can be approached with the conditions: (1) the collision takes place at the horizon of an extremal black hole; (2) one of the colliding particles has critical angular momentum; (3) the spin a of the extremal black hole satisfies (1/{radical}(3)){<=}(a/M){<=}1, where M is the mass of the Kerr-Newman black hole. The third condition implies that to obtain an arbitrarily high energy, the extremal Kerr-Newman black hole must have a large value of spin, which is a significant difference between the Kerr and Kerr-Newman black holes. Furthermore, we also show that, for a near-extremal black hole, there always exists a finite upper bound for center-of-mass energy, which decreases with the increase of the charge Q.

Wei Shaowen; Liu Yuxiao; Guo Heng; Fu Chune [Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000 (China)

2010-11-15T23:59:59.000Z

247

Adaptive Event Horizon Tracking and Critical Phenomena in Binary Black Hole Coalescence  

E-Print Network [OSTI]

This work establishes critical phenomena in the topological transition of black hole coalescence. We describe and validate a computational front tracking event horizon solver, developed for generic studies of the black hole coalescence problem. We then apply this to the Kastor - Traschen axisymmetric analytic solution of the extremal Maxwell - Einstein black hole merger with cosmological constant. The surprising result of this computational analysis is a power law scaling of the minimal throat proportional to time. The minimal throat connecting the two holes obeys this power law during a short time immediately at the beginning of merger. We also confirm the behavior analytically. Thus, at least in one axisymmetric situation a critical phenomenon exists. We give arguments for a broader universality class than the restricted requirements of the Kastor - Traschen solution.

Scott A. Caveny; Richard A. Matzner

2003-04-30T23:59:59.000Z

248

Linking the fate of massive black hole binaries to the active galactic nuclei luminosity function  

E-Print Network [OSTI]

Massive black hole binaries are naturally predicted in the context of the hierarchical model of structure formation. The binaries that manage to lose most of their angular momentum can coalesce to form a single remnant. In the last stages of this process, the holes undergo an extremely loud phase of gravitational wave emission, possibly detectable by current and future probes. The theoretical effort towards obtaining a coherent physical picture of the binary path down to coalescence is still underway. In this paper, for the first time, we take advantage of observational studies of active galactic nuclei evolution to constrain the efficiency of gas-driven binary decay. Under conservative assumptions we find that gas accretion toward the nuclear black holes can efficiently lead binaries of any mass forming at high redshift (> 2) to coalescence within the current time. The observed "downsizing" trend of the accreting black hole luminosity function further implies that the gas inflow is sufficient to drive light ...

Dotti, Massimo; Montuori, Carmen

2015-01-01T23:59:59.000Z

249

Transformation of the nonrelativistic quantum system under transition from one inertial reference frame to another  

E-Print Network [OSTI]

We consider the problem of internal particle state transformation, which is a bound state of several particles, from the rest frame of a composite particle to the system in which it is relativistic. It is assumed that in the rest frame of the composite particle, its internal state could be considered in the nonrelativistic approximation. It has been shown, that this internal state is unchanged during the transition from one reference frame to another. Namely, the spherically symmetric particle in the rest frame stays spherically symmetric in any other reference frame. We discuss the possible application of these results for description of the hadrons scattering processes like bound states of quarks.

I. V. Sharph; M. A. Deliyergiyev; A. G. Kotanzhyan; K. K. Merkotan; N. O. Podolian; O. S. Potiyenko; D. A. Ptashynskyy; G. O. Sokhrannyi; A. V. Tykhonov; Yu. V. Volkotrub; V. D. Rusov

2014-03-11T23:59:59.000Z

250

Modified locus equations categorize stop place in a perceptually realistic time frame  

E-Print Network [OSTI]

invariance for stop place categorization,” J. Acoust. Soc. Am. 90, 1309–1325 (1991). 7H. M. Sussman, D. Fruchter, J. Hilbert, and J. Sirosh, “Linear correlates in the speech signal: The orderly output constraint,” Behav. Brain Sci. 21, 241–259 (1998). 8B...

Rhone, Ariane E.; Jongman, Allard

2012-06-01T23:59:59.000Z

251

AAC R17-1-102 Licensing Time Frames | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,Information Of TheFixed Utilities Jump to:2 Licensing

252

Chemical aspects of cylinder corrosion and a scenario for hole development  

SciTech Connect (OSTI)

In June 1990, two cylinders in the depleted UF{sub 6} cylinder storage yards at Portsmouth were discovered to have holes in their walls at the valve-end stiffening ring at a point below the level of the gas-solid interface of the UF{sub 6}. The cylinder with the larger hole, which extended under the stiffening ring, was stacked in a top row 13 years ago. The cylinder with the smaller hole had been stacked in a bottom row 4 years ago. The lifting lugs of the adjacent cylinders pointed directly at the holes. A Cylinder Investigating Committee was appointed to determine the cause or causes of the holes and to assess the implications of these findings. This report contains a listing of the chemically related facts established by the Investigating Committee with the cooperation of the Operations and Technical Support Divisions at the Portsmouth Gaseous Diffusion Plant, the scenario developed to explain these findings and some implications of this scenario. In summary, the interrelated reactions of water, solid UF{sub 6} and iron presented by R. L. Ritter are used to develop a scenario which explains the observations and deductions made during the investigation. The chemical processes are intimately related to the course of the last three of the four stages of hole development. A simple model is proposed which permits semiquantitative prediction of such information as the HF loss rates as a function of time, the rate of hole enlargement, the time to hydrolyze a cylinder of UF{sub 6} and the approximate size of the hole. The scenario suggests that the environmental consequences associated with a developing hole in a depleted UF{sub 6} cylinder are minimal for the first several years but will become significant if too many years pass before detection. The overall environmental picture is presented in more detail elsewhere.

Barber, E.J. [Martin Marietta Energy Systems, Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

253

Entangled valence electron-hole dynamics revealed by stimulated attosecond x-ray Raman scattering  

SciTech Connect (OSTI)

We show that broadband x-ray pulses can create wavepackets of valence electrons and holes localized in the vicinity of a selected atom (nitrogen, oxygen or sulfur in cysteine) by resonant stimulated Raman scattering. The subsequent dynamics reveals highly correlated motions of entangled electrons and hole quasiparticles. This information goes beyond the time-dependent total charge density derived from x-ray diffraction.

Healion, Daniel; Zhang, Yu; Biggs, Jason D.; Govind, Niranjan; Mukamel, Shaul

2012-09-06T23:59:59.000Z

254

Dirac Quasinormal modes of MSW black holes  

E-Print Network [OSTI]

In this paper we study the Dirac quasinormal modes of an uncharged 2 + 1 black hole proposed by Mandal et. al and referred to as MSW black hole in this work. The quasi- normal mode is studied using WKB approximation method. The study shows that the imaginary part of quasinormal frequencies increases indicating that the oscillations are damping and hence the black hole is stable against Dirac perturbations.

Sebastian, Saneesh

2014-01-01T23:59:59.000Z

255

Dirac Quasinormal modes of MSW black holes  

E-Print Network [OSTI]

In this paper we study the Dirac quasinormal modes of an uncharged 2 + 1 black hole proposed by Mandal et. al and referred to as MSW black hole in this work. The quasi- normal mode is studied using WKB approximation method. The study shows that the imaginary part of quasinormal frequencies increases indicating that the oscillations are damping and hence the black hole is stable against Dirac perturbations.

Saneesh Sebastian; V. C. Kuriakose

2014-01-15T23:59:59.000Z

256

Black hole entropy: inside or out?  

E-Print Network [OSTI]

A trialogue. Ted, Don, and Carlo consider the nature of black hole entropy. Ted and Carlo support the idea that this entropy measures in some sense ``the number of black hole microstates that can communicate with the outside world.'' Don is critical of this approach, and discussion ensues, focusing on the question of whether the first law of black hole thermodynamics can be understood from a statistical mechanics point of view.

Ted Jacobson; Donald Marolf; Carlo Rovelli

2005-01-14T23:59:59.000Z

257

Spinning Black Holes as Particle Accelerators  

E-Print Network [OSTI]

It has recently been pointed out that particles falling freely from rest at infinity outside a Kerr black hole can in principle collide with arbitrarily high center of mass energy in the limiting case of maximal black hole spin. Here we aim to elucidate the mechanism for this fascinating result, and to point out its practical limitations, which imply that ultra-energetic collisions cannot occur near black holes in nature.

Ted Jacobson; Thomas P. Sotiriou

2010-01-21T23:59:59.000Z

258

Probing the Constituent Structure of Black Holes  

E-Print Network [OSTI]

We calculate the cross section for scattering processes between graviton emitters on the near side of a Schwarzschild surface and absorbers on its far side, that is black hole constituents. We show that these scatterings allow to directly extract structural observables such as the momentum distribution of black hole constituents. For this we employ a quantum bound state description originally developed in quantum chromodynamics and recently applied to general relativity that allows to consider black holes in a relativistic Hartree like framework.

Lukas Gruending; Stefan Hofmann; Sophia Müller; Tehseen Rug

2014-12-12T23:59:59.000Z

259

Electromagnetic Beams Overpass the Black Hole Horizon  

E-Print Network [OSTI]

We show that the electromagnetic excitations of the Kerr black hole have very strong back reaction on metric. In particular, the electromagnetic excitations aligned with the Kerr congruence form the light-like beams which overcome horizon, forming the holes in it, which allows matter to escape interior. So, there is no information lost inside the black hole. This effect is based exclusively on the analyticity of the algebraically special solutions.

Alexander Burinskii

2008-06-16T23:59:59.000Z

260

Remarks on Renormalization of Black Hole Entropy  

E-Print Network [OSTI]

We elaborate the renormalization process of entropy of a nonextremal and an extremal Reissner-Nordstr\\"{o}m black hole by using the Pauli-Villars regularization method, in which the regulator fields obey either the Bose-Einstein or Fermi-Dirac distribution depending on their spin-statistics. The black hole entropy involves only two renormalization constants. We also discuss the entropy and temperature of the extremal black hole.

Sang Pyo Kim; Sung Ku Kim; Kwang-Sup Soh; Jae Hyung Yee

1996-07-07T23:59:59.000Z

Note: This page contains sample records for the topic "holes time frame" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Black holes with massive graviton hair  

E-Print Network [OSTI]

No-hair theorems exclude the existence of nontrivial scalar and massive vector hair outside four-dimensional, static, asymptotically flat black-hole spacetimes. We show, by explicitly building nonlinear solutions, that black holes can support massive graviton hair in theories of massive gravity. These hairy solutions are, most likely, the generic end state of the recently discovered monopole instability of Schwarzschild black holes in massive graviton theories.

Richard Brito; Vitor Cardoso; Paolo Pani

2013-09-03T23:59:59.000Z

262

Destroying black holes with test bodies  

E-Print Network [OSTI]

If a black hole can accrete a body whose spin or charge would send the black hole parameters over the extremal limit, then a naked singularity would presumably form, in violation of the cosmic censorship conjecture. We review some previous results on testing cosmic censorship in this way using the test body approximation, focusing mostly on the case of neutral black holes. Under certain conditions a black hole can indeed be over-spun or over-charged in this approximation, hence radiative and self-force effects must be taken into account to further test cosmic censorship.

Ted Jacobson; Thomas P. Sotiriou

2010-06-09T23:59:59.000Z

263

Mineral Test Hole Regulatory Act (Tennessee)  

Broader source: Energy.gov [DOE]

The Mineral Hole Regulatory Act is applicable to any person (individual, corporation, company, association, joint venture, partnership, receiver, trustee, guardian, executor, administrator,...

264

Lower Dimensional Black Holes: Inside and Out  

E-Print Network [OSTI]

I survey the physics of black holes in two and three spacetime dimensions, with special attention given to an understanding of their exterior and interior properties.

R. B. Mann

1995-01-27T23:59:59.000Z

265

Black Holes: from Speculations to Observations  

E-Print Network [OSTI]

This paper provides a brief review of the history of our understanding and knowledge of black holes. Starting with early speculations on ``dark stars'' I discuss the Schwarzschild "black hole" solution to Einstein's field equations and the development of its interpretation from "physically meaningless" to describing the perhaps most exotic and yet "most perfect" macroscopic object in the universe. I describe different astrophysical black hole populations and discuss some of their observational evidence. Finally I close by speculating about future observations of black holes with the new generation of gravitational wave detectors.

Thomas W. Baumgarte

2006-04-13T23:59:59.000Z

266

A new spin on black hole hair  

E-Print Network [OSTI]

We show that scalar hair can be added to rotating, vacuum black holes of general relativity. These hairy black holes (HBHs) clarify a lingering question concerning gravitational solitons: if a black hole can be added at the centre of a boson star, as it typically can for other solitons. We argue that it can, but only if it is spinning. The existence of such HBHs is related to the Kerr superradiant instability triggered by a massive scalar field. This connection leads to the following conjecture: a (hairless) black hole which is afflicted by the superradiant instability of a given field must allow hairy generalizations with that field.

Herdeiro, Carlos A R

2014-01-01T23:59:59.000Z

267

Impacts of generalized uncertainty principle on black hole thermodynamics and Salecker-Wigner inequalities  

SciTech Connect (OSTI)

We investigate the impacts of Generalized Uncertainty Principle (GUP) proposed by some approaches to quantum gravity such as String Theory and Doubly Special Relativity on black hole thermodynamics and Salecker-Wigner inequalities. Utilizing Heisenberg uncertainty principle, the Hawking temperature, Bekenstein entropy, specific heat, emission rate and decay time are calculated. As the evaporation entirely eats up the black hole mass, the specific heat vanishes and the temperature approaches infinity with an infinite radiation rate. It is found that the GUP approach prevents the black hole from the entire evaporation. It implies the existence of remnants at which the specific heat vanishes. The same role is played by the Heisenberg uncertainty principle in constructing the hydrogen atom. We discuss how the linear GUP approach solves the entire-evaporation-problem. Furthermore, the black hole lifetime can be estimated using another approach; the Salecker-Wigner inequalities. Assuming that the quantum position uncertainty is limited to the minimum wavelength of measuring signal, Wigner second inequality can be obtained. If the spread of quantum clock is limited to some minimum value, then the modified black hole lifetime can be deduced. Based on linear GUP approach, the resulting lifetime difference depends on black hole relative mass and the difference between black hole mass with and without GUP is not negligible.

Tawfik, A., E-mail: a.tawfik@eng.mti.edu.eg [Egyptian Center for Theoretical Physics (ECTP), MTI University, 11571 Cairo (Egypt)

2013-07-01T23:59:59.000Z

268

Temperature, Energy, and Heat Capacity of Asymptotically Anti-De Sitter Black Holes  

E-Print Network [OSTI]

We investigate the thermodynamical properties of black holes in (3+1) and (2+1) dimensional Einstein gravity with a negative cosmological constant. In each case, the thermodynamic internal energy is computed for a finite spatial region that contains the black hole. The temperature at the boundary of this region is defined by differentiating the energy with respect to entropy, and is equal to the product of the surface gravity (divided by~$2\\pi$) and the Tolman redshift factor for temperature in a stationary gravitational field. We also compute the thermodynamic surface pressure and, in the case of the (2+1) black hole, show that the chemical potential conjugate to angular momentum is equal to the proper angular velocity of the black hole with respect to observers who are at rest in the stationary time slices. In (3+1) dimensions, a calculation of the heat capacity reveals the existence of a thermodynamically stable black hole solution and a negative heat capacity instanton. This result holds in the limit that the spatial boundary tends to infinity only if the comological constant is negative; if the cosmological constant vanishes, the stable black hole solution is lost. In (2+1) dimensions, a calculation of the heat capacity reveals the existence of a thermodynamically stable black hole solution, but no negative heat capacity instanton.

J. D. Brown; J. Creighton; R. B. Mann

1994-05-03T23:59:59.000Z

269

Galilei covariance and Einstein's equivalence principle in quantum reference frames  

E-Print Network [OSTI]

The covariance of the Schr\\"odinger equation under Galilei boosts and the compatibility of nonrelativistic quantum mechanics with Einstein's equivalence principle have been constrained for so long to the existence of a superselection rule which would prevent a quantum particle to be found in superposition states of different masses. In a effort to avoid this expedient, thus allowing for nonrelativistic quantum mechanics to account for unstable particles, recent works have suggested that usual Galilean transformations are inconsistent with the nonrelativistic limit of the Lorentz transformation. Here we approach the issue in a fundamentally different way. Using a formalism of unitary transformations and employing quantum reference frames rather than immaterial coordinate systems, we show that the Schr\\"odinger equation, although form-variant, is fully compatible with the aforementioned principles of relativity.

S. T. Pereira; R. M. Angelo

2014-04-10T23:59:59.000Z

270

Development of a dual MCP framing camera for high energy x-rays  

SciTech Connect (OSTI)

Recently developed diagnostic techniques at LLNL require recording backlit images of extremely dense imploded plasmas using hard x-rays, and demand the detector to be sensitive to photons with energies higher than 50 keV [R. Tommasini et al., Phys. Phys. Plasmas 18, 056309 (2011); G. N. Hall et al., “AXIS: An instrument for imaging Compton radiographs using ARC on the NIF,” Rev. Sci. Instrum. (these proceedings)]. To increase the sensitivity in the high energy region, we propose to use a combination of two MCPs. The first MCP is operated in a low gain regime and works as a thick photocathode, and the second MCP works as a high gain electron multiplier. We tested the concept of this dual MCP configuration and succeeded in obtaining a detective quantum efficiency of 4.5% for 59 keV x-rays, 3 times larger than with a single plate of the thickness typically used in NIF framing cameras.

Izumi, N., E-mail: izumi2@llnl.gov; Hall, G. N.; Carpenter, A. C.; Allen, F. V.; Cruz, J. G.; Felker, B.; Hargrove, D.; Holder, J.; Lumbard, A.; Montesanti, R.; Palmer, N. E.; Piston, K.; Stone, G.; Thao, M.; Vern, R.; Zacharias, R.; Landen, O. L.; Tommasini, R.; Bradley, D. K.; Bell, P. M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

2014-11-15T23:59:59.000Z

271

Gauge Gravity and Space-Time  

E-Print Network [OSTI]

When we discuss problems on gravity, we can not avoid some fundamental physical problems, such as space-time, inertia, and inertial reference frame. The goal of this paper is to discuss the logic system of gravity theory and the problems of space-time, inertia, and inertial reference frame. The goal of this paper is to set up the theory on space-time in gauge theory of gravity. Based on this theory, it is possible for human kind to manipulate physical space-time on earth, and produce a machine which can physically prolong human's lifetime.

Ning Wu

2012-07-11T23:59:59.000Z

272

Construction and physical properties of Kerr black holes with scalar hair  

E-Print Network [OSTI]

Kerr black holes with scalar hair are solutions of the Einstein-Klein-Gordon field equations describing regular (on and outside an event horizon), asymptotically flat black holes with scalar hair (arXiv:1403.2757). These black holes interpolate continuously between the Kerr solution and rotating boson stars in D=4 spacetime dimensions. Here we provide details on their construction, discussing properties of the ansatz, the field equations, the boundary conditions and the numerical strategy. Then, we present an overview of the parameter space of the solutions, and describe in detail the space-time structure of the black holes exterior geometry and of the scalar field for a sample of reference solutions. Phenomenological properties of potential astrophysical interest are also discussed, and the stability properties and possible generalizations are commented on. As supplementary material to this paper we make available numerical data files for the sample of reference solutions discussed, for public use.

Herdeiro, Carlos

2015-01-01T23:59:59.000Z

273

The scattering matrix approach for the quantum black hole, an overview  

E-Print Network [OSTI]

If one assumes the validity of conventional quantum field theory in the vicinity of the horizon of a black hole, one does not find a quantum mechanical description of the entire black hole that even remotely resembles that of conventional forms of matter; in contrast with matter made out of ordinary particles one finds that, even if embedded in a finite volume, a black hole would be predicted to have a strictly continuous spectrum. Dissatisfied with such a result, which indeed hinges on assumptions concerning the horizon that may well be wrong, various investigators have now tried to formulate alternative approaches to the problem of ``quantizing" the black hole. We here review the approach based on the assumption of quantum mechanical purity and unitarity as a starting point, as has been advocated by the present author for some time, concentrating on the physics of the states that should live on a black hole horizon. The approach is shown to be powerful in not only producing promising models for the quantum black hole, but also new insights concerning the dynamics of physical degrees of freedom in ordinary flat space-time.

G. 't Hooft

1996-07-09T23:59:59.000Z

274

Quantum Entropy of Charged Rotating Black Holes  

E-Print Network [OSTI]

I discuss a method for obtaining the one-loop quantum corrections to the tree-level entropy for a charged Kerr black hole. Divergences which appear can be removed by renormalization of couplings in the tree-level gravitational action in a manner similar to that for a static black hole.

R. B. Mann

1996-07-10T23:59:59.000Z

275

Black holes cannot support conformal scalar hair  

E-Print Network [OSTI]

It is shown that the only static asymptotically flat non-extrema black hole solution of the Einstein-conformally invariant scalar field equations having the scalar field bounded on the horizon, is the Schwarzschild one. Thus black holes cannot be endowed with conformal scalar hair of finite length.

T. Zannias

1994-09-14T23:59:59.000Z

276

Statistical constraints on binary black hole inspiral dynamics  

E-Print Network [OSTI]

We perform a statistical analysis of the binary black hole problem in the post-Newtonian approximation by systematically sampling and evolving the parameter space of initial configurations for quasi-circular inspirals. Through a principal component analysis of spin and orbital angular momentum variables we systematically look for uncorrelated quantities and find three of them which are highly conserved in a statistical sense, both as functions of time and with respect to variations in initial spin orientations. We also look for and find the variables that account for the largest variations in the problem. We present binary black hole simulations of the full Einstein equations analyzing to what extent these results might carry over to the full theory in the inspiral and merger regimes. Among other applications these results should be useful both in semi-analytical and numerical building of templates of gravitational waves for gravitational wave detectors.

Chad R. Galley; Frank Herrmann; John Silberholz; Manuel Tiglio; Gustavo Guerberoff

2010-05-30T23:59:59.000Z

277

Black Hole Fluctuations and Backreaction in Stochastic Gravity  

E-Print Network [OSTI]

We present a framework for analyzing black hole backreaction from the point of view of quantum open systems using influence functional formalism. We focus on the model of a black hole described by a radially perturbed quasi-static metric and Hawking radiation by a conformally coupled massless quantum scalar field. It is shown that the closed-time-path (CTP) effective action yields a non-local dissipation term as well as a stochastic noise term in the equation of motion, the Einstein-Langevin equation. Once the thermal Green's function in a Schwarzschild background becomes available to the required accuracy the strategy described here can be applied to obtain concrete results on backreaction. We also present an alternative derivation of the CTP effective action in terms of the Bogolyubov coefficients, thus making a connection with the interpretation of the noise term as measuring the difference in particle production in alternative histories.

Sukanya Sinha; Alpan Raval; B. L. Hu

2002-10-04T23:59:59.000Z

278

Phosphine Oxide Based Electron Transporting and Hole Blocking...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxide Based Electron Transporting and Hole Blocking Materials for Blue Electrophosphorescent Organic Light Emitting Phosphine Oxide Based Electron Transporting and Hole Blocking...

279

T-623: HP Business Availability Center Input Validation Hole...  

Broader source: Energy.gov (indexed) [DOE]

3: HP Business Availability Center Input Validation Hole Permits Cross-Site Scripting Attacks T-623: HP Business Availability Center Input Validation Hole Permits Cross-Site...

280

Three Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and Transition State Analogues. Three Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and Transition State Analogues....

Note: This page contains sample records for the topic "holes time frame" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Thermal Gradient Holes At Waunita Hot Springs Geothermal Area...  

Open Energy Info (EERE)

holes Additional References Retrieved from "http:en.openei.orgwindex.php?titleThermalGradientHolesAtWaunitaHotSpringsGeothermalArea(Zacharakis,1981)&oldid762...

282

Black hole and holographic dark energy  

E-Print Network [OSTI]

We discuss the connection between black hole and holographic dark energy. We examine the issue of the equation of state (EOS) for holographic energy density as a candidate for the dark energy carefully. This is closely related to the EOS for black hole, because the holographic dark energy comes from the black hole energy density. In order to derive the EOS of a black hole, we may use its dual (quantum) systems. Finally, a regular black hole without the singularity is introduced to describe an accelerating universe inside the cosmological horizon. Inspired by this, we show that the holographic energy density with the cosmological horizon as the IR cutoff leads to the dark energy-dominated universe with $\\omega_{\\rm \\Lambda}=-1$.

Yun Soo Myung

2007-04-11T23:59:59.000Z

283

Black Hole Thermodynamics Based on Unitary Evolutions  

E-Print Network [OSTI]

In this paper, we try to construct black hole thermodynamics based on the fact that, the formation and evaporation of a black hole can be described by quantum unitary evolutions. First, we show that the Bekenstein-Hawking entropy $S_{BH}$ cannot be a Boltzmann or thermal entropy. To confirm this statement, we show that the original black hole's "first law" cannot be treated as the first law of thermodynamics formally, due to some missing metric perturbations caused by matter. Then, by including those (quantum) metric perturbations, we show that the black hole formation and evaporation can be described in a unitary manner effectively, through a quantum channel between the exterior and interior of the event horizon. In this way, the paradoxes of information loss and firewall can be resolved effectively. Finally, we show that black hole thermodynamics can be constructed in an ordinary way, by constructing statistical mechanics.

Feng, Yu-Lei

2015-01-01T23:59:59.000Z

284

An electromagnetic black hole made of metamaterials  

E-Print Network [OSTI]

Traditionally, a black hole is a region of space with huge gravitational field in the means of general relativity, which absorbs everything hitting it including the light. In general relativity, the presence of matter-energy densities results in the motion of matter propagating in a curved spacetime1, which is similar to the electromagnetic-wave propagation in a curved space and in an inhomogeneous metamaterial2. Hence one can simulate the black hole using electromagnetic fields and metamaterials. In a recent theoretical work, an optical black hole has been proposed based on metamaterials, in which the numerical simulations showed a highly efficient light absorption3. Here we report the first experimental demonstration of electromagnetic black hole in the microwave frequencies. The proposed black hole is composed of non-resonant and resonant metamaterial structures, which can absorb electromagnetic waves efficiently coming from all directions due to the local control of electromagnetic fields. Hence the elect...

Cheng, Qiang

2009-01-01T23:59:59.000Z

285

Black holes in Asymptotically Safe Gravity  

E-Print Network [OSTI]

Black holes are among the most fascinating objects populating our universe. Their characteristic features, encompassing spacetime singularities, event horizons, and black hole thermodynamics, provide a rich testing ground for quantum gravity ideas. In this note we observe that the renormalization group improved Schwarzschild black holes constructed by Bonanno and Reuter within Weinberg's asymptotic safety program constitute a prototypical example of a Hayward geometry used to model non-singular black holes within quantum gravity phenomenology. Moreover, they share many features of a Planck star: their effective geometry naturally incorporates the one-loop corrections found in the effective field theory framework, their Kretschmann scalar is bounded, and the black hole singularity is replaced by a regular de Sitter patch. The role of the cosmological constant in the renormalization group improvement process is briefly discussed.

Saueressig, Frank; D'Odorico, Giulio; Vidotto, Francesca

2015-01-01T23:59:59.000Z

286

Black Hole Superradiance in Dynamical Spacetime  

E-Print Network [OSTI]

We study the superradiant scattering of gravitational waves by a nearly extremal black hole (dimensionless spin $a=0.99$) by numerically solving the full Einstein field equations, thus including backreaction effects. This allows us to study the dynamics of the black hole as it loses energy and angular momentum during the scattering process. To explore the nonlinear phase of the interaction, we consider gravitational wave packets with initial energies up to $10%$ of the mass of the black hole. We find that as the incident wave energy increases, the amplification of the scattered waves, as well as the energy extraction efficiency from the black hole, is reduced. During the interaction the apparent horizon geometry undergoes sizable nonaxisymmetric oscillations. The largest amplitude excitations occur when the peak frequency of the incident wave packet is above where superradiance occurs, but close to the dominant quasinormal mode frequency of the black hole.

William E. East; Fethi M. Ramazano?lu; Frans Pretorius

2014-03-14T23:59:59.000Z

287

Finite difference schemes for second order systems describing black holes  

SciTech Connect (OSTI)

In the harmonic description of general relativity, the principal part of Einstein's equations reduces to 10 curved space wave equations for the components of the space-time metric. We present theorems regarding the stability of several evolution-boundary algorithms for such equations when treated in second order differential form. The theorems apply to a model black hole space-time consisting of a spacelike inner boundary excising the singularity, a timelike outer boundary and a horizon in between. These algorithms are implemented as stable, convergent numerical codes and their performance is compared in a 2-dimensional excision problem.

Motamed, Mohammad; Kreiss, H-O. [NADA, Royal Institute of Technology, 10044 Stockholm (Sweden); Albert Einstein Institute, Max Planck Gesellschaft, Am Muehlenberg 1, D-14476 Golm (Germany); Babiuc, M.; Winicour, J. [Albert Einstein Institute, Max Planck Gesellschaft, Am Muehlenberg 1, D-14476 Golm (Germany); Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Szilagyi, B. [Albert Einstein Institute, Max Planck Gesellschaft, Am Muehlenberg 1, D-14476 Golm (Germany)

2006-06-15T23:59:59.000Z

288

Thermodynamics and Spectroscopy of Schwarzschild black hole surrounded by Quintessence  

E-Print Network [OSTI]

The thermodynamic and spectroscopic behaviour of Schwarzschild black hole surrounded by quintessence are studied. We have derived the thermodynamic quantities and studied their behaviour for different values of quintessence parameter. We put the background space-time into the Kruskal-like coordinate to find the period with respect to Elucidean time. Also assuming that the adiabatic invariant obeys Bohr-Sommerfeld quantization rule, detailed study of area spectrum and entropy spectrum have been done for special cases of the quintessece state parameter. We find that the spectra are equally spaced.

R Tharanath; V C Kuriakose

2013-01-11T23:59:59.000Z

289

Flow from a Tank Consider water flowing from a tank with water through a hole in its bottom. Denote  

E-Print Network [OSTI]

Flow from a Tank Consider water flowing from a tank with water through a hole in its bottom. Denote by h(t) the height of water in the tank at time t, v(t) the speed of the water leaving through the hole at time t, A(h) the cross-sectional area of the tank at height h and a the cross- sectional area

Feldman, Joel

290

The dialogical understanding of framing: the Cherokee Nations struggle to retain Indian Territory.  

E-Print Network [OSTI]

??The focus of my paper is on the frames and counterframes used by the Cherokee Nation and the United States federal government and lobbyists, respectively,… (more)

Dawson, Claire Suzanne Smith

2006-01-01T23:59:59.000Z

291

Citizenship Porn within the Frame: Visualizing Techniques, Cyberspace, and the Production of “Undocumented”  

E-Print Network [OSTI]

Citizenship Porn within the Frame: Visualizing Techniques,pornographic fantasy that I call “citizenship porn”. Let mewhat I mean by “citizenship porn”; I will then raise several

Moran, Erin

2007-01-01T23:59:59.000Z

292

Reconfigurable fuzzy logic system for high-frame rate stereovision object tracking.  

E-Print Network [OSTI]

??his study investigates the applicability of fuzzy logic control to high-frame rate stereovision object tracking. The technology developed in this work is based on utilizing… (more)

Samarin, Oleg

2008-01-01T23:59:59.000Z

293

On the Time Times Temperature Bound  

E-Print Network [OSTI]

Recently Hod proposes a lower bound on the relaxation time of a perturbed thermodynamic system. For gravitational systems this bound transforms into a condition on the fundamental quasinormal frequency. We test the bound in some spacetimes whose quasinormal frequencies are calculated exactly, as the three-dimensional BTZ black hole, the D-dimensional de Sitter spacetime, and the D-dimensional Nariai spacetime. We find that for some of these spacetimes their fundamental quasinormal frequencies do not satisfy the bound proposed by Hod.

A. Lopez-Ortega

2010-06-28T23:59:59.000Z

294

External Insulation of Masonry Walls and Wood Framed Walls  

SciTech Connect (OSTI)

The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

Baker, P.

2013-01-01T23:59:59.000Z

295

Blasthole timing control vibration, airblast and flyrock  

SciTech Connect (OSTI)

The authors say there is more to proper blasthole design than sequencing holes. Timing is one of the most important blast design variables. Timing controls the fragmentation size, piling of the broken material, maximum vibration level, airblast, flyrock, backbreak, endbreak and general overbreak. The authors explain how each of these items is controlled by timing.

Konya, C.J.; Walter, E.J.

1988-01-01T23:59:59.000Z

296

Thermodynamics of Dyonic Lifshitz Black Holes  

E-Print Network [OSTI]

Black holes with asymptotic anisotropic scaling are conjectured to be gravity duals of condensed matter system close to quantum critical points with non-trivial dynamical exponent z at finite temperature. A holographic renormalization procedure is presented that allows thermodynamic potentials to be defined for objects with both electric and magnetic charge in such a way that standard thermodynamic relations hold. Black holes in asymptotic Lifshitz spacetimes can exhibit paramagnetic behavior at low temperature limit for certain values of the critical exponent z, whereas the behavior of AdS black holes is always diamagnetic.

Tobias Zingg

2011-07-15T23:59:59.000Z

297

Slim Holes for Small Power Plants  

SciTech Connect (OSTI)

Geothermal research study at Sandia National Laboratories has conducted a program in slimhole drilling research since 1992. Although our original interest focused on slim holes as an exploration method, it has also become apparent that they have substantial potential for driving small-scale, off-grid power plants. This paper summarizes Sandia's slim-hole research program, describes technology used in a ''typical'' slimhole drilling project, presents an evaluation of using slim holes for small power plants, and lists some of the research topics that deserve further investigation.

Finger, John T.

1999-08-06T23:59:59.000Z

298

Black hole hair in higher dimensions  

E-Print Network [OSTI]

We study the property of matter in equilibrium with a static, spherically symmetric black hole in D-dimensional spacetime. It requires this kind of matter has an equation of state (\\omega\\equiv p_r/\\rho=-1/(1+2kn), k,n\\in \\mathbb{N}), which seems to be independent of D. However, when we associate this with specific models, some interesting limits on space could be found: (i)(D=2+2kn) while the black hole is surrounded by cosmic strings; (ii)the black hole can be surrounded by linear dilaton field only in 4-dimensional spacetime. In both cases, D=4 is special.

Chao Cao; Yi-Xin Chen; Jian-Long Li

2008-04-02T23:59:59.000Z

299

Dynamics of Scalar Fields in the Background of Rotating Black Holes  

E-Print Network [OSTI]

A numerical study of the evolution of a massless scalar field in the background of rotating black holes is presented. First, solutions to the wave equation are obtained for slowly rotating black holes. In this approximation, the background geometry is treated as a perturbed Schwarzschild spacetime with the angular momentum per unit mass playing the role of a perturbative parameter. To first order in the angular momentum of the black hole, the scalar wave equation yields two coupled one-dimensional evolution equations for a function representing the scalar field in the Schwarzschild background and a second field that accounts for the rotation. Solutions to the wave equation are also obtained for rapidly rotating black holes. In this case, the wave equation does not admit complete separation of variables and yields a two-dimensional evolution equation. The study shows that, for rotating black holes, the late time dynamics of a massless scalar field exhibit the same power-law behavior as in the case of a Schwarzschild background independently of the angular momentum of the black hole.

W. Krivan; P. Laguna; P. Papadopoulos

1996-06-04T23:59:59.000Z

300

Effects of black hole's gravitational field on the luminosity of a star during close encounter  

E-Print Network [OSTI]

To complement hydrodynamic studies of the tidal disruption of the star by a massive black hole, we present the study of stellar luminosity and its variations, produced by the strong gravitational field of the black hole during a close encounter. By simulating the relativistically moving star and its emitted light and taking into account general relativistic effects on particle and light trajectories, our results show that the black hole's gravity alone induces apparent stellar luminosity variations on typical timescales of a few r_g/c (=5 sec m_bh/10^6 M_\\odot) to a few 100 r_g/c (\\sim 10 min m_bh/10^6 M_\\odot), where r_g=Gm_bh/c^2. We discern different cases with respect to the strength of tidal interaction and focus on two: a) a star encountering a giant black hole traces space-time almost as a point particle, so that the apparent luminosity variations are dominated by clearly recognizable general relativistic effects and b) in a close encounter of a star with a black hole of similar size the stellar debris is spread about the black hole by processes where hydrodynamics plays an important role. We discuss limitations and results of our approach.

Andreja Gomboc; Andrej Cadez

2005-02-24T23:59:59.000Z

Note: This page contains sample records for the topic "holes time frame" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Falling through the black hole horizon  

E-Print Network [OSTI]

We consider the fate of a small classical object, a "stick", as it falls through the horizon of a large black hole (BH). Classically, the equivalence principle dictates that the stick is affected by small tidal forces, and Hawking's quantum-mechanical model of BH evaporation makes essentially the same prediction. If, on the other hand, the BH horizon is surrounded by a "firewall", the stick will be consumed as it falls through. We have recently extended Hawking's model by taking into account the quantum fluctuations of the geometry and the classical back-reaction of the emitted particles. Here, we calculate the strain exerted on the falling stick for our model. The strain depends on the near-horizon state of the Hawking pairs. We find that, after the Page time when the state of the pairs deviates significantly from maximal entanglement (as required by unitarity), the induced strain in our semiclassical model is still parametrically small. This is because the number of the disentangled pairs is parametrically ...

Brustein, Ram

2015-01-01T23:59:59.000Z

302

Black Hole Instabilities and Exponential Growth  

E-Print Network [OSTI]

Recently, a general analysis has been given of the stability with respect to axisymmetric perturbations of stationary-axisymmetric black holes and black branes in vacuum general relativity in arbitrary dimensions. It was shown that positivity of canonical energy on an appropriate space of perturbations is necessary and sufficient for stability. However, the notions of both "stability" and "instability" in this result are significantly weaker than one would like to obtain. In this paper, we prove that if a perturbation of the form $\\pounds_t \\delta g$---with $\\delta g$ a solution to the linearized Einstein equation---has negative canonical energy, then that perturbation must, in fact, grow exponentially in time. The key idea is to make use of the $t$- or ($t$-$\\phi$)-reflection isometry, $i$, of the background spacetime and decompose the initial data for perturbations into their odd and even parts under $i$. We then write the canonical energy as $\\mathscr E\\ = \\mathscr K + \\mathscr U$, where $\\mathscr K$ and $...

Prabhu, Kartik

2015-01-01T23:59:59.000Z

303

Instabilities and Anti-Evaporation of Reissner-Nordström Black Holes in modified $F(R)$ gravity  

E-Print Network [OSTI]

We study the instabilities and related anti-evaporation of the extremal Reissner-Nordstr\\"om (RN) black hole in $F(R)$ gravity. It is remarkable that the effective electric charge can be generated for some solutions of $F(R)$ gravity without electromagnetic field. The anti-evaporation effect occurs but it emerges only in the strong coupling limit of the effective gravitational coupling. The instabilities of RN black hole are also investigated when the electromagnetic sector is added to the action of $F(R)$ gravity. We show the anti-evaporation occurs in the Maxwell-$F(R)$ gravity with the arbitrary gravitational coupling constant although it does not occur in the Maxwell-Einstein gravity. Furthermore, general spherically-symmetric solution of $F(R)$ gravity in the Einstein frame is obtained.

Shin'ichi Nojiri; Sergei D. Odintsov

2014-10-05T23:59:59.000Z

304

Dynamic Framed-ALOHA for Energy-Constrained Wireless Sensor Networks with Energy Harvesting  

E-Print Network [OSTI]

to collect data from sensors without depleting their energy reserves. It is noted that such trade- offDynamic Framed-ALOHA for Energy-Constrained Wireless Sensor Networks with Energy Harvesting Fabio Framed-ALOHA (DFA) protocol is studied for wireless sensor networks with energy limitations and energy

Simeone, Osvaldo

305

Optimum Frame Synchronization for Preamble-less Packet Transmission of Turbo Codes  

E-Print Network [OSTI]

Optimum Frame Synchronization for Preamble-less Packet Transmission of Turbo Codes Jian Sun introduces an optimum maximum a posteriori (MAP) frame synchronization method for packet- based turbo coded the received signal sequences. This method is based on the low- density parity-check properties of turbo codes

Valenti, Matthew C.

306

SEISMIC PERFORMANCE EVALUATION FOR STEEL MOMENT FRAMES By Seung-Yul Yun1  

E-Print Network [OSTI]

SEISMIC PERFORMANCE EVALUATION FOR STEEL MOMENT FRAMES By Seung-Yul Yun1 , Ronald O. Hamburger2 , C than existing buildings designed and built with older technologies. Key words: seismic behavior; seismic performance evaluation; performance-based design; earthquake engineering; steel moment frame

Sweetman, Bert

307

Gun Policy, Opinion, Tragedy, and Blame Attribution: The Conditional Influence of Issue of Frames  

E-Print Network [OSTI]

attention has been given to highly salient issues, such as gun policy, and the potential effect of framing on causal attributions of blame for tragic events. This study expands the framing research to include opinion on policies concerning guns as well...

Haider-Markel, Donald P.; Joslyn, Mark R.

2001-01-01T23:59:59.000Z

308

Power Controlled Minimum Frame Length Scheduling in TDMA Wireless Networks with  

E-Print Network [OSTI]

Power Controlled Minimum Frame Length Scheduling in TDMA Wireless Networks with Sectored Antennas controlled min- imum frame length scheduling for TDMA wireless networks. Given a set of one-hop transmission scheduling and power control was first addressed by Tamer and Ephremides in [1, 2]. Given a set of one

Arabshahi, Payman

309

Thermodynamics of Schwarzschild-de Sitter black hole: thermal stability of Nariai black hole  

E-Print Network [OSTI]

We study thermodynamics of the Schwarzschild-de Sitter black hole in five dimensions by introducing two temperatures based on the standard and Bousso-Hawking normalizations. We use the first-law of thermodynamics to derive thermodynamic quantities. The two temperatures indicate that the Nariai black hole is thermodynamically unstable. However, it seems that black hole thermodynamics favors the standard normalization, and does not favor the Bousso-Hawking normalization.

Yun Soo Myung

2008-03-28T23:59:59.000Z

310

Phase transitions and Geometrothermodynamics of Regular black holes  

E-Print Network [OSTI]

In this paper we study the thermodynamics and state space geometry of regular black hole solutions such as Bardeen black hole, Ay\\'{o}n-Beato and Garc\\'{i}a black hole, Hayward black hole and Berej-Matyjasek-Trynieki-Wornowicz black hole. We find that all these black holes show second order thermodynamic phase transitions(SOTPT) by observing discontinuities in heat capacity-entropy graphs as well as the cusp type double point in free energy-temperature graph. Using the formulation of geometrothermodynamics we again find the singularities in the heat capacity of the black holes by calculating the curvature scalar of the Legendre invariant metric.

R. Tharanath; Jishnu Suresh; V. C. Kuriakose

2014-06-16T23:59:59.000Z

311

Time Machine at the LHC  

E-Print Network [OSTI]

Recently, black hole and brane production at CERN's Large Hadron Collider (LHC) has been widely discussed. We suggest that there is a possibility to test causality at the LHC. We argue that if the scale of quantum gravity is of the order of few TeVs, proton-proton collisions at the LHC could lead to the formation of time machines (spacetime regions with closed timelike curves) which violate causality. One model for the time machine is a traversable wormhole. We argue that the traversable wormhole production cross section at the LHC is of the same order as the cross section for the black hole production. Traversable wormholes assume violation of the null energy condition (NEC) and an exotic matter similar to the dark energy is required. Decay of the wormholes/time machines and signatures of time machine events at the LHC are discussed.

I. Ya. Aref'eva; I. V. Volovich

2007-10-15T23:59:59.000Z

312

Anosov maps with rectangular holes. Nonergodic cases.  

E-Print Network [OSTI]

Ingenier'ia. Universidad de la Rep'ublica C.C. 30, Montevideo, Uruguay E­mail: roma@fing.edu.uy; Fax: (598 Partially supported by CONICYT (Uruguay). 1 #12; Running head: Anosov maps with rectangular holes Address

313

Radioactive hot cell access hole decontamination machine  

DOE Patents [OSTI]

Radioactive hot cell access hole decontamination machine. A mobile housing has an opening large enough to encircle the access hole and has a shielding door, with a door opening and closing mechanism, for uncovering and covering the opening. The housing contains a shaft which has an apparatus for rotating the shaft and a device for independently translating the shaft from the housing through the opening and access hole into the hot cell chamber. A properly sized cylindrical pig containing wire brushes and cloth or other disks, with an arrangement for releasably attaching it to the end of the shaft, circumferentially cleans the access hole wall of radioactive contamination and thereafter detaches from the shaft to fall into the hot cell chamber.

Simpson, William E. (Richland, WA)

1982-01-01T23:59:59.000Z

314

Hole Coupling Resonator for Free Electron Lasers  

E-Print Network [OSTI]

3. Total round-trip power loss, coupling efficiency and themicron. Total round-trip power loss and coupling efficiencythe total fractional power loss per round trip, the hole

Xie, M.

2011-01-01T23:59:59.000Z

315

Energy of 4-Dimensional Black Hole, etc  

E-Print Network [OSTI]

In this letter I suggest possible redefinition of mass density, not depending on speed of the mass element, which leads to a more simple stress-energy for an object. I calculate energy of black hole.

Dmitriy Palatnik

2011-07-18T23:59:59.000Z

316

Tucker Wireline Open Hole Wireline Logging  

SciTech Connect (OSTI)

The Tucker Wireline unit ran a suite of open hole logs right behind the RMOTC logging contractor for comparison purposes. The tools included Dual Laterolog, Phased Induction, BHC Sonic, and Density-Porosity.

Milliken, M.

2002-05-23T23:59:59.000Z

317

Horizon Operator Approach to Black Hole Quantization  

E-Print Network [OSTI]

The $S$-matrix Ansatz for the construction of a quantum theory of black holes is further exploited. We first note that treating the metric tensor $g_{\\m\

G. 't Hooft

1994-02-21T23:59:59.000Z

318

Towards Black Hole Entropy in Shape Dynamics  

E-Print Network [OSTI]

Shape dynamics is classical theory of gravity which agrees with general relativity in many important cases, but possesses different gauge symmetries and constraints. Rather than spacetime diffeomorphism invariance, shape dynamics takes spatial diffeomorphism invariance and spatial Weyl invariance as the fundamental gauge symmetries associated with the gravitational field. Since the area of the event horizon of a black hole transforms under a generic spatial Weyl transformation, there has been some doubt that one can speak sensibly about the thermodynamics of black holes in shape dynamics. The purpose of this paper is to show that by treating the event horizon of a black hole as an interior boundary, one can recover familiar notions of black hole thermodynamics in shape dynamics and define a gauge invariant entropy that agrees with general relativity.

Gabriel Herczeg; Vasudev Shyam

2014-10-21T23:59:59.000Z

319

Mutiny at the white-hole district  

E-Print Network [OSTI]

The white-hole sector of Kruskal's solution is almost never used in physical applications. However, it might contain the solution to many of the problems associated with gravitational collapse and evaporation. This essay tries to draw attention to some bouncing geometries that make a democratic use of the black- and white-hole sectors. We will argue that these types of behaviour could be perfectly natural in some approaches to the next physical level beyond classical general relativity.

Carlos Barceló; Raúl Carballo-Rubio; Luis J. Garay

2014-07-05T23:59:59.000Z

320

Notes on Black Hole Fluctuations and Backreaction  

E-Print Network [OSTI]

In these notes we prepare the ground for a systematic investigation into the issues of black hole fluctuations and backreaction by discussing the formulation of the problem, commenting on possible advantages and shortcomings of existing works, and introducing our own approach via a stochastic semiclassical theory of gravity based on the Einstein-Langevin equation and the fluctuation-dissipation relation for a self-consistent description of metric fluctuations and dissipative dynamics of the black hole with backreaction of its Hawking radiance.

B. L. Hu; Alpan Raval; Sukanya Sinha

1999-01-05T23:59:59.000Z

Note: This page contains sample records for the topic "holes time frame" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Gödel black hole, closed timelike horizon, and the study of particle emissions  

E-Print Network [OSTI]

We show that a particle, with positive orbital angular momentum, following an outgoing null/timelike geodesic, shall never reach the closed timelike horizon (CTH) present in the $(4+1)$-dimensional rotating G\\"{o}del black hole space-time. Therefore a large part of this space-time remains inaccessible to a large class of geodesic observers, depending on the conserved quantities associated with them. We discuss how this fact and the existence of the closed timelike curves present in the asymptotic region make the quantum field theoretic study of the Hawking radiation, where the asymptotic observer states are a pre-requisite, unclear. However, the semiclassical approach provides an alternative to verify the Smarr formula derived recently for the rotating G\\"{o}del black hole. We present a systematic analysis of particle emissions, specifically for scalars, charged Dirac spinors and vectors, from this black hole via the semiclassical complex path method.

Sourav Bhattacharya; Anirban Saha

2010-07-22T23:59:59.000Z

322

Thermodynamics and evaporation of the noncommutative black hole  

E-Print Network [OSTI]

We investigate the thermodynamics of the noncommutative black hole whose static picture is similar to that of the nonsingular black hole known as the de Sitter-Schwarzschild black hole. It turns out that the final remnant of extremal black hole is a thermodynamically stable object. We describe the evaporation process of this black hole by using the noncommutativity-corrected Vaidya metric. It is found that there exists a close relationship between thermodynamic approach and evaporation process.

Yun Soo Myung; Yong-Wan Kim; Young-Jai Park

2007-01-21T23:59:59.000Z

323

Muon decays in the Earth's atmosphere, time dilatation and relativity of simultaneity  

E-Print Network [OSTI]

Observation of the decay of muons produced in the Earth's atmosphere by cosmic ray interactions provides a graphic illustration of the counter-intuitive space-time predictions of special relativity theory. Muons at rest in the atmosphere decaying simultaneously are subject to a universal time-dilatation effect when viewed from a moving frame and so are also observed to decay simultaneously in all such frames, whereas the decays of muons with different proper frames show relativity of simultaneity when observed from different inertial frames.

J. H. Field

2009-01-22T23:59:59.000Z

324

Solar Wind Forecasting with Coronal Holes  

E-Print Network [OSTI]

An empirical model for forecasting solar wind speed related geomagnetic events is presented here. The model is based on the estimated location and size of solar coronal holes. This method differs from models that are based on photospheric magnetograms (e.g., Wang-Sheeley model) to estimate the open field line configuration. Rather than requiring the use of a full magnetic synoptic map, the method presented here can be used to forecast solar wind velocities and magnetic polarity from a single coronal hole image, along with a single magnetic full-disk image. The coronal hole parameters used in this study are estimated with Kitt Peak Vacuum Telescope He I 1083 nm spectrograms and photospheric magnetograms. Solar wind and coronal hole data for the period between May 1992 and September 2003 are investigated. The new model is found to be accurate to within 10% of observed solar wind measurements for its best one-month periods, and it has a linear correlation coefficient of ~0.38 for the full 11 years studied. Using a single estimated coronal hole map, the model can forecast the Earth directed solar wind velocity up to 8.5 days in advance. In addition, this method can be used with any source of coronal hole area and location data.

S. Robbins; C. J. Henney; J. W. Harvey

2007-01-09T23:59:59.000Z

325

Geodesic Structure of the Schwarzschild Black Hole in Rainbow Gravity  

E-Print Network [OSTI]

In this paper we study the geodesic structure of the Schwarzschild black hole in rainbow gravity analyzing the behavior of null and time-like geodesic. We find that the structure of the geodesics essentially does not change when the semi-classical effects are included. However, we can distinguish different scenarios if we take into account the effects of rainbow gravity. Depending on the type of rainbow functions under consideration, inertial and external observers see very different situations in radial and non radial motion of a test particles.

Carlos Leiva; Joel Saavedra; Jose Villanueva

2008-12-09T23:59:59.000Z

326

Seismic fragility estimates for reinforced concrete framed buildings  

E-Print Network [OSTI]

story drift given the spectral acceleration at the fundamental period of the building. The unknown parameters of the demand models are estimated using the simulated response data obtained from nonlinear time history analyses of the structural models...

Ramamoorthy, Sathish Kumar

2007-04-25T23:59:59.000Z

327

Larmor radius size density holes discovered in the solar wind upstream of Earth's bow shock  

E-Print Network [OSTI]

Larmor radius size density holes discovered in the solar wind upstream of Earth's bow shock G. K. Cao Key Laboratory for Space Weather, CSSAR, CAS, Beijing, China K. Meziane Physics Department that are five or more times the solar wind density. Particle distributions show the steepened edge can behave

California at Berkeley, University of

328

Perturbative String Thermodynamics near Black Hole Horizons  

E-Print Network [OSTI]

We provide further computations and ideas to the problem of near-Hagedorn string thermodynamics near (uncharged) black hole horizons, building upon our earlier work JHEP 1403 (2014) 086. The relevance of long strings to one-loop black hole thermodynamics is emphasized. We then provide an argument in favor of the absence of $\\alpha'$-corrections for the (quadratic) heterotic thermal scalar action in Rindler space. We also compute the large $k$ limit of the cigar orbifold partition functions (for both bosonic and type II superstrings) which allows a better comparison between the flat cones and the cigar cones. A discussion is made on the general McClain-Roth-O'Brien-Tan theorem and on the fact that different torus embeddings lead to different aspects of string thermodynamics. The black hole/string correspondence principle for the 2d black hole is discussed in terms of the thermal scalar. Finally, we present an argument to deal with arbitrary higher genus partition functions, suggesting the breakdown of string perturbation theory (in $g_s$) to compute thermodynamical quantities in black hole spacetimes.

Thomas G. Mertens; Henri Verschelde; Valentin I. Zakharov

2014-10-29T23:59:59.000Z

329

The Environmental Impact of Supermassive Black Holes  

E-Print Network [OSTI]

The supermassive black holes observed at the centers of almost all present-day galaxies, had a profound impact on their environment. I highlight the principle of self-regulation, by which supermassive black holes grow until they release sufficient energy to unbind the gas that feeds them from their host galaxy. This principle explains several observed facts, including the correlation between the mass of a central black hole and the depth of the gravitational potential well of its host galaxy, and the abundance and clustering properties of bright quasars in the redshift interval of z~2-6. At lower redshifts, quasars might have limited the maximum mass of galaxies through the suppression of cooling flows in X-ray clusters. The seeds of supermassive black holes were likely planted in dwarf galaxies at redshifts z>10, through the collapse of massive or supermassive stars. The minimum seed mass can be identified observationally through the detection of gravitational waves from black hole binaries by Advanced LIGO or LISA. Aside from shaping their host galaxies, quasar outflows filled the intergalactic medium with magnetic fields and heavy elements. Beyond the reach of these outflows, the brightest quasars at z>6 have ionized exceedingly large volumes of gas (tens of comoving Mpc) prior to global reionization, and must have suppressed the faint end of the galaxy luminosity function in these volumes before the same occurred through the rest of the universe.

Abraham Loeb

2004-08-10T23:59:59.000Z

330

Black Holes with Flavors of Quantum Hair?  

E-Print Network [OSTI]

We show that black holes can posses a long-range quantum hair of super-massive tensor fields, which can be detected by Aharonov-Bohm tabletop interference experiments, in which a quantum-hairy black hole, or a remnant particle, passes through the loop of a magnetic solenoid. The long distance effect does not decouple for an arbitrarily high mass of the hair-providing field. Because Kaluza-Klein and String theories contain infinite number of massive tensor fields, we study black holes with quantum Kaluza-Klein hair. We show that in five dimensions such a black hole can be interpreted as a string of `combed' generalized magnetic monopoles, with their fluxes confined along it. For the compactification on a translation-invariant circle, this substructure uncovers hidden flux conservation and quantization of the monopole charges, which constrain the quantum hair of the resulting four-dimensional black hole. For the spin-2 quantum hair this result is somewhat unexpected, since the constituent `magnetic' charges have no `electric' counterparts. Nevertheless, the information about their quantization is encoded in singularity.

Gia Dvali

2006-07-20T23:59:59.000Z

331

Holographic superconductor in the exact hairy black hole  

E-Print Network [OSTI]

We study the charged black hole of hyperbolic horizon with scalar hair (charged Martinez-Troncoso-Zanelli: CMTZ black hole) as a model of analytic hairy black hole for holographic superconductor. For this purpose, we investigate the second order phase transition between CMTZ and hyperbolic Reissner-Nordstr\\"om-AdS (HRNAdS) black holes. However, this transition unlikely occur. As an analytic treatment for holographic superconductor, we develop superconductor in the bulk and superfluidity on the boundary using the CMTZ black hole below the critical temperature. The presence of charge destroys the condensates around the zero temperature, which is in accord with the thermodynamic analysis of the CMTZ black hole.

Yun Soo Myung; Chanyong Park

2011-09-13T23:59:59.000Z

332

Measuring Hawking Radiation of a Kerr-Newman Black Hole in a Superconducting Transmission Line  

E-Print Network [OSTI]

Applying a dimensional reduction technique and a coordinates transformation approach, we deduce the Kerr-Newman space-time into a Painlev\\'{e}-like form, and obtain its corresponding event horizon and the Hawking radiation temperature. We find that, the event horizon of a Kerr-Newman black hole can be simulated in a superconducting transmission line. Moreover, by running some numerical simulation, we confirm that the Hawking radiation of a Kerr-Newman Black Hole can be experimentally measured in a superconducting transmission line.

X. G. Lan; D. Y. Chen; L. F. Wei

2014-03-21T23:59:59.000Z

333

Phase-Change Frame Walls (PCFWs) for Peak Demand Reduction, Load Shifting, Energy Conservation and Comfort  

E-Print Network [OSTI]

This paper presents results of side-by-side experimental testing of a technology, referred to as Phase Change Frame Wall (PCFW), whose primary purpose is to increase building thermal mass by the application of phase change materials (PCMs...

Medina, M.; Stewart, R.

334

Analytical Modeling of Wood Frame Shear Walls Subjected to Vertical Load  

E-Print Network [OSTI]

A nonlinear automated parameter fitted analytical model that numerically predicts the load-displacement response of wood frame shear walls subjected to static monotonic loading with and without vertical load is presented. This analytical model...

Nguyendinh, Hai

2011-08-08T23:59:59.000Z

335

Investigation of manufacturing techniques and prototyping of the Smartcities Citycar frame  

E-Print Network [OSTI]

A study was performed to analyze different methods of manufacturing a full scale car frame for the Smart Cities Citycar, a folding electric vehicle being designed at the MIT Media Lab, as well as a half-scale prototype for ...

Rogers, Arin S

2011-01-01T23:59:59.000Z

336

ORTHONORMAL DILATIONS OF NON-TIGHT FRAMES MARCIN BOWNIK, JOHN JASPER, AND DARRIN SPEEGLE  

E-Print Network [OSTI]

ORTHONORMAL DILATIONS OF NON-TIGHT FRAMES MARCIN BOWNIK, JOHN JASPER, AND DARRIN SPEEGLE Abstract and Riesz bounds are the same. Recently, Bownik and Jasper [3, Proposition 2.3] proved a dilation result

Scannell, Kevin Patrick

337

FAIR MATCHING ALGORITHM: FIXED-LENGTH FRAME SCHEDULING IN ALL-PHOTONIC NETWORKS  

E-Print Network [OSTI]

FAIR MATCHING ALGORITHM: FIXED-LENGTH FRAME SCHEDULING IN ALL-PHOTONIC NETWORKS Nahid Saberi email:nahid.saberi@mail.mcgill.ca, coates@ece.mcgill.ca Abstract Internal switches in all

338

The Behaviour of Multi-storey Composite Steel Framed Structures in Response to Compartment Fires   

E-Print Network [OSTI]

For many years, the ability of highly redundant composite framed structure to resist the effect of a fire have been undervalued and misunderstood. A great deal of work on the behavior of composite steel-concrete structures ...

Lamont, Susan

339

Performance-Based Seismic Demand Assessment of Concentrically Braced Steel Frame Buildings  

E-Print Network [OSTI]

and Ductility Factors for Steel Frames De- signed According1980), Inelastic Buckling of Steel Struts Under Cyclic LoadBS 5950: Structural use of steel work in building. Part1

Chen, Chui-Hsin

2010-01-01T23:59:59.000Z

340

The design of a frame for an all terrain, lever propelled wheelchair  

E-Print Network [OSTI]

This thesis outlines the process of designing a frame for the Leveraged Freedom Chair (LFC) Prime, an all-terrain levered powered wheelchair designed to improve the mobility of disabled individuals. This design allows for ...

Walton, John Michael

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "holes time frame" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Thermal properties of structural details in wood frame homes : analysis and recommendations  

E-Print Network [OSTI]

The wood platform frame home is the dominant design in the United States when it comes to single family housing. Introduced during the mid-nineteenth century, the scheme is a cheap, fast, and proven design that takes ...

Graybeal, Alexander Kung

2010-01-01T23:59:59.000Z

342

State-of-the-Art Highly Insulating Window Frames - Research and Market Review  

E-Print Network [OSTI]

analysis investigation of a PVC window frame naturally agedThermix / TGI-wave 1.23 x 1.48 PVC profile with PUR (? =TOPLINE Plus Rahmenmaterial: PVC- Profile, Kammern mit PU

Gustavsen, Arild

2008-01-01T23:59:59.000Z

343

Laser wakefield simulation using a speed-of-light frame envelope model  

E-Print Network [OSTI]

Laser wake?eld simulation using a speed-of-light frameAbstract. Simulation of laser wake?eld accelerator (LWFA)extend hundreds of laser wave- lengths transversely and many

Cowan, B.

2010-01-01T23:59:59.000Z

344

Usage of Friction-damped Braced Frames for Seismic Vibration Control  

E-Print Network [OSTI]

This study presents the results of experimental work that examines the functionality of friction-damped braced frames during seismic events. The simplicity and efficacy of this friction device as a means of passive vibration control suggest...

Fink, Brynnan 1992-

2012-04-16T23:59:59.000Z

345

Experimental and Numerical Examination of the Thermal Transmittance of High Performance Window Frames  

E-Print Network [OSTI]

windows are often called passive -house wind ows, as windowse window frames, like passive-house windows. In this p aperare supposed to satisfy the Passive house requirements of

Gustavsen Ph.D., Arild

2010-01-01T23:59:59.000Z

346

Local thermodynamical equilibrium and the beta frame for a quantum relativistic fluid  

E-Print Network [OSTI]

We discuss the concept of local thermodynamical equilibrium in relativistic hydrodynamics in a quantum statistical framework without an underlying kinetic description, suitable for strongly interacting fluids. We show that the appropriate definition of local equilibrium naturally leads to the introduction of a relativistic hydrodynamical frame in which the four-velocity vector is the one of a relativistic thermometer at equilibrium with the fluid, parallel to the inverse temperature four-vector beta, which then becomes a primary quantity. We show that this frame is the most appropriate for the expansion of stress-energy tensor from local thermodynamical equilibrium and that therein the local laws of thermodynamics take on their simplest form. We discuss the difference between the beta frame and Landau frame and present an instance where they differ.

F. Becattini; L. Bucciantini; E. Grossi; L. Tinti

2014-10-24T23:59:59.000Z

347

Thermalization with chemical potentials, and higher spin black holes  

E-Print Network [OSTI]

We study the long time behaviour of local observables following a quantum quench in 1+1 dimensional conformal field theories possessing additional conserved charges besides the energy. We show that the expectation value of an arbitrary string of {\\it local} observables supported on a finite interval exponentially approaches an equilibrium value. The equilibrium is characterized by a temperature and chemical potentials defined in terms of the quenched state. For an infinite number of commuting conserved charges, the equilibrium ensemble is a generalized Gibbs ensemble (GGE). We compute the thermalization rate in a systematic perturbation in the chemical potentials, using a new technique to sum over an infinite number of Feynman diagrams. The above technique also allows us to compute relaxation times for thermal Green's functions in the presence of an arbitrary number of chemical potentials. In the context of a higher spin (hs[\\lambda]) holography, the partition function of the final equilibrium GGE is known to agree with that of a higher spin black hole. The thermalization rate from the CFT computed in our paper agrees with the quasinormal frequency of a scalar field in this black hole.

Gautam Mandal; Ritam Sinha; Nilakash Sorokhaibam

2015-03-06T23:59:59.000Z

348

Thermalization with chemical potentials, and higher spin black holes  

E-Print Network [OSTI]

We study the long time behaviour of local observables following a quantum quench in 1+1 dimensional conformal field theories possessing additional conserved charges besides the energy. We show that the expectation value of an arbitrary string of {\\it local} observables supported on a finite interval exponentially approaches an equilibrium value. The equilibrium is characterized by a temperature and chemical potentials defined in terms of the quenched state. For an infinite number of commuting conserved charges, the equilibrium ensemble is a generalized Gibbs ensemble (GGE). We compute the thermalization rate in a systematic perturbation in the chemical potentials, using a new technique to sum over an infinite number of Feynman diagrams. The above technique also allows us to compute relaxation times for thermal Green's functions in the presence of an arbitrary number of chemical potentials. In the context of a higher spin (hs[\\lambda]) holography, the partition function of the final equilibrium GGE is known to agree with that of a higher spin black hole. The thermalization rate from the CFT computed in our paper agrees with the quasinormal frequency of a scalar field in this black hole.

Gautam Mandal; Ritam Sinha; Nilakash Sorokhaibam

2015-01-19T23:59:59.000Z

349

Performance of alternative CFRP retrofitting schemes used in infilled RC frames E. Yuksel a,*, H. Ozkaynak b  

E-Print Network [OSTI]

University, Istanbul, Turkey c Civil and Environmental Engineering, Massachusetts Institute of Technology, MA of infill walls on the seismic response of reinforced concrete (RC) frames. The experimental study presented to be more than those of the bare infilled frame, thus reducing the seismic demand imposed on the frames

Entekhabi, Dara

350

Reducing spurious gravitational radiation in binary-black-hole simulations by using conformally curved initial data  

E-Print Network [OSTI]

At early times in numerical evolutions of binary black holes, current simulations contain an initial burst of spurious gravitational radiation (also called "junk radiation") which is not astrophysically realistic. The spurious radiation is a consequence of how the binary-black-hole initial data are constructed: the initial data are typically assumed to be conformally flat. In this paper, I adopt a curved conformal metric that is a superposition of two boosted, non-spinning black holes that are approximately 15 orbits from merger. I compare junk radiation of the superposed-boosted-Schwarzschild (SBS) initial data with the junk of corresponding conformally flat, maximally sliced (CFMS) initial data. The SBS junk is smaller in amplitude than the CFMS junk, with the junk's leading-order spectral modes typically being reduced by a factor of order two or more.

Geoffrey Lovelace

2008-12-16T23:59:59.000Z

351

Gravitational Lensing by Self-Dual Black Holes in Loop Quantum Gravity  

E-Print Network [OSTI]

We study gravitational lensing by a recently proposed black hole solution in Loop Quantum Gravity. We highlight the fact that the quantum gravity corrections to the Schwarzschild metric in this model evade the `mass suppression' effects (that the usual quantum gravity corrections are susceptible to) by virtue of one of the parameters in the model being dimensionless, which is unlike any other quantum gravity motivated parameter. Gravitational lensing in the strong and weak deflection regimes is studied and a sample consistency relation is presented which could serve as a test of this model. We discuss that though the consistency relation for this model is qualitatively similar to what would have been in Brans-Dicke, in general it can be a good discriminator between many alternative theories. Although the observational prospects do not seem to be very optimistic even for a galactic supermassive black hole case, time delay between relativistic images for billion solar mass black holes in other galaxies might be...

Sahu, Satyabrata; Narasimha, D

2015-01-01T23:59:59.000Z

352

Modulational instability of electrostatic acoustic waves in an electron-hole semiconductor quantum plasma  

SciTech Connect (OSTI)

The modulational instability of quantum electrostatic acoustic waves in electron-hole quantum semiconductor plasmas is investigated using the quantum hydrodynamic model, from which a modified nonlinear Schrödinger equation with damping effects is derived using the reductive perturbation method. Here, we consider the combined effects of quantum recoil, quantum degenerate pressures, as well as the exchange-correlation effect standing for the electrons (holes) spin. The modulational instability for different semiconductors (GaAs, GaSb, and InP) is discussed. The collision between electron (hole) and phonon is also investigated. The permitted maximum time for modulational instability and the damping features of quantum envelope solitary wave are all determined by the collision. The approximate solitary solution with damping effects is presented in weak collision limit. The damping properties were discussed by numerical method.

Wang, Yunliang, E-mail: ylwang@ustb.edu.cn; Lü, Xiaoxia [Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China)] [Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China)

2014-02-15T23:59:59.000Z

353

Horndeski meets McVittie: A scalar field theory for accretion onto cosmological black holes  

E-Print Network [OSTI]

We show that the generalized McVittie spacetime, which represents a black hole with time-dependent mass in an expanding universe, is an exact solution of a subclass of the Horndeski family of actions. The heat-flow term responsible for the energy transfer between the black hole and the cosmological background is generated by the higher-order kinetic gravity braiding term, which generalizes the cuscuton action that yields McVittie with constant mass as a solution. Finally, we show that this generalization can be understood in terms of a duality realized by a disformal transformation, connecting the cuscuton field theory to an extension of the Horndeski action which does not propagate any scalar degrees of freedom. Our finding opens a novel window into studies of non-trivial interactions between dark energy/modified gravity theories and astrophysical black holes.

Niayesh Afshordi; Michele Fontanini; Daniel C. Guariento

2014-08-24T23:59:59.000Z

354

3D SPH Simulations of Shocks in Accretion Flows around black holes  

E-Print Network [OSTI]

We present the simulation of 3D time dependent flow of rotating ideal gas falling into a Schwarzschild black hole. It is shown that also in the 3D case steady shocks are formed in a wide range of parameters (initial angular momentum and thermal energy). We therefore highlight the stability of the phenomenon of shock formation in sub keplerian flows onto black holes, and reenforce the role of the shocks in the high luminosity emission from black hole candidates. The simulations have been performed using a parallelized code based on the Smoothed Particles Hydrodynamics method (SPH). We also discuss some properties of the shock problem that allow its use as a quantitative test of the accuracy of the used numerical method. This shows that the accuracy of SPH is acceptable although not excellent.

G. Gerardi; D. Molteni; V. Teresi

2005-01-25T23:59:59.000Z

355

Transient evolution of solitary electron holes in low pressure laboratory plasma  

E-Print Network [OSTI]

Solitary electrons holes (SEHs) are localized electrostatic positive potential structures in collisionless plasmas. These are vortex-like structures in the electron phase space. Its existence is cause of distortion of the electron distribution in the resonant region. These are explained theoretically first time by Schamel et.al [Phys. Scr. 20, 336 (1979) and Phys. Plasmas 19, 020501 (2012)]. Propagating solitary electron holes can also be formed in a laboratory plasma when a fast rising high positive voltage pulse is applied to a metallic electrode [Kar et. al., Phys. Plasmas 17, 102113 (2010)] immersed in a low pressure plasma. The temporal evolution of these structures can be studied by measuring the transient electron distribution function (EDF). In the present work, transient EDF is measured after formation of a solitary electron hole in nearly uniform, unmagnetized, and collisionless plasma for applied pulse width and, where and are applied pulse width and inverse of ion plasma frequency respectively. Fo...

Choudhary, Mangilal; Mukherjee, Subroto

2015-01-01T23:59:59.000Z

356

Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre  

E-Print Network [OSTI]

The cores of most galaxies are thought to harbour supermassive black holes, which power galactic nuclei by converting the gravitational energy of accreting matter into radiation (ref 1). Sagittarius A*, the compact source of radio, infrared and X-ray emission at the centre of the Milky Way, is the closest example of this phenomenon, with an estimated black hole mass that is 4 million times that of the Sun (refs. 2,3). A long-standing astronomical goal is to resolve structures in the innermost accretion flow surrounding Sgr A* where strong gravitational fields will distort the appearance of radiation emitted near the black hole. Radio observations at wavelengths of 3.5 mm and 7 mm have detected intrinsic structure in Sgr A*, but the spatial resolution of observations at these wavelengths is limited by interstellar scattering (refs. 4-7). Here we report observations at a wavelength of 1.3 mm that set a size of 37 (+16, -10; 3-sigma) microarcseconds on the intrinsic diameter of Sgr A*. This is less than the expected apparent size of the event horizon of the presumed black hole, suggesting that the bulk of SgrA* emission may not be not centred on the black hole, but arises in the surrounding accretion flow.

Sheperd Doeleman; Jonathan Weintroub; Alan E. E. Rogers; Richard Plambeck; Robert Freund; Remo P. J. Tilanus; Per Friberg; Lucy M. Ziurys; James M. Moran; Brian Corey; Ken H. Young; Daniel L. Smythe; Michael Titus; Daniel P. Marrone; Roger J. Cappallo; Douglas C. J. Bock; Geoffrey C. Bower; Richard Chamberlin; Gary R. Davis; Thomas P. Krichbaum; James Lamb; Holly Maness; Arthur E. Niell; Alan Roy; Peter Strittmatter; Daniel Werthimer; Alan R. Whitney; David Woody

2008-09-15T23:59:59.000Z

357

Particle-hole symmetry parameters for nuclei  

E-Print Network [OSTI]

Two parameters, nu and zeta, motivated by particle-hole symmetry are introduced. These parameters are determined using the number of proton (or neutron) particles and holes counted from neighboring shell closures. The new parameters can be used to evaluate particle-hole and proton-neutron symmetries of adopted B(E2) values, which indicate that both symmetries are approximate for A>100. The combined symmetries motivate empirical fits of binding energies and the energy ratio E(4_1^+)/E(2_1^+). A global binding energy fit consisting of a traditional liquid droplet and one new shell term, comprised of a function of nu and zeta, reproduces the experimental binding energies of 2353 nuclei with an r.m.s. standard deviation of 1.55 MeV.

Ian Bentley

2015-03-10T23:59:59.000Z

358

Neutrino Majorana Mass from Black Hole  

E-Print Network [OSTI]

We propose a new mechanism to generate the neutrino Majorana mass in TeV-scale gravity models. The black hole violates all non-gauged symmetries and can become the origin of lepton number violating processes. The fluctuation of higher-dimensional spacetime can result in the production of a black hole, which emits 2 neutrinos. If neutrinos are Majorana particles, this process is equivalent to the free propagation of a neutrino with the insertion of the black hole. From this fact, we derive the neutrino Majorana mass. The result is completely consistent with the recently observed evidence of neutrinoless double beta decay. And the obtained neutrino Majorana mass satisfies the constraint from the density of the neutrino dark matter, which affects the cosmic structure formation. Furthermore, we can explain the ultrahigh energy cosmic rays by the Z-burst scenario with it.

Yosuke Uehara

2002-05-25T23:59:59.000Z

359

Black Hole Chromosphere at the LHC  

E-Print Network [OSTI]

If the scale of quantum gravity is near a TeV, black holes will be copiously produced at the LHC. In this work we study the main properties of the light descendants of these black holes. We show that the emitted partons are closely spaced outside the horizon, and hence they do not fragment into hadrons in vacuum but more likely into a kind of quark-gluon plasma. Consequently, the thermal emission occurs far from the horizon, at a temperature characteristic of the QCD scale. We analyze the energy spectrum of the particles emerging from the "chromosphere", and find that the hard hadronic jets are almost entirely suppressed. They are replaced by an isotropic distribution of soft photons and hadrons, with hundreds of particles in the GeV range. This provides a new distinctive signature for black hole events at LHC.

Luis Anchordoqui; Haim Goldberg

2003-02-26T23:59:59.000Z

360

Anomalous Flyby in the Non-Prefered Reference Frame of the Rotating Earth  

E-Print Network [OSTI]

Several spacecrafts show an anomalous flyby. In a previous paper a non-prefered reference frame is studied moving uniformly relative to the prefered one. In this article the Doppler frequency residual is derived. The prefered reference frame is given by the isotropy of the CMB and the non-prefered one is the Earth. The resulting jump is much too small to explain the measured anomalous flybys of the different spacecrafts. Therefore, the transformations from the prefered frame to the non-prefered frame are replaced by the corresponding total differentials. A formula for the Doppler frequency residual is derived. It is applied to the prefered frame of the Earth and the non-prefered frame of the rotating Earth. The resulting Doppler residual depends on the direction of the velocity of the spacecraft and the position of the observer on the rotating Earth. It is similar to the experimental formula of Anderson et al. which is independent of the position of the observer.

Walter Petry

2011-09-27T23:59:59.000Z

Note: This page contains sample records for the topic "holes time frame" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Key Elements of and Materials Performance Targets for Highly Insulating Window Frames  

SciTech Connect (OSTI)

The thermal performance of windows is important for energy efficient buildings. Windows typically account for about 30-50 percent of the transmission losses though the building envelope, even if their area fraction of the envelope is far less. The reason for this can be found by comparing the thermal transmittance (U-factor) of windows to the U-factor of their opaque counterparts (wall, roof and floor constructions). In well insulated buildings the U-factor of walls, roofs an floors can be between 0.1-0.2 W/(m2K). The best windows have U-values of about 0.7-1.0. It is therefore obvious that the U-factor of windows needs to be reduced, even though looking at the whole energy balance for windows (i.e. solar gains minus transmission losses) makes the picture more complex.In high performance windows the frame design and material use is of utmost importance, as the frame performance is usually the limiting factor for reducing the total window U-factor further. This paper describes simulation studies analyzing the effects on frame and edge-of-glass U-factors of different surface emissivities as well as frame material and spacer conductivities. The goal of this work is to define materials research targets for window frame components that will result in better frame thermal performance than is exhibited by the best products available on the market today.

Gustavsen, Arild; Grynning, Steinar; Arasteh, Dariush; Jelle, Bjorn Petter; Goudey, Howdy

2011-03-28T23:59:59.000Z

362

Time dependence of Hawking radiation entropy  

SciTech Connect (OSTI)

If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its original Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4?M{sub 0}{sup 2}, or about 7.509M{sub 0}{sup 2} ? 6.268 × 10{sup 76}(M{sub 0}/M{sub s}un){sup 2}, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M{sub 0}{sup 2} ? 1.254 × 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}, and then decreases back down to 4?M{sub 0}{sup 2} = 1.049 × 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}.

Page, Don N., E-mail: profdonpage@gmail.com [Department of Physics, 4-181 CCIS, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

2013-09-01T23:59:59.000Z

363

CHARYBDIS: A Black Hole Event Generator  

E-Print Network [OSTI]

CHARYBDIS is an event generator which simulates the production and decay of miniature black holes at hadronic colliders as might be possible in certain extra dimension models. It interfaces via the Les Houches accord to general purpose Monte Carlo programs like HERWIG and PYTHIA which then perform the parton evolution and hadronization. The event generator includes the extra-dimensional `grey-body' effects as well as the change in the temperature of the black hole as the decay progresses. Various options for modelling the Planck-scale terminal decay are provided.

C. M. Harris; P. Richardson; B. R. Webber

2003-07-24T23:59:59.000Z

364

Might black holes reveal their inner secrets?  

E-Print Network [OSTI]

Black holes harbor a spacetime singularity of infinite curvature, where classical spacetime physics breaks down, and current theory cannot predict what will happen. However, the singularity is invisible from the outside because strong gravity traps all signals, even light, behind an event horizon. In this essay we discuss whether it might be possible to destroy the horizon, if a body is tossed into the black hole so as to make it spin faster and/or have more charge than a certain limit. It turns out that one could expose a "naked" singularity if effects of the body's own gravity can be neglected. We suspect however that such neglect is unjustified.

Ted Jacobson; Thomas P. Sotiriou

2010-06-09T23:59:59.000Z

365

BLACK HOLE ENTROPY IN HIGHER CURVATURE GRAVITY  

E-Print Network [OSTI]

We discuss some recent results on black hole thermodynamics within the context of effective gravitational actions including higher-curvature interactions. Wald's derivation of the First Law demonstrates that black hole entropy can always be expressed as a local geometric density integrated over a space-like cross-section of the horizon. In certain cases, it can also be shown that these entropy expressions satisfy a Second Law. One such simple example is considered from the class of higher curvature theories where the Lagrangian consists of a polynomial in the Ricci scalar.

TED JACOBSON; GUNGWON KANG; ROBERT C. MYERS

1995-02-27T23:59:59.000Z

366

How red is a quantum black hole?  

E-Print Network [OSTI]

Radiating black holes pose a number of puzzles for semiclassical and quantum gravity. These include the transplanckian problem -- the nearly infinite energies of Hawking particles created near the horizon, and the final state of evaporation. A definitive resolution of these questions likely requires robust inputs from quantum gravity. We argue that one such input is a quantum bound on curvature. We show how this leads to an upper limit on the redshift of a Hawking emitted particle, to a maximum temperature for a black hole, and to the prediction of a Planck scale remnant.

Viqar Husain; Oliver Winkler

2005-05-30T23:59:59.000Z

367

Tachyon Perturbation on Two Dimensional Black Hole  

E-Print Network [OSTI]

We study the black hole geometry in the presence of tachyonic perturbations, and solve for the form of allowed tachyonic hair in the presence of back reaction, and for the form of the metric under the assumption that only the metric is perturbed but not the dilaton. We evaluate the Kretschmann scalar and argue that the horizon becomes singular in the presence of tachyons, implying that the black hole has turned into a naked singularity. A form of the allowed tachyon potential emerges as a requirement of self-consistency of our solution.

Aniket Basu

2014-07-03T23:59:59.000Z

368

Chaotic Information Processing by Extremal Black Holes  

E-Print Network [OSTI]

We review an explicit regularization of the AdS$_2$/CFT$_1$ correspondence, that preserves all isometries of bulk and boundary degrees of freedom. This scheme is useful to characterize the space of the unitary evolution operators that describe the dynamics of the microstates of extremal black holes in four spacetime dimensions. Using techniques from algebraic number theory to evaluate the transition amplitudes, we remark that the regularization scheme expresses the fast quantum computation capability of black holes as well as its chaotic nature.

Axenides, Minos; Nicolis, Stam

2015-01-01T23:59:59.000Z

369

Physics Beyond the Standard Model: Exotic Leptons and Black Holes at Future Colliders  

E-Print Network [OSTI]

The Standard Model of particle physics has been remarkably successful in describing present experimental results. However, it is assumed to be only a low-energy effective theory which will break down at higher energy scales, theoretically motivated to be around 1 TeV. There are a variety of proposed models of new physics beyond the Standard Model, most notably supersymmetric and extra dimension models. New charged and neutral heavy leptons are a feature of a number of theories of new physics, including the `intermediate scale' class of supersymmetric models. Using a time-of-flight technique to detect the charged leptons at the Large Hadron Collider, the discovery range (in the particular scenario studied in the first part of this thesis) is found to extend up to masses of 950 GeV. Extra dimension models, particularly those with large extra dimensions, allow the possible experimental production of black holes. The remainder of the thesis describes some theoretical results and computational tools necessary to model the production and decay of these miniature black holes at future particle colliders. The grey-body factors which describe the Hawking radiation emitted by higher-dimensional black holes are calculated numerically for the first time and then incorporated in a Monte Carlo black hole event generator; this can be used to model black hole production and decay at next-generation colliders. It is hoped that this generator will allow more detailed examination of black hole signatures and help to devise a method for extracting the number of extra dimensions present in nature.

Christopher M. Harris

2005-02-01T23:59:59.000Z

370

Microhole Coiled Tubing Bottom Hole Assemblies  

SciTech Connect (OSTI)

The original objective of the project, to deliver an integrated 3 1/8-inch diameter Measurement While Drilling (MWD) and Logging While Drilling (LWD) system for drilling small boreholes using coiled tubing drilling, has been achieved. Two prototype systems have been assembled and tested in the lab. One of the systems has been successfully tested downhole in a conventional rotary drilling environment. Development of the 3 1/8-inch system has also lead to development and commercialization of a slightly larger 3.5-inch diameter system. We are presently filling customer orders for the 3.5-inch system while continuing with commercialization of the 3 1/8-inch system. The equipment developed by this project will be offered for sale to multiple service providers around the world, enabling the more rapid expansion of both coiled tubing drilling and conventional small diameter drilling. The project was based on the reuse of existing technology whenever possible in order to minimize development costs, time, and risks. The project was begun initially by Ultima Labs, at the time a small company ({approx}12 employees) which had successfully developed a number of products for larger oil well service companies. In September, 2006, approximately 20 months after inception of the project, Ultima Labs was acquired by Sondex plc, a worldwide manufacturer of downhole instrumentation for cased hole and drilling applications. The acquisition provided access to proven technology for mud pulse telemetry, downhole directional and natural gamma ray measurements, and surface data acquisition and processing, as well as a global sales and support network. The acquisition accelerated commercialization through existing Sondex customers. Customer demand resulted in changes to the product specification to support hotter (150 C) and deeper drilling (20,000 psi pressure) than originally proposed. The Sondex acquisition resulted in some project delays as the resistivity collar was interfaced to a different MWD system and also as the mechanical design was revised for the new pressure requirements. However, the Sondex acquisition has resulted in a more robust system, secure funding for completion of the project, and more rapid commercialization.

Don Macune

2008-06-30T23:59:59.000Z

371

X-ray Diffraction and Multi-Frame Phase Contrast Imaging Diagnostics for IMPULSE at the Advanced Photon Source  

SciTech Connect (OSTI)

The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSE experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.

Iverson, Adam [National Security Technologies, LLC; Carlson, Carl [National Security Technologies, LLC; Young, Jason [National Security Technologies, LLC; Curtis, Alden [National Security Technologies, LLC; Jensen, Brian [Los Alamos National Laboratory; Ramos, Kyle [Los Alamos National Laboratory; Yeager, John [Los Alamos National Laboratory; Montgomery, David [Los Alamos National Laboratory; Fezza, Kamel [Argonne National Laboratory

2013-07-08T23:59:59.000Z

372

Topological black holes in Horava-Lifshitz gravity  

SciTech Connect (OSTI)

We find topological (charged) black holes whose horizon has an arbitrary constant scalar curvature 2k in Horava-Lifshitz theory. Without loss of generality, one may take k=1, 0, and -1. The black hole solution is asymptotically anti-de Sitter with a nonstandard asymptotic behavior. Using the Hamiltonian approach, we define a finite mass associated with the solution. We discuss the thermodynamics of the topological black holes and find that the black hole entropy has a logarithmic term in addition to an area term. We find a duality in Hawking temperature between topological black holes in Horava-Lifshitz theory and Einstein's general relativity: the temperature behaviors of black holes with k=1, 0, and -1 in Horava-Lifshitz theory are, respectively, dual to those of topological black holes with k=-1, 0, and 1 in Einstein's general relativity. The topological black holes in Horava-Lifshitz theory are thermodynamically stable.

Cai Ronggen [Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190 (China) and Kavli Institute for Theoretical Physics China (KITPC), Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190 (China); Cao Liming [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Ohta, Nobuyoshi [Department of Physics, Kinki University, Higashi-Osaka, Osaka 577-8502 (Japan)

2009-07-15T23:59:59.000Z

373

COSO Geothermal Exploratory Hole No. 1, CGEH No. 1. Completion...  

Open Energy Info (EERE)

Geothermal Exploratory Hole No. 1, CGEH No. 1. Completion report. (Coso Hot Springs KGRA) Abstract Coso Geothermal Exploratory Hole No. 1 (CGEH No. 1) is the first deep exploratory...

374

Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit...  

Open Energy Info (EERE)

planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300...

375

Dynamics of galaxy cores and supermassive black holes  

E-Print Network [OSTI]

Recent work on the dynamical evolution of galactic nuclei containing supermassive black holes is reviewed. Topics include galaxy structural properties; collisionless and collisional equilibria; loss-cone dynamics; and dynamics of binary and multiple supermassive black holes.

David Merritt

2006-05-02T23:59:59.000Z

376

Steady and unsteady calibration of multi-hole probes  

E-Print Network [OSTI]

This thesis presents the development of a data crographics. reduction algorithm for multi-hole pressure probes. The algorithm has been developed for the reduction of calibration data from miniature non-nulling multi-hole probes in compressible...

Johansen, Espen S

1998-01-01T23:59:59.000Z

377

AdS black hole solutions in dilatonic Einstein-Gauss-Bonnet gravity  

SciTech Connect (OSTI)

We find that anti-de Sitter (AdS) spacetime with a nontrivial linear dilaton field is an exact solution in the effective action of the string theory, which is described by gravity with the Gauss-Bonnet curvature terms coupled to a dilaton field in the string frame without a cosmological constant. The AdS radius is determined by the spacetime dimensions and the coupling constants of curvature corrections. We also construct the asymptotically AdS black hole solutions with a linear dilaton field numerically. We find these AdS black holes for hyperbolic topology and in dimensions higher than four. We discuss the thermodynamical properties of those solutions. Extending the model to the case with the even-order higher Lovelock curvature terms, we also find the exact AdS spacetime with a nontrivial dilaton. We further find a cosmological solution with a bounce of three-dimensional space and a solitonic solution with a nontrivial dilaton field, which is regular everywhere and approaches an asymptotically AdS spacetime.

Maeda, Kei-ichi [Department of Physics, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Advanced Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Ohta, Nobuyoshi [Department of Physics, Kinki University, Higashi-Osaka, Osaka 577-8502 (Japan); Sasagawa, Yukinori [Department of Physics, Waseda University, Shinjuku, Tokyo 169-8555 (Japan)

2011-02-15T23:59:59.000Z

378

Prospects for intermediate mass black hole binary searches with advanced gravitational-wave detectors  

E-Print Network [OSTI]

We estimated the sensitivity of the upcoming advanced, ground-based gravitational-wave observatories (the upgraded LIGO and Virgo and the KAGRA interferometers) to coalescing intermediate mass black hole binaries (IMBHB). We added waveforms modeling the gravitational radiation emitted by IMBHBs to detectors' simulated data and searched for the injected signals with the coherent WaveBurst algorithm. The tested binary's parameter space covers non-spinning IMBHBs with source-frame total masses between 50 and 1050 $\\text{M}_{\\odot}$ and mass ratios between $1/6$ and 1$\\,$. We found that advanced detectors could be sensitive to these systems up to a range of a few Gpc. A theoretical model was adopted to estimate the expected observation rates, yielding up to a few tens of events per year. Thus, our results indicate that advanced detectors will have a reasonable chance to collect the first direct evidence for intermediate mass black holes and open a new, intriguing channel for probing the Universe over cosmological scales.

G. Mazzolo; F. Salemi; M. Drago; V. Necula; C. Pankow; G. A. Prodi; V. Re; V. Tiwari; G. Vedovato; I. Yakushin; S. Klimenko

2014-05-02T23:59:59.000Z

379

Can the fluctuations of a black hole be treated thermodynamically?  

E-Print Network [OSTI]

Since the temperature of a typical Schwarzschild black hole is very low, some doubts are raised about whether the fluctuations of the black hole can be treated thermodynamically. It is shown that this is not the case: the thermodynamic fluctuations of a black hole are considerably larger than the corresponding quantum fluctuations. Moreover the ratio of the mean square thermodynamic fluctuation to the corresponding quantum fluctuation can be interpreted as a number of the effective constituents of a black hole.

Kostyantyn Ropotenko

2008-03-31T23:59:59.000Z

380

A Note on Black Hole Temperature and Entropy  

E-Print Network [OSTI]

We propose intuitive derivations of the Hawking temperature and the Bekenstein-Hawking entropy of a Schwarzschild black hole.

P. R. Silva

2006-05-09T23:59:59.000Z

Note: This page contains sample records for the topic "holes time frame" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Black holes in Born-Infeld extended new massive gravity  

SciTech Connect (OSTI)

In this paper we find different types of black holes for the Born-Infeld extended new massive gravity. Our solutions include (un)charged warped (anti-)de Sitter black holes for four and six derivative expanded action. We also look at the black holes in unexpanded Born-Infeld action. In each case we calculate the entropy, angular momentum and mass of the black holes. We also find the central charges for the conformal field theory duals.

Ghodsi, Ahmad; Yekta, Davood Mahdavian [Department of Physics, Ferdowsi University of Mashhad, P.O. Box 1436, Mashhad (Iran, Islamic Republic of)

2011-05-15T23:59:59.000Z

382

Particles and scalar waves in noncommutative charged black hole spacetime  

E-Print Network [OSTI]

In this paper we have discussed geodesics and the motion of test particle in the gravitational field of noncommutative charged black hole spacetime. The motion of massive and massless particle have been discussed seperately. A comparative study of noncommutative charged black hole and usual Reissner-Nordstrom black hole has been done. The study of effective potential has also been included. Finally, we have examined the scattering of scalar waves in noncommutative charged black hole spacetime.

Bhar, Piyali; Biswas, Ritabrata; Mondal, U F

2015-01-01T23:59:59.000Z

383

Entropy and Area of Black Holes in Loop Quantum Gravity  

E-Print Network [OSTI]

Simple arguments related to the entropy of black holes strongly constrain the spectrum of the area operator for a Schwarzschild black hole in loop quantum gravity. In particular, this spectrum is fixed completely by the assumption that the black hole entropy is maximum. Within the approach discussed, one arrives in loop quantum gravity at a quantization rule with integer quantum numbers $n$ for the entropy and area of a black hole.

I. B. Khriplovich

2002-03-31T23:59:59.000Z

384

Construction of a Penrose Diagram for a Spatially Coherent Evaporating Black Hole  

E-Print Network [OSTI]

A Penrose diagram is constructed for an example black hole that evaporates at a steady rate as measured by a distant observer, until the mass vanishes, yielding a final state Minkowski space-time. Coordinate dependencies of significant features, such as the horizon and coordinate anomalies, are clearly demonstrated on the diagram. The large-scale causal structure of the space-time is briefly discussed.

Beth A. Brown; James Lindesay

2007-10-10T23:59:59.000Z

385

Are black holes with hair a normal state of matter?  

SciTech Connect (OSTI)

Recent observations put forward that quasars are black holes with a magnetic dipole moment and no event horizon. To model hairy black holes a quantum field for hydrogen is considered in curved space, coupled to the scalar curvature. An exact, regular solution for the interior metric occurs for supermassive black holes. The equation of state is p = -{rho}c{sup 2}/3.

Nieuwenhuizen, Th. M. [Institute for Theoretical Physics, Science Park 904, P. O. Box 94485, 1090 GL Amsterdam (Netherlands)

2011-03-28T23:59:59.000Z

386

A Link Between Black Holes and the Golden Ratio  

E-Print Network [OSTI]

We consider a variational formalism to describe black holes solution in higher dimensions. Our procedure clarifies the arbitrariness of the radius parameter and, in particular, the meaning of the event horizon of a black hole. Moreover, our formalism enables us to find a surprising link between black holes and the golden ratio.

J. A. Nieto

2011-06-02T23:59:59.000Z

387

ANCHIALINE ECOSYSTEMS Microbial hotspots in anchialine blue holes  

E-Print Network [OSTI]

ANCHIALINE ECOSYSTEMS Microbial hotspots in anchialine blue holes: initial discoveries from+Business Media B.V. 2011 Abstract Inland blue holes of the Bahamas are anchialine ecosystems with distinct fresh and geomicrobiology exploration of blue holes are providing a first glimpse of the geochemistry and microbial life

Iliffe, Thomas M.

388

Black Holes and Sub-millimeter Dimensions  

E-Print Network [OSTI]

Recently, a new framework for solving the hierarchy problem was proposed which does not rely on low energy supersymmetry or technicolor. The fundamental Planck mass is at a TeV and the observed weakness of gravity at long distances is due the existence of new sub-millimeter spatial dimensions. In this letter, we study how the properties of black holes are altered in these theories. Small black holes---with Schwarzschild radii smaller than the size of the new spatial dimensions---are quite different. They are bigger, colder, and longer-lived than a usual $(3+1)$-dimensional black hole of the same mass. Furthermore, they primarily decay into harmless bulk graviton modes rather than standard-model degrees of freedom. We discuss the interplay of our scenario with the holographic principle. Our results also have implications for the bounds on the spectrum of primordial black holes (PBHs) derived from the photo-dissociation of primordial nucleosynthesis products, distortion of the diffuse gamma-ray spectrum, overcl...

Argyres, Philip C; March-Russell, John David; Argyres, Philip C.; Dimopoulos, Savas; March-Russell, John

1998-01-01T23:59:59.000Z

389

Black Holes in Einstein-Aether Theory  

E-Print Network [OSTI]

We study black hole solutions in general relativity coupled to a unit timelike vector field dubbed the "aether". To be causally isolated a black hole interior must trap matter fields as well as all aether and metric modes. The theory possesses spin-0, spin-1, and spin-2 modes whose speeds depend on four coupling coefficients. We find that the full three-parameter family of local spherically symmetric static solutions is always regular at a metric horizon, but only a two-parameter subset is regular at a spin-0 horizon. Asymptotic flatness imposes another condition, leaving a one-parameter family of regular black holes. These solutions are compared to the Schwarzschild solution using numerical integration for a special class of coupling coefficients. They are very close to Schwarzschild outside the horizon for a wide range of couplings, and have a spacelike singularity inside, but differ inside quantitatively. Some quantities constructed from the metric and aether oscillate in the interior as the singularity is approached. The aether is at rest at spatial infinity and flows into the black hole, but differs significantly from the the 4-velocity of freely-falling geodesics.

Christopher Eling; Ted Jacobson

2010-03-28T23:59:59.000Z

390

Geodesic study of a charged black hole  

E-Print Network [OSTI]

The behavior of the timelike and null geodesics of charged E. Ay$\\acute{o}$n-Beato and A. Garcia (ABG) black hole are investigated. For circular and radial geodesics, we investigate all the possible motions by plotting the effective potentials for different parameters. In conclusion, we have shown that there is no phenomenon of \\textit{superradiance} in this case.

Mehedi Kalam; Nur Farhad; Sk. Monowar Hossein

2013-03-17T23:59:59.000Z

391

Limits on New Physics from Black Holes  

E-Print Network [OSTI]

Black holes emit high energy particles which induce a finite density potential for any scalar field $\\phi$ coupling to the emitted quanta. Due to energetic considerations, $\\phi$ evolves locally to minimize the effective masses of the outgoing states. In theories where $\\phi$ resides at a metastable minimum, this effect can drive $\\phi$ over its potential barrier and classically catalyze the decay of the vacuum. Because this is not a tunneling process, the decay rate is not exponentially suppressed and a single black hole in our past light cone may be sufficient to activate the decay. Moreover, decaying black holes radiate at ever higher temperatures, so they eventually probe the full spectrum of particles coupling to $\\phi$. We present a detailed analysis of vacuum decay catalyzed by a single particle, as well as by a black hole. The former is possible provided large couplings or a weak potential barrier. In contrast, the latter occurs much more easily and places new stringent limits on theories with hierarchical spectra. Finally, we comment on how these constraints apply to the standard model and its extensions, e.g. metastable supersymmetry breaking.

Clifford Cheung; Stefan Leichenauer

2014-08-02T23:59:59.000Z

392

Supermassive Black Hole Binaries: The Search Continues  

E-Print Network [OSTI]

Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.

Tamara Bogdanovic

2014-06-19T23:59:59.000Z

393

Deep-hole drilling Fruit Flies & Zebrafish  

E-Print Network [OSTI]

surface to purify air, employing existing technology in a new way. It is the brainchild of artistFEATURE Deep-hole drilling Fruit Flies & Zebrafish Björk FEATURE Academics & Industry: ResearchIScOvER mAGAZInE discover@sheffield.ac.uk Research and Innovation Services University of Sheffield New

Li, Yi

394

Brief review on higher spin black holes  

E-Print Network [OSTI]

We review some relevant results in the context of higher spin black holes in three-dimensional spacetimes, focusing on their asymptotic behaviour and thermodynamic properties. For simplicity, we mainly discuss the case of gravity nonminimally coupled to spin-3 fields, being nonperturbatively described by a Chern-Simons theory of two independent sl(3,R) gauge fields. Since the analysis is particularly transparent in the Hamiltonian formalism, we provide a concise discussion of their basic aspects in this context; and as a warming up exercise, we briefly analyze the asymptotic behaviour of pure gravity, as well as the BTZ black hole and its thermodynamics, exclusively in terms of gauge fields. The discussion is then extended to the case of black holes endowed with higher spin fields, briefly signaling the agreements and discrepancies found through different approaches. We conclude explaining how the puzzles become resolved once the fall off of the fields is precisely specified and extended to include chemical potentials, in a way that it is compatible with the asymptotic symmetries. Hence, the global charges become completely identified in an unambiguous way, so that different sets of asymptotic conditions turn out to contain inequivalent classes of black hole solutions being characterized by a different set of global charges.

Alfredo Perez; David Tempo; Ricardo Troncoso

2014-05-12T23:59:59.000Z

395

Remote down-hole well telemetry  

DOE Patents [OSTI]

The present invention includes an apparatus and method for telemetry communication with oil-well monitoring and recording instruments located in the vicinity of the bottom of gas or oil recovery pipes. Such instruments are currently monitored using electrical cabling that is inserted into the pipes; cabling has a short life in this environment, and requires periodic replacement with the concomitant, costly shutdown of the well. Modulated reflectance, a wireless communication method that does not require signal transmission power from the telemetry package will provide a long-lived and reliable way to monitor down-hole conditions. Normal wireless technology is not practical since batteries and capacitors have to frequently be replaced or recharged, again with the well being removed from service. RF energy generated above ground can also be received, converted and stored down-hole without the use of wires, for actuating down-hole valves, as one example. Although modulated reflectance reduces or eliminates the loss of energy at the sensor package because energy is not consumed, during the transmission process, additional stored extra energy down-hole is needed.

Briles, Scott D. (Los Alamos, NM); Neagley, Daniel L. (Albuquerque, NM); Coates, Don M. (Santa Fe, NM); Freund, Samuel M. (Los Alamos, NM)

2004-07-20T23:59:59.000Z

396

Accretion onto Supermassive Black Holes in Quasars: Learning from Optical/UV Observations  

E-Print Network [OSTI]

Accretion processes in quasars and active galactic nuclei are still poorly understood, especially as far as the connection between observed spectral properties and physical parameters is concerned. Quasars show an additional degree of complexity compared to stars that is related to anisotropic emission/obscuration influencing the observed properties in most spectral ranges. This complicating factor has hampered efforts to define the equivalent of an Hertzsprung-Russel diagram for quasars. Even if it has recently become possible to estimate black hole mass and Eddington ratio for sources using optical and UV broad emission lines, the results are still plagued by large uncertainties. Nevertheless, robust trends are emerging from multivariate analysis of large spectral datasets of quasars. A firm observational basis is being laid out by accurate measurements of broad emission line properties especially when the source rest-frame is known. We consider the most widely discussed correlations (i.e. the so-called "eigenvector 1 parameter space" and the "Baldwin effect") and analyze how they can be explained in terms of accretion properties, broad line region structure, and source evolution. We critically review recent estimates of black hole mass, accretion rate, spin and possible orientation indicators, stressing that any improvement in these parameters will provide a much better understanding of the physics and dynamics of the region producing the optical and UV broad emission lines. More accurate measurements of Eddington ratio and black hole mass may have a significant impact on our ideas about evolution of quasar properties with redshift and luminosity as well as on broader cosmological issues.

Paola Marziani; Deborah Dultzin-Hacyan; Jack W. Sulentic

2006-06-28T23:59:59.000Z

397

Tidal Capture of Stars by Intermediate-Mass Black Holes  

E-Print Network [OSTI]

Recent X-ray observations and theoretical modelling have made it plausible that some ultraluminous X-ray sources (ULX) are powered by intermediate-mass black holes (IMBHs). N-body simulations have also shown that runaway merging of stars in dense star clusters is a way to form IMBHs. In the present paper we have performed N-body simulations of young clusters such as MGG-11 of M82 in which IMBHs form through runaway merging. We took into account the effect of tidal heating of stars by the IMBH to study the tidal capture and disruption of stars by IMBHs. Our results show that the IMBHs have a high chance of capturing stars through tidal heating within a few core relaxation times and we find that 1/3 of all runs contain a ULX within the age limits of MGG-11, a result consistent with the fact that a ULX is found in this galaxy. Our results strengthen the case for some ULX being powered by intermediate-mass black holes.

H. Baumgardt; C. Hopman; S. Portegies Zwart; J. Makino

2005-11-27T23:59:59.000Z

398

Kinematics of geodesic flows in stringy black hole backgrounds  

E-Print Network [OSTI]

We study the kinematics of timelike geodesic congruences in two and four dimensions in spacetime geometries representing stringy black holes. The Raychaudhuri equations for the kinematical quantities (namely, expansion, shear and rotation) characterising such geodesic flows are written down and subsequently solved analytically (in two dimensions) and numerically (in four dimensions) for specific geodesics flows. We compare between geodesic flows in dual (electric and magnetic) stringy black hole backgrounds in four dimensions, by showing the differences that arise in the corresponding evolutions of the kinematic variables. The crucial role of initial conditions and the spacetime curvature on the evolution of the kinematical variables is illustrated. Some novel general conclusions on geodesic focusing are obtained from the analytical and numerical findings. We also propose new quantifiers in terms of (a) the time (affine parameter) of approach to a singularity and (b) the location of extrema in the functional evolution of the kinematic variables, which may be used to distinguish between flows in different geometries. In summary, our quantitative findings bring out hitherto unknown features of the kinematics of geodesic flows, which, otherwise, would have remained overlooked, if we confined ourselves to only a qualitative analysis.

Anirvan Dasgupta; Hemwati Nandan; Sayan Kar

2009-06-12T23:59:59.000Z

399

Quasilinear Carbon Transport In An Impurity Hole Plasma In LHD  

SciTech Connect (OSTI)

Comprehensive electrostatic gyrokinetic linear stability calculations for ion-scale microinstabilities in an LHD plasma with an ion-ITB and carbon "impurity hole" are used to make quasilinear estimates of particle flux to explore whether microturbulence can explain the observed outward carbon fluxes that flow "up" the impurity density gradient. The ion temperature is not stationary in the ion-ITB phase of the simulated discharge, during which the core carbon density decreases continuously. To fully sample these varying conditions the calculations are carried out at three radial locations and four times. The plasma parameter inputs are based on experimentally measured profiles of electron and ion temperature, as well as electron and carbon density. The spectroscopic line-average ratio of hydrogen and helium densities is used to set the density of these species. Three ion species (H,He,C) and the electrons are treated kinetically, including collisions. Electron instability drive does enhance the growth rate significantly, but the most unstable modes have characteristics of ion temperature gradient (ITG) modes in all cases. As the carbon density gradient is scanned between the measured value and zero, the quasilinear carbon flux is invariably inward when the carbon density profile is hollow, so turbulent transport due to the instabilities considered here does not explain the observed outward flux of impurities in impurity hole plasmas. The stiffness of the quasilinear ion heat flux is found to be 1.7-2.3, which is lower than several estimates in tokamaks.

Mikkelsen, David R. [PPPL; Tanaka, K. [NIFS; Nunami, M. [NIFS; Watanabe, T-H. [Nagoya University; Sugama, H. [NIFS; Yoshinuma, M. [NIFS; Suzuki, Y. [NIFS; Goto, M. [NIFS; Morita, S. [NIFS; Wieland, B. [NIFS; Yamada, I. [NIFS; Yashura, R. [NIFS; Akiyama, T. [NIFS; Pablant, Novimir A. [PPPL

2014-04-01T23:59:59.000Z

400

Feedback-regulated Super Massive Black Hole Seed Formation  

E-Print Network [OSTI]

The nature of the seeds of high-redshift supermassive black holes (SMBHs) is a key question in cosmology. Direct collapse black holes (DCBH) that form in pristine, atomic-line cooling halos, illuminated by a Lyman-Werner (LW) UV flux exceeding a critical threshold J_crit, represent an attractive possibility. We investigate when and where these conditions are met during cosmic evolution. For the LW intensity, J_LW, we account for departures from the background value in close proximity to star forming galaxies. For the pristine halo fraction, we account for both (i) supernova driven outflows, and (ii) the inherent pollution from progenitor halos. We estimate the abundance of DCBH formation sites, n_DCBH(z), and find that it increases with cosmic time from n_DCBH(z=20) ~ 1e-12 -1e-7 cMpc^-3 to n_DCBH(z=10) ~ 1e-10 - 1e-5 cMpc^-3. Our analysis shows the possible importance of galactic winds, which can suppress the predicted n_DCBH by several orders of magnitude, and cause DCBH formation to preferentially occur ar...

Dijkstra, Mark; Mesinger, Andrei

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "holes time frame" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Thermal Impact of Fasteners in High-Performance Wood-Framed Walls: Preprint  

SciTech Connect (OSTI)

Buildings are heavy consumers of energy, and residential building design is rapidly addressing topics to maximize energy conservation en route to net-zero energy consumption. Annual energy analysis of a building informs the choice among disparate energy measures, for cost, durability, occupant comfort, and whole-house energy use. Physics-based and empirical models of elements of a building are used in such analyses. High-performance wood-framed walls enable builders to construct homes that use much less than 40% of the energy consumed by similar homes built to minimum code. Modeling for these walls has considered physical features such as framing factor, insulation and framing properties, roughness and convective effects, and air leakage. The thermal effects of fasteners used to construct these walls have not been fully evaluated, even though their thermal conductivity is orders of magnitudes higher than that of other building materials. Drywall screws and siding nails are considered in this finite element thermal conductivity analysis of wall sections that represent wood-framed walls that are often used in high-performance homes. Nails and screws reduce even the best walls' insulating performance by approximately 3% and become increasingly significant as the framing factor increases.

Christensen, D.

2011-01-01T23:59:59.000Z

402

Entropy spectra of single horizon black holes in two dimensions  

E-Print Network [OSTI]

The Hod conjecture proposes that the asymptotic quasinormal frequencies determine the entropy quantum of a black hole. Considering the Maggiore modification of this conjecture we calculate the entropy spectra of general, single horizon, asymptotically flat black holes in two-dimensional dilaton gravity. We also compute the entropy quanta of the two-dimensional Witten and AdS(2) black holes. Using the results for the entropy quanta of these two-dimensional black holes we discuss whether the produced values are generic. Finally we extend the results on the entropy spectra of other black holes.

A. Lopez-Ortega

2011-12-29T23:59:59.000Z

403

Quantum spectrum and statistic entropy of black hole  

E-Print Network [OSTI]

Taking the horizon surface of the black hole as a compact membrane and solving the oscillation equation of this membrane by Klein-Gordon equation, we derive the frequencies of oscillation modes of the horizon surface, which are proportional to the radiation temperature of the black hole. However, the frequencies of oscillation modes are not equidistant. Using the distribution of obtained frequencies of oscillation mode we compute the statistic entropy of the black hole and obtain that the statistic entropy of the black hole is proportional to the area of the horizon. Therefore, it is proven that the quantum statistic entropy of the black hole is consistent with Bekenstein-Hawking entropy.

Zhao Ren; Li Huaifan; Zhang Shengli

2006-10-16T23:59:59.000Z

404

Improved methods for simulating nearly extremal binary black holes  

E-Print Network [OSTI]

Astrophysical black holes could be nearly extremal (that is, rotating nearly as fast as possible); therefore, nearly extremal black holes could be among the binaries that current and future gravitational-wave observatories will detect. Predicting the gravitational waves emitted by merging black holes requires numerical-relativity simulations, but these simulations are especially challenging when one or both holes have mass $m$ and spin $S$ exceeding the Bowen-York limit of $S/m^2=0.93$. We present improved methods that enable us to simulate merging, nearly extremal black holes more robustly and more efficiently. We use these methods to simulate an unequal-mass, precessing binary black hole coalescence, where the larger black hole has $S/m^2=0.99$. We also use these methods to simulate a non-precessing binary black hole coalescence, where both black holes have $S/m^2=0.994$, nearly reaching the Novikov-Thorne upper bound for holes spun up by thin accretion disks. We demonstrate numerical convergence and estimate the numerical errors of the waveforms; we compare numerical waveforms from our simulations with post-Newtonian and effective-one-body waveforms; we compare the evolution of the black-hole masses and spins with analytic predictions; and we explore the effect of increasing spin magnitude on the orbital dynamics (the so-called "orbital hangup" effect).

Mark A. Scheel; Matthew Giesler; Daniel A. Hemberger; Geoffrey Lovelace; Kevin Kuper; Michael Boyle; Bela Szilagyi; Lawrence E. Kidder

2014-12-04T23:59:59.000Z

405

Acoustic clouds: standing sound waves around a black hole analogue  

E-Print Network [OSTI]

Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

Carolina L. Benone; Luis C. B. Crispino; Carlos Herdeiro; Eugen Radu

2015-01-28T23:59:59.000Z

406

Acoustic clouds: standing sound waves around a black hole analogue  

E-Print Network [OSTI]

Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

Benone, Carolina L; Herdeiro, Carlos; Radu, Eugen

2014-01-01T23:59:59.000Z

407

Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields  

DOE Patents [OSTI]

A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

2014-01-21T23:59:59.000Z

408

The hydraulic jump as a white hole  

E-Print Network [OSTI]

In the geometry of the circular hydraulic jump, the velocity of the liquid in the interior region exceeds the speed of capillary-gravity waves (ripplons), whose spectrum is `relativistic' in the shallow water limit. The velocity flow is radial and outward, and thus the relativistic ripplons cannot propagating into the interior region. In terms of the effective 2+1 dimensional Painleve-Gullstrand metric appropriate for the propagating ripplons, the interior region imitates the white hole. The hydraulic jump represents the physical singularity at the white-hole horizon. The instability of the vacuum in the ergoregion inside the circular hydraulic jump and its observation in recent experiments on superfluid 4He by E. Rolley, C. Guthmann, M.S. Pettersen and C. Chevallier in physics/0508200 are discussed.

G. E. Volovik

2005-10-21T23:59:59.000Z

409

Rholography, Black Holes and Scherk-Schwarz  

E-Print Network [OSTI]

We present both the macroscopic and microscopic description of a class of near-extremal asymptotically flat black hole solutions in four (or five) dimensional gauged supergravity with R-symmetry gaugings obtained from Scherk-Schwarz reductions on a circle. The entropy of these black holes is counted holographically by the well known MSW (or D1/D5) system, with certain twisted boundary conditions labeled by a twist parameter \\rho. We find that the corresponding (0,4) (or (4,4)) superconformal algebras are exactly those studied by Schwimmer and Seiberg, using a twist on the outer automorphism group. The interplay between R-symmetries, \\rho-algebras and holography leads us to name our construction "Rholography".

Nava Gaddam; Alessandra Gnecchi; Stefan Vandoren; Oscar Varela

2014-12-23T23:59:59.000Z

410

Black Hole Entropy and Induced Gravity  

E-Print Network [OSTI]

In this short essay we review the arguments showing that black hole entropy is, at least in part, ``entanglement entropy", i.e., missing information contained in correlations between quantum field fluctuations inside and outside the event horizon. Although the entanglement entropy depends upon the matter field content of the theory, it turns out that so does the Bekenstein-Hawking entropy $A/4\\hbar G_{ren}$, in precisely the same way, because the effective gravitational constant $G_{ren}$ is renormalized by the very same quantum fluctuations. It appears most satisfactory if the entire gravitational action is ``induced", in the manner suggested by Sakharov, since then the black hole entropy is purebred entanglement entropy, rather than being hybrid with bare gravitational entropy (whatever that might be.)

Ted Jacobson

1994-04-19T23:59:59.000Z

411

Geometric description of BTZ black holes thermodynamics  

E-Print Network [OSTI]

We study the properties of the space of thermodynamic equilibrium states of the Ba\\~nados-Teitelboim-Zanelli (BTZ) black hole in (2+1)-gravity. We use the formalism of geometrothermodynamics to introduce in the space of equilibrium states a $2-$dimensional thermodynamic metric whose curvature is non-vanishing, indicating the presence of thermodynamic interaction, and free of singularities, indicating the absence of phase transitions. Similar results are obtained for generalizations of the BTZ black hole which include a Chern-Simons term and a dilatonic field. Small logarithmic corrections of the entropy turn out to be represented by small corrections of the thermodynamic curvature, reinforcing the idea that thermodynamic curvature is a measure of thermodynamic interaction.

Hernando Quevedo; Alberto Sanchez

2008-11-15T23:59:59.000Z

412

Laser stabilization using spectral hole burning  

E-Print Network [OSTI]

We have frequency stabilized a Coherent CR699-21 dye laser to a transient spectral hole on the 606 nm transition in Pr^{+3}:Y_2SiO_5. A frequency stability of 1 kHz has been obtained on the 10 microsecond timescale together with a long-term frequency drift below 1 kHz/s. RF magnetic fields are used to repopulate the hyperfine levels allowing us to control the dynamics of the spectral hole. A detailed theory of the atomic response to laser frequency errors has been developed which allows us to design and optimize the laser stabilization feedback loop, and specifically we give a stability criterion that must be fulfilled in order to obtain very low drift rates. The laser stability is sufficient for performing quantum gate experiments in Pr^{+3}:Y_2SiO_5.

L. Rippe; B. Julsgaard; A. Walther; S. Kröll

2006-11-05T23:59:59.000Z

413

Quantized black holes, their spectrum and radiation  

SciTech Connect (OSTI)

Under quite natural general assumptions, the following results are obtained. The maximum entropy of a quantized surface is demonstrated to be proportional to the surface area in the classical limit. The general structure of the horizon spectrum is found. In the special case of loop quantum gravity, the value of the Barbero-Immirzi parameter is found. The discrete spectrum of thermal radiation of a black hole fits the Wien profile. The natural widths of the lines are much smaller than the distances between them. The total intensity of the thermal radiation is estimated. If the density of quantized primordial black holes is close to the present upper limit on the dark-matter density in our Solar system, the sensitivity of modern detectors is close to that necessary for detecting this radiation.

Khriplovich, I. B. [Budker Institute of Nuclear Physics (Russian Federation)], E-mail: khriplovich@inp.nsk.su

2008-04-15T23:59:59.000Z

414

The high energy emission from black holes  

E-Print Network [OSTI]

The origin of the high energy emission (X-rays and gamma-rays) from black holes is still a matter of debate. We present new evidence that hard X-ray emission in the low/hard state may not be dominated by thermal Comptonization. We present an alternative scenario for the origin of the high energy emission that is well suited to explain the high energy emission from GRO J1655-40.

M. D. Caballero-Garcia; J. M. Miller; E. Kuulkers

2007-11-06T23:59:59.000Z

415

Refined Black Hole Ensembles and Topological Strings  

E-Print Network [OSTI]

We formulate a refined version of the Ooguri-Strominger-Vafa (OSV) conjecture. The OSV conjecture that Z_{BH} = |Z_{top}|^2 relates the BPS black hole partition function to the topological string partition function Z_{top}. In the refined conjecture, Z_{BH} is the partition function of BPS black holes counted with spin, or more precisely the protected spin character. Z_{top} becomes the partition function of the refined topological string, which is itself an index. Both the original and the refined conjecture are examples of large N duality in the 't Hooft sense. The refined conjecture applies to non-compact Calabi-Yau manifolds only, so the black holes are really BPS particles with large entropy, of order N^2. The refined OSV conjecture states that the refined BPS partition function has a large N dual which is captured by the refined topological string. We provide evidence that the conjecture holds by studying local Calabi-Yau threefolds consisting of line bundles over a genus g Riemann surface. We show that the refined topological string partition function on these geometries is computed by a two-dimensional TQFT. We also study the refined black hole partition function arising from N D4 branes on the Calabi-Yau, and argue that it reduces to a (q,t)-deformed version of two-dimensional SU(N) Yang-Mills. Finally, we show that in the large N limit this theory factorizes to the square of the refined topological string in accordance with the refined OSV conjecture.

Mina Aganagic; Kevin Schaeffer

2012-10-05T23:59:59.000Z

416

Comparing quantum black holes and naked singularities  

E-Print Network [OSTI]

There are models of gravitational collapse in classical general relativity which admit the formation of naked singularities as well as black holes. These include fluid models as well as models with scalar fields as matter. Even if fluid models were to be regarded as unphysical in their matter content, the remaining class of models (based on scalar fields) generically admit the formation of visible regions of finite but arbitrarily high curvature. Hence it is of interest to ask, from the point of view of astrophysics, as to what a stellar collapse leading to a naked singularity (or to a visible region of very high curvature) will look like, to a far away observer. The emission of energy during such a process may be divided into three phases - (i) the classical phase, during which matter and gravity can both be treated according to the laws of classical physics, (ii) the semiclassical phase, when gravity is treated classically but matter behaves as a quantum field, and (iii) the quantum gravitational phase. In this review, we first give a summary of the status of naked singularities in classical relativity, and then report some recent results comparing the semiclassical phase of black holes with the semiclassical phase of spherical collapse leading to a naked singularity. In particular, we ask how the quantum particle creation during the collapse leading to a naked singularity compares with the Hawking radiation from a star collapsing to form a black hole. It turns out that there is a fundamental difference between the two cases. A spherical naked star emits only about one Planck energy during its semiclassical phase, and the further evolution can only be determined by the laws of quantum gravity. This contrasts with the semiclassical evaporation of a black hole.

T. P. Singh

2000-12-21T23:59:59.000Z

417

Hole cleaning requirements with seabed returns  

E-Print Network [OSTI]

size and fluid density. The least important were rotary speed, feed concentration, annulus size, and drillpipe eccentricity. They also reported that, in Newtonian fluids, transport efficiency improves with increasing viscosity; however, they noted... is set; therefore, no marine riser can be utilized. The coring occurs up to 3000 ft below the seafloor with the bit cutting an 11. 438 in. hole. The rig pumps have a maximum output of 600 gpm under normal coring operations with untreated seawater...

Nordt, David Paul

1988-01-01T23:59:59.000Z

418

Peeping at chaos: Nondestructive monitoring of chaotic systems by measuring long-time escape rates  

E-Print Network [OSTI]

One or more small holes provide non-destructive windows to observe corresponding closed systems, for example by measuring long time escape rates of particles as a function of hole sizes and positions. To leading order the escape rate of chaotic systems is proportional to the hole size and independent of position. Here we give exact formulas for the subsequent terms, as sums of correlation functions; these depend on hole size and position, hence yield information on the closed system dynamics. Conversely, the theory can be readily applied to experimental design, for example to control escape rates.

L. A. Bunimovich; C. P. Dettmann

2007-09-17T23:59:59.000Z

419

Dark jets in solar coronal holes  

E-Print Network [OSTI]

A new solar feature termed a dark jet is identified from observations of an extended solar coronal hole that was continuously monitored for over 44 hours by the EUV Imaging Spectrometer on board the Hinode spacecraft in 2011 February 8-10. Line-of-sight velocity maps derived from the coronal Fe XII $\\lambda$195.12 emission line, formed at 1.5 MK, revealed a number of large-scale, jet-like structures that showed significant blueshifts. The structures had either weak or no intensity signal in 193 A filter images from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, suggesting that the jets are essentially invisible to imaging instruments. The dark jets are rooted in bright points and occur both within the coronal hole and at the quiet Sun-coronal hole boundary. They exhibit a wide range of shapes, from narrow columns to fan-shaped structures, and sometimes multiple jets are seen close together. A detailed study of one dark jet showed line-of-sight speeds increasing along the jet axis fr...

Young, Peter R

2015-01-01T23:59:59.000Z

420

Quantization of rotating linear dilaton black holes  

E-Print Network [OSTI]

In this paper, we firstly prove that the adiabatic invariant quantity, which is commonly used in the literature for quantizing the rotating black holes (BHs) is fallacious. We then show how its corrected form should be. The main purpose of this paper is to study the quantization of 4-dimensional rotating linear dilaton black hole (RLDBH) spacetime describing with an action, which emerges in the Einstein-Maxwell-Dilaton-Axion (EMDA) theory. The RLDBH spacetime has a non-asymptotically flat (NAF) geometry. They reduces to the linear dilaton black hole (LDBH) metric when vanishing its rotation parameter $a$. While studying its scalar perturbations, it is shown that the Schr\\"odinger-like wave equation around the event horizon reduces to a confluent hypergeometric differential equation. Then the associated complex frequencies of the quasinormal modes (QNMs) are computed. By using those QNMs in the true definition of the rotational adiabatic invariant quantity, we obtain the quantum spectra of entropy/area for the RLDBH. It is found out that both spectra are discrete and equidistant. Besides, we reveal that the quantum spectra do not depend on $a$ in spite of the QNMs are modulated by it.

I. Sakalli

2014-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "holes time frame" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Spectral hole burning for stopping light  

SciTech Connect (OSTI)

We propose a protocol for storage and retrieval of photon wave packets in a {lambda}-type atomic medium. This protocol derives from spectral hole burning and takes advantages of the specific properties of solid-state systems at low temperature, such as rare-earth ion-doped crystals. The signal pulse is tuned to the center of the hole that has been burnt previously within the inhomogeneously broadened absorption band. The group velocity is strongly reduced, being proportional to the hole width. This way the optically carried information and energy are carried over to the off-resonance optical dipoles. Storage and retrieval are performed by conversion to and from ground-state Raman coherence by using brief {pi} pulses. The protocol exhibits some resemblance with the well-known electromagnetically induced transparency process. It also presents distinctive features such as the absence of coupling beam. In this paper we detail the various steps of the protocol, summarize the critical parameters, and theoretically examine the recovery efficiency.

Lauro, R.; Chaneliere, T.; Le Goueet, J.-L. [Laboratoire Aime Cotton, CNRS UPR3321, Universite Paris Sud, Batiment 505, Campus Universitaire, 91405 Orsay (France)

2009-05-15T23:59:59.000Z

422

Kerr black holes with scalar hair  

E-Print Network [OSTI]

We present a family of solutions of Einstein's gravity minimally coupled to a complex, massive scalar field, describing asymptotically flat, spinning black holes with scalar hair and a regular horizon. These hairy black holes (HBHs) are supported by rotation and have no static limit. Besides mass M and angular momentum J, they carry a conserved, continuous Noether charge Q measuring the scalar hair. HBHs branch off from the Kerr metric at the threshold of the superradiant instability and reduce to spinning boson stars in the limit of vanishing horizon area. They overlap with Kerr black holes for a set of (M,J) values. A single Killing vector field preserves the solutions, tangent to the null geodesic generators of the event horizon. HBHs can exhibit sharp physical differences when compared to the Kerr solution, such as J/M^2>1, quadrupole moment larger than J^2/M and larger orbital angular velocity at the innermost stable circular orbit. Families of HBHs connected to the Kerr geometry should exist in scalar (...

Herdeiro, Carlos A R

2014-01-01T23:59:59.000Z

423

Building America Webinar: High-Performance Enclosure Strategies, Part I: Unvented Roof Systems and Innovative Advanced Framing Strategies  

Broader source: Energy.gov [DOE]

This presentation was delivered at the February 12, 2015, Building America webinar, High-Performance Enclosure Strategies, Part I: Unvented Roof Systems and Innovative Advanced Framing Strategies.

424

STOCHASTIC VARIABILITY IN X-RAY EMISSION FROM THE BLACK HOLE BINARY GRS 1915+105  

SciTech Connect (OSTI)

We examine stochastic variability in the dynamics of X-ray emission from the black hole system GRS 1915+105, a strongly variable microquasar commonly used for studying relativistic jets and the physics of black hole accretion. The analysis of sample observations for 13 different states in both soft (low) and hard (high) energy bands is performed by flicker-noise spectroscopy (FNS), a phenomenological time series analysis method operating on structure functions and power spectrum estimates. We find the values of FNS parameters, including the Hurst exponent, flicker-noise parameter, and characteristic timescales, for each observation based on multiple 2500 s continuous data segments. We identify four modes of stochastic variability driven by dissipative processes that may be related to viscosity fluctuations in the accretion disk around the black hole: random (RN), power-law (1F), one-scale (1S), and two-scale (2S). The variability modes are generally the same in soft and hard energy bands of the same observation. We discuss the potential for future FNS studies of accreting black holes.

Polyakov, Yuriy S. [USPolyResearch, Ashland, PA 17921 (United States); Neilsen, Joseph [MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States); Timashev, Serge F., E-mail: ypolyakov@uspolyresearch.com [Karpov Institute of Physical Chemistry, Moscow 103064 (Russian Federation)

2012-06-15T23:59:59.000Z

425

Is the firewall consistent? Gedanken experiments on black hole complementarity and firewall proposal  

SciTech Connect (OSTI)

In this paper, we discuss the black hole complementarity and the firewall proposal at length. Black hole complementarity is inevitable if we assume the following five things: unitarity, entropy-area formula, existence of an information observer, semi-classical quantum field theory for an asymptotic observer, and the general relativity for an in-falling observer. However, large N rescaling and the AMPS argument show that black hole complementarity is inconsistent. To salvage the basic philosophy of the black hole complementarity, AMPS introduced a firewall around the horizon. According to large N rescaling, the firewall should be located close to the apparent horizon. We investigate the consistency of the firewall with the two critical conditions: the firewall should be near the time-like apparent horizon and it should not affect the future infinity. Concerning this, we have introduced a gravitational collapse with a false vacuum lump which can generate a spacetime structure with disconnected apparent horizons. This reveals a situation that there is a firewall outside of the event horizon, while the apparent horizon is absent. Therefore, the firewall, if it exists, not only does modify the general relativity for an in-falling observer, but also modify the semi-classical quantum field theory for an asymptotic observer.

Hwang, Dong-il; Lee, Bum-Hoon; Yeom, Dong-han, E-mail: dongil.j.hwang@gmail.com, E-mail: bhl@sogang.ac.kr, E-mail: innocent.yeom@gmail.com [Center for Quantum Spacetime, Sogang University, Seoul 121-742 (Korea, Republic of)

2013-01-01T23:59:59.000Z

426

Dynamical formation and evolution of (2+1)-dimensional charged black holes  

E-Print Network [OSTI]

In this paper, we investigate the dynamical formation and evolution of 2 + 1-dimensional charged black holes. We numerically study dynamical collapses of charged matter fields in an anti de Sitter background and note the formation of black holes using the double-null formalism. Moreover, we include re-normalized energy-momentum tensors assuming the S-wave approximation to determine thermodynamical back-reactions to the internal structures. If there is no semi-classical effects, the amount of charge determines the causal structures. If the charge is sufficiently small, the causal structure has a space-like singularity. However, as the charge increases, an inner Cauchy horizon appears. If we have sufficient charge, we see a space-like outer horizon and a time-like inner horizon, and if we give excessive charge, black hole horizons disappear. We have some circumstantial evidences that weak cosmic censorship is still satisfied, even for such excessive charge cases. Also, we confirm that there is mass inflation along the inner horizon, although the properties are quite different from those of four-dimensional cases. Semi-classical back-reactions will not affect the outer horizon, but they will affect the inner horizon. Near the center, there is a place where negative energy is concentrated. Thus, charged black holes in three dimensions have two types of curvature singularities in general: via mass inflation and via a concentration of negative energy. Finally, we classify possible causal structures.

Dong-il Hwang; Hongbin Kim; Dong-han Yeom

2012-02-13T23:59:59.000Z

427

Assessing inflow rates in atomic cooling halos: implications for direct collapse black holes  

E-Print Network [OSTI]

Supermassive black holes are not only common in the present-day galaxies, but billion solar masses black holes also powered $z\\geq 6$ quasars. One efficient way to form such black holes is the collapse of a massive primordial gas cloud into a so-called direct collapse black hole. The main requirement for this scenario is the presence of large accretion rates of $\\rm \\geq 0.1~M_{\\odot}/yr$ to form a supermassive star. The prime aim of the present work is to determine how and under what conditions such accretion rates can be obtained. We perform high resolution cosmological simulations for three primordial halos of a few times $\\rm 10^7~M_{\\odot}$ illuminated by an external UV flux, $\\rm J_{21}=100-1000$. We find that a rotationally supported structure of about parsec size is assembled, with an aspect ratio between $\\rm 0.25 - 1$ depending upon the thermodynamical properties. Rotational support, however, does not halt collapse, and mass inflow rates of $\\rm \\sim 0.1~M_{\\odot}/yr$ can be obtained in the presence...

Latif, M A

2015-01-01T23:59:59.000Z

428

Black holes and fundamental fields: hair, kicks and a gravitational "Magnus" effect  

E-Print Network [OSTI]

Scalar fields pervade theoretical physics and are a fundamental ingredient to solve the dark matter problem, to realize the Peccei-Quinn mechanism in QCD or the string-axiverse scenario. They are also a useful proxy for more complex matter interactions, such as accretion disks or matter in extreme conditions. Here, we study the collision between scalar "clouds" and rotating black holes. For the first time we are able to compare analytic estimates and strong field, nonlinear numerical calculations for this problem. As the black hole pierces through the cloud it accretes according to the Bondi-Hoyle prediction, but is deflected through a purely kinematic gravitational "anti-Magnus" effect, which we predict to be present also during the interaction of black holes with accretion disks. After the interaction is over, we find large recoil velocities in the transverse direction. The end-state of the process belongs to the vacuum Kerr family if the scalar is massless, but can be a hairy black hole when the fundamental scalar is massive.

Hirotada Okawa; Vitor Cardoso

2014-05-19T23:59:59.000Z

429

Control of Parallel-Connected Bidirectional AC-DC Converters in Stationary Frame for Microgrid  

E-Print Network [OSTI]

Control of Parallel-Connected Bidirectional AC-DC Converters in Stationary Frame for Microgrid-- With the penetration of renewable energy in modern power system, microgrid has become a popular application worldwide. In this paper, parallel-connected bidirectional converters for AC and DC hybrid microgrid application

Teodorescu, Remus

430

Component/OEM XC-HR50 High Frame Rate Monochrome Camera  

E-Print Network [OSTI]

Monochrome Camera B/W Progressive Scan Cameras #12;These new cameras expand the range of products in Sony's progressive scan and high-frame rate, compact camera line up! Introducing the newest additions to Sony's B/sec. for compatibility with slower vision systems using Sony XC-55 cameras. The XC-HR50 and XC-HR70 cameras incorporate

Demoulin, Pascal

431

Standard Operating Procedure (SOP) for MTS Single Acting Frame With UniTest  

E-Print Network [OSTI]

behind the load frame). · Press the START button on the Hydraulic Power Supply (HPS) Power Panel. #12 POINTS WITHOUT FIRST DE-ENERGIZING THE HYDRAULIC POWER SUPPLY AND ENGAGING EMERGENCY STOP BUTTON. WARNING: ALWAYS DE-ENERGIZE THE HYDRAULIC POWER SUPPLY AND ENGAGE EMERGENCY STOP BUTTON BEFORE INSTALLING

Thompson, Michael

432

Evaluation of the effect of contact between risers and guide frames on offshore spar platform motions  

E-Print Network [OSTI]

buoyancy-cans inside the spar moon-pool on the global spar motions. The gap between the buoyancy can and riser guide frames are modeled using three different types of nonlinear gap springs. The new riser model also considers the Coulomb damping between...

Koo, Bon-Jun

2004-11-15T23:59:59.000Z

433

Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools  

E-Print Network [OSTI]

Transfer Design Tools Arild Gustavsen1,* , Dariush Arasteh2 , Bjørn Petter Jelle3,4 , Charlie Curcija5-conductance window frames requires accurate simulation tools for product research and development. Based and develop recommendation for inclusion into the design fenestration tools. 3. Assess existing correlations

434

Two-Dimensional Computational Fluid Dynamics and Conduction Simulations of Heat Transfer in Window Frames  

E-Print Network [OSTI]

1 Two-Dimensional Computational Fluid Dynamics and Conduction Simulations of Heat Transfer Arasteh and Dragan Curcija ABSTRACT Accurately analyzing heat transfer in window frame cavities radiation heat-transfer effects.) We examine three representative complex cavity cross-section profiles

435

Global P-Delta effects in seismic demand evaluation of vibration controlled steel frames  

E-Print Network [OSTI]

The goal of the research was to investigate the effect of global P-Delta on the seismic response of structures. A SAC II three story structure and a reduced order portal frame were the focus of study. The motivation to carry out the research...

Pendse, Jaydeep Dilip

2001-01-01T23:59:59.000Z

436

PROMPT VERSUS PROBLEM: HELPING STUDENTS LEARN TO FRAME PROBLEMS AND THINK CREATIVELY  

E-Print Network [OSTI]

. Creative thinking is needed to approach such problems. What about creative thinking in the engineering creativity rather than building skills or analytical abilities. 2.2 Key Questions Does engineering educationPROMPT VERSUS PROBLEM: HELPING STUDENTS LEARN TO FRAME PROBLEMS AND THINK CREATIVELY JUSTIN Y LAI

Yang, Maria

437

Mechanism of Collapse of Tall Steel Moment Frame Buildings Under Earthquake Excitation  

E-Print Network [OSTI]

, seventeenth, and penthouse stories. The lateral force-resisting system consists of two- bay welded steel these questions through computational case-history studies of two 18-story steel moment frame buildings and their variants. The first building is an existing 18-story office building, located within five miles

Krishnan, Swaminathan

438

Framing the Conversation: The Role of Facebook Conversations in Shopping for Eyeglasses  

E-Print Network [OSTI]

Framing the Conversation: The Role of Facebook Conversations in Shopping for Eyeglasses Karim Said Warby Parker's Facebook page and explore the ways customers formulate questions and conversations,000 Facebook posts, consisting of photos, comments, and "likes". Using statistical analyses and qualitative

Kane, Shaun K.

439

Seismic Screening, Evaluation, Rehabilitation, and Design Provisions for Wood-Framed Structures  

E-Print Network [OSTI]

Seismic Screening, Evaluation, Rehabilitation, and Design Provisions for Wood-Framed Structures Preston Baxter, M.ASCE1 ; Thomas H. Miller, M.ASCE2 ; and Rakesh Gupta, M.ASCE3 Abstract: Seismic Database subject headings: Seismic analysis; Seismic design; Wood structures; Shear walls; Diaphragms

Gupta, Rakesh

440

Move Frame Scheduling and Mixed SchedulingAllocation for the Automated Synthesis of Digital Systems y  

E-Print Network [OSTI]

steps: 1) Data path synthe­ sis (operation scheduling and hardware allocation), and 2) Control path design. In the scheduling phase, operations are assigned to the appropriate control steps. The allocaMove Frame Scheduling and Mixed Scheduling­Allocation for the Automated Synthesis of Digital

Nourani, Mehrdad

Note: This page contains sample records for the topic "holes time frame" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Cost-effective Printing of 3D Objects with Skin-Frame Structures Weiming Wang,  

E-Print Network [OSTI]

; Keywords: 3D printing, fabrication, frame structure, sparsity op- timization Corresponding author: yangzw@ustc.edu.cn (Zhouwang Yang) 1 Introduction Additive manufacturing (3D printing) enables fabrication of physi- cal techniques of 3D printing has received considerable attention for assisting users to generate desired

Deng, Jiansong

442

tance. The frame in the middle shows the structure outlined above, with both  

E-Print Network [OSTI]

and thermal conduc­ tion at work in the hot gas. The top frame shows the same results, but now assuming gas. The shape of the bow shock is in this case much more irregu­ lar; this is due to the chaotic and from the stellar wind, having very different velocities along the bow shock, get in contact. Finally

Comerón, Fernando

443

Decay of Dirac Massive Hair in the Background of Spherical Black Hole  

E-Print Network [OSTI]

The intermediate and late-time behaviour of massive Dirac hair in the static spherically symmetric black hole spacetime was studied. It was revealed that the intermediate asymptotic pattern of decay of massive Dirac spinor hair is dependent on the mass of the field under consideration as well as the multiple number of the wave mode. The long-lived oscillatory tail observed at timelike infinity in the considered background decays slowly as t^{-5/6}.

Rafa? Moderski; Marek Rogatko

2008-05-06T23:59:59.000Z

444

Articles which include chevron film cooling holes, and related processes  

DOE Patents [OSTI]

An article is described, including an inner surface which can be exposed to a first fluid; an inlet; and an outer surface spaced from the inner surface, which can be exposed to a hotter second fluid. The article further includes at least one row or other pattern of passage holes. Each passage hole includes an inlet bore extending through the substrate from the inlet at the inner surface to a passage hole-exit proximate to the outer surface, with the inlet bore terminating in a chevron outlet adjacent the hole-exit. The chevron outlet includes a pair of wing troughs having a common surface region between them. The common surface region includes a valley which is adjacent the hole-exit; and a plateau adjacent the valley. The article can be an airfoil. Related methods for preparing the passage holes are also described.

Bunker, Ronald Scott; Lacy, Benjamin Paul

2014-12-09T23:59:59.000Z

445

Method and apparatus of assessing down-hole drilling conditions  

DOE Patents [OSTI]

A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

Hall, David R. (Provo, UT); Pixton, David S. (Lehl, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Fox, Joe (Spanish Fork, UT)

2007-04-24T23:59:59.000Z

446

Legal Framing  

E-Print Network [OSTI]

Society Review, 39(1), 11– Armstrong, E. A. (2002). ForgingUniversity of Chicago Press. Armstrong, E. A. (2005). FromCambridge University Press. Armstrong, E. A. , & Bernstein,

Leachman, Gwendolyn

2013-01-01T23:59:59.000Z

447

A toroidal black hole for the AGN phenomenon  

E-Print Network [OSTI]

A new approach to the study of the AGN phenomenon is proposed, in which the nucleus activity is related to the metric of the inner massive black hole. The possibility of a Toroidal Black Hole (TBH), in contrast to the usual Spherical Black Hole (SBH), is discussed as a powerful tool in understanding AGN related phenomena, such as the energetics, the production of jets and the acceleration of particles, the shape of the magnetic field and the lifetime of nucleus activity.

Fulvio Pompilio; S. M. Harun-or-Rashid; Matts Roos

2000-08-30T23:59:59.000Z

448

KKW Analysis for the Dyadosphere of a Charged Black Hole  

E-Print Network [OSTI]

The Keski-Vakkuri, Kraus and Wilczek (KKW) analysis is used to compute the temperature and entropy in the dyadosphere of a charged black hole solution. For our purpose we choose the dyadosphere region of the Reissner-Nordstrom black hole solution. Our results show that the expressions of the temperature and entropy in the dyadosphere of this charged black hole are not the Hawking temperature and the Bekenstein-Hawking entropy, respectively.

I. Radinschi

2005-11-28T23:59:59.000Z

449

Brownian Motion of Black Holes in Dense Nuclei  

E-Print Network [OSTI]

We evaluate the Brownian motion of a massive particle ("black hole") at the center of a galaxy using N-body simulations. Our galaxy models have power-law central density cusps like those observed at the centers of elliptical galaxies. The simulations show that the black hole achieves a steady-state kinetic energy that is substantially different than would be predicted based on the properties of the galaxy model in the absence of the black hole. The reason appears to be that the black hole responds to stars whose velocities have themselves been raised by the presence of the black hole. Over a wide range of density slopes and black hole masses, the black hole's mean kinetic energy is equal to what would be predicted under the assumption that it is in energy equipartition with stars lying within a distance ~r_h/2 from it, where r_h is the black hole's influence radius. The dependence of the Brownian velocity on black hole mass is approximately ~ 1/M^{1/(3-gamma)} with gamma the power-law index of the stellar density profile, rho~1/r^gamma. This is less steep than the 1/M dependence predicted in a model where the effect of the black hole on the stellar velocities is ignored. The influence of a stellar mass spectrum on the black hole's Brownian motion is also evaluated and found to be consistent with predictions from Chandrasekhar's theory. We use these results to derive a probability function for the mass of the Milky Way black hole based on a measurement of its proper motion velocity. Interesting constraints on M will require a velocity resolution exceeding 0.5 km/s.

David Merritt; Peter Berczik; Frederik Laun

2006-10-18T23:59:59.000Z

450

Optoelectronic device with nanoparticle embedded hole injection/transport layer  

DOE Patents [OSTI]

An optoelectronic device is disclosed that can function as an emitter of optical radiation, such as a light-emitting diode (LED), or as a photovoltaic (PV) device that can be used to convert optical radiation into electrical current, such as a photovoltaic solar cell. The optoelectronic device comprises an anode, a hole injection/transport layer, an active layer, and a cathode, where the hole injection/transport layer includes transparent conductive nanoparticles in a hole transport material.

Wang, Qingwu (Chelmsford, MA); Li, Wenguang (Andover, MA); Jiang, Hua (Methuen, MA)

2012-01-03T23:59:59.000Z

451

Classical and Quantum Properties of Liouville Black Holes  

E-Print Network [OSTI]

Black hole spacetimes can arise when a Liouville field is coupled to two- dimensional gravity. Exact solutions are obtained both classically and when quantum corrections due to back reaction effects are included. The black hole temperature depends upon the mass and the thermodynamic limit breaks down before evaporation of the black hole is complete, indicating that higher-loop effects must be included for a full description of the process.

R. B. Mann

1994-04-25T23:59:59.000Z

452

Parametric down conversion with a depleted pump as a model for classical information transmission capacity of quantum black holes  

E-Print Network [OSTI]

In this paper we extend the investigation of Adami and Ver Steeg [Class. Quantum Grav. \\textbf{31}, 075015 (2014)] to treat the process of black hole particle emission effectively as the analogous quantum optical process of parametric down conversion (PDC) with a dynamical (depleted vs. non-depleted) `pump' source mode which models the evaporating black hole (BH) energy degree of freedom. We investigate both the short time (non-depleted pump) and long time (depleted pump) regimes of the quantum state and its impact on the Holevo channel capacity for communicating information from the far past to the far future in the presence of Hawking radiation. The new feature introduced in this work is the coupling of the emitted Hawking radiation modes through the common black hole `source pump' mode which phenomenologically represents a quantized energy degree of freedom of the gravitational field. This (zero-dimensional) model serves as a simplified arena to explore BH particle production/evaporation and back-action effects under an explicitly unitary evolution which enforces quantized energy/particle conservation. Within our analogous quantum optical model we examine the entanglement between two emitted particle/anti-particle and anti-particle/particle pairs coupled via the black hole (BH) evaporating `pump' source. We also analytically and dynamically verify the `Page information time' for our model which refers to the conventionally held belief that the information in the BH radiation becomes significant after the black hole has evaporated half its initial energy into the outgoing radiation. Lastly, we investigate the effect of BH particle production/evaporation on two modes in the exterior region of the BH event horizon that are initially maximally entangled, when one mode falls inward and interacts with the black hole, and the other remains forever outside and non-interacting.

Paul M. Alsing

2015-02-04T23:59:59.000Z

453

Thermal Gradient Holes At Spencer Hot Springs Area (Shevenell...  

Open Energy Info (EERE)

discoveries to the attention of the geothermal community. Exploration holes at Tungsten Mountain and McGuiness Hills (Spencer Hot Springs?) in 2004 and 2005 encountered hot...

454

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Geothermal Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1998 -...

455

Ion holes in the hydrodynamic regime in ultracold neutral plasmas  

SciTech Connect (OSTI)

We describe the creation of localized density perturbations, or ion holes, in an ultracold neutral plasma in the hydrodynamic regime, and show that the holes propagate at the local ion acoustic wave speed. We also observe the process of hole splitting, which results from the formation of a density depletion initially at rest in the plasma. One-dimensional, two-fluid hydrodynamic simulations describe the results well. Measurements of the ion velocity distribution also show the effects of the ion hole and confirm the hydrodynamic conditions in the plasma.

McQuillen, P.; Castro, J.; Strickler, T.; Bradshaw, S. J.; Killian, T. C. [Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (United States)

2013-04-15T23:59:59.000Z

456

Core Holes At Valles Caldera - Sulphur Springs Geothermal Area...  

Open Energy Info (EERE)

of core holes were drilled from 1984 to 1988 as a part of the Continental Scientific Drilling Program (CSDP) to better understand the stratigraphy, structure, hydrothermal...

457

Core Holes At Valles Caldera - Redondo Geothermal Area (Goff...  

Open Energy Info (EERE)

of core holes were drilled from 1984 to 1988 as a part of the Continental Scientific Drilling Program (CSDP) to better understand the stratigraphy, structure, hydrothermal...

458

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Gradient Holes At Long Valley Caldera Geothermal Area (Conservation, 2009) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal...

459

Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering...  

Open Energy Info (EERE)

Home Exploration Activity: Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area...

460

Core Holes At Long Valley Caldera Geothermal Area (Eichelberger...  

Open Energy Info (EERE)

Eichelberger, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Long Valley Caldera Geothermal Area (Eichelberger, Et...

Note: This page contains sample records for the topic "holes time frame" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Small Hairy Black Holes in Global AdS Spacetime  

E-Print Network [OSTI]

We study small charged black holes in global AdS spacetime in the presence of a charged massless minimally coupled scalar field. In a certain parameter range these black holes suffer from well known superradiant instabilities. We demonstrate that the end point of the resultant tachyon condensation process is a hairy black hole which we construct analytically in a perturbative expansion in the black hole radius. At leading order our solution is a small undeformed RNAdS black hole immersed into a charged scalar condensate that fills the AdS `box'. These hairy black hole solutions appear in a two parameter family labelled by their mass and charge. Their mass is bounded from below by a function of their charge; at the lower bound a hairy black hole reduces to a regular horizon free soliton which can also be thought of as a nonlinear Bose condensate. We compute the microcanonical phase diagram of our system at small mass, and demonstrate that it exhibits a second order `phase transition' between the RNAdS black hole and the hairy black hole phases.

Pallab Basu; Jyotirmoy Bhattacharya; Sayantani Bhattacharyya; R. Loganayagam; Shiraz Minwalla; V. Umesh

2010-05-16T23:59:59.000Z

462

Core Lithology State of Hawail Scientific Observation Hole 2...  

Open Energy Info (EERE)

Volcano, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Core Lithology State of Hawail Scientific Observation Hole 2 Kilauea Volcano, Hawaii...

463

Core Lithology State of Hawaii Scientific Observation Hole 4...  

Open Energy Info (EERE)

Volcano, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Core Lithology State of Hawaii Scientific Observation Hole 4 Kilauea Volcano, Hawaii...

464

Absorption of scalars by extremal black holes in string theory  

E-Print Network [OSTI]

We show that the low frequency absorption cross section of minimally coupled massless scalar fields by extremal spherically symmetric black holes in d dimensions in the presence of string-theoretical alpha' corrections is equal to the horizon area. Classically one has the relation sigma=4GS between the absorption cross section and the black hole entropy. We discuss the validity of such relation in the presence of alpha' corrections for extremal black holes, both nonsupersymmetric and supersymmetric. The examples we consider seem to indicate that this relation is verified in the presence of alpha' corrections for supersymmetric black holes, but not for nonsupersymmetric ones.

Filipe Moura

2014-06-13T23:59:59.000Z

465

Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski...  

Open Energy Info (EERE)

Warpinski, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated...

466

Location Of Hole And Electron Traps On Nanocrystalline Anatase...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to two overlapping distributions: hole trap emission associated with oxygen vacancies on (101) exposed surfaces, which peaks in the green, and a broader emission...

467

Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank & Ross, 1999) Exploration Activity Details Location...

468

Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...  

Open Energy Info (EERE)

Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Thermal Gradient Holes Activity...

469

Hydrodynamic model for electron-hole plasma in graphene  

E-Print Network [OSTI]

We propose a hydrodynamic model describing steady-state and dynamic electron and hole transport properties of graphene structures which accounts for the features of the electron and hole spectra. It is intended for electron-hole plasma in graphene characterized by high rate of intercarrier scattering compared to external scattering (on phonons and impurities), i.e., for intrinsic or optically pumped (bipolar plasma), and gated graphene (virtually monopolar plasma). We demonstrate that the effect of strong interaction of electrons and holes on their transport can be treated as a viscous friction between the electron and hole components. We apply the developed model for the calculations of the graphene dc conductivity, in particular, the effect of mutual drag of electrons and holes is described. The spectra and damping of collective excitations in graphene in the bipolar and monopolar limits are found. It is shown that at high gate voltages and, hence, at high electron and low hole densities (or vice-versa), the excitations are associated with the self-consistent electric field and the hydrodynamic pressure (plasma waves). In intrinsic and optically pumped graphene, the waves constitute quasineutral perturbations of the electron and hole densities (electron-hole sound waves) with the velocity being dependent only on the fundamental graphene constants.

D. Svintsov; V. Vyurkov; S. Yurchenko; T. Otsuji; V. Ryzhii

2012-01-03T23:59:59.000Z

470

Ultrafast Core-Hole Induced Dynamics in Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ultrafast Core-Hole Induced Dynamics in Water Print A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential...

471

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1978 - 1985 Usefulness useful DOE-funding Unknown...

472

Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff...  

Open Energy Info (EERE)

Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff & Bowers, 2005) Exploration Activity Details Location Lightning Dock Geothermal Area Exploration Technique Thermal...

473

Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen, Et Al., 1993)...

474

Thermal Gradient Holes At North Brawley Geothermal Area (Matlick...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At North Brawley Geothermal Area (Matlick & Jayne, 2008) Exploration...

475

Extremal charged rotating dilaton black holes in odd dimensions  

SciTech Connect (OSTI)

Employing higher-order perturbation theory, we find a new class of charged rotating black hole solutions of Einstein-Maxwell-dilaton theory with general dilaton coupling constant. Starting from the Myers-Perry solutions, we use the electric charge as the perturbative parameter, and focus on extremal black holes with equal-magnitude angular momenta in odd dimensions. We perform the perturbations up to 4th order for black holes in 5 dimensions and up to 3rd order in higher odd dimensions. We calculate the physical properties of these black holes and study their dependence on the charge and the dilaton coupling constant.

Allahverdizadeh, Masoud; Kunz, Jutta; Navarro-Lerida, Francisco [Institut fuer Physik, Universitaet Oldenburg, Postfach 2503 D-26111 Oldenburg (Germany); Departamento de Fisica Atomica, Molecular y Nuclear, Ciencias Fisicas Universidad Complutense de Madrid, E-28040 Madrid (Spain)

2010-09-15T23:59:59.000Z

476

Extremal Charged Rotating Dilaton Black Holes in Odd Dimensions  

E-Print Network [OSTI]

Employing higher order perturbation theory, we find a new class of charged rotating black hole solutions of Einstein-Maxwell-dilaton theory with general dilaton coupling constant. Starting from the Myers-Perry solutions, we use the electric charge as the perturbative parameter, and focus on extremal black holes with equal-magnitude angular momenta in odd dimensions. We perform the perturbations up to 4th order for black holes in 5 dimensions and up to 3rd order in higher odd dimensions. We calculate the physical properties of these black holes and study their dependence on the charge and the dilaton coupling constant.

Masoud Allahverdizadeh; Jutta Kunz; Francisco Navarro-Lerida

2010-07-24T23:59:59.000Z

477

Relativistic velocity addition law derived from a machine gun analogy and time dilation only  

E-Print Network [OSTI]

We consider a scenario that involves a machine gun, the bullets it fires and a moving target, considered from the rest frame of the machine gun and from the rest frame of the target respectively. Involving the special relativity via its two postulates and the time dilation formula we derive the relativistic velocity addition law showing that it leads to the Lorentz transformations for the space-time coordinates of the same event.

Bernhard Rothenstein; Stefan Popescu

2007-03-15T23:59:59.000Z

478

Modeling Sensor Networks with Fusion Frames Peter G. Casazzaa, Gitta Kutyniokb, Shidong Li c, and Christopher J. Rozelld  

E-Print Network [OSTI]

Fusion, Distributed Processing, Frames, Fusion Frames, Parallel Processing, Sensor Networks, Signal plays a vital role (e.g., filter bank theory, sigma-delta quantization, signal and image processing in such applications are power constrained due to their small onboard batteries. This practical consideration often

Kutyniok, Gitta

479

Published in International Journal of Modern Physics A 11 3667 \\Gamma 3688 (1996) PAIRED ACCELERATED FRAMES y  

E-Print Network [OSTI]

ACCELERATED FRAMES y ULRICH H. GERLACH Department of Mathematics, Ohio State University, Columbus, OH 43210 are based on pairs of causally disjoint accelerated frames. For bosons the expected spin vector in the presence of quadratic interactions. In addition, the Lorentz invariance of the acceleration temperature

Gerlach, Ulrich

480

Formation of subhorizon black holes from preheating  

E-Print Network [OSTI]

We study the production of primordial black holes (PBHs) during the preheating stage that follows a chaotic inflationary phase. The scalar fields present in the process are evolved numerically using a modified version of the HLATTICE code. From the output of the numerical simulation, we compute the probability distribution of curvature fluctuations, paying particular attention to sub-horizon scales. We find that in some specific models these modes grow to large amplitudes developing highly non-Gaussian probability distributions. We then calculate PBH abundances using the standard Press-Schechter criterion and find that overproduction of PBHs is likely in some regions of the chaotic preheating parameter space.

E. Torres-Lomas; Juan Carlos Hidalgo; Karim A. Malik; L. Arturo Ureña-López

2014-04-29T23:59:59.000Z

Note: This page contains sample records for the topic "holes time frame" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Conformal Invariance of Black Hole Temperature  

E-Print Network [OSTI]

It is shown that the surface gravity and temperature of a stationary black hole are invariant under conformal transformations of the metric that are the identity at infinity. More precisely, we find a conformal invariant definition of the surface gravity of a conformal Killing horizon that agrees with the usual definition(s) for a true Killing horizon and is proportional to the temperature as defined by Hawking radiation. This result is reconciled with the intimate relation between the trace anomaly and the Hawking effect, despite the {\\it non}invariance of the trace anomaly under conformal transformations.

Ted Jacobson; Gungwon Kang

1993-07-06T23:59:59.000Z

482

Black Hole Thermodynamics and Lorentz Symmetry  

E-Print Network [OSTI]

Recent developments point to a breakdown in the generalized second law of thermodynamics for theories with Lorentz symmetry violation. It appears possible to construct a perpetual motion machine of the second kind in such theories, using a black hole to catalyze the conversion of heat to work. Here we describe and extend the arguments leading to that conclusion. We suggest the inference that local Lorentz symmetry may be an emergent property of the macroscopic world with origins in a microscopic second law of causal horizon thermodynamics.

Ted Jacobson; Aron C. Wall

2010-02-04T23:59:59.000Z

483

Geodesic Study of Regular Hayward Black Hole  

E-Print Network [OSTI]

This paper is devoted to study the geodesic structure of regular Hayward black hole. The timelike and null geodesic have been studied explicitly for radial and non-radial motion. For timelike and null geodesic in radial motion there exists analytical solution, while for non-radial motion the effective potential has been plotted, which investigates the position and turning points of the particle. It has been found that massive particle moving along timelike geodesics path are dragged towards the BH and continues move around BH in particular orbits.

G. Abbas; U. Sabiullah

2014-06-03T23:59:59.000Z

484

CHARYBDIS: A Black hole event generator.  

E-Print Network [OSTI]

model of black hole production and decay which can be interfaced to existing Monte Carlo programs using the Les Houches accord [4]. The major new theoretical input to the generator is the inclusion of the recently calculated ‘grey-body’ factors for black... ? TH geometric arguments show that ?l,m? ? (?rh)2 in any number of dimensions, which means that at high energies the shape of the spectrum is like that of a black body. However the low energy behaviour of the grey-body factors is spin-dependent and also...

Harris, Chris M; Richardson, P; Webber, Bryan R

485

Down-hole periodic seismic generator  

DOE Patents [OSTI]

A down hole periodic seismic generator system is disclosed for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

Hardee, H.C.; Hills, R.G.; Striker, R.P.

1982-10-28T23:59:59.000Z

486

Category:Slim Holes | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind FarmAddSRML Map Files Jump to:WASlim Holes

487

PHOTOCHEMICAL AND NON-PHOTOCHEMICAL HOLE BURNING IN DIMETHYL-S-TETRAZINE IN A POLYVINYL CARBAZOLE FILM  

SciTech Connect (OSTI)

Hole burning as well as fluorescence line narrowing experiments have been performed on the system dimethyl-s-tetrazine in polyvinyl carbazole films at low temperatures. The first singlet electronic absorption bands are typical (300 cm{sup -1} wide) of inhomogeneously broadened bands of guest molecules in amorphous organic hosts. Evidence is presented for both photochemical and non-photochemical hole burning. The narrowest holes observed were Lorentzian, had a width 0.44 cm{sup -1} at 1.8 K, and are believed to be of non-photochemical origin. A model which envisions the guest molecules to occupy different sites in the polymer host with a distribution of energy barriers between sites is used to describe these observations. The fast (20 psec) relaxation time implied by the 0,44 cm{sup -1} Lorentzian linewidth is interpreted as indicative of the rate of site interconversion in the excited state.

Cuellar, E.; Castro, G.

1980-05-01T23:59:59.000Z

488

UNLEASHING POSITIVE FEEDBACK: LINKING THE RATES OF STAR FORMATION, SUPERMASSIVE BLACK HOLE ACCRETION, AND OUTFLOWS IN DISTANT GALAXIES  

SciTech Connect (OSTI)

Pressure-regulated star formation is a simple variant on the usual supernova-regulated star formation efficiency that controls the global star formation rate as a function of cold gas content in star-forming galaxies, and accounts for the Schmidt-Kennicutt law in both nearby and distant galaxies. Inclusion of active galactic nucleus (AGN) induced pressure, by jets and/or winds that flow back onto a gas-rich disk, can lead, under some circumstances, to significantly enhanced star formation rates, especially at high redshift and most likely followed by the more widely accepted phase of star formation quenching. Simple expressions are derived that relate supermassive black hole growth, star formation, and outflow rates. The ratios of black hole to spheroid mass and of both black hole accretion and outflow rates to star formation rate are predicted as a function of time. I suggest various tests of the AGN-triggered star formation hypothesis.

Silk, Joseph [Institut d'Astrophysique, UMR 7095 CNRS, Universite Pierre et Marie Curie, 98bis Blvd Arago, F-75014 Paris (France); Department of Physics and Astronomy, The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Beecroft Institute of Particle Astrophysics and Cosmology, Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom)

2013-08-01T23:59:59.000Z

489

A study of production/injection data from slim holes and production wells at the Oguni Geothermal Field, Japan  

SciTech Connect (OSTI)

Production and injection data from slim holes and large-diameter wells at the Oguni Geothermal Field, Japan, were examined in an effort to establish relationships (1) between productivity of large-diameter wells and slim holes, (2) between injectivity and productivity indices and (3) between productivity index and borehole diameter. The production data from Oguni boreholes imply that the mass production from large-diameter wells may be estimated based on data from slim holes. Test data from both large- and small-diameter boreholes indicate that to first order the productivity and the injectivity indices are equal. Somewhat surprisingly, the productivity index was found to be a strong function of borehole diameter; the cause for this phenomenon is not understood at this time.

Garg, S.K.; Combs, J.; Abe, M.

1996-03-01T23:59:59.000Z

490

E-Print Network 3.0 - alkyl-chain-length-independent hole mobility...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

E... March 2006 Abstract The effects of low hole mobilities in the intrinsic layer of pin solar cells... larger than hole values. The models reveal that a low hole ... Source:...

491

Search for Frame-Dragging-Like Signals Close to Spinning Superconductors  

E-Print Network [OSTI]

High-resolution accelerometer and laser gyroscope measurements were performed in the vicinity of spinning rings at cryogenic temperatures. After passing a critical temperature, which does not coincide with the material's superconducting temperature, the angular acceleration and angular velocity applied to the rotating ring could be seen on the sensors although they are mechanically de-coupled. A parity violation was observed for the laser gyroscope measurements such that the effect was greatly pronounced in the clockwise-direction only. The experiments seem to compare well with recent independent tests obtained by the Canterbury Ring Laser Group and the Gravity-Probe B satellite. All systematic effects analyzed so far are at least 3 orders of magnitude below the observed phenomenon. The available experimental data indicates that the fields scale similar to classical frame-dragging fields. A number of theories that predicted large frame-dragging fields around spinning superconductors can be ruled out by up to 4 orders of magnitude.

M. Tajmar; F. Plesescu; B. Seifert; R. Schnitzer; I. Vasiljevich

2008-04-22T23:59:59.000Z

492

On relation between rest frame and light-front descriptions of quarkonium  

E-Print Network [OSTI]

In this paper we study the relation between the light-front (infinite momentum) and rest-frame descriptions of quarkonia. While the former is more convenient for high-energy production, the latter is usually used for the evaluation of charmonium properties. In particular, we discuss the dynamics of a relativistically moving system with nonrelativistic internal motion and give relations between rest frame and light-front potentials used for the description of quarkonium states. We consider two approximations, first the small coupling regime, and next the nonperturbative small binding energy approximation. In both cases we get consistent results. Our results could be relevant for the description of final state interactions in a wide class of processes, including quarkonium production on nuclei and plasma. Moreover, they can be extended to the description of final state interactions in the production of weakly bound systems, such as for example the deuteron.

B. Z. Kopeliovich; E. Levin; Ivan Schmidt; M. Siddikov

2015-01-07T23:59:59.000Z

493

Geometric discord of quantum states of fermionic system in accelerated frame  

E-Print Network [OSTI]

In this article, we investigate the geometric discord of quantum states of fermionic system in accelerated frame. It is shown by the method beyond the single-mode approximation, depending on the region considered, that the geometric discord for the entangled quantum states of fermionic system in accelerated frame can vanish or be retained at the infinite acceleration limit: it does not disappear when the quantum state of the particle(Alice)-particle(Bob in region I) case or the particle(Alice)-antiparticle(Bob in region II) is considered and it disappears when the particle(Alice)-antiparticle(Bob in region I) case or the particle(Alice)-particle(Bob in region II) one is considered.

Jinho Chang; L. C. Kwek; Younghun Kwon

2012-10-05T23:59:59.000Z

494

On relation between rest frame and light-front descriptions of quarkonium  

E-Print Network [OSTI]

In this paper we study the relation between the light-front (infinite momentum) and rest-frame descriptions of quarkonia. While the former is more convenient for high-energy production, the latter is usually used for the evaluation of charmonium properties. In particular, we discuss the dynamics of a relativistically moving system with nonrelativistic internal motion and give relations between rest frame and light-front potentials used for the description of quarkonium states. We consider two approximations, first the small coupling regime, and next the nonperturbative small binding energy approximation. In both cases we get consistent results. Our results could be relevant for the description of final state interactions in a wide class of processes, including quarkonium production on nuclei and plasma. Moreover, they can be extended to the description of final state interactions in the production of weakly bound systems, such as for example the deuteron.

Kopeliovich, B Z; Schmidt, Ivan; Siddikov, M

2015-01-01T23:59:59.000Z

495

Framing India's Hydraulic Crises The Politics of the Modern Large Dam  

E-Print Network [OSTI]

Framing India's Hydraulic Crises The Politics of the Modern Large Dam ROHAN D'SOUZA For several University Press, 2006). #12;I N D I A ' S H Y D R A U L I C C R I S I S 1 1 3 commentator on India, declared landscape.4 The TVA model was soon to mark a profound hydraulic departure by kick-starting the post

Sussex, University of

496

Full particle simulation of a perpendicular collisionless shock: A shock-rest-frame model  

E-Print Network [OSTI]

The full kinetic dynamics of a perpendicular collisionless shock is studied by means of a one-dimensional electromagnetic full particle simulation. The present simulation domain is taken in the shock rest frame in contrast to the previous full particle simulations of shocks. Preliminary results show that the downstream state falls into a unique cyclic reformation state for a given set of upstream parameters through the self-consistent kinetic processes.

Takayuki Umeda; Ryo Yamazaki

2006-10-30T23:59:59.000Z

497

Spin interference of holes in silicon nanosandwiches  

SciTech Connect (OSTI)

Spin-dependent transport of holes is studied in silicon nanosandwiches on an n-Si (100) surface which are represented by ultranarrow p-Si quantum wells confined by {delta}-barriers heavily doped with boron. The measurement data of the longitudinal and Hall voltages as functions of the top gate voltage without an external magnetic field show the presence of edge conduction channels in the silicon nanosandwiches. An increase in the stabilized source-drain current within the range 0.25-5 nA subsequently exhibits the longitudinal conductance value 4e{sup 2}/h, caused by the contribution of the multiple Andreev reflection, the value 0.7(2e{sup 2}/h) corresponding to the known quantum conductance staircase feature, and displays Aharonov-Casher oscillations, which are indicative of the spin polarization of holes in the edge channels. In addition, at a low stabilized source-drain current, due to spin polarization, a nonzero Hall voltage is detected which is dependent on the top gate voltage; i. e., the quantum spin Hall effect is observed. The measured longitudinal I-V characteristics demonstrate Fiske steps and a negative differential resistance caused by the generation of electromagnetic radiation as a result of the Josephson effect. The results obtained are explained within a model of topological edge states which are a system of superconducting channels containing quantum point contacts transformable to single Josephson junctions at an increasing stabilized source-drain current.

Bagraev, N. T., E-mail: Bagraev@mail.ioffe.ru; Danilovskii, E. Yu.; Klyachkin, L. E.; Malyarenko, A. M. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Mashkov, V. A. [St. Petersburg State Polytechnical University (Russian Federation)

2012-01-15T23:59:59.000Z

498

Primordial black holes as biased tracers  

E-Print Network [OSTI]

Primordial black holes (PBHs) are theoretical black holes which may be formed during the radiation dominant era and, basically, caused by the gravitational collapse of radiational overdensities. It has been well known that in the context of the structure formation in our Universe such collapsed objects, e.g., halos/galaxies, could be considered as bias tracers of underlying matter fluctuations and the halo/galaxy bias has been studied well. Employing a peak-background split picture which is known to be a useful tool to discuss the halo bias, we consider the large scale clustering behavior of the PBH and propose an almost mass-independent constraint to the scenario that dark matters (DMs) consist of PBHs. We consider the case where the statistics of the primordial curvature perturbations is almost Gaussian, but with small local-type non-Gaussianity. If PBHs account for the DM abundance, such a large scale clustering of PBHs behaves as nothing but the matter isocurvature perturbation and constrained strictly by...

Tada, Yuichiro

2015-01-01T23:59:59.000Z

499

Asymptotically Lifshitz brane-world black holes  

SciTech Connect (OSTI)

We study the gravity dual of a Lifshitz field theory in the context of a RSII brane-world scenario, taking into account the effects of the extra dimension through the contribution of the electric part of the Weyl tensor. We study the thermodynamical behavior of such asymptotically Lifshitz black holes. It is shown that the entropy imposes the critical exponent z to be bounded from above. This maximum value of z corresponds to a positive infinite entropy as long as the temperature is kept positive. The stability and phase transition for different spatial topologies are also discussed. - Highlights: Black-Right-Pointing-Pointer Studying the gravity dual of a Lifshitz field theory in the context of brane-world scenario. Black-Right-Pointing-Pointer Studying the thermodynamical behavior of asymptotically Lifshitz black holes. Black-Right-Pointing-Pointer Showing that the entropy imposes the critical exponent z to be bounded from above. Black-Right-Pointing-Pointer Discussing the phase transition for different spatial topologies.

Ranjbar, Arash, E-mail: a_ranjbar@sbu.ac.ir; Sepangi, Hamid Reza, E-mail: hr-sepangi@sbu.ac.ir; Shahidi, Shahab, E-mail: s_shahidi@sbu.ac.ir

2012-12-15T23:59:59.000Z

500

Black holes can have curly hair  

E-Print Network [OSTI]

We study equilibrium conditions between a static, spherically symmetric black hole and classical matter in terms of the radial pressure to density ratio p_r/\\rho = w(u), where u is the radial coordinate. It is shown that such an equilibrium is possible in two cases: (i) the well-known case w\\to -1 as $u\\to u_h (the horizon), i.e., "vacuum" matter, for which \\rho(u_h) can be nonzero; (ii) w \\to -1/(1+2k) and \\rho \\sim (u-u_h)^k as u\\to u_h, where k>0 is a positive integer (w=-1/3 in the generic case k=1). A non-interacting mixture of these two kinds of matter can also exist. The whole reasoning is local, hence the results do not depend on any global or asymptotic conditions. They mean, in particular, that a static black hole cannot live inside a star with nonnegative pressure and density. As an example, an exact solution for an isotropic fluid with w = -1/3 (that is, a fluid of disordered cosmic strings), with or without vacuum matter, is presented.

K. A. Bronnikov; O. B. Zaslavskii

2008-05-29T23:59:59.000Z