National Library of Energy BETA

Sample records for holes thermal ion

  1. MEASUREMENTS OF ANISOTROPIC ION TEMPERATURES, NON-THERMAL VELOCITIES, AND DOPPLER SHIFTS IN A CORONAL HOLE

    SciTech Connect (OSTI)

    Hahn, M.; Savin, D. W.

    2013-02-15

    We present a new diagnostic allowing one to measure the anisotropy of ion temperatures and non-thermal velocities, as well as Doppler shifts with respect to the ambient magnetic field. This method provides new results, as well as an independent test for previous measurements obtained with other techniques. Our spectral data come from observations of a low-latitude, on-disk coronal hole. A potential field source surface model was used to calculate the angle between the magnetic field lines and the line of sight for each spatial bin of the observation. A fit was performed to determine the line widths and Doppler shifts parallel and perpendicular to the magnetic field. For each line width component we derived ion temperatures T {sub i,} and T {sub i, Parallel-To} and non-thermal velocities v {sub nt,} and v {sub nt, Parallel-To }. T {sub i,} was cooler than off-limb polar coronal hole measurements, suggesting increasing collisional cooling with decreasing height. T {sub i, Parallel-To} is consistent with a uniform temperature of (1.8 {+-} 0.2) Multiplication-Sign 10{sup 6} K for each ion. Since parallel ion heating is expected to be weak, this ion temperature should reflect the proton temperature. A comparison between our results and others implies a large proton temperature gradient around 1.02 R {sub Sun }. The non-thermal velocities are thought to be proportional to the amplitudes of various waves. Our results for v {sub nt,} agree with Alfven wave amplitudes inferred from off-limb polar coronal hole line width measurements. Our v {sub nt, Parallel-To} results are consistent with slow magnetosonic wave amplitudes inferred from Fourier analysis of time-varying intensity fluctuations. Doppler shift measurements yield outflows of Almost-Equal-To 5 km s{sup -1} for ions formed over a broad temperature range. This differs from other studies that found a strong Doppler shift dependence on formation temperature.

  2. Thermal Gradient Holes | Open Energy Information

    Open Energy Info (EERE)

    Holes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermal Gradient Holes Details Activities (67) Areas (48) Regions (4) NEPA(33) Exploration...

  3. Category:Thermal Gradient Holes | Open Energy Information

    Open Energy Info (EERE)

    in category "Thermal Gradient Holes" This category contains only the following page. T Thermal Gradient Holes Retrieved from "http:en.openei.orgwindex.php?titleCategory:T...

  4. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    consisting of several holes including: The CH8-10 thermal-gradient holes drilled by the U.S. Geological Survey prior to 1978 to relatively shallow depths ranging from about 55 to...

  5. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Long Valley Caldera Geothermal Area (Conservation, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Long Valley...

  6. Thermal Gradient Holes At San Emidio Desert Area (DOE GTP) |...

    Open Energy Info (EERE)

    San Emidio Desert Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At San Emidio Desert Area (DOE GTP)...

  7. Thermal Gradient Holes At Pilgrim Hot Springs Area (DOE GTP)...

    Open Energy Info (EERE)

    Pilgrim Hot Springs Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Pilgrim Hot Springs Area (DOE GTP)...

  8. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Exploration Basis Thermal gradient holes were drilled in an effort to determine the feasibility of commercial geothermal energy generation at Blue Mountain Notes Ten temperature...

  9. Thermal Gradient Holes At Newberry Caldera Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Newberry Caldera Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Newberry Caldera Area (DOE GTP)...

  10. Thermal Gradient Holes At Flint Geothermal Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Flint Geothermal Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Flint Geothermal Area (DOE GTP)...

  11. Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen...

    Open Energy Info (EERE)

    (1993) Heat Flow From Four New Research Drill Holes In The Western Cascades, Oregon, Usa Additional References Retrieved from "http:en.openei.orgwindex.php?titleThermalGr...

  12. Thermal Gradient Holes At North Brawley Geothermal Area (Edmunds...

    Open Energy Info (EERE)

    Edmunds & W., 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At North Brawley Geothermal Area (Edmunds & W., 1977)...

  13. Thermal Gradient Holes At Mcgee Mountain Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Mcgee Mountain Area (DOE GTP) Exploration...

  14. Thermal Gradient Holes At Chocolate Mountains Area (Alm, Et Al...

    Open Energy Info (EERE)

    Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes "Shallow temperature gradient drilling began at the CMAGR in January of 2010. 13 temperature...

  15. Thermal Gradient Holes At Mccoy Geothermal Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Mccoy Geothermal Area (DOE GTP) Exploration Activity Details...

  16. Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski,...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) Exploration Activity...

  17. Thermal Gradient Holes At Lightning Dock Area (Warpinski, Et...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Lightning Dock Area (Warpinski, Et Al., 2004) Exploration Activity...

  18. Thermal Gradient Holes At Kilauea East Rift Geothermal Area ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Kilauea East Rift Geothermal Area (Thomas, 1986) Exploration...

  19. Thermal Gradient Holes At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Mt Princeton Hot Springs Geothermal Area (Held & Henderson, 2012)...

  20. Thermal Gradient Holes At Glass Mountain Area (Cumming And Mackie...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Glass Mountain Area (Cumming And Mackie, 2007) Exploration Activity...

  1. Thermal Gradient Holes At Crump's Hot Springs Area (DOE GTP)...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Crump's Hot Springs Area (DOE GTP) Exploration Activity Details...

  2. Thermal Ion Dispersion | Open Energy Information

    Open Energy Info (EERE)

    Dispersion Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermal Ion Dispersion Details Activities (1) Areas (1) Regions (0) NEPA(0)...

  3. Thermal Gradient Holes At Fish Lake Valley Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Fish Lake Valley Area (DOE GTP)...

  4. Thermal Gradient Holes At Hot Pot Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Pot Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Hot Pot Area (DOE GTP) Exploration Activity Details...

  5. Thermal Gradient Holes At Fort Bliss Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Fort Bliss Area (DOE GTP) Exploration Activity...

  6. Thermal Gradient Holes At Alum Area (DOE GTP) | Open Energy Informatio...

    Open Energy Info (EERE)

    Alum Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Alum Area (DOE GTP) Exploration Activity Details...

  7. Thermal Gradient Holes At Twenty-Nine Palms Area (Sabin, Et Al...

    Open Energy Info (EERE)

    Sabin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Twenty-Nine Palms Area (Sabin, Et Al., 2010)...

  8. Thermal Gradient Holes At Silver Peak Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Silver Peak Area (DOE GTP) Exploration Activity Details Location...

  9. Thermal Gradient Holes At Kilauea East Rift Area (Quane, Et Al...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Kilauea East Rift Area (Quane, Et Al., 2000) Exploration Activity...

  10. Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Salt Wells Area...

  11. Thermal Gradient Holes At Tungsten Mountain Area (Kratt, Et Al...

    Open Energy Info (EERE)

    Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes twenty-three gold exploration holes were drilled by Newcrest Resources, Inc. during 2005 and 2006 along...

  12. Thermal Gradient Holes At Chena Area (Erkan, Et. Al., 2008) ...

    Open Energy Info (EERE)

    Holes Activity Date Usefulness useful DOE-funding Unknown Notes MULTI-STAGE DRILLING Once a hole is drilled the natural-state pressure distribution with depth is essentially...

  13. Thermal Gradient Holes At Hawthorne Area (Lazaro, Et Al., 2010...

    Open Energy Info (EERE)

    Unknown Notes The Navy recently completed a temperature gradient hole (TGH) drilling campaign. Results suggest multiple resources may exist on HAD lands. To further define the...

  14. Thermal Gradient Holes At Cove Fort Area - Vapor (Warpinski,...

    Open Energy Info (EERE)

    Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D....

  15. Thermal Gradient Holes At Cove Fort Area (Warpinski, Et Al.,...

    Open Energy Info (EERE)

    Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D....

  16. Thermal Gradient Holes At Tungsten Mountain Area (Shevenell,...

    Open Energy Info (EERE)

    Holes Activity Date Usefulness useful DOE-funding Unknown Notes Collaboration with the gold mining industry has brought two new geothermal discoveries to the attention of the...

  17. Thermal Gradient Holes At Spencer Hot Springs Area (Shevenell...

    Open Energy Info (EERE)

    Holes Activity Date Usefulness useful DOE-funding Unknown Notes Collaboration with the gold mining industry has brought two new geothermal discoveries to the attention of the...

  18. Thermal Gradient Holes At Kilauea Summit Area (Keller, Et Al...

    Open Energy Info (EERE)

    L. Trowbridge Grose, John C. Murray, Catherine K. Skokan (1979) Results Of An Experimental Drill Hole At The Summit Of Kilauea Volcano, Hawaii Additional References Retrieved...

  19. Thermal Ion Dispersion At Lightning Dock Area (Cunniff & Bowers...

    Open Energy Info (EERE)

    Dispersion At Lightning Dock Area (Cunniff & Bowers, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Ion Dispersion At Lightning...

  20. Ion beam assisted deposition of thermal barrier coatings

    DOE Patents [OSTI]

    Youchison, Dennis L.; McDonald, Jimmie M.; Lutz, Thomas J.; Gallis, Michail A.

    2010-11-23

    Methods and apparatus for depositing thermal barrier coatings on gas turbine blades and vanes using Electron Beam Physical Vapor Deposition (EBPVD) combined with Ion Beam Assisted Deposition (IBAD).

  1. EERE Success Story-Terrafore: Thermal Storage gets a "Hole in One" |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Terrafore: Thermal Storage gets a "Hole in One" EERE Success Story-Terrafore: Thermal Storage gets a "Hole in One" May 29, 2015 - 2:38pm Addthis TerraCaps provide a novel method of encapsulating molten salt for increased thermal heat storage. 10- to 15-millimeter capsules provide high heat transfer surface. A void in the capsule accommodates the expansion of salt as it melts. Image from Terrafore TerraCaps provide a novel method of encapsulating

  2. Thermal Gradient Holes At Chena Geothermal Area (Erkan, Et Al...

    Open Energy Info (EERE)

    while 5 wells reached depths of 600 - 1020 feet. References Kamil Erkan, Gwen Holdman, David Blackwell, Walter Benoit (2007) Thermal Characteristics of the Chena Hot Springs...

  3. Thermal Gradient Holes At North Brawley Geothermal Area (Matlick...

    Open Energy Info (EERE)

    DOE-funding Unknown Exploration Basis Thermal gradient wells were drilled for initial exploration and assessment of the North Brawley Geothermal Area. Notes Union Oil Company...

  4. Ion thermal effects on slow mode solitary waves in plasmas with two adiabatic ion species

    SciTech Connect (OSTI)

    Nsengiyumva, F. Hellberg, M. A. Mace, R. L.

    2015-09-15

    Using both the Sagdeev and Korteweg-de Vries (KdV) methods, ion thermal effects on slow mode ion acoustic solitons and double layers are investigated in a plasma with two adiabatic positive ion species. It is found that reducing the gap between the two ion thermal speeds by increasing the relative temperature of the cool ions increases the typical soliton/double layer speeds for all values of the ion-ion density ratio and reduces the range in the density ratio that supports double layers. The effect of increasing the relative cool ion temperature on the soliton/double layer amplitudes depends on the relative densities. For lower values of the ion density ratio, an increase in cool ion temperature leads to a significant decrease in soliton/double layer amplitude, so one may find that solitons of all permissible speeds lie within the range of KdV theory.

  5. A study of the ignition processes in a center-hole-fired thermal battery

    SciTech Connect (OSTI)

    Guidotti, R.A.; Reinhardt, F.W.

    1998-04-01

    The ignition processes that take place during activation of a 16 cell, center hole fired thermal battery were examined by monitoring the voltage of each cell during activation. The average rise time of each cell to a voltage of 1.125 V was determined for the LiSi/LiCl-LiBr-LiF/FeS{sub 2} electrochemical system. The effects of heat pellet composition, center hole diameter, and the load on the activation parameters were examined for three different igniters. A large variability in individual cell performance was evident along with cell reversal, depending on the location of the cell in the stack. It was not possible to draw detailed statistical information of the relative ignition sequence due to the intrinsic large scatter in the data.

  6. Electrostatic analyzer measurements of ionospheric thermal ion populations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fernandes, P. A.; Lynch, K. A.

    2016-07-09

    Here, we define the observational parameter regime necessary for observing low-altitude ionospheric origins of high-latitude ion up ow/out ow. We present measurement challenges and identify a new analysis technique which mitigates these impediments. To probe the initiation of auroral ion up ow, it is necessary to examine the thermal ion population at 200{350 km, where typical thermal energies are tenths of eV. Interpretation of the thermal ion distribution function measurement requires removal of payload sheath and ram effects. We use a 3-D Maxwellian model to quantify how observed ionospheric parameters such as density, temperature, and flows affect in situ measurementsmore » of the thermal ion distribution function. We define the viable acceptance window of a typical top-hat electrostatic analyzer in this regime and show that the instrument's energy resolution prohibits it from directly observing the shape of the particle spectra. To extract detailed information about measured particle population, we define two intermediate parameters from the measured distribution function, then use a Maxwellian model to replicate possible measured parameters for comparison to the data. Liouville's theorem and the thin-sheath approximation allow us to couple the measured and modeled intermediate parameters such that measurements inside the sheath provide information about plasma out- side the sheath. We apply this technique to sounding rocket data to show that careful windowing of the data and Maxwellian models allows for extraction of the best choice of geophysical parameters. More widespread use of this analysis technique will help our community expand its observational database of the seed regions of ionospheric outflows.« less

  7. Three Dimensional Thermal Abuse Reaction Model for Lithium Ion Batteries

    Energy Science and Technology Software Center (OSTI)

    2006-06-29

    Three dimensional computer models for simulating thermal runaway of lithium ion battery was developed. The three-dimensional model captures the shapes and dimensions of cell components and the spatial distributions of materials and temperatures, so we could consider the geometrical features, which are critical especially in large cells. An array of possible exothermic reactions, such as solid-electrolyte-interface (SEI) layer decomposition, negative active/electrolyte reaction, and positive active/electrolyte reaction, were considered and formulated to fit experimental data frommore » accelerating rate calorimetry and differential scanning calorimetry. User subroutine code was written to implement NREL developed approach and to utilize a commercially available solver. The model is proposed to use for simulation a variety of lithium-ion battery safety events including thermal heating and short circuit.« less

  8. Thermal Gradient Holes At Twenty-Nine Palms Area (Page, Et Al...

    Open Energy Info (EERE)

    gradient holes for the GPO. Samples taken from each hole were similar in nature; mixtures of sand and conglomerates with the occasional granite sections were...

  9. Ion-heated thermal Comptonization models and x-ray spectral correlations in active galactic nuclei

    SciTech Connect (OSTI)

    Dermer, C.D.

    1989-11-01

    Recent Ginga observations of the Seyfert 1 galaxies NGC 4051 and MCG 6-30-15 show a positive correlation between the 2-10 keV luminosity and photon spectral index {alpha}. Similar behavior has also been reported in Exosat and Einstein observations of other active galactic nuclei, and is suggested in hard x-ray low-state data of the galactic black-hole candidate Cygnus X-1. A two-temperature thermal Comptonization model with internal soft-photon production provides a simple explanation for this correlation. The electron temperature, determined by a balance between ion heating and radiative cooling, decreases in response to an enhancement of the soft photon flux, resulting in a softening of the spectrum and an increase in the soft x-ray luminosity. The bulk of the soft photons are produced through pion production in collisions between the hot ions. Pivoting of the spectrum at photon energies {var epsilon} > 50 keV is a consequence of variations in the ion temperature. An important test of the model would be time correlations between soft and hard x-ray bands. 17 refs., 9 figs., 1 tab.

  10. Thermal Analysis for Ion-Exchange Column System

    SciTech Connect (OSTI)

    Lee, Si Y.; King, William D.

    2012-12-20

    Models have been developed to simulate the thermal characteristics of crystalline silicotitanate ion exchange media fully loaded with radioactive cesium either in a column configuration or distributed within a waste storage tank. This work was conducted to support the design and operation of a waste treatment process focused on treating dissolved, high-sodium salt waste solutions for the removal of specific radionuclides. The ion exchange column will be installed inside a high level waste storage tank at the Savannah River Site. After cesium loading, the ion exchange media may be transferred to the waste tank floor for interim storage. Models were used to predict temperature profiles in these areas of the system where the cesium-loaded media is expected to lead to localized regions of elevated temperature due to radiolytic decay. Normal operating conditions and accident scenarios (including loss of solution flow, inadvertent drainage, and loss of active cooling) were evaluated for the ion exchange column using bounding conditions to establish the design safety basis. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. In-tank modeling results revealed that an idealized hemispherical mound shape leads to the highest tank floor temperatures. In contrast, even large volumes of CST distributed in a flat layer with a cylindrical shape do not result in significant floor heating.

  11. The change of microstructure and thermal properties in ion irradiated carbon nanotube mats as a function of ion penetration depth

    SciTech Connect (OSTI)

    Aitkaliyeva, A. [Materials Science and Engineering Program, Texas A and M University, College Station, Texas 77843 (United States)] [Materials Science and Engineering Program, Texas A and M University, College Station, Texas 77843 (United States); Shao, L. [Materials Science and Engineering Program, Texas A and M University, College Station, Texas 77843 (United States) [Materials Science and Engineering Program, Texas A and M University, College Station, Texas 77843 (United States); Department of Nuclear Engineering, Texas A and M University, College Station, Texas 77843 (United States)

    2013-02-11

    A stack of three carbon nanotube (CNT) mats was irradiated with 3 MeV He ions. The change in structural and thermal properties of individual mats as a function of ion penetration depth was characterized using electron microscopy and laser flash techniques. Ion irradiation can enhance thermal conductivity of the mats by introducing inter-tube displacements, which improve phonon transport across adjacent nanotubes. The enhancement, however, is reduced at higher damage levels due to the increasing phonon-defect scattering within the tubes. This study demonstrates the feasibility of using ion irradiation to manipulate thermal transport in carbon nanotubes.

  12. CONSTRAINTS ON THE SPACETIME GEOMETRY AROUND 10 STELLAR-MASS BLACK HOLE CANDIDATES FROM THE DISK'S THERMAL SPECTRUM

    SciTech Connect (OSTI)

    Kong, Lingyao; Li, Zilong; Bambi, Cosimo

    2014-12-20

    In a previous paper, one of us (C. Bambi) described a code to compute the thermal spectrum of geometrically thin and optically thick accretion disks around generic stationary and axisymmetric black holes, which are not necessarily of the Kerr type. As the structure of the accretion disk and the propagation of electromagnetic radiation from the disk to the distant observer depend on the background metric, the analysis of the thermal spectrum of thin disks can be used to test the actual nature of black hole candidates. In this paper, we consider the 10 stellar-mass black hole candidates for which the spin parameter has already been estimated from the analysis of the disk's thermal spectrum under the assumption of the Kerr background, and we translate the measurements reported in the literature into constraints on the spin parameter-deformation parameter plane. The analysis of the disk's thermal spectrum can be used to estimate only one parameter of the geometry close to the compact object; therefore, it is not possible to get independent measurements of both the spin and the deformation parameters. The constraints obtained here will be used in combination with other measurements in future work with the final goal of breaking the degeneracy between the spin and possible deviations from the Kerr solution and thus test the Kerr black hole hypothesis.

  13. Quantification of Lithium-ion Cell Thermal Runaway Energetics

    SciTech Connect (OSTI)

    Orendorff, Christopher J.; Lamb, Joshua; Steele, Leigh Anna Marie; Spangler, Scott Wilmer; Langendorf, Jill Louise

    2016-01-01

    Much of what is known about lithium-ion cell thermal runaway energetics has been measured and extrapolated from data acquired on relatively small cells (< 3 Ah). This work is aimed at understanding the effects of cell size on thermal runaway energetics on cells from 3 to 50 Ah of both LiFePO4 (LFP) and LiNi0.80Co0.15Al0.05O2 (NCA) chemistries. Results show that for both LFP and NCA cells, the normalized heating rate (W/Ah) increases roughly linearly for cells from 3-38 Ah while the normalized total heat released (kJ/Ah) is relatively constant over that cell size range. The magnitude of the normalized heating rate is on the order of 2x greater for NCA relative to LFP chemistries for 2-3 Ah cells, while that difference is on the order of 10x for 30-40 Ah cells. The total normalized heat release is ~ 15-20% greater for NCA relative to LFP cells across the entire size range studied 3-38 Ah.

  14. Temporal evolution of solar wind ion composition and their source coronal holes during the declining phase of cycle 23. I. Low-latitude extension of polar coronal holes

    SciTech Connect (OSTI)

    Ko, Yuan-Kuen; Wang, Yi-Ming; Muglach, Karin; Young, Peter R.; Lepri, Susan T.

    2014-06-01

    We analyzed 27 solar wind (SW) intervals during the declining phase of cycle 23, whose source coronal holes (CHs) can be unambiguously identified and are associated with one of the polar CHs. We found that the SW ions have a temporal trend of decreasing ionization state, and such a trend is different between the slow and fast SW. The photospheric magnetic field, both inside and at the outside boundary of the CH, also exhibits a trend of decrease with time. However, EUV line emissions from different layers of the atmosphere exhibit different temporal trends. The coronal emission inside the CH generally increases toward the CH boundary as the underlying field increases in strength and becomes less unipolar. In contrast, this relationship is not seen in the coronal emission averaged over the entire CH. For C and O SW ions that freeze-in at lower altitude, stronger correlation between their ionization states and field strength (both signed and unsigned) appears in the slow SW, while for Fe ions that freeze-in at higher altitude, stronger correlation appears in the fast SW. Such correlations are seen both inside the CH and at its boundary region. On the other hand, the coronal electron temperature correlates well with the SW ion composition only in the boundary region. Our analyses, although not able to determine the likely footpoint locations of the SW of different speeds, raise many outstanding questions for how the SW is heated and accelerated in response to the long-term evolution of the solar magnetic field.

  15. Analysis of Heat Dissipation in Li-Ion Cells & Modules for Modeling of Thermal Runaway (Presentation)

    SciTech Connect (OSTI)

    Kim, G.-H.; Pesaran, A.

    2007-05-15

    The objectives of this study are: (1) To develop 3D Li-Ion battery thermal abuse ''reaction'' models for cell and module analysis; (2) To understand the mechanisms and interactions between heat transfer and chemical reactions during thermal runaway for Li-Ion cells and modules; (3) To develop a tool and methodology to support the design of abuse-tolerant Li-Ion battery systems for PHEVs/HEVs; and (4) To help battery developers accelerate delivery of abuse-tolerant Li-Ion battery systems in support of the FreedomCAR's Energy Storage Program.

  16. Soliton propagation in an inhomogeneous plasma at critical density of negative ions: Effects of gyratory and thermal motions of ions

    SciTech Connect (OSTI)

    Malik, Hitendra K.; Kawata, Shigeo

    2007-10-15

    The effects of gyratory and thermal motions of ions on soliton propagation in an inhomogeneous plasma that contains positive ions, negative ions, and electrons are studied at a critical density of negative ions. Since at this critical negative ion density the nonlinear term of the relevant Korteweg-deVries (KdV) equation vanishes, a higher order of nonlinearity is considered by retaining higher-order perturbation terms in the expansion of dependent quantities together with the appropriate set of stretched coordinates. Under this situation, time-dependent perturbation leads to the evolution of modified KdV solitons, which are governed by a modified form of the KdV equation that has an additional term due to the density gradient present in the plasma. On the basis of the solution of this equation and obliquely applied magnetic field, the effects of gyratory and thermal motions of ions are analyzed on the soliton propagation for three cases, n{sub n0}n{sub e0}, together with n{sub n0} (n{sub e0}) as the density of negative ions (electrons). The role of the negative ions in the evolution of the modes and the solitons is also discussed. Under the limiting cases, our calculations reduce to the ones obtained by other investigators in the past. This substantiates the generality of the present analysis.

  17. Sheath formation criterion in magnetized electronegative plasmas with thermal ions

    SciTech Connect (OSTI)

    Hatami, M. M. [Physics Department of K N Toosi University of Technology, 15418-49611 Tehran (Iran, Islamic Republic of); Shokri, B. [Physics Department and Laser-Plasma Research Institute of Shahid Beheshti University, G. C., Evin, Tehran (Iran, Islamic Republic of)

    2013-03-15

    Taking into account the effect of collisions and positive ion temperatures, the sheath formation criterion is investigated in a weakly magnetized electronegative plasma consisting of electrons, negative and positive ions by using the hydrodynamics equations. It is assumed that the electron and negative ion density distributions are the Boltzmann distribution with two different temperatures. Also, it is assumed that the velocity of positive ions at the sheath edge is not normal to the wall (oblique entrance). Our results show that a sheath region will be formed when the initial velocity of positive ions or the ion Mach number M lies in a specific interval with particular upper and lower limits. Also, it is shown that the presence of the magnetic field affects both of these limits. Moreover, as an practical application, the density distribution of charged particles in the sheath region is studied for an allowable value of M, and it is seen that monotonically reduction of the positive ion density distribution leading to the sheath formation occurs only when M lies between two above mentioned limits.

  18. Ion Thermal Decoupling and Species Separation in Shock-Driven Implosions

    SciTech Connect (OSTI)

    Rinderknecht, Hans G.; Rosenberg, M. J.; Li, C. K.; Hoffman, N. M.; Kagan, G.; Zylstra, A. B.; Sio, H.; Johnson, M. Gatu; Seguin, F. H.; Petrasso, R. D.; Amendt, P.; Bellei, C.; Wilks, S.; Delettrez, J.; Glebov, V. Yu.; Stoeckl, C.; Sangster, T. C.; Meyerhofer, D. D.; Nikroo, A.

    2015-01-14

    Anomalous reduction of the fusion yields by 50% and anomalous scaling of the burn-averaged ion temperatures with the ion-species fraction has been observed for the first time in DHe3-filled shock-driven inertial confinement fusion implosions. Two ion kinetic mechanisms are used to explain the anomalous observations: thermal decoupling of the D and He3 populations and diffusive species separation. The observed insensitivity of ion temperature to a varying deuterium fraction is shown to be a signature of ion thermal decoupling in shock-heated plasmas. The burn-averaged deuterium fraction calculated from the experimental data demonstrates a reduction in the average core deuterium density, as predicted by simulations that use a diffusion model. Accounting for each of these effects in simulations reproduces the observed yield trends.

  19. Ion Thermal Decoupling and Species Separation in Shock-Driven Implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rinderknecht, Hans G.; Rosenberg, M. J.; Li, C. K.; Hoffman, N. M.; Kagan, G.; Zylstra, A. B.; Sio, H.; Johnson, M. Gatu; Seguin, F. H.; Petrasso, R. D.; et al

    2015-01-14

    Anomalous reduction of the fusion yields by 50% and anomalous scaling of the burn-averaged ion temperatures with the ion-species fraction has been observed for the first time in DHe3-filled shock-driven inertial confinement fusion implosions. Two ion kinetic mechanisms are used to explain the anomalous observations: thermal decoupling of the D and He3 populations and diffusive species separation. The observed insensitivity of ion temperature to a varying deuterium fraction is shown to be a signature of ion thermal decoupling in shock-heated plasmas. The burn-averaged deuterium fraction calculated from the experimental data demonstrates a reduction in the average core deuterium density, asmore » predicted by simulations that use a diffusion model. Accounting for each of these effects in simulations reproduces the observed yield trends.« less

  20. Ion Thermal Decoupling and Species Separation in Shock-Driven Implosions

    SciTech Connect (OSTI)

    Rinderknecht, Hans G.; Rosenberg, M. J.; Li, C. K.; Hoffman, N. M.; Kagan, G.; Zylstra, A. B.; Sio, H.; Frenje, J. A,; Gatu Johnson, M.; Seguin, F. H.; Petrasso, R. D.; Amendt, P.; Bellei, C.; Wilks, S.; Delettrez, J.; Glebov, V. Yu.; Stoeckl, C.; Sangster, T. C.; Meyerhofer, D. D.; Nikroo, A.

    2015-01-01

    Anomalous reduction of the fusion yields by 50% and anomalous scaling of the burn-averaged ion temperatures with the ion-species fraction has been observed for the first time in DHe3-filled shock-driven inertial confinement fusion implosions. Two ion kinetic mechanisms are used to explain the anomalous observations: thermal decoupling of the D and He3 populations and diffusive species separation. The observed insensitivity of ion temperature to a varying deuterium fraction is shown to be a signature of ion thermal decoupling in shock-heated plasmas. The burn-averaged deuterium fraction calculated from the experimental data demonstrates a reduction in the average core deuterium density, as predicted by simulations that use a diffusion model. Accounting for each of these effects in simulations reproduces the observed yield trends.

  1. Nonlinear Korteweg-de Vries equation for soliton propagation in relativistic electron-positron-ion plasma with thermal ions

    SciTech Connect (OSTI)

    Saeed, R.; Shah, Asif; Noaman-ul-Haq, Muhammad

    2010-10-15

    The nonlinear propagation of ion-acoustic solitons in relativistic electron-positron-ion plasma comprising of Boltzmannian electrons, positrons, and relativistic thermal ions has been examined. The Korteweg-de Vries equation has been derived by reductive perturbation technique. The effect of various plasma parameters on amplitude and structure of solitary wave is investigated. The pert graphical view of the results has been presented for illustration. It is observed that increase in the relativistic streaming factor causes the soliton amplitude to thrive and its width shrinks. The soliton amplitude and width decline as the ion to electron temperature ratio is increased. The increase in positron concentration results in reduction of soliton amplitude. The soliton amplitude enhances as the electron to positron temperature ratio is increased. Our results may have relevance in the understanding of astrophysical plasmas.

  2. Multi-Node Thermal System Model for Lithium-Ion Battery Packs: Preprint

    SciTech Connect (OSTI)

    Shi, Ying; Smith, Kandler; Wood, Eric; Pesaran, Ahmad

    2015-09-14

    Temperature is one of the main factors that controls the degradation in lithium ion batteries. Accurate knowledge and control of cell temperatures in a pack helps the battery management system (BMS) to maximize cell utilization and ensure pack safety and service life. In a pack with arrays of cells, a cells temperature is not only affected by its own thermal characteristics but also by its neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs. neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs.

  3. EERE Success Story-Terrafore: Thermal Storage gets a "Hole in...

    Office of Environmental Management (EM)

    TerraCaps provide a novel method of encapsulating molten salt for increased thermal ... With support from a SunShot Baseload Concentrating Solar Power (CSP) Generation award, Terrafore ...

  4. Electrochemical-thermal modeling and microscale phase change for passive internal thermal management of lithium ion batteries.

    SciTech Connect (OSTI)

    Fuller, Thomas F.; Bandhauer, Todd; Garimella, Srinivas

    2012-01-01

    A fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the impact of different thermal management strategies on battery performance. In contrast to previous modeling efforts focused either exclusively on particle electrochemistry on the one hand or overall vehicle simulations on the other, the present work predicts local electrochemical reaction rates using temperature-dependent data on commercially available batteries designed for high rates (C/LiFePO{sub 4}) in a computationally efficient manner. Simulation results show that conventional external cooling systems for these batteries, which have a low composite thermal conductivity ({approx}1 W/m-K), cause either large temperature rises or internal temperature gradients. Thus, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. Although there have been prior investigations of phase change at the microscales, fluid flow at the conditions expected here is not well understood. A first-principles based cooling system performance model is developed and validated experimentally, and is integrated into the coupled electrochemical-thermal model for assessment of performance improvement relative to conventional thermal management strategies. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid. Thus, the minimization of peak temperatures and gradients within batteries allow increased power and energy densities unencumbered by thermal limitations.

  5. Acceleration of relativistic electrons by magnetohydrodynamic turbulence: Implications for non-thermal emission from black hole accretion disks

    SciTech Connect (OSTI)

    Lynn, Jacob W.; Quataert, Eliot; Chandran, Benjamin D. G.; Parrish, Ian J.

    2014-08-10

    We use analytic estimates and numerical simulations of test particles interacting with magnetohydrodynamic (MHD) turbulence to show that subsonic MHD turbulence produces efficient second-order Fermi acceleration of relativistic particles. This acceleration is not well described by standard quasi-linear theory but is a consequence of resonance broadening of wave-particle interactions in MHD turbulence. We provide momentum diffusion coefficients that can be used for astrophysical and heliospheric applications and discuss the implications of our results for accretion flows onto black holes. In particular, we show that particle acceleration by subsonic turbulence in radiatively inefficient accretion flows can produce a non-thermal tail in the electron distribution function that is likely important for modeling and interpreting the emission from low-luminosity systems such as Sgr A* and M87.

  6. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    SciTech Connect (OSTI)

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-11-03

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.

  7. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-11-03

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying withmore » transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.« less

  8. Thermal reactive ion etching technique involving use of self-heated cathode

    SciTech Connect (OSTI)

    Yamada, S.; Minami, Y.; Sohgawa, M.; Abe, T.

    2015-04-15

    In this work, the thermal reactive ion etching (TRIE) technique for etching hard-to-etch materials is presented. The TRIE technique employs a self-heated cathode and a thermally insulated aluminum plate is placed on the cathode of a regular reactive ion etching (RIE) system. By optimizing the beam size to support the sample stage, the temperature of the stage can be increased to a desired temperature without a cathode heater. The technique was used to etch a bulk titanium plate. An etch rate of 0.6 μm/min and an etch selectivity to nickel of 100 were achieved with SF{sub 6} plasma. The proposed technique makes a regular RIE system a more powerful etcher without the use of chlorine gas, a cathode heater, and an inductively coupled plasma source.

  9. Electrochemical Thermal Network Model for Multi-Cell Lithium Ion Battery

    Energy Science and Technology Software Center (OSTI)

    2009-02-28

    Increasing the numbers and size of cells in a battery pack complicates electrical and thermal control of the system. In addition to keeping a battery pack in the optimal temperature range, maintaining temperature uniformity among all cells in a pack is important to prolong life and enhance safety. Electrical, electrochemical, and thermal responses of a lithium ion battery are closely coupled through macroscopic design factors of the cells and module or pack. The model hasmore » to resolve complex interaction between cell characteristics, pack design, and load conditions. Safe and durable battery pack design requires a battery thermal model that can be coupled with a battery performance more and/or safety model with good accuracy and simulation time. The model is proposed to be used for various technical purposes: Design optimization for safety and/or performance, On-board control.« less

  10. Electrochemical Thermal Network Model for Multi-Cell Lithium Ion Battery

    SciTech Connect (OSTI)

    2009-02-28

    Increasing the numbers and size of cells in a battery pack complicates electrical and thermal control of the system. In addition to keeping a battery pack in the optimal temperature range, maintaining temperature uniformity among all cells in a pack is important to prolong life and enhance safety. Electrical, electrochemical, and thermal responses of a lithium ion battery are closely coupled through macroscopic design factors of the cells and module or pack. The model has to resolve complex interaction between cell characteristics, pack design, and load conditions. Safe and durable battery pack design requires a battery thermal model that can be coupled with a battery performance more and/or safety model with good accuracy and simulation time. The model is proposed to be used for various technical purposes: Design optimization for safety and/or performance, On-board control.

  11. Rarefactive and compressive soliton waves in unmagnetized dusty plasma with non-thermal electron and ion distribution

    SciTech Connect (OSTI)

    Eslami, Esmaeil Baraz, Rasoul

    2014-02-15

    Sagdeev's pseudo potential method is employed to study dust acoustic solitary waves in an unmagnetized plasma containing negatively charged dusts with non-thermal electron and ion. The range of parameters for the existence of solitary waves using the analytical expression of the Sagdeev potential has been found. It is observed that, depending on the values of the plasma parameters like ion to electron temperature ratio σ, non-thermal parameters β and γ, electron to ion density ratio μ, and the value of the Mach number M, both rarefactive and compressive solitary waves may exist.

  12. Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber

    SciTech Connect (OSTI)

    Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.

    2012-07-08

    A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.

  13. Thermalization of color gauge fields in high energy heavy ion collisions

    SciTech Connect (OSTI)

    Iwazaki, Aiichi [International Politics Economics, Nishogakusha University, Ohi Kashiwa Chiba 277-8585 (Japan)

    2008-03-15

    We discuss the quantum mechanical decay of the color magnetic field generated initially during high-energy heavy-ion collisions. The decay is caused by Nielsen-Olesen unstable modes and is accomplished possibly in a period <1 fm/c. We show that the decay products (i.e., incoherent gluons) may be thermalized in a sufficiently short period (<1 fm/c). The precise determination of the period is made by calculating the two-point function of the color magnetic field in a color glass condensate model.

  14. Thermal property tuning in aligned carbon nanotube films and random entangled carbon nanotube films by ion irradiation

    SciTech Connect (OSTI)

    Wang, Jing; Chen, Di; Wang, Xuemei; Bykova, Julia S.; Zakhidov, Anvar A.; Shao, Lin

    2015-10-12

    Ion irradiation effects on thermal property changes are compared between aligned carbon nanotube (A-CNT) films and randomly entangled carbon nanotube (R-CNT) films. After H, C, and Fe ion irradiation, a focusing ion beam with sub-mm diameter is used as a heating source, and an infrared signal is recorded to extract thermal conductivity. Ion irradiation decreases thermal conductivity of A-CNT films, but increases that of R-CNT films. We explain the opposite trends by the fact that neighboring CNT bundles are loosely bonded in A-CNT films, which makes it difficult to create inter-tube linkage/bonding upon ion irradiation. In a comparison, in R-CNT films, which have dense tube networking, carbon displacements are easily trapped between touching tubes and act as inter-tube linkage to promote off-axial phonon transport. The enhancement overcomes the phonon transport loss due to phonon-defect scattering along the axial direction. A model is established to explain the dependence of thermal conductivity changes on ion irradiation parameters including ion species, energies, and current.

  15. Li-Ion polymer cells thermal property changes as a function of cycle-life

    SciTech Connect (OSTI)

    Maleki, Hossein; Wang, Hsin; Porter, Wallace D; Hallmark, Jerry

    2014-01-01

    The impact of elevated temperature chargeedischarge cycling on thermal conductivity (K-value) of Lithium Ion Polymer (LIP) cells of various chemistries from three different manufacturers was investigated. These included high voltage (Graphite/LiCoO2:3.0e4.35 V), wide voltage (Si:C/LiCoO2:2.7e4.35 V) and conventional (Graphite/LiCoO2:3.0e4.2 V) chemistries. Investigation results show limited variability within the in-plane and through-plane K-values for the fresh cells with graphite-based anodes from all three suppliers. After 500 cycles at 45 C, in-plane and through-plane K-values of the high voltage cells reduced less vs. those for the wide voltage cells. Such results suggest that high temperature cycling could have a greater impact on thermal properties of Si:C cells than on the LIP cells with graphite (Gr) anode cells we tested. This difference is due to the excess swelling of Si:C-anode based cells vs. Gr-anode cells during cycling, especially at elevated temperatures. Thermal modeling is used to evaluate the impact of K-value changes, due to cycles at 45 C, on the cells internal heat propagation under internal short circuit condition that leads to localized meltdown of the separator.

  16. Three-Dimensional Thermal-Electrochemical Coupled Model for Spirally Wound Large-Format Lithium-Ion Batteries (Presentation)

    SciTech Connect (OSTI)

    Lee, K. J.; Smith K.; Kim, G. H.

    2011-04-01

    This presentation discusses the behavior of spirally wound large-format Li-ion batteries with respect to their design. The objectives of the study include developing thermal and electrochemical models resolving 3-dimensional spirally wound structures of cylindrical cells, understanding the mechanisms and interactions between local electrochemical reactions and macroscopic heat and electron transfers, and developing a tool and methodology to support macroscopic designs of cylindrical Li-ion battery cells.

  17. Dust-acoustic shock formation in dusty plasmas with non-thermal ions

    SciTech Connect (OSTI)

    Asgari, H.; Muniandy, S. V.; Wong, C. S.

    2013-01-15

    In this study, the nonlinear Burgers equation in the presence of the dust charge fluctuation is derived and the shock-like solution is determined. It is well known that in order to have a monotonic or oscillatory shock wave, a source of dissipation is needed. By using the experimental data reported in the laboratory observation of self-excited dust-acoustic shock waves [Heinrich et al., Phys. Rev. Lett. 103, 115002 (2009)], it is shown that dust charge fluctuation can be considered as a candidate for the source of dissipation needed for the dust-acoustic shock formation. By examining the effects of non-thermal ions on dust-acoustic shock's characteristics, a possible theoretical explanation for the discrepancies observed between theory and experiment is proposed.

  18. How much do heavy quarks thermalize in a heavy ion collision?

    SciTech Connect (OSTI)

    Moore, Guy D.; Teaney, Derek

    2005-06-01

    We investigate the thermalization of charm quarks in high-energy heavy-ion collisions. To this end, we calculate the diffusion coefficient in the perturbative quark gluon plasma and relate it to collisional energy loss and momentum broadening. We then use these transport properties to formulate a Langevin model for the evolution of the heavy quark spectrum in the hot medium. The model is strictly valid in the nonrelativistic limit and for all velocities {gamma}v<{alpha}s{sup -1/2} to leading logarithm in T/m{sub D}. The corresponding Fokker-Planck equation can be solved analytically for a Bjorken expansion and the solution gives a simple estimate for the medium modifications of the heavy quark spectrum as a function of the diffusion coefficient. Finally we solve the Langevin equations numerically in a hydrodynamic simulation of the heavy-ion reaction. The results of this simulation are the medium modifications of the charm spectrum R{sub AA} and the expected elliptic flow v{sub 2}(p{sub T}) as a function of the diffusion coefficient.

  19. THREE-DIMENSIONAL THERMAL MODELING ANALYSIS OF CST MEDIA FOR THE SMALL ION EXCHANGE PROJECT

    SciTech Connect (OSTI)

    Lee, S.; King, W.

    2011-09-12

    The Small Column Ion Exchange (SCIX) project is designed to accelerate closure of High Level Waste (HLW) tanks at the Savannah River Site (SRS). The SRS tanks store HLW in three forms: sludge, saltcake, and supernate. An in-tank ion exchange process is being designed to treat supernate and dissolved saltcake waste. Through this process, radioactive cesium from the salt solution is adsorbed into Crystalline Silicotitanate (CST) ion exchange media packed within a flow-through column. A packed column loaded with radioactive cesium generates significant heat from radiolytic decay. The waste supernate solution within the ion exchange bed will boil around 120 C. Solution superheating above the boiling point within the column could lead to violent hazardous energy releases. System heating from loaded CST is also of concern in other process modules, such as the waste tank. Due to tank structural integrity concerns, the wall temperature limit for the SRS waste tanks is 100 C. The transfer of cesium-loaded CST to the tank could result in localized hot spots on the tank floor and walls which may exceed this limit. As a result, thermal modeling calculations have been conducted to predict the maximum temperatures achievable both in the column and in the waste tank. As specified in the associated Technical Task Plan, one objective of the present work was to compute temperature distributions within the ion exchange column module under accident scenarios including loss of salt solution flow through the bed and loss of coolant system flow. The column modeling domain and the scope of the calculations in this case were broadened relative to previous two-dimensional calculations to include vertical temperature distributions within the packed bed of ion exchange media as well as the upper column plenum region containing only fluid. The baseline design conditions and in-column modeling domain for the ion-exchange column module are shown in Figure 1. These evaluations assumed the maximum

  20. THERMAL MODELING ANALYSIS OF CST MEDIA IN THE SMALL COLUMN ION EXCHANGE PROJECT

    SciTech Connect (OSTI)

    Lee, S.

    2010-11-01

    Models have been developed to simulate the thermal characteristics of Crystalline Silicotitanate (CST) ion exchange media fully loaded with radioactive cesium in a column configuration and distributed within a waste storage tank. This work was conducted to support the Small Column Ion Exchange (SCIX) program which is focused on processing dissolved, high-sodium salt waste for the removal of specific radionuclides (including Cs-137, Sr-90, and actinides) within a High Level Waste (HLW) storage tank at the Savannah River Site. The SCIX design includes CST columns inserted and supported in the tank top risers for cesium removal. Temperature distributions and maximum temperatures across the column were calculated with a focus on process upset conditions. A two-dimensional computational modeling approach for the in-column ion-exchange domain was taken to include conservative, bounding estimates for key parameters such that the results would provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on CST. One salt processing scenario includes the transport of the loaded (and possibly ground) CST media to the treatment tank floor. Therefore, additional thermal modeling calculations were conducted using a three-dimensional approach to evaluate temperature distributions for the entire in-tank domain including distribution of the spent CST media either as a mound or a flat layer on the tank floor. These calculations included mixtures of CST with HLW sludge or loaded Monosodium Titanate (MST) media used for strontium/actinide sorption. The current full-scale design for the CST column includes one central cooling pipe and four outer cooling tubes. Most calculations assumed that the fluid within the column was stagnant (i.e. no buoyancy-induced flow) for a conservative estimate. A primary objective of these calculations was to estimate temperature distributions across packed CST beds

  1. Hybrid (particle in cell-fluid) simulation of ion-acoustic soliton generation including super-thermal and trapped electrons

    SciTech Connect (OSTI)

    Nopoush, M.; Abbasi, H.

    2011-08-15

    The present paper is devoted to the simulation of the nonlinear disintegration of a localized perturbation into an ion-acoustic soliton in a plasma. Recently, this problem was studied by a simple model [H. Abbasi et al., Plasma Phys. Controlled Fusion 50, 095007 (2008)]. The main assumptions were (i) in the electron velocity distribution function (DF), the ion-acoustic soliton velocity was neglected in comparison to the electron thermal velocity, (ii) on the ion-acoustic evolution time-scale, the electron velocity DF was assumed to be stationary, and (iii) the calculation was restricted to the small amplitude case. In order to generalize the model, one has to consider the evolution of the electron velocity DF for finite amplitudes. For this purpose, a one dimensional electrostatic hybrid code, particle in cell (PIC)-fluid, was designed. It simulates the electrons dynamics by the PIC method and the cold ions dynamics by the fluid equations. The plasma contains a population of super-thermal electrons and, therefore, a Lorentzian (kappa) velocity DF is used to model the high energy tail in the electron velocity DF. Electron trapping is included in the simulation in view of their nonlinear resonant interaction with the localized perturbation. A Gaussian initial perturbation is used to model the localized perturbation. The influence of both the trapped and the super-thermal electrons on this process is studied and compared with the previous model.

  2. Studies on the thermal breakdown of common Li-ion battery electrolyte components

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lamb, Joshua; Orendorff, Christopher J.; Roth, Emanuel Peter; Langendorf, Jill Louise

    2015-08-06

    While much attention is paid to the impact of the active materials on the catastrophic failure of lithium ion batteries, much of the severity of a battery failure is also governed by the electrolytes used, which are typically flammable themselves and can decompose during battery failure. The use of LiPF6 salt can be problematic as well, not only catalyzing electrolyte decomposition, but also providing a mechanism for HF production. This work evaluates the safety performance of the common components ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in the context of the gasses producedmore » during thermal decomposition, looking at both the quantity and composition of the vapor produced. EC and DEC were found to be the largest contributors to gas production, both producing upwards of 1.5 moles of gas/mole of electrolyte. DMC was found to be relatively stable, producing very little gas regardless of the presence of LiPF6. EMC was stable on its own, but the addition of LiPF6 catalyzed decomposition of the solvent. As a result, while gas analysis did not show evidence of significant quantities of any acutely toxic materials, the gasses themselves all contained enough flammable components to potentially ignite in air.« less

  3. Studies on the thermal breakdown of common Li-ion battery electrolyte components

    SciTech Connect (OSTI)

    Lamb, Joshua; Orendorff, Christopher J.; Roth, Emanuel Peter; Langendorf, Jill Louise

    2015-08-06

    While much attention is paid to the impact of the active materials on the catastrophic failure of lithium ion batteries, much of the severity of a battery failure is also governed by the electrolytes used, which are typically flammable themselves and can decompose during battery failure. The use of LiPF6 salt can be problematic as well, not only catalyzing electrolyte decomposition, but also providing a mechanism for HF production. This work evaluates the safety performance of the common components ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in the context of the gasses produced during thermal decomposition, looking at both the quantity and composition of the vapor produced. EC and DEC were found to be the largest contributors to gas production, both producing upwards of 1.5 moles of gas/mole of electrolyte. DMC was found to be relatively stable, producing very little gas regardless of the presence of LiPF6. EMC was stable on its own, but the addition of LiPF6 catalyzed decomposition of the solvent. As a result, while gas analysis did not show evidence of significant quantities of any acutely toxic materials, the gasses themselves all contained enough flammable components to potentially ignite in air.

  4. Suppression of the thermal hysteresis in magnetocaloric MnAs thin film by highly charged ion bombardment

    SciTech Connect (OSTI)

    Trassinelli, M. Marangolo, M.; Eddrief, M.; Etgens, V. H.; Gafton, V.; Hidki, S.; Lacaze, E.; Lamour, E.; Prigent, C.; Rozet, J.-P.; Steydli, S.; Zheng, Y.; Vernhet, D.

    2014-02-24

    We present the investigation on the modifications of structural and magnetic properties of MnAs thin film epitaxially grown on GaAs induced by slow highly charged ions bombardment under well-controlled conditions. The ion-induced defects facilitate the nucleation of one phase with respect to the other in the first-order magneto-structural MnAs transition, with a consequent suppression of thermal hysteresis without any significant perturbation on the other structural and magnetic properties. In particular, the irradiated film keeps the giant magnetocaloric effect at room temperature opening new perspective on magnetic refrigeration technology for everyday use.

  5. Exact evaluation of the rates of electrostatic decay and scattering off thermal ions for an unmagnetized Maxwellian plasma

    SciTech Connect (OSTI)

    Layden, B.; Cairns, Iver H.; Robinson, P. A.

    2013-08-15

    Electrostatic decay of Langmuir waves into Langmuir and ion sound waves (L?L?+S) and scattering of Langmuir waves off thermal ions (L+i?L?+i?, also called nonlinear Landau damping) are important nonlinear weak-turbulence processes. The rates for these processes depend on the quadratic longitudinal response function ?{sup (2)} (or, equivalently, the quadratic longitudinal susceptibility ?{sup (2)}), which describes the second-order response of a plasma to electrostatic wave fields. Previous calculations of these rates for an unmagnetized Maxwellian plasma have relied upon an approximate form for ?{sup (2)} that is valid where two of the wave fields are fast (i.e., v{sub ?}=?/k?V{sub e} where ? is the angular frequency, k is the wavenumber, and V{sub e} is the electron thermal speed) and one is slow (v{sub ?}?V{sub e}). Recently, an exact expression was derived for ?{sup (2)} that is valid for any phase speeds of the three waves in an unmagnetized Maxwellian plasma. Here, this exact ?{sup (2)} is applied to the calculation of the three-dimensional rates for electrostatic decay and scattering off thermal ions, and the resulting exact rates are compared with the approximate rates. The calculations are performed using previously derived three-dimensional rates for electrostatic decay given in terms of a general ?{sup (2)}, and newly derived three-dimensional rates for scattering off thermal ions; the scattering rate is derived assuming a Maxwellian ion distribution, and both rates are derived assuming arc distributions for the wave spectra. For most space plasma conditions, the approximate rate is found to be accurate to better than 20%; however, for sufficiently low Langmuir phase speeds (v{sub ?}/V{sub e}?3) appropriate to some spatial domains of the foreshock regions of planetary bow shocks and type II solar radio bursts, the use of the exact rate may be necessary for accurate calculations. The relative rates of electrostatic decay and scattering off thermal ions

  6. Thermal/Electrical Modeling for Abuse-Tolerant Design of Li-Ion Modules (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Kim, G.-H.; Pesaran, A.; Darcy, E.

    2008-11-01

    To help design safe, high-performing batteries, NREL and NASA created and verified a new multicell math model capturing electrical-thermal interactions of cells with PTC devices during thermal abuse.

  7. Microstructure changes and thermal conductivity reduction in UO2 following 3.9 MeV He2+ ion irradiation

    SciTech Connect (OSTI)

    Janne Pakrinen; Marat Khafizov; Lingfeng He; Chris Wetland; Jian Gan; Andrew T. Nelson; David H Hurley; Anter El-Azab; Todd R Allen

    2014-11-01

    The microstructural changes and associated effects on thermal conductivity were examined in UO2 after irradiation using 3.9 MeV He2+ ions. Lattice expansion of UO2 was observed in x-ray diffraction after ion irradiation up to 5×1016 He2+/cm2 at low-temperature (< 200 °C). Transmission electron microscopy (TEM) showed homogenous irradiation damage across an 8 µm thick plateau region, which consisted of small dislocation loops accompanied by dislocation segments. Dome-shaped blisters were observed at the peak damage region (depth around 8.5 µm) in the sample subjected to 5×1016 He2+/cm2, the highest fluence reached, while similar features were not detected at 9×1015 He2+/cm2. Laser-based thermo-reflectance measurements showed that the thermal conductivity for the irradiated layer decreased about 55 % for the high fluence sample and 35% for the low fluence sample as compared to an un-irradiated reference sample. Detailed analysis for the thermal conductivity indicated that the conductivity reduction was caused by the irradiation induced point defects.

  8. Survey of ion-acoustic-instability particle simulations and relevance to laser-fusion thermal-transport inhibition

    SciTech Connect (OSTI)

    Mead, W.C.

    1980-09-11

    Ion acoustic turbulence is examined as one mechanism which could contribute to the inhibition of electron thermal transport which has been inferred from many laser-plasma experiments. The behavior of the ion acoustic instability is discussed from the viewpoint of the literature of 2-dimensional particle-in-cell simulations. Simulation techniques, limitations, and reported saturation mechanisms and levels are discussed. A scaling law for the effective collision frequency ..nu..* can be fit to several workers' results to within an order-of-magnitude. The inferred ..nu..* is shown to be 1-2 orders-of-magnitude too small to account for the transport inhibition seen in Nd-laser-produced plasmas. Several differences between the simulation conditions and laser-produced plasma conditions are noted.

  9. Early anisotropic hydrodynamics and thermalization and Hanbury-Brown-Twiss puzzles in the BNL Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect (OSTI)

    Ryblewski, Radoslaw; Florkowski, Wojciech

    2010-08-15

    We address the problem of whether the early thermalization and Hanbury-Brown-Twiss (HBT) puzzles in relativistic heavy-ion collisions may be solved by the assumption that the early dynamics of the produced matter is locally anisotropic. The hybrid model describing the purely transverse hydrodynamic evolution followed by the perfect-fluid hydrodynamic stage is constructed. The transition from the transverse to perfect-fluid hydrodynamics is described by the Landau matching conditions applied at a fixed proper time {tau}{sub tr}. The global fit to the RHIC data reproduces the soft hadronic observables (the pion, kaon, and the proton spectra, the pion and kaon elliptic flow, and the pion HBT radii) with the accuracy of about 20%. These results indicate that the assumption of the very fast thermalization may be relaxed. In addition, the presented model suggests that a large part of the inconsistencies between the theoretical and experimental HBT results may be removed.

  10. Multi-Dimensional Electrochemical-Thermal Coupled Model of Large Format Cylindrical Lithium Ion Cells (Presentation)

    SciTech Connect (OSTI)

    Kim, G.-H.; Smith, K.

    2007-10-01

    Presentation on 3-D modeling of lithium-ion cells used in plug-in hyybrid electric vehicle batteries. 3-D models provide better understanding of cell design, operation, and management.

  11. Thermal Stability of LiPF 6 Salt and Li-ion Battery Electrolytes...

    Office of Scientific and Technical Information (OSTI)

    In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct thermal reaction between LiPF 6 and water vapor to form ...

  12. Designing Safe Lithium-Ion Battery Packs Using Thermal Abuse Models (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.; Kim, G. H.; Smith, K.; Darcy, E.

    2008-12-01

    NREL and NASA developed a thermal-electrical model that resolves PTC and cell behavior under external shorting, now being used to evaluate safety margins of battery packs for spacesuit applications.

  13. Fluorinated Phosphazene Co-solvents for Improved Thermal and Safety Performance in Lithium-Ion Battery Electrolytes

    SciTech Connect (OSTI)

    Harry W. Rollins; Mason K. Harrup; Eric J. Dufek; David K. Jamison; Sergiy V. Sazhin; Kevin L. Gering; Dayna L. Daubaras

    2014-10-01

    The safety of lithium-ion batteries is coming under increased scrutiny as they are being adopted for large format applications especially in the vehicle transportation industry and for grid-scale energy storage. The primary short-comings of lithium-ion batteries are the flammability of the liquid electrolyte and sensitivity to high voltage and elevated temperatures. We have synthesized a series of non-flammable fluorinated phosphazene liquids and blended them with conventional carbonate solvents. While the use of these phosphazenes as standalone electrolytes is highly desirable, they simply do not satisfy all of the many requirements that must be met such as high LiPF6 solubility and low viscosity, thus we have used them as additives and co-solvents in blends with typical carbonates. The physical and electrochemical properties of the electrolyte blends were characterized, and then the blends were used to build 2032-type coin cells which were evaluated at constant current cycling rates from C/10 to C/1. We have evaluated the performance of the electrolytes by determining the conductivity, viscosity, flash point, vapor pressure, thermal stability, electrochemical window, cell cycling data, and the ability to form solid electrolyte interphase (SEI) films. This paper presents our results on a series of chemically similar fluorinated cyclic phosphazene trimers, the FM series, which has exhibited numerous beneficial effects on battery performance, lifetimes, and safety aspects.

  14. Ion Beam Analysis of the Thermal Stability of Hydrogenated Diamond-Like Carbon Thin Films on Si Substrate

    SciTech Connect (OSTI)

    Nandasiri, M. I.; Moore, A.; Garratt, E.; Wickey, K. J.; AlFaify, S.; Gao, X.; Kayani, A.; Ingram, D.

    2009-03-10

    Unbalanced magnetron sputtering deposition of C-H films has been performed with various levels of negative substrate bias and with a fixed flow rate of hydrogen. Argon was used as a sputtering gas and formed the majority of the gas in the plasma. The effect of hydrogenation on the final concentration of trapped elements and their thermal stability with respect to hydrogen content is studied using ion beam analysis (IBA) techniques. The elemental concentrations of the films were measured in the films deposited on silicon substrates with a 2.5 MeV of H{sup +} beam, which is used to perform Rutherford Backscattering Spectrometry (RBS) and Non-Rutherford Backscattering spectrometry (NRBS) and with 16 MeV of O{sup 5+} beam, used to perform Elastic Recoil Detection Analysis (ERDA). Effect of bias on the thermal stability of trapped hydrogen in the films has been studied. As the films were heated in-situ in vacuum using a non-gassy button heater, hydrogen was found to be decreasing around 400 deg. C.

  15. 3D Thermal and Electrochemical Model for Spirally Wound Large Format Lithium-ion Batteries (Presentation)

    SciTech Connect (OSTI)

    Lee, K. J.; Kim, G. H.; Smith, K.

    2010-10-14

    In many commercial cells, long tabs at both cell sides, leading to uniform potentials along the spiral direction of wound jelly rolls, are rarely seen because of their high manufacturing cost. More often, several metal strips are welded at discrete locations along both current collector foils. With this design, the difference of electrical potentials is easily built up along current collectors in the spiral direction. Hence, the design features of the tabs, such as number, location and size, can be crucial factors for spiral-shaped battery cells. This paper presents a Li-ion battery cell model having a 3-dimensional spiral mesh involving a wound jellyroll structure. Further results and analysis will be given regarding impacts of tab location, number, and size.

  16. Efficient simulation and model reformulation of two-dimensional electrochemical thermal behavior of lithium-ion batteries

    SciTech Connect (OSTI)

    Northrop, Paul W. C.; Pathak, Manan; Rife, Derek; De, Sumitava; Santhanagopalan, Shriram; Subramanian, Venkat R.

    2015-03-09

    Lithium-ion batteries are an important technology to facilitate efficient energy storage and enable a shift from petroleum based energy to more environmentally benign sources. Such systems can be utilized most efficiently if good understanding of performance can be achieved for a range of operating conditions. Mathematical models can be useful to predict battery behavior to allow for optimization of design and control. An analytical solution is ideally preferred to solve the equations of a mathematical model, as it eliminates the error that arises when using numerical techniques and is usually computationally cheap. An analytical solution provides insight into the behavior of the system and also explicitly shows the effects of different parameters on the behavior. However, most engineering models, including the majority of battery models, cannot be solved analytically due to non-linearities in the equations and state dependent transport and kinetic parameters. The numerical method used to solve the system of equations describing a battery operation can have a significant impact on the computational cost of the simulation. In this paper, a model reformulation of the porous electrode pseudo three dimensional (P3D) which significantly reduces the computational cost of lithium ion battery simulation, while maintaining high accuracy, is discussed. This reformulation enables the use of the P3D model into applications that would otherwise be too computationally expensive to justify its use, such as online control, optimization, and parameter estimation. Furthermore, the P3D model has proven to be robust enough to allow for the inclusion of additional physical phenomena as understanding improves. In this study, the reformulated model is used to allow for more complicated physical phenomena to be considered for study, including thermal effects.

  17. Efficient simulation and model reformulation of two-dimensional electrochemical thermal behavior of lithium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Northrop, Paul W. C.; Pathak, Manan; Rife, Derek; De, Sumitava; Santhanagopalan, Shriram; Subramanian, Venkat R.

    2015-03-09

    Lithium-ion batteries are an important technology to facilitate efficient energy storage and enable a shift from petroleum based energy to more environmentally benign sources. Such systems can be utilized most efficiently if good understanding of performance can be achieved for a range of operating conditions. Mathematical models can be useful to predict battery behavior to allow for optimization of design and control. An analytical solution is ideally preferred to solve the equations of a mathematical model, as it eliminates the error that arises when using numerical techniques and is usually computationally cheap. An analytical solution provides insight into the behaviormore » of the system and also explicitly shows the effects of different parameters on the behavior. However, most engineering models, including the majority of battery models, cannot be solved analytically due to non-linearities in the equations and state dependent transport and kinetic parameters. The numerical method used to solve the system of equations describing a battery operation can have a significant impact on the computational cost of the simulation. In this paper, a model reformulation of the porous electrode pseudo three dimensional (P3D) which significantly reduces the computational cost of lithium ion battery simulation, while maintaining high accuracy, is discussed. This reformulation enables the use of the P3D model into applications that would otherwise be too computationally expensive to justify its use, such as online control, optimization, and parameter estimation. Furthermore, the P3D model has proven to be robust enough to allow for the inclusion of additional physical phenomena as understanding improves. In this study, the reformulated model is used to allow for more complicated physical phenomena to be considered for study, including thermal effects.« less

  18. The Radial Loss of Ions Trapped in the Thermal Barrier Potential and the Design of Divertor Magnetic Field in GAMMA10

    SciTech Connect (OSTI)

    Katanuma, I. [Plasma Research Center, University of Tsukuba (Japan); Ito, T. [Plasma Research Center, University of Tsukuba (Japan); Saimaru, H. [Plasma Research Center, University of Tsukuba (Japan); Sasagawa, Y. [Plasma Research Center, University of Tsukuba (Japan); Pastukhov, V.P. [I.V.Kuruchatov Atomic Energy Institute (Russian Federation); Ishii, K. [Plasma Research Center, University of Tsukuba (Japan); Tatematsu, Y. [Plasma Research Center, University of Tsukuba (Japan); Saito, T. [Plasma Research Center, University of Tsukuba (Japan); Islam, Md.K. [Plasma Research Center, University of Tsukuba (Japan); Nakashima, Y. [Plasma Research Center, University of Tsukuba (Japan); Cho, T. [Plasma Research Center, University of Tsukuba (Japan)

    2005-01-15

    The ion radial loss exists in the presence of a non-axisymmetric electrostatic potential in the end-mirror cells of GAMMA10, which leads to a formation of the thermal barrier potential. The non-axisymmetric electrostatic potential can also exist in the central cell. A design for divertor magnetic field of GAMMA10 is performed, the purpose of which is first to reduce an ion radial transport in the central cell by making electrostatic potential circular and second to assure the macroscopic plasma stability of GAMMA10 without help of non-axisymmetric anchor cells which enhances a neoclassical radial transport.

  19. Spectral line broadening in magnetized black holes

    SciTech Connect (OSTI)

    Frolov, Valeri P.; Shoom, Andrey A.; Tzounis, Christos E-mail: ashoom@ualberta.ca

    2014-07-01

    We consider weakly magnetized non-rotating black holes. In the presence of a regular magnetic field the motion of charged particles in the vicinity of a black hole is modified. As a result, the position of the innermost stable circular orbit (ISCO) becomes closer to the horizon. When the Lorentz force is repulsive (directed from the black hole) the ISCO radius can reach the gravitational radius. In the process of accretion charged particles (ions) of the accreting matter can be accumulated near their ISCO, while neutral particles fall down to the black hole after they reach 6M radius. The sharp spectral line Fe α, emitted by iron ions at such orbits, is broadened when the emission is registered by a distant observer. In this paper we study this broadening effect and discuss how one can extract information concerning the strength of the magnetic field from the observed spectrum.

  20. Coupling of Mechanical Behavior of Lithium Ion Cells to Electrochemical-Thermal Models for Battery Crush; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Pesaran, Ahmad; Zhang, Chao; Santhanagopalan, Shriram; Sahraei, Elham; Wierzbiki, Tom

    2015-06-15

    Propagation of failure in lithium-ion batteries during field events or under abuse is a strong function of the mechanical response of the different components in the battery. Whereas thermal and electrochemical models that capture the abuse response of batteries have been developed and matured over the years, the interaction between the mechanical behavior and the thermal response of these batteries is not very well understood. With support from the Department of Energy, NREL has made progress in coupling mechanical, thermal, and electrochemical lithium-ion models to predict the initiation and propagation of short circuits under external crush in a cell. The challenge with a cell crush simulation is to estimate the magnitude and location of the short. To address this, the model includes an explicit representation of each individual component such as the active material, current collector, separator, etc., and predicts their mechanical deformation under different crush scenarios. Initial results show reasonable agreement with experiments. In this presentation, the versatility of the approach for use with different design factors, cell formats and chemistries is explored using examples.

  1. Photoluminescence spectroscopy and Rutherford backscattering channeling evaluation of various capping techniques for rapid thermal annealing of ion-implanted ZnSe

    SciTech Connect (OSTI)

    Allen, E.L.; Zach, F.X.; Yu, K.M.; Bourret, E.D.

    1994-05-01

    We report on the effectiveness of proximity caps and PECVD Si{sub 3}N{sub 4}caps during annealing of implanted ZnSe films. OMVPE ZnSe films were grown using diisopropylselenide (DIPSe) and diethylzinc (DEZn) precursors, then ion-implanted with 1 {times} 10{sup 14} cm{sup {minus}2} N (33 keV) or Ne (45 keV) at room temperature and liquid nitrogen temperature, and rapid thermal annealed at temperatures between 200C and 850C. Rutherford backscattering spectrometry in the channeling orientation was used to investigate damage recovery, and photoluminescence spectroscopy was used to investigate crystal quality and the formation of point defects. Low temperature implants were found to have better luminescence properties than room temperature implants, and results show that annealing, time and temperature may be more important than capping material in determining the optical properties. Effects of various caps, implant and annealing temperature are discussed in terms of photoluminescence spectra.

  2. Effect of entropy of lithium intercalation in cathodes and anodes on Li-ion battery thermal management

    SciTech Connect (OSTI)

    Viswanathan, Vilayanur V; Choi, Daiwon; Wang, Donghai; Xu, Wu; Towne, Silas A; Williford, Ralph E; Zhang, Jiguang; Liu, Jun; Yang, Zhenguo

    2010-06-01

    The entropy changes (ΔS) in various cathode and anode materials, as well as complete Li-ion batteries, were measured using an electrochemical thermodynamic measurement system (ETMS). LiCoO2 has a much larger entropy change than electrodes based on LiNixCoyMnzO2 and LiFePO4, while lithium titanate based anode has lower entropy change compared to graphite anodes. Reversible heat generation rate was found to be a significant portion of the total heat generation rate. The appropriate combinations of cathode and anode were investigated to minimize reversible heat.

  3. Failure analysis of pinch-torsion tests as a thermal runaway risk evaluation method of Li-Ion Cells

    SciTech Connect (OSTI)

    Xia, Yuzhi; Li, Dr. Tianlei; Ren, Prof. Fei; Gao, Yanfei; Wang, Hsin

    2014-01-01

    Recently a pinch-torsion test is developed for safety testing of Li-ion batteries (Ren et al., J. Power Source, 2013). It has been demonstrated that this test can generate small internal short-circuit spots in the separator in a controllable and repeatable manner. In the current research, the failure mechanism is examined by numerical simulations and comparisons to experimental observations. Finite element models are developed to evaluate the deformation of the separators under both pure pinch and pinch-torsion loading conditions. It is discovered that the addition of the torsion component significantly increased the maximum principal strain, which is believed to induce the internal short circuit. In addition, the applied load in the pinch-torsion test is significantly less than in the pure pinch test, thus dramatically improving the applicability of this method to ultra-thick batteries which otherwise require heavy load in excess of machine capability. It is further found that the separator failure is achieved in the early stage of torsion (within a few degree of rotation). Effect of coefficient of friction on the maximum principal strain is also examined.

  4. IonCCD for direct position-sensitive charged-particle detection: from electrons and keV ions to hyperthermal biomolecular ions

    SciTech Connect (OSTI)

    Hadjar, Omar; Johnson, Grant E.; Laskin, Julia; Kibelka, Gottfried; Shill, Scott M.; Kuhn, Ken; Cameron, Chad; Kassan, Scott

    2011-04-01

    A novel charged-particle sensitive, pixel based detector array is described and its usage is demonstrated for a variety of applications, from detection of elemental particles (electrons) to hyper-thermal large biomolecular positive and negative ions including keV light atomic and molecular ions. The array detector is a modified light-sensitive charged coupled device (CCD). The IonCCDTM was engineered for direct charged particle detection by replacing the semi-conductor part of the CCD pixel by a conductor1. In contrast with the CCD, where the semi-conductive pixel is responsible for electron-hole pair formation upon photon bombardment, the IonCCD uses a capacitor coupled to the conductive electrode for direct charge integration. The detector can be operated from atmospheric pressure to high vacuum since no high voltages are needed. The IonCCD, presented in this work is an array of 2126 active pixels with 21 um pixel width and 3 um pixel gap. The detection area is 1.5x51mm2 where 1.5 mm and 51 mm are pixel and detector array length, respectively. The result is a one-dimensional position-sensitive detector with 24 um spatial resolution and 88 % pixel area ratio (PAR). In this work we demonstrate the capabilities and the performance of the detector. For the first time we show the direct detection of 250 eV electrons providing linearity response and detection efficiency of the IonCCD as function of electron beam current. Using positive ions from and electron impact source (E-I), we demonstrate that the detection efficiency of the IonCCD is virtually independent of particle energy [250 eV, 1250 eV], particle impact angle [45o, 90o] and particle flux. By combining the IonCCD with a double focusing sector field of Mattauch-Herzog geometry (M-H), we demonstrate fast acquisition of mass spectra in direct air sniffing mode. A first step towards fast in vivo breath analysis is presented. Detection of hyper-thermal biomolecular ions produced using an electrospray ionization

  5. ULTRAMASSIVE BLACK HOLE COALESCENCE

    SciTech Connect (OSTI)

    Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter E-mail: k.holley@vanderbilt.edu

    2015-01-10

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC4889, and NGC1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production.

  6. Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.; Pesaran, A.; Smith, K.

    2013-07-01

    This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

  7. Ion cyclotron resonance cell

    DOE Patents [OSTI]

    Weller, Robert R. (Aiken, SC)

    1995-01-01

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  8. Ion cyclotron resonance cell

    DOE Patents [OSTI]

    Weller, R.R.

    1995-02-14

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  9. Black hole magnetospheres

    SciTech Connect (OSTI)

    Nathanail, Antonios; Contopoulos, Ioannis

    2014-06-20

    We investigate the structure of the steady-state force-free magnetosphere around a Kerr black hole in various astrophysical settings. The solution Ψ(r, θ) depends on the distributions of the magnetic field line angular velocity ω(Ψ) and the poloidal electric current I(Ψ). These are obtained self-consistently as eigenfunctions that allow the solution to smoothly cross the two singular surfaces of the problem, the inner light surface inside the ergosphere, and the outer light surface, which is the generalization of the pulsar light cylinder. Magnetic field configurations that cross both singular surfaces (e.g., monopole, paraboloidal) are uniquely determined. Configurations that cross only one light surface (e.g., the artificial case of a rotating black hole embedded in a vertical magnetic field) are degenerate. We show that, similar to pulsars, black hole magnetospheres naturally develop an electric current sheet that potentially plays a very important role in the dissipation of black hole rotational energy and in the emission of high-energy radiation.

  10. Laser bottom hole assembly

    DOE Patents [OSTI]

    Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

    2014-01-14

    There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

  11. Aspects of hairy black holes

    SciTech Connect (OSTI)

    Anabalón, Andrés; Astefanesei, Dumitru

    2015-03-26

    We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.

  12. Production of Endohedral Fullerenes by Ion Implantation

    SciTech Connect (OSTI)

    Diener, M.D.; Alford, J. M.; Mirzadeh, S.

    2007-05-31

    The empty interior cavity of fullerenes has long been touted for containment of radionuclides during in vivo transport, during radioimmunotherapy (RIT) and radioimaging for example. As the chemistry required to open a hole in fullerene is complex and exceedingly unlikely to occur in vivo, and conformational stability of the fullerene cage is absolute, atoms trapped within fullerenes can only be released during extremely energetic events. Encapsulating radionuclides in fullerenes could therefore potentially eliminate undesired toxicity resulting from leakage and catabolism of radionuclides administered with other techniques. At the start of this project however, methods for production of transition metal and p-electron metal endohedral fullerenes were completely unknown, and only one method for production of endohedral radiofullerenes was known. They therefore investigated three different methods for the production of therapeutically useful endohedral metallofullerenes: (1) implantation of ions using the high intensity ion beam at the Oak Ridge National Laboratory (ORNL) Surface Modification and Characterization Research Center (SMAC) and fullerenes as the target; (2) implantation of ions using the recoil energy following alpha decay; and (3) implantation of ions using the recoil energy following neutron capture, using ORNL's High Flux Isotope Reactor (HFIR) as a thermal neutron source. While they were unable to obtain evidence of successful implantation using the ion beam at SMAC, recoil following alpha decay and neutron capture were both found to be economically viable methods for the production of therapeutically useful radiofullerenes. In this report, the procedures for preparing fullerenes containing the isotopes {sup 212}Pb, {sup 212}Bi, {sup 213}Bi, and {sup 177}Lu are described. None of these endohedral fullerenes had ever previously been prepared, and all of these radioisotopes are actively under investigation for RIT. Additionally, the chemistry for

  13. Ion Removal - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Ion Removal Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's ion removal technology leverages the ability of phosphazene polymers discriminate between water and metal ions, which allows water to pass through the membrane while retaining the ions. Description The inherent chemical and thermal stability of the phosphazene polymers are an added strengths for separating and

  14. Improvement of tap holes at Wakayama No. 5 blast furnace

    SciTech Connect (OSTI)

    Yamashita, M.; Kashiwada, M.; Shibuta, H.

    1995-12-01

    The service life of blast furnaces, as the result of various improvement measures, has been extended from the conventional 5 to 7 years to 15 to 20 years. Wakayama No. 5 blast furnace adopted SiC bricks. Though SiC brick excelled in strength and durability, it has raised problems such as tap hole inside temperature lowering attributable to its high thermal conductivity, insufficient mud burning and gas blow-out. Nevertheless, various countermeasures described within have been taken against such problems, and as the result it has now become possible to maintain tap holes in stable conditions.

  15. Quantifying Thermal Runaway and Improvements Through Materials...

    Office of Scientific and Technical Information (OSTI)

    L. Langendorf Sandia National Laboratories Next Generation Batteries 2015Battery Safety April 22, 2015 Lithium-Ion Battery Safety Challenges sL Energetic thermal runaway ...

  16. Develop & evaluate materials & additives that enhance thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Additives that Enhance Thermal and Overcharge Abuse Electrolytes - Advanced Electrolyte and Electrolyte Additives Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery

  17. Catalytic thermal barrier coatings

    DOE Patents [OSTI]

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  18. CALUTRON ION SOURCE

    DOE Patents [OSTI]

    Lofgren, E.J.

    1959-02-17

    An improvement is described in ion source mechanisms whereby the source structure is better adapted to withstanid the ravages of heat, erosion, and deterioration concomitant with operation of an ion source of the calutron type. A pair of molybdenum plates define the exit opening of the arc chamber and are in thermal contact with the walls of the chamber. These plates are maintained at a reduced temperature by a pair of copper blocks in thermal conducting contact therewith to form subsequent diverging margins for the exit opening.

  19. Ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  20. Elliptic flow of thermal photons and formation time of quark gluon plasma at energies available at the BNL Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect (OSTI)

    Chatterjee, Rupa; Srivastava, Dinesh K.

    2009-02-15

    We calculate the elliptic flow of thermal photons from Au+Au collisions at RHIC energies for a range of values for the formation time {tau}{sub 0} but a fixed entropy (or particle rapidity density). The results are found to be quite sensitive to {tau}{sub 0}. The value of v{sub 2} for photons decreases as {tau}{sub 0} decreases and admits a larger contribution from the quark gluon plasma phase, which has a smaller v{sub 2}. The elliptic flow coefficient for hadrons, however, is only marginally dependent on {tau}{sub 0}.

  1. Slim Holes | Open Energy Information

    Open Energy Info (EERE)

    are typically drilled using a diamond coated bit, core samples are often collected, and reservoir properties measured. Slim holes can range from 3-6'' in diameter and be...

  2. Hole Trapping at Surfaces of m?ZrO2 and m?HfO2 Nanocrystals

    SciTech Connect (OSTI)

    Wolf, Matthew J.; Mckenna, Keith P.; Shlyuger, Alexander L.

    2012-12-03

    We investigate hole trapping at the most prevalent facets of monoclinic zirconia (m-ZrO2) and hafnia (m-HfO2) nanocrystals using first-principles methods. The localization of holes at surface oxygen ions is more favorable than in the bulk crystal by up to ?1 eV. This is caused mainly by the reduction of the absolute value of the electrostatic potential at the surface ions with respect to the bulk and by the significant surface distortion caused by the hole localization. The mobility of holes at surfaces is much lower than that found in the bulk and is fairly isotropic. Unlike in cubic oxides, such as MgO and CaO, we do not find a significant driving force for preferential trapping of holes at steps on the m-ZrO2 surface. These fundamental results are relevant to mechanisms of water oxidation, photocatalysis, contact charging, and photodesorption.

  3. A novel planar ion funnel design for miniature ion optics

    SciTech Connect (OSTI)

    Chaudhary, A.; Amerom, Friso H. W. van; Short, R. T.

    2014-10-01

    The novel planar ion funnel (PIF) design presented in this article emphasizes simple fabrication, assembly, and operation, making it amenable to extreme miniaturization. Simulations performed in SIMION 8.0 indicate that ion focusing can be achieved by using a gradient of electrostatic potentials on concentric metal rings in a plane. A prototype was fabricated on a 35 35 mm custom-designed printed circuit board (PCB) with a center hole for ions to pass through and a series of concentric circular metal rings of increasing diameter on the front side of the PCB. Metal vias on the PCB electrically connected each metal ring to a resistive potential divider that was soldered on the back of the PCB. The PIF was tested at 5.5 10?? Torr in a vacuum test setup that was equipped with a broad-beam ion source on the front and a micro channel plate (MCP) ion detector on the back of the PIF. The ion current recorded on the MCP anode during testing indicated a 23 increase in the ion transmission through the PIF when electric potentials were applied to the rings. These preliminary results demonstrate the functionality of a 2D ion funnel design with a much smaller footprint and simpler driving electronics than conventional 3D ion funnels. Future directions to improve the design and a possible micromachining approach to fabrication are discussed in the conclusions.

  4. Single impacts of keV fullerene ions on free standing graphene: Emission of ions and electrons from confined volume

    SciTech Connect (OSTI)

    Verkhoturov, Stanislav V.; Geng, Sheng; Schweikert, Emile A.; Czerwinski, Bartlomiej; Young, Amanda E.; Delcorte, Arnaud

    2015-10-28

    We present the first data from individual C{sub 60} impacting one to four layer graphene at 25 and 50 keV. Negative secondary ions and electrons emitted in transmission were recorded separately from each impact. The yields for C{sub n}{sup −} clusters are above 10% for n ≤ 4, they oscillate with electron affinities and decrease exponentially with n. The result can be explained with the aid of MD simulation as a post-collision process where sufficient vibrational energy is accumulated around the rim of the impact hole for sputtering of carbon clusters. The ionization probability can be estimated by comparing experimental yields of C{sub n}{sup −} with those of C{sub n}{sup 0} from MD simulation, where it increases exponentially with n. The ionization probability can be approximated with ejecta from a thermally excited (3700 K) rim damped by cluster fragmentation and electron detachment. The experimental electron probability distributions are Poisson-like. On average, three electrons of thermal energies are emitted per impact. The thermal excitation model invoked for C{sub n}{sup −} emission can also explain the emission of electrons. The interaction of C{sub 60} with graphene is fundamentally different from impacts on 3D targets. A key characteristic is the high degree of ionization of the ejecta.

  5. Close encounters of three black holes

    SciTech Connect (OSTI)

    Campanelli, Manuela; Lousto, Carlos O.; Zlochower, Yosef

    2008-05-15

    We present the first fully relativistic long-term numerical evolutions of three equal-mass black holes in a system consisting of a third black hole in a close orbit about a black-hole binary. These close-three-black-hole systems have very different merger dynamics from black-hole binaries; displaying complex trajectories, a redistribution of energy that can impart substantial kicks to one of the holes, distinctive waveforms, and suppression of the emitted gravitational radiation. In one configuration the binary is quickly disrupted and the individual holes follow complicated trajectories and merge with the third hole in rapid succession, while in another, the binary completes a half-orbit before the initial merger of one of the members with the third black hole, and the resulting two-black-hole system forms a highly elliptical, well separated binary that shows no significant inspiral for (at least) the first t{approx}1000M of evolution.

  6. Quantum Criticality and Black Holes

    ScienceCinema (OSTI)

    Sachdev, Subir [Harvard University, Cambridge, Massachusetts, United States

    2009-09-01

    I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.

  7. Terrafore: Thermal Storage gets a "Hole in One" | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Generation program under the U.S. Department of Energy SunShot Initiative. Addthis Related Articles

  8. Thermal Gradient Holes At Northern Basin & Range Region (Pritchett...

    Open Energy Info (EERE)

    Date Usefulness not useful DOE-funding Unknown Notes NOTE: These are theoreticalcomputer simulation tests of various methods on eight hypothetical 'model' basing-and-range...

  9. Thermal Gradient Holes At Walker-Lane Transitional Zone Region...

    Open Energy Info (EERE)

    Date Usefulness not useful DOE-funding Unknown Notes NOTE: These are theoreticalcomputer simulation tests of various methods on eight hypothetical 'model' basing-and-range...

  10. Thermal Gradient Holes At Central Nevada Seismic Zone Region...

    Open Energy Info (EERE)

    Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoreticalcomputer simulation tests of various methods on eight hypothetical 'model' basing-and-range...

  11. Thermal Gradient Holes At Nw Basin & Range Region (Pritchett...

    Open Energy Info (EERE)

    Date Usefulness not useful DOE-funding Unknown Notes NOTE: These are theoreticalcomputer simulation tests of various methods on eight hypothetical 'model' basing-and-range...

  12. Thermal Gradient Holes At Chena Geothermal Area (Holdmann, Et...

    Open Energy Info (EERE)

    eight wells ranging in depth from 200 to 300 ft. References Gwen Holdmann, Dick Benoit, David Blackwell (2006) Integrated Geoscience Investigation and Geothermal Exploration at...

  13. Thermal Gradient Holes At Socorro Mountain Area (Owens, Et Al...

    Open Energy Info (EERE)

    waters with a minimum of 82 degrees C at depth References Lara Owens, Richard Baars, David Norman, Harold Tobin (2005) New Methods In Exploration At The Socorro Peak Kgra- A...

  14. Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski...

    Open Energy Info (EERE)

    consists of a previously identified geothermal site that has been explored with both geophysics and drilling (Hedel, 1981), but has not been characterized adequately to allow...

  15. Thermal Gradient Holes At Fort Bidwell Area (Lafleur, Et Al....

    Open Energy Info (EERE)

    continue exploration when funding allows." References Joe LaFleur, Anna Carter, Karen Moore, Ben Barker, Paul Atkinson, Clay Jones, Joseph Moore, Bernold Pollard (2010) Update On...

  16. Thermal Gradient Holes At Waunita Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    crust. The boreholes which exhibited the lowest average gradient were several kilometers from the hot springs and up-dip. None of them penetrated the Dakota Sandstone ....

  17. Thermal Gradient Holes At Coso Geothermal Area (1974) | Open...

    Open Energy Info (EERE)

    Activity Date 1974 Usefulness useful DOE-funding Unknown Exploration Basis Use heat flow studies for the first time at Coso to indicate the presence or absence of abnormal heat...

  18. Thermal Gradient Holes At Neal Hot Springs Geothermal Area (U...

    Open Energy Info (EERE)

    small diameter temperature gradient wells have been drilled ranging in depth from 152-607 m. These wells were drilled across the Neal Hot Springs area in order to gather more...

  19. Thermal Gradient Holes At Hawthorne Area (Sabin, Et Al., 2010...

    Open Energy Info (EERE)

    will be installed at select sites in California and Nevada. Interim data from this campaign are already available for the Chocolate Mountains and Hawthorne. Results of these...

  20. Thermal Gradient Holes At Chocolate Mountains Area (Sabin, Et...

    Open Energy Info (EERE)

    will be installed at select sites in California and Nevada. Interim data from this campaign are already available for the Chocolate Mountains and Hawthorne. Results of these...

  1. Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff...

    Open Energy Info (EERE)

    Basis Report on a phase 2 project for DOE Notes A summary of the geophysical and geotechnical data used to pick drill sites, the actual drilling, and then the results from the...

  2. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    useful DOE-funding Unknown Exploration Basis The study integrates detailed results from pump tests, fluid level monitoring, temperature logging, and fluid samplinganalysis of the...

  3. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  4. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  5. Thermal Gradient Holes At Roosevelt Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  6. Thermal Gradient Holes At Obsidian Cliff Area (Hulen, Et Al....

    Open Energy Info (EERE)

    DOE-funding Unknown References Jeff Hulen, Denis Norton, Dennis Kaspereit, Larry Murray, Todd van de Putte, Melinda Wright (2003) Geology And A Working Conceptual Model Of...

  7. Thermal Gradient Holes At Hualalai Northwest Rift Area (Thomas...

    Open Energy Info (EERE)

    water samples taken from these wells did not provide useful geothermal data due to contamination of the well water with drilling muds References Donald M. Thomas (1 January 1986)...

  8. Thermal Gradient Holes At Coso Geothermal Area (1976) | Open...

    Open Energy Info (EERE)

    to depths up to 133 m in 22 boreholes with measurements being made at least four times in each borehole. Geothermal gradients ranged from 240Ckm to 450 0Ckm. References...

  9. Thermal Gradient Holes At Lightning Dock Area (Cunniff & Bowers...

    Open Energy Info (EERE)

    Roy A. Cunniff, Roger L. Bowers (2005) Final technical report geothermal resource evaluation and definition (GRED) Program - Phase I, II and III for the Animas Valley, NM...

  10. Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff...

    Open Energy Info (EERE)

    Roy A. Cunniff, Roger L. Bowers (2005) Final technical report geothermal resource evaluation and definition (GRED) Program - Phase I, II and III for the Animas Valley, NM...

  11. Thermal Gradient Holes At Chena Geothermal Area (EERE, 2010)...

    Open Energy Info (EERE)

    Exploration program undertaken during Phase II of the DOE-funded Geothermal Resource Evaluation and Definitions Program Phase I (GRED III Phase II) Notes A deeper well, TG-12,...

  12. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    of at least 150C for the inferred geothermal reservoir. References Brian D. Fairbank, Kim V. Niggemann (2004) Deep Blue No.1-A Slimhole Geothermal Discovery At Blue Mountain,...

  13. Thermal Gradient Holes At Fenton Hill HDR Geothermal Area (Purtymun...

    Open Energy Info (EERE)

    Valles caldera in order to locate an of high heat flow that would serve as a favorable test site for the HDR concept. Notes Data from these wells are report in Reiter et al....

  14. Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit...

    Open Energy Info (EERE)

    of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. References Dick...

  15. Thermal Gradient Holes At Cove Fort Area - Vapor (Warpinski,...

    Open Energy Info (EERE)

    Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum...

  16. Thermal Gradient Holes At Cove Fort Area (Warpinski, Et Al.,...

    Open Energy Info (EERE)

    Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum...

  17. Thermal Gradient Holes At Lightning Dock Geothermal Area (Arnold...

    Open Energy Info (EERE)

    be drilled by AMEX, but no results were presented in this paper. References Arnold, Anderson, Donaldson, Foster, Gutjahr, Hatton, Hill, Martinez (1978) New Mexico's Energy...

  18. Woods Hole Research Center Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Hole Research Center Wind Turbine Jump to: navigation, search Name Woods Hole Research Center Wind Turbine Facility Woods Hole Research Center Wind Turbine Sector Wind energy...

  19. Solution dewatering with concomitant ion removal

    DOE Patents [OSTI]

    Peterson, Eric S.; Marshall, Douglas W.; Stone, Mark L.

    2003-08-05

    One of the biggest needs in the separations and waste handling and reduction area is a method for dewatering ion-containing solutions. Unexpectedly, it has been found that phosphazene polymers can discriminate between water and metal ions, allowing water to pass through the membrane while retaining the ions. This unexpected result, along with the inherent chemical and thermal stability of the phosphazene polymers, yields a powerful tool for separating and dewatering metal-ion-containing solutions.

  20. From Pinholes to Black Holes

    SciTech Connect (OSTI)

    Fenimore, Edward E.

    2014-10-06

    Pinhole photography has made major contributions to astrophysics through the use of coded apertures. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.

  1. Geothermal reservoir assessment based on slim hole drilling. Volume 1, Analytical Method: Final report

    SciTech Connect (OSTI)

    Olson, H.J.

    1993-12-01

    The Hawaii Scientific Observation Hole (SOH) program was supplied by the State of Hawaii to drill six, 4,000 foot scientific observation holes on Maui and the Big Island of Hawaii to confirm and stimulate geothermal, resource development in Hawaii. After a lengthy permitting process, three SOHs, totaling 18,890 feet of mostly core drilling were finally drilled along the Kilauea East Rift Zone (KERZ) in the Puna district on the Big Island. The SOH program was highly successful in meeting the highly restrictive permitting conditions imposed on the program, and in developing slim hole drilling techniques, establishing subsurface geological conditions, and initiating an assessment and characterization of the geothermal resources potential of Hawaii - even though permitting specifically prohibited pumping or flowing the holes to obtain data of subsurface fluid conditions. The first hole, SOH-4, reached a depth of 2,000 meters, recorded a bottom hole temperature of 306.1 C, and established subsurface thermal continuity along the KERZ between the HGP-A and the True/Mid-Pacific Geothermal Venture wells. Although evidence of fossil reservoir conditions were encountered, no zones with obvious reservoir potential were found. The second hole SOH-1, was drilled to a depth of 1,684 meters, recorded a bottom hole temperature of 206.1 C, effectively doubled the size of the Hawaii Geothermal Project -- Abbott/Puna Geothermal Venture (HGP-A/PGV) proven/probable reservoir, and defined the northern limit of the HGP-A/PGV reservoir. The final hole, SOH-2, was drilled to a depth of 2,073 meters, recorded a bottom hole temperature of 350.5 C, and has sufficient indicated permeability to be designated as a potential ''discovery.''

  2. Geothermal reservoir assessment based on slim hole drilling. Volume 2: Application in Hawaii: Final report

    SciTech Connect (OSTI)

    Olson, H.J.

    1993-12-01

    The Hawaii Scientific Observation Hole (SOH) program was planned, funded, and initiated in 1988 by the Hawaii Natural Energy Institute, an institute within the School of Ocean and Earth Science and Technology, at the University of Hawaii at Manoa. Initial funding for the SOH program was $3.25 million supplied by the State of Hawaii to drill six, 4,000 foot scientific observation holes on Maui and the Big Island of Hawaii to confirm and stimulate geothermal resource development in Hawaii. After a lengthy permitting process, three SOHs, totaling 18,890 feet of mostly core drilling were finally drilled along the Kilauea East Rift Zone (KERZ) in the Puna district on the Big Island. The SOH program was highly successful in meeting the highly restrictive permitting conditions imposed on the program, and in developing slim hole drilling techniques, establishing subsurface geological conditions, and initiating an assessment and characterization of the geothermal resources potential of Hawaii - - even though permitting specifically prohibited pumping or flowing the holes to obtain data of subsurface fluid conditions. The first hole, SOH-4, reached a depth of 2,000 meters, recorded a/bottom hole temperature of 306.1 C, and established subsurface thermal continuity along the KERZ between the HGP-A and the True/Mid-Pacific Geothermal Venture wells. Although evidence of fossil reservoir conditions were encountered, no zones with obvious reservoir potential were found. The second hole SOH-1, was drilled to a depth of 1,684 meters, recorded a bottom hole temperature of 206.1 C, effectively doubled the size of the Hawaii Geothermal Project-Abbott/Puna Geothermal Venture (HGP-A/PGV) proven/probable reservoir, and defined the northern limit of the HGP-A/PGV reservoir. The final hole, SOH-2, was drilled to a depth of 2,073 meters, recorded a bottom hole temperature of 350.5 C, and has sufficient indicated permeability to be designated as a potential discovery.

  3. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2005-03-08

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  4. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2013-04-02

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  5. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2007-03-20

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  6. On coupling impedances of pumping holes

    SciTech Connect (OSTI)

    Kurennoy, S.

    1993-04-01

    Coupling impedances of a single small hole in vacuum-chamber walls have been calculated at low frequencies. To generalize these results for higher frequencies and/or larger holes one needs to solve coupled integral equations for the effective currents. These equations are solved for two specific hole shapes. The effects of many holes at high frequencies where the impedances are not additive are studied using a perturbation-theory method. The periodic versus random distributions of the pumping holes in the Superconducting Super Collider liner are compared.

  7. Detecting small holes in packages

    DOE Patents [OSTI]

    Kronberg, J.W.; Cadieux, J.R.

    1996-03-19

    A package containing a tracer gas, and a method for determining the presence of a hole in the package by sensing the presence of the gas outside the package are disclosed. The preferred tracer gas, especially for food packaging, is sulfur hexafluoride. A quantity of the gas is added to the package and the package is closed. The concentration of the gas in the atmosphere outside the package is measured and compared to a predetermined value of the concentration of the gas in the absence of the package. A measured concentration greater than the predetermined value indicates the presence of a hole in the package. Measuring may be done in a chamber having a lower pressure than that in the package. 3 figs.

  8. Detecting small holes in packages

    DOE Patents [OSTI]

    Kronberg, James W.; Cadieux, James R.

    1996-01-01

    A package containing a tracer gas, and a method for determining the presence of a hole in the package by sensing the presence of the gas outside the package. The preferred tracer gas, especially for food packaging, is sulfur hexafluoride. A quantity of the gas is added to the package and the package is closed. The concentration of the gas in the atmosphere outside the package is measured and compared to a predetermined value of the concentration of the gas in the absence of the package. A measured concentration greater than the predetermined value indicates the presence of a hole in the package. Measuring may be done in a chamber having a lower pressure than that in the package.

  9. Thermal Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Sciences NETL's Thermal Sciences competency provides the scientific, engineering, and technology development community with innovative and efficient approaches to measure, harness, and convert thermal energy. Research includes sensors, advanced energy concepts, and thermodynamic optimization, specifically: Sensors and Diagnostics Advanced sensor and diagnostic technology to develop and evaluate advanced methods for non-intrusive measurement and measurement in extreme environments.

  10. Complexity, action, and black holes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brown, Adam R.; Roberts, Daniel A.; Susskind, Leonard; Swingle, Brian; Zhao, Ying

    2016-04-18

    In an earlier paper "Complexity Equals Action" we conjectured that the quantum computational complexity of a holographic state is given by the classical action of a region in the bulk (the `Wheeler-DeWitt' patch). We provide calculations for the results quoted in that paper, explain how it fits into a broader (tensor) network of ideas, and elaborate on the hypothesis that black holes are the fastest computers in nature.

  11. Down hole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, Harry C.; Hills, Richard G.; Striker, Richard P.

    1989-01-01

    A down hole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  12. Black hole mimickers: Regular versus singular behavior

    SciTech Connect (OSTI)

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2008-07-15

    Black hole mimickers are possible alternatives to black holes; they would look observationally almost like black holes but would have no horizon. The properties in the near-horizon region where gravity is strong can be quite different for both types of objects, but at infinity it could be difficult to discern black holes from their mimickers. To disentangle this possible confusion, we examine the near-horizon properties, and their connection with far away asymptotic properties, of some candidates to black mimickers. We study spherically symmetric uncharged or charged but nonextremal objects, as well as spherically symmetric charged extremal objects. Within the uncharged or charged but nonextremal black hole mimickers, we study nonextremal {epsilon}-wormholes on the threshold of the formation of an event horizon, of which a subclass are called black foils, and gravastars. Within the charged extremal black hole mimickers we study extremal {epsilon}-wormholes on the threshold of the formation of an event horizon, quasi-black holes, and wormholes on the basis of quasi-black holes from Bonnor stars. We elucidate whether or not the objects belonging to these two classes remain regular in the near-horizon limit. The requirement of full regularity, i.e., finite curvature and absence of naked behavior, up to an arbitrary neighborhood of the gravitational radius of the object enables one to rule out potential mimickers in most of the cases. A list ranking the best black hole mimickers up to the worst, both nonextremal and extremal, is as follows: wormholes on the basis of extremal black holes or on the basis of quasi-black holes, quasi-black holes, wormholes on the basis of nonextremal black holes (black foils), and gravastars. Since in observational astrophysics it is difficult to find extremal configurations (the best mimickers in the ranking), whereas nonextremal configurations are really bad mimickers, the task of distinguishing black holes from their mimickers seems to

  13. ION PRODUCING MECHANISM (CHARGE CUPS)

    DOE Patents [OSTI]

    Brobeck, W.W.

    1959-04-21

    The problems of confining a charge material in a calutron and uniformly distributing heat to the charge is described. The charge is held in a cup of thermally conductive material removably disposed within the charge chamber of the ion source block. A central thermally conducting stem is incorporated within the cup for conducting heat to the central portion of the charge contained within the cup.

  14. Submicron patterned metal hole etching

    DOE Patents [OSTI]

    McCarthy, Anthony M.; Contolini, Robert J.; Liberman, Vladimir; Morse, Jeffrey

    2000-01-01

    A wet chemical process for etching submicron patterned holes in thin metal layers using electrochemical etching with the aid of a wetting agent. In this process, the processed wafer to be etched is immersed in a wetting agent, such as methanol, for a few seconds prior to inserting the processed wafer into an electrochemical etching setup, with the wafer maintained horizontal during transfer to maintain a film of methanol covering the patterned areas. The electrochemical etching setup includes a tube which seals the edges of the wafer preventing loss of the methanol. An electrolyte composed of 4:1 water: sulfuric is poured into the tube and the electrolyte replaces the wetting agent in the patterned holes. A working electrode is attached to a metal layer of the wafer, with reference and counter electrodes inserted in the electrolyte with all electrodes connected to a potentiostat. A single pulse on the counter electrode, such as a 100 ms pulse at +10.2 volts, is used to excite the electrochemical circuit and perform the etch. The process produces uniform etching of the patterned holes in the metal layers, such as chromium and molybdenum of the wafer without adversely effecting the patterned mask.

  15. Electron vortex magnetic holes: A nonlinear coherent plasma structure

    SciTech Connect (OSTI)

    Haynes, Christopher T. Burgess, David; Sundberg, Torbjorn; Camporeale, Enrico

    2015-01-15

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.

  16. Thermoacoustic imaging using heavy ion beams

    SciTech Connect (OSTI)

    Claytor, T.N.; Tesmer, J.R.; Deemer, B.C.; Murphy, J.C.

    1995-10-01

    Ion beams have been used for surface modification, semiconductor device fabrication and for material analysis, which makes ion-material interactions of significant importance. Ion implantation will produce new compositions near the surface by ion mixing or directly by implanting desired ions. Ions exchange their energy to the host material as they travel into the material by several different processes. High energy ions ionize the host atoms before atomic collisions transfer the remaining momentum and stop the incident ion. As they penetrate the surface, the low energy ions ionize the host atoms, but also have a significantly large momentum transfer mechanism near the surface of the material. This leads to atoms, groups of atoms and electrons being ejected from the surface, which is the momentum transfer process of sputtering. This talk addresses the acoustic waves generated during ion implantation using modulated heavy ion beams. The mechanisms for elastic wave generation during ion implantation, in the regimes where sputtering is significant and where implantation is dominant and sputtering is negligible, has been studied. The role of momentum transfer and thermal energy production during ion implantation was compared to laser generated elastic waves in an opaque solid as a reference, since laser generated ultrasound has been extensively studied and is fairly well understood. The thermoelastic response dominated in both high and low ion energy regimes since, apparently, more energy is lost to thermal heat producing mechanisms than momentum transfer processes. The signal magnitude was found to vary almost linearly with incident energy as in the laser thermoelastic regime. The time delays for longitudinal and shear waves-were characteristic of those expected for a purely thermal heating source. The ion beams are intrinsically less sensitive to the albedo of the surface.

  17. ION SOURCE

    DOE Patents [OSTI]

    Martina, E.F.

    1958-04-22

    An improved ion source particularly adapted to provide an intense beam of ions with minimum neutral molecule egress from the source is described. The ion source structure includes means for establishing an oscillating electron discharge, including an apertured cathode at one end of the discharge. The egress of ions from the source is in a pencil like beam. This desirable form of withdrawal of the ions from the plasma created by the discharge is achieved by shaping the field at the aperture of the cathode. A tubular insulator is extended into the plasma from the aperture and in cooperation with the electric fields at the cathode end of the discharge focuses the ions from the source,

  18. Competitive ion kinetics in direct mass spectrometric organic speciation: (Progress report, FY87-89)

    SciTech Connect (OSTI)

    Sieck, L.W.

    1987-01-01

    The following were studied: Stabilities of S...H/sup +/...X bonds, thermal decomposition of ions, stabilities of nitro anion association ions, stabilities of SF/sub 6//sup -/ association ions, proton affinities and cationic stabilization of tetraalkylhydrazines, adduct ion diagnostics in MS/MS, and anionic association ions incorporating RO/sup -/ or RCO/sub 2//sup -/.

  19. High energy density thermal cell

    SciTech Connect (OSTI)

    Fletcher, A.N.

    1980-04-29

    A thermal battery is described that uses a calcium anode and a catholyte consisting of a mixture of lithium, potassium, nitrate and chloride ions. The device is operable over a temperature range of about 150 to 600/sup 0/C and produces a long lasting, high energy density output.

  20. Boson shells harboring charged black holes

    SciTech Connect (OSTI)

    Kleihaus, Burkhard; Kunz, Jutta; Laemmerzahl, Claus; List, Meike

    2010-11-15

    We consider boson shells in scalar electrodynamics coupled to Einstein gravity. The interior of the shells can be empty space, or harbor a black hole or a naked singularity. We analyze the properties of these types of solutions and determine their domains of existence. We investigate the energy conditions and present mass formulae for the composite black hole-boson shell systems. We demonstrate that these types of solutions violate black hole uniqueness.

  1. Black hole birth captured by cosmic voyeurs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Black hole birth captured by cosmic voyeurs Black hole birth captured by cosmic voyeurs The RAPTOR system is a network of small robotic observatories that scan the skies for optical anomalies such as flashes emanating from a star in its death throes as it collapses and becomes a black hole. November 21, 2013 Los Alamos National Laboratory astrophysicist Tom Vestrand poses with a telescope array that is part of the RAPTOR (RAPid Telescopes for Optical Response) system. RAPTOR is an intelligent

  2. Heavy and light hole transport in nominally undoped GaSb substrates

    SciTech Connect (OSTI)

    Kala, Hemendra; Umana-Membreno, Gilberto A.; Jolley, Gregory; Akhavan, Nima Dehdashti; Antoszewski, Jaroslaw; Faraone, Lorenzo; Patrashin, Mikhail A.; Akahane, Kouichi

    2015-01-19

    In this work, we report results of a study of electronic transport in nominally undoped p-type GaSb wafers typically employed as substrate material for the epitaxial growth of InAs/GaInSb type-II superlattices. Magnetic field dependent Hall-effect measurements and high-resolution mobility spectrum analysis clearly indicate p-type conductivity due to carriers in both the heavy and light hole bands. The extracted hole concentrations indicate a thermal activation energy of 17.8 meV for the dominant native acceptor-like defects. A temperature-independent effective mass ratio of 9.0 ± 0.8 was determined from the ratio of measured heavy and light hole concentrations. Over the 56 K–300 K temperature range, the light hole mobility was found to be 4.7 ± 0.7 times higher than the heavy hole mobility. The measured room temperature mobilities for the light and heavy holes were 2550 cm{sup 2}/Vs and 520 cm{sup 2}/Vs, respectively.

  3. Electrothermal Analysis of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

    2006-03-01

    This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

  4. Energetic ions in ITER plasmas

    SciTech Connect (OSTI)

    Pinches, S. D.; Chapman, I. T.; Sharapov, S. E.; Lauber, Ph. W.; Oliver, H. J. C.; Shinohara, K.; Tani, K.

    2015-02-15

    This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma (r/a>0.5) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.

  5. ION SWITCH

    DOE Patents [OSTI]

    Cook, B.

    1959-02-10

    An ion switch capable of transferring large magnitudes of power is described. An ion switch constructed in accordance with the invention includes a pair of spaced control electrodes disposed in a highly evacuated region for connection in a conventional circuit to control the passing of power therethrough. A controllable ionic conduction path is provided directiy between the control electrodes by a source unit to close the ion switch. Conventional power supply means are provided to trigger the source unit and control the magnitude, durations and pulse repetition rate of the aforementioned ionic conduction path.

  6. Enhanced electrochemical etching of ion irradiated silicon by localized amorphization

    SciTech Connect (OSTI)

    Dang, Z. Y.; Breese, M. B. H.; Lin, Y.; Tok, E. S.; Vittone, E.

    2014-05-12

    A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by light ions such as helium and heavy ions such as cesium over a wide range of fluences and irradiation geometries.

  7. Inspection considerations for holes 0. 040 inch and smaller

    SciTech Connect (OSTI)

    Not Available

    1980-03-01

    The accurate inspection of hole size and location for holes smaller than 0.040 inch necessitates several considerations beyond those normally encountered for larger holes. The technical aspects are described herein.

  8. Probing Core-Hole Localization in Molecular Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Core-Hole Localization in Molecular Nitrogen Probing Core-Hole Localization in Molecular Nitrogen Print Wednesday, 25 February 2009 00:00 The behavior of the core hole...

  9. DOE - NNSA/NFO -- Photo Library Big Hole Drilling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big Hole Drilling NNSANFO Language Options U.S. DOENNSA - Nevada Field Office Photo Library - Big Hole Drilling The need to drill large-diameter holes at the Nevada National ...

  10. ION SOURCE

    DOE Patents [OSTI]

    Leland, W.T.

    1960-01-01

    The ion source described essentially eliminater the problem of deposits of nonconducting materials forming on parts of the ion source by certain corrosive gases. This problem is met by removing both filament and trap from the ion chamber, spacing them apart and outside the chamber end walls, placing a focusing cylinder about the filament tip to form a thin collimated electron stream, aligning the cylinder, slits in the walls, and trap so that the electron stream does not bombard any part in the source, and heating the trap, which is bombarded by electrons, to a temperature hotter than that in the ion chamber, so that the tendency to build up a deposit caused by electron bombardment is offset by the extra heating supplied only to the trap.

  11. Ion focusing

    DOE Patents [OSTI]

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2015-11-10

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  12. Brookhaven National Laboratory - Sr90 - Chemical Holes | Department...

    Office of Environmental Management (EM)

    - Chemical Holes Brookhaven National Laboratory - Sr90 - Chemical Holes January 1, 2014 - ... InstallationName, State: Brookhaven National Laboratory Responsible DOE Office: Office of ...

  13. Normal Modes of Black Hole Accretion Disks (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    the modes for different values of the mass and angular momentum of the central black hole. ... PARTICLES AND FIELDS; ACCRETION DISKS; ANGULAR MOMENTUM; BLACK HOLES; EIGENFUNCTIONS; ...

  14. Two Electron Holes in Hematite Facilitate Water Splitting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Electron Holes in Hematite Facilitate Water Splitting Two Electron Holes in Hematite Facilitate Water Splitting Print Wednesday, 26 September 2012 00:00 Hydrogen is an...

  15. Holes Are a Positive Thing: Designing Conductors for Solar Photovoltai...

    Office of Science (SC) Website

    Holes Are a Positive Thing: Designing Conductors for Solar Photovoltaics Basic Energy ... Holes Are a Positive Thing: Designing Conductors for Solar Photovoltaics Predicted by ...

  16. Core Holes At Long Valley Caldera Geothermal Area (Urban, Et...

    Open Energy Info (EERE)

    Technique Core Holes Activity Date 1986 - 1986 Usefulness useful DOE-funding Unknown Exploration Basis After several temperature-gradient holes were drilled in 1982 to the...

  17. Energy and information near black hole horizons (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Energy and information near black hole horizons Citation Details In-Document Search Title: Energy and information near black hole horizons The central challenge in trying to ...

  18. Novel mechanism for vorticity generation in black-hole accretion...

    Office of Scientific and Technical Information (OSTI)

    Novel mechanism for vorticity generation in black-hole accretion disks Prev Next Title: Novel mechanism for vorticity generation in black-hole accretion disks Authors: ...

  19. Water telescope's first sky map shows flickering black holes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water telescope's first sky map shows flickering black holes Water telescope's first sky map shows flickering black holes The High Altitude Water Cherenkov observatory has released ...

  20. Category:Open-Hole Techniques | Open Energy Information

    Open Energy Info (EERE)

    Open-Hole Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Open-Hole Techniques page? For detailed information on...

  1. Two Electron Holes in Hematite Facilitate Water Splitting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    been suspected that in hematite, two different holes are formed with different water-splitting power. The existence of different types of holes with disparate reactivity...

  2. Compound and Elemental Analysis At Seven Mile Hole Area (Larson...

    Open Energy Info (EERE)

    Seven Mile Hole Area (Larson, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Seven Mile Hole...

  3. An ion guide laser ion source for isobar-suppressed rare isotope beams

    SciTech Connect (OSTI)

    Raeder, Sebastian Ames, Friedhelm; Bishop, Daryl; Bricault, Pierre; Kunz, Peter; Mjs, Anders; Heggen, Henning; Institute of Applied Physics, TU Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt ; Lassen, Jens Teigelhfer, Andrea; Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2

    2014-03-15

    Modern experiments at isotope separator on-line (ISOL) facilities like ISAC at TRIUMF often depend critically on the purity of the delivered rare isotope beams. Therefore, highly selective ion sources are essential. This article presents the development and successful on-line operation of an ion guide laser ion source (IG-LIS) for the production of ion beams free of isobaric contamination. Thermionic ions from the hot ISOL target are suppressed by an electrostatic potential barrier, while neutral radio nuclides effusing out are resonantly ionized by laser radiation within a quadrupole ion guide behind this barrier. The IG-LIS was developed through detailed thermal and ion optics simulation studies and off-line tests with stable isotopes. In a first on-line run with a SiC target a suppression of surface-ionized Na contaminants in the ion beam of up to six orders of magnitude was demonstrated.

  4. Slim Holes for Small Power Plants

    SciTech Connect (OSTI)

    Finger, John T.

    1999-08-06

    Geothermal research study at Sandia National Laboratories has conducted a program in slimhole drilling research since 1992. Although our original interest focused on slim holes as an exploration method, it has also become apparent that they have substantial potential for driving small-scale, off-grid power plants. This paper summarizes Sandia's slim-hole research program, describes technology used in a ''typical'' slimhole drilling project, presents an evaluation of using slim holes for small power plants, and lists some of the research topics that deserve further investigation.

  5. Early black hole signals at the LHC

    SciTech Connect (OSTI)

    Koch, Ben; Bleicher, Marcus; Stoecker, Horst

    2007-10-26

    The production of mini black holes due to large extra dimensions is a speculative but possible scenario. We survey estimates for di-jet suppression, and multi-mono-jet emission due to black hole production. We further look for a possible sub-scenario which is the formation of a stable or meta-stable black hole remnant (BHR). We show that the beauty of such objects is, that they are relatively easy to observe, even in the early phase of LHC running.

  6. Highly Stripped Ion Sources for MeV Ion Implantation

    SciTech Connect (OSTI)

    Hershcovitch, Ady

    2009-06-30

    charge state phosphorus and antimony could have resulted in a lower power consumption of 30 kW/implanter) for the following reasons (which were discovered after R&D completion): record output of high charge state phosphorous would have thermally damage wafers; record high charge state of antimony requires tool (ion implanting machine in ion implantation jargon) modification, which did not make economic sense due to the small number of users. Nevertheless, BNL has benefited from advances in high-charge state ion generation, due to high charge state ions need for RHIC preinjection. High fraction boron ion was delivered to PVI client Axcelis for retrofit and implantation testing; the source could have reduced beam preinjector power consumption by a factor of 3.5. But, since the source generated some lithium (though in miniscule amounts); last minute decision was made not to employ the source in implanters. R&D of novel transport and gasless plasmaless deceleration, as well as decaborane molecular ion source to mitigate space charge problems in low energy shallow ion implantation was also conducted though results were not yet ready for commercialization. Future work should be focused on gasless plasmaless transport and deceleration as well as on molecular ions due to their significance to low energy, shallow implantation; which is the last frontier of ion implantation. To summarize the significant accomplishments: 1. Record steady state output currents of high charge state phosphorous, P, ions in particle milli-Ampere: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA). 2. Record steady state output currents of high charge state antimony, Sb, ions in particle milli-Ampere: Sb{sup 3+} (16.2 pmA), Sb{sup 4+} (7.6 pmA), Sb{sup 5+} (3.3 pmA), and Sb{sup 6+} (2.2 pmA). 3. 70% output of boron ion current (compared to 25% in present state-of-the-art) from a Calutron-Bemas ion source. These accomplishments have the potential of benefiting the semiconductor

  7. ION SOURCE

    DOE Patents [OSTI]

    Bell, W.A. Jr.; Love, L.O.; Prater, W.K.

    1958-01-28

    An ion source is presented capable of producing ions of elements which vaporize only at exceedingly high temperatures, i.e.,--1500 degrees to 3000 deg C. The ion source utilizes beams of electrons focused into a first chamber housing the material to be ionized to heat the material and thereby cause it to vaporize. An adjacent second chamber receives the vaporized material through an interconnecting passage, and ionization of the vaporized material occurs in this chamber. The ionization action is produced by an arc discharge sustained between a second clectron emitting filament and the walls of the chamber which are at different potentials. The resultant ionized material egresses from a passageway in the second chamber. Using this device, materials which in the past could not be processed in mass spectometers may be satisfactorily ionized for such applications.

  8. Predictive Models of Li-ion Battery Lifetime (Presentation) (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Predictive Models of Li-ion Battery Lifetime (Presentation) Citation Details In-Document Search Title: Predictive Models of Li-ion Battery Lifetime (Presentation) Predictive models of Li-ion battery reliability must consider a multiplicity of electrochemical, thermal and mechanical degradation modes experienced by batteries in application environments. Complicating matters, Li-ion batteries can experience several path dependent degradation trajectories dependent on storage

  9. Bottom hole oil well pump

    SciTech Connect (OSTI)

    Hansen, J.E.; Hinds, W.E.; Oldershaw, P.V.

    1982-09-21

    A bottom hole well pump is disclosed comprising a pump housing supported by a control cable for raising and lowering the housing within tubing in a well, a linear motor within the housing causing reciprocation of a plunger extending into a pumping chamber formed by the housing with inlet and outlet check valves for controlling flow of oil or other liquid into the pumping chamber and from the pumping chamber into the tubing above the pump housing. In one embodiment, belleville-type springs are employed for storing energy as the plunger approaches its opposite limits of travel in order to initiate movement of the plunger in the opposite direction. In this embodiment, a single pumping chamber is formed above the linear motor with a single-valve block arranged above the pumping chamber and including inlet check valve means for controlling liquid flow into the pumping chamber and outlet check valve means for controlling liquid flow from the pumping chamber into the tubing interior above the pump housing. In another embodiment, pumping chambers are formed above and below the linear motor with a tubular plunger extending into both pumping chambers, in order to achieve pumping during both directions of travel of the plunger.

  10. Negative ion source

    DOE Patents [OSTI]

    Delmore, James E.

    1987-01-01

    A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reeccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200.degree. to 500.degree. for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

  11. Improved negative ion source

    DOE Patents [OSTI]

    Delmore, J.E.

    1984-05-01

    A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reaccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200 to 500/sup 0/C for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

  12. Radioactive hot cell access hole decontamination machine

    DOE Patents [OSTI]

    Simpson, William E.

    1982-01-01

    Radioactive hot cell access hole decontamination machine. A mobile housing has an opening large enough to encircle the access hole and has a shielding door, with a door opening and closing mechanism, for uncovering and covering the opening. The housing contains a shaft which has an apparatus for rotating the shaft and a device for independently translating the shaft from the housing through the opening and access hole into the hot cell chamber. A properly sized cylindrical pig containing wire brushes and cloth or other disks, with an arrangement for releasably attaching it to the end of the shaft, circumferentially cleans the access hole wall of radioactive contamination and thereafter detaches from the shaft to fall into the hot cell chamber.

  13. Primordial Black Holes: Observational characteristics of the final evaporation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ukwatta, T. N.; Stump, D. R.; Linnemann, J. T.; MacGibbon, J. H.; Marinelli, S. S.; Yapici, T.; Tollefson, K.

    2016-07-01

    For many early universe theories predict the creation of Primordial Black Holes (PBHs). PBHs could have masses ranging from the Planck mass to 105 solar masses or higher depending on the size of the universe at formation. A Black Hole (BH) has a Hawking temperature which is inversely proportional to its mass. Hence a sufficiently small BH will quasi-thermally radiate particles at an ever-increasing rate as emission lowers its mass and raises its temperature. Moreover, the final moments of this evaporation phase should be explosive and its description is dependent on the particle physics model. In this work we investigatemore » the final few seconds of BH evaporation, using the Standard Model and incorporating the most recent Large Hadron Collider (LHC) results, and provide a new parameterization for the instantaneous emission spectrum. We calculate for the first time energy-dependent PBH burst light curves in the GeV/TeV energy range. Moreover, we explore PBH burst search methods and potential observational PBH burst signatures. We have found a unique signature in the PBH burst light curves that may be detectable by GeV/TeV gamma-ray observatories such as the High Altitude Water Cerenkov (HAWC) observatory. Finally, the implications of beyond the Standard Model theories on the PBH burst observational characteristics are also discussed, including potential sensitivity of the instantaneous photon detection rate to a squark threshold in the 5–10 TeV range.« less

  14. Thermal battery

    SciTech Connect (OSTI)

    Williams, M.T.; Winchester, C.S.; Jolson, J.D.

    1989-06-20

    A thermal battery is described comprising at least one electrochemical cell comprising an anode of alkali metal, alkaline earth metal or alloys thereof, a fusible salt electrolyte, a fluorocarbon polymer or fluorochlorocarbon polymer depolarizer, and means for heating the cell to melt the electrolyte.

  15. THE BLACK HOLE FORMATION PROBABILITY

    SciTech Connect (OSTI)

    Clausen, Drew; Piro, Anthony L.; Ott, Christian D.

    2015-02-01

    A longstanding question in stellar evolution is which massive stars produce black holes (BHs) rather than neutron stars (NSs) upon death. It has been common practice to assume that a given zero-age main sequence (ZAMS) mass star (and perhaps a given metallicity) simply produces either an NS or a BH, but this fails to account for a myriad of other variables that may effect this outcome, such as spin, binarity, or even stochastic differences in the stellar structure near core collapse. We argue that instead a probabilistic description of NS versus BH formation may be better suited to account for the current uncertainties in understanding how massive stars die. We present an initial exploration of the probability that a star will make a BH as a function of its ZAMS mass, P {sub BH}(M {sub ZAMS}). Although we find that it is difficult to derive a unique P {sub BH}(M {sub ZAMS}) using current measurements of both the BH mass distribution and the degree of chemical enrichment by massive stars, we demonstrate how P {sub BH}(M {sub ZAMS}) changes with these various observational and theoretical uncertainties. We anticipate that future studies of Galactic BHs and theoretical studies of core collapse will refine P {sub BH}(M {sub ZAMS}) and argue that this framework is an important new step toward better understanding BH formation. A probabilistic description of BH formation will be useful as input for future population synthesis studies that are interested in the formation of X-ray binaries, the nature and event rate of gravitational wave sources, and answering questions about chemical enrichment.

  16. Entropy localization and extensivity in the semiclassical black hole evaporation

    SciTech Connect (OSTI)

    Casini, H.

    2009-01-15

    I aim to quantify the distribution of information in the Hawking radiation and inside the black hole in the semiclassical evaporation process. The structure of relativistic quantum field theory does not allow one to define a localized entropy unambiguously, but rather forces one to consider the shared information (mutual information) between two different regions of space-time. Using this tool, I first show that the entropy of a thermal gas at the Unruh temperature underestimates the actual amount of (shared) information present in a region of the Rindler space. Then, I analyze the mutual information between the black hole and the late time radiation region. A well-known property of the entropy implies that this is monotonically increasing with time. This means that in the semiclassical picture it is not possible to recover the eventual purity of the initial state in the final Hawking radiation through subtle correlations established during the whole evaporation period, no matter the interactions present in the theory. I find extensivity of the entropy as a consequence of a reduction to a two dimensional conformal problem in a simple approximation. However, the extensivity of information in the radiation region in a full four dimensional calculation seems not to be guaranteed on general grounds. I also analyze the localization of shared information inside the black hole finding that a large amount of it is contained in a small, approximately flat region of space-time near the point where the horizon begins. This gives place to large violations of the entropy bounds. I show that this problem is not eased by backscattering effects and argue that a breaking of conformal invariance is necessary to delocalize the entropy. Finally, I indicate that the mutual information could lead to a way to understand the Bekenstein-Hawking black hole entropy which does not require a drastic reduction in degrees of freedom in order to regulate the entanglement entropy. On the contrary

  17. ION PUMP

    DOE Patents [OSTI]

    Milleron, N.

    1961-01-01

    An ion pump and pumping method are given for low vacuum pressures in which gases introduced into a pumping cavity are ionized and thereafter directed and accelerated into a quantity of liquid gettering metal where they are absorbed. In the preferred embodiment the metal is disposed as a liquid pool upon one electrode of a Phillips ion gauge type pump. Means are provided for continuously and remotely withdrawing and degassing the gettering metal. The liquid gettering metal may be heated if desired, although various combinations of gallium, indium, tin, bismuth, and lead, the preferred metals, have very low melting points. A background pressure of evaporated gettering metal may be provided by means of a resistance heated refractory metal wick protruding from the surface of the pcol of gettering metal.

  18. Highly charged ion secondary ion mass spectroscopy

    DOE Patents [OSTI]

    Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.

    2001-01-01

    A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.

  19. BLACK HOLE FORAGING: FEEDBACK DRIVES FEEDING

    SciTech Connect (OSTI)

    Dehnen, Walter; King, Andrew, E-mail: wd11@leicester.ac.uk, E-mail: ark@astro.le.ac.uk [Theoretical Astrophysics Group, University of Leicester, Leicester LE1 7RH (United Kingdom)] [Theoretical Astrophysics Group, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2013-11-10

    We suggest a new picture of supermassive black hole (SMBH) growth in galaxy centers. Momentum-driven feedback from an accreting hole gives significant orbital energy, but little angular momentum to the surrounding gas. Once central accretion drops, the feedback weakens and swept-up gas falls back toward the SMBH on near-parabolic orbits. These intersect near the black hole with partially opposed specific angular momenta, causing further infall and ultimately the formation of a small-scale accretion disk. The feeding rates into the disk typically exceed Eddington by factors of a few, growing the hole on the Salpeter timescale and stimulating further feedback. Natural consequences of this picture include (1) the formation and maintenance of a roughly toroidal distribution of obscuring matter near the hole; (2) random orientations of successive accretion disk episodes; (3) the possibility of rapid SMBH growth; (4) tidal disruption of stars and close binaries formed from infalling gas, resulting in visible flares and ejection of hypervelocity stars; (5) super-solar abundances of the matter accreting on to the SMBH; and (6) a lower central dark-matter density, and hence annihilation signal, than adiabatic SMBH growth implies. We also suggest a simple subgrid recipe for implementing this process in numerical simulations.

  20. Rotating black hole thermodynamics with a particle probe

    SciTech Connect (OSTI)

    Gwak, Bogeun; Lee, Bum-Hoon

    2011-10-15

    The thermodynamics of Myers-Perry black holes in general dimensions are studied using a particle probe. When undergoing particle absorption, the changes of the entropy and irreducible mass are shown to be dependent on the particle radial momentum. The black hole thermodynamic behaviors are dependent on dimensionality for specific rotations. For a 4-dimensional Kerr black hole, its black hole properties are maintained for any particle absorption. 5-dimensional black holes can avoid a naked ring singularity by absorbing a particle in specific momenta ranges. Black holes over 6 dimensions become ultraspinning black holes through a specific form of particle absorption. The microscopical changes are interpreted in limited cases of Myers-Perry black holes using Kerr/CFT correspondence. We systematically describe the black hole properties changed by particle absorption in all dimensions.

  1. Ion acoustic solitons/double layers in two-ion plasma revisited

    SciTech Connect (OSTI)

    Lakhina, G. S. Singh, S. V. Kakad, A. P.

    2014-06-15

    Ion acoustic solitons and double layers are studied in a collisionless plasma consisting of cold heavier ion species, a warm lighter ion species, and hot electrons having Boltzmann distributions by Sagdeev pseudo-potential technique. In contrast to the previous results, no double layers and super-solitons are found when both the heavy and lighter ion species are treated as cold. Only the positive potential solitons are found in this case. When the thermal effects of the lighter ion species are included, in addition to the usual ion-acoustic solitons occurring at M > 1 (where the Mach number, M, is defined as the ratio of the speed of the solitary wave and the ion-acoustic speed considering temperature of hot electrons and mass of the heavier ion species), slow ion-acoustic solitons/double layers are found to occur at low Mach number (M < 1). The slow ion-acoustic mode is actually a new ion-ion hybrid acoustic mode which disappears when the normalized number density of lighter ion species tends to 1 (i.e., no heavier species). An interesting property of the new slow ion-acoustic mode is that at low number density of the lighter ion species, only negative potential solitons/double layers are found whereas for increasing densities there is a transition first to positive solitons/double layers, and then only positive solitons. The model can be easily applicable to the dusty plasmas having positively charged dust grains by replacing the heavier ion species by the dust mass and doing a simple normalization to take account of the dust charge.

  2. Gated beam imager for heavy ion beams

    SciTech Connect (OSTI)

    Ahle, Larry; Hopkins, Harvey S.

    1998-12-10

    As part of the work building a small heavy-ion induction accelerator ring, or recirculator, at Lawrence Livermore National Laboratory, a diagnostic device measuring the four-dimensional transverse phase space of the beam in just a single pulse has been developed. This device, the Gated Beam Imager (GBI), consists of a thin plate filled with an array of 100-micron diameter holes and uses a Micro Channel Plate (MCP), a phosphor screen, and a CCD camera to image the beam particles that pass through the holes after they have drifted for a short distance. By time gating the MCP, the time evolution of the beam can also be measured, with each time step requiring a new pulse.

  3. Gated beam imager for heavy ion beams

    SciTech Connect (OSTI)

    Ahle, L.; Hopkins, H.S.

    1998-12-01

    As part of the work building a small heavy-ion induction accelerator ring, or recirculator, at Lawrence Livermore National Laboratory, a diagnostic device measuring the four-dimensional transverse phase space of the beam in just a single pulse has been developed. This device, the Gated Beam Imager (GBI), consists of a thin plate filled with an array of 100-micron diameter holes and uses a Micro Channel Plate (MCP), a phosphor screen, and a CCD camera to image the beam particles that pass through the holes after they have drifted for a short distance. By time gating the MCP, the time evolution of the beam can also be measured, with each time step requiring a new pulse. {copyright} {ital 1998 American Institute of Physics.}

  4. Short wavelength ion temperature gradient turbulence

    SciTech Connect (OSTI)

    Chowdhury, J.; Ganesh, R. [Institute for Plasma Research, Bhat, Gandhinagar (India); Brunner, S.; Lapillonne, X.; Villard, L. [CRPP, Association EURATOM-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Jenko, F. [Max-Planck-Institut fuer Plasmaphysik Boltzmannstr. 2, D-85748 Garching (Germany)

    2012-10-15

    The ion temperature gradient (ITG) mode in the high wavenumber regime (k{sub y}{rho}{sub s}>1), referred to as short wavelength ion temperature gradient mode (SWITG) is studied using the nonlinear gyrokinetic electromagnetic code GENE. It is shown that, although the SWITG mode may be linearly more unstable than the standard long wavelength (k{sub y}{rho}{sub s}<1) ITG mode, nonlinearly its contribution to the total thermal ion heat transport is found to be low. We interpret this as resulting from an increased zonal flow shearing effect on the SWITG mode suppression.

  5. ZPPR FUEL ELEMENT THERMAL STRESS-STRAIN ANALYSIS

    SciTech Connect (OSTI)

    Charles W. Solbrig; Jason Andrus; Chad Pope

    2014-04-01

    The design temperature of high plutonium concentration ZPPR fuel assemblies is 600 degrees C. Cladding integrity of the 304L stainless steel cladding is a significant concern with this fuel since even small holes can lead to substantial fuel degradation. Since the fuel has a higher coefficient of thermal expansion than the cladding, an investigation of the stress induced in the cladding due to the differential thermal expansion of fuel and cladding up to the design temperature was conducted. Small holes in the cladding envelope would be expected to lead to the fuel hydriding and oxidizing into a powder over a long period of time. This is the same type of chemical reaction chain that exists in the degradion of the high uranium concentration ZPPR fuel. Unfortunately, the uranium fuel was designed with vents which allowed this degradation to occur. The Pu cladding is sealed so only fuel with damaged cladding would be subject to this damage. The thermal stresses that can be developed in the fuel cladding have been calculated in in this paper and compared to the ultimate tensile stress of the cladding. The conclusion is drawn that thermal stresses cannot induce holes in the cladding even for the highest storage temperatures predicted in calculations (292C). In fact, thermal stress can not cause cladding failure as long as the fuel temperatures are below the design limit of 600 degrees C (1,112 degrees F).

  6. Ion Stancu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Search for Neutrino Oscillations with MiniBooNE Ion Stancu University of Alabama Frontiers in Neutrino Physics APC, Paris, October 6th, 2011 06.10.2011
FNP
 2
 Ion
Stancu
-
University
of
Alabama
 Introduction Review of the MiniBooNE oscillation results: * Motivation for MiniBooNE: testing the LSND signal * MiniBooNE design strategy and assumptions * Neutrino oscillation results: PRL 98, 231801 (2007) & PRL 102, 101802 (2009) * Antineutrino oscillation results: PRL 103,

  7. Improved ion source

    DOE Patents [OSTI]

    Leung, K.N.; Ehlers, K.W.

    1982-05-04

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,

  8. ION GUN

    DOE Patents [OSTI]

    Dandl, R.A.

    1961-10-24

    An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)

  9. SWIFT OBSERVATIONS OF MAXI J1659-152: A COMPACT BINARY WITH A BLACK HOLE ACCRETOR

    SciTech Connect (OSTI)

    Kennea, J. A.; Romano, P.; Mangano, V.; Beardmore, A. P.; Evans, P. A.; Curran, P. A.; Markwardt, C. B.; Yamaoka, K.

    2011-07-20

    We report on the detection and follow-up high-cadence monitoring observations of MAXI J1659-152, a bright Galactic X-ray binary transient with a likely black hole accretor, by Swift over a 27 day period after its initial outburst detection. MAXI J1659-152 was discovered almost simultaneously by Swift and the Monitor of All-sky X-ray Image on 2010 September 25, and was monitored intensively from the early stages of the outburst through the rise to a brightness of {approx}0.5 Crab by the Swift X-ray, UV/Optical, and the hard X-ray Burst Alert Telescopes. We present temporal and spectral analysis of the Swift observations. The broadband light curves show variability characteristic of black hole candidate transients. We present the evolution of thermal and non-thermal components of the 0.5-150 keV combined X-ray spectra during the outburst. MAXI J1659-152 displays accretion state changes typically associated with black hole binaries, transitioning from its initial detection in the hard state, to the steep power-law state, followed by a slow evolution toward the thermal state, signified by an increasingly dominant thermal component associated with the accretion disk, although this state change did not complete before Swift observations ended. We observe an anti-correlation between the increasing temperature and decreasing radius of the inner edge of the accretion disk, suggesting that the inner edge of the accretion disk infalls toward the black hole as the disk temperature increases. We observed significant evolution in the absorption column during the initial rise of the outburst, with the absorption almost doubling, suggestive of the presence of an evolving wind from the accretion disk. We detect quasi-periodic oscillations that evolve with the outburst, as well as irregular shaped dips that recur with a period of 2.42 {+-} 0.09 hr, strongly suggesting an orbital period that would make MAXI J1659-152 the shortest period black hole binary yet known.

  10. Novel Electrolytes for Lithium Ion Batteries (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Novel Electrolytes for Lithium Ion Batteries Citation Details In-Document Search Title: Novel Electrolytes for Lithium Ion Batteries We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have

  11. Semiclassical S-matrix for black holes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bezrukov, Fedor; Levkov, Dmitry; Sibiryakov, Sergey

    2015-12-01

    In this study, we propose a semiclassical method to calculate S-matrix elements for two-stage gravitational transitions involving matter collapse into a black hole and evaporation of the latter. The method consistently incorporates back-reaction of the collapsing and emitted quanta on the metric. We illustrate the method in several toy models describing spherical self-gravitating shells in asymptotically flat and AdS space-times. We find that electrically neutral shells reflect via the above collapse-evaporation process with probability exp(–B), where B is the Bekenstein-Hawking entropy of the intermediate black hole. This is consistent with interpretation of exp(B) as the number of black hole states.more » The same expression for the probability is obtained in the case of charged shells if one takes into account instability of the Cauchy horizon of the intermediate Reissner-Nordström black hole. As a result, our semiclassical method opens a new systematic approach to the gravitational S-matrix in the non-perturbative regime.« less

  12. SLIM DISKS AROUND KERR BLACK HOLES REVISITED

    SciTech Connect (OSTI)

    Sadowski, Aleksander

    2009-08-01

    We investigate stationary slim accretion disks around Kerr black holes. We construct a new numerical method based on the relaxation technique. We systematically cover the whole parameter space relevant to stellar mass X-ray binaries. We also notice some non-monotonic features in the disk structure, overlooked in previous studies.

  13. Remote down-hole well telemetry

    DOE Patents [OSTI]

    Briles, Scott D.; Neagley, Daniel L.; Coates, Don M.; Freund, Samuel M.

    2004-07-20

    The present invention includes an apparatus and method for telemetry communication with oil-well monitoring and recording instruments located in the vicinity of the bottom of gas or oil recovery pipes. Such instruments are currently monitored using electrical cabling that is inserted into the pipes; cabling has a short life in this environment, and requires periodic replacement with the concomitant, costly shutdown of the well. Modulated reflectance, a wireless communication method that does not require signal transmission power from the telemetry package will provide a long-lived and reliable way to monitor down-hole conditions. Normal wireless technology is not practical since batteries and capacitors have to frequently be replaced or recharged, again with the well being removed from service. RF energy generated above ground can also be received, converted and stored down-hole without the use of wires, for actuating down-hole valves, as one example. Although modulated reflectance reduces or eliminates the loss of energy at the sensor package because energy is not consumed, during the transmission process, additional stored extra energy down-hole is needed.

  14. Optical orientation of holes in strained nanostructures

    SciTech Connect (OSTI)

    Averkiev, N. S.; Sablina, N. I.

    2008-03-15

    A theory describing the optical orientation and Hanle effect for holes in quantum wells or quantum dots based on cubic semiconductors is developed. It is demonstrated that the presence of internal or external strain in quantum-confinement heterostructures leads to the dependence of the Hanle effect on the orientation of the magnetic field with respect to the heterostructure growth axis.

  15. Photodriving Water Oxidation Catalysts: Extending Hole Lifetimes | ANSER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center | Argonne-Northwestern National Laboratory Photodriving Water Oxidation Catalysts: Extending Hole Lifetimes Home > Research > ANSER Research Highlights > Photodriving Water Oxidation Catalysts: Extending Hole Lifetimes

  16. V-193: Barracuda SSL VPN Input Validation Hole Permits Cross...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Barracuda SSL VPN Input Validation Hole Permits Cross-Site Scripting Attacks V-193: Barracuda SSL VPN Input Validation Hole Permits Cross-Site Scripting Attacks July 5, 2013 -...

  17. Ion mobility sensor

    DOE Patents [OSTI]

    Koo, Jackson C.; Yu, Conrad M.

    2005-08-23

    An ion mobility sensor which can detect both ion and molecules simultaneously. Thus, one can measure the relative arrival times between various ions and molecules. Different ions have different mobility in air, and the ion sensor enables measurement of ion mobility, from which one can identify the various ions and molecules. The ion mobility sensor which utilizes a pair of glow discharge devices may be designed for coupling with an existing gas chromatograph, where various gas molecules are already separated, but numbers of each kind of molecules are relatively small, and in such cases a conventional ion mobility sensor cannot be utilized.

  18. ION SOURCE

    DOE Patents [OSTI]

    Brobeck, W.M.

    1959-04-14

    This patent deals with calutrons and more particularly to an arrangement therein whereby charged bottles in a calutron source unit may be replaced without admitting atmospheric air to the calutron vacuum chamber. As described, an ion unit is disposed within a vacuum tank and has a reservoir open toward a wall of the tank. A spike projects from thc source into the reservoir. When a charge bottle is placed in the reservoir, the spike breaks a frangible seal on the bottle. After the contents of the bottle are expended the bottle may be withdrawn and replaced with another charge bottle by a varuum lock arrangement in conjunction with an arm for manipulating the bottle.

  19. Ion Monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2003-11-18

    The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

  20. Water telescope's first sky map shows flickering black holes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water telescope's first sky map shows flickering black holes Water telescope's first sky map shows flickering black holes The High Altitude Water Cherenkov observatory has released its first map of the sky, including the first measurements of how often black holes flicker on and off. It has also caught pulsars, supernova remnants, and other bizarre cosmic beasts. April 24, 2016 Water telescope's first sky map shows flickering black holes Three new sources of gamma rays spotted by HAWC. Credit:

  1. Gravitational waves found, black-hole models led the way

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gravitational waves found, black-hole models led the way Gravitational waves found, black-hole models led the way Gravitational waves were predicted by Einstein's theory of general relativity in 1916, and now, almost exactly 100 years later, the faint ripples across space-time have been found. February 11, 2016 A simulation of two merging black holes, creating gravitational waves. Photo courtesy of LIGO. A simulation of two merging black holes, creating gravitational waves. Photo courtesy of

  2. Probing Core-Hole Localization in Molecular Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Core-Hole Localization in Molecular Nitrogen Probing Core-Hole Localization in Molecular Nitrogen Print Wednesday, 25 February 2009 00:00 The behavior of the core hole created in molecular x-ray photoemission experiments has provided molecular scientists with a valuable window through which to probe the electronic structure and dynamics of molecules. But the answer to one fundamental quantum question-whether the core hole is localized or delocalized-has remained elusive for diatomic

  3. Using a Semiconductor-to-Metal Transition to Control Optical Transmission through Subwavelength Hole Arrays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Donev, E. U.; Suh, J. Y.; Lopez, R.; Feldman, L. C.; Haglund, R. F.

    2008-01-01

    We describe a simple configuration in which the extraordinary optical transmission effect through subwavelength hole arrays in noble-metal films can be switched by the semiconductor-to-metal transition in an underlying thin film of vanadium dioxide. In these experiments, the transition is brought about by thermal heating of the bilayer film. The surprising reverse hysteretic behavior of the transmission through the subwavelength holes in the vanadium oxide suggest that this modulation is accomplished by a dielectric-matching condition rather than plasmon coupling through the bilayer film. The results of this switching, including the wavelength dependence, are qualitatively reproduced by a transfer matrix model.more » The prospects for effecting a similar modulation on a much faster time scale by using ultrafast laser pulses to trigger the semiconductor-to-metal transition are also discussed.« less

  4. Thermal conductivity of thermal-battery insulations

    SciTech Connect (OSTI)

    Guidotti, R.A.; Moss, M.

    1995-08-01

    The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

  5. Ion funnel ion trap and process

    DOE Patents [OSTI]

    Belov, Mikhail E [Richland, WA; Ibrahim, Yehia M [Richland, WA; Clowers, Biran H [West Richland, WA; Prior, David C [Hermiston, OR; Smith, Richard D [Richland, WA

    2011-02-15

    An ion funnel trap is described that includes a inlet portion, a trapping portion, and a outlet portion that couples, in normal operation, with an ion funnel. The ion trap operates efficiently at a pressure of .about.1 Torr and provides for: 1) removal of low mass-to-charge (m/z) ion species, 2) ion accumulation efficiency of up to 80%, 3) charge capacity of .about.10,000,000 elementary charges, 4) ion ejection time of 40 to 200 .mu.s, and 5) optimized variable ion accumulation times. Ion accumulation with low concentration peptide mixtures has shown an increase in analyte signal-to-noise ratios (SNR) of a factor of 30, and a greater than 10-fold improvement in SNR for multiply charged analytes.

  6. Structure and properties of electronic and hole centers in CsBr from theoretical calculations

    SciTech Connect (OSTI)

    Halliday, Matthew T.; Hess, Wayne P.; Shluger, Alexander L.

    2015-06-24

    The electronic structure, geometry, diffusion barriers and optical properties of fundamental defects of CsBr are calculated using hybrid functional DFT and TD- DFT methods. The B3LYP functional with a modified exchange contribution has been used in an embedded cluster scheme to model the structure and spectroscopic properties of self-trapped triplet exciton, interstitial Br atoms and ions, self-trapped holes and Br vacancies. The calculated migration barriers and positions of maxima of optical absorption bands are in good agreement with experiment, justifying the obtained defect geometries. The o*-center triplet exciton luminescence energy is also accurately calculated.

  7. Spectral hole burning studies of photosystem II

    SciTech Connect (OSTI)

    Chang, H.C.

    1995-11-01

    Low temperature absorption and hole burning spectroscopies were applied to the D1-D2-cyt b{sub 559} and the CP47 and CP43 antenna protein complexes of Photosystem H from higher plants. Low temperature transient and persistent hole-burning data and theoretical calculations on the kinetics and temperature dependence of the P680 hole profile are presented and provide convincing support for the linker model. Implicit in the linker model is that the 684-nm-absorbing Chl a serve to shuttle energy from the proximal antenna complex to reaction center. The stoichiometry of isolated Photosystem H Reaction Center (PSII RC) in several different preparations is also discussed. The additional Chl a are due to 684-nm-absorbing Chl a, some contamination by the CP47 complex, and non-native Chl a absorbing near 670 nm. In the CP47 protein complex, attention is focused on the lower energy chlorophyll a Q{sub y}-states. High pressure hole-burning studies of PSII RC revealed for the first time a strong pressure effect on the primary electron transfer dynamics. The 4.2 K lifetime of P680*, the primary donor state, increases from 2.0 ps to 7.0 ps as pressure increases from 0.1 to 267 MPa. Importantly, this effect is irreversible (plastic) while the pressure induced effect on the low temperature absorption and non-line narrowed P680 hole spectra are reversible (elastic). Nonadiabatic rate expressions, which take into account the distribution of energy gap values, are used to estimate the linear pressure shift of the acceptor state energy for both the superexchange and two-step mechanisms for primary charge separation. It was found that the pressure dependence could be explained with a linear pressure shift of {approximately} 1 cm{sup -1}/MPa in magnitude for the acceptor state. The results point to the marriage of hole burning and high pressures as having considerable potential for the study of primary transport dynamics in reaction centers and antenna complexes.

  8. Trumpet-puncture initial data for black holes

    SciTech Connect (OSTI)

    Immerman, Jason D.; Baumgarte, Thomas W.

    2009-09-15

    We propose a new approach, based on the puncture method, to construct black hole initial data in the so-called trumpet geometry, i.e. on slices that asymptote to a limiting surface of nonzero areal radius. Our approach is easy to implement numerically and, at least for nonspinning black holes, does not require any internal boundary conditions. We present numerical results, obtained with a uniform-grid finite-difference code, for boosted black holes and binary black holes. We also comment on generalizations of this method for spinning black holes.

  9. Slant hole completion test. Final report

    SciTech Connect (OSTI)

    Mann, R.L.

    1993-07-01

    One of the Department of Energy`s (DOE) Strategies and Objectives in the Natural Gas Program is to conduct activities to transfer technology from R&D programs to potential users. The Slant Hole Completion Test has achieved exactly this objective. The Slant Hole site is essentially the same as the Multiwell site and is located in the southeastern portion of the Piceance Basin near Rifle, Colorado. The Piceance Basin is typical of the Western low permeability basins that contain thick sequences of sands, silts and coals deposited during the Cretaceous period. These sequences contain vast amounts of natural gas but have proven to be resistant to commercial production because of the low permeability of the host rocks. Using the knowledge gained from the DOE`s earlier Multiwell experiment, the SHCT-1 was drilled to demonstrate that by intersecting the natural fractures found in these ``tight rocks,`` commercial gas production can be obtained.

  10. Astrophysical black holes in screened modified gravity

    SciTech Connect (OSTI)

    Davis, Anne-Christine; Jha, Rahul; Muir, Jessica; Gregory, Ruth E-mail: r.a.w.gregory@durham.ac.uk E-mail: jlmuir@umich.edu

    2014-08-01

    Chameleon, environmentally dependent dilaton, and symmetron gravity are three models of modified gravity in which the effects of the additional scalar degree of freedom are screened in dense environments. They have been extensively studied in laboratory, cosmological, and astrophysical contexts. In this paper, we present a preliminary investigation into whether additional constraints can be provided by studying these scalar fields around black holes. By looking at the properties of a static, spherically symmetric black hole, we find that the presence of a non-uniform matter distribution induces a non-constant scalar profile in chameleon and dilaton, but not necessarily symmetron gravity. An order of magnitude estimate shows that the effects of these profiles on in-falling test particles will be sub-leading compared to gravitational waves and hence observationally challenging to detect.

  11. Quasi-black holes: Definition and general properties

    SciTech Connect (OSTI)

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2007-10-15

    Objects that are on the verge of being extremal black holes but actually are distinct in many ways are called quasi-black holes. Quasi-black holes are defined here and treated in a unified way by displaying their properties. Their main properties are as follows: (i) there are infinite redshift whole regions (ii) the spacetimes exhibit degenerate, almost singular, features but their curvature invariants remain perfectly regular everywhere (iii) in the limit under discussion, outer and inner regions become mutually impenetrable and disjoint, although, in contrast to the usual black holes, this separation is of a dynamical nature, rather than purely causal, and (iv) for external faraway observers the spacetime is virtually indistinguishable from that of extremal black holes. In addition, we show that quasi-black holes must be extremal. Connections with black hole and wormhole physics are also drawn.

  12. Phenomenological loop quantum geometry of the Schwarzschild black hole

    SciTech Connect (OSTI)

    Chiou, D.-W.

    2008-09-15

    The interior of a Schwarzschild black hole is investigated at the level of phenomenological dynamics with the discreteness corrections of loop quantum geometry implemented in two different improved quantization schemes. In one scheme, the classical black hole singularity is resolved by the quantum bounce, which bridges the black hole interior with a white hole interior. In the other scheme, the classical singularity is resolved and the event horizon is also diffused by the quantum bounce. Jumping over the quantum bounce, the black hole gives birth to a baby black hole with a much smaller mass. This lineage continues as each classical black hole brings forth its own descendant in the consecutive classical cycle, giving the whole extended spacetime fractal structure, until the solution eventually descends into the deep Planck regime, signaling a breakdown of the semiclassical description. The issues of scaling symmetry and no-hair theorem are also discussed.

  13. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This ...

  14. Effects of thermal fluctuations on thermal inflation

    SciTech Connect (OSTI)

    Hiramatsu, Takashi; Miyamoto, Yuhei; Yokoyama, Jun’ichi

    2015-03-12

    The mechanism of thermal inflation, a relatively short period of accelerated expansion after primordial inflation, is a desirable ingredient for a certain class of particle physics models if they are not to be in contention with the cosmology of the early Universe. Though thermal inflation is most simply described in terms of a thermal effective potential, a thermal environment also gives rise to thermal fluctuations that must be taken into account. We numerically study the effects of these thermal fluctuations using lattice simulations. We conclude that though they do not ruin the thermal inflation scenario, the phase transition at the end of thermal inflation proceeds through phase mixing and is therefore not accompanied by the formations of bubbles nor appreciable amplitude of gravitational waves.

  15. Ion-acoustic cnoidal waves in plasmas with warm ions and kappa distributed electrons and positrons

    SciTech Connect (OSTI)

    Kaladze, T.; I.Vekua Institute of Applied Mathematics, Tbilisi State University, 0186 Georgia ; Mahmood, S.

    2014-03-15

    Electrostatic ion-acoustic periodic (cnoidal) waves and solitons in unmagnetized electron-positron-ion (EPI) plasmas with warm ions and kappa distributed electrons and positrons are investigated. Using the reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived with appropriate boundary conditions for periodic waves. The corresponding analytical and various numerical solutions are presented with Sagdeev potential approach. Differences between the results caused by the kappa and Maxwell distributions are emphasized. It is revealed that only hump (compressive) structures of the cnoidal waves and solitons are formed. It is shown that amplitudes of the cnoidal waves and solitons are reduced in an EPI plasma case in comparison with the ordinary electron-ion plasmas. The effects caused by the temperature variations of the warm ions are also discussed. It is obtained that the amplitude of the cnoidal waves and solitons decreases for a kappa distributed (nonthermal) electrons and positrons plasma case in comparison with the Maxwellian distributed (thermal) electrons and positrons EPI plasmas. The existence of kappa distributed particles leads to decreasing of ion-acoustic frequency up to thermal ions frequency.

  16. Potential thermoelectric performance from optimization of hole-doped Bi2Se3

    SciTech Connect (OSTI)

    Parker, David S; Singh, David J

    2011-01-01

    We present an analysis of the potential thermoelectric performance of hole-doped Bi2Se3, which is commonly considered to show inferior room temperature performance when compared to Bi2Te3. We find that if the lattice thermal conductivity can be reduced by nanostructuring techniques (as have been applied to Bi2Te3) the material may show optimized ZT values of unity or more in the 300 - 500 K temperature range and thus be suitable for cooling and moderate temperature waste heat recovery and thermoelectric solar cell applications. Central to this conclusion are the larger band gap and the relatively heavier valence bands of Bi2Se3.

  17. Ion beam modification of topological insulator bismuth selenide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sharma, Peter Anand; Sharma, A. L. Lima; Hekmaty, Michelle A.; Hattar, Khalid Mikhiel; Stavila, Vitalie; Goeke, Ronald S.; Erickson, K.; Medlin, Douglas L.; Brahlek, M.; Oh, S.; et al

    2014-12-17

    In this study, we demonstrate chemical doping of a topological insulator Bi2Se3 using ion implantation. Ion beam-induced structural damage was characterized using grazing incidence X-ray diffraction and transmission electron microscopy. Ion damage was reversed using a simple thermal annealing step. Carrier-type conversion was achieved using ion implantation followed by an activation anneal in Bi2Se3 thin films. These two sets of experiments establish the feasibility of ion implantation for chemical modification of Bi2Se3, a prototypical topological insulator. Ion implantation can, in principle, be used for any topological insulator. The direct implantation of dopants should allow better control over carrier concentrations formore » the purposes of achieving low bulk conductivity. Ion implantation also enables the fabrication of inhomogeneously doped structures, which in turn should make possible new types of device designs.« less

  18. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  19. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances ...

  20. Microfabricated ion frequency standard

    DOE Patents [OSTI]

    Schwindt, Peter; Biedermann, Grant; Blain, Matthew G.; Stick, Daniel L.; Serkland, Darwin K.; Olsson, III, Roy H.

    2010-12-28

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  1. Kinetics following addition of sulfur fluorides to a weakly ionized plasma from 300 to 500 K: Rate constants and product determinations for ion-ion mutual neutralization and thermal electron attachment to SF{sub 5}, SF{sub 3}, and SF{sub 2}

    SciTech Connect (OSTI)

    Shuman, Nicholas S.; Miller, Thomas M.; Viggiano, A. A.; Hazari, Nilay; Luzik, Eddie D. Jr.

    2010-12-21

    Rate constants for several processes including electron attachment to SF{sub 2}, SF{sub 3}, and SF{sub 5} and individual product channels of ion-ion mutual neutralization between SF{sub 6}{sup -}, SF{sub 5}{sup -}, and SF{sub 4}{sup -} with Ar{sup +} were determined by variable electron and neutral density attachment mass spectrometry. The experiments were conducted with a series of related neutral precursors (SF{sub 6}, SF{sub 4}, SF{sub 5}Cl, SF{sub 5}C{sub 6}H{sub 5}, and SF{sub 3}C{sub 6}F{sub 5}) over a temperature range of 300-500 K. Mutual neutralization rate constants for SF{sub 6}{sup -}, SF{sub 5}{sup -}, and SF{sub 4}{sup -} with Ar{sup +} are reported with uncertainties of 10-25% and show temperature dependencies in agreement with the theoretical value of T{sup -0.5}. Product branching in the mutual neutralizations is temperature independent and dependent on the electron binding energy of the anion. A larger fraction of product neutrals from the SF{sub 6}{sup -} mutual neutralization (0.9 {+-}0.1) are dissociated than in the SF{sub 5}{sup -} mutual neutralization (0.65 {+-} 0.2), with the SF{sub 4}{sup -} (0.7 {+-} 0.3) likely lying in between. Electron attachment to SF{sub 5} (k= 2.0 x 10{sup -8} {+-}{sub 1}{sup 2} cm{sup 3} s{sup -1} at 300 K) and SF{sub 3} (4 {+-} 3 x 10{sup -9} cm{sup 3} s{sup -1} at 300 K) show little temperature dependence. Rate constants of electron attachment to closed-shell SF{sub n} species decrease as the complexity of the neutral decreases.

  2. Code System for Calculating Ion Track Condensed Collision Model.

    Energy Science and Technology Software Center (OSTI)

    1997-05-21

    Version 00 ICOM calculates the transport characteristics of ion radiation for applicaton to radiation protection, dosimetry and microdosimetry, and radiation physics of solids. Ions in the range Z=1-92 are handled. The energy range for protons is 0.001-10,000 MeV. For other ions the energy range is 0.001-100MeV/nucleon. Computed quantities include stopping powers, ranges; spatial, angular and energy distributions of particle current and fluence; spatial distributions of the absorbed dose; and spatial distributions of thermalized ions.

  3. Ion Beam Materials Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ion Beam Materials Lab Ion Beam Materials Lab A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. April 12, 2012 Ion Beam Danfysik Implanter High Voltage Terminal. Contact Yongqiang Wang (505) 665-1596 Email Devoted to the characterization and modification of surfaces through the use of ion beams The Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted

  4. Results of geothermal gradient core hole TCB-1, Tecuamburro volcano geothermal site, Guatemala, Central America

    SciTech Connect (OSTI)

    Adams, A.I.; Chipera, S.; Counce, D.; Gardner, J.; Goff, S.; Goff, F.; Heiken, G.; Laughlin, A.W.; Musgrave, J.; Trujillo, P.E. Jr. ); Aycinena, S.; Martinelli, L. ); Castaneda, O.; Revolorio, M.; Roldan, A. . Inst. Nacional de Electrificacion); D

    1992-02-01

    Results of geological, volcanological, hydrogeochemical, and geophysical field studies conducted in 1988 and 1989 at the Tecuamburro volcano geothermal site in Guatemala indicated that there is a substantial shallow heat source beneath the area of youngest volcanism. To obtain information on subsurface temperatures and temperature gradients, stratigraphy, hydrothermal alteration, fracturing, and possible inflows of hydrothermal fluids, a geothermal gradient core hole (TCB-1) was drilled to 808 m low on the northern flank of the Tecuamburro volcano Complex, 300 km south of a 300-m-diameter phreatic crater, Laguna Ixpaco, dated at 2,910 years. Gases from acid-sulfate springs near Laguna Ixpaco consistently yield maximum estimated subsurface temperatures of 250--300{degrees}C. The temperature versus depth curve from TCB-1 does not show isothermal conditions and the calculated thermal gradients from 500--800 m is 230{degrees}C/km. Bottom hole temperature is 238{degrees}C. Calculated heat flow values are nearly 9 heat flow units (HFU). The integration of results from the TCB-1 gradient core hole with results from field studies provides strong evidence that the Tecuamburro area holds great promise for containing a commercial geothermal resource.

  5. Ion sources for ion implantation technology (invited)

    SciTech Connect (OSTI)

    Sakai, Shigeki Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki

    2014-02-15

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm 10 cm, and the beam uniformity is important as well as the total target beam current.

  6. Gallium hole traps in irradiated KTiOPO{sub 4}:Ga crystals

    SciTech Connect (OSTI)

    Grachev, V.; Meyer, M.; Malovichko, G.; Hunt, A. W.

    2014-12-07

    Nominally pure and gallium doped single crystals of potassium titanyl phosphate (KTiOPO{sub 4}) have been studied by Electron Paramagnetic Resonance at low temperatures before and after irradiation. Irradiation with 20?MeV electrons performed at room temperature and liquid nitrogen temperature caused an appearance of electrons and holes. Gallium impurities act as hole traps in KTiOPO{sub 4} creating Ga{sup 4+} centers. Two different Ga{sup 4+} centers were observed, Ga1 and Ga2. The Ga1 centers are dominant in Ga-doped samples. For the Ga1 center, a superhyperfine structure with one nucleus with nuclear spin was registered and attributed to the interaction of gallium electrons with a phosphorus nucleus or proton in its surrounding. In both Ga1 and Ga2 centers, Ga{sup 4+} ions substitute for Ti{sup 4+} ions, but with a preference to one of two electrically distinct crystallographic positions (site selective substitution). The Ga doping eliminates one of the shortcomings of KTP crystalsionic conductivity of bulk crystals. However, this does not improve significantly the resistance of the crystals to electron and ?-radiation.

  7. Lithium thermal targets shot on PBFA II

    SciTech Connect (OSTI)

    Sawyer, P.S.; Aubert, J.H.; Baca, P.M.; McNamara, W.F.

    1993-09-01

    Recent lithium ion beam experiments on PBFAII have required intricate targets to measure beam performance and to study target physics issues. Because of the stopping power difference between lithium ions and protons, these targets have presented significantly increased challenges for material preparation and handling compared to previous proton shots. The greatest challenges included complex shaped gold hohlraums, CH foams of densities ranging from 3 to 6 mg/cm3 and vacuum seals covering large areas with a thickness under 1 um. Details regarding assembly and characterization of lithium thermal targets will be described in this poster.

  8. Cocktails and Ions - 88-Inch Cyclotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cocktails and Ions BASE Ion List Download as a .pdf

  9. Shallow Drilling In The Salton Sea Region, The Thermal Anomaly

    SciTech Connect (OSTI)

    Newmark, R. L.; Kasameyer, P. W.; Younker, L. W.

    1987-01-01

    During two shallow thermal drilling programs, thermal measurements were obtained in 56 shallow (76.2 m) and one intermediate (457.3 m) depth holes located both onshore and offshore along the southern margin of the Salton Sea in the Imperial Valley, California. These data complete the surficial coverage of the thermal anomaly, revealing the shape and lateral extent of the hydrothermal system. The thermal data show the region of high thermal gradients to extend only a short distance offshore to the north of the Quaternary volcanic domes which are exposed along the southern shore of the Salton Sea. The thermal anomaly has an arcuate shape, about 4 km wide and 12 km long. Across the center of the anomaly, the transition zone between locations exhibiting high thermal gradients and those exhibiting regional thermal gradients is quite narrow. Thermal gradients rise from near regional (0.09 C/m) to extreme (0.83 C/m) in only 2.4 km. The heat flow in the central part of the anomaly is >600 mW/m{sup 2} and in some areas exceeds 1200 mW/m{sup 2}. The shape of the thermal anomaly is asymmetric with respect to the line of volcanoes previously thought to represent the center of the field, with its center line offset south of the volcanic buttes. There is no broad thermal anomaly associated with the magnetic high that extends offshore to the northeast from the volcanic domes. These observations of the thermal anomaly provide important constraints for models of the circulation of the hydrothermal system. Thermal budgets based on a simple model for this hydrothermal system indicate that the heat influx rate for local ''hot spots'' in the region may be large enough to account for the rate of heat flux from the entire Salton Trough.

  10. Study of the radon released from open drill holes

    SciTech Connect (OSTI)

    Pacer, J C

    1981-06-01

    The radon emanating from three open drill holes was measured at a site of known uranium mineralization in the Red Desert of south central Wyoming. The radon flux from the soil and drill holes was measured by the accumulator method with activated charcoal cartridges. The surface soil was found to release radon at an average rate of 0.41 atoms/cm/sup 2//sec; the radon emanating from the holes was more variable than that from the soil. The three holes studied released an average of 47 atoms/cm/sup 2//sec of radon. This average is equivalent to the radon released to the atmosphere by 14.5 ft/sup 2/ of soil. The data indicate that the radon emanated from an open drill hole is not as significant as other possible activities at a drill site (i.e. digging a trench or drilling a hole) or from household activities involving the usage of water.

  11. Articles which include chevron film cooling holes, and related processes

    DOE Patents [OSTI]

    Bunker, Ronald Scott; Lacy, Benjamin Paul

    2014-12-09

    An article is described, including an inner surface which can be exposed to a first fluid; an inlet; and an outer surface spaced from the inner surface, which can be exposed to a hotter second fluid. The article further includes at least one row or other pattern of passage holes. Each passage hole includes an inlet bore extending through the substrate from the inlet at the inner surface to a passage hole-exit proximate to the outer surface, with the inlet bore terminating in a chevron outlet adjacent the hole-exit. The chevron outlet includes a pair of wing troughs having a common surface region between them. The common surface region includes a valley which is adjacent the hole-exit; and a plateau adjacent the valley. The article can be an airfoil. Related methods for preparing the passage holes are also described.

  12. Multiscalar black holes with contingent primary hair: Mechanics and stability

    SciTech Connect (OSTI)

    Mignemi, Salvatore; Wiltshire, David L.

    2004-12-15

    We generalize a class of magnetically charged black holes nonminimally coupled to two scalar fields previously found by one of us to the case of multiple scalar fields. The black holes possess a novel type of primary scalar hair, which we call a contingent primary hair: although the solutions possess degrees of freedom which are not completely determined by the other charges of the theory, the charges necessarily vanish in the absence of the magnetic monopole. Only one constraint relates the black hole mass to the magnetic charge and scalar charges of the theory. We obtain a Smarr-type thermodynamic relation, and the first law of black hole thermodynamics for the system. We further explicitly show in the two-scalar-field case that, contrary to the case of many other hairy black holes, the black hole solutions are stable to radial perturbations.

  13. Method and apparatus of assessing down-hole drilling conditions

    DOE Patents [OSTI]

    Hall, David R.; Pixton, David S.; Johnson, Monte L.; Bartholomew, David B.; Fox, Joe

    2007-04-24

    A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

  14. PULSED ION SOURCE

    DOE Patents [OSTI]

    Anderson, C.E.; Ehlers, K.W.

    1958-06-17

    An ion source is described for producing very short high density pulses of ions without bcam scattering. The ions are created by an oscillating electron discharge within a magnetic field. After the ions are drawn from the ionization chamber by an accelerating electrode the ion beam is under the influence of the magnetic field for separation of the ions according to mass and, at the same time, passes between two neutralizing plntes maintained nt equal negative potentials. As the plates are formed of a material having a high ratio of secondary electrons to impinging ions, the ion bombardment of the plntes emits electrons which neutralize the frirge space-charge of the beam and tend to prevent widening of the beam cross section due to the mutual repulsion of the ions.

  15. Down-hole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, H.C.; Hills, R.G.; Striker, R.P.

    1982-10-28

    A down hole periodic seismic generator system is disclosed for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  16. Acoustic analogues of black hole singularities

    SciTech Connect (OSTI)

    Cadoni, Mariano; Mignemi, Salvatore

    2005-10-15

    We search for acoustic analogues of a spherical symmetric black hole with a pointlike source. We show that the gravitational system has a dynamical counterpart in the constrained, steady motion of a fluid with a planar source. The equations governing the dynamics of the gravitational system can be exactly mapped in those governing the motion of the fluid. The different meaning that singularities and sources have in fluid dynamics and in general relativity is also discussed. Whereas in the latter a pointlike source is always associated with a (curvature) singularity in the former the presence of sources does not necessarily imply divergences of the fields.

  17. Semi-transparent solar energy thermal storage device

    DOE Patents [OSTI]

    McClelland, John F.

    1985-06-18

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  18. Semi-transparent solar energy thermal storage device

    DOE Patents [OSTI]

    McClelland, John F.

    1986-04-08

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  19. Thermal acidization and recovery process for recovering viscous petroleum

    DOE Patents [OSTI]

    Poston, Robert S.

    1984-01-01

    A thermal acidization and recovery process for increasing production of heavy viscous petroleum crude oil and synthetic fuels from subterranean hydrocarbon formations containing clay particles creating adverse permeability effects is described. The method comprises injecting a thermal vapor stream through a well bore penetrating such formations to clean the formation face of hydrocarbonaceous materials which restrict the flow of fluids into the petroleum-bearing formation. Vaporized hydrogen chloride is then injected simultaneously to react with calcium and magnesium salts in the formation surrounding the bore hole to form water soluble chloride salts. Vaporized hydrogen fluoride is then injected simultaneously with its thermal vapor to dissolve water-sensitive clay particles thus increasing permeability. Thereafter, the thermal vapors are injected until the formation is sufficiently heated to permit increased recovery rates of the petroleum.

  20. Optoelectronic device with nanoparticle embedded hole injection/transport layer

    DOE Patents [OSTI]

    Wang, Qingwu; Li, Wenguang; Jiang, Hua

    2012-01-03

    An optoelectronic device is disclosed that can function as an emitter of optical radiation, such as a light-emitting diode (LED), or as a photovoltaic (PV) device that can be used to convert optical radiation into electrical current, such as a photovoltaic solar cell. The optoelectronic device comprises an anode, a hole injection/transport layer, an active layer, and a cathode, where the hole injection/transport layer includes transparent conductive nanoparticles in a hole transport material.

  1. Probing Core-Hole Localization in Molecular Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Core-Hole Localization in Molecular Nitrogen Print The behavior of the core hole created in molecular x-ray photoemission experiments has provided molecular scientists with a valuable window through which to probe the electronic structure and dynamics of molecules. But the answer to one fundamental quantum question-whether the core hole is localized or delocalized-has remained elusive for diatomic molecules in which both atoms are the same element. An international team of scientists

  2. Ultrafast Core-Hole Induced Dynamics in Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Core-Hole Induced Dynamics in Water Ultrafast Core-Hole Induced Dynamics in Water Print Wednesday, 22 February 2006 00:00 A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core hole in a water molecule sets off motions that can affect bonding configurations, which in

  3. Probing Core-Hole Localization in Molecular Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Core-Hole Localization in Molecular Nitrogen Print The behavior of the core hole created in molecular x-ray photoemission experiments has provided molecular scientists with a valuable window through which to probe the electronic structure and dynamics of molecules. But the answer to one fundamental quantum question-whether the core hole is localized or delocalized-has remained elusive for diatomic molecules in which both atoms are the same element. An international team of scientists

  4. Probing Core-Hole Localization in Molecular Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Core-Hole Localization in Molecular Nitrogen Print The behavior of the core hole created in molecular x-ray photoemission experiments has provided molecular scientists with a valuable window through which to probe the electronic structure and dynamics of molecules. But the answer to one fundamental quantum question-whether the core hole is localized or delocalized-has remained elusive for diatomic molecules in which both atoms are the same element. An international team of scientists

  5. Probing Core-Hole Localization in Molecular Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Core-Hole Localization in Molecular Nitrogen Print The behavior of the core hole created in molecular x-ray photoemission experiments has provided molecular scientists with a valuable window through which to probe the electronic structure and dynamics of molecules. But the answer to one fundamental quantum question-whether the core hole is localized or delocalized-has remained elusive for diatomic molecules in which both atoms are the same element. An international team of scientists

  6. Searching for tiny black holes during cold fusion

    SciTech Connect (OSTI)

    Matsumoto, T. . Dept. of Nuclear Engineering)

    1992-09-01

    A previous technical note suggests that cold fusion is a small-scale simulation of events that occur in cold stars far-away in the universe. Therefore, it is expected that tiny black holes might be produced during cold fusion. In this paper, a search for tiny black holes whose traces might have been recorded on nuclear emulsions is described. Several traces suggesting the production and evaporation of tiny black holes have been successfully observed.

  7. Core Holes At Blue Mountain Geothermal Area (Fairbank & Niggemann...

    Open Energy Info (EERE)

    Activity Details Location Blue Mountain Geothermal Area Exploration Technique Core Holes Activity Date 2002 - 2004 Usefulness useful DOE-funding Unknown Exploration Basis Cores...

  8. Two Electron Holes in Hematite Facilitate Water Splitting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Electron Holes in Hematite Facilitate Water Splitting Print Hydrogen is an attractive form of fuel because its only by-product is nonpolluting water vapor. The problem,...

  9. Slim Holes At International Geothermal Area, Japan (Combs, Et...

    Open Energy Info (EERE)

    International Geothermal Area, Japan (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At International Geothermal...

  10. Core Holes At Steamboat Springs Area (Warpinski, Et Al., 2004...

    Open Energy Info (EERE)

    2004) Exploration Activity Details Location Steamboat Springs Area Exploration Technique Core Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes Update to...

  11. Core Holes At Long Valley Caldera Geothermal Area (Benoit, 1984...

    Open Energy Info (EERE)

    Exploration Basis Several core holes were also drilled in the caldera's west moat by Phillips Petroleum Company in 1982, including: PLV-1, drilled to approximately 711 m depth...

  12. Slim Holes At Blue Mountain Area (Warpinski, Et Al., 2002) |...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Blue Mountain Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Blue...

  13. Slim Holes At Reese River Area (Henkle & Ronne, 2008) | Open...

    Open Energy Info (EERE)

    Technique Slim Holes Activity Date Usefulness useful DOE-funding Unknown Notes Well RR 56-4, was not successful in intersecting an exploitable geothermal resource. However, the...

  14. Slim Holes At Steamboat Springs Area (Warpinski, Et Al., 2004...

    Open Energy Info (EERE)

    Technique Slim Holes Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D....

  15. Slim Holes At Alum Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Alum Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Alum Area (DOE GTP) Exploration Activity Details Location Alum...

  16. Slim Holes At Maui Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Maui Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Maui Area (DOE GTP) Exploration Activity Details Location Maui...

  17. Black Hole Remnants in the Early Universe (Journal Article) ...

    Office of Scientific and Technical Information (OSTI)

    Title: Black Hole Remnants in the Early Universe Authors: Scardigli, Fabio ; Gruber, Christine ; Taiwan, Natl. Taiwan U. ; Chen, Pisin ; Taiwan, Natl. Taiwan U. KIPAC, Menlo ...

  18. Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion...

    Open Energy Info (EERE)

    report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report Abstract GEOTHERMAL...

  19. Temperature, heat flow maps and temperature gradient holes |...

    Open Energy Info (EERE)

    to library Report: Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Organization Colorado Geological Survey in Cooperation with the U.S....

  20. SEARCH FOR SUPERMASSIVE BLACK HOLE BINARIES IN THE SLOAN DIGITAL...

    Office of Scientific and Technical Information (OSTI)

    THE SLOAN DIGITAL SKY SURVEY SPECTROSCOPIC SAMPLE Citation Details In-Document Search Title: SEARCH FOR SUPERMASSIVE BLACK HOLE BINARIES IN THE SLOAN DIGITAL SKY SURVEY ...

  1. Core Holes At Valles Caldera - Sulphur Springs Geothermal Area...

    Open Energy Info (EERE)

    Goff, Et Al., 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al.,...

  2. Broad beam ion implanter

    DOE Patents [OSTI]

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  3. Broad beam ion implanter

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  4. Black holes can have curly hair

    SciTech Connect (OSTI)

    Bronnikov, K. A.; Zaslavskii, O. B.

    2008-07-15

    We study equilibrium conditions between a static, spherically symmetric black hole and classical matter in terms of the radial pressure to density ratio p{sub r}/{rho}=w(u), where u is the radial coordinate. It is shown that such an equilibrium is possible in two cases: (i) the well-known case w{yields}-1 as u{yields}u{sub h} (the horizon), i.e., 'vacuum' matter, for which {rho}(u{sub h}) can be nonzero; (ii) w{yields}-1/(1+2k) and {rho}{approx}(u-u{sub h}){sup k} as u{yields}u{sub h}, where k>0 is a positive integer (w=-1/3 in the generic case k=1). A noninteracting mixture of these two kinds of matter can also exist. The whole reasoning is local, hence the results do not depend on any global or asymptotic conditions. They mean, in particular, that a static black hole cannot live inside a star with nonnegative pressure and density. As an example, an exact solution for an isotropic fluid with w=-1/3 (that is, a fluid of disordered cosmic strings), with or without vacuum matter, is presented.

  5. ION Engineering | Open Energy Information

    Open Energy Info (EERE)

    ION Engineering Jump to: navigation, search Name: ION Engineering Place: Boulder, Colorado Zip: 80301 Sector: Carbon Product: ION is the first clean-tech company to successfully...

  6. Low-temperature thermally regenerative electrochemical system

    DOE Patents [OSTI]

    Loutfy, R.O.; Brown, A.P.; Yao, N.P.

    1982-04-21

    A thermally regenerative electrochemical system is described including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the ocmplexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.

  7. Low temperature thermally regenerative electrochemical system

    DOE Patents [OSTI]

    Loutfy, Raouf O.; Brown, Alan P.; Yao, Neng-Ping

    1983-01-01

    A thermally regenerative electrochemical system including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the complexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.

  8. Applications of decelerated ions

    SciTech Connect (OSTI)

    Johnson, B.M.

    1985-03-01

    Many facilities whose sole purpose had been to accelerate ion beams are now becoming decelerators as well. The development and current status of accel-decel operations is reviewed here. Applications of decelerated ions in atomic physics experiments are discussed.

  9. With low projected manufacturing costs, high ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    With low projected manufacturing costs, high ion conductivities, reduced cross-over, chemical and thermal stability in both acidic and alkaline environments, the Sandia membrane technology is positioned to lower the cost of many energy-water systems. Poly (phenylene)-based Hydrocarbon Membrane Separators With a larger component of our electricity generation coming from intermittent and variable sources, stationary energy storage and local power generation will be essential for continued growth

  10. Single Ion Implantation

    ScienceCinema (OSTI)

    Thomas Schenkel

    2010-01-08

    On the equipment needed to implant ions in silicon and other materials. More information: http://newscenter.lbl.gov/f...

  11. Negative ion generator

    DOE Patents [OSTI]

    Stinnett, Regan W. (Albuquerque, NM)

    1984-01-01

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions.

  12. Negative ion generator

    DOE Patents [OSTI]

    Stinnett, R.W.

    1984-05-08

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions. 8 figs.

  13. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  14. CALUTRON ION SOURCE

    DOE Patents [OSTI]

    Oppenheimer, F.F.

    1959-06-01

    A shielding arrangement for eliminating oscillating electrons in the ion source region of calutrons is offered. Metal plates are attached to the ion generator so as to intercept the magnetic field between ion generator and accelerating electrode. The oscillating electrons are discharged on the plates. (T.R.H.)

  15. Electrochemical Lithium Ion Battery Performance Model

    Energy Science and Technology Software Center (OSTI)

    2007-03-29

    The Electrochemical Lithium Ion Battery Performance Model allows for the computer prediction of the basic thermal, electrical, and electrochemical performance of a lithium ion cell with simplified geometry. The model solves governing equations describing the movement of lithium ions within and between the negative and positive electrodes. The governing equations were first formulated by Fuller, Doyle, and Newman and published in J. Electrochemical Society in 1994. The present model solves the partial differential equations governingmore » charge transfer kinetics and charge, species, heat transports in a computationally-efficient manner using the finite volume method, with special consideration given for solving the model under conditions of applied current, voltage, power, and load resistance.« less

  16. Hole-thru-laminate mounting supports for photovoltaic modules

    DOE Patents [OSTI]

    Wexler, Jason; Botkin, Jonathan; Culligan, Matthew; Detrick, Adam

    2015-02-17

    A mounting support for a photovoltaic module is described. The mounting support includes a pedestal having a surface adaptable to receive a flat side of a photovoltaic module laminate. A hole is disposed in the pedestal, the hole adaptable to receive a bolt or a pin used to couple the pedestal to the flat side of the photovoltaic module laminate.

  17. Kinetic electron and ion instability of the lunar wake simulated at physical mass ratio

    SciTech Connect (OSTI)

    Haakonsen, Christian Bernt Hutchinson, Ian H. Zhou, Chuteng

    2015-03-15

    The solar wind wake behind the moon is studied with 1D electrostatic particle-in-cell (PIC) simulations using a physical ion to electron mass ratio (unlike prior investigations); the simulations also apply more generally to supersonic flow of dense magnetized plasma past non-magnetic objects. A hybrid electrostatic Boltzmann electron treatment is first used to investigate the ion stability in the absence of kinetic electron effects, showing that the ions are two-stream unstable for downstream wake distances (in lunar radii) greater than about three times the solar wind Mach number. Simulations with PIC electrons are then used to show that kinetic electron effects can lead to disruption of the ion beams at least three times closer to the moon than in the hybrid simulations. This disruption occurs as the result of a novel wake phenomenon: the non-linear growth of electron holes spawned from a narrow dimple in the electron velocity distribution. Most of the holes arising from the dimple are small and quickly leave the wake, approximately following the unperturbed electron phase-space trajectories, but some holes originating near the center of the wake remain and grow large enough to trigger disruption of the ion beams. Non-linear kinetic-electron effects are therefore essential to a comprehensive understanding of the 1D electrostatic stability of such wakes, and possible observational signatures in ARTEMIS data from the lunar wake are discussed.

  18. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  19. Modeling the black hole excision problem

    SciTech Connect (OSTI)

    Szilagyi, B.; Winicour, J.; Kreiss, H.-O.

    2005-05-15

    We analyze the excision strategy for simulating black holes. The problem is modeled by the propagation of quasilinear waves in a 1-dimensional spatial region with timelike outer boundary, spacelike inner boundary and a horizon in between. Proofs of well-posed evolution and boundary algorithms for a second differential order treatment of the system are given for the separate pieces underlying the finite-difference problem. These are implemented in a numerical code which gives accurate long term simulations of the quasilinear excision problem. Excitation of long wavelength exponential modes, which are latent in the problem, are suppressed using conservation laws for the discretized system. The techniques are designed to apply directly to recent codes for the Einstein equations based upon the harmonic formulation.

  20. Charged black holes in generalized teleparallel gravity

    SciTech Connect (OSTI)

    Rodrigues, M.E.; Houndjo, M.J.S.; Tossa, J.; Momeni, D.; Myrzakulov, R. E-mail: sthoundjo@yahoo.fr E-mail: d.momeni@yahoo.com

    2013-11-01

    In this paper we investigate charged static black holes in 4D for generalized teleparallel models of gravity, based on torsion as the geometric object for describing gravity according to the equivalence principle. As a motivated idea, we introduce a set of non-diagonal tetrads and derive the full system of non linear differential equations. We prove that the common Schwarzschild gauge is applicable only when we study linear f(T) case. We reobtain the Reissner-Nordstrom-de Sitter (or RN-AdS) solution for the linear case of f(T) and perform a parametric cosmological reconstruction for two nonlinear models. We also study in detail a type of the no-go theorem in the framework of this modified teleparallel gravity.

  1. Interface-induced heavy-hole/light-hole splitting of acceptors in silicon

    SciTech Connect (OSTI)

    Mol, J. A.; Salfi, J.; Simmons, M. Y.; Rogge, S.; Rahman, R.; Hsueh, Y.; Klimeck, G.; Miwa, J. A.

    2015-05-18

    The energy spectrum of spin-orbit coupled states of individual sub-surface boron acceptor dopants in silicon have been investigated using scanning tunneling spectroscopy at cryogenic temperatures. The spatially resolved tunnel spectra show two resonances, which we ascribe to the heavy- and light-hole Kramers doublets. This type of broken degeneracy has recently been argued to be advantageous for the lifetime of acceptor-based qubits [R. Ruskov and C. Tahan, Phys. Rev. B 88, 064308 (2013)]. The depth dependent energy splitting between the heavy- and light-hole Kramers doublets is consistent with tight binding calculations, and is in excess of 1?meV for all acceptors within the experimentally accessible depth range (<2?nm from the surface). These results will aid the development of tunable acceptor-based qubits in silicon with long coherence times and the possibility for electrical manipulation.

  2. thermal energy power conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility Nuclear ... Climate & Earth Systems Climate Measurement & Modeling ... Tribal Energy Program Intellectual Property Current EC ...

  3. Shallow drilling in the Salton Sea region: The thermal anomaly

    SciTech Connect (OSTI)

    Newmark, R.L.; Kasameyer, P.W.; Younker, L.W.

    1988-11-10

    During two shallow thermal drilling programs, thermal measurements were obtained in 56 shallow (76.2 m) and one intermediate (457.3 m) depth holes located both onshore and offshore along the southern margin of the Salton Sea in the Imperial Valley, California. These data complete the surficial coverage of the thermal anomaly, revealing the shape and lateral extent of the hydrothermal system. The thermal data show the region of high thermal gradients to extend only a short distance offshore to the north of the Quaternary volcanic domes which are exposed along the southern shore of the Salton Sea. The central thermal anomaly has an arcuate shape, about 4 km wide and 12 km long. Across the center of the anomaly, the transition zone between locations exhibiting high thermal gradients and those exhibiting regional thermal gradients is quite narrow. Thermal gradients rise from near regional (0.09 /sup 0/C/m) to extreme (0.83 /sup 0/C/m) in only 2.4 km. The heat flow in the central part of the anomaly is greater than 600 mW/m/sup 2/ and in the two local anomalies exceeds 1200 mW/m/sup 2/. The shape of the thermal anomaly is asymmetric with respect to the line of volcanoes previously thought to represent the center of the field, with its center line offset south of the volcanic buttes. There is no broad thermal anomaly associated with the magnetic high that extends offshore to the northeast from the volcanic domes.

  4. Microfabricated ion trap array

    DOE Patents [OSTI]

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  5. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  6. Thermal Performance Benchmarking (Presentation)

    SciTech Connect (OSTI)

    Moreno, G.

    2014-11-01

    This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

  7. Imaging Heterogeneous Ion Transfer: Lithium Ion Quantification...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantitative micro- and nano- probes were used for the in situ imaging of alkaline ion ... Implementation of technique onto a 120 nm nano-Hg electrode shows promising for battery ...

  8. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4 Average thermal performance rating of solar thermal collectors by type shipped in 2009 ... Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey." ...

  9. Analysis of Lithium-Ion Battery Degradation During Thermal Aging...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  10. Thermally Stable Electrolyte For Li-ion Cells. (Conference) ...

    Office of Scientific and Technical Information (OSTI)

    Conference held November 9-10, 2011 in Las Vegas, NV.; Related Information: Proposed for presentation at the The Knowledge Foundation's 2nd Annual International Conference held ...

  11. Sensitivity of the interpretation of the experimental ion thermal...

    Office of Scientific and Technical Information (OSTI)

    of input: International Atomic Energy Agency (IAEA) Country of Publication: United States Language: English Subject: 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; CONVECTION; ...

  12. Polyester Separators for Lithium-ion Cells: Improving Thermal...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: AC04-94AL85000 Resource Type: Journal Article Resource Relation: Journal Name: Proposed for publication in Advanced Energy Materials. Research Org: Sandia ...

  13. Evidence of ion mixing increasing the thermal boundary conductance...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Journal Name: Advanced Functional Materials; Related Information: Proposed for publication in Advanced Functional Materials . Research Org: Sandia National ...

  14. Predictive Models of Li-ion Battery Lifetime

    SciTech Connect (OSTI)

    Smith, Kandler; Wood, Eric; Santhanagopalan, Shriram; Kim, Gi-heon; Shi, Ying; Pesaran, Ahmad

    2015-06-15

    It remains an open question how best to predict real-world battery lifetime based on accelerated calendar and cycle aging data from the laboratory. Multiple degradation mechanisms due to (electro)chemical, thermal, and mechanical coupled phenomena influence Li-ion battery lifetime, each with different dependence on time, cycling and thermal environment. The standardization of life predictive models would benefit the industry by reducing test time and streamlining development of system controls.

  15. Evaluation of Cross-Hole Seismic Tomography for Imaging Low Resistance...

    Office of Scientific and Technical Information (OSTI)

    Evaluation of Cross-Hole Seismic Tomography for Imaging Low Resistance Intervals and ... Title: Evaluation of Cross-Hole Seismic Tomography for Imaging Low Resistance Intervals ...

  16. Fuel injector Holes (Fabrication of Micro-Orifices for Fuel Injectors...

    Office of Environmental Management (EM)

    injector Holes (Fabrication of Micro-Orifices for Fuel Injectors) Fuel injector Holes (Fabrication of Micro-Orifices for Fuel Injectors) 2009 DOE Hydrogen Program and Vehicle ...

  17. Rock Sampling At Seven Mile Hole Area (Larson, Et Al., 2009)...

    Open Energy Info (EERE)

    Seven Mile Hole Area (Larson, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Seven Mile Hole Area (Larson, Et...

  18. Isotopic Analysis At Seven Mile Hole Area (Larson, Et Al., 2009...

    Open Energy Info (EERE)

    Seven Mile Hole Area (Larson, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Seven Mile Hole Area (Larson, Et...

  19. Field Mapping At Seven Mile Hole Area (Larson, Et Al., 2009)...

    Open Energy Info (EERE)

    Seven Mile Hole Area (Larson, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Seven Mile Hole Area (Larson, Et...

  20. Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automo&ve Lithium---ion Ba1ery (LIB) Supply Chain and U.S. Compe&&veness Considera&ons Donald ... of mul,ple cells, controls, thermal management, and physical protec,on. 19 Regional ...

  1. CONSTRAINTS ON COMPTON-THICK WINDS FROM BLACK HOLE ACCRETION DISKS: CAN WE SEE THE INNER DISK?

    SciTech Connect (OSTI)

    Reynolds, Christopher S.

    2012-11-01

    Strong evidence is emerging that winds can be driven from the central regions of accretion disks in both active galactic nuclei and Galactic black hole binaries. Direct evidence for highly ionized, Compton-thin inner-disk winds comes from observations of blueshifted (v {approx} 0.05-0.1c) iron-K X-ray absorption lines. However, it has been suggested that the inner regions of black hole accretion disks can also drive Compton-thick winds-such winds would enshroud the inner disk, preventing us from seeing direct signatures of the accretion disk (i.e., the photospheric thermal emission, or the Doppler/gravitationally broadened iron K{alpha} line). Here, we show that, provided the source is sub-Eddington, the well-established wind-driving mechanisms fail to launch a Compton-thick wind from the inner disk. For the accelerated region of the wind to be Compton-thick, the momentum carried in the wind must exceed the available photon momentum by a factor of at least 2/{lambda}, where {lambda} is the Eddington ratio of the source, ruling out radiative acceleration unless the source is very close to the Eddington limit. Compton-thick winds also carry large mass fluxes, and a consideration of the connections between the wind and the disk shows this to be incompatible with magneto-centrifugal driving. Finally, thermal driving of the wind is ruled out on the basis of the large Compton radii that typify black hole systems. In the absence of some new acceleration mechanisms, we conclude that the inner regions of sub-Eddington accretion disks around black holes are indeed naked.

  2. Thermal Effusivity Tomography from Pulsed Thermal Imaging

    Energy Science and Technology Software Center (OSTI)

    2006-12-01

    The software program generates 3D volume distribution of thermal effusivity within a test material from one-sided pulsed thermal imaging data. Thsi is the first software capable of accurate, fast and automated thermal tomographic imaging of inhomogeneous materials to produce 3D images similar to those obtained from 3D X-ray CT (all previous thermal-imaging software can only produce 2D results). Because thermal effusivity is an intrisic material property that is related to material constituent, density, conductivity, etc.,more » quantitative imaging of effusivity allowed direct visualization of material's internal constituent/structure and damage distributions, thereby potentially leading to quantitative prediction of other material properties such as strength. I can be therefre be used for 3D imaging of material structure in fundamental material studies, nondestructive characterization of defects/flaws in structural engineering components, health monitoring of material damage and degradation during service, and medical imaging and diagnostics. This technology is one-sided, non contact and sensitive to material's thermal property and discontinuity. One major advantage of this tomographic technology over x-ray CT and ultrasounds is its natural efficiency for 3D imaging of the volume under a large surface area. This software is implemented with a method for thermal computed tomography of thermal effusivity from one-sided pulsed thermal imaging (or thermography) data. The method is based on several solutions of the governing heat transfer equation under pulsed thermography test condition. In particular, it consists of three components. 1) It utilized the thermal effusivity as the imaging parameter to construct the 3D image. 2) It established a relationship between the space (depth) and the time, because thermography data are in the time domain. 3) It incorporated a deconvolution algorithm to solve the depth porfile of the material thermal effusivity from the measured

  3. Varying fine structure 'constant' and charged black holes

    SciTech Connect (OSTI)

    Bekenstein, Jacob D.; Schiffer, Marcelo

    2009-12-15

    Speculation that the fine-structure constant {alpha} varies in spacetime has a long history. We derive, in 4-D general relativity and in isotropic coordinates, the solution for a charged spherical black hole according to the framework for dynamical {alpha} J. D. Bekenstein, Phys. Rev. D 25, 1527 (1982).. This solution coincides with a previously known one-parameter extension of the dilatonic black hole family. Among the notable properties of varying-{alpha} charged black holes are adherence to a 'no hair' principle, the absence of the inner (Cauchy) horizon of the Reissner-Nordstroem black holes, the nonexistence of precisely extremal black holes, and the appearance of naked singularities in an analytic extension of the relevant metric. The exteriors of almost extremal electrically (magnetically) charged black holes have simple structures which makes their influence on applied magnetic (electric) fields transparent. We rederive the thermodynamic functions of the modified black holes; the otherwise difficult calculation of the electric potential is done by a shortcut. We confirm that variability of {alpha} in the wake of expansion of the universe does not threaten the generalized second law.

  4. Charge exchange molecular ion source

    DOE Patents [OSTI]

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  5. Thermally conductive cementitious grout for geothermal heat pump systems

    DOE Patents [OSTI]

    Allan, Marita

    2001-01-01

    A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

  6. Thermal Effusivity Tomography from Pulsed Thermal Imaging

    Energy Science and Technology Software Center (OSTI)

    2008-11-05

    The software program generates 3D volume distribution of thermal effusivity within a test material from one—sided pulsed thermal imaging data. Thsi is the first software capable of accurate, fast and automated thermal tomographic imaging of inhomogeneoirs materials to produce 3D images similar to those obtained from 3D X—ray CT (all previous thepnal—imaging software can only produce 20 results) . Because thermal effusivity is an Intrisic material property that is related to material constituent, density, conductivity,more » etc., quantitative imaging of eftusivity allowed direct visualization of material’s internal constituent/structure and damage distributions, thereby potentially leading to quantitative prediction of other material properties such as strength. I can be therefre be used for 3D imaging of material structure in fundamental material studies, nondestructive characterization of defects/flaws in structural engineering components, health monitoring of material damage and degradation during service, and medical imaging and diagnostics. This technology is one—sided, non contact and sensitive to material’s thermal property and discontinuity. One major advantage of this tomographic technology over x-ray CT and ultrasounds is its natural efficiency for 3D imaging of the volume under a large surface area. This software is implemented with a method for thermal computed tomography of thermal effusivity from one—sided pulsed thermal imaging (or thermography) data. The method is based on several solutions of the governing heat transfer equation under pulsed thermography test condition. In particular, it consists of three components. 1) It utilized the thermal effusivity as the imaging parameter to construct the 3D image. 2) It established a relationship between the space (depth) and the time, because thermography data are in the time domain. 3) It incorporated a deconvolution algorithm to solve the depth porfile of the material thermal effusivity from the

  7. HEAVY ION LINEAR ACCELERATOR

    DOE Patents [OSTI]

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  8. Ion photon emission microscope

    DOE Patents [OSTI]

    Doyle, Barney L.

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  9. DOE - NNSA/NFO -- News & Views Big Hole Drilling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underground Testing Perfected Big-Hole Drilling Technology Photo - Rowan Drilling Company's On July 26, 1957, a safety experiment called "Pascal A" was detonated in an unstemmed hole. Although the test was not spectacular, it does hold the distinction of being the first nuclear test in the world to be detonated underground. From 1957 to 1992, 533 contained tests and nine unstemmed tests were conducted at the Nevada Test Site (NTS). If the depths of all the 36-inch diameter holes

  10. Hole Localization in Molecular Crystals from Hybrid Density Functional Theory

    SciTech Connect (OSTI)

    Sai, Na; Barbara, Paul F.; Leung, Kevin

    2011-06-02

    We use first-principles computational methods to examine hole trapping in organic molecular crystals. We present a computational scheme based on the tuning of the fraction of exact exchange in hybrid density functional theory to eliminate the many-electron self-interaction error. With small organic molecules, we show that this scheme gives accurate descriptions of ionization and dimer dissociation. We demonstrate that the excess hole in perfect molecular crystals forms self-trapped molecular polarons. The predicted absolute ionization potentials of both localized and delocalized holes are consistent with experimental values.

  11. TEST-HOLE CONSTRUCTION FOR A NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Ohlinger, L.A.; Seitz, F.; Young, G.J.

    1959-02-17

    Test-hole construction is described for a reactor which provides safe and ready access to the neutron flux region for specimen materials which are to be irradiated therein. An elongated tubular thimble adapted to be inserted in the access hole through the wall of the reactor is constructed of aluminum and is provided with a plurality of holes parallel to the axis of the thimble for conveying the test specimens into position for irradiation, and a conduit for the circulation of coolant. A laminated shield formed of alternate layers of steel and pressed wood fiber is disposed lengthwise of the thimble near the outer end thereof.

  12. Back reaction on a Reissner-Nordstro''m black hole

    SciTech Connect (OSTI)

    Wang, Bobo; Huang, Chao-guang

    2001-06-15

    The perturbed (''dressed'') metric of the conformally invariant scalar field in a Reissner-Nordstroem (RN) black hole is given by solving the semiclassical Einstein and Maxwell equations according to York's back-reaction approach. Some properties of the ''dressed'' black hole are obtained, such as its ''dressed'' mass, the location of the event horizon, and its surface gravity. It will also be found that the hypersurfaces of r{sub +} and r{sub {minus}} which are the event and Cauchy horizons in the ''naked'' RN black hole, become spacelike in the perturbed geometry.

  13. Modified clock inequalities and modified black hole lifetime

    SciTech Connect (OSTI)

    Yang Rongjia; Zhang Shuangnan

    2009-06-15

    Based on a generalized uncertainty principle, Salecker-Wigner inequalities are modified. When applied to black holes, they give a modified black hole lifetime: T{sub MB}{approx}(M{sup 3}/m{sub p}{sup 3})(1-m{sub p}{sup 2}/M{sup 2})t{sub p}, and the number of bits required to specify the information content of the black hole as the event horizon area in Planck units N{approx}(M{sup 2}/m{sub p}{sup 2})(1-m{sub p}{sup 2}/M{sup 2})

  14. APPARATUS FOR HEATING IONS

    DOE Patents [OSTI]

    Chambers, E.S.; Garren, A.A.; Kippenhan, D.O.; Lamb, W.A.S.; Riddell, R.J. Jr.

    1960-01-01

    The heating of ions in a magnetically confined plasma is accomplished by the application of an azimuthal radiofrequency electric field to the plasma at ion cyclotron resonance. The principal novelty resides in the provision of an output tank coil of a radiofrequency driver to induce the radiofrequency field in the plasma and of electron current bridge means at the ends of the plasma for suppressing radial polarization whereby the radiofrequency energy is transferred to the ions with high efficiency.

  15. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, I.G.; Galvin, J.

    1987-12-22

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.

  16. Collection of ions

    DOE Patents [OSTI]

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Koster, James E.

    2001-01-01

    The apparatus and method provide an improved technique for detecting ions as the area from which ions are attracted to a detector is increased, consequently increasing the number of ions detected. This is achieved by providing the outer electrodes of the detector connected to the electrical potential, together with alternate intermediate electrodes. The other intermediate electrodes and preferably the housing are grounded. The technique renders such detection techniques more sensitive and gives them a lower threshold at which they can function.

  17. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, Ian G.; Galvin, James

    1987-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

  18. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  19. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  20. Are black holes in alternative theories serious astrophysical candidates? The case for Einstein-dilaton-Gauss-Bonnet black holes

    SciTech Connect (OSTI)

    Pani, Paolo; Cardoso, Vitor

    2009-04-15

    It is generally accepted that Einstein's theory will get some as yet unknown corrections, possibly large in the strong-field regime. An ideal place to look for these modifications is in the vicinities of compact objects such as black holes. Here, we study dilatonic black holes, which arise in the framework of Gauss-Bonnet couplings and one-loop corrected four-dimensional effective theory of heterotic superstrings at low energies. These are interesting objects as a prototype for alternative, yet well-behaved gravity theories: they evade the 'no-hair' theorem of general relativity but were proven to be stable against radial perturbations. We investigate the viability of these black holes as astrophysical objects and try to provide some means to distinguish them from black holes in general relativity. We start by extending previous works and establishing the stability of these black holes against axial perturbations. We then look for solutions of the field equations describing slowly rotating black holes and study geodesic motion around this geometry. Depending on the values of mass, dilaton charge, and angular momentum of the solution, one can have differences in the innermost-stable-circular-orbit location and orbital frequency, relative to black holes in general relativity. In the most favorable cases, the difference amounts to a few percent. Given the current state-of-the-art, we discuss the difficulty of distinguishing the correct theory of gravity from electromagnetic observations or even with gravitational-wave detectors.

  1. Thermal Shock-resistant Cement

    SciTech Connect (OSTI)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved

  2. BERNAS ION SOURCE DISCHARGE SIMULATION

    SciTech Connect (OSTI)

    RUDSKOY,I.; KULEVOY, T.V.; PETRENKO, S.V.; KUIBEDA, R.P.; SELEZNEV, D.N.; PERSHIN, V.I.; HERSHCOVITCH, A.; JOHNSON, B.M.; GUSHENETS, V.I.; OKS, E.M.; POOLE, H.J.

    2007-08-26

    The joint research and development program is continued to develop steady-state ion source of decaborane beam for ion implantation industry. Bemas ion source is the wide used ion source for ion implantation industry. The new simulation code was developed for the Bemas ion source discharge simulation. We present first results of the simulation for several materials interested in semiconductors. As well the comparison of results obtained with experimental data obtained at the ITEP ion source test-bench is presented.

  3. Correlation ion mobility spectroscopy

    DOE Patents [OSTI]

    Pfeifer, Kent B.; Rohde, Steven B.

    2008-08-26

    Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.

  4. Fast radial flows in transition disk holes

    SciTech Connect (OSTI)

    Rosenfeld, Katherine A.; Andrews, Sean M.; Chiang, Eugene

    2014-02-20

    Protoplanetary 'transition' disks have large, mass-depleted central cavities, yet also deliver gas onto their host stars at rates comparable to disks without holes. The paradox of simultaneous transparency and accretion can be explained if gas flows inward at much higher radial speeds inside the cavity than outside the cavity, since surface density (and by extension optical depth) varies inversely with inflow velocity at fixed accretion rate. Radial speeds within the cavity might even have to approach free-fall values to explain the huge surface density contrasts inferred for transition disks. We identify observational diagnostics of fast radial inflow in channel maps made in optically thick spectral lines. Signatures include (1) twisted isophotes in maps made at low systemic velocities and (2) rotation of structures observed between maps made in high-velocity line wings. As a test case, we apply our new diagnostic tools to archival Atacama Large Millimeter Array data on the transition disk HD 142527 and uncover evidence for free-fall radial velocities inside its cavity. Although the observed kinematics are also consistent with a disk warp, the radial inflow scenario is preferred because it predicts low surface densities that appear consistent with recent observations of optically thin CO isotopologues in this disk. How material in the disk cavity sheds its angular momentum wholesale to fall freely onto the star is an unsolved problem; gravitational torques exerted by giant planets or brown dwarfs are briefly discussed as a candidate mechanism.

  5. Thermodynamics of Sultana-Dyer black hole

    SciTech Connect (OSTI)

    Majhi, Bibhas Ranjan

    2014-05-01

    The thermodynamical entities on the dynamical horizon are not naturally defined like the usual static cases. Here I find the temperature, Smarr formula and the first law of thermodynamics for the Sultana-Dyer metric which is related to the Schwarzschild spacetime by a time dependent conformal factor. To find the temperature (T), the chiral anomaly expressions for the two dimensional spacetime are used. This shows an application of the anomaly method to study Hawking effect for a dynamical situation. Moreover, the analysis singles out one expression for temperature among two existing expressions in the literature. Interestingly, the present form satisfies the first law of thermodynamics. Also, it relates the Misner-Sharp energy (Ē) and the horizon entropy ( S-bar ) by an algebraic expression Ē = 2 S-bar T which is the general form of the Smarr formula. This fact is similar to the usual static black hole cases in Einstein's gravity where the energy is identified as the Komar conserved quantity.

  6. Bubbling supertubes and foaming black holes

    SciTech Connect (OSTI)

    Bena, Iosif; Warner, Nicholas P.

    2006-09-15

    We construct smooth BPS three-charge geometries that resolve the zero-entropy singularity of the U(1)xU(1) invariant black ring. This singularity is resolved by a geometric transition that results in geometries without any branes sources or singularities but with nontrivial topology. These geometries are both ground states of the black ring, and nontrivial microstates of the D1-D5-P system. We also find the form of the geometries that result from the geometric transition of N zero-entropy black rings, and argue that, in general, such geometries give a very large number of smooth bound-state three-charge solutions, parametrized by 6N functions. The generic microstate solution is specified by a four-dimensional hyper-Kaehler geometry of a certain signature, and contains a 'foam' of nontrivial two-spheres. We conjecture that these geometries will account for a significant part of the entropy of the D1-D5-P black hole, and that Mathur's conjecture might reduce to counting certain hyper-Kaehler manifolds.

  7. New insights into the decay of ion waves to turbulence, ion heating, and soliton generation

    SciTech Connect (OSTI)

    Chapman, T. Banks, J. W.; Berger, R. L.; Cohen, B. I.; Williams, E. A.; Brunner, S.

    2014-04-15

    The decay of a single-frequency, propagating ion acoustic wave (IAW) via two-ion wave decay to a continuum of IAW modes is found to result in a highly turbulent plasma, ion soliton production, and rapid ion heating. Instability growth rates, thresholds, and sensitivities to plasma conditions are studied via fully kinetic Vlasov simulations. The decay rate of IAWs is found to scale linearly with the fundamental IAW potential amplitude ϕ{sub 1} for ZT{sub e}/T{sub i}≲20, beyond which the instability is shown to scale with a higher power of ϕ{sub 1}, where Z is the ion charge number and T{sub e} (T{sub i}) is the electron (ion) thermal temperature. The threshold for instability is found to be smaller by an order of magnitude than linear theory estimates. Achieving a better understanding of the saturation of stimulated Brillouin scatter levels observed in laser-plasma interaction experiments is part of the motivation for this study.

  8. Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage

    SciTech Connect (OSTI)

    Cheaito, Ramez; Gorham, Caroline S.; Misra, Amit; Hattar, Khalid; Hopkins, Patrick E.

    2015-05-01

    The progressive build up of displacement damage and fission products inside different systems and components of a nuclear reactor can lead to significant defect formation, degradation, and damage of the constituent materials. This structural modification can highly influence the thermal transport mechanisms and various mechanical properties of solids. In this paper we demonstrate the use of time-domain thermoreflectance (TDTR), a non-destructive method capable of measuring the thermal transport in material systems from nano to bulk scales, to study the effect of radiation damage and the subsequent changes in the thermal properties of materials. We use TDTR to show that displacement damage from ion irradiation can significantly reduce the thermal conductivity of Optimized ZIRLO, a material used as fuel cladding in several current nuclear reactors. We find that the thermal conductivity of copper-niobium nanostructured multilayers does not change with helium ion irradiation doses of up to 1015 cm-2 and ion energy of 200 keV suggesting that these structures can be used and radiation tolerant materials in nuclear reactors. We compare the effect of ion doses and ion beam energies on the measured thermal conductivity of bulk silicon. Results demonstrate that TDTR thermal measurements can be used to quantify depth dependent damage.

  9. Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheaito, Ramez; Gorham, Caroline S.; Carnegie Mellon Univ., Pittsburgh, PA; Misra, Amit; Hattar, Khalid; Hopkins, Patrick E.

    2015-05-01

    The progressive build up of displacement damage and fission products inside different systems and components of a nuclear reactor can lead to significant defect formation, degradation, and damage of the constituent materials. This structural modification can highly influence the thermal transport mechanisms and various mechanical properties of solids. In this paper we demonstrate the use of time-domain thermoreflectance (TDTR), a non-destructive method capable of measuring the thermal transport in material systems from nano to bulk scales, to study the effect of radiation damage and the subsequent changes in the thermal properties of materials. We use TDTR to show that displacementmore » damage from ion irradiation can significantly reduce the thermal conductivity of Optimized ZIRLO, a material used as fuel cladding in several current nuclear reactors. We find that the thermal conductivity of copper-niobium nanostructured multilayers does not change with helium ion irradiation doses of up to 1015 cm-2 and ion energy of 200 keV suggesting that these structures can be used and radiation tolerant materials in nuclear reactors. We compare the effect of ion doses and ion beam energies on the measured thermal conductivity of bulk silicon. Results demonstrate that TDTR thermal measurements can be used to quantify depth dependent damage.« less

  10. Slant-hole collimator, dual mode sterotactic localization method

    DOE Patents [OSTI]

    Weisenberger, Andrew G.

    2002-01-01

    The use of a slant-hole collimator in the gamma camera of dual mode stereotactic localization apparatus allows the acquisition of a stereo pair of scintimammographic images without repositioning of the gamma camera between image acquisitions.

  11. Generic features of Einstein-Aether black holes

    SciTech Connect (OSTI)

    Tamaki, Takashi; Miyamoto, Umpei

    2008-01-15

    We reconsider spherically symmetric black hole solutions in Einstein-Aether theory with the condition that this theory has identical parametrized post-Newtonian parameters as those for general relativity, which is the main difference from the previous research. In contrast with previous study, we allow superluminal propagation of a spin-0 Aether-gravity wave mode. As a result, we obtain black holes having a spin-0 'horizon' inside an event horizon. We allow a singularity at a spin-0 horizon since it is concealed by the event horizon. If we allow such a configuration, the kinetic term of the Aether field can be large enough for black holes to be significantly different from Schwarzschild black holes with respect to Arnowitt-Deser-Misner mass, innermost stable circular orbit, Hawking temperature, and so on. We also discuss whether or not the above features can be seen in more generic vector-tensor theories.

  12. Slim Holes At Steamboat Springs Area (Warpinski, Et Al., 2002...

    Open Energy Info (EERE)

    slim hole 12-33, was drilled to a total depth of 297 m during April 2001. Continuous core was taken from 152 m to total depth. Numerous open fractures were also observed in...

  13. Core Holes At Valles Caldera - Sulphur Springs Geothermal Area...

    Open Energy Info (EERE)

    Dennis L. Nielson, Pisto Larry, C.W. Criswell, R. Gribble, K. Meeker, J.A. Musgrave, T. Smith, D. Wilson (1989) Scientific Core Hole Valles Caldera No. 2B (VC-2B), New Mexico:...

  14. Black hole evaporation in a noncommutative charged Vaidya model

    SciTech Connect (OSTI)

    Sharif, M. Javed, W.

    2012-06-15

    We study the black hole evaporation and Hawking radiation for a noncommutative charged Vaidya black hole. For this purpose, we determine a spherically symmetric charged Vaidya model and then formulate a noncommutative Reissner-Nordstroem-like solution of this model, which leads to an exact (t - r)-dependent metric. The behavior of the temporal component of this metric and the corresponding Hawking temperature are investigated. The results are shown in the form of graphs. Further, we examine the tunneling process of charged massive particles through the quantum horizon. We find that the tunneling amplitude is modified due to noncommutativity. Also, it turns out that the black hole evaporates completely in the limits of large time and horizon radius. The effect of charge is to reduce the temperature from a maximum value to zero. We note that the final stage of black hole evaporation is a naked singularity.

  15. Identification of microscopic hole-trapping mechanisms in nitride semiconductors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    John L. Lyons; Krishnaswamy, Karthik; Luke Gordon; Van de Walle, Chris G.; Anderson, Janotti

    2015-12-17

    Hole trapping has been observed in nitride heterostructure devices, where the Fermi level is in the vicinity of the valence-band maximum. Using hybrid density functional calculations, we examine microscopic mechanisms for hole trapping in GaN and AlN. In a defect-free material, hole trapping does not spontaneously occur, but trapping can occur in the vicinity of impurities, such as C-a common unintentional impurity in nitrides. As a result, using Schrödinger-Poisson simulations, we assess the effects of C-derived hole traps on N-face high-electron mobility transistors, which we find to be more detrimental than the previously proposed interface traps.

  16. Core Lithology State of Hawaii Scientific Observation Hole 4...

    Open Energy Info (EERE)

    Abstract Summary lithological log for SOH-4 test hole Authors Frank A. Trusdell, Elizabeth A. Novak and Rene' S. Evans Published U.S. Dept. of the Interior, U.S. Geological...

  17. Temperatures, heat flow, and water chemistry from drill holes...

    Open Energy Info (EERE)

    Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...

  18. Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion...

    Open Energy Info (EERE)

    report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report Abstract The Raft...

  19. Out of the white hole: a holographic origin for the Big Bang

    SciTech Connect (OSTI)

    Pourhasan, Razieh; Afshordi, Niayesh; Mann, Robert B. E-mail: nafshordi@pitp.ca

    2014-04-01

    While most of the singularities of General Relativity are expected to be safely hidden behind event horizons by the cosmic censorship conjecture, we happen to live in the causal future of the classical Big Bang singularity, whose resolution constitutes the active field of early universe cosmology. Could the Big Bang be also hidden behind a causal horizon, making us immune to the decadent impacts of a naked singularity? We describe a braneworld description of cosmology with both 4d induced and 5D bulk gravity (otherwise known as Dvali-Gabadadze-Porati, or DGP model), which exhibits this feature: the universe emerges as a spherical 3-brane out of the formation of a 5D Schwarzschild black hole. In particular, we show that a pressure singularity of the holographic fluid, discovered earlier, happens inside the white hole horizon, and thus need not be real or imply any pathology. Furthermore, we outline a novel mechanism through which any thermal atmosphere for the brane, with comoving temperature of ?20% of the 5D Planck mass can induce scale-invariant primordial curvature perturbations on the brane, circumventing the need for a separate process (such as cosmic inflation) to explain current cosmological observations. Finally, we note that 5D space-time is asymptotically flat, and thus potentially allows an S-matrix or (after minor modifications) an AdS/CFT description of the cosmological Big Bang.

  20. Milagro limits and HAWC sensitivity for the rate-density of evaporating primordial black holes

    SciTech Connect (OSTI)

    Abdo, A. A.; Abeysekara, A. U.; Alfaro, R.; Allen, B. T.; Alvarez, C.; Alvarez, J. D.; Arceo, R.; Arteaga-Velazquez, J. C.; Aune, T.; H. A. Ayala Solares; Barber, A. S.; Baughman, B. M.; Bautista-Elivar, N.; Gonzalez, J. Becerra; Belmont, E.; BenZvi, S. Y.; Berley, D.; Bonilla Rosales, M.; Braun, J.; Caballero-Lopez, R. A.; Caballero-Mora, K. S.; Carraminana, A.; Castillo, M.; Christopher, G. E.; Cotti, U.; Cotzomi, J.; de la Fuente, E.; De León, C.; DeYoung, T.; Diaz Hernandez, R.; Diaz-Cruz, L.; Díaz-Vélez, J. C.; Dingus, B. L.; DuVernois, M. A.; Ellsworth, R. W.; Fiorino, D. W.; Fraija, N.; Galindo, A.; Garfias, F.; González, M. M.; Goodman, J. A.; Grabski, V.; Gussert, M.; Hampel-Arias, Z.; Harding, J. P.; Hays, E.; Hoffman, C. M.; Hui, C. M.; Hüntemeyer, P.; Imran, A.; Iriarte, A.; Karn, P.; Kieda, D.; Kolterman, B. E.; Kunde, G. J.; Lara, A.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; Vargas, H. Leon; Linares, E. C.; Linnemann, J. T.; Longo, M.; Luna-GarcIa, R.; MacGibbon, J. H.; Marinelli, A.; Marinelli, S. S.; Martinez, H.; Martinez, O.; Martínez-Castro, J.; J. A.J. Matthews; McEnery, J.; Mendoza Torres, E.; Mincer, A. I.; Miranda-Romagnoli, P.; Moreno, E.; Morgan, T.; Mostafa, M.; Nellen, L.; Nemethy, P.; Newbold, M.; Noriega-Papaqui, R.; Oceguera-Becerra, T.; Patricelli, B.; Pelayo, R.; Perez-Perez, E. G.; Pretz, J.; Riviere, C.; Rosa-Gonzalez, D.; Ruiz-Velasco, E.; Ryan, J.; Salazar, H.; Salesa, F.; Sandoval, A.; Saz Parkinson, P. M.; Schneider, M.; Silich, S.; Sinnis, G.; Smith, A. J.; Stump, D.; Sparks Woodle, K.; Springer, R. W.; Taboada, I.; Toale, P. A.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Vasileiou, V.; Villasenor, L.; Weisgarber, T.; Westerhoff, S.; Williams, D. A.; Wisher, I. G.; Wood, J.; Yodh, G. B.; Younk, P. W.; Zaborov, D.; Zepeda, A.; Zhou, H.

    2015-04-01

    Primordial Black Holes (PBHs) are gravitationally collapsed objects that may have been created by density fluctuations in the early universe and could have arbitrarily small masses down to the Planck scale. Hawking showed that due to quantum effects, a black hole has a temperature inversely proportional to its mass and will emit all species of fundamental particles thermally. PBHs with initial masses of ~ 5.0 × 10¹⁴ g should be expiring in the present epoch with bursts of high-energy particles, including gamma radiation in the GeV – TeV energy range. The Milagro high energy observatory, which operated from 2000 to 2008, is sensitive to the high end of the PBH evaporation gamma-ray spectrum. Due to its large field-of-view, more than 90% duty cycle and sensitivity up to 100 TeV gamma rays, the Milagro observatory is well suited to perform a search for PBH bursts. Based on a search on the Milagro data, we report new PBH burst rate density upper limits over a range of PBH observation times. In addition, we report the sensitivity of the Milagro successor, the High Altitude Water Cherenkov (HAWC) observatory, to PBH evaporation events.

  1. Milagro limits and HAWC sensitivity for the rate-density of evaporating primordial black holes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abdo, A. A.; Abeysekara, A. U.; Alfaro, R.; Allen, B. T.; Alvarez, C.; Alvarez, J. D.; Arceo, R.; Arteaga-Velazquez, J. C.; Aune, T.; H. A. Ayala Solares; et al

    2015-04-01

    Primordial Black Holes (PBHs) are gravitationally collapsed objects that may have been created by density fluctuations in the early universe and could have arbitrarily small masses down to the Planck scale. Hawking showed that due to quantum effects, a black hole has a temperature inversely proportional to its mass and will emit all species of fundamental particles thermally. PBHs with initial masses of ~ 5.0 × 10¹⁴ g should be expiring in the present epoch with bursts of high-energy particles, including gamma radiation in the GeV – TeV energy range. The Milagro high energy observatory, which operated from 2000 tomore » 2008, is sensitive to the high end of the PBH evaporation gamma-ray spectrum. Due to its large field-of-view, more than 90% duty cycle and sensitivity up to 100 TeV gamma rays, the Milagro observatory is well suited to perform a search for PBH bursts. Based on a search on the Milagro data, we report new PBH burst rate density upper limits over a range of PBH observation times. In addition, we report the sensitivity of the Milagro successor, the High Altitude Water Cherenkov (HAWC) observatory, to PBH evaporation events.« less

  2. Solid state thermal rectifier

    DOE Patents [OSTI]

    None

    2016-07-05

    Thermal rectifiers using linear nanostructures as core thermal conductors have been fabricated. A high mass density material is added preferentially to one end of the nanostructures to produce an axially non-uniform mass distribution. The resulting nanoscale system conducts heat asymmetrically with greatest heat flow in the direction of decreasing mass density. Thermal rectification has been demonstrated for linear nanostructures that are electrical insulators, such as boron nitride nanotubes, and for nanostructures that are conductive, such as carbon nanotubes.

  3. Automotive Li-ion Battery Cooling Requirements | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Presents thermal management of lithium-ion battery packs for electric vehicles cunningham.pdf (691.5 KB) More Documents & Publications Overview and Progress of the Battery Testing, Analysis, and Design Activity Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Battery Testing, Design and Analysis Activity Overview of Battery R&D Activities

  4. Ultrafast Core-Hole Induced Dynamics in Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Core-Hole Induced Dynamics in Water Print A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core hole in a water molecule sets off motions that can affect bonding configurations, which in turn affect subsequent chemical-reaction pathways. However, it is a fundamental

  5. Two Electron Holes in Hematite Facilitate Water Splitting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Electron Holes in Hematite Facilitate Water Splitting Two Electron Holes in Hematite Facilitate Water Splitting Print Wednesday, 26 September 2012 00:00 Hydrogen is an attractive form of fuel because its only by-product is nonpolluting water vapor. The problem, however, is that the production of hydrogen-via the process of water splitting-currently requires the burning of traditional fossil fuels. Therefore, water splitting by photoelectrochemical cells (PECs) fueled by solar power has long

  6. Ultrafast Core-Hole Induced Dynamics in Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Core-Hole Induced Dynamics in Water Print A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core hole in a water molecule sets off motions that can affect bonding configurations, which in turn affect subsequent chemical-reaction pathways. However, it is a fundamental

  7. Ultrafast Core-Hole Induced Dynamics in Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Core-Hole Induced Dynamics in Water Print A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core hole in a water molecule sets off motions that can affect bonding configurations, which in turn affect subsequent chemical-reaction pathways. However, it is a fundamental

  8. Ultrafast Core-Hole Induced Dynamics in Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Core-Hole Induced Dynamics in Water Print A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core hole in a water molecule sets off motions that can affect bonding configurations, which in turn affect subsequent chemical-reaction pathways. However, it is a fundamental

  9. Ultrafast Core-Hole Induced Dynamics in Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Core-Hole Induced Dynamics in Water Print A thorough understanding of the chemical processes that are initiated when radiation interacts with aqueous systems is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core hole in a water molecule sets off motions that can affect bonding configurations, which in turn affect subsequent chemical-reaction pathways. However, it is a fundamental

  10. Black holes in supergravity: the non-BPS branch

    SciTech Connect (OSTI)

    Gimon, Eric; Gimon, Eric G.; Larsen, Finn; Simon, Joan

    2007-10-25

    We construct extremal, spherically symmetric black hole solutions to 4D supergravity with charge assignments that preclude BPS-saturation. In particular, we determine the ground state energy as a function of charges and moduli. We find that the mass of the non-BPS black hole remains that of a marginal bound state of four basic constituents throughout the entire moduli space and that there is always a non-zero gap above the BPS bound.

  11. Spectroscopic measurement of ion temperature and ion velocity distributions in the flux-coil generated FRC

    SciTech Connect (OSTI)

    Gupta, D.; Gota, H.; Hayashi, R.; Kiyashko, V.; Morehouse, M.; Primavera, S.; Bolte, N.; Marsili, P.; Roche, T.; Wessel, F.

    2010-10-15

    One aim of the flux-coil generated field reversed configuration at Tri Alpha Energy (TAE) is to establish the plasma where the ion rotational energy is greater than the ion thermal energy. To verify this, an optical diagnostic was developed to simultaneously measure the Doppler velocity-shift and line-broadening using a 0.75 m, 1800 groves/mm, spectrometer. The output spectrum is magnified and imaged onto a 16-channel photomultiplier tube (PMT) array. The individual PMT outputs are coupled to high-gain, high-frequency, transimpedance amplifiers, providing fast-time response. The Doppler spectroscopy measurements, along with a survey spectrometer and photodiode-light detector, form a suite of diagnostics that provide insights into the time evolution of the plasma-ion distribution and current when accelerated by an azimuthal-electric field.

  12. Thermal history of Bakken shale in Williston basin

    SciTech Connect (OSTI)

    Gosnold, W.D. Jr.; Lefever, R.D.; Crashell, J.J. )

    1989-12-01

    Stratigraphic and thermal conductivity data were combined to analyze the thermostratigraphy of the Williston basin. The present thermostratigraphy is characterized by geothermal gradients of the order of 60 mK/m in the Cenozoic and Mesozoic units, and 30 mK/m in the Paleozoic units. The differences in geothermal gradients are due to differences in thermal conductivities between the shale-dominated Mesozoic and Cenozoic units and the carbonate-dominated Paleozoic units. Subsidence and compaction rates were calculated for the basin and were used to determine models for time vs. depth and time vs. thermal conductivity relationships for the basin. The time/depth and time/conductivity relationships include factors accounting for thermal conductivity changes due to compaction, cementation, and temperature. The thermal history of the Bakken shale, a primary oil source rock in the Williston basin, was determined using four different models, and values for Lopatin's time-temperature index (TTI) were calculated for each model. The first model uses a geothermal gradient calculated from bottom-hole temperature data, the second uses present-day thermostratigraphy, the third uses the thermostratigraphic relationship determined in this analysis, and the fourth modifies the third by including assumed variations in continental heat flow. The thermal histories and the calculated TTI values differ markedly among the models with TTI values differing by a factor of about two between some models.

  13. Sandia Thermal Program

    Energy Science and Technology Software Center (OSTI)

    2005-11-23

    Thermal analysis in 1-D planar, cylindrical and spherical geometries using control volume finite element spatial discretization with 1st and 2nd order implicit time integrators.

  14. Scattering Solar Thermal Concentrators

    Office of Environmental Management (EM)

    sunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving large mirror surfaces...

  15. Battery Thermal Characterization

    SciTech Connect (OSTI)

    Saxon, Aron; Powell, Mitchell; Shi, Ying

    2015-06-09

    This presentation provides an update of NREL's battery thermal characterization efforts for the 2015 U.S. Department of Energy Annual Merit Reviews.

  16. Ambient temperature thermal battery

    SciTech Connect (OSTI)

    Fletcher, A. N.; Bliss, D. E.; McManis III

    1985-11-26

    An ambient temperature thermal battery having two relatively high temperature melting electrolytes which form a low melting temperature electrolyte upon activation.

  17. Measuring the seeds of ion outflow: auroral sounding rocket observations of low-altitude ion heating and circulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fernandes, P. A.; Lynch, K. A.; Zettergren, M.; Hampton, D. L.; Bekkeng, T. A.; Cohen, I. J.; Conde, M.; Fisher, L. E.; Horak, P.; Lessard, M. R.; et al

    2016-01-25

    Here, we present an analysis of in situ measurements from the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) nightside auroral sounding rocket with comparisons to a multifluid ionospheric model. MICA made observations at altitudes below 325 km of the thermal ion kinetic particle distributions that are the origins of ion outflow. Late flight, in the vicinity of an auroral arc, we observe frictional processes controlling the ion temperature. Upflow of these cold ions is attributed to either the ambipolar field resulting from the heated electrons or possibly to ion-neutral collisions. We measure E→xB→ convection away from the arc (poleward) andmore » downflows of hundreds of m s-1 poleward of this arc, indicating small-scale low-altitude plasma circulation. In the early flight we observe DC electromagnetic Poynting flux and associated ELF wave activity influencing the thermal ion temperature in regions of Alfvénic aurora. We observe enhanced, anisotropic ion temperatures which we conjecture are caused by transverse heating by wave-particle interactions (WPI) even at these low altitudes. Throughout this region we observe several hundred m s-1 upflow of the bulk thermal ions colocated with WPI; however, the mirror force is negligible at these low energies; thus, the upflow is attributed to ambipolar fields (or possibly neutral upwelling drivers). Moreover, the low-altitude MICA observations serve to inform future ionospheric modeling and simulations of (a) the need to consider the effects of heating by WPI at altitudes lower than previously considered viable and (b) the occurrence of structured and localized upflows/downflows below where higher-altitude heating rocesses are expected.« less

  18. Microfabricated cylindrical ion trap

    DOE Patents [OSTI]

    Blain, Matthew G.

    2005-03-22

    A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.

  19. Selective ion source

    DOE Patents [OSTI]

    Leung, K.N.

    1996-05-14

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P{sup +} from PH{sub 3}. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P{sup +}, As{sup +}, and B{sup +} without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices. 6 figs.

  20. Selective ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    1996-01-01

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P.sup.+ from PH.sub.3. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P.sup.+, AS.sup.+, and B.sup.+ without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices.

  1. Ion-beam technologies

    SciTech Connect (OSTI)

    Fenske, G.R.

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  2. Development of ion sources for ion projection lithography

    SciTech Connect (OSTI)

    Lee, Y.; Gough, R.A.; Kunkel, W.B.; Leung, K.N.; Perkins, L.T.

    1996-05-01

    Multicusp ion sources are capable of generating ion beams with low axial energy spread as required by the Ion Projection Lithography (IPL). Longitudinal ion energy spread has been studied in two different types of plasma discharge: the filament discharge ion source characterized by its low axial energy spread, and the RF-driven ion source characterized by its long source lifetime. For He{sup +} ions, longitudinal ion energy spreads of 1-2 eV were measured for a filament discharge multicusp ion source which is within the IPL device requirements. Ion beams with larger axial energy spread were observed in the RF-driven source. A double-chamber ion source has been designed which combines the advantages of low axial energy spread of the filament discharge ion source with the long lifetime of the RF-driven source. The energy spread of the double chamber source is lower than that of the RF-driven source.

  3. Ion mobility sensor system

    DOE Patents [OSTI]

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  4. ION PULSE GENERATION

    DOE Patents [OSTI]

    King, R.F.; Moak, C.D.; Parker, V.E.

    1960-10-11

    A device for generating ions in an ion source, forming the ions into a stream, deflecting the stream rapidly away from and back to its normal path along the axis of a cylindrical housing, and continually focusing the stream by suitable means into a sharp, intermittent beam along the axis is described. The beam exists through an axial aperture into a lens which focuses it into an accelerator tube. The ions in each burst are there accelerated to very high energies and are directed against a target placed in the high-energy end of the tube. Radiations from the target can then be analyzed in the interval between incidence of the bursts of ions on the target.

  5. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

    1994-09-20

    A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

  6. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Malecha, Richard F. (Naperville, IL); Chilenskas, Albert A. (Chicago, IL)

    1994-01-01

    A device for controlled insulation of a thermal device. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communcation with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket.

  7. Refractory two-dimensional hole gas on hydrogenated diamond surface

    SciTech Connect (OSTI)

    Hiraiwa, Atsushi; Daicho, Akira; Kurihara, Shinichiro; Yokoyama, Yuki; Kawarada, Hiroshi

    2012-12-15

    Use of two-dimensional hole gas (2DHG), induced on a hydrogenated diamond surface, is a solution to overcoming one of demerits of diamond, i.e., deep energy levels of impurities. This 2DHG is affected by its environment and accordingly needs a passivation film to get a stable device operation especially at high temperature. In response to this requirement, we achieved the high-reliability passivation forming an Al{sub 2}O{sub 3} film on the diamond surface using an atomic-layer-deposition (ALD) method with an H{sub 2}O oxidant at 450 Degree-Sign C. The 2DHG thus protected survived air annealing at 550 Degree-Sign C for an hour, establishing a stable high-temperature operation of 2DHG devices in air. In part, this achievement is based on high stability of C-H bonds up to 870 Degree-Sign C in vacuum and above 450 Degree-Sign C in an H{sub 2}O-containing environment as in the ALD. Chemically, this stability is supported by the fact that both the thermal decomposition of C-H bonds and reaction between C-H bonds and H{sub 2}O are endothermic processes. It makes a stark contrast to the instability of Si-H bonds, which decompose even at room temperature being exposed to atomic hydrogen. In this respect, the diamond 2DHG devices are also promising as power devices expectedly being free from many instability phenomena, such as hot carrier effect and negative-bias temperature instability, associated with Si devices. As to adsorbate, which is the other prerequisite for 2DHG, it desorbed in vacuum below 250 Degree-Sign C, and accordingly some new adsorbates should have adsorbed during the ALD at 450 Degree-Sign C. As a clue to this question, we certainly confirmed that some adsorbates, other than those at room temperature, adsorbed in air above 100 Degree-Sign C and remained at least up to 290 Degree-Sign C. The identification of these adsorbates is open for further investigation.

  8. Effects of ion abundances on electromagnetic ion cyclotron wave growth rate in the vicinity of the plasmapause

    SciTech Connect (OSTI)

    Henning, F. D. Mace, R. L.

    2014-04-15

    Electromagnetic ion cyclotron (EMIC) waves in multi-ion species plasmas propagate in branches. Except for the branch corresponding to the heaviest ion species, which has only a resonance at its gyrofrequency, these branches are bounded below by a cutoff frequency and above by a resonant gyrofrequency. The condition for wave growth is determined by the thermal anisotropies of each ion species, j, which sets an upper bound, ?{sub j}{sup ?}, on the wave frequency below which that ion species contributes positively to the growth rate. It follows that the relative positions of the cutoffs and the critical frequencies ?{sub j}{sup ?} play a crucial role in determining whether a particular wave branch will be unstable. The effect of the magnetospheric ion abundances on the growth rate of each branch of the EMIC instability in a model where all the ion species have kappa velocity distributions is investigated by appealing to the above ideas. Using the variation of the cutoff frequencies predicted by cold plasma theory as a guide, optimal ion abundances that maximise the EMIC instability growth rate are sought. When the ring current is comprised predominantly of H{sup +} ions, all branches of the EMIC wave are destabilised, with the proton branch having the maximum growth rate. When the O{sup +} ion abundance in the ring current is increased, a decrease in the growth rate of the proton branch and cyclotron damping of the helium branch are observed. The oxygen branch, on the other hand, experiences an increase in the maximum growth rate with an increase in the O{sup +} ion abundance. When the ring current is comprised predominantly of He{sup +} ions, only the helium and oxygen branches of the EMIC wave are destabilised, with the helium branch having the maximum growth rate.

  9. ION HEATING IN INHOMOGENEOUS EXPANDING SOLAR WIND PLASMA: THE ROLE OF PARALLEL AND OBLIQUE ION-CYCLOTRON WAVES

    SciTech Connect (OSTI)

    Ozak, N.; Ofman, L.; Viñas, A.-F.

    2015-01-20

    Remote sensing observations of coronal holes show that heavy ions are hotter than protons and their temperature is anisotropic. In-situ observations of fast solar wind streams provide direct evidence for turbulent Alfvén wave spectrum, left-hand polarized ion-cyclotron waves, and He{sup ++} - proton drift in the solar wind plasma, which can produce temperature anisotropies by resonant absorption and perpendicular heating of the ions. Furthermore, the solar wind is expected to be inhomogeneous on decreasing scales approaching the Sun. We study the heating of solar wind ions in inhomogeneous plasma with a 2.5D hybrid code. We include the expansion of the solar wind in an inhomogeneous plasma background, combined with the effects of a turbulent wave spectrum of Alfvénic fluctuations and initial ion-proton drifts. We study the influence of these effects on the perpendicular ion heating and cooling and on the spectrum of the magnetic fluctuations in the inhomogeneous background wind. We find that inhomogeneities in the plasma lead to enhanced heating compared to the homogenous solar wind, and the generation of significant power of oblique waves in the solar wind plasma. The cooling effect due to the expansion is not significant for super-Alfvénic drifts, and is diminished further when we include an inhomogeneous background density. We reproduce the ion temperature anisotropy seen in observations and previous models, which is present regardless of the perpendicular cooling due to solar wind expansion. We conclude that small scale inhomogeneities in the inner heliosphere can significantly affect resonant wave ion heating.

  10. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A.; Elder, Michael G.; Kemme, Joseph E.

    1985-01-01

    An apparatus which thermally protects sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components to a heat sink such as ice.

  11. Thermally actuated wedge block

    DOE Patents [OSTI]

    Queen, Jr., Charles C.

    1980-01-01

    This invention relates to an automatically-operating wedge block for maintaining intimate structural contact over wide temperature ranges, including cryogenic use. The wedging action depends on the relative thermal expansion of two materials having very different coefficients of thermal expansion. The wedge block expands in thickness when cooled to cryogenic temperatures and contracts in thickness when returned to room temperature.

  12. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, G.A.; Elder, M.G.; Kemme, J.E.

    1984-03-20

    The disclosure is directed to an apparatus for thermally protecting sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components such as electronics to a heat sink such as ice.

  13. Tunable thermal link

    DOE Patents [OSTI]

    Chang, Chih-Wei; Majumdar, Arunava; Zettl, Alexander K.

    2014-07-15

    Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.

  14. Thermal treatment wall

    DOE Patents [OSTI]

    Aines, Roger D.; Newmark, Robin L.; Knauss, Kevin G.

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  15. Solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  16. Laser-cooled atomic ions as probes of molecular ions

    SciTech Connect (OSTI)

    Brown, Kenneth R.; Viteri, C. Ricardo; Clark, Craig R.; Goeders, James E.; Khanyile, Ncamiso B.; Vittorini, Grahame D.

    2015-01-22

    Trapped laser-cooled atomic ions are a new tool for understanding cold molecular ions. The atomic ions not only sympathetically cool the molecular ions to millikelvin temperatures, but the bright atomic ion fluorescence can also serve as a detector of both molecular reactions and molecular spectra. We are working towards the detection of single molecular ion spectra by sympathetic heating spectroscopy. Sympathetic heating spectroscopy uses the coupled motion of two trapped ions to measure the spectra of one ion by observing changes in the fluorescence of the other ion. Sympathetic heating spectroscopy is a generalization of quantum logic spectroscopy, but does not require ions in the motional ground state or coherent control of the ion internal states. We have recently demonstrated this technique using two isotopes of Ca{sup +} [Phys. Rev. A, 81, 043428 (2010)]. Limits of the method and potential applications for molecular spectroscopy are discussed.

  17. Ion optics of RHIC electron beam ion source

    SciTech Connect (OSTI)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y.; Kuznetsov, G.

    2012-02-15

    RHIC electron beam ion source has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  18. Thermal regeneration of an electrochemical concentration cell

    DOE Patents [OSTI]

    Krumpelt, Michael; Bates, John K.

    1981-01-01

    A system and method for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 Kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.

  19. Thermal regeneration of an electrochemical concentration cell

    DOE Patents [OSTI]

    Krumpelt, M.; Bates, J.K.

    1980-05-09

    A system and method are described for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.

  20. Pulsed ion beam source

    DOE Patents [OSTI]

    Greenly, John B.

    1996-01-01

    An improved magnetically-confined anode plasma pulsed ion beam source. Beam rotation effects and power efficiency are improved by a magnetic design which places the separatrix between the fast field flux structure and the slow field structure near the anode of the ion beam source, by a gas port design which localizes the gas delivery into the gap between the fast coil and the anode, by a pre-ionizer ringing circuit connected to the fast coil, and by a bias field means which optimally adjusts the plasma formation position in the ion beam source.

  1. Relating to ion detection

    DOE Patents [OSTI]

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2001-01-01

    The apparatus and method provide a technique for improving detection of alpha and/or beta emitting sources on items or in locations using indirect means. The emission forms generate ions in a medium surrounding the item or location and the medium is then moved to a detecting location where the ions are discharged to give a measure of the emission levels. To increase the level of ions generated and render the system particularly applicable for narrow pipes and other forms of conduits, the medium pressure is increased above atmospheric pressure. STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

  2. Microhole Coiled Tubing Bottom Hole Assemblies

    SciTech Connect (OSTI)

    Don Macune

    2008-06-30

    The original objective of the project, to deliver an integrated 3 1/8-inch diameter Measurement While Drilling (MWD) and Logging While Drilling (LWD) system for drilling small boreholes using coiled tubing drilling, has been achieved. Two prototype systems have been assembled and tested in the lab. One of the systems has been successfully tested downhole in a conventional rotary drilling environment. Development of the 3 1/8-inch system has also lead to development and commercialization of a slightly larger 3.5-inch diameter system. We are presently filling customer orders for the 3.5-inch system while continuing with commercialization of the 3 1/8-inch system. The equipment developed by this project will be offered for sale to multiple service providers around the world, enabling the more rapid expansion of both coiled tubing drilling and conventional small diameter drilling. The project was based on the reuse of existing technology whenever possible in order to minimize development costs, time, and risks. The project was begun initially by Ultima Labs, at the time a small company ({approx}12 employees) which had successfully developed a number of products for larger oil well service companies. In September, 2006, approximately 20 months after inception of the project, Ultima Labs was acquired by Sondex plc, a worldwide manufacturer of downhole instrumentation for cased hole and drilling applications. The acquisition provided access to proven technology for mud pulse telemetry, downhole directional and natural gamma ray measurements, and surface data acquisition and processing, as well as a global sales and support network. The acquisition accelerated commercialization through existing Sondex customers. Customer demand resulted in changes to the product specification to support hotter (150 C) and deeper drilling (20,000 psi pressure) than originally proposed. The Sondex acquisition resulted in some project delays as the resistivity collar was interfaced to a

  3. Real-time, noninvasive monitoring of ion energy and ion current at a wafer surface during plasma etching

    SciTech Connect (OSTI)

    Sobolewski, Mark A. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2006-09-15

    A noninvasive, nonperturbing technique for real-time monitoring of ion energy distributions and total ion current at a wafer surface during plasma processing has been used to monitor rapid changes in CF{sub 4}/Ar etching plasmas in an inductively coupled, rf-biased plasma reactor. To mimic the effects of process recipe steps or reactor malfunctions, perturbations were made in the inductive source power, gas flow, and pressure, and the resulting effects on total ion current, sheath voltage, and ion energy were monitored. During etching of a thermal silicon dioxide film, smaller changes, which are caused by the etch process itself, were also observed. Sheath voltages determined by the noninvasive technique were in good agreement with simultaneous measurements made using a capacitive probe. In addition to providing a demonstration of the speed and accuracy of the technique, the results also provide useful information about the relative importance of different types of equipment malfunctions and suggest methods for minimizing their effects. In particular, operating at constant bias voltage, instead of constant bias power, gave more stable ion energies. The physical mechanisms that cause the observed changes in ion energy are discussed, and a comparison to other process monitoring methods is presented. No other noninvasive, nonperturbing method yields ion current or ion energies as accurately as the technique presented here.

  4. Thermally-related safety issues associated with thermal batteries.

    SciTech Connect (OSTI)

    Guidotti, Ronald Armand

    2006-06-01

    Thermal batteries can experience thermal runaway under certain usage conditions. This can lead to safety issues for personnel and cause damage to associated test equipment if the battery thermally self destructs. This report discusses a number of thermal and design related issues that can lead to catastrophic destruction of thermal batteries under certain conditions. Contributing factors are identified and mitigating actions are presented to minimize or prevent undesirable thermal runaway.

  5. Ion manipulation device

    DOE Patents [OSTI]

    Anderson, Gordon A; Smith, Richard D; Ibrahim, Yehia M; Baker, Erin M

    2014-09-16

    An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electric field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area.

  6. Ion exchange phenomena

    SciTech Connect (OSTI)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  7. Ion sensing method

    DOE Patents [OSTI]

    Smith, Richard Harding; Martin, Glenn Brian

    2004-05-18

    The present invention allows the determination of trace levels of ionic substances in a sample solution (ions, metal ions, and other electrically charged molecules) by coupling a separation method, such as liquid chromatography, with ion selective electrodes (ISE) prepared so as to allow detection at activities below 10.sup.-6 M. The separation method distributes constituent molecules into fractions due to unique chemical and physical properties, such as charge, hydrophobicity, specific binding interactions, or movement in an electrical field. The separated fractions are detected by means of the ISE(s). These ISEs can be used singly or in an array. Accordingly, modifications in the ISEs are used to permit detection of low activities, specifically, below 10.sup.-6 M, by using low activities of the primary analyte (the molecular species which is specifically detected) in the inner filling solution of the ISE. Arrays constructed in various ways allow flow-through sensing for multiple ions.

  8. Focused ion beam system

    DOE Patents [OSTI]

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  9. Focused ion beam system

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Gough, Richard A.; Ji, Qing; Lee, Yung-Hee Yvette

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  10. COASTING ARC ION SOURCE

    DOE Patents [OSTI]

    Foster, J.S. Jr.

    1957-09-10

    An improved ion source is described and in particular a source in which the ions are efficiently removed. The plasma is generated in a tubular amode structure by the oscillation of electrons in an axial magnetic field, as in the Phillips Ion Gage. The novel aspect of the source is the expansion of the plasma as it leaves the anode structure, so as to reduce the ion density at the axis of the anode and present a uniform area of plasma to an extraction grid. The structure utilized in the present patent to expand the plasma comprises flange members of high permeability at the exitgrid end of the amode to diverge the magnetic field adjacent the exit.

  11. Stellar black holes and the origin of cosmic acceleration

    SciTech Connect (OSTI)

    Prescod-Weinstein, Chanda; Afshordi, Niayesh; Balogh, Michael L.

    2009-08-15

    The discovery of cosmic acceleration has presented a unique challenge for cosmologists. As observational cosmology forges ahead, theorists have struggled to make sense of a standard model that requires extreme fine-tuning. This challenge is known as the cosmological constant problem. The theory of gravitational aether is an alternative to general relativity that does not suffer from this fine-tuning problem, as it decouples the quantum field theory vacuum from geometry, while remaining consistent with other tests of gravity. In this paper, we study static black hole solutions in this theory and show that it manifests a UV-IR coupling: Aether couples the space-time metric close to the black hole horizon, to metric at infinity. We then show that using the trans-Planckian ansatz (as a quantum gravity effect) close to the black hole horizon, leads to an accelerating cosmological solution, far from the horizon. Interestingly, this acceleration matches current observations for stellar-mass black holes. Based on our current understanding of the black hole accretion history in the Universe, we then make a prediction for how the effective dark energy density should evolve with redshift, which can be tested with future dark energy probes.

  12. High current ion source

    DOE Patents [OSTI]

    Brown, Ian G.; MacGill, Robert A.; Galvin, James E.

    1990-01-01

    An ion source utilizing a cathode and anode for producing an electric arc therebetween. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma leaves the generation region and expands through another regon. The density profile of the plasma may be flattened using a magnetic field formed within a vacuum chamber. Ions are extracted from the plasma to produce a high current broad on beam.

  13. Ion electric propulsion unit

    DOE Patents [OSTI]

    Light, Max E; Colestock, Patrick L

    2014-01-28

    An electron cyclotron resonance (ECR) thruster is disclosed having a plasma chamber which is electrically biased with a positive voltage. The chamber bias serves to efficiently accelerate and expel the positive ions from the chamber. Electrons follow the exiting ions, serving to provide an electrically neutral exhaust plume. In a further embodiment, a downstream shaping magnetic field serves to further accelerate and/or shape the exhaust plume.

  14. Ion replacement electrorefining

    SciTech Connect (OSTI)

    Willit, J.L.; Tomczuk, Z.; Miller, W.E.; Laidler, J.J.

    1994-04-01

    We are developing a two-step electrochemical process for purifying and separating metals called ion replacement electrorefining. In each step, metal cations formed by oxidation at an electrode replace other metal cations that are reduced at another elecmae. Using this approach, we have separated or purified uranium, dysprosium, and lanthanum on a laboratory scale. This paper explains the ion replacement concept and presents results of these demonstration experiments.

  15. Stochastic acceleration of ions driven by Pc1 wave packets

    SciTech Connect (OSTI)

    Khazanov, G. V. Sibeck, D. G.; Tel'nikhin, A. A.; Kronberg, T. K.

    2015-07-15

    The stochastic motion of protons and He{sup +} ions driven by Pc1 wave packets is studied in the context of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers exceed 10{sup −4} nT{sup 2}/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions. Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions. The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The dependencies of observable quantities on the wave power and plasma parameters are determined, and estimates for the heating extent and rate of particle heating in these wave-particle interactions are shown to be in reasonable agreement with known empirical data.

  16. Geothermal regime and thermal history of the Llanos Basin, Columbia

    SciTech Connect (OSTI)

    Bachu, S.; Underschultz, J.R.; Ramon, J.C.; Villegas, M.E.

    1995-01-01

    The Llanos basin is a siliciclastic foreland sub-Andean sedimentary basin located in Columbia between the Cordillera Oriental and the Guyana Precambrian shield. Data on bottom-hole temperature, lithology, porosity, and vitrinite reflectance from all 318 wells drilled in the central and southern parts of the basin were used to analyze its geothermal regime and thermal history. Average geothermal gradients in the Llanos basin decrease generally with depth and westward toward the fold and thrust belt. The geothermal regime is controlled by a moderate, generally westward-decreasing basement heat flow, by depositional and compaction factors, and, in places, by advection by formation waters. Compaction leads to increased thermal conductivity with depth, whereas westward downdip flow in deep sandstone formations may exert a cooling effect in the central-western part of the basin. Vitrinite reflectance variation with depth shows a major discontinuity at the pre-Cretaceous unconformity. Areally, vitrinite reflectance increases southwestward in Paleozoic strata and northwestward in post-Paleozoic strata. These patterns indicate that the thermal history of the basin probably includes three thermal events that led to peaks in oil generation: a Paleozoic event in the southwest, a failed Cretaceous rifting event in the west, and an early Tertiary back-arc event in the west. Rapid cooling since the last thermal event is possibly caused by subhorizontal subduction of cold oceanic lithospheric plate.

  17. HIGH VOLTAGE ION SOURCE

    DOE Patents [OSTI]

    Luce, J.S.

    1960-04-19

    A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.

  18. Secondary ion collection and transport system for ion microprobe

    DOE Patents [OSTI]

    Ward, James W.; Schlanger, Herbert; McNulty, Jr., Hugh; Parker, Norman W.

    1985-01-01

    A secondary ion collection and transport system, for use with an ion microprobe, which is very compact and occupies only a small working distance, thereby enabling the primary ion beam to have a short focal length and high resolution. Ions sputtered from the target surface by the primary beam's impact are collected between two arcuate members having radii of curvature and applied voltages that cause only ions within a specified energy band to be collected. The collected ions are accelerated and focused in a transport section consisting of a plurality of spaced conductive members which are coaxial with and distributed along the desired ion path. Relatively high voltages are applied to alternate transport sections to produce accelerating electric fields sufficient to transport the ions through the section to an ion mass analyzer, while lower voltages are applied to the other transport sections to focus the ions and bring their velocity to a level compatible with the analyzing apparatus.

  19. Multilayer thermal barrier coating systems

    DOE Patents [OSTI]

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  20. Thermal insulations using vacuum panels

    DOE Patents [OSTI]

    Glicksman, Leon R.; Burke, Melissa S.

    1991-07-16

    Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

  1. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility HomeNational Solar Thermal Test Facility Permalink Pratt Whitney Rocketdyne Testing Concentrating Solar Power, EC, Energy, Facilities, ...

  2. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers National Solar Thermal Test Facility HomeTag:National Solar Thermal Test Facility Permalink Air Force Research Laboratory Testing ...

  3. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility HomeNational Solar Thermal Test Facility Permalink High-Efficiency Solar Thermochemical Reactor for Hydrogen Production Center for ...

  4. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2 Solar thermal collector shipments by type, quantity, revenue, and average price, 2008 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  5. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1 Distribution of domestic solar thermal collector shipments (thousand square feet) 2008 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  6. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Annual shipments of solar thermal collectors by type, 2000 - 2009 (thousand square feet) ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  7. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Shipments of solar thermal collectors ranked by origin and destination, 2009 Origin Top ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  8. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Annual shipments of solar thermal collectors by source, 2000 - 2009 Imports Domestically ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  9. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Annual shipments of solar thermal collectors by disposition, 2000 - 2009 (thousand square ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  10. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7 Percent of solar thermal collector shipments by the 10 largest companies, 2000 - 2009 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  11. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5 Shipments of complete solar thermal collector systems, 2008 and 2009 Shipment ... Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey."

  12. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8 Import shipments of solar thermal collectors by country, 2008 and 2009 (square feet) ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  13. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7 Import shipments of solar thermal collectors by type, 2000 - 2009 (thousand square feet) ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  14. Thermal Properties Measurement Report

    SciTech Connect (OSTI)

    Carmack, Jon; Braase, Lori; Papesch, Cynthia; Hurley, David; Tonks, Michael; Zhang, Yongfeng; Gofryk, Krzysztof; Harp, Jason; Fielding, Randy; Knight, Collin; Meyer, Mitch

    2015-08-01

    The Thermal Properties Measurement Report summarizes the research, development, installation, and initial use of significant experimental thermal property characterization capabilities at the INL in FY 2015. These new capabilities were used to characterize a U3Si2 (candidate Accident Tolerant) fuel sample fabricated at the INL. The ability to perform measurements at various length scales is important and provides additional data that is not currently in the literature. However, the real value of the data will be in accomplishing a phenomenological understanding of the thermal conductivity in fuels and the ties to predictive modeling. Thus, the MARMOT advanced modeling and simulation capability was utilized to illustrate how the microstructural data can be modeled and compared with bulk characterization data. A scientific method was established for thermal property measurement capability on irradiated nuclear fuel samples, which will be installed in the Irradiated Material Characterization Laboratory (IMCL).

  15. THERMAL NUCLEAR REACTOR

    DOE Patents [OSTI]

    Fenning, F.W.; Jackson, R.F.

    1957-09-24

    Nuclear reactors of the graphite moderated air cooled type in which canned slugs or rods of fissile material are employed are discussed. Such a reactor may be provided with a means for detecting dust particles in the exhausted air. The means employed are lengths of dust absorbent cord suspended in vertical holes in the shielding structure above each vertical coolant flow channel to hang in the path of the cooling air issuing from the channels, and associated spindles and drive motors for hauling the cords past detectors, such as Geiger counters, for inspecting the cords periodically. This design also enables detecting the individual channel in which a fault condition may have occurred.

  16. A SMALL-ANGLE DRILL-HOLE WHIPSTOCK

    DOE Patents [OSTI]

    Nielsen, D.E.; Olsen, J.L.; Bennett, W.P.

    1963-01-29

    A small angle whipstock is described for accurately correcting or deviating a drill hole by a very small angle. The whipstock is primarily utilized when drilling extremely accurate, line-of-slight test holes as required for diagnostic studies related to underground nuclear test shots. The invention is constructed of a length of cylindrical pipe or casing, with a whipstock seating spike extending from the lower end. A wedge-shaped segment is secured to the outer circumference of the upper end of the cylinder at a position diametrically opposite the circumferential position of the spike. Pin means are provided for affixing the whipstock to a directional drill bit and stem to alloy orienting and setting the whipstock properly in the drill hole. (AEC)

  17. Planck-Size Black Hole Remnants as Dark Matter

    SciTech Connect (OSTI)

    Chen, P

    2004-09-13

    While there exist various candidates, the nature of dark matter remains unresolved. Recently it was argued that the generalized uncertainty principle (GUP) may prevent a black hole from evaporating completely, and as a result there should exist a Planck-size black hole remnant (BHR) at the end of its evaporation. If a sufficient amount of small black holes can be produced in the early universe, then the resultant BHRs can be an interesting candidate for DM. We demonstrate that this is indeed the case for the hybrid inflation model. By assuming BHR as DM, our notion imposes a constraint on the hybrid inflation potential. We show that such a constraint is not so fine-tuned. Possible observational signatures are briefly discussed.

  18. SDO OBSERVATIONS OF MAGNETIC RECONNECTION AT CORONAL HOLE BOUNDARIES

    SciTech Connect (OSTI)

    Yang Shuhong; Zhang Jun; Li Ting; Liu Yang E-mail: zjun@nao.cas.cn E-mail: yliu@quake.stanford.edu

    2011-05-01

    With the observations from the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we investigate the coronal hole boundaries (CHBs) of an equatorial extension of the polar coronal hole. At the CHBs, many extreme-ultraviolet jets, which appear to be the signatures of magnetic reconnection, are observed in the 193 A images, and some jets occur repetitively at the same sites. The evolution of the jets is associated with the emergence and cancellation of magnetic fields. We note that both the east and west CHBs shift westward, and the shift velocities are close to the velocities of rigid rotation compared with those of the photospheric differential rotation. This indicates that magnetic reconnection at CHBs results in the evolution of CHBs and maintains the rigid rotation of coronal holes.

  19. Black holes in a box: Toward the numerical evolution of black holes in AdS space-times

    SciTech Connect (OSTI)

    Witek, Helvi; Nerozzi, Andrea; Cardoso, Vitor; Herdeiro, Carlos; Sperhake, Ulrich; Zilhao, Miguel

    2010-11-15

    The evolution of black holes in ''confining boxes'' is interesting for a number of reasons, particularly because it mimics the global structure of anti-de Sitter geometries. These are nonglobally hyperbolic space-times and the Cauchy problem may only be well defined if the initial data are supplemented by boundary conditions at the timelike conformal boundary. Here, we explore the active role that boundary conditions play in the evolution of a bulk black hole system, by imprisoning a black hole binary in a box with mirrorlike boundary conditions. We are able to follow the post-merger dynamics for up to two reflections off the boundary of the gravitational radiation produced in the merger. We estimate that about 15% of the radiation energy is absorbed by the black hole per interaction, whereas transfer of angular momentum from the radiation to the black hole is observed only in the first interaction. We discuss the possible role of superradiant scattering for this result. Unlike the studies with outgoing boundary conditions, both of the Newman-Penrose scalars {Psi}{sub 4} and {Psi}{sub 0} are nontrivial in our setup, and we show that the numerical data verifies the expected relations between them.

  20. Virasoro conformal blocks and thermality from classical background fields

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fitzpatrick, A. Liam; Kaplan, Jared; Walters, Matthew T.

    2015-11-30

    We show that in 2d CFTs at large central charge, the coupling of the stress tensor to heavy operators can be re-absorbed by placing the CFT in a non-trivial background metric. This leads to a more precise computation of the Virasoro conformal blocks between heavy and light operators, which are shown to be equivalent to global conformal blocks evaluated in the new background. We also generalize to the case where the operators carry U(1) charges. The refined Virasoro blocks can be used as the seed for a new Virasoro block recursion relation expanded in the heavy-light limit. Furthermore, we commentmore » on the implications of our results for the universality of black hole thermality in AdS3 , or equivalently, the eigenstate thermalization hypothesis for CFT2 at large central charge.« less

  1. The DOE Thermal Regimes Drilling Program through 1987

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    In response to strong endorsement from the scientific community, in the form of a report by the Continental Scientific Drilling Committee of the National Academy of Sciences (CSDC, 1984), the Office of Basic Energy Sciences of the DOE undertook a program of investigations of young magmatic intrusions and their associated thermal systems. To date, the effort has encompassed the first phases of a program to investigate the roots of active hydrothermal systems and has also investigated the thermal, chemical, and mechanical behavior of geologically recent (less than 600 years) magmatic extrusions. Shallow to intermediate-depth holes have been drilled and cored into hydrothermal systems in the silicic Valles and Long Valley calderas and at the crustal spreading center of the Salton Trough. These projects are briefly summarized here and are covered in greater detail in the accompanying appendices.

  2. Underhood Thermal Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underhood Thermal Performance This email address is being protected from spambots. You need JavaScript enabled to view it. - Computational Fluid Dynamics Project Leader Background As vehicle technology advances, automakers need a better understanding of underhood heat loads, especially as they relate to emissions and fuel efficiency. Manufacturers of heavy-duty vehicles and off-road machines have similar concerns. Ineffective underhood thermal management can lead to higher emissions, reduced

  3. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's economic and energy security. Technical advancement for any type of gas turbine generally implies better performance, greater efficiency, and extended component life. From the standpoint of cycle efficiency and durability, this suggests that a continual

  4. Photovoltaic-thermal collectors

    DOE Patents [OSTI]

    Cox, III, Charles H.

    1984-04-24

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  5. Studies of the mechanism of the cluster formation in a thermally sampling atmospheric pressure ionization mass spectrometer

    SciTech Connect (OSTI)

    Albrecht, Sascha Stroh, Fred; Klopotowski, Sebastian Derpmann, Valerie Klee, Sonja Brockmann, Klaus J. Benter, Thorsten

    2014-01-15

    In this study a thermally sampling atmospheric pressure ionization mass spectrometer is described and characterized. The ion transfer stage offers the capability to sample cluster ions at thermal equilibrium and during this transfer fundamental processes possibly affecting the cluster distribution are also readily identified. Additionally, the transfer stage combines optional collision-induced dissociation (CID) analysis of the cluster composition with thermal equilibrium sampling of clusters. The performance of the setup is demonstrated with regard to the proton-bound water cluster system. The benefit of the studied processes is that they can help to improve future transfer stages and to understand cluster ion reactions in ion mobility tubes and high-pressure ion sources. In addition, the instrument allows for the identification of fragmentation and protonation reactions caused by CID.

  6. Interface Science of Thermal Barrier Coatings

    SciTech Connect (OSTI)

    Besmann, Theodore M

    2009-01-01

    The drive for greater efficiency in propulsion and industrial/power production machinery has pushed metallurgy to develop ever better alloys and taken existing metallic components to their reliability threshold. Nowhere is that better illustrated than in turbine engine materials. The nickel-based superalloys currently in use for the most demanding areas of the engines melt at 1230-1315 aC and yet see combustion environments >1600 aC. The result is that these components require thermal protection to avoid failure from phenomena such as melting, creep, oxidation, thermal fatigue, and so on [1]. The stakes are high as the equipment must remain reliable for thousands of take-offs and landings for aircraft turbine engines, and up to 40,000 hours of operation in power generating land-based gas turbines [2, 3]. One of the most critical items that see both the greatest temperatures and experience the highest stresses is the hot-section turbine blades. Two strategies have been adopted to help the superalloy turbine blades survive the demanding environment: Active air cooling and ceramic thermal protection coatings, which together can reduce metal surface temperatures by >300 aC.[2]. The combination of turbine blade external film cooling and internal air cooling requires an exceptionally complex structure with flow passages and sets of small holes in the blades where air bled from a matching stage of the compressor is directed over the surface. Stecura [4] was among the first to describe a successful coating system, and today s the ceramic insulating layer alone is credited with reducing metal temperatures as much as 165 aC [1, 5].

  7. Ion optics of RHIC EBIS

    SciTech Connect (OSTI)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y.; Kuznetsov, G.

    2011-09-10

    RHIC EBIS has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  8. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect (OSTI)

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center; Institute of Chemistry, Hebrew University; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Leone, Stephen R.

    2011-07-19

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?]ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  9. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect (OSTI)

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; L.Vaghjiani, Ghanshyam; Leone, Stephen R.

    2012-03-16

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1- Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  10. Internal Short Circuits in Lithium-Ion Cells for PHEVs

    SciTech Connect (OSTI)

    Sriramulu, Suresh; Stringfellow, Richard

    2013-05-25

    Development of Plug-in Hybrid Electric Vehicles (PHEVs) has recently become a high national priority because of their potential to enable significantly reduced petroleum consumption by the domestic transportation sector in the relatively near term. Lithium-ion (Li-ion) batteries are a critical enabling technology for PHEVs. Among battery technologies with suitable operating characteristics for use in vehicles, Li-ion batteries offer the best combination of energy, power, life and cost. Consequently, worldwide, leading corporations and government agencies are supporting the development of Li-ion batteries for PHEVs, as well as the full spectrum of vehicular applications ranging from mild hybrid to all-electric. In this project, using a combination of well-defined experiments, custom designed cells and simulations, we have improved the understanding of the process by which a Li-ion cell that develops an internal short progresses to thermal runaway. Using a validated model for thermal runaway, we have explored the influence of environmental factors and cell design on the propensity for thermal runaway in full-sized PHEV cells. We have also gained important perspectives about internal short development and progression; specifically that initial internal shorts may be augmented by secondary shorts related to separator melting. Even though the nature of these shorts is very stochastic, we have shown the critical and insufficiently appreciated role of heat transfer in influencing whether a developing internal short results in a thermal runaway. This work should lead to enhanced perspectives on separator design, the role of active materials and especially cathode materials with respect to safety and the design of automotive cooling systems to enhance battery safety in PHEVs.

  11. Greybody factors for Myers–Perry black holes

    SciTech Connect (OSTI)

    Boonserm, Petarpa; Chatrabhuti, Auttakit Ngampitipan, Tritos; Visser, Matt

    2014-11-15

    The Myers–Perry black holes are higher-dimensional generalizations of the usual (3+1)-dimensional rotating Kerr black hole. They are of considerable interest in Kaluza–Klein models, specifically within the context of brane-world versions thereof. In the present article, we shall consider the greybody factors associated with scalar field excitations of the Myers–Perry spacetimes, and develop some rigorous bounds on these greybody factors. These bounds are of relevance for characterizing both the higher-dimensional Hawking radiation, and the super-radiance, that is expected for these spacetimes.

  12. Modeling cross-hole slug tests in an unconfined aquifer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malama, Bwalya; Kuhlman, Kristopher L.; Brauchler, Ralf; Bayer, Peter

    2016-06-28

    Cross-hole slug test date are analyzed with an extended version of a recently published unconfined aquifer model accounting for waterable effects using the linearized kinematic condition. The use of cross-hole slug test data to characterize aquifer heterogeneity and source/observation well oscillation parameters is evaluated. The data were collected in a series of multi-well and multi-level pneumatic slug tests conducted at a site in Widen, Switzerland. Furthermore, the tests involved source and observation well pairs separated by distances of up to 4 m, and instrumented with pressure transducers to monitor aquifer response in discrete intervals.

  13. Hole cleaning imperative in coiled tubing drilling operations

    SciTech Connect (OSTI)

    Rameswar, R.M.; Mudda, K.

    1995-09-01

    Annular flow modeling in coiled tubing applications is essential for optimizing mud rheology and keeping the hole clean. Cuttings transport in coiled tubing drilling must be optimized, particularly the modeling of hole cleaning capabilities. The effects of two different muds in contrasting geometries on hold cleaning efficiency are considered, with the simulation performed using Petrocalc 14. Coiled tubing is widely used to drill new vertical and horizontal wells, and in re-entry operations. Horizontal well problems are subsequently modeled, where annular eccentricities can range anywhere from concentric to highly offset, given the highly buckled or helically deflected states of many drill coils.

  14. Origins of ion irradiation-induced Ga nanoparticle motion on GaAs surfaces

    SciTech Connect (OSTI)

    Kang, M.; Wu, J. H.; Chen, H. Y.; Thornton, K.; Goldman, R. S. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Sofferman, D. L. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States) [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Department of Physics, Adelphi University, Garden City, New York 11530-0701 (United States); Beskin, I. [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States)] [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States)

    2013-08-12

    We have examined the origins of ion irradiation-induced nanoparticle (NP) motion. Focused-ion-beam irradiation of GaAs surfaces induces random walks of Ga NPs, which are biased in the direction opposite to that of ion beam scanning. Although the instantaneous NP velocities are constant, the NP drift velocities are dependent on the off-normal irradiation angle, likely due to a difference in surface non-stoichiometry induced by the irradiation angle dependence of the sputtering yield. It is hypothesized that the random walks are initiated by ion irradiation-induced thermal fluctuations, with biasing driven by anisotropic mass transport.

  15. Effect of ion orbit loss on the structure in the H-mode tokamak edge pedestal profiles of rotation velocity, radial electric field, density, and temperature

    SciTech Connect (OSTI)

    Stacey, Weston M.

    2013-09-15

    An investigation of the effect of ion orbit loss of thermal ions and the compensating return ion current directly on the radial ion flux flowing in the plasma, and thereby indirectly on the toroidal and poloidal rotation velocity profiles, the radial electric field, density, and temperature profiles, and the interpretation of diffusive and non-diffusive transport coefficients in the plasma edge, is described. Illustrative calculations for a high-confinement H-mode DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] plasma are presented and compared with experimental results. Taking into account, ion orbit loss of thermal ions and the compensating return ion current is found to have a significant effect on the structure of the radial profiles of these quantities in the edge plasma, indicating the necessity of taking ion orbit loss effects into account in interpreting or predicting these quantities.

  16. BLACK HOLE MASS ESTIMATES AND RAPID GROWTH OF SUPERMASSIVE BLACK HOLES IN LUMINOUS z ∼ 3.5 QUASARS

    SciTech Connect (OSTI)

    Zuo, Wenwen; Wu, Xue-Bing; Fan, Xiaohui; Green, Richard; Wang, Ran; Bian, Fuyan

    2015-02-01

    We present new near-infrared (IR) observations of the Hβ λ4861 and Mg II λ2798 lines for 32 luminous quasars with 3.2 < z < 3.9 using the Palomar Hale 200 inch telescope and the Large Binocular Telescope. We find that the Mg II FWHM is well correlated with the Hβ FWHM, confirming itself as a good substitute for the Hβ FWHM in the black hole mass estimates. The continuum luminosity at 5100 Å well correlates with the continuum luminosity at 3000 Å and the broad emission line luminosities (Hβ and Mg II). With simultaneous near-IR spectroscopy of the Hβ and Mg II lines to exclude the influences of flux variability, we are able to evaluate the reliability of estimating black hole masses based on the Mg II line for high redshift quasars. With the reliable Hβ line based black hole mass and Eddington ratio estimates, we find that the z ∼ 3.5 quasars in our sample have black hole masses 1.90 × 10{sup 9} M {sub ☉} ≲ M {sub BH} ≲ 1.37 × 10{sup 10} M {sub ☉}, with a median of ∼5.14 × 10{sup 9} M {sub ☉} and are accreting at Eddington ratios between 0.30 and 3.05, with a median of ∼1.12. Assuming a duty cycle of 1 and a seed black hole mass of 10{sup 4} M {sub ☉}, we show that the z ∼ 3.5 quasars in this sample can grow to their estimated black hole masses within the age of the universe at their redshifts.

  17. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Probe Holes C3830, C3831, C3832 and 299-W10-27

    SciTech Connect (OSTI)

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2004-04-01

    Pacific Northwest National Laboratory performed detailed analyses on vadose zone sediments from within Waste Management Area T-TX-TY. This report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from three probe holes (C3830, C3831, and C3832) in the TX Tank Farm, and from borehole 299-W-10-27. Sediments from borehole 299-W-10-27 are considered to be uncontaminated sediments that can be compared with contaminated sediments. This report also presents our interpretation of the sediment lithologies, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the TX Tank Farm. Sediment from the probe holes was analyzed for: moisture, radionuclide and carbon contents;, one-to-one water extracts (soil pH, electrical conductivity, cation, trace metal, and anion data), and 8 M nitric acid extracts. Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We did not observe significant indications of caustic alteration of the sediment mineralogy or porosity, or significant zones of slightly elevated pH values in the probe holes. The sediments do show that sodium-, nitrate-, and sulfate-dominated fluids are present. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms. Three primary stratigraphic units were encountered in each probe hole: (1) backfill material, (2) the Hanford formation, and (3) the Cold Creek unit. Each of the probe holes contain thin fine-grained layers in the Hanford H2 stratigraphic unit that may impact the flow of leaked fluids and effect irregular and horizontal flow. The probe holes could not penetrate below the enriched calcium carbonate strata of the Cold Creek lower subunit; therefore, we did not

  18. Predictive modeling of synergistic effects in nanoscale ion track formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zarkadoula, Eva; Pakarinen, Olli H.; Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    2015-08-05

    Molecular dynamics techniques and the inelastic thermal spike model are used to study the coupled effects of inelastic energy loss due to 21 MeV Ni ion irradiation and pre-existing defects in SrTiO3. We determine the dependence on pre-existing defect concentration of nanoscale track formation occurring from the synergy between the inelastic energy loss and the pre-existing atomic defects. We show that the nanoscale ion tracks’ size can be controlled by the concentration of pre-existing disorder. This work identifies a major gap in fundamental understanding concerning the role played by defects in electronic energy dissipation and electron–lattice coupling.

  19. Multi-Scale Multi-Dimensional Ion Battery Performance Model

    Energy Science and Technology Software Center (OSTI)

    2007-05-07

    The Multi-Scale Multi-Dimensional (MSMD) Lithium Ion Battery Model allows for computer prediction and engineering optimization of thermal, electrical, and electrochemical performance of lithium ion cells with realistic geometries. The model introduces separate simulation domains for different scale physics, achieving much higher computational efficiency compared to the single domain approach. It solves a one dimensional electrochemistry model in a micro sub-grid system, and captures the impacts of macro-scale battery design factors on cell performance and materialmore » usage by solving cell-level electron and heat transports in a macro grid system.« less

  20. Effects of subconduction band excitations on thermal conductance at metal-metal interfaces

    SciTech Connect (OSTI)

    Hopkins, Patrick E.; Beechem, Thomas E.; Duda, John C.; Smoyer, Justin L.; Norris, Pamela M.

    2010-01-04

    Increased power densities combined with the decreased length scales of nanosystems give rise to large thermal excitations that can drastically affect the electron population near the Fermi surface. In light of such conditions, a model is developed for electron thermal boundary conductance (eTBC) that accounts for significant changes in the electron and hole populations around the Fermi level that occur at heightened temperatures. By including the contribution of subconduction band electrons to transport and evaluating the transmission coefficient based upon the total number of available states, an extension of eTBC predictions to high temperatures is made possible.

  1. Negative ion source

    DOE Patents [OSTI]

    Leung, K.N.; Ehlers, K.W.

    1982-08-06

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

  2. Radioactive ion detector

    DOE Patents [OSTI]

    Bower, K.E.; Weeks, D.R.

    1997-08-12

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity. 2 figs.

  3. Radioactive ion detector

    DOE Patents [OSTI]

    Bower, Kenneth E. (Los Alamos, NM); Weeks, Donald R. (Saratoga, CA)

    1997-01-01

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity.

  4. Actinide-ion sensor

    SciTech Connect (OSTI)

    Li, Shelly X; Jue, Jan-fong; Herbst, Ronald Scott; Herrmann, Steven Douglas

    2015-01-13

    An apparatus for the real-time, in-situ monitoring of actinide-ion concentrations. A working electrolyte is positioned within the interior of a container. The working electrolyte is separated from a reference electrolyte by a separator. A working electrode is at least partially in contact with the working electrolyte. A reference electrode is at least partially in contact with the reference electrolyte. A voltmeter is electrically connected to the working electrode and the reference electrode. The working electrolyte comprises an actinide-ion of interest. The separator is ionically conductive to the actinide-ion of interest. The separator comprises an actinide, Zr, and Nb. Preferably, the actinide of the separator is Am or Np, more preferably Pu. In one embodiment, the actinide of the separator is the actinide of interest. In another embodiment, the separator further comprises P and O.

  5. Microwave ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.

    2005-07-26

    A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.

  6. Negative ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

  7. Negative ion source

    DOE Patents [OSTI]

    Leung, K.N.; Ehlers, K.W.

    1984-12-04

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field. 14 figs.

  8. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  9. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  10. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2003-01-01

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  11. Dissipative effects in the worldline approach to black hole dynamics

    SciTech Connect (OSTI)

    Goldberger, Walter D.; Rothstein, Ira Z.

    2006-05-15

    We derive a long wavelength effective point-particle description of four-dimensional Schwarzschild black holes. In this effective theory, absorptive effects are incorporated by introducing degrees of freedom localized on the worldline that mimic the interaction between the horizon and bulk fields. The correlation functions of composite operators in this worldline theory can be obtained by standard matching calculations. For example, we obtain the low frequency two-point function of multipole worldline operators by relating them to the long wavelength graviton black hole absorptive cross section. The effective theory is then used to predict the leading effects of absorption in several astrophysically motivated examples, including the dynamics of nonrelativistic black hole binary inspirals and the motion of a small black hole in an arbitrary background geometry. Our results can be written compactly in terms of absorption cross sections, and can be easily applied to the dissipative dynamics of any compact object, e.g. neutron stars. The relation of our methodology to that developed in the context of the AdS/CFT correspondence is discussed.

  12. Coiled tubing used for slim hole re-entry

    SciTech Connect (OSTI)

    Traonmilin, E. ); Newman, K. )

    1992-02-17

    A coiled tubing unit with slim hole tools successfully re-entered and cored an existing Elf Aquitaine vertical well in the Paris basin in France. This experiment proved that coiled tubing could be used to drill, core, and test a slim hole well. Elf Aquitaine studied the use of coiled tubing for drilling inexpensive exploration wells in the Paris basin. As a result of this study, Elf believed that coiled tubing exploration drilling could significantly reduce exploration costs. This paper reports on a number of questions raised by this study: Can coiled tubing be used effectively to drill slim open hole How would the drilling rate compare with that of a conventional drilling rig If the rate were too slow, coiled tubing might not be economical. Can a straight vertical well be drilled Coiled tubing pipe has a residual curvature from bending over the reel and gooseneck. Will this curvature make it impossible to drill straight Can the coiled tubing also be used to take cores Once the hole is drilled, can it be tested with coiled tubing

  13. Topological black holes in Lovelock-Born-Infeld gravity

    SciTech Connect (OSTI)

    Dehghani, M. H.; Alinejadi, N.; Hendi, S. H.

    2008-05-15

    In this paper, we present topological black holes of third order Lovelock gravity in the presence of cosmological constant and nonlinear electromagnetic Born-Infeld field. Depending on the metric parameters, these solutions may be interpreted as black hole solutions with inner and outer event horizons, an extreme black hole or naked singularity. We investigate the thermodynamics of asymptotically flat solutions and show that the thermodynamic and conserved quantities of these black holes satisfy the first law of thermodynamic. We also endow the Ricci flat solutions with a global rotation and calculate the finite action and conserved quantities of these class of solutions by using the counterterm method. We compute the entropy through the use of the Gibbs-Duhem relation and find that the entropy obeys the area law. We obtain a Smarr-type formula for the mass as a function of the entropy, the angular momenta, and the charge, and compute temperature, angular velocities, and electric potential and show that these thermodynamic quantities coincide with their values which are computed through the use of geometry. Finally, we perform a stability analysis for this class of solutions in both the canonical and the grand-canonical ensemble and show that the presence of a nonlinear electromagnetic field and higher curvature terms has no effect on the stability of the black branes, and they are stable in the whole phase space.

  14. Hydrogen ion microlithography

    DOE Patents [OSTI]

    Tsuo, Y. Simon (Lakewood, CO); Deb, Satyen K. (Boulder, CO)

    1990-01-01

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing.

  15. Asymmetric ion trap

    DOE Patents [OSTI]

    Barlow, S.E.; Alexander, M.L.; Follansbee, J.C.

    1997-12-02

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode is disclosed. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity. 4 figs.

  16. Hydrogen ion microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.; Deb, S.K.

    1990-10-02

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

  17. Asymmetric ion trap

    DOE Patents [OSTI]

    Barlow, Stephan E.; Alexander, Michael L.; Follansbee, James C.

    1997-01-01

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

  18. Core Holes At Fort Bliss Area (Combs, Et Al., 1999) | Open Energy...

    Open Energy Info (EERE)

    hole, 4" diameter core) string. The lower percentage for the BSF string was primarily a fi,mctionof large voids encountered in the upper part of the hole, where the rock was more...

  19. Stability of Hořava-Lifshitz black holes in the context of AdS...

    Office of Scientific and Technical Information (OSTI)

    Stability of Hoava-Lifshitz black holes in the context of AdSCFT Citation Details In-Document Search Title: Stability of Hoava-Lifshitz black holes in the context of AdSCFT ...

  20. Geology of Geothermal Test Hole GT-2 Fenton Hill Site, July 1974...

    Open Energy Info (EERE)

    Geothermal Test Hole GT-2 Fenton Hill Site, July 1974 Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geology of Geothermal Test Hole GT-2 Fenton Hill...