National Library of Energy BETA

Sample records for holes thermal ion

  1. Thermal BEC black holes

    E-Print Network [OSTI]

    Roberto Casadio; Andrea Giugno; Octavian Micu; Alessio Orlandi

    2015-11-04

    We review some features of BEC models of black holes obtained by means of the HWF formalism. We consider the KG equation for a toy graviton field coupled to a static matter current in spherical symmetry. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with continuous occupation number. An attractive self-interaction is needed for bound states to form, so that (approximately) one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The HWF is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons), in agreement with semiclassical calculations and different from a single very massive particle. The spectrum contains a discrete ground state of energy $m$ (the bosons forming the black hole), and a continuous spectrum with energy $\\omega > m$ (representing the Hawking radiation and modelled with a Planckian distribution at the expected Hawking temperature). The $N$-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy $M = N m$ and a Planckian distribution for $E > M$ at the same Hawking temperature. The partition function is then found to yield the usual area law for the entropy, with a logarithmic correction related with the Hawking component. The backreaction of modes with $\\omega > m$ is also shown to reduce the Hawking flux and the evaporation properly stops for vanishing mass.

  2. Thermal Gradient Holes At Northern Basin & Range Region (Pritchett...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Northern Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes...

  3. Thermal Gravitational Waves from Primordial Black Holes

    E-Print Network [OSTI]

    C. Sivaram; Kenath Arun

    2010-05-19

    Thermal gravitational waves can be generated in various sources such as, in the cores of stars, white dwarfs and neutron stars due to the fermion collisions in the dense degenerate Fermi gas. Such high frequency thermal gravitational waves can also be produced during the collisions in a gamma ray burst or during the final stages of the evaporation of primordial black holes. Here we estimate the thermal gravitational waves from primordial black holes and estimate the integrated energy of the gravitational wave emission over the entire volume of the universe and over Hubble time. We also estimate the gravitational wave flux from gamma ray bursts and jets.

  4. Thermal stability of radiant black holes

    E-Print Network [OSTI]

    Parthasarathi Majumdar

    2006-04-06

    Beginning with a brief sketch of the derivation of Hawking's theorem of horizon area increase, based on the Raychaudhuri equation, we go on to discuss the issue as to whether generic black holes, undergoing Hawking radiation, can ever remain in stable thermal equilibrium with that radiation. We derive a universal criterion for such a stability, which relates the black hole mass and microcanonical entropy, both of which are well-defined within the context of the Isolated Horizon, and in principle calculable within Loop Quantum Gravity. The criterion is argued to hold even when thermal fluctuations of electric charge are considered, within a {\\it grand} canonical ensemble.

  5. Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen, Et Al., 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  6. Thermal Gradient Holes At Neal Hot Springs Geothermal Area (U...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  7. Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff & Bowers, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  8. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  9. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Conservation, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  10. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  11. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank & Ross, 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient...

  12. Thermal Gradient Holes At Central Nevada Seismic Zone Region...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient...

  13. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1998 - 2002...

  14. Thermal Gradient Holes At Walker-Lane Transitional Zone Region...

    Open Energy Info (EERE)

    Zone Region (Pritchett, 2004) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Thermal Gradient Holes Activity Date...

  15. Sensitivity of the interpretation of the experimental ion thermal...

    Office of Scientific and Technical Information (OSTI)

    thermal diffusivity to the determination of the ion conductive heat flux A moments equation formalism for the interpretation of the experimental ion thermal diffusivity from...

  16. Thermal Fluctuations in a Charged AdS Black Hole

    E-Print Network [OSTI]

    Pourhassan, B

    2015-01-01

    In this paper, we will analyze the effects of thermal fluctuations on a charged AdS black hole. This will be done by analyzing the corrections to black hole thermodynamics due to these thermal fluctuations. We will demonstrate that the entropy of this black hole get corrected by logarithmic term. We will also calculate other corrections to other important thermodynamic quantities for this black hole. Finally, we will use the corrected value of the specific heat to analyze the phase transition in this system.

  17. Thermal Fluctuations in a Charged AdS Black Hole

    E-Print Network [OSTI]

    B. Pourhassan; Mir Faizal

    2015-08-12

    In this paper, we will analyze the effects of thermal fluctuations on a charged AdS black hole. This will be done by analyzing the corrections to black hole thermodynamics due to these thermal fluctuations. We will demonstrate that the entropy of this black hole get corrected by logarithmic term. We will also calculate other corrections to other important thermodynamic quantities for this black hole. Finally, we will use the corrected value of the specific heat to analyze the phase transition in this system.

  18. Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient...

  19. Ion beam assisted deposition of thermal barrier coatings

    DOE Patents [OSTI]

    Youchison, Dennis L. (Albuquerque, NM); McDonald, Jimmie M. (Albuquerque, NM); Lutz, Thomas J. (Albuquerque, NM); Gallis, Michail A. (Albuquerque, NM)

    2010-11-23

    Methods and apparatus for depositing thermal barrier coatings on gas turbine blades and vanes using Electron Beam Physical Vapor Deposition (EBPVD) combined with Ion Beam Assisted Deposition (IBAD).

  20. Category:Thermal Gradient Holes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,Thermal Gradient Holes Jump to: navigation, search

  1. Confined Thermal Multicharged Ions Produced by Synchrotron Radiation 

    E-Print Network [OSTI]

    Church, David A.; Kravis, S. D.; Sellin, I. A.; Levin, J. C.; Short, R. T.; Meron, M.; Johnson, B. M.; Jones, K. W.

    1987-01-01

    Brookhaven National Laboratory, Upton, New York 11973 (Received 2 April 1987) Synchrotron x rays have been used to produce a confined multicharged ion gas near room tem- perature. Comparison of charge-state-number observations characteristic of ion... formation and of ion storage, together with measurements of Ar-to-Ar~+ electron-transfer rate coefficients, provide information to estimate time constants for relaxation to thermal equilibrium and other stored-ion properties important to further...

  2. Hawking non-thermal and Purely thermal radiations of Kerr-de Sitter black hole by Hamilton-Jacobi method

    E-Print Network [OSTI]

    M. Ilias Hossain; M. Atiqur Rahman

    2013-08-31

    Incorporating Parikh and Wilczek's opinion to the Kerr de-Sitter (KdS) black hole Hawking non-thermal and purely thermal radiations have been investigated using Hamilton-Jacobi method. We have taken the background spacetime of KdS black hole as dynamical, involving the self-gravitation effect of the emitted particles, energy and angular momentum has been taken as conserved and show that the tunneling rate is related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum. The explored results gives a correction to the Hawking radiation of KdS black hole.

  3. Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit...

    Open Energy Info (EERE)

    gradient holes up to 500' deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five....

  4. Hawking Non-thermal and Thermal Radiations of Schwarzschild Anti-de Sitter Black Hole by Hamilton-Jacobi method

    E-Print Network [OSTI]

    M. Atiqur Rahman; M. Ilias Hossain

    2012-05-07

    The massive particles tunneling method has been used to investigate the Hawking non-thermal and purely thermal radiations of Schwarzschild Anti-de Sitter (SAdS) black hole. Considering the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles the imaginary part of the action has been derived from Hamilton-Jacobi equation. Using the conservation laws of energy and angular momentum we have showed that the non-thermal and purely thermal tunneling rates are related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum. The result obtained for SAdS black hole is also in accordance with Parikh and Wilczek\\rq s opinion and gives a correction to the Hawking radiation of SAdS black hole.

  5. Thermal, chemical and spectral equilibration in heavy-ion collisions

    E-Print Network [OSTI]

    Gábor András Almási; György Wolf

    2014-07-08

    We have considered the equilibration in a relativistic heavy ion collision using our transport model. We applied periodic boundary conditions to close the system in a box. We found that the thermal equilibration takes place in the first 20-40 fm/c which time is comparable to the duration of a heavy ion collision. The chemical equilibration is a much slower process and the system does not equilibrate in a heavy ion collision. We have also shown that the mass spectra of broad resonances immediately follows their in-medium spectral functions.

  6. Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff...

    Open Energy Info (EERE)

    holes drilled References R.A. Cunniff, R.L. Bowers (2003) Final Report: Enhanced Geothermal Systems Technology Phase II: Animas Valley, New Mexico Additional References...

  7. UNIVERSITY OF CALIFORNIA, Turbulent Transport of Energetic Ions and Thermal Plasma

    E-Print Network [OSTI]

    Heidbrink, William W.

    UNIVERSITY OF CALIFORNIA, IRVINE Turbulent Transport of Energetic Ions and Thermal Plasma ............................................................................................................ 1 1.1 Fast Ion Transport in Microturbulence.................................................................................................1 1.2 Thermal Plasma Transport in Electrostatic Waves

  8. Measurements of thermal photons in heavy ion collisions with PHENIX

    E-Print Network [OSTI]

    Torsten Dahms; for the PHENIX Collaboration

    2008-04-29

    Thermal photons are thought to be the ideal probe to measure the temperature of the quark-gluon plasma created in heavy ion collisions. PHENIX has measured direct photons with p_T < 5 GeV/c via their internal conversions into e+e- pairs in Au+Au collisions at sqrt(s_NN) = 200 GeV and has now provided a baseline measurement from p+p data.

  9. Thermal Action and Specific Heat of the Five-Dimensional Non-Extremal Black Hole

    E-Print Network [OSTI]

    Shijong Ryang

    1997-01-28

    We construct the Euclidean on-shell action for the five-dimensional non-extremal black hole with multiple electric charges. We show that this thermal action agrees with one half of the entropy. This agreement is argued to be related to the generalized Smarr formula of the five-dimensional black hole mass. Through the calculation of the specific heat far off extremality we observe that a phase transition occurs.

  10. Thermodynamics of de Sitter Black Holes: Thermal Cosmological Constant

    E-Print Network [OSTI]

    Yuichi Sekiwa

    2006-04-10

    We study the thermodynamic properties associated with the black hole event horizon and the cosmological horizon for black hole solutions in asymptotically de Sitter spacetimes. We examine thermodynamics of these horizons on the basis of the conserved charges according to Teitelboim's method. In particular, we have succeeded in deriving the generalized Smarr formula among thermodynamical quantities in a simple and natural way. We then show that cosmological constant must decrease when one takes into account the quantum effect. These observations have been obtained if and only if cosmological constant plays the role of a thermodynamical state variable. We also touch upon the relation between inflation of our universe and a phase transition of black holes.

  11. Thermal Gradient Holes At North Brawley Geothermal Area (Matlick...

    Open Energy Info (EERE)

    gradient wells and Grace Geothermal Corporation drilled 13. Unocal's wells were 76 m deep and Grace Geothermal's were 152 m deep. The thermal gradient wells revealed an anomaly...

  12. Thermal Gradient Holes At North Brawley Geothermal Area (Edmunds...

    Open Energy Info (EERE)

    of the North Brawley, Heber, East Mesa, and Salton Sea Geothermal Areas. Notes Well logs, thermal gradient data, and magnetic data were correlated to form a better geologic...

  13. Thermal Gradient Holes At Waunita Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    regional heat flux around the hot springs and potentially identify the location of the geothermal reservoir feeding the hot springs Notes Eight thermal gradient boreholes were...

  14. The change of microstructure and thermal properties in ion irradiated carbon nanotube mats as a function of ion penetration depth

    SciTech Connect (OSTI)

    Aitkaliyeva, A. [Materials Science and Engineering Program, Texas A and M University, College Station, Texas 77843 (United States)] [Materials Science and Engineering Program, Texas A and M University, College Station, Texas 77843 (United States); Shao, L. [Materials Science and Engineering Program, Texas A and M University, College Station, Texas 77843 (United States) [Materials Science and Engineering Program, Texas A and M University, College Station, Texas 77843 (United States); Department of Nuclear Engineering, Texas A and M University, College Station, Texas 77843 (United States)

    2013-02-11

    A stack of three carbon nanotube (CNT) mats was irradiated with 3 MeV He ions. The change in structural and thermal properties of individual mats as a function of ion penetration depth was characterized using electron microscopy and laser flash techniques. Ion irradiation can enhance thermal conductivity of the mats by introducing inter-tube displacements, which improve phonon transport across adjacent nanotubes. The enhancement, however, is reduced at higher damage levels due to the increasing phonon-defect scattering within the tubes. This study demonstrates the feasibility of using ion irradiation to manipulate thermal transport in carbon nanotubes.

  15. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries

    E-Print Network [OSTI]

    Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries g h l i g h t s We demonstrated that thermal management of Li-ion batteries improves dramatically incorporation leads to significant decrease in the temperature rise in Li-ion batteries. Graphene leads

  16. An analytical electro-thermal model for Lithium-ion Maryam Yazdanpour*

    E-Print Network [OSTI]

    Bahrami, Majid

    An analytical electro-thermal model for Lithium-ion Batteries Maryam Yazdanpour* , Peyman Taheri with lithium-ion chemistry are the preferred candidate to power hybrid and electric vehicles (HEVs), due (around 5% per month), and long cycling life [1]. Nonetheless, thermal management of large-scale lithium-ion

  17. Thermal Analysis for Ion-Exchange Column System

    SciTech Connect (OSTI)

    Lee, Si Y.; King, William D.

    2012-12-20

    Models have been developed to simulate the thermal characteristics of crystalline silicotitanate ion exchange media fully loaded with radioactive cesium either in a column configuration or distributed within a waste storage tank. This work was conducted to support the design and operation of a waste treatment process focused on treating dissolved, high-sodium salt waste solutions for the removal of specific radionuclides. The ion exchange column will be installed inside a high level waste storage tank at the Savannah River Site. After cesium loading, the ion exchange media may be transferred to the waste tank floor for interim storage. Models were used to predict temperature profiles in these areas of the system where the cesium-loaded media is expected to lead to localized regions of elevated temperature due to radiolytic decay. Normal operating conditions and accident scenarios (including loss of solution flow, inadvertent drainage, and loss of active cooling) were evaluated for the ion exchange column using bounding conditions to establish the design safety basis. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. In-tank modeling results revealed that an idealized hemispherical mound shape leads to the highest tank floor temperatures. In contrast, even large volumes of CST distributed in a flat layer with a cylindrical shape do not result in significant floor heating.

  18. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries

    E-Print Network [OSTI]

    Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries to a transformative change in thermal management of Li-ion batteries. a r t i c l e i n f o Article history: Received September 2013 Keywords: Battery Thermal management Graphene Phase change material a b s t r a c t Li

  19. MAXIMUM POWER ESTIMATION OF LITHIUM-ION BATTERIES ACCOUNTING FOR THERMAL AND ELECTRICAL CONSTRAINTS

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    MAXIMUM POWER ESTIMATION OF LITHIUM-ION BATTERIES ACCOUNTING FOR THERMAL AND ELECTRICAL CONSTRAINTS on the maximum deliverable power is essential to protect lithium-ion batteries from over- charge Terminal voltage Voc Open circuit voltage of a battery 1 INTRODUCTION Lithium-ion batteries have been used

  20. K-Shell Hole Production by Light-Ions in Region Eta 1/2 =] 1 

    E-Print Network [OSTI]

    Ford, A. Lewis; Fitchard, E.; Reading, John F.

    1977-01-01

    1976) An accurate numerical calculation of K-shell hole production by light ions is presented for nonrelativistic target atoms in the projectile energy region q'" (= hv/Z?e ) & 1. Both hydrogenic and Hartree-Fock target- atom potentials were... energies and atoms. Both hydro- genic and Hartree-Fock models have been studied and the results compared with each other. We have calculated both x? and absolute cross sec- tions o (K) for aluminum, titanium, and nickel. We have also fitted our results...

  1. A study of the ignition processes in a center-hole-fired thermal battery

    SciTech Connect (OSTI)

    Guidotti, R.A.; Reinhardt, F.W.

    1998-04-01

    The ignition processes that take place during activation of a 16 cell, center hole fired thermal battery were examined by monitoring the voltage of each cell during activation. The average rise time of each cell to a voltage of 1.125 V was determined for the LiSi/LiCl-LiBr-LiF/FeS{sub 2} electrochemical system. The effects of heat pellet composition, center hole diameter, and the load on the activation parameters were examined for three different igniters. A large variability in individual cell performance was evident along with cell reversal, depending on the location of the cell in the stack. It was not possible to draw detailed statistical information of the relative ignition sequence due to the intrinsic large scatter in the data.

  2. Hole boring in a DT pellet and fast ion ignition with ultra-intense laser pulses

    E-Print Network [OSTI]

    Naumova, N; Tikhonchuk, V T; Labaune, C; Sokolov, I V; Mourou, G; 10.1103/PhysRevLett.102.025002

    2009-01-01

    Recently achieved high intensities of short laser pulses open new prospects in their application to hole boring in inhomogeneous overdense plasmas and for ignition in precompressed DT fusion targets. A simple analytical model and numerical simulations demonstrate that pulses with intensities exceeding 1022 W/cm2 may penetrate deeply into the plasma as a result of efficient ponderomotive acceleration of ions in the forward direction. The penetration depth as big as hundreds of microns depends on the laser fluence, which has to exceed a few tens of GJ/cm2. The fast ions, accelerated at the bottom of the channel with an efficiency of more than 20%, show a high directionality and may heat the precompressed target core to fusion conditions.

  3. Analysis of Heat Dissipation in Li-Ion Cells & Modules for Modeling of Thermal Runaway (Presentation)

    SciTech Connect (OSTI)

    Kim, G.-H.; Pesaran, A.

    2007-05-15

    The objectives of this study are: (1) To develop 3D Li-Ion battery thermal abuse ''reaction'' models for cell and module analysis; (2) To understand the mechanisms and interactions between heat transfer and chemical reactions during thermal runaway for Li-Ion cells and modules; (3) To develop a tool and methodology to support the design of abuse-tolerant Li-Ion battery systems for PHEVs/HEVs; and (4) To help battery developers accelerate delivery of abuse-tolerant Li-Ion battery systems in support of the FreedomCAR's Energy Storage Program.

  4. Effective versus ion thermal temperatures in the Weizmann Ne Z-pinch: Modeling and stagnation physics

    E-Print Network [OSTI]

    Zarnitsky, Yuri

    Effective versus ion thermal temperatures in the Weizmann Ne Z-pinch: Modeling and stagnation of Technology, Haifa, Israel 5 National Security Technologies, LLC, Las Vegas, Nevada 89144, USA (Received 23 thermal and effective temperatures is investigated through simulations of the Ne gas puff z-pinch reported

  5. Thermal stability of LiPF6EC:EMC electrolyte for lithium ion batteries Gerardine G. Bottea

    E-Print Network [OSTI]

    Thermal stability of LiPF6±EC:EMC electrolyte for lithium ion batteries Gerardine G. Bottea , Ralph scanning calorimeter; Lithium ion batteries; Electrolyte; Thermal stability; Decomposition 1. Introduction Despite the improvement and developments in safety of the lithium ion batteries (PTC, CID, shutdown

  6. Ion Thermal Decoupling and Species Separation in Shock-Driven Implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rinderknecht, Hans G. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center; Rosenberg, M. J. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center; Li, C. K. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center; Hoffman, N. M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kagan, G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zylstra, A. B. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center; Sio, H. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center; Frenje, J. A, [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center; Gatu Johnson, M. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center; Seguin, F. H. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center; Petrasso, R. D. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center; Amendt, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bellei, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilks, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Delettrez, J. [Lab. for Laser Energetics, Rochester, NY (United States); Glebov, V. Yu. [Lab. for Laser Energetics, Rochester, NY (United States); Stoeckl, C. [Lab. for Laser Energetics, Rochester, NY (United States); Sangster, T. C. [Lab. for Laser Energetics, Rochester, NY (United States); Meyerhofer, D. D. [Lab. for Laser Energetics, Rochester, NY (United States); Nikroo, A. [General Atomics, San Diego, CA (United States)

    2015-01-01

    Anomalous reduction of the fusion yields by 50% and anomalous scaling of the burn-averaged ion temperatures with the ion-species fraction has been observed for the first time in DHe3-filled shock-driven inertial confinement fusion implosions. Two ion kinetic mechanisms are used to explain the anomalous observations: thermal decoupling of the D and He3 populations and diffusive species separation. The observed insensitivity of ion temperature to a varying deuterium fraction is shown to be a signature of ion thermal decoupling in shock-heated plasmas. The burn-averaged deuterium fraction calculated from the experimental data demonstrates a reduction in the average core deuterium density, as predicted by simulations that use a diffusion model. Accounting for each of these effects in simulations reproduces the observed yield trends.

  7. Ion Thermal Decoupling and Species Separation in Shock-Driven Implosions

    SciTech Connect (OSTI)

    Rinderknecht, Hans G.; Rosenberg, M. J.; Li, C. K.; Hoffman, N. M.; Kagan, G.; Zylstra, A. B.; Sio, H.; Frenje, J. A,; Gatu Johnson, M.; Seguin, F. H.; Petrasso, R. D.; Amendt, P.; Bellei, C.; Wilks, S.; Delettrez, J.; Glebov, V. Yu.; Stoeckl, C.; Sangster, T. C.; Meyerhofer, D. D.; Nikroo, A.

    2015-01-01

    Anomalous reduction of the fusion yields by 50% and anomalous scaling of the burn-averaged ion temperatures with the ion-species fraction has been observed for the first time in DHe3-filled shock-driven inertial confinement fusion implosions. Two ion kinetic mechanisms are used to explain the anomalous observations: thermal decoupling of the D and He3 populations and diffusive species separation. The observed insensitivity of ion temperature to a varying deuterium fraction is shown to be a signature of ion thermal decoupling in shock-heated plasmas. The burn-averaged deuterium fraction calculated from the experimental data demonstrates a reduction in the average core deuterium density, as predicted by simulations that use a diffusion model. Accounting for each of these effects in simulations reproduces the observed yield trends.

  8. Ion Thermal Decoupling and Species Separation in Shock-Driven Implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rinderknecht, Hans G.; Rosenberg, M. J.; Li, C. K.; Hoffman, N. M.; Kagan, G.; Zylstra, A. B.; Sio, H.; Johnson, M. Gatu; Seguin, F. H.; Petrasso, R. D.; et al

    2015-01-14

    Anomalous reduction of the fusion yields by 50% and anomalous scaling of the burn-averaged ion temperatures with the ion-species fraction has been observed for the first time in DHe3-filled shock-driven inertial confinement fusion implosions. Two ion kinetic mechanisms are used to explain the anomalous observations: thermal decoupling of the D and He3 populations and diffusive species separation. The observed insensitivity of ion temperature to a varying deuterium fraction is shown to be a signature of ion thermal decoupling in shock-heated plasmas. The burn-averaged deuterium fraction calculated from the experimental data demonstrates a reduction in the average core deuterium density, asmore »predicted by simulations that use a diffusion model. Accounting for each of these effects in simulations reproduces the observed yield trends.« less

  9. Sheath formation criterion in magnetized electronegative plasmas with thermal ions

    SciTech Connect (OSTI)

    Hatami, M. M. [Physics Department of K N Toosi University of Technology, 15418-49611 Tehran (Iran, Islamic Republic of); Shokri, B. [Physics Department and Laser-Plasma Research Institute of Shahid Beheshti University, G. C., Evin, Tehran (Iran, Islamic Republic of)

    2013-03-15

    Taking into account the effect of collisions and positive ion temperatures, the sheath formation criterion is investigated in a weakly magnetized electronegative plasma consisting of electrons, negative and positive ions by using the hydrodynamics equations. It is assumed that the electron and negative ion density distributions are the Boltzmann distribution with two different temperatures. Also, it is assumed that the velocity of positive ions at the sheath edge is not normal to the wall (oblique entrance). Our results show that a sheath region will be formed when the initial velocity of positive ions or the ion Mach number M lies in a specific interval with particular upper and lower limits. Also, it is shown that the presence of the magnetic field affects both of these limits. Moreover, as an practical application, the density distribution of charged particles in the sheath region is studied for an allowable value of M, and it is seen that monotonically reduction of the positive ion density distribution leading to the sheath formation occurs only when M lies between two above mentioned limits.

  10. Near-Thermal Radiation in Detectors, Mirrors and Black Holes: A Stochastic Approach

    E-Print Network [OSTI]

    Alpan Raval; B. L. Hu; Don Koks

    1996-06-27

    In analyzing the nature of thermal radiance experienced by an accelerated observer (Unruh effect), an eternal black hole (Hawking effect) and in certain types of cosmological expansion, one of us proposed a unifying viewpoint that these can be understood as arising from the vacuum fluctuations of the quantum field being subjected to an exponential scale transformation. This viewpoint, together with our recently developed stochastic theory of particle-field interaction understood as quantum open systems described by the influence functional formalism, can be used to address situations where the spacetime possesses an event horizon only asymptotically, or none at all. Examples studied here include detectors moving at uniform acceleration only asymptotically or for a finite time, a moving mirror, and a collapsing mass. We show that in such systems radiance indeed is observed, albeit not in a precise Planckian spectrum. The deviation therefrom is determined by a parameter which measures the departure from uniform acceleration or from exact exponential expansion. These results are expected to be useful for the investigation of non-equilibrium black hole thermodynamics and the linear response regime of backreaction problems in semiclassical gravity.

  11. Multi-Node Thermal System Model for Lithium-Ion Battery Packs: Preprint

    SciTech Connect (OSTI)

    Shi, Ying; Smith, Kandler; Wood, Eric; Pesaran, Ahmad

    2015-09-14

    Temperature is one of the main factors that controls the degradation in lithium ion batteries. Accurate knowledge and control of cell temperatures in a pack helps the battery management system (BMS) to maximize cell utilization and ensure pack safety and service life. In a pack with arrays of cells, a cells temperature is not only affected by its own thermal characteristics but also by its neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs. neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs.

  12. Heating of thermal non-equilibrium ions by Alfvén wave via nonresonant interaction

    SciTech Connect (OSTI)

    Liu, Hai-Feng; Wang, Shi-Qing [Southwestern Institute of Physics, Chengdu 610041 (China) [Southwestern Institute of Physics, Chengdu 610041 (China); The Engineering and Technical College of Chengdu University of Technology, Leshan 614000 (China); Li, Ke-Hua [The Engineering and Technical College of Chengdu University of Technology, Leshan 614000 (China)] [The Engineering and Technical College of Chengdu University of Technology, Leshan 614000 (China)

    2013-10-15

    Pickup of thermal non-equilibrium ions by Alfvén wave via nonresonant wave-particle interaction is investigated by means of analytical test-particle theory. Some interesting and new results are found. No matter what the initial velocity distribution is, if the background magnetic field, the Alfvén speed, and the Alfvén magnetic field are fixed, the average parallel velocity never changes when t??. Heating effects in the perpendicular and parallel direction just depend on the initial temperature, and the perpendicular temperature increase is more prominent. It is noted that the heating effect of thermal non-equilibrium ions (Kappa ions) is weaker than that of the Maxwellian. This phenomenon may be relative to the heating of ions in the solar corona as well as in some toroidal confinement fusion devices.

  13. Electrochemical-thermal modeling and microscale phase change for passive internal thermal management of lithium ion batteries.

    SciTech Connect (OSTI)

    Fuller, Thomas F.; Bandhauer, Todd; Garimella, Srinivas

    2012-01-01

    A fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the impact of different thermal management strategies on battery performance. In contrast to previous modeling efforts focused either exclusively on particle electrochemistry on the one hand or overall vehicle simulations on the other, the present work predicts local electrochemical reaction rates using temperature-dependent data on commercially available batteries designed for high rates (C/LiFePO{sub 4}) in a computationally efficient manner. Simulation results show that conventional external cooling systems for these batteries, which have a low composite thermal conductivity ({approx}1 W/m-K), cause either large temperature rises or internal temperature gradients. Thus, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. Although there have been prior investigations of phase change at the microscales, fluid flow at the conditions expected here is not well understood. A first-principles based cooling system performance model is developed and validated experimentally, and is integrated into the coupled electrochemical-thermal model for assessment of performance improvement relative to conventional thermal management strategies. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid. Thus, the minimization of peak temperatures and gradients within batteries allow increased power and energy densities unencumbered by thermal limitations.

  14. Thermal Radiation from Heavy Ion Collisions at RHIC

    E-Print Network [OSTI]

    Jan-e Alam

    2007-03-19

    The direct photon spectrum measured by the PHENIX collaboration in Au + Au collisions at sqrt{s_{NN}}=200 GeV has been analyzed. It has been shown that the data can be reproduced reasonably well by assuming a deconfined state of thermalized quarks and gluons. The effects of the equation of state on the value of the initial temperature have been studied. The modifications of hadronic properties at non-zero temperature have been taken in to account.

  15. Cavitation and thermal photon production in relativistic heavy ion collisions

    E-Print Network [OSTI]

    Jitesh R. Bhatt; Hiranmaya Mishra; V. Sreekanth

    2010-11-08

    We investigate the thermal photon production-rates using one dimensional boost-invariant second order relativistic hydrodynamics to find proper time evolution of the energy density and the temperature. The effect of bulk-viscosity and non-ideal equation of state are taken into account in a manner consistent with recent lattice QCD estimates. It is shown that the \\textit{non-ideal} gas equation of state i.e $\\epsilon-3 P \

  16. Simplified Electrochemical and Thermal Model of LiFePO4-Graphite Li-Ion Batteries for Fast Charge Applications

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Simplified Electrochemical and Thermal Model of LiFePO4- Graphite Li-Ion Batteries for Fast Charge, a simplified electrochemical and thermal model of LiFePO4-graphite based Li-ion batteries is developed for battery management system (BMS) applications and comprehensive aging investigations. Based on a modified

  17. A Simplified Electrochemical and Thermal Aging Model of LiFePO4-Graphite Li-ion Batteries

    E-Print Network [OSTI]

    1 A Simplified Electrochemical and Thermal Aging Model of LiFePO4-Graphite Li-ion Batteries: Power of a commercial LiFePO4-graphite Li-ion battery. Compared to the isothermal reference, the mechanism of porosity;2 Due to their high power and energy densities, Li-ion technologies are the leading battery systems

  18. Turbulent thermalization process in high-energy heavy-ion collisions

    E-Print Network [OSTI]

    Jürgen Berges; Björn Schenke; Sören Schlichting; Raju Venugopalan

    2014-09-05

    We discuss the onset of the thermalization process in high-energy heavy-ion collisions from a weak coupling perspective, using classical-statistical real-time lattice simulations as a first principles tool to study the pre-equilibrium dynamics. Most remarkably, we find that the thermalization process is governed by a universal attractor, where the space-time evolution of the plasma becomes independent of the initial conditions and exhibits the self-similar dynamics characteristic of wave turbulence. We discuss the consequences of our weak coupling results for the thermalization process in heavy-ion experiments and briefly comment on the use of weak coupling techniques at larger values of the coupling.

  19. Temporal evolution of solar wind ion composition and their source coronal holes during the declining phase of cycle 23. I. Low-latitude extension of polar coronal holes

    SciTech Connect (OSTI)

    Ko, Yuan-Kuen; Wang, Yi-Ming; Muglach, Karin; Young, Peter R.; Lepri, Susan T.

    2014-06-01

    We analyzed 27 solar wind (SW) intervals during the declining phase of cycle 23, whose source coronal holes (CHs) can be unambiguously identified and are associated with one of the polar CHs. We found that the SW ions have a temporal trend of decreasing ionization state, and such a trend is different between the slow and fast SW. The photospheric magnetic field, both inside and at the outside boundary of the CH, also exhibits a trend of decrease with time. However, EUV line emissions from different layers of the atmosphere exhibit different temporal trends. The coronal emission inside the CH generally increases toward the CH boundary as the underlying field increases in strength and becomes less unipolar. In contrast, this relationship is not seen in the coronal emission averaged over the entire CH. For C and O SW ions that freeze-in at lower altitude, stronger correlation between their ionization states and field strength (both signed and unsigned) appears in the slow SW, while for Fe ions that freeze-in at higher altitude, stronger correlation appears in the fast SW. Such correlations are seen both inside the CH and at its boundary region. On the other hand, the coronal electron temperature correlates well with the SW ion composition only in the boundary region. Our analyses, although not able to determine the likely footpoint locations of the SW of different speeds, raise many outstanding questions for how the SW is heated and accelerated in response to the long-term evolution of the solar magnetic field.

  20. Gallium ion implantation greatly reduces thermal conductivity and enhances electronic one of ZnO nanowires

    SciTech Connect (OSTI)

    Xia, Minggang, E-mail: xiamg@mail.xjtu.edu.cn [Laboratory of Nanostructure and its Physics Properties, Department of Optical Information Science and Technology, Department of Applied Physics, and MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, 710049 China (China); Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117542 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Cheng, Zhaofang; Han, Jinyun; Zhang, Shengli [Laboratory of Nanostructure and its Physics Properties, Department of Optical Information Science and Technology, Department of Applied Physics, and MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, 710049 China (China); Zheng, Minrui [Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117542 (Singapore); Sow, Chorng-Haur [Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117542 (Singapore); National University of Singapore Nanoscience and Nanotechnology Initiative, National University of Singapore, Singapore 117542 (Singapore); Thong, John T. L. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Li, Baowen [Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117542 (Singapore); National University of Singapore Nanoscience and Nanotechnology Initiative, National University of Singapore, Singapore 117542 (Singapore); Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China)

    2014-05-15

    The electrical and thermal conductivities are measured for individual zinc oxide (ZnO) nanowires with and without gallium ion (Ga{sup +}) implantation at room temperature. Our results show that Ga{sup +} implantation enhances electrical conductivity by one order of magnitude from 1.01 × 10{sup 3} ?{sup ?1}m{sup ?1} to 1.46 × 10{sup 4} ?{sup ?1}m{sup ?1} and reduces its thermal conductivity by one order of magnitude from 12.7 Wm{sup ?1}K{sup ?1} to 1.22 Wm{sup ?1}K{sup ?1} for ZnO nanowires of 100 nm in diameter. The measured thermal conductivities are in good agreement with those in theoretical simulation. The increase of electrical conductivity origins in electron donor doping by Ga{sup +} implantation and the decrease of thermal conductivity is due to the longitudinal and transverse acoustic phonons scattering by Ga{sup +} point scattering. For pristine ZnO nanowires, the thermal conductivity decreases only two times when its diameter reduces from 100 nm to 46 nm. Therefore, Ga{sup +}-implantation may be a more effective method than diameter reduction in improving thermoelectric performance.

  1. Rarefactive and compressive soliton waves in unmagnetized dusty plasma with non-thermal electron and ion distribution

    SciTech Connect (OSTI)

    Eslami, Esmaeil Baraz, Rasoul

    2014-02-15

    Sagdeev's pseudo potential method is employed to study dust acoustic solitary waves in an unmagnetized plasma containing negatively charged dusts with non-thermal electron and ion. The range of parameters for the existence of solitary waves using the analytical expression of the Sagdeev potential has been found. It is observed that, depending on the values of the plasma parameters like ion to electron temperature ratio ?, non-thermal parameters ? and ?, electron to ion density ratio ?, and the value of the Mach number M, both rarefactive and compressive solitary waves may exist.

  2. Thermalization of color gauge fields in high energy heavy ion collisions

    SciTech Connect (OSTI)

    Iwazaki, Aiichi [International Politics Economics, Nishogakusha University, Ohi Kashiwa Chiba 277-8585 (Japan)

    2008-03-15

    We discuss the quantum mechanical decay of the color magnetic field generated initially during high-energy heavy-ion collisions. The decay is caused by Nielsen-Olesen unstable modes and is accomplished possibly in a period <1 fm/c. We show that the decay products (i.e., incoherent gluons) may be thermalized in a sufficiently short period (<1 fm/c). The precise determination of the period is made by calculating the two-point function of the color magnetic field in a color glass condensate model.

  3. Wettability and thermal stability of fluorocarbon films deposited by deep reactive ion etching

    SciTech Connect (OSTI)

    Zhuang Yanxin; Menon, Aric [MIC, Department of Micro and Nanotechnology, Technical University of Denmark, Building 345 east, DK-2800, Kgs. Lyngby (Denmark)

    2005-05-01

    Fluorocarbon films have low surface energy and can be used as antistiction coating for microelectromechanical systems. By using the passivation process in a deep reactive ion etcher, the fluorocarbon films can be deposited and integrated with other processes in the clean room. The properties such as wettability, surface energies, and thermal stability, have been investigated in detail. It has been found that the fluorocarbon films deposited have a static water contact angle of 109 deg. and a surface energy around 14.5 mJ/m{sup 2}, whereas as-received and as-deposited single silicon, poly silicon, and silicon nitride have a much lower water contact angle and a higher surface energy. The fluorocarbon films keep their good hydrophobicity up to 300 deg. C, and the degradation temperature depends on the thickness of the fluorocarbon films. Decomposition happens at lower temperatures (100-300 deg. C) even though the decomposition rate is quite slow without affecting the contact angle. The decomposition mechanism at low temperatures (less than 300 deg. C) might be different from that at high temperatures. It has been shown that the fluorocarbon film deposited by a deep reactive ion etcher tool provides very high hydrophobicity, low surface energy, good thermal stability, and antiadhesion behavior for use in nanoimprinting lithography.

  4. Li-Ion polymer cells thermal property changes as a function of cycle-life

    SciTech Connect (OSTI)

    Maleki, Hossein; Wang, Hsin; Porter, Wallace D; Hallmark, Jerry

    2014-01-01

    The impact of elevated temperature chargeedischarge cycling on thermal conductivity (K-value) of Lithium Ion Polymer (LIP) cells of various chemistries from three different manufacturers was investigated. These included high voltage (Graphite/LiCoO2:3.0e4.35 V), wide voltage (Si:C/LiCoO2:2.7e4.35 V) and conventional (Graphite/LiCoO2:3.0e4.2 V) chemistries. Investigation results show limited variability within the in-plane and through-plane K-values for the fresh cells with graphite-based anodes from all three suppliers. After 500 cycles at 45 C, in-plane and through-plane K-values of the high voltage cells reduced less vs. those for the wide voltage cells. Such results suggest that high temperature cycling could have a greater impact on thermal properties of Si:C cells than on the LIP cells with graphite (Gr) anode cells we tested. This difference is due to the excess swelling of Si:C-anode based cells vs. Gr-anode cells during cycling, especially at elevated temperatures. Thermal modeling is used to evaluate the impact of K-value changes, due to cycles at 45 C, on the cells internal heat propagation under internal short circuit condition that leads to localized meltdown of the separator.

  5. Acceleration of relativistic electrons by magnetohydrodynamic turbulence: Implications for non-thermal emission from black hole accretion disks

    SciTech Connect (OSTI)

    Lynn, Jacob W.; Quataert, Eliot; Chandran, Benjamin D. G.; Parrish, Ian J.

    2014-08-10

    We use analytic estimates and numerical simulations of test particles interacting with magnetohydrodynamic (MHD) turbulence to show that subsonic MHD turbulence produces efficient second-order Fermi acceleration of relativistic particles. This acceleration is not well described by standard quasi-linear theory but is a consequence of resonance broadening of wave-particle interactions in MHD turbulence. We provide momentum diffusion coefficients that can be used for astrophysical and heliospheric applications and discuss the implications of our results for accretion flows onto black holes. In particular, we show that particle acceleration by subsonic turbulence in radiatively inefficient accretion flows can produce a non-thermal tail in the electron distribution function that is likely important for modeling and interpreting the emission from low-luminosity systems such as Sgr A* and M87.

  6. Plasma molding over surface topography: Energy and angular distribution of ions extracted out of large holes

    E-Print Network [OSTI]

    Economou, Demetre J.

    Plasma molding over surface topography: Energy and angular distribution of ions extracted out November 2001 Plasma molding over surface topography was investigated by measuring the energy and angular of plasma to mold around surfaces of com- plex shape finds application in coating of curved objects, etching

  7. Three-Dimensional Thermal-Electrochemical Coupled Model for Spirally Wound Large-Format Lithium-Ion Batteries (Presentation)

    SciTech Connect (OSTI)

    Lee, K. J.; Smith K.; Kim, G. H.

    2011-04-01

    This presentation discusses the behavior of spirally wound large-format Li-ion batteries with respect to their design. The objectives of the study include developing thermal and electrochemical models resolving 3-dimensional spirally wound structures of cylindrical cells, understanding the mechanisms and interactions between local electrochemical reactions and macroscopic heat and electron transfers, and developing a tool and methodology to support macroscopic designs of cylindrical Li-ion battery cells.

  8. Turbulent thermalization process in heavy-ion collisions at ultrarelativistic energies

    E-Print Network [OSTI]

    J. Berges; K. Boguslavski; S. Schlichting; R. Venugopalan

    2014-03-02

    The non-equilibrium evolution of heavy-ion collisions is studied in the limit of weak coupling at very high energy employing lattice simulations of the classical Yang-Mills equations. Performing the largest classical-statistical simulations to date, we find that the dynamics of the longitudinally expanding plasma becomes independent of the details of the initial conditions. After a transient regime dominated by plasma instabilities and free streaming, the subsequent space-time evolution is governed by a nonthermal fixed point, where the system exhibits the self-similar dynamics characteristic of wave turbulence. This allows us to distinguish between different kinetic scenarios in the classical regime. Within the accuracy of our simulations, the scaling behavior found is consistent with the ``bottom-up" thermalization scenario.

  9. Irradiation of Nuclear Track Emulsions with Thermal Neutrons, Heavy Ions, and Muons

    E-Print Network [OSTI]

    D. A. Artemenkov; V. Bradnova; A. A. Zaitsev; P. I. Zarubin; I. G. Zarubina; R. R. Kattabekov; K. Z. Mamatkulov; V. V. Rusakova

    2015-08-11

    Exposures of test samples of nuclear track emulsion were analyzed. Angular and energy correlations of products originating from the thermal-neutron-induced reaction n$_{th} + ^{10}$B $\\rightarrow ^{7}$Li $+ (\\gamma) + \\alpha$ were studied in nuclear tack emulsions enriched in boron. Nuclear track emulsions were also irradiated with $^{86}$Kr$^{+17}$ and $^{132}$Xe$^{+26}$ of energy about 1.2 MeV per nucleon. Measurements of ranges of heavy ions in nuclear track emulsions made it possible to determine their energies on the basis of the SRIM model. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsions with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three alpha particles are indicative of the nuclear-diffraction interaction mechanism.

  10. Formation of charmonium states in heavy ion collisions and thermalization of charm

    E-Print Network [OSTI]

    R. L. Thews

    2006-04-06

    We examine the possibility to utilize in-medium charmonium formation in heavy ion interactions at collider energy as a probe of the properties of the medium. This is possible because the formation process involves recombination of charm quarks which imprints a signal on the resulting normalized transverse momentum distribution containing information about the momentum distribution of the quarks. We have contrasted the transverse momentum spectra of J/Psi, characterized by , which result from the formation process in which the charm quark distributions are taken at opposite limits with regard to thermalization in the medium. The first uses charm quark distributions unchanged from their initial production in a pQCD process, appropriate if their interaction with the medium is negligible. The second uses charm quark distributions which are in complete thermal equilibrium with the transversely expanding medium, appropriate if a very strong interaction between charm quarks and medium exists. We find that the resulting of the formed J/Psi should allow one to differentiate between these extremes, and that this differentiation is not sensitive to variations in the detailed dynamics of in-medium formation. We include a comparison of predictions of this model with preliminary PHENIX measurements, which indicates compatibility with a substantial fraction of in-medium formation.

  11. Effect of Landau damping on alternative ion-acoustic solitary waves in a magnetized plasma consisting of warm adiabatic ions and non-thermal electrons

    E-Print Network [OSTI]

    Das, Jayasree; Das, K P

    2015-01-01

    Bandyopadhyay and Das [Phys. Plasmas, 9, 465-473, 2002] have derived a nonlinear macroscopic evolution equation for ion acoustic wave in a magnetized plasma consisting of warm adiabatic ions and non-thermal electrons including the effect of Landau damping. In that paper they have also derived the corresponding nonlinear evolution equation when coefficient of the nonlinear term of the above mentioned macroscopic evolution equation vanishes, the nonlinear behaviour of the ion acoustic wave is described by a modified macroscopic evolution equation. But they have not considered the case when the coefficient is very near to zero. This is the case we consider in this paper and we derive the corresponding evolution equation including the effect of Landau damping. Finally, a solitary wave solution of this macroscopic evolution is obtained, whose amplitude is found to decay slowly with time.

  12. THERMAL MODELING ANALYSIS OF CST MEDIA IN THE SMALL COLUMN ION EXCHANGE PROJECT

    SciTech Connect (OSTI)

    Lee, S.

    2010-11-01

    Models have been developed to simulate the thermal characteristics of Crystalline Silicotitanate (CST) ion exchange media fully loaded with radioactive cesium in a column configuration and distributed within a waste storage tank. This work was conducted to support the Small Column Ion Exchange (SCIX) program which is focused on processing dissolved, high-sodium salt waste for the removal of specific radionuclides (including Cs-137, Sr-90, and actinides) within a High Level Waste (HLW) storage tank at the Savannah River Site. The SCIX design includes CST columns inserted and supported in the tank top risers for cesium removal. Temperature distributions and maximum temperatures across the column were calculated with a focus on process upset conditions. A two-dimensional computational modeling approach for the in-column ion-exchange domain was taken to include conservative, bounding estimates for key parameters such that the results would provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on CST. One salt processing scenario includes the transport of the loaded (and possibly ground) CST media to the treatment tank floor. Therefore, additional thermal modeling calculations were conducted using a three-dimensional approach to evaluate temperature distributions for the entire in-tank domain including distribution of the spent CST media either as a mound or a flat layer on the tank floor. These calculations included mixtures of CST with HLW sludge or loaded Monosodium Titanate (MST) media used for strontium/actinide sorption. The current full-scale design for the CST column includes one central cooling pipe and four outer cooling tubes. Most calculations assumed that the fluid within the column was stagnant (i.e. no buoyancy-induced flow) for a conservative estimate. A primary objective of these calculations was to estimate temperature distributions across packed CST beds immersed in waste supernate or filled with dry air under various accident scenarios. Accident scenarios evaluated included loss of salt solution flow through the bed (a primary heat transfer mechanism), inadvertent column drainage, and loss of active cooling in the column. The calculation results showed that for a wet CST column with active cooling through one central and four outer tubes and 35 C ambient external air, the peak temperature for the fully-loaded column is about 63 C under the loss of fluid flow accident, which is well below the supernate boiling point. The peak temperature for the naturally-cooled (no active, engineered cooling) wet column is 156 C under fully-loaded conditions, exceeding the 130 C boiling point. Under these conditions, supernate boiling would maintain the column temperature near 130 C until all supernate was vaporized. Without active engineered cooling and assuming a dry column suspended in unventilated air at 35 C, the fully-loaded column is expected to rise to a maximum of about 258 C due to the combined loss-of coolant and column drainage accidents. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. Results for the in-tank modeling calculations clearly indicate that when realistic heat transfer boundary conditions are imposed on the bottom surface of the tank wall, as much as 450 gallons of ground CST (a volume equivalent to two ion exchange processing cycles) in an ideal hemispherical shape (the most conservative geometry) can be placed in the tank without exceeding the 100 C wall temperature limit. Furthermore, in the case of an evenly-distributed flat layer, the tank wall reaches the temperature limit after the ground CST material reaches a height of approximately 8 inches.

  13. THREE-DIMENSIONAL THERMAL MODELING ANALYSIS OF CST MEDIA FOR THE SMALL ION EXCHANGE PROJECT

    SciTech Connect (OSTI)

    Lee, S.; King, W.

    2011-09-12

    The Small Column Ion Exchange (SCIX) project is designed to accelerate closure of High Level Waste (HLW) tanks at the Savannah River Site (SRS). The SRS tanks store HLW in three forms: sludge, saltcake, and supernate. An in-tank ion exchange process is being designed to treat supernate and dissolved saltcake waste. Through this process, radioactive cesium from the salt solution is adsorbed into Crystalline Silicotitanate (CST) ion exchange media packed within a flow-through column. A packed column loaded with radioactive cesium generates significant heat from radiolytic decay. The waste supernate solution within the ion exchange bed will boil around 120 C. Solution superheating above the boiling point within the column could lead to violent hazardous energy releases. System heating from loaded CST is also of concern in other process modules, such as the waste tank. Due to tank structural integrity concerns, the wall temperature limit for the SRS waste tanks is 100 C. The transfer of cesium-loaded CST to the tank could result in localized hot spots on the tank floor and walls which may exceed this limit. As a result, thermal modeling calculations have been conducted to predict the maximum temperatures achievable both in the column and in the waste tank. As specified in the associated Technical Task Plan, one objective of the present work was to compute temperature distributions within the ion exchange column module under accident scenarios including loss of salt solution flow through the bed and loss of coolant system flow. The column modeling domain and the scope of the calculations in this case were broadened relative to previous two-dimensional calculations to include vertical temperature distributions within the packed bed of ion exchange media as well as the upper column plenum region containing only fluid. The baseline design conditions and in-column modeling domain for the ion-exchange column module are shown in Figure 1. These evaluations assumed the maximum bounding cesium loading considered possible based on current knowledge regarding CST media and the anticipated feed compositions. Since this cesium loading was considerably higher than the nominal loading conditions in SRS waste, cases with lower loading were also evaluated. Modeling parameters were the same as those used previously unless otherwise indicated. The current model does not capture multi-phase cooling mechanisms operative when solution boiling occurs. This feature is conservative in the sense that it does not account for the large cooling effects associated with phase transfer. However, the potential transfer of heat to the plenum region associated with vertical bubble ascension through the column during boiling is also neglected. Thermal modeling calculations were also performed for the entire waste storage tank for the case where loaded and ground CST was transferred to the tank. The modeling domain used for the in-tank calculations is provided in Figure 2. The in-tank domain is based on SRS Tank 41, which is a Type-IIIA tank. Temperature distributions were evaluated for cylindrical, ground CST mounds located on the tank floor. Media grinding is required prior to vitrification processing of the CST in the SRS Defense Waste Processing Facility (DWPF). The location of the heat source region on the tank floor due to the accumulation of CST material was assumed to be just under the grinder. The shape of the CST mound was assumed to be cylindrical. This shape is believed to be most representative of the actual mound shape formed in the tank, given that submersible mixing pumps will be available for media dispersion. Alternative configurations involving other geometrical shapes for the CST mound were evaluated in the previous work. Sensitivity analysis for the in-tank region was performed for different amounts of CST media. As was the case for the in-column model, the in-tank model does not include multi-phase cooling mechanisms operative when solution boiling occurs. The in-column and the in-tank evaluations incorporated recently updated maximum cesi

  14. Exact evaluation of the rates of electrostatic decay and scattering off thermal ions for an unmagnetized Maxwellian plasma

    SciTech Connect (OSTI)

    Layden, B.; Cairns, Iver H.; Robinson, P. A.

    2013-08-15

    Electrostatic decay of Langmuir waves into Langmuir and ion sound waves (L?L?+S) and scattering of Langmuir waves off thermal ions (L+i?L?+i?, also called “nonlinear Landau damping”) are important nonlinear weak-turbulence processes. The rates for these processes depend on the quadratic longitudinal response function ?{sup (2)} (or, equivalently, the quadratic longitudinal susceptibility ?{sup (2)}), which describes the second-order response of a plasma to electrostatic wave fields. Previous calculations of these rates for an unmagnetized Maxwellian plasma have relied upon an approximate form for ?{sup (2)} that is valid where two of the wave fields are fast (i.e., v{sub ?}=?/k?V{sub e} where ? is the angular frequency, k is the wavenumber, and V{sub e} is the electron thermal speed) and one is slow (v{sub ?}?V{sub e}). Recently, an exact expression was derived for ?{sup (2)} that is valid for any phase speeds of the three waves in an unmagnetized Maxwellian plasma. Here, this exact ?{sup (2)} is applied to the calculation of the three-dimensional rates for electrostatic decay and scattering off thermal ions, and the resulting exact rates are compared with the approximate rates. The calculations are performed using previously derived three-dimensional rates for electrostatic decay given in terms of a general ?{sup (2)}, and newly derived three-dimensional rates for scattering off thermal ions; the scattering rate is derived assuming a Maxwellian ion distribution, and both rates are derived assuming arc distributions for the wave spectra. For most space plasma conditions, the approximate rate is found to be accurate to better than 20%; however, for sufficiently low Langmuir phase speeds (v{sub ?}/V{sub e}?3) appropriate to some spatial domains of the foreshock regions of planetary bow shocks and type II solar radio bursts, the use of the exact rate may be necessary for accurate calculations. The relative rates of electrostatic decay and scattering off thermal ions are calculated for a range of parameters using the exact expressions for the rates; electrostatic decay is found to have the larger growth rate over the whole range of parameters, consistent with previous approximate calculations.

  15. THERMINATOR 2: THERMal heavy IoN generATOR 2

    E-Print Network [OSTI]

    Mikolaj Chojnacki; Adam Kisiel; Wojciech Florkowski; Wojciech Broniowski

    2011-02-01

    We present an extended version of THERMINATOR, a Monte Carlo event generator dedicated to studies of the statistical production of particles in relativistic heavy-ion collisions. The increased functionality of the code contains the following features: The input of any shape of the freeze-out hypersurface and the expansion velocity field, including the 3+1 dimensional profiles, in particular those generated externally with various hydrodynamic codes. The hypersufraces may have variable thermal parameters, which allows for studies departing significantly from the mid-rapidity region, where the baryon chemical potential becomes large. We include a library of standard sets of hypersurfaces and velocity profiles describing the RHIC Au+Au data at sqrt(s_(NN)) = 200 GeV for various centralities, as well as those anticipated for the LHC Pb+Pb collisions at sqrt(s_(NN)) = 5.5 TeV. A separate code, FEMTO-THERMINATOR, is provided to carry out the analysis of femtoscopic correlations which are an important source of information concerning the size and expansion of the system. We also include several useful scripts that carry out auxiliary tasks, such as obtaining an estimate of the number of elastic collisions after the freeze-out, counting of particles flowing back into the fireball and violating causality (typically very few), or visualizing various results: the particle p_T-spectra, the elliptic flow coefficients, and the HBT correlation radii. We also investigate the problem of the back-flow of particles into the hydrodynamic region, as well as estimate the elastic rescattering in terms of trajectory crossings. The package is written in C++ and uses the CERN ROOT environment.

  16. Thermal/Electrical Modeling for Abuse-Tolerant Design of Li-Ion Modules (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Kim, G.-H.; Pesaran, A.; Darcy, E.

    2008-11-01

    To help design safe, high-performing batteries, NREL and NASA created and verified a new multicell math model capturing electrical-thermal interactions of cells with PTC devices during thermal abuse.

  17. Comparison of thermal annealing effects on electrical activation of MBE grown and ion implant Si-doped In0.53Ga0.47As

    E-Print Network [OSTI]

    Florida, University of

    Comparison of thermal annealing effects on electrical activation of MBE grown and ion implant Si are metastable and susceptible to deactivation upon subsequent thermal treatments after growth. Active Si doping.47As Appl. Phys. Lett. 105, 042113 (2014); 10.1063/1.4892079 Electrically active Er doping in InAs, In0

  18. Microstructure changes and thermal conductivity reduction in UO2 following 3.9 MeV He2+ ion irradiation

    SciTech Connect (OSTI)

    Janne Pakrinen; Marat Khafizov; Lingfeng He; Chris Wetland; Jian Gan; Andrew T. Nelson; David H Hurley; Anter El-Azab; Todd R Allen

    2014-11-01

    The microstructural changes and associated effects on thermal conductivity were examined in UO2 after irradiation using 3.9 MeV He2+ ions. Lattice expansion of UO2 was observed in x-ray diffraction after ion irradiation up to 5×1016 He2+/cm2 at low-temperature (< 200 °C). Transmission electron microscopy (TEM) showed homogenous irradiation damage across an 8 µm thick plateau region, which consisted of small dislocation loops accompanied by dislocation segments. Dome-shaped blisters were observed at the peak damage region (depth around 8.5 µm) in the sample subjected to 5×1016 He2+/cm2, the highest fluence reached, while similar features were not detected at 9×1015 He2+/cm2. Laser-based thermo-reflectance measurements showed that the thermal conductivity for the irradiated layer decreased about 55 % for the high fluence sample and 35% for the low fluence sample as compared to an un-irradiated reference sample. Detailed analysis for the thermal conductivity indicated that the conductivity reduction was caused by the irradiation induced point defects.

  19. Designing Safe Lithium-Ion Battery Packs Using Thermal Abuse Models (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.; Kim, G. H.; Smith, K.; Darcy, E.

    2008-12-01

    NREL and NASA developed a thermal-electrical model that resolves PTC and cell behavior under external shorting, now being used to evaluate safety margins of battery packs for spacesuit applications.

  20. Single-Particle Model for a Lithium-Ion Cell: Thermal Godfrey Sikha,b,

    E-Print Network [OSTI]

    in the literature; for example, Newman and Pals1,2 presented cell and battery stack thermal models incorporating inefficient for simu- lating conditions such as cycling behavior and series/parallel con- figuration of stacked cells in battery packs. To improve computational run time without compromising accuracy

  1. Modeling and Experimental Study of Lithium-Ion Battery Thermal Behavior 

    E-Print Network [OSTI]

    Lopez, Carlos F

    2015-04-28

    proximity to each other as the released heat from an abused cell can activate the chain of reactions in a neighboring cell, causing an entire module to heat rapidly and vent or ignite. This body of work aims to study LIB thermal behavior using both modeling...

  2. Modeling and Experimental Study of Lithium-Ion Battery Thermal Behavior 

    E-Print Network [OSTI]

    Lopez, Carlos F

    2015-04-28

    of particular interest is a scenario called thermal runaway in which several exothermic side-reactions occur at elevated temperature ranges and release heat, which can then trigger the next reaction. This matter worsens when multiple cells are installed in close...

  3. Divalent Ion and Thermally Induced DNA Conformational Polymorphism on Single-walled

    E-Print Network [OSTI]

    Langowski, Jörg

    -particle effects. It is observed that the transition can also be induced thermally over the temperature range systematically decreases; emission exhibits a surfactant concentration-dependent red-shift11 . DNA is highly sulfate (SDS) suspended SWNT below the critical micelle concentration (CMC), the fluorescence energy

  4. Effect of Ca2+ Ion and Temperature on Association of Thermally

    E-Print Network [OSTI]

    Wu, Chi

    with charged polymer chains commonly occurs in different applications of poly- electrolytes, ranging from PNIPAM is a thermally sensitive polymer. In the presence of Ca2+ , the complexation between one Ca2 of static and dynamic laser light scattering, we studied the effect of Ca2+ and temperature as well

  5. First CSDP (Continental Scientific Drilling Program)/thermal regimes core hole project at Valles Caldera, New Mexico (VC-1): Drilling report

    SciTech Connect (OSTI)

    Rowley, J.; Hawkins, W.; Gardner, J. (comps.)

    1987-02-01

    This report is a review and summary of the core drilling operations of the first Valles Caldera research borehole (VC-1) under the Thermal Regimes element of the Continental Scientific Drilling Program (CSDP). The project is a portion of a broader program that seeks to answer fundamental scientific questions about magma, rock/water interactions, and volcanology through shallow (<1-km) core holes at Long Valley, California; Salton Sea, California; and the Valles Caldera, New Mexico. The report emphasizes coring operations with reference to the stratigraphy of the core hole, core quality description, core rig specifications, and performance. It is intended to guide future research on the core and in the borehole, as well as have applications to other areas and scientific problems in the Valles Caldera. The primary objectives of this Valles Caldera coring effort were (1) to study the hydrogeochemistry of a subsurface geothermal outflow zone of the caldera near the source of convective upflow, (2) to obtain structural and stratigraphic information from intracaldera rock formations in the southern ring-fracture zone, and (3) to obtain continuous core samples through the youngest volcanic unit in Valles Caldera, the Banco Bonito rhyolite (approximately 0.1 Ma). All objectives were met. The high percentage of core recovery and the excellent quality of the samples are especially notable. New field sample (core) handling and documentation procedures were successfully utilized. The procedures were designed to provide consistent field handling of the samples and logs obtained through the national CSDP.

  6. Fluorinated Phosphazene Co-solvents for Improved Thermal and Safety Performance in Lithium-Ion Battery Electrolytes

    SciTech Connect (OSTI)

    Harry W. Rollins; Mason K. Harrup; Eric J. Dufek; David K. Jamison; Sergiy V. Sazhin; Kevin L. Gering; Dayna L. Daubaras

    2014-10-01

    The safety of lithium-ion batteries is coming under increased scrutiny as they are being adopted for large format applications especially in the vehicle transportation industry and for grid-scale energy storage. The primary short-comings of lithium-ion batteries are the flammability of the liquid electrolyte and sensitivity to high voltage and elevated temperatures. We have synthesized a series of non-flammable fluorinated phosphazene liquids and blended them with conventional carbonate solvents. While the use of these phosphazenes as standalone electrolytes is highly desirable, they simply do not satisfy all of the many requirements that must be met such as high LiPF6 solubility and low viscosity, thus we have used them as additives and co-solvents in blends with typical carbonates. The physical and electrochemical properties of the electrolyte blends were characterized, and then the blends were used to build 2032-type coin cells which were evaluated at constant current cycling rates from C/10 to C/1. We have evaluated the performance of the electrolytes by determining the conductivity, viscosity, flash point, vapor pressure, thermal stability, electrochemical window, cell cycling data, and the ability to form solid electrolyte interphase (SEI) films. This paper presents our results on a series of chemically similar fluorinated cyclic phosphazene trimers, the FM series, which has exhibited numerous beneficial effects on battery performance, lifetimes, and safety aspects.

  7. Thermally Stable Electrolyte For Li-ion Cells. (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaon and Pion decays CitationConnect Thermally Stable Electrolyte

  8. The Radial Loss of Ions Trapped in the Thermal Barrier Potential and the Design of Divertor Magnetic Field in GAMMA10

    SciTech Connect (OSTI)

    Katanuma, I. [Plasma Research Center, University of Tsukuba (Japan); Ito, T. [Plasma Research Center, University of Tsukuba (Japan); Saimaru, H. [Plasma Research Center, University of Tsukuba (Japan); Sasagawa, Y. [Plasma Research Center, University of Tsukuba (Japan); Pastukhov, V.P. [I.V.Kuruchatov Atomic Energy Institute (Russian Federation); Ishii, K. [Plasma Research Center, University of Tsukuba (Japan); Tatematsu, Y. [Plasma Research Center, University of Tsukuba (Japan); Saito, T. [Plasma Research Center, University of Tsukuba (Japan); Islam, Md.K. [Plasma Research Center, University of Tsukuba (Japan); Nakashima, Y. [Plasma Research Center, University of Tsukuba (Japan); Cho, T. [Plasma Research Center, University of Tsukuba (Japan)

    2005-01-15

    The ion radial loss exists in the presence of a non-axisymmetric electrostatic potential in the end-mirror cells of GAMMA10, which leads to a formation of the thermal barrier potential. The non-axisymmetric electrostatic potential can also exist in the central cell. A design for divertor magnetic field of GAMMA10 is performed, the purpose of which is first to reduce an ion radial transport in the central cell by making electrostatic potential circular and second to assure the macroscopic plasma stability of GAMMA10 without help of non-axisymmetric anchor cells which enhances a neoclassical radial transport.

  9. Investigation of hole mobility in gate-all-around Si nanowire p-MOSFETs with high-k/metal-gate: Effects of hydrogen thermal annealing and nanowire shape

    E-Print Network [OSTI]

    Hashemi, Pouya

    A detailed study of hole mobility is presented for gate-all-around Si nanowire p-MOSFETs with conformal high-?/MG and various high-temperature hydrogen annealing processes. Hole mobility enhancement relative to planar SOI ...

  10. Enhancement of the helium resonance lines in the solar atmosphere by suprathermal electron excitation I: non-thermal transport of helium ions

    E-Print Network [OSTI]

    G. R. Smith; C. Jordan

    2002-08-16

    Models of the solar transition region made from lines other than those of helium cannot account for the strength of the helium lines. However, the collisional excitation rates of the helium resonance lines are unusually sensitive to the energy of the exciting electrons. Non-thermal motions in the transition region could drive slowly-ionizing helium ions rapidly through the steep temperature gradient, exposing them to excitation by electrons characteristic of higher temperatures than those describing their ionization state. We present the results of calculations which use a more physical representation of the lifetimes of the ground states of He I and He II than was adopted in earlier work on this process. New emission measure distributions are used to calculate the temperature variation with height. The results show that non-thermal motions can lead to enhancements of the He I and He II resonance line intensities by factors that are comparable with those required. Excitation by non-Maxwellian electron distributions would reduce the effects of non-thermal transport. The effects of non-thermal motions are more consistent with the observed spatial distribution of helium emission than are those of excitation by non-Maxwellian electron distributions alone. In particular, they account better for the observed line intensity ratio I(537.0 A)/I(584.3 A), and its variation with location.

  11. Effects of pyrolysis conditions and ion-exchangeable cations on the thermal decomposition of a Victorian low-rank coal

    SciTech Connect (OSTI)

    Sathe, C.; Pang, Y.; Li, C.Z. [Monash Univ., Clayton, Victoria (Australia)

    1998-12-31

    A Loy Yang brown coal sample was acid-washed and ion-exchanged with Na and Ca to prepare the H-form, Na-form and Ca-form coal samples. These coal samples were pyrolyzed in a wire-mesh reactor where the extraparticle secondary reactions of the evolved volatiles were minimized. The ion-exchanged coal samples were found to give very different tar yields from those of the raw coal samples. The tar yields from the pyrolysis of the raw and H-form coal samples were observed to be very sensitive to changes in heating rate and the tar yields at 600 C were found to increase much more than the corresponding increases in the total volatile yields as the heating rate was increased from 1 to 1,000 K/s. In contrast, the tar yields from the Ca-form and Na-form coal samples showed little heating rate sensitivity. The heating rate sensitivity of pyrolysis yields is believed to be at least partly related to the presence of carboxyl/carboxylate groups and other bulky substitution groups in the coal as well as the rapid pressure buildup within the particles. Re-exchanging Na in the Na-form coal sample and Ca in the Ca-form coal sample with H confirmed the effects of Na and Ca, but also suggested that the irreversible structural changes taking place during ion-exchange should also be considered to evaluate the effects of ion-exchangeable cations during pyrolysis. The major roles of ion-exchangeable cations during pyrolysis are thought to be associated with the transformation of the alkali and alkaline earth metallic species. Some Ca was volatilized during pyrolysis, even at temperatures as low as 600 C.

  12. Determination of thermal and cementation histories from [sup 40]Ar/[sup 39]Ar and ion microprobe stable isotope analyses: A San Joaquin Basin example

    SciTech Connect (OSTI)

    Mahon, K.I.; Harrison, T.M.; Grove, M.; Lovera, O.M. (UCLA, Los Angeles, CA (United States))

    1996-01-01

    Knowledge of the temperature and cementation histories of sedimentary basins is key to appraisal of their liquid hydrocarbon potential. Understanding the thermal history permits assessment of whether source rocks have experienced conditions appropriate for petroleum formation. The mobility of hydrocarbons and their storage capacity in sandstone reservoirs are directly related to porosity changes during diagenesis. Recent advances in [sup 40]Ar/[sup 39]Ar dating (stripping of Cl-correlated Ar[sub xs] Multi-Diffusion Domain model) and development of ion micro-probe techniques for precise ([+-]0.6[per thousand]) [mu]m-scale oxygen isotopic analysis provide a basis to quantitatively determine thermal and cementation histories. Arkosic sandstones of the Stevens turbidities, San Joaquin basin, are cemented by carbonates with minor amounts of clay and quartz. Detrital K-spars from depths of 4.12 (A4) and 6.61 km (Al) in the Stevens zone at Elk Hills yield thermal histories via the MDD model. These results indicate a broadly linear temperature rise of 9[+-]3[degrees]C/Ma over the past 10 Ma and predict current peak temperatures that are within error ([+-]25[degrees]C) of the measured values of 200[degrees] (Al) and 150[degrees]C (A4). Previous bulk isotopic analyses of cements from Stevens sands at North Coles Levee indicate that diagenetic pore fluids were modified by the introduction of hydrocarbons and CO[sub 2] from maturing source horizons. In situ O isotopic analyses of 10 [mu]m spots in these cements confirms this heterogeneity. A model cementation history can then be calculated by linking the oxygen isotopic composition of the cements (and temperature-dependent fractionation factor) with the thermal history independently established from thermochronometry.

  13. Determination of thermal and cementation histories from {sup 40}Ar/{sup 39}Ar and ion microprobe stable isotope analyses: A San Joaquin Basin example

    SciTech Connect (OSTI)

    Mahon, K.I.; Harrison, T.M.; Grove, M.; Lovera, O.M. [UCLA, Los Angeles, CA (United States)

    1996-12-31

    Knowledge of the temperature and cementation histories of sedimentary basins is key to appraisal of their liquid hydrocarbon potential. Understanding the thermal history permits assessment of whether source rocks have experienced conditions appropriate for petroleum formation. The mobility of hydrocarbons and their storage capacity in sandstone reservoirs are directly related to porosity changes during diagenesis. Recent advances in {sup 40}Ar/{sup 39}Ar dating (stripping of Cl-correlated Ar{sub xs} Multi-Diffusion Domain model) and development of ion micro-probe techniques for precise ({+-}0.6{per_thousand}) {mu}m-scale oxygen isotopic analysis provide a basis to quantitatively determine thermal and cementation histories. Arkosic sandstones of the Stevens turbidities, San Joaquin basin, are cemented by carbonates with minor amounts of clay and quartz. Detrital K-spars from depths of 4.12 (A4) and 6.61 km (Al) in the Stevens zone at Elk Hills yield thermal histories via the MDD model. These results indicate a broadly linear temperature rise of 9{+-}3{degrees}C/Ma over the past 10 Ma and predict current peak temperatures that are within error ({+-}25{degrees}C) of the measured values of 200{degrees} (Al) and 150{degrees}C (A4). Previous bulk isotopic analyses of cements from Stevens sands at North Coles Levee indicate that diagenetic pore fluids were modified by the introduction of hydrocarbons and CO{sub 2} from maturing source horizons. In situ O isotopic analyses of 10 {mu}m spots in these cements confirms this heterogeneity. A model cementation history can then be calculated by linking the oxygen isotopic composition of the cements (and temperature-dependent fractionation factor) with the thermal history independently established from thermochronometry.

  14. Effect of entropy of lithium intercalation in cathodes and anodes on Li-ion battery thermal management

    SciTech Connect (OSTI)

    Viswanathan, Vilayanur V.; Choi, Daiwon; Wang, Donghai; Xu, Wu; Towne, Silas A.; Williford, Ralph E.; Zhang, Jiguang; Liu, Jun; Yang, Zhenguo

    2010-06-01

    The entropy changes (?S) in various cathode and anode materials, as well as complete Li-ion batteries, were measured using an electrochemical thermodynamic measurement system (ETMS). LiCoO2 has a much larger entropy change than electrodes based on LiNixCoyMnzO2 and LiFePO4, while lithium titanate based anode has lower entropy change compared to graphite anodes. Reversible heat generation rate was found to be a significant portion of the total heat generation rate. The appropriate combinations of cathode and anode were investigated to minimize reversible heat.

  15. Saturation of multi-laser beams laser-plasma instabilities from stochastic ion heating

    SciTech Connect (OSTI)

    Michel, P.; Williams, E. A.; Divol, L.; Berger, R. L.; Glenzer, S. H.; Callahan, D. A. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Rozmus, W. [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G2G7 (Canada) [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G2G7 (Canada); Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2013-05-15

    Cross-beam energy transfer (CBET) has been used as a tool on the National Ignition Facility (NIF) since the first energetics experiments in 2009 to control the energy deposition in ignition hohlraums and tune the implosion symmetry. As large amounts of power are transferred between laser beams at the entrance holes of NIF hohlraums, the presence of many overlapping beat waves can lead to stochastic ion heating in the regions where laser beams overlap [P. Michel et al., Phys. Rev. Lett. 109, 195004 (2012)]. This increases the ion acoustic velocity and modifies the ion acoustic waves’ dispersion relation, thus reducing the plasma response to the beat waves and the efficiency of CBET. This pushes the plasma oscillations driven by CBET in a regime where the phase velocities are much smaller than both the electron and ion thermal velocities. CBET gains are derived for this new regime and generalized to the case of multi ion species plasmas.

  16. Thermal Stability of LiPF 6 Salt and Li-ion Battery Electrolytes Containing LiPF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week DayDr. JeffreyThermal Multi-layer Coating

  17. IonCCD™ for direct position-sensitive charged-particle detection: from electrons and keV ions to hyperthermal biomolecular ions

    SciTech Connect (OSTI)

    Hadjar, Omar; Johnson, Grant E.; Laskin, Julia; Kibelka, Gottfried; Shill, Scott M.; Kuhn, Ken; Cameron, Chad; Kassan, Scott

    2011-04-01

    A novel charged-particle sensitive, pixel based detector array is described and its usage is demonstrated for a variety of applications, from detection of elemental particles (electrons) to hyper-thermal large biomolecular positive and negative ions including keV light atomic and molecular ions. The array detector is a modified light-sensitive charged coupled device (CCD). The IonCCDTM was engineered for direct charged particle detection by replacing the semi-conductor part of the CCD pixel by a conductor1. In contrast with the CCD, where the semi-conductive pixel is responsible for electron-hole pair formation upon photon bombardment, the IonCCD uses a capacitor coupled to the conductive electrode for direct charge integration. The detector can be operated from atmospheric pressure to high vacuum since no high voltages are needed. The IonCCD, presented in this work is an array of 2126 active pixels with 21 um pixel width and 3 um pixel gap. The detection area is 1.5x51mm2 where 1.5 mm and 51 mm are pixel and detector array length, respectively. The result is a one-dimensional position-sensitive detector with 24 um spatial resolution and 88 % pixel area ratio (PAR). In this work we demonstrate the capabilities and the performance of the detector. For the first time we show the direct detection of 250 eV electrons providing linearity response and detection efficiency of the IonCCD as function of electron beam current. Using positive ions from and electron impact source (E-I), we demonstrate that the detection efficiency of the IonCCD is virtually independent of particle energy [250 eV, 1250 eV], particle impact angle [45o, 90o] and particle flux. By combining the IonCCD with a double focusing sector field of Mattauch-Herzog geometry (M-H), we demonstrate fast acquisition of mass spectra in direct air sniffing mode. A first step towards fast in vivo breath analysis is presented. Detection of hyper-thermal biomolecular ions produced using an electrospray ionization source (ESI) is presented. The IonCCD was used as beam profiler to characterize the beam shape and intensity of 15 eV protonated and deprotonated biomolecular ions at the exit of an RF only collisional quadrupole. We present simultaneous detection of 140 eV doubly protonated biomolecular ions when the IonCCD is combined with the M-H analyzer. The latter, demonstrates the possibility of simultaneous separation and micro-array deposition of biological material using a miniature sector field.

  18. Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.; Pesaran, A.; Smith, K.

    2013-07-01

    This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

  19. Nonthermal correction to black hole spectroscopy

    E-Print Network [OSTI]

    Wen-Yu Wen

    2014-11-14

    Area spectrum of black holes have been obtained via various methods such as quasinormal modes, adiabatic invariance and angular momentum. Among those methods, calculations were done by assuming black holes in thermal equilibrium. Nevertheless, black holes in the asymptotically flat space usually have negative specific heat and therefore tend to stay away from thermal equilibrium. Even for those black holes with positive specific heat, temperature may still not be well defined in the process of radiation, due to the back reaction of decreasing mass. Respect to these facts, it is very likely that Hawking radiation is nonthermal and the area spectrum is no longer equidistant. In this note, we would like to illustrate how the area spectrum of black holes is corrected by this nonthermal effect.

  20. Calibration of Rutile (U-Th)/He Thermochronology: assessing the thermal evolution of the KTB drill hole, Germany and adjacent Bohemian Massif

    E-Print Network [OSTI]

    Wolfe, Melissa Renee

    2009-05-12

    by isotope dilution of 3 He on a quadrapole mass spectrometer. Calculation of bulk diffusion kinetics required subsequent complete degassing of the 35 sample to determine total grain gas in order to compare the cumulative fraction of gas released....A., Wagner, G.A., Hejl, E., Brown, R., and Van den Haute, P., 1997, The Cretaceous and younger thermal history of the KTB site (Germany). apatite fission-track data from the Vorbohrung. Geol. Rundschau, v.86, p. 203-209. Crowhurst, P., Farley, K., Ryan, C...

  1. Coronal Holes

    E-Print Network [OSTI]

    Cranmer, Steven R

    2009-01-01

    Coronal holes are the darkest and least active regions of the Sun, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. This paper reviews measurements of the plasma properties in coronal holes and how these measurements are used to reveal details about the physical processes that heat the solar corona and accelerate the solar wind. It is still unknown to what extent the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wave-like fluctuations), and to what extent much of the mass and energy is input intermittently from closed loops into the open-field regions. Evidence for both paradigms is summarized in this paper. Special emphasis is also given to spectroscopic and coronagraphic measurements that allow the highly dynamic non-equilibrium evolution of the plasma to be followed as the asymptotic conditions in interplanetary space are establish...

  2. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    E-Print Network [OSTI]

    Koh, Christine J.

    2013-01-01

    thermal energy from evaporation and the energy imparted by the ionization process.energy imparted into the isolated ion pair upon thermal vaporization and minimizes reactive processes.

  3. Some remarks on black hole thermodynamics

    E-Print Network [OSTI]

    R. Y. Chiao

    2011-02-04

    Two thermodynamic "paradoxes" of black hole physics are re-examined. The first is that there is a thermal instability involving two coupled blackbody cavities containing two black holes, and second is that a classical black hole can swallow up entropy in the form of ambient blackbody photons without increasing its mass. The resolution of the second paradox by Bekenstein and by Hawking is re-visited. The link between Hawking radiation and Wigner's superluminal tunneling time is discussed using two equivalent Feynman diagrams, and Feynman's re-interpretation principle.

  4. An electromagnetic black hole made of metamaterials

    E-Print Network [OSTI]

    Qiang Cheng; Tie Jun Cui; Wei Xiang Jiang; Ben Geng Cai

    2010-04-30

    Traditionally, a black hole is a region of space with huge gravitational field, which absorbs everything hitting it. In history, the black hole was first discussed by Laplace under the Newton mechanics, whose event horizon radius is the same as the Schwarzschild's solution of the Einstein's vacuum field equations. If all those objects having such an event horizon radius but different gravitational fields are called as black holes, then one can simulate certain properties of the black holes using electromagnetic fields and metamaterials due to the similar propagation behaviours of electromagnetic waves in curved space and in inhomogeneous metamaterials. In a recent theoretical work by Narimanov and Kildishev, an optical black hole has been proposed based on metamaterials, in which the theoretical analysis and numerical simulations showed that all electromagnetic waves hitting it are trapped and absorbed. Here we report the first experimental demonstration of such an electromagnetic black hole in the microwave frequencies. The proposed black hole is composed of non-resonant and resonant metamaterial structures, which can trap and absorb electromagnetic waves coming from all directions spirally inwards without any reflections due to the local control of electromagnetic fields and the event horizon corresponding to the device boundary. It is shown that the absorption rate can reach 99% in the microwave frequencies. We expect that the electromagnetic black hole could be used as the thermal emitting source and to harvest the solar light.

  5. Thermal Gradient Holes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeterInformation Policy andInstitute JumpWash Tidal

  6. Develop & evaluate materials & additives that enhance thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Additives that Enhance Thermal and Overcharge Abuse Electrolytes - Advanced Electrolyte and Electrolyte Additives Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery...

  7. Catalytic thermal barrier coatings

    DOE Patents [OSTI]

    Kulkarni, Anand A. (Orlando, FL); Campbell, Christian X. (Orlando, FL); Subramanian, Ramesh (Oviedo, FL)

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  8. Extremal Higher Spin Black Holes

    E-Print Network [OSTI]

    Máximo Bañados; Alejandra Castro; Alberto Faraggi; Juan I. Jottar

    2015-11-30

    The gauge sector of three-dimensional higher spin gravities can be formulated as a Chern-Simons theory. In this context, a higher spin black hole corresponds to a flat connection with suitable holonomy (smoothness) conditions which are consistent with the properties of a generalized thermal ensemble. Building on these ideas, we discuss a definition of black hole extremality which is appropriate to the topological character of 3d higher spin theories. Our definition can be phrased in terms of the Jordan class of the holonomy around a non-contractible (angular) cycle, and we show that it is compatible with the zero-temperature limit of smooth black hole solutions. While this notion of extremality does not require nor implies the existence of supersymmetry, we exemplify its consequences in the context of sl(3|2) + sl(3|2) Chern-Simons theory. Remarkably, while as usual not all extremal solutions preserve supersymmetries, we find that the higher spin setup allows for non-extremal supersymmetric black hole solutions as well. Furthermore, we discuss our results from the perspective of the holographic duality between sl(3|2) + sl(3|2) Chern-Simons theory and two-dimensional CFTs with W_{(3|2)} symmetry, the simplest higher spin extension of the N=2 super-Virasoro algebra. In particular, we compute W_{(3|2)} BPS bounds at the full quantum level, and relate their semiclassical limit to extremal black hole or conical defect solutions in the 3d bulk. Along the way, we discuss the role of the spectral flow automorphism and provide a conjecture for the form of the semiclassical BPS bounds in general N=2 two-dimensional CFTs with extended symmetry algebras.

  9. Quantum Emission from Two-Dimensional Black Holes

    E-Print Network [OSTI]

    Steven B. Giddings; W. M. Nelson

    2009-11-27

    We investigate Hawking radiation from two-dimensional dilatonic black holes using standard quantization techniques. In the background of a collapsing black hole solution the Bogoliubov coefficients can be exactly determined. In the regime after the black hole has settled down to an `equilibrium' state but before the backreaction becomes important these give the known result of a thermal distribution of Hawking radiation at temperature lambda/(2pi). The density matrix is computed in this regime and shown to be purely thermal. Similar techniques can be used to derive the stress tensor. The resulting expression agrees with the derivation based on the conformal anomaly and can be used to incorporate the backreaction. Corrections to the thermal density matrix are also examined, and it is argued that to leading order in perturbation theory the effect of the backreaction is to modify the Bogoliubov transformation, but not in a way that restores information lost to the black holes.

  10. Ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA)

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  11. Perturbative String Thermodynamics near Black Hole Horizons

    E-Print Network [OSTI]

    Thomas G. Mertens; Henri Verschelde; Valentin I. Zakharov

    2015-07-01

    We provide further computations and ideas to the problem of near-Hagedorn string thermodynamics near (uncharged) black hole horizons, building upon our earlier work JHEP 1403 (2014) 086. The relevance of long strings to one-loop black hole thermodynamics is emphasized. We then provide an argument in favor of the absence of $\\alpha'$-corrections for the (quadratic) heterotic thermal scalar action in Rindler space. We also compute the large $k$ limit of the cigar orbifold partition functions (for both bosonic and type II superstrings) which allows a better comparison between the flat cones and the cigar cones. A discussion is made on the general McClain-Roth-O'Brien-Tan theorem and on the fact that different torus embeddings lead to different aspects of string thermodynamics. The black hole/string correspondence principle for the 2d black hole is discussed in terms of the thermal scalar. Finally, we present an argument to deal with arbitrary higher genus partition functions, suggesting the breakdown of string perturbation theory (in $g_s$) to compute thermodynamical quantities in black hole spacetimes.

  12. Supermassive Black Holes

    E-Print Network [OSTI]

    Laura Ferrarese; David Merritt

    2002-06-13

    After a brief historical introduction, we summarize current efforts and accomplishments in the study of supermassive black holes.

  13. Virtual Black Holes in Hyperbolic Metamaterials

    E-Print Network [OSTI]

    Igor I. Smolyaninov

    2011-01-24

    Optical space in electromagnetic metamaterials may be engineered to emulate various exotic space-time geometries. However, these metamaterial models are limited in many respects. It is believed that real physical space-time strongly fluctuates on the Planck scale. These fluctuations are usually described as virtual black holes. Static metamaterial models introduced so far do not exhibit similar behavior. Here we demonstrate that thermal fluctuations of optical space in hyperbolic metamaterials lead to creation of virtual electromagnetic black holes. This effect is very large if the dielectric component of the metamaterial exhibits critical opalescence.

  14. Vacuum polarization for lukewarm black holes

    E-Print Network [OSTI]

    Elizabeth Winstanley; Phil M. Young

    2007-12-20

    We compute the renormalized expectation value of the square of a quantum scalar field on a Reissner-Nordstrom-de Sitter black hole in which the temperatures of the event and cosmological horizons are equal (`lukewarm' black hole). Our numerical calculations for a thermal state at the same temperature as the two horizons indicate that this renormalized expectation value is regular on both the event and cosmological horizons. We are able to show analytically, using an approximation for the field modes near the horizons, that this is indeed the case.

  15. A novel planar ion funnel design for miniature ion optics

    SciTech Connect (OSTI)

    Chaudhary, A.; Amerom, Friso H. W. van; Short, R. T.

    2014-10-01

    The novel planar ion funnel (PIF) design presented in this article emphasizes simple fabrication, assembly, and operation, making it amenable to extreme miniaturization. Simulations performed in SIMION 8.0 indicate that ion focusing can be achieved by using a gradient of electrostatic potentials on concentric metal rings in a plane. A prototype was fabricated on a 35 × 35 mm custom-designed printed circuit board (PCB) with a center hole for ions to pass through and a series of concentric circular metal rings of increasing diameter on the front side of the PCB. Metal vias on the PCB electrically connected each metal ring to a resistive potential divider that was soldered on the back of the PCB. The PIF was tested at 5.5 × 10?? Torr in a vacuum test setup that was equipped with a broad-beam ion source on the front and a micro channel plate (MCP) ion detector on the back of the PIF. The ion current recorded on the MCP anode during testing indicated a 23× increase in the ion transmission through the PIF when electric potentials were applied to the rings. These preliminary results demonstrate the functionality of a 2D ion funnel design with a much smaller footprint and simpler driving electronics than conventional 3D ion funnels. Future directions to improve the design and a possible micromachining approach to fabrication are discussed in the conclusions.

  16. Black hole remnant in asymptotic Anti-de Sitter space

    E-Print Network [OSTI]

    Wen, Wen-Yu

    2015-01-01

    It is known that a solution of remnant were suggested for black hole ground state after surface gravity is corrected by loop quantum effect. On the other hand, a Schwarzschild black hole in asymptotic Anti-de Sitter space would tunnel into the thermal soliton solution known as the Hawking-Page phase transition. In this letter, we investigate the low temperature phase of three-dimensional BTZ black hole and four-dimensional AdS Schwarzschild black hole. We find that the thermal soliton is energetically favored than the remnant solution at low temperature in three dimensions, while Planck-size remnant is still possible in four dimensions. Though the BTZ remnant seems energetically disfavored, we argue that it is still possible to be found in the overcooled phase if strings were present and its implication is discussed.

  17. Accreting Black Holes

    E-Print Network [OSTI]

    Begelman, Mitchell C

    2014-01-01

    I outline the theory of accretion onto black holes, and its application to observed phenomena such as X-ray binaries, active galactic nuclei, tidal disruption events, and gamma-ray bursts. The dynamics as well as radiative signatures of black hole accretion depend on interactions between the relatively simple black-hole spacetime and complex radiation, plasma and magnetohydrodynamical processes in the surrounding gas. I will show how transient accretion processes could provide clues to these interactions. Larger global magnetohydrodynamic simulations as well as simulations incorporating plasma microphysics and full radiation hydrodynamics will be needed to unravel some of the current mysteries of black hole accretion.

  18. Recent Progresses Of Accretion Disk Models Around Black Holes

    E-Print Network [OSTI]

    Sandip K. Chakrabarti

    1997-03-09

    Accretion disk models have evolved from Bondi flows in the 1950s to Keplerian disks in the 1970s and finally to advective transonic flows in the 1990s. We discuss recent progresses in this subject and show that sub-Keplerian flows play a major role in determining the spectral properties of black holes. Centrifugal pressure supported enhanced density region outside the black hole horizon produces hard X-rays and gamma rays by reprocessing intercepted soft photons emitted by the Keplerian disk terminated farther out from the black holes. Quasi-periodic oscillations can also be understood from the dynamic or thermal resonance effects of the enhanced density region.

  19. Rotating Hairy Black Holes

    E-Print Network [OSTI]

    B. Kleihaus; J. Kunz

    2000-12-20

    We construct stationary black holes in SU(2) Einstein-Yang-Mills theory, which carry angular momentum and electric charge. Possessing non-trivial non-abelian magnetic fields outside their regular event horizon, they represent non-perturbative rotating hairy black holes.

  20. "Hybrid" Black Holes

    E-Print Network [OSTI]

    Valeri P. Frolov; Andrei V. Frolov

    2014-12-30

    We discuss a solution of the Einstein equations, obtained by gluing the external Kerr metric and the internal Weyl metric, describing an axisymmetric static vacuum distorted black hole. These metrics are glued at the null surfaces representing their horizons. For this purpose we use the formalism of massive thin null shells. The corresponding solution is called a "hybrid" black hole. The massive null shell has an angular momentum which is the origin of the rotation of the external Kerr spacetime. At the same time, the shell distorts the geometry inside the horizon. The inner geometry of the "hybrid" black hole coincides with the geometry of the interior of a non-rotating Weyl-distorted black hole. Properties of the "hybrid" black holes are briefly discussed.

  1. Charged fermion tunnelling from electrically and magnetically charged rotating black hole in de Sitter space

    E-Print Network [OSTI]

    M. M. Stetsko

    2013-06-10

    Thermal radiation of electrically charged fermions from rotating black hole with electric and magnetic charges in de Sitter space is considered. The tunnelling probabilities for outgoing and incoming particles are obtained and the Hawking temperature is calculated. The relation for the classical action for the particles in the black hole's background is also found.

  2. Thermoacoustic imaging using heavy ion beams

    SciTech Connect (OSTI)

    Claytor, T.N.; Tesmer, J.R.; Deemer, B.C.; Murphy, J.C.

    1995-10-01

    Ion beams have been used for surface modification, semiconductor device fabrication and for material analysis, which makes ion-material interactions of significant importance. Ion implantation will produce new compositions near the surface by ion mixing or directly by implanting desired ions. Ions exchange their energy to the host material as they travel into the material by several different processes. High energy ions ionize the host atoms before atomic collisions transfer the remaining momentum and stop the incident ion. As they penetrate the surface, the low energy ions ionize the host atoms, but also have a significantly large momentum transfer mechanism near the surface of the material. This leads to atoms, groups of atoms and electrons being ejected from the surface, which is the momentum transfer process of sputtering. This talk addresses the acoustic waves generated during ion implantation using modulated heavy ion beams. The mechanisms for elastic wave generation during ion implantation, in the regimes where sputtering is significant and where implantation is dominant and sputtering is negligible, has been studied. The role of momentum transfer and thermal energy production during ion implantation was compared to laser generated elastic waves in an opaque solid as a reference, since laser generated ultrasound has been extensively studied and is fairly well understood. The thermoelastic response dominated in both high and low ion energy regimes since, apparently, more energy is lost to thermal heat producing mechanisms than momentum transfer processes. The signal magnitude was found to vary almost linearly with incident energy as in the laser thermoelastic regime. The time delays for longitudinal and shear waves-were characteristic of those expected for a purely thermal heating source. The ion beams are intrinsically less sensitive to the albedo of the surface.

  3. Jets from Tidal Disruptions of Stars by Black Holes

    E-Print Network [OSTI]

    Julian H. Krolik; Tsvi Piran

    2012-02-07

    Tidal disruption of main sequence stars by black holes has generally been thought to lead to a signal dominated by UV emission. If, however, the black hole spins rapidly and the poloidal magnetic field intensity on the black hole horizon is comparable to the inner accretion disk pressure, a powerful jet may form whose luminosity can easily exceed the thermal UV luminosity. When the jet beam points at Earth, its non-thermal luminosity can dominate the emitted spectrum. The thermal and non-thermal components decay differently with time. In particular, the thermal emission should remain roughly constant for a significant time after the period of maximum accretion, beginning to diminish only after a delay, whereas after the peak accretion rate, the non-thermal jet emission decays, but then reaches a plateau. Both transitions are tied to a characteristic timescale $t_{\\rm Edd}$ at which the accretion rate falls below Eddington. Making use of this timescale in a new parameter-inference formalism for tidal disruption events with significant emission from a jet, we analyze the recent flare source Swift J2058. It is consistent with an event in which a main sequence solar-type staris disrupted by a black hole of mass $\\sim 4 \\times 10^7 M_{\\odot}$. The beginning of the flat phase in the non-thermal emission from this source can possibly be seen in the late-time lightcurve. Optical photometry over the first $\\simeq 40$ d of this flare is also consistent with this picture, but is only weakly constraining because the bolometric correction is very uncertain. We suggest that future searches for main sequence tidal disruptions use methods sensitive to jet radiation as well as to thermal UV radiation.

  4. Black Holes and Galaxy Evolution

    E-Print Network [OSTI]

    David Merritt

    1999-10-29

    Supermassive binary black holes and their influence on the structure and evolution of galaxies is reviewed.

  5. Ion acceleration from thin foil and extended plasma targets by slow electromagnetic wave and related ion-ion beam instability

    SciTech Connect (OSTI)

    Bulanov, S. V. [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto, 619-0215 (Japan); A. M. Prokhorov Institute of General Physics RAS, Moscow, 119991 (Russian Federation); Esirkepov, T. Zh.; Kando, M. [QuBS, Japan Atomic Energy Agency, Kizugawa, Kyoto, 619-0215 (Japan); Pegoraro, F. [Physical Department, University of Pisa, Pisa 56127 (Italy); Bulanov, S. S. [University of California, Berkeley, California 94720 (United States); Geddes, C. G. R.; Schroeder, C. B.; Esarey, E. [Lawrence Berkeley National Laboratory, Berkeley, California, 94720 (United States); Leemans, W. P. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California, 94720 (United States)

    2012-10-15

    When ions are accelerated by the radiation pressure of a laser pulse, their velocity cannot exceed the pulse group velocity which can be considerably smaller than the speed of light in vacuum. This is demonstrated in two cases corresponding to a thin foil target irradiated by high intensity laser light and to the hole boring produced in an extended plasma by the laser pulse. It is found that the beams of accelerated ions are unstable against Buneman-like and Weibel-like instabilities which results in the broadening of the ion energy spectrum.

  6. Black Holes in Gauss-Bonnet Gravity's Rainbow

    E-Print Network [OSTI]

    Seyed Hossein Hendi; Mir Faizal

    2015-08-08

    In this paper, we will generalize the Gauss-Bonnet gravity to an energy dependent Gauss-Bonnet theory of gravity, which we shall call as the Gauss-Bonnet gravity's rainbow. We will also couple this theory to a Maxwell's theory. We will analyze black hole solutions in this energy dependent Gauss-Bonnet gravity's rainbow. We will calculate the modifications to the thermodynamics of black holes in the Gauss-Bonnet's gravity's rainbow. We will demonstrate that even though the thermodynamics of the black holes get modified in the Gauss-Bonnet gravity's rainbow, the first law of thermodynamics still holds for this modified thermodynamics. We will also comment on the thermal stability of the black hole solutions in this theory.

  7. Thermal Ion Dispersion | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008)|Al.,

  8. Thermal engine

    SciTech Connect (OSTI)

    Karnes, T.E.; Trupin, R.J.

    1984-01-03

    A thermal engine utilizing a strip of nitinol material or other thermally responsive shape memory effect material to drive a reciprocating output shaft, said strip of material forming a common wall between two different alternating temperature sources which thermally cycle the material.

  9. Electrothermal Analysis of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

    2006-03-01

    This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

  10. Heat transport through ion crystals

    E-Print Network [OSTI]

    Nahuel Freitas; Esteban Martinez; Juan Pablo Paz

    2014-12-09

    We study the thermodynamical properties of crystals of trapped ions which are laser cooled to two different temperatures in two separate regions. We show that these properties strongly depend on the structure of the ion crystal. Such structure can be changed by varying the trap parameters and undergoes a series of phase transitions from linear to zig-zag or helicoidal configurations. Thus, we show that these systems are ideal candidates to observe and control the transition from anomalous to normal heat transport. All structures behave as `heat superconductors', with a thermal conductivity increasing linearly with system size and a vanishing thermal gradient inside the system. However, zig-zag and helicoidal crystals turn out to be hyper sensitive to disorder having a linear temperature profile and a length independent conductivity. Interestingly, disordered 2D ion crystals are heat insulators. Sensitivity to disorder is much smaller in the 1D case.

  11. Black Hole Spin via Continuum Fitting and the Role of Spin in Powering Transient Jets

    E-Print Network [OSTI]

    Jeffrey E. McClintock; Ramesh Narayan; James F. Steiner

    2013-06-28

    The spins of ten stellar black holes have been measured using the continuum-fitting method. These black holes are located in two distinct classes of X-ray binary systems, one that is persistently X-ray bright and another that is transient. Both the persistent and transient black holes remain for long periods in a state where their spectra are dominated by a thermal accretion disk component. The spin of a black hole of known mass and distance can be measured by fitting this thermal continuum spectrum to the thin-disk model of Novikov and Thorne; the key fit parameter is the radius of the inner edge of the black hole's accretion disk. Strong observational and theoretical evidence links the inner-disk radius to the radius of the innermost stable circular orbit, which is trivially related to the dimensionless spin parameter a_* of the black hole (|a_*| 0.95. The robustness of the method is demonstrated by the dozens or hundreds of independent and consistent measurements of spin that have been obtained for several black holes, and through careful consideration of many sources of systematic error. Among the results discussed is a dichotomy between the transient and persistent black holes; the latter have higher spins and larger masses. Also discussed is recently discovered evidence in the transient sources for a correlation between the power of ballistic jets and black hole spin.

  12. Black Holes In Astronomy Black Holes In Astronomy

    E-Print Network [OSTI]

    Wagner, Stephan

    Black Hole horizon static limit ergosphere radiation magnetic fields jet jet #12;Black-hole accretion with a central bulge. #12;Click to edit Master text styles Second level Third level Fourth level Fifth level Jets and lobes of Cygnus A Carilli et al. Supermassive black holes are the most powerful engines in the Universe

  13. Holes in Spectral Lines

    E-Print Network [OSTI]

    Fontana, Peter R.; Srivastava, Rajendra P.

    1973-06-01

    at E = 0 is 2le I' Ib/(t)I = @~ R~R~~»nh'(IRlyt)e"'" (13)a ylal 0 5 '7 FIG. 3. Probabilities of photon emission as a function of time. The frequency corresponds to the energy differ- ence between the unperturbed degenerate excited states and the ground... states 6 is 0. 5 ey. For V= 0 the emission line is Lorentzian, but for V0 a "hole" appears at the frequency equal to the frequency difference between the excited nondecay- ing state and the ground state. The position of the "hole" is independent...

  14. Fluid aspects of electron streaming instability in electron-ion plasmas

    SciTech Connect (OSTI)

    Jao, C.-S. [Institute of Space Science, National Central University, Jhongli, Taiwan (China)] [Institute of Space Science, National Central University, Jhongli, Taiwan (China); Hau, L.-N. [Institute of Space Science, National Central University, Jhongli, Taiwan (China) [Institute of Space Science, National Central University, Jhongli, Taiwan (China); Department of Physics, National Central University, Jhongli, Taiwan (China)

    2014-02-15

    Electrons streaming in a background electron and ion plasma may lead to the formation of electrostatic solitary wave (ESW) and hole structure which have been observed in various space plasma environments. Past studies on the formation of ESW are mostly based on the particle simulations due to the necessity of incorporating particle's trapping effects. In this study, the fluid aspects and thermodynamics of streaming instabilities in electron-ion plasmas including bi-streaming and bump-on-tail instabilities are addressed based on the comparison between fluid theory and the results from particle-in-cell simulations. The energy closure adopted in the fluid model is the polytropic law of d(p?{sup ??})/dt=0 with ? being a free parameter. Two unstable modes are identified for the bump-on-tail instability and the growth rates as well as the dispersion relation of the streaming instabilities derived from the linear theory are found to be in good agreement with the particle simulations for both bi-streaming and bump-on-tail instabilities. At the nonlinear saturation, 70% of the electrons are trapped inside the potential well for the drift velocity being 20 times of the thermal velocity and the p?{sup ??} value is significantly increased. Effects of ion to electron mass ratio on the linear fluid theory and nonlinear simulations are also examined.

  15. Black Holes And Their Entropy 

    E-Print Network [OSTI]

    Mei, Jianwei

    2010-10-12

    . . . . . . . . . 21 1. Solutions in Four Dimensions . . . . . . . . . . . . . . 22 2. Solutions in Higher Dimensions . . . . . . . . . . . . . 27 C. Black Hole Solutions in Supergravity Theories . . . . . . . 30 D. Plebanski-Demianski Type Solutions in d = 5... is to discuss the construction of new black hole solutions and the calculation of the black hole entropy. In Chapter II, we shall re- port some new black hole solutions that we have found during the past few years [21, 22, 23] and we will discuss some...

  16. An ion guide laser ion source for isobar-suppressed rare isotope beams

    SciTech Connect (OSTI)

    Raeder, Sebastian Ames, Friedhelm; Bishop, Daryl; Bricault, Pierre; Kunz, Peter; Mjøs, Anders; Heggen, Henning; Institute of Applied Physics, TU Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt ; Lassen, Jens Teigelhöfer, Andrea; Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2

    2014-03-15

    Modern experiments at isotope separator on-line (ISOL) facilities like ISAC at TRIUMF often depend critically on the purity of the delivered rare isotope beams. Therefore, highly selective ion sources are essential. This article presents the development and successful on-line operation of an ion guide laser ion source (IG-LIS) for the production of ion beams free of isobaric contamination. Thermionic ions from the hot ISOL target are suppressed by an electrostatic potential barrier, while neutral radio nuclides effusing out are resonantly ionized by laser radiation within a quadrupole ion guide behind this barrier. The IG-LIS was developed through detailed thermal and ion optics simulation studies and off-line tests with stable isotopes. In a first on-line run with a SiC target a suppression of surface-ionized Na contaminants in the ion beam of up to six orders of magnitude was demonstrated.

  17. Thermality of the Hawking flux

    E-Print Network [OSTI]

    Visser, Matt

    2014-01-01

    Is the Hawking flux "thermal"? Unfortunately, the answer to this seemingly innocent question depends on a number of often unstated, but quite crucial, technical assumptions built into modern (mis-)interpretations of the word "thermal". The original 1850's notions of thermality --- based on classical thermodynamic reasoning applied to idealized "black bodies" or "lamp black surfaces" --- when supplemented by specific basic quantum ideas from the early 1900's, immediately led to the notion of the black-body spectrum, (the Planck-shaped spectrum), but "without" any specific assumptions or conclusions regarding correlations between the quanta. Many (not all) modern authors (often implicitly and unintentionally) add an extra, and quite unnecessary, assumption that there are no correlations in the black-body radiation; but such usage is profoundly ahistorical and dangerously misleading. Specifically, the Hawking flux from an evaporating black hole, (just like the radiation flux from a leaky furnace or a burning lum...

  18. Improvement of tap holes at Wakayama No. 5 blast furnace

    SciTech Connect (OSTI)

    Yamashita, M.; Kashiwada, M.; Shibuta, H. [Sumitomo Metal Industries, Ltd., Wakayama (Japan). Wakayama Steel Works

    1995-12-01

    The service life of blast furnaces, as the result of various improvement measures, has been extended from the conventional 5 to 7 years to 15 to 20 years. Wakayama No. 5 blast furnace adopted SiC bricks. Though SiC brick excelled in strength and durability, it has raised problems such as tap hole inside temperature lowering attributable to its high thermal conductivity, insufficient mud burning and gas blow-out. Nevertheless, various countermeasures described within have been taken against such problems, and as the result it has now become possible to maintain tap holes in stable conditions.

  19. Relativistic Viscous Fluid Description of Microscopic Black Hole Wind

    E-Print Network [OSTI]

    J. I. Kapusta

    2001-05-25

    Microscopic black holes explode with their temperature varying inversely as their mass. Such explosions would lead to the highest temperatures in the present universe, all the way to the Planck energy. Whether or not a quasi-stationary shell of matter undergoing radial hydrodynamic expansion surrounds such black holes is been controversial. In this paper relativistic viscous fluid equations are applied to the problem. It is shown that a self-consistent picture emerges of a fluid just marginally kept in local thermal equilibrium; viscosity is a crucial element of the dynamics.

  20. Black Holes at Accelerators

    E-Print Network [OSTI]

    Bryan Webber

    2006-04-06

    In theories with large extra dimensions and TeV-scale gravity, black holes are copiously produced in particle collisions at energies well above the Planck scale. I briefly review some recent work on the phenomenology of this process, with emphasis on theoretical uncertainties and possible strategies for measuring the number of extra dimensions.

  1. Quantum black hole inflation

    E-Print Network [OSTI]

    M. B. Altaie

    2001-05-07

    In this paper we follow a new approach for particle creation by a localized strong gravitational field. The approach is based on a definition of the physical vacuum drawn from Heisenberg uncertainty principle. Using the fact that the gravitational field red-shifts the frequency modes of the vacuum, a condition on the minimum stregth of the gravitational field required to achieve real particle creation is derived. Application of this requirement on a Schwartzchid black hole resulted in deducing an upper limit on the region, outside the event horizon, where real particles can be created. Using this regional upper limit, and considering particle creation by black holes as a consequence of the Casimir effect, with the assumption that the created quanta are to be added to the initial energy, we deduce a natural power law for the development of the event horizon, and consequently a logarithmic law for the area spectrum of an inflating black hole. Application of the results on a cosmological model shows that if we start with a Planck-dimensional black hole, then through the process of particle creation we end up with a universe having the presently estimated critical density. Such a universe will be in a state of eternal inflation.

  2. Laser bottom hole assembly

    DOE Patents [OSTI]

    Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

    2014-01-14

    There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

  3. SUBMITTED TO GRL 1 Thermal Anisotropies in the Solar Wind

    E-Print Network [OSTI]

    Richardson, John

    SUBMITTED TO GRL 1 E Thermal Anisotropies in the Solar Wind: vidence of Heating by Interstellar cyclotron instabilit s generated by newly created pickup ions and heats the thermal solar wind protons TO GRL 2 T Introduction he thermal anisotropy of the solar wind is the ratio between the temperatures p

  4. On the origin of thermality

    E-Print Network [OSTI]

    Bernard S. Kay

    2012-12-04

    It is well-known that a small system weakly coupled to a large energy bath in a total microcanonical ensemble will find itself in an (approximately) thermal state and, recently, it has been shown that, if the total state is, instead, a random pure state with energy in a narrow range, then the small system will still be approximately thermal with a high probability (wrt `Haar measure'). We ask what conditions are required for something resembling these 'traditional' and 'modern' thermality results to still hold when system and energy bath are of comparable size. In Part 1, we show that, for given system and energy-bath densities of states, s_S(e) and s_B(e), thermality does not hold in general, as we illustrate when both increase as powers of energy, but that it does hold in certain approximate senses, in both traditional and modern frameworks, when both grow as exp(be) or as exp(qe^2) and we calculate the system entropy in these cases. In their 'modern' version, our results rely on new quantities, which we introduce and call the S and B 'modapprox' density operators, which, we claim, will, with high probability, give a close approximation to the reduced density operator for the system and energy bath when the total state of system plus energy bath is a random pure state with energy in a narrow range. In Part 2 we clarify the meaning of these modapprox density operators and give arguments for our claim. The prime examples of non-small thermal systems are quantum black holes. Here and in two companion papers, we argue that current string-theoretic derivations of black hole entropy and thermal properties are incomplete and, on the question of information loss, inconclusive. However, we argue that these deficiencies are remedied with a modified scenario which relies on the modern strand of our methods and results here and is based on our previous 'matter-gravity entanglement hypothesis'.

  5. Statistical Mechanics of Black Holes

    E-Print Network [OSTI]

    B. Harms; Y. Leblanc

    1992-05-11

    We analyze the statistical mechanics of a gas of neutral and charged black holes. The microcanonical ensemble is the only possible approach to this system, and the equilibrium configuration is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in general break the bootstrap property. The problems of black hole decay and of quantum coherence are also addressed.

  6. Probing attosecond pulse structures by XUV-induced hole dynamics

    E-Print Network [OSTI]

    You, Jhih-An; Dahlström, Jan Marcus

    2015-01-01

    We investigate a two-photon ionization process in neon by an isolated attosecond pump pulse and two coherent extreme ultraviolet probe fields. The probe fields, tuned to the 2s-2p transition in the residual ion, allow for coherent control of the photoelectron via indirect interactions with the hole. We show that the photoelectron-ion coincidence signal contains an interference pattern that can be used to reconstruct the temporal structure of attosecond pump pulses. Our results are supported by simulations based on time-dependent configuration-interaction singles and lowest-order perturbation theory within second quantization.

  7. Thermal radiation in non-static curved spacetimes: quantum mechanical path integrals and configuration space topology

    E-Print Network [OSTI]

    M. E. Ortiz; F. Vendrell

    1998-06-19

    A quantum mechanical path integral derivation is given of a thermal propagator in non-static Gui spacetime. The thermal nature of the propagator is understood in terms of homotopically non-trivial paths in the configuration space appropriate to tortoise coordinates. The connection to thermal emission from collapsing black holes is discussed.

  8. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    Solar Thermal Collectors .is solar energy. Solar thermal collector arrays can be usedon integrating solar thermal collectors with desalination

  9. Co-current rotation of the bulk ions due to the ion orbit loss at the edge of a tokamak plasma

    E-Print Network [OSTI]

    Pan, Chengkang; Ou, Jing

    2014-01-01

    Flux-surface-averaged momentum loss and parallel rotation of the bulk ions at the edge of a tokamak plasma due to the ion orbit loss are calculated by computing the minimum loss energy of both the trapped and the passing thermal ions. The flux-surface-averaged parallel rotation of the bulk ions is in the co-current direction. The peak of the co-current rotation speed locates inside the last closed flux surface due to the orbit loss of the co-current thermal ions at the very edge of a tokamak plasma. The peaking position moves inward when the ion temperature increases.

  10. Hole Trapping at Surfaces of m?ZrO2 and m?HfO2 Nanocrystals

    SciTech Connect (OSTI)

    Wolf, Matthew J.; Mckenna, Keith P.; Shlyuger, Alexander L.

    2012-12-03

    We investigate hole trapping at the most prevalent facets of monoclinic zirconia (m-ZrO2) and hafnia (m-HfO2) nanocrystals using first-principles methods. The localization of holes at surface oxygen ions is more favorable than in the bulk crystal by up to ?1 eV. This is caused mainly by the reduction of the absolute value of the electrostatic potential at the surface ions with respect to the bulk and by the significant surface distortion caused by the hole localization. The mobility of holes at surfaces is much lower than that found in the bulk and is fairly isotropic. Unlike in cubic oxides, such as MgO and CaO, we do not find a significant driving force for preferential trapping of holes at steps on the m-ZrO2 surface. These fundamental results are relevant to mechanisms of water oxidation, photocatalysis, contact charging, and photodesorption.

  11. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and thermal energy storage in solar thermal applications,"aided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  12. Advanced Thermal Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermal models power density cost lifetime Advanced Thermal Interface Materials Advanced Heat Transfer Technologies Air Cooling Thermal System Performance and Integration Thermal...

  13. Black Hole Scan

    E-Print Network [OSTI]

    Juan Crisostomo; Ricardo Troncoso; Jorge Zanelli

    2000-09-22

    Gravitation theories selected by requiring that they have a unique anti-de Sitter vacuum with a fixed cosmological constant are studied. For a given dimension d, the Lagrangians under consideration are labeled by an integer k=1,2,...,[(d-1)/2]. Black holes for each d and k are found and are used to rank these theories. A minimum possible size for a localized electrically charged source is predicted in the whole set of theories, except General Relativity. It is found that the thermodynamic behavior falls into two classes: If d-2k=1, these solutions resemble the three dimensional black hole, otherwise, their behavior is similar to the Schwarzschild-AdS_4 geometry.

  14. Black holes at accelerators.

    E-Print Network [OSTI]

    Webber, Bryan R

    be presented and the effects of some of the uncertainties can be investigated. 3.1. Hawking Spectrum With the above assumptions, the spectrum of particles emitted during black hole decay takes the form dN dE ? ?E2 (eE/TH ? 1) T n+6H (8) where as usual... the trapped surface area [6, 7]. T030 02 4 6 8 10 0 0.2 0.4 0.6 0.8 1 1.2 n=0 n=1 n=2 n=6 E rS ?ˆ (0 ) ab s/ pi r2 S Figure 4: Grey-body factors for scalar emission on the brane from a (4 + n)D black hole. 0 2 4 6 8 10 0 0.2 0.4 0.6 0.8 1 1.2 n=0 n=1 n=2 n=6 E...

  15. Improved negative ion source

    DOE Patents [OSTI]

    Delmore, J.E.

    1984-05-01

    A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reaccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200 to 500/sup 0/C for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

  16. Negative ion source

    DOE Patents [OSTI]

    Delmore, James E. (Idaho Falls, ID)

    1987-01-01

    A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reeccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200.degree. to 500.degree. for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

  17. Black Hole Demographics

    E-Print Network [OSTI]

    Laura Ferrarese

    2002-03-04

    The purpose of this contribution is to review the current status of black hole demographics in light of recent advances in the study of high redshift QSOs (section 2), local AGNs (section 3) and local quiescent galaxies (section 4). I will then outline the prospects for future progress (section 5), and discuss what I believe will be the challenges for the years to come [ABRIDGED].

  18. Hawking radiation of Reissner-Nordstrom-de Sitter black hole by Hamilton-Jacobi method

    E-Print Network [OSTI]

    M. Ilias Hossain; M. Atiqur Rahman

    2013-08-31

    In Refs. (M. Atiqur Rahman, M. Ilias Hossain (2012) Phys. Lett. B {\\bf 712} 1), we have developed Hamilton-Jacobi method for dynamical spacetime and discussed Hawking radiation of Schwarzschild-de Sitter black hole by massive particle tunneling method. In this letter, we have investigated the hawking purely thermal and nonthermal radiations of Reissner-Nordstr\\"{o}m-de Sitter (RNdS) black hole. We have considered energy and angular momentum as conserved and shown that the tunneling rate is related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum. The results we have obtained for RNdS black hole is also in accordance with Parikh and Wilczek\\rq s opinion and recovered the new result for Hawking radiation of RNdS black hole.

  19. Identification of Astrophysical Black Holes

    E-Print Network [OSTI]

    Sandip K. Chakrabarti

    1998-03-19

    Black holes are by definition black, and therefore cannot be directly observed by using electromagnetic radiations. Convincing identification of black holes must necessarily depend on the identification of a very specially behaving matter and radiation which surround them. A major problem in this subject of black hole astrophysics is to quantify the behaviour of matter and radiation close to the horizon. In this review, the subject of black hole accretion and outflow is systematically developed. It is shown that both the stationary as well as the non-stationary properties of the observed spectra could be generally understood by these solutions. It is suggested that the solutions of radiative hydrodynamic equations may produce clear spectral signatures of black holes. Other circumstantial evidences of black holes, both in the galactic centers as well as in binary systems, are also presented.

  20. Accretion Processes On a Black Hole

    E-Print Network [OSTI]

    Sandip K. Chakrabarti

    1996-05-03

    We describe astrophysical processes around a black hole keeping primarily the physics of accretion in mind. In Section 1, we briefly discuss the formation, evolution and detection of black holes. We also discuss the difference of flow properties around a black hole and a Newtonian star. In Section 2, we present past and present developments in the study of spherically accreting flows. We study the properties of Bondi flow with and without radiative transfer. In the presence of significant angular momentum, which is especially true in a binary system, matter will be accreted as a thin Keplerian disk. In Section 3, we discuss a large number of models of these disks including the more popular standard disk model. We present magnetized disk models as well. Since the angular momentum is high in these systems, rotational motion is the most dominant component compared to the radial or the vertical velocity components. In Section 4, we study thick disk models which are of low angular momentum but still have no significant radial motion. The accretion rates could be very high causing the flow to become radiation dominated and the disk to be geometrically thick. For low accretion rates, ion pressure supported disks are formed. In Section 5, we extensively discuss the properties of transonic flows which has with sub-Keplerian angular momentum. In the absence of shock discontinuities, these sub-Keplerian flows are basically advecting, similar to Bondi flows, close to the black holes, though far away they match Keplerian or sub-Keplerian disks. In presence of shocks, the post-shock flow becomes rotation dominated similar to thick disks. In Section 6, we present results of important numerical simulations of accretion flows. Significant results from the studies of evolution of viscous transonic flows are reported. In Section 7, we discuss some observational evidences of the black hole accretion. We also present a detailed model of a generalized accretion disk and present its spectra and compare with observations. In Section 8, we summarize the review and make concluding remarks.

  1. Black holes in general relativity

    E-Print Network [OSTI]

    Visser, Matt

    2009-01-01

    What is going on (as of August 2008) at the interface between theoretical general relativity, string-inspired models, and observational astrophysics? Quite a lot. In this mini-survey I will make a personal choice and focus on four specific questions: Do black holes "exist"? (For selected values of the word "exist".) Is black hole formation and evaporation unitary? Can one mimic a black hole to arbitrary accuracy? Can one detect the presence of a horizon using local physics?

  2. Quantum Mechanics and Black Holes

    E-Print Network [OSTI]

    Jose N. Pecina-Cruz

    2005-11-27

    This paper discusses the existence of black holes from the foundations of quantum mechanics. It is found that quantum mechanics rule out a possible gravitational collapse.

  3. Ion acoustic solitons/double layers in two-ion plasma revisited

    SciTech Connect (OSTI)

    Lakhina, G. S. Singh, S. V. Kakad, A. P.

    2014-06-15

    Ion acoustic solitons and double layers are studied in a collisionless plasma consisting of cold heavier ion species, a warm lighter ion species, and hot electrons having Boltzmann distributions by Sagdeev pseudo-potential technique. In contrast to the previous results, no double layers and super-solitons are found when both the heavy and lighter ion species are treated as cold. Only the positive potential solitons are found in this case. When the thermal effects of the lighter ion species are included, in addition to the usual ion-acoustic solitons occurring at M?>?1 (where the Mach number, M, is defined as the ratio of the speed of the solitary wave and the ion-acoustic speed considering temperature of hot electrons and mass of the heavier ion species), slow ion-acoustic solitons/double layers are found to occur at low Mach number (M?ion-acoustic mode is actually a new ion-ion hybrid acoustic mode which disappears when the normalized number density of lighter ion species tends to 1 (i.e., no heavier species). An interesting property of the new slow ion-acoustic mode is that at low number density of the lighter ion species, only negative potential solitons/double layers are found whereas for increasing densities there is a transition first to positive solitons/double layers, and then only positive solitons. The model can be easily applicable to the dusty plasmas having positively charged dust grains by replacing the heavier ion species by the dust mass and doing a simple normalization to take account of the dust charge.

  4. Artificial ozone holes

    E-Print Network [OSTI]

    S. N. Dolya

    2014-10-18

    This article considers an opportunity of disinfecting a part of the Earth surface, occupying a large area of ten thousand square kilometers. The sunlight will cause dissociation of molecular bromine into atoms; each bromine atom kills thirty thousand molecules of ozone. Each bromine plate has a mass of forty milligrams grams and destroys ozone in the area of hundred square meters. Thus, to form the ozone hole over the area of ten thousand square kilometers, it is required to have the total mass of bromine equal to the following four tons.

  5. Holographic Black Hole Chemistry

    E-Print Network [OSTI]

    Andreas Karch; Brandon Robinson

    2015-11-02

    Thermodynamic quantities associated with black holes in Anti-de Sitter space obey an interesting identity when the cosmological constant is included as one of the dynamical variables, the generalized Smarr relation. We show that this relation can easily be understood from the point of view of the dual holographic field theory. It amounts to the simple statement that the extensive thermodynamic quantities of a large $N$ gauge theory only depend on the number of colors, $N$, via an overall factor of $N^2$.

  6. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008) ||

  7. Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008) ||Al., 1993) | Open

  8. Thermal Gradient Holes At Hualalai Northwest Rift Area (Thomas, 1986) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008)

  9. Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Lachenbruch,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008)| OpenEt Al., 1976)

  10. Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski...

    Open Energy Info (EERE)

    or drilling of production wells. Some deep wells, several seismic lines, limited gravity surveys, and geochemical and geological studies have suggested that the geothermal...

  11. Thermal Gradient Holes At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    the area References J. Held, F. Henderson (2012) New developments in Colorado geothermal energy projects Additional References Retrieved from "http:en.openei.orgw...

  12. Thermal Gradient Holes At Lightning Dock Geothermal Area (Arnold...

    Open Energy Info (EERE)

    Arnold, Anderson, Donaldson, Foster, Gutjahr, Hatton, Hill, Martinez (1978) New Mexico's Energy Resources '77: Office of the State Geologist Additional References Retrieved from...

  13. Thermal Gradient Holes At Fenton Hill HDR Geothermal Area (Purtymun...

    Open Energy Info (EERE)

    Valles caldera in order to locate an of high heat flow that would serve as a favorable test site for the HDR concept. Notes Data from these wells are report in Reiter et al....

  14. Thermal Gradient Holes At Spencer Hot Springs Area (Shevenell...

    Open Energy Info (EERE)

    Activity Date Usefulness useful DOE-funding Unknown Notes Collaboration with the gold mining industry has brought two new geothermal discoveries to the attention of the geothermal...

  15. Thermal Gradient Holes At Roosevelt Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  16. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  17. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

  18. Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy Information 1968-1971) JumpAlum2004)

  19. Thermal Gradient Holes At Coso Geothermal Area (1974) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy Information 1968-1971)Open

  20. Thermal Gradient Holes At Coso Geothermal Area (1976) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy Information

  1. Thermal Gradient Holes At Long Valley Caldera Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpen Energy Information2005)

  2. Thermal Gradient Holes At Waunita Hot Springs Geothermal Area (Zacharakis,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergyOpenInformation Silver Peak1981) |

  3. Short wavelength ion temperature gradient turbulence

    SciTech Connect (OSTI)

    Chowdhury, J.; Ganesh, R. [Institute for Plasma Research, Bhat, Gandhinagar (India); Brunner, S.; Lapillonne, X.; Villard, L. [CRPP, Association EURATOM-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Jenko, F. [Max-Planck-Institut fuer Plasmaphysik Boltzmannstr. 2, D-85748 Garching (Germany)

    2012-10-15

    The ion temperature gradient (ITG) mode in the high wavenumber regime (k{sub y}{rho}{sub s}>1), referred to as short wavelength ion temperature gradient mode (SWITG) is studied using the nonlinear gyrokinetic electromagnetic code GENE. It is shown that, although the SWITG mode may be linearly more unstable than the standard long wavelength (k{sub y}{rho}{sub s}<1) ITG mode, nonlinearly its contribution to the total thermal ion heat transport is found to be low. We interpret this as resulting from an increased zonal flow shearing effect on the SWITG mode suppression.

  4. Black Holes of Negative Mass

    E-Print Network [OSTI]

    R. B. Mann

    1997-05-06

    I demonstrate that, under certain circumstances, regions of negative energy density can undergo gravitational collapse into a black hole. The resultant exterior black hole spacetimes necessarily have negative mass and non-trivial topology. A full theory of quantum gravity, in which topology-changing processes take place, could give rise to such spacetimes.

  5. The Ozone Hole Some perspective

    E-Print Network [OSTI]

    Toohey, Darin W.

    The Ozone Hole · Some perspective · The British Antarctic Survey · The "Ozone Hole" · International of the predicted ozone losses! This was quite a controversy. Ultimately, ozone losses started appearing in the late 1980s (see Figure below), but by then, there was already a credibility issue for ozone scientists. #12

  6. An Ion Guide for the Production of a Low Energy Ion Beam of Daughter Products of $?$-Emitters

    E-Print Network [OSTI]

    B. Tordoff; T. Eronen; V. V. Elomaa; S. Gulick; U. Hager; P. Karvonen; T. Kessler; J. Lee; I. Moore; A. Popov; S. Rahaman; S. Rinta-Antila; T. Sonoda; J. Aysto

    2006-05-22

    A new ion guide has been modeled and tested for the production of a low energy ($\\approx$ 40 kV) ion beam of daughter products of alpha-emitting isotopes. The guide is designed to evacuate daughter recoils originating from the $\\alpha$-decay of a $^{233}$U source. The source is electroplated onto stainless steel strips and mounted along the inner walls of an ion guide chamber. A combination of electric fields and helium gas flow transport the ions through an exit hole for injection into a mass separator. Ion guide efficiencies for the extraction of $^{229}$Th$^{+}$ (0.06%), $^{221}$Fr$^{+}$ (6%), and $^{217}$At$^{+}$ (6%) beams have been measured. A detailed study of the electric field and gas flow influence on the ion guide efficiency is described for two differing electric field configurations.

  7. Improved ion source

    DOE Patents [OSTI]

    Leung, K.N.; Ehlers, K.W.

    1982-05-04

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,

  8. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    varying solar energy inputs and thermal or power demands. Itusing aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"

  9. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    of solar collectors and thermal energy storage in solaraided or powered by solar thermal energy. A section is alsobesides MVC require thermal energy as their primary energy

  10. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    15] O. A. Hamed, "THERMAL PERFORMANCE OF MULTISTAGE FLASHdesa4.aspx. [18] Encon, "Thermal Evaporators," June 2013. [http://www.evaporator.com/thermal-evaporator. [19] Y. Tian

  11. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    of such an aquifer thermal storage system were studied andusing aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"

  12. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    This requires no thermal storage tanks, but can have athe need for large thermal storage equipment, the evaporatorinclude analysis of thermal storage. A way of keeping the

  13. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  14. Cassini observations of the thermal plasma in the vicinity of Saturn's main rings and the F and G rings

    E-Print Network [OSTI]

    Gurnett, Donald A.

    Cassini observations of the thermal plasma in the vicinity of Saturn's main rings and the F and G] The ion mass spectrometer on Cassini detected enhanced ion flux near Saturn's main rings are derived from the ion counting data. The ion temperatures over the main rings are a minimum near

  15. Strings, higher curvature corrections, and black holes

    E-Print Network [OSTI]

    Thomas Mohaupt

    2005-12-05

    We review old and recent results on subleading contributions to black hole entropy in string theory.

  16. The Woods Hole Laboratory, 1885-1985

    E-Print Network [OSTI]

    The Woods Hole Laboratory, 1885-1985: A Century of Service Woods Hole Laboratory Northeast, Lectures, and Rededication of the Woods Hole Laboratory Contents Foreword and Acknowledgments Committees and Contributions of the Woods Hole Fisheries Laboratory Centennial Lecture II: The MBL and the Fisheries-A Century

  17. Thermal photons to dileptons ratio at LHC

    E-Print Network [OSTI]

    Jajati K. Nayak; Jan-e Alam; Sourav Sarkar; Bikash Sinha

    2007-05-24

    It is shown that the ratio of transverse momentum (p_T) distribution of thermal photons to dileptons produced in heavy ion collisions reaches a plateau above p_T=1 GeV. We argue that the value of the ratio in the plateau region can be used to estimate the initial temperature.

  18. Master Thesis: Fusion Plasma Thermal Transport

    E-Print Network [OSTI]

    Master Thesis: Fusion Plasma Thermal Transport Radial and Poloidal Profile Modeling Martin Olesen-axis localised ion cyclotron resonance heating source. 2. Cold pulse shock induction at the plasma edge via laser wave propagation from heat modulation and the fast propagation of a cold pulse, at the same plasma

  19. Optimal Energy Management Strategy including Battery Health through Thermal

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Optimal Energy Management Strategy including Battery Health through Thermal Management for Hybrid: Energy management strategy, Plug-in hybrid electric vehicles, Li-ion battery aging, thermal management, Pontryagin's Minimum Principle. 1. INTRODUCTION The interest for energy management strategy (EMS) of Hybrid

  20. 15th Topical Conference on RF Power in Plasmas May 20 22, 2003 Jackson Hole, Wyoming

    E-Print Network [OSTI]

    Merlino, Robert L.

    ;Semiconductor Manufacturing dustSi #12;Physics Today August 1994 #12;Dusty Plasma DUST #12;Dust Charging Isec = Ipe = 0 Electron thermal speed >> ion thermal speed so the grains charge to a negative potential 100 120 Diameter (micron) 2 0 0.5 1 1.5 0 20 40 60 80 100 120 140 160 Electron Energy (eV) Glass

  1. Thermal Transport in Nanoporous Materials for Energy Applications

    E-Print Network [OSTI]

    Fang, Jin

    2012-01-01

    Thermal Conductivity Measurement . . . . . . . . . . . . .Thermal ConductivityThermal Conductivity . . . . . . . . . . . . . . . .Thermal

  2. A Unitary Model of The Black Hole Evaporation

    E-Print Network [OSTI]

    Yu-Lei Feng; Yi-Xin Chen

    2014-12-16

    A unitary effective field model of the black hole evaporation is proposed to satisfy almost the four postulates of the black hole complementarity (BHC). In this model, we enlarge a black hole-scalar field system by adding an extra radiation detector that couples with the scalar field. After performing a partial trace over the scalar field space, we obtain an effective entanglement between the black hole and the detector (or radiation in it). As the whole system evolves, the S-matrix formula can be constructed formally step by step. Without local quantum measurements, the paradoxes of the information loss and AMPS's firewall can be resolved. However, the information can be lost due to quantum decoherence, as long as some local measurement has been performed on the detector to acquire the information of the radiation in it. But unlike Hawking's completely thermal spectrum, some residual correlations can be found in the radiations. All these considerations can be simplified in a qubit model that provides a \\emph{modified quantum teleportation} to transfer the information via an EPR pairs.

  3. Sensitivity of HAWC to Primordial Black Hole Bursts

    E-Print Network [OSTI]

    Ukwatta, T N; MacGibbon, D Stump J H; Marinelli, S S; Yapici, T; Tollefson, K

    2015-01-01

    Primordial Black Holes (PBHs) are black holes that may have been created in the early Universe and could be as large as supermassive black holes or as small as the Planck scale. It is believed that a black hole has a temperature inversely proportional to its mass and will thermally emit all species of fundamental particles. PBHs with initial masses of 5.0 x 10^14 g should be expiring today with bursts of high-energy gamma radiation in the GeV/TeV energy range. The High Altitude Water Cherenkov (HAWC) observatory is sensitive to the high end of the PBH gamma-ray burst spectrum. Due to its large field of view, duty cycle above 90% and sensitivity up to 100 TeV, the HAWC observatory is well suited to perform a search for PBH bursts. We report that if the PBH explodes within 0.25 light years from Earth and within 26 degrees of zenith, HAWC will have a 95% probability of detecting the PBH burst at the 5 sigma level. Conversely, a null detection from a 2 year or longer HAWC search will set PBH upper limits which ar...

  4. Black hole horizons Eric Gourgoulhon

    E-Print Network [OSTI]

    Gourgoulhon, Eric

    on a black hole: up to 42% of the mass-energy mc2 of accreted matter ! NB: thermonuclear reactions release: a very deep gravitational potential well Release of potential gravitational energy by accretion

  5. Thermodynamics of regular black hole

    E-Print Network [OSTI]

    Yun Soo Myung; Yong-Wan Kim; Young-Jai Park

    2008-09-21

    We investigate thermodynamics for a magnetically charged regular black hole (MCRBH), which comes from the action of general relativity and nonlinear electromagnetics, comparing with the Reissner-Norstr\\"om (RN) black hole in both four and two dimensions after dimensional reduction. We find that there is no thermodynamic difference between the regular and RN black holes for a fixed charge $Q$ in both dimensions. This means that the condition for either singularity or regularity at the origin of coordinate does not affect the thermodynamics of black hole. Furthermore, we describe the near-horizon AdS$_2$ thermodynamics of the MCRBH with the connection of the Jackiw-Teitelboim theory. We also identify the near-horizon entropy as the statistical entropy by using the AdS$_2$/CFT$_1$ correspondence.

  6. Black Holes and Nuclear Dynamics

    E-Print Network [OSTI]

    David Merritt

    2006-02-17

    Supermassive black holes inhabit galactic nuclei, and their presence influences in crucial ways the evolution of the stellar distribution. The low-density cores observed in bright galaxies are probably a result of black hole infall, while steep density cusps like those at the Galactic center are a result of energy exchange between stars moving in the gravitational field of the single black hole. Loss-cone dynamics are substantially more complex in galactic nuclei than in collisionally-relaxed systems like globular clusters due to the wider variety of possible geometries and orbital populations. The rate of star-black hole interactions has begun to be constrained through observations of energetic events associated with stellar tidal disruptions.

  7. You Cannot Press Out the Black Hole

    E-Print Network [OSTI]

    Daisuke Ida; Takahiro Okamoto

    2012-01-03

    It is shown that a ball-shaped black hole region homeomorphic with D**n cannot be pressed out, along whichever axis penetrating the black hole region, into a black ring with a doughnut-shaped black hole region homeomorphic with S**1 x D**(n-1). A more general prohibition law for the change of the topology of black holes, including a version of no-bifurcation theorems for black holes, is given.

  8. Ion Monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2003-11-18

    The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

  9. Non-linear Plasma Wake Growth of Electron Holes

    E-Print Network [OSTI]

    Hutchinson, I H; Zhou, C

    2015-01-01

    An object's wake in a plasma with small Debye length that drifts \\emph{across} the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind wake and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable...

  10. Lithium ion sources

    E-Print Network [OSTI]

    Roy, Prabir K.

    2014-01-01

    HIFAN 1866 Lithium ion sources by Prabir K. Roy, Wayne G.No. DE-AC02-05CH11231. Lithium ion sources Prabir K. Roya source of ?100 mA lithium ion current for the Neutralized

  11. Geothermal reservoir assessment based on slim hole drilling. Volume 1, Analytical Method: Final report

    SciTech Connect (OSTI)

    Olson, H.J.

    1993-12-01

    The Hawaii Scientific Observation Hole (SOH) program was supplied by the State of Hawaii to drill six, 4,000 foot scientific observation holes on Maui and the Big Island of Hawaii to confirm and stimulate geothermal, resource development in Hawaii. After a lengthy permitting process, three SOHs, totaling 18,890 feet of mostly core drilling were finally drilled along the Kilauea East Rift Zone (KERZ) in the Puna district on the Big Island. The SOH program was highly successful in meeting the highly restrictive permitting conditions imposed on the program, and in developing slim hole drilling techniques, establishing subsurface geological conditions, and initiating an assessment and characterization of the geothermal resources potential of Hawaii - even though permitting specifically prohibited pumping or flowing the holes to obtain data of subsurface fluid conditions. The first hole, SOH-4, reached a depth of 2,000 meters, recorded a bottom hole temperature of 306.1 C, and established subsurface thermal continuity along the KERZ between the HGP-A and the True/Mid-Pacific Geothermal Venture wells. Although evidence of fossil reservoir conditions were encountered, no zones with obvious reservoir potential were found. The second hole SOH-1, was drilled to a depth of 1,684 meters, recorded a bottom hole temperature of 206.1 C, effectively doubled the size of the Hawaii Geothermal Project -- Abbott/Puna Geothermal Venture (HGP-A/PGV) proven/probable reservoir, and defined the northern limit of the HGP-A/PGV reservoir. The final hole, SOH-2, was drilled to a depth of 2,073 meters, recorded a bottom hole temperature of 350.5 C, and has sufficient indicated permeability to be designated as a potential ''discovery.''

  12. Geothermal reservoir assessment based on slim hole drilling. Volume 2: Application in Hawaii: Final report

    SciTech Connect (OSTI)

    Olson, H.J.

    1993-12-01

    The Hawaii Scientific Observation Hole (SOH) program was planned, funded, and initiated in 1988 by the Hawaii Natural Energy Institute, an institute within the School of Ocean and Earth Science and Technology, at the University of Hawaii at Manoa. Initial funding for the SOH program was $3.25 million supplied by the State of Hawaii to drill six, 4,000 foot scientific observation holes on Maui and the Big Island of Hawaii to confirm and stimulate geothermal resource development in Hawaii. After a lengthy permitting process, three SOHs, totaling 18,890 feet of mostly core drilling were finally drilled along the Kilauea East Rift Zone (KERZ) in the Puna district on the Big Island. The SOH program was highly successful in meeting the highly restrictive permitting conditions imposed on the program, and in developing slim hole drilling techniques, establishing subsurface geological conditions, and initiating an assessment and characterization of the geothermal resources potential of Hawaii - - even though permitting specifically prohibited pumping or flowing the holes to obtain data of subsurface fluid conditions. The first hole, SOH-4, reached a depth of 2,000 meters, recorded a/bottom hole temperature of 306.1 C, and established subsurface thermal continuity along the KERZ between the HGP-A and the True/Mid-Pacific Geothermal Venture wells. Although evidence of fossil reservoir conditions were encountered, no zones with obvious reservoir potential were found. The second hole SOH-1, was drilled to a depth of 1,684 meters, recorded a bottom hole temperature of 206.1 C, effectively doubled the size of the Hawaii Geothermal Project-Abbott/Puna Geothermal Venture (HGP-A/PGV) proven/probable reservoir, and defined the northern limit of the HGP-A/PGV reservoir. The final hole, SOH-2, was drilled to a depth of 2,073 meters, recorded a bottom hole temperature of 350.5 C, and has sufficient indicated permeability to be designated as a potential discovery.

  13. Ion funnel ion trap and process

    DOE Patents [OSTI]

    Belov, Mikhail E [Richland, WA; Ibrahim, Yehia M [Richland, WA; Clowers, Biran H [West Richland, WA; Prior, David C [Hermiston, OR; Smith, Richard D [Richland, WA

    2011-02-15

    An ion funnel trap is described that includes a inlet portion, a trapping portion, and a outlet portion that couples, in normal operation, with an ion funnel. The ion trap operates efficiently at a pressure of .about.1 Torr and provides for: 1) removal of low mass-to-charge (m/z) ion species, 2) ion accumulation efficiency of up to 80%, 3) charge capacity of .about.10,000,000 elementary charges, 4) ion ejection time of 40 to 200 .mu.s, and 5) optimized variable ion accumulation times. Ion accumulation with low concentration peptide mixtures has shown an increase in analyte signal-to-noise ratios (SNR) of a factor of 30, and a greater than 10-fold improvement in SNR for multiply charged analytes.

  14. Fishing in Black Holes

    E-Print Network [OSTI]

    A. Brotas

    2006-09-01

    The coordinate system $(\\bar{x},\\bar{t})$ defined by $r = 2m + K\\bar{x}- c K \\bar{t}$ and $t=\\bar{x}/cK - 1 /cK \\int_{r_a}^r (1- 2m/r + K^2)^{1/2} (1 - 2m/r)^{-1}dr$ allow us to write the Schwarzschild metric in the form: \\[ds^2=c^2 d\\bar{t}^2 + (W^2/K^2 - 2W/K) d\\bar{x}^2 + 2c (1 + W/K) d\\bar{x}d\\bar{t} - r^2 (d\\theta^2 + cos^2\\theta d\\phi^2)\\] with $W=(1 - 2m/r + K^2)^{1/2}$, in which the coefficients' pathologies are moved to $r_K = 2m/(1+K^2)$. This new coordinate system is used to study the entrance into a black hole of a rigid line (a line in which the shock waves propagate with velocity c).

  15. Ion-acoustic cnoidal waves in plasmas with warm ions and kappa distributed electrons and positrons

    SciTech Connect (OSTI)

    Kaladze, T.; I.Vekua Institute of Applied Mathematics, Tbilisi State University, 0186 Georgia ; Mahmood, S.

    2014-03-15

    Electrostatic ion-acoustic periodic (cnoidal) waves and solitons in unmagnetized electron-positron-ion (EPI) plasmas with warm ions and kappa distributed electrons and positrons are investigated. Using the reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived with appropriate boundary conditions for periodic waves. The corresponding analytical and various numerical solutions are presented with Sagdeev potential approach. Differences between the results caused by the kappa and Maxwell distributions are emphasized. It is revealed that only hump (compressive) structures of the cnoidal waves and solitons are formed. It is shown that amplitudes of the cnoidal waves and solitons are reduced in an EPI plasma case in comparison with the ordinary electron-ion plasmas. The effects caused by the temperature variations of the warm ions are also discussed. It is obtained that the amplitude of the cnoidal waves and solitons decreases for a kappa distributed (nonthermal) electrons and positrons plasma case in comparison with the Maxwellian distributed (thermal) electrons and positrons EPI plasmas. The existence of kappa distributed particles leads to decreasing of ion-acoustic frequency up to thermal ions frequency.

  16. A Single-Ion Trap with Minimized Ion-Environment Interactions

    E-Print Network [OSTI]

    Nisbet-Jones, P B R; Jones, J M; Godun, R M; Baynham, C F A; Bongs, K; Doležal, M; Balling, P; Gill, P

    2015-01-01

    We present a new single-ion endcap trap for high precision spectroscopy that has been designed to minimize ion-environment interactions. We describe the design in detail and then characterize the working trap using a single trapped 171 Yb ion. Excess micromotion has been eliminated to the resolution of the detection method and the trap exhibits an anomalous phonon heating rate of d /dt = 24 +30/-24 per second. The thermal properties of the trap structure have also been measured with an effective temperature rise at the ion's position of 0.14 +/- 0.14 K. The small perturbations to the ion caused by this trap make it suitable to be used for an optical frequency standard with fractional uncertainties below the 10^-18 level.

  17. Primordial Black Holes: Observational Characteristics of The Final Evaporation

    E-Print Network [OSTI]

    Ukwatta, T N; Linnemann, J T; MacGibbon, J H; Marinelli, S S; Yapici, T; Tollefson, K

    2015-01-01

    Many early universe theories predict the creation of Primordial Black Holes (PBHs). PBHs could have masses ranging from the Planck mass to $10^5$ solar masses or higher depending on the size of the universe at formation. A Black Hole (BH) has a Hawking temperature which is inversely proportional to its mass. Hence a sufficiently small BH will quasi-thermally radiate particles at an ever-increasing rate as emission lowers its mass and raises its temperature. The final moments of this evaporation phase should be explosive and its description dependent on the particle physics model. In this work we investigate the final few seconds of BH evaporation using the Standard Model of particle physics incorporating the most recent LHC results and calculate energy dependent PBH burst light curves in the GeV/TeV energy range. Moreover, we explore PBH burst search methods and potential observational PBH burst signatures relevant to very high energy gamma-ray observatories.

  18. Circularization of Tidally Disrupted Stars around Spinning Supermassive Black Holes

    E-Print Network [OSTI]

    Hayasaki, Kimitake; Loeb, Abraham

    2015-01-01

    We study the circularization of tidally disrupted stars on bound orbits around spinning supermassive black holes by performing three-dimensional smoothed particle hydrodynamic simulations with Post-Newtonian corrections. Our simulations reveal that debris circularization depends sensitively on the efficiency of radiative cooling. There are two stages in debris circularization if radiative cooling is inefficient: first, the stellar debris streams self-intersect due to relativistic apsidal precession; shocks at the intersection points thermalize orbital energy and the debris forms a geometrically thick, ring-like structure around the black hole. The ring rapidly spreads via viscous diffusion, leading to the formation of a geometrically thick accretion disk. In contrast, if radiative cooling is efficient, the stellar debris circularizes due to self-intersection shocks and forms a geometrically thin ring-like structure. In this case, the dissipated energy can be emitted during debris circularization as a precurso...

  19. Holography, mass area relation and discrete quantum spectrum of black holes

    E-Print Network [OSTI]

    Lochan, Kinjalk

    2015-01-01

    The quantum genesis of Hawking radiation is a long-standing puzzle in black hole physics. Semi-classically one can argue that the spectrum of radiation emitted by a black hole look very much sparse unlike what is expected from a thermal object. It was demonstrated through a simple quantum model that a quantum black hole will retain a discrete profile, at least in the weak energy regime. However, it was suggested that this discreteness might be an artifact of the simplicity of eigenspectrum of the model considered. Different quantum theories can, in principle, give rise to different complicated spectra and make the radiation from black hole dense enough in transition lines, to make them look continuous in profile. We show that such a hope from a geometry-quantized black hole is not realized as long as large enough black holes are dubbed with holographic relation which tells that the entropy of the black hole can be obtained from the area of the horizon and they have a classical mass area relation. We show that...

  20. Thermality of the Hawking flux

    E-Print Network [OSTI]

    Matt Visser

    2015-05-06

    Is the Hawking flux "thermal"? Unfortunately, the answer to this seemingly innocent question depends on a number of often unstated, but quite crucial, technical assumptions built into modern (mis-)interpretations of the word "thermal". The original 1850's notions of thermality --- based on classical thermodynamic reasoning applied to idealized "black bodies" or "lamp black surfaces" --- when supplemented by specific basic quantum ideas from the early 1900's, immediately led to the notion of the black-body spectrum, (the Planck-shaped spectrum), but "without" any specific assumptions or conclusions regarding correlations between the quanta. Many (not all) modern authors (often implicitly and unintentionally) add an extra, and quite unnecessary, assumption that there are no correlations in the black-body radiation; but such usage is profoundly ahistorical and dangerously misleading. Specifically, the Hawking flux from an evaporating black hole, (just like the radiation flux from a leaky furnace or a burning lump of coal), is only "approximately" Planck-shaped over a bounded frequency range. Standard physics (phase space and adiabaticity effects) explicitly bound the frequency range over which the Hawking flux is "approximately" Planck-shaped from both above and below --- the Hawking flux is certainly not exactly Planckian, and there is no compelling physics reason to assume the Hawking photons are uncorrelated.

  1. ZPPR FUEL ELEMENT THERMAL STRESS-STRAIN ANALYSIS

    SciTech Connect (OSTI)

    Charles W. Solbrig; Jason Andrus; Chad Pope

    2014-04-01

    The design temperature of high plutonium concentration ZPPR fuel assemblies is 600 degrees C. Cladding integrity of the 304L stainless steel cladding is a significant concern with this fuel since even small holes can lead to substantial fuel degradation. Since the fuel has a higher coefficient of thermal expansion than the cladding, an investigation of the stress induced in the cladding due to the differential thermal expansion of fuel and cladding up to the design temperature was conducted. Small holes in the cladding envelope would be expected to lead to the fuel hydriding and oxidizing into a powder over a long period of time. This is the same type of chemical reaction chain that exists in the degradion of the high uranium concentration ZPPR fuel. Unfortunately, the uranium fuel was designed with vents which allowed this degradation to occur. The Pu cladding is sealed so only fuel with damaged cladding would be subject to this damage. The thermal stresses that can be developed in the fuel cladding have been calculated in in this paper and compared to the ultimate tensile stress of the cladding. The conclusion is drawn that thermal stresses cannot induce holes in the cladding even for the highest storage temperatures predicted in calculations (292°C). In fact, thermal stress can not cause cladding failure as long as the fuel temperatures are below the design limit of 600 degrees C (1,112 degrees F).

  2. Signatures of Energy Flux in Particle Production: A Black Hole Birth Cry and Death Gasp

    E-Print Network [OSTI]

    Good, Michael R R

    2015-01-01

    It is recently argued that if the Hawking radiation process is unitary, then a black hole's mass cannot be monotonically decreasing. We examine the time dependent particle count and negative energy flux in the non-trivial conformal vacuum via the moving mirror approach. A new, exactly unitary solution is presented which emits a characteristic above-thermal positive energy burst, a thermal plateau, and negative energy flux. It is found that the characteristic positive energy flare and thermal plateau is observed in the particle outflow. However, the results of time dependent particle production show no overt indication of negative energy flux. Therefore, a black hole's birth cry is detectable by asymptotic observers via particle count, whereas its death gasp is not.

  3. Signatures of Energy Flux in Particle Production: A Black Hole Birth Cry and Death Gasp

    E-Print Network [OSTI]

    Michael R. R. Good; Yen Chin Ong

    2015-06-24

    It is recently argued that if the Hawking radiation process is unitary, then a black hole's mass cannot be monotonically decreasing. We examine the time dependent particle count and negative energy flux in the non-trivial conformal vacuum via the moving mirror approach. A new, exactly unitary solution is presented which emits a characteristic above-thermal positive energy burst, a thermal plateau, and negative energy flux. It is found that the characteristic positive energy flare and thermal plateau is observed in the particle outflow. However, the results of time dependent particle production show no overt indication of negative energy flux. Therefore, a black hole's birth cry is detectable by asymptotic observers via particle count, whereas its death gasp is not.

  4. Microfabricated ion frequency standard

    DOE Patents [OSTI]

    Schwindt, Peter (Albuquerque, NM); Biedermann, Grant (Albuquerque, NM); Blain, Matthew G. (Albuquerque, NM); Stick, Daniel L. (Albuquerque, NM); Serkland, Darwin K. (Albuquerque, NM); Olsson, III, Roy H. (Albuquerque, NM)

    2010-12-28

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  5. Energy on black hole spacetimes

    E-Print Network [OSTI]

    Alejandro Corichi

    2012-07-18

    We consider the issue of defining energy for test particles on a background black hole spacetime. We revisit the different notions of energy as defined by different observers. The existence of a time-like isometry allows for the notion of a total conserved energy to be well defined, and subsequently the notion of a gravitational potential energy is also meaningful. We then consider the situation in which the test particle is adsorbed by the black hole, and analyze the energetics in detail. In particular, we show that the notion of horizon energy es defined by the isolated horizons formalism provides a satisfactory notion of energy compatible with the particle's conserved energy. As another example, we comment a recent proposal to define energy of the black hole as seen by an observer at rest. This account is intended to be pedagogical and is aimed at the level of and as a complement to the standard textbooks on the subject.

  6. Heat Engine of black holes

    E-Print Network [OSTI]

    J. Sadeghi; Kh. Jafarzade

    2015-06-23

    As we know, the cosmological constant in different theories of gravity acts as a thermodynamics variable. The cosmological constant exists in different actions of gravity and also appears in the solution of such theories. These lead to use the black hole as a heat engines. Also, there are two values for the cosmological constant as positive and negative values. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. In this paper, we are going to define heat engines for two different black holes as Dyonic BH and Kerr BH. And also, we calculate maximum efficiency for two black holes.

  7. Quantum Criticality and Black Holes

    ScienceCinema (OSTI)

    Sachdev, Subir [Harvard University, Cambridge, Massachusetts, United States

    2009-09-01

    I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.

  8. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This...

  9. Thermal tests of MC3811 rigid/flex printed wiring boards

    SciTech Connect (OSTI)

    Gentry, F.L.

    1990-10-01

    Rigid/flex multilayer printed wiring boards are more sensitive to thermal environmental changes than conventional printed wiring boards. This is manifested because of a composition of dissimilar materials used within the construction of this type of product. During fabrication and assembly, stresses can develop within the plated-through holes from differences in thermal properties of the rigid and flexible materials, primarily thermal coefficient of expansion. Thermal shock and thermal stress tests and rework simulation as defined in MIL-P-50884 have been performed in this study as indicators of processing quality to detect faults and to verify improvements in board reliability. 3 refs., 17 figs., 3 tabs.

  10. Black Holes and Galaxy Dynamics

    E-Print Network [OSTI]

    David Merritt

    1999-06-02

    The consequences of nuclear black holes for the structure and dynamics of stellar spheroids are reviewed. Slow growth of a black hole in a pre-existing core produces a steep power-law density profile similar to the cusps seen in faint elliptical galaxies. The weaker cusps in bright ellipticals may result from ejection of stars by a coalescing black-hole binary; there is marginal kinematical evidence for such a process having occurred in M87. Stellar orbits in a triaxial nucleus are mostly regular at radii where the gravitational force is dominated by the black hole; however the orbital shapes are not conducive to reinforcing the triaxial figure, hence nuclei are likely to be approximately axisymmetric. In triaxial potentials, a ``zone of chaos'' extends outward to a radius where the enclosed stellar mass is roughly 100 times the mass of the black hole; in this chaotic zone, no regular, box-like orbits exist. At larger radii, the phase space in triaxial potentials is complex, consisting of stochastic orbits as well as regular orbits associated with stable resonances. Figure rotation tends to increase the degree of stochasticity. Both test-particle integrations and N-body simulations suggest that a triaxial galaxy responds globally to the presence of a central mass concentration by evolving toward more axisymmetric shapes; the evolution occurs rapidly when the mass of the central object exceeds roughly 2% of the mass in stars. The lack of significant triaxiality in most early-type galaxies may be a consequence of orbital evolution induced by nuclear black holes.

  11. Stored-Ion Collisional Relaxation to Equilibrium 

    E-Print Network [OSTI]

    Church, David A.

    1988-01-01

    , and page proofs are sent to authors. Stored-ion collisional relaxation to equihbrium D. A. Church Physics Department, Texas AkM Uniuersity, College Station, Texas 77843A242 (Received 10 August 1987) The rate of energy transfer between the radial... and axial degrees of freedom of protons ~ith measured temperature and number stored in a radio-frequency quadrupole ion trap is quanti5ed. The results are discussed in terms of the theory of charged-particle collisional relaxation to thermal equihbrium...

  12. Introduction to Black Hole Evaporation

    E-Print Network [OSTI]

    Pierre-Henry Lambert

    2014-01-16

    These lecture notes are an elementary and pedagogical introduction to the black hole evaporation, based on a lecture given by the author at the Ninth Modave Summer School in Mathematical Physics and are intended for PhD students. First, quantum field theory in curved spacetime is studied and tools needed for the remaining of the course are introduced. Then, quantum field theory in Rindler spacetime in 1+1 dimensions and in the spacetime of a spherically collapsing star are considered, leading to Unruh and Hawking effects, respectively. Finally, some consequences such as thermodynamics of black holes and information loss paradox are discussed.

  13. Does phantom energy produce black hole?

    E-Print Network [OSTI]

    F. Rahaman; A. Ghosh; M. Kalam

    2006-12-23

    We have found an exact solution of spherically symmetrical Einstein equations describing a black hole with a special type phantom energy source. It is surprising to note that our solution is analogous to Reissner-Nordstr\\"{o}m black hole.

  14. Effects of thermal fluctuations on thermal inflation

    E-Print Network [OSTI]

    Takashi Hiramatsu; Yuhei Miyamoto; Jun'ichi Yokoyama

    2014-12-25

    The mechanism of thermal inflation, a relatively short period of accelerated expansion after primordial inflation, is a desirable ingredient for a certain class of particle physics models if they are not to be in contention with the cosmology of the early Universe. Though thermal inflation is most simply described in terms of a thermal effective potential, a thermal environment also gives rise to thermal fluctuations that must be taken into account. We numerically study the effects of these thermal fluctuations using lattice simulations. We conclude that though they do not ruin the thermal inflation scenario, the phase transition at the end of thermal inflation proceeds through phase mixing and is therefore not accompanied by the formations of bubbles nor appreciable amplitude of gravitational waves.

  15. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    storage in solar thermal applications," Applied Energy, pp.of Non-Tracking Solar Thermal Technology," 2011. [26] R.C. Y. Zhao, "A review of solar collectors and thermal energy

  16. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    Evaporator Powered By Solar Thermal Energy 10:00 AM 10:00 AMaided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  17. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and thermal energy storage in solar thermal applications,"Solar infrastructure should include analysis of thermal storage.storage equipment, the evaporator can be integrated into the current solar

  18. On the partner particles for moving mirror radiation and black hole evaporation

    E-Print Network [OSTI]

    M. Hotta; R. Schützhold; W. G. Unruh

    2015-04-21

    The partner mode with respect to a vacuum state for a given mode (like that corresponding to one of the thermal particles emitted by a black hole) is defined and calculated. The partner modes are explicitly calculated for a number of cases, in particular for the modes corresponding to a particle detector being excited by turn-on/turn-off transients, or with the thermal particles emitted by the accelerated mirror model for black hole evaporation. One of the key results is that the partner mode in general is just a vacuum fluctuation, and one can have the partner mode be located in a region where the state cannot be distinguished from the vacuum state by any series of local measurements, including the energy density. I.e., "information" (the correlations with the thermal emissions) need not be associated with any energy transport. The idea that black holes emit huge amounts of energy in their last stages because of all the information which must be emitted under the assumption of black-hole unitarity is found not necessarily to be the case.

  19. Classical and thermodynamic stability of black holes

    E-Print Network [OSTI]

    Ricardo Monteiro

    2010-06-28

    We consider the stability of black holes within both classical general relativity and the semiclassical thermodynamic description. In particular, we study linearised perturbations and their contribution to the gravitational partition function, addressing technical issues for charged (Reissner-Nordstrom) and rotating (Kerr-AdS) black holes. Exploring the connection between classical and thermodynamic stability, we find classical instabilities of Myers-Perry black holes and bifurcations to new black hole families.

  20. Will black holes eventually engulf the universe?

    E-Print Network [OSTI]

    Prado Martin-Moruno; Jose A. Jimenez Madrid; Pedro F. Gonzalez-Diaz

    2006-03-28

    The Babichev-Dokuchaev-Eroshenko model for the accretion of dark energy onto black holes has been extended to deal with black holes with non-static metrics. The possibility that for an asymptotic observer a black hole with large mass will rapidly increase and eventually engulf the Universe at a finite time in the future has been studied by using reasonable values for astronomical parameters. It is concluded that such a phenomenon is forbidden for all black holes in quintessential cosmological models.

  1. Hawking Emission and Black Hole Thermodynamics

    E-Print Network [OSTI]

    Don N. Page

    2006-12-18

    A brief review of Hawking radiation and black hole thermodynamics is given, based largely upon hep-th/0409024.

  2. Scattering by regular black holes: Planar massless scalar waves impinging upon a Bardeen black hole

    E-Print Network [OSTI]

    Macedo, Caio F B; Crispino, Luís C B

    2015-01-01

    Singularities are common features of general relativity black holes. However, within general relativity, one can construct black holes that present no singularities. These regular black hole solutions can be achieved by, for instance, relaxing one of the energy conditions on the stress energy tensor sourcing the black hole. Some regular black hole solutions were found in the context of non-linear electrodynamics, the Bardeen black hole being the first one proposed. In this paper, we consider a planar massless scalar wave scattered by a Bardeen black hole. We compare the scattering cross section computed using a partial-wave description with the classical geodesic scattering of a stream of null geodesics, as well as with the semi-classical glory approximation. We obtain that, for some values of the corresponding black hole charge, the scattering cross section of a Bardeen black hole has a similar interference pattern of a Reissner-Nordstr\\"om black hole.

  3. Scattering by regular black holes: Planar massless scalar waves impinging upon a Bardeen black hole

    E-Print Network [OSTI]

    Caio F. B. Macedo; Ednilton S. de Oliveira; Luís C. B. Crispino

    2015-06-26

    Singularities are common features of general relativity black holes. However, within general relativity, one can construct black holes that present no singularities. These regular black hole solutions can be achieved by, for instance, relaxing one of the energy conditions on the stress energy tensor sourcing the black hole. Some regular black hole solutions were found in the context of non-linear electrodynamics, the Bardeen black hole being the first one proposed. In this paper, we consider a planar massless scalar wave scattered by a Bardeen black hole. We compare the scattering cross section computed using a partial-wave description with the classical geodesic scattering of a stream of null geodesics, as well as with the semi-classical glory approximation. We obtain that, for some values of the corresponding black hole charge, the scattering cross section of a Bardeen black hole has a similar interference pattern of a Reissner-Nordstr\\"om black hole.

  4. New approaches to black holes Eric Gourgoulhon

    E-Print Network [OSTI]

    Gourgoulhon, Eric

    References Eric Gourgoulhon (LUTH) New approaches to black holes Okinawa Nat. Col. Tech., 17 Aug 2008 2 / 36 Gourgoulhon (LUTH) New approaches to black holes Okinawa Nat. Col. Tech., 17 Aug 2008 3 / 36 #12;Local (2006)] Eric Gourgoulhon (LUTH) New approaches to black holes Okinawa Nat. Col. Tech., 17 Aug 2008 4

  5. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2013-04-02

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  6. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2005-03-08

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  7. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2007-03-20

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  8. Microfabricated Ion Traps

    E-Print Network [OSTI]

    Marcus D. Hughes; Bjoern Lekitsch; Jiddu A. Broersma; Winfried K. Hensinger

    2011-06-28

    Ion traps offer the opportunity to study fundamental quantum systems with high level of accuracy highly decoupled from the environment. Individual atomic ions can be controlled and manipulated with electric fields, cooled to the ground state of motion with laser cooling and coherently manipulated using optical and microwave radiation. Microfabricated ion traps hold the advantage of allowing for smaller trap dimensions and better scalability towards large ion trap arrays also making them a vital ingredient for next generation quantum technologies. Here we provide an introduction into the principles and operation of microfabricated ion traps. We show an overview of material and electrical considerations which are vital for the design of such trap structures. We provide guidance in how to choose the appropriate fabrication design, consider different methods for the fabrication of microfabricated ion traps and discuss previously realized structures. We also discuss the phenomenon of anomalous heating of ions within ion traps, which becomes an important factor in the miniaturization of ion traps.

  9. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  10. DNA Engine Thermal Cycler

    E-Print Network [OSTI]

    Raizada, Manish N.

    ® Peltier Thermal Cycler PTC-0200 DNA Engine Cycler Operations Manual Version 4.0 #12;ii Tech Support: 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vi The DNA Engine® Peltier Thermal Cycler Introduction

  11. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and C. Y. Zhao, "A review of solar collectors and thermalenergy storage in solar thermal applications," Appliedon photovoltaic/thermal hybrid solar technology," Applied

  12. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    thermal energy becomes apparent with the development of solarsolar energy systems, aquifer energy storage provides a buffer between time-varying solar energy inputs and thermal

  13. Tunnelling of scalar and Dirac particles from squashed charged rotating Kaluza-Klein black holes

    E-Print Network [OSTI]

    M. M. Stetsko

    2014-10-08

    Thermal radiation of scalar particles and Dirac fermions from squashed charged rotating five-dimensional black holes is considered. To obtain temperature of the black holes we use the tunnelling method. In case of scalar particles we make use of the Hamilton-Jacobi equation. To consider tunnelling of fermions the Dirac equation was investigated. The examination shows that radial parts of the action for scalar particles and fermions in quasi-classical limit in the vicinity of horizon are almost the same and as a consequence it gives rise to the identical expressions for the temperature in both cases.

  14. Hawking Radiation of Schwarzschild-de Sitter Black Hole by Hamilton-Jacobi method

    E-Print Network [OSTI]

    M. Atiqur Rahman; M. Ilias Hossain

    2012-05-13

    We investigate the Hawking radiation of Schwarzschild-de Sitter (SdS) black hole by massive particles tunneling method. We consider the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles and show that the tunneling rate is related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum when energy and angular momentum are conserved. Our result is also in accordance with Parikh and Wilczek\\rq s opinion and gives a correction to the Hawking radiation of SdS black hole.

  15. From Pinholes to Black Holes

    SciTech Connect (OSTI)

    Fenimore, Edward E.

    2014-10-06

    Pinhole photography has made major contributions to astrophysics through the use of “coded apertures”. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.

  16. Can black holes and naked singularities be detected in accelerators?

    E-Print Network [OSTI]

    R. Casadio; B. Harms

    2002-01-07

    We study the conditions for the existence of black holes that can be produced in colliders at TeV-scale if the space-time is higher dimensional. On employing the microcanonical picture, we find that their life-times strongly depend on the details of the model. If the extra dimensions are compact (ADD model), microcanonical deviations from thermality are in general significant near the fundamental TeV mass and tiny black holes decay more slowly than predicted by the canonical expression, but still fast enough to disappear almost instantaneously. However, with one warped extra dimension (RS model), microcanonical corrections are much larger and tiny black holes appear to be (meta)stable. Further, if the total charge is not zero, we argue that naked singularities do not occur provided the electromagnetic field is strictly confined on an infinitely thin brane. However, they might be produced in colliders if the effective thickness of the brane is of the order of the fundamental length scale (~1/TeV).

  17. Formation and early evolution of massive black holes

    E-Print Network [OSTI]

    Madau, P

    2007-01-01

    The astrophysical processes that led to the formation of the first seed black holes and to their growth into the supermassive variety that powers bright quasars at redshift 6 are poorly understood. In standard LCDM hierarchical cosmologies, the earliest massive holes (MBHs) likely formed at redshift z~15 at the centers of low-mass (M>5e5 solar masses) dark matter ``minihalos'', and produced hard radiation by accretion. FUV/X-ray photons from such ``miniquasars'' may have permeated the universe more uniformly than EUV radiation, reduced gas clumping, and changed the chemistry of primordial gas. The role of accreting seed black holes in determining the thermal and ionization state of the intergalactic medium depends on the amount of cold and dense gas that forms and gets retained in protogalaxies after the formation of the first stars. The highest resolution N-body simulation to date of Galactic substructure shows that subhalos below the atomic cooling mass were very inefficient at forming stars.

  18. Formation and early evolution of massive black holes

    E-Print Network [OSTI]

    Piero Madau

    2007-01-12

    The astrophysical processes that led to the formation of the first seed black holes and to their growth into the supermassive variety that powers bright quasars at redshift 6 are poorly understood. In standard LCDM hierarchical cosmologies, the earliest massive holes (MBHs) likely formed at redshift z~15 at the centers of low-mass (M>5e5 solar masses) dark matter ``minihalos'', and produced hard radiation by accretion. FUV/X-ray photons from such ``miniquasars'' may have permeated the universe more uniformly than EUV radiation, reduced gas clumping, and changed the chemistry of primordial gas. The role of accreting seed black holes in determining the thermal and ionization state of the intergalactic medium depends on the amount of cold and dense gas that forms and gets retained in protogalaxies after the formation of the first stars. The highest resolution N-body simulation to date of Galactic substructure shows that subhalos below the atomic cooling mass were very inefficient at forming stars.

  19. Diffusive Acceleration of Ions at Interplanetary Shocks

    E-Print Network [OSTI]

    Matthew G. Baring; Errol J. Summerlin

    2005-06-08

    Heliospheric shocks are excellent systems for testing theories of particle acceleration in their environs. These generally fall into two classes: (1) interplanetary shocks that are linear in their ion acceleration characteristics, with the non-thermal ions serving as test particles, and (2) non-linear systems such as the Earth's bow shock and the solar wind termination shock, where the accelerated ions strongly influence the magnetohydrodynamic structure of the shock. This paper explores the modelling of diffusive acceleration at a particular interplanetary shock, with an emphasis on explaining in situ measurements of ion distribution functions. The observational data for this event was acquired on day 292 of 1991 by the Ulysses mission. The modeling is performed using a well-known kinetic Monte Carlo simulation, which has yielded good agreement with observations at several heliospheric shocks, as have other theoretical techniques, namely hybrid plasma simulations, and numerical solution of the diffusion-convection equation. In this theory/data comparison, it is demonstrated that diffusive acceleration theory can, to first order, successfully account for both the proton distribution data near the shock, and the observation of energetic protons farther upstream of this interplanetary shock than lower energy pick-up protons, using a single turbulence parameter. The principal conclusion is that diffusive acceleration of inflowing upstream ions can model this pick-up ion-rich event without the invoking any seed pre-acceleration mechanism, though this investigation does not rule out the action of such pre-acceleration.

  20. On coupling impedances of pumping holes

    SciTech Connect (OSTI)

    Kurennoy, S.

    1993-04-01

    Coupling impedances of a single small hole in vacuum-chamber walls have been calculated at low frequencies. To generalize these results for higher frequencies and/or larger holes one needs to solve coupled integral equations for the effective currents. These equations are solved for two specific hole shapes. The effects of many holes at high frequencies where the impedances are not additive are studied using a perturbation-theory method. The periodic versus random distributions of the pumping holes in the Superconducting Super Collider liner are compared.

  1. Observation of ion wave decay products of Langmuir waves generated by stimulated Raman scattering in ignition scale plasmas

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Observation of ion wave decay products of Langmuir waves generated by stimulated Raman scattering the time resolved spectrum of ion wave decay products from two instabilities which can limit the growth of stimulated Raman scattering SRS . This experiment detected ion wave decay products far above the thermal

  2. Investigation of path dependence in commercial lithium-ion cells for pure electric bus applications: Aging mechanism identification

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    Investigation of path dependence in commercial lithium-ion cells for pure electric bus applications dependence of aging of lithium ion batteries. Considered the conditions of path dependence specific October 2014 Available online 13 October 2014 Keywords: Lithium-ion battery Path dependence Thermal aging

  3. Fast Lithium Ion Conduction in Li2SnS3: Synthesis, Physicochemical Characterization, and Electronic Structure

    E-Print Network [OSTI]

    Holzwarth, Natalie

    Fast Lithium Ion Conduction in Li2SnS3: Synthesis, Physicochemical Characterization, and Electronic conduction. The high thermal stability, significant lithium ion conductivity, and environmental stability make Li2SnS3 a promising new solid-state electrolyte for lithium ion batteries. 1. INTRODUCTION

  4. Preferential energization of alpha particles in polar coronal holes at one solar radius above the photosphere

    E-Print Network [OSTI]

    Chakravarty, Aniruddha

    2015-01-01

    Heating of polar coronal holes during solar minimum and acceleration of the fast solar wind issuing therefrom lack comprehensive theoretical understanding. Wave particle interactions are considered to have crucial effects on the extreme properties of heavy ions in the collision-less region of the polar coronal holes. In this article, we have presented a novel sensitivity analysis to investigate plasma heating by radio waves at lower hybrid frequencies. We have employed a three fluid Maxwell model comprising electrons, protons, and alpha particles at around two solar radius heliocentric distance in the polar coronal holes and derived a dispersion relation as a thirteenth order polynomial for the frequency. Our model provides indications of preferential heating of alpha particles in comparison with protons by means of lower hybrid instabilities. We have employed the electron velocity and spatial charge distribution as our basic study tools so as to show the effects of alpha proton differential mass and differen...

  5. Thermal radiation from Lorentzian traversable wormholes

    E-Print Network [OSTI]

    Prado Martin-Moruno; Pedro F. Gonzalez-Diaz

    2009-07-23

    In this paper we show that, analogously to as it occurs for black holes, there exist three well-defined laws for Lorentzian wormhole thermodynamics and that these laws are related with a thermal phantom-like radiation process coming from the wormhole throat. It is argued that the existence of wormholes could be manifested by means such a radiation. These results are obtained by analyzing the Hayward formalism of spherically symmetric solutions containing trapping horizons, the phenomenon of phantom accretion onto wormholes and the development of phantom thermodynamics.

  6. Constraints on the density perturbation spectrum from primordial black holes

    E-Print Network [OSTI]

    Anne M Green; Andrew R Liddle

    1997-04-25

    We re-examine the constraints on the density perturbation spectrum, including its spectral index $n$, from the production of primordial black holes. The standard cosmology, where the Universe is radiation dominated from the end of inflation up until the recent past, was studied by Carr, Gilbert and Lidsey; we correct two errors in their derivation and find a significantly stronger constraint than they did, $n \\lesssim 1.25$ rather than their 1.5. We then consider an alternative cosmology in which a second period of inflation, known as thermal inflation and designed to solve additional relic over-density problems, occurs at a lower energy scale than the main inflationary period. In that case, the constraint weakens to $n \\lesssim 1.3$, and thermal inflation also leads to a `missing mass' range, $10^{18} g \\lesssim M \\lesssim 10^{26} g$, in which primordial black holes cannot form. Finally, we discuss the effect of allowing for the expected non-gaussianity in the density perturbations predicted by Bullock and Primack, which can weaken the constraints further by up to 0.05.

  7. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 21, NO. 5, SEPTEMBER 2013 1745 Online Parameterization of Lumped Thermal

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Parameterization of Lumped Thermal Dynamics in Cylindrical Lithium Ion Batteries for Core Temperature Estimation, Yonghua Li, R. Dyche Anderson, Yi Ding, and Matthew P. Castanier Abstract--Lithium ion batteries should identification scheme is designed for a cylindrical lithium ion battery. An adaptive observer of the core

  8. Superconducting microfabricated ion traps

    E-Print Network [OSTI]

    Wang, Shannon Xuanyue

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single [superscript 88]Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the ...

  9. Applications of decelerated ions

    SciTech Connect (OSTI)

    Johnson, B.M.

    1985-03-01

    Many facilities whose sole purpose had been to accelerate ion beams are now becoming decelerators as well. The development and current status of accel-decel operations is reviewed here. Applications of decelerated ions in atomic physics experiments are discussed.

  10. Electron-less negative ion extraction from ion-ion plasmas (Journal...

    Office of Scientific and Technical Information (OSTI)

    results showing that continuous negative ion extraction, without co-extracted electrons, is possible from highly electronegative SFsub 6 ion-ion plasma at low gas...

  11. Thermal modeling of electrochemical capacitors

    E-Print Network [OSTI]

    D'Entremont, Anna Leone

    2015-01-01

    storage mechanism of a lithium-ion battery during chargingsingle electrodes in lithium-ion battery,” Journal of Powerseparators in a lithium-ion battery,” Journal of Power

  12. Black hole mimickers: Regular versus singular behavior

    SciTech Connect (OSTI)

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2008-07-15

    Black hole mimickers are possible alternatives to black holes; they would look observationally almost like black holes but would have no horizon. The properties in the near-horizon region where gravity is strong can be quite different for both types of objects, but at infinity it could be difficult to discern black holes from their mimickers. To disentangle this possible confusion, we examine the near-horizon properties, and their connection with far away asymptotic properties, of some candidates to black mimickers. We study spherically symmetric uncharged or charged but nonextremal objects, as well as spherically symmetric charged extremal objects. Within the uncharged or charged but nonextremal black hole mimickers, we study nonextremal {epsilon}-wormholes on the threshold of the formation of an event horizon, of which a subclass are called black foils, and gravastars. Within the charged extremal black hole mimickers we study extremal {epsilon}-wormholes on the threshold of the formation of an event horizon, quasi-black holes, and wormholes on the basis of quasi-black holes from Bonnor stars. We elucidate whether or not the objects belonging to these two classes remain regular in the near-horizon limit. The requirement of full regularity, i.e., finite curvature and absence of naked behavior, up to an arbitrary neighborhood of the gravitational radius of the object enables one to rule out potential mimickers in most of the cases. A list ranking the best black hole mimickers up to the worst, both nonextremal and extremal, is as follows: wormholes on the basis of extremal black holes or on the basis of quasi-black holes, quasi-black holes, wormholes on the basis of nonextremal black holes (black foils), and gravastars. Since in observational astrophysics it is difficult to find extremal configurations (the best mimickers in the ranking), whereas nonextremal configurations are really bad mimickers, the task of distinguishing black holes from their mimickers seems to be less difficult than one could think of it.

  13. Single Ion Implantation

    ScienceCinema (OSTI)

    Thomas Schenkel

    2010-01-08

    On the equipment needed to implant ions in silicon and other materials. More information: http://newscenter.lbl.gov/f...

  14. Negative ion generator

    DOE Patents [OSTI]

    Stinnett, R.W.

    1984-05-08

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions. 8 figs.

  15. Thermal Regimes of Northeast Streams

    E-Print Network [OSTI]

    Thermal Loading (USGS) Stormwater and Streams ­ Optimizing Stormwater Management to Protect the Thermal

  16. Lithium ion sources

    E-Print Network [OSTI]

    Roy, Prabir K.

    2014-01-01

    HIFAN 1866 Lithium ion sources by Prabir K. Roy, Wayne G.No. DE-AC02-05CH11231. Lithium ion sources Prabir K. RoyUSA Abstract A 10.9 cm diameter lithium alumino-silicate ion

  17. Detecting small holes in packages

    DOE Patents [OSTI]

    Kronberg, James W. (Aiken, SC); Cadieux, James R. (Aiken, SC)

    1996-01-01

    A package containing a tracer gas, and a method for determining the presence of a hole in the package by sensing the presence of the gas outside the package. The preferred tracer gas, especially for food packaging, is sulfur hexafluoride. A quantity of the gas is added to the package and the package is closed. The concentration of the gas in the atmosphere outside the package is measured and compared to a predetermined value of the concentration of the gas in the absence of the package. A measured concentration greater than the predetermined value indicates the presence of a hole in the package. Measuring may be done in a chamber having a lower pressure than that in the package.

  18. Detecting small holes in packages

    DOE Patents [OSTI]

    Kronberg, J.W.; Cadieux, J.R.

    1996-03-19

    A package containing a tracer gas, and a method for determining the presence of a hole in the package by sensing the presence of the gas outside the package are disclosed. The preferred tracer gas, especially for food packaging, is sulfur hexafluoride. A quantity of the gas is added to the package and the package is closed. The concentration of the gas in the atmosphere outside the package is measured and compared to a predetermined value of the concentration of the gas in the absence of the package. A measured concentration greater than the predetermined value indicates the presence of a hole in the package. Measuring may be done in a chamber having a lower pressure than that in the package. 3 figs.

  19. Black Hole Thermodynamics and Electromagnetism

    E-Print Network [OSTI]

    Burra G. Sidharth

    2005-07-15

    We show a strong parallel between the Hawking, Beckenstein black hole Thermodynamics and electromagnetism: When the gravitational coupling constant transform into the electromagnetic coupling constant, the Schwarzchild radius, the Beckenstein temperature, the Beckenstein decay time and the Planck mass transform to respectively the Compton wavelength, the Hagedorn temperature, the Compton time and a typical elementary particle mass. The reasons underlying this parallalism are then discussed in detail.

  20. Quantum chaos inside Black Holes

    E-Print Network [OSTI]

    Addazi, Andrea

    2015-01-01

    We show how semiclassical black holes can be reinterpreted as an effective geometry, composed of a large ensamble of horizonless naked singularities (eventually smoothed at the Planck scale). We call this new items {\\it frizzyballs}, which can be rigorously defined by euclidean path integral approach. This has interesting implications regarding information paradoxes. We demonstrate that infalling information will chaotically propagate inside this system before going to the full quantum gravity regime (Planck scale).

  1. Quantum chaos inside Black Holes

    E-Print Network [OSTI]

    Andrea Addazi

    2015-08-30

    We show how semiclassical black holes can be reinterpreted as an effective geometry, composed of a large ensamble of horizonless naked singularities (eventually smoothed at the Planck scale). We call this new items {\\it frizzyballs}, which can be rigorously defined by euclidean path integral approach. This has interesting implications regarding information paradoxes. We demonstrate that infalling information will chaotically propagate inside this system before going to the full quantum gravity regime (Planck scale).

  2. Classical Black Holes Are Hot

    E-Print Network [OSTI]

    Erik Curiel

    2014-11-09

    In the early 1970s it is was realized that there is a striking formal analogy between the Laws of black-hole mechanics and the Laws of classical thermodynamics. Before the discovery of Hawking radiation, however, it was generally thought that the analogy was only formal, and did not reflect a deep connection between gravitational and thermodynamical phenomena. It is still commonly held that the surface gravity of a stationary black hole can be construed as a true physical temperature and its area as a true entropy only when quantum effects are taken into account; in the context of classical general relativity alone, one cannot cogently construe them so. Does the use of quantum field theory in curved spacetime offer the only hope for taking the analogy seriously? I think the answer is `no'. To attempt to justify that answer, I shall begin by arguing that the standard argument to the contrary is not physically well founded, and in any event begs the question. Looking at the various ways that the ideas of "temperature" and "entropy" enter classical thermodynamics then will suggest arguments that, I claim, show the analogy between classical black-hole mechanics and classical thermodynamics should be taken more seriously, without the need to rely on or invoke quantum mechanics. In particular, I construct an analogue of a Carnot cycle in which a black hole "couples" with an ordinary thermodynamical system in such a way that its surface gravity plays the role of temperature and its area that of entropy. Thus, the connection between classical general relativity and classical thermodynamics on their own is already deep and physically significant, independent of quantum mechanics.

  3. Down hole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

    1989-01-01

    A down hole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  4. Material characterization of high-voltage lithium-ion battery models for crashworthiness analysis

    E-Print Network [OSTI]

    Meier, Joseph D. (Joseph David)

    2013-01-01

    A three-phased study of the material properties and post-impact behavior of prismatic pouch lithium-ion battery cells was conducted to refine computational finite element models and explore the mechanisms of thermal runaway ...

  5. It's getting hot in here : temperature gradients in lithium-ion battery packs

    E-Print Network [OSTI]

    Niewood, Benjamin

    2015-01-01

    A 5 channel, 40A battery cycler was constructed for the purpose of carrying out thermal studies on Lithium-ion battery packs. Boston Power Swing Key 442 battery blocks were tested to determine the magnitude of the temperature ...

  6. Superconducting microfabricated ion traps

    E-Print Network [OSTI]

    Shannon X. Wang; Yufei Ge; Jaroslaw Labaziewicz; Eric Dauler; Karl Berggren; Isaac L. Chuang

    2010-12-14

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

  7. Submicron patterned metal hole etching

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA); Contolini, Robert J. (Lake Oswego, OR); Liberman, Vladimir (Needham, MA); Morse, Jeffrey (Martinez, CA)

    2000-01-01

    A wet chemical process for etching submicron patterned holes in thin metal layers using electrochemical etching with the aid of a wetting agent. In this process, the processed wafer to be etched is immersed in a wetting agent, such as methanol, for a few seconds prior to inserting the processed wafer into an electrochemical etching setup, with the wafer maintained horizontal during transfer to maintain a film of methanol covering the patterned areas. The electrochemical etching setup includes a tube which seals the edges of the wafer preventing loss of the methanol. An electrolyte composed of 4:1 water: sulfuric is poured into the tube and the electrolyte replaces the wetting agent in the patterned holes. A working electrode is attached to a metal layer of the wafer, with reference and counter electrodes inserted in the electrolyte with all electrodes connected to a potentiostat. A single pulse on the counter electrode, such as a 100 ms pulse at +10.2 volts, is used to excite the electrochemical circuit and perform the etch. The process produces uniform etching of the patterned holes in the metal layers, such as chromium and molybdenum of the wafer without adversely effecting the patterned mask.

  8. Microfabricated Ion Traps

    E-Print Network [OSTI]

    Hughes, Marcus D; Broersma, Jiddu A; Hensinger, Winfried K

    2011-01-01

    Ion traps offer the opportunity to study fundamental quantum systems with high level of accuracy highly decoupled from the environment. Individual atomic ions can be controlled and manipulated with electric fields, cooled to the ground state of motion with laser cooling and coherently manipulated using optical and microwave radiation. Microfabricated ion traps hold the advantage of allowing for smaller trap dimensions and better scalability towards large ion trap arrays also making them a vital ingredient for next generation quantum technologies. Here we provide an introduction into the principles and operation of microfabricated ion traps. We show an overview of material and electrical considerations which are vital for the design of such trap structures. We provide guidance in how to choose the appropriate fabrication design, consider different methods for the fabrication of microfabricated ion traps and discuss previously realized structures. We also discuss the phenomenon of anomalous heating of ions with...

  9. Microfabricated ion trap array

    DOE Patents [OSTI]

    Blain, Matthew G. (Albuquerque, NM); Fleming, James G. (Albuquerque, NM)

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  10. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  11. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Bourcier, William L. (Livermore, CA)

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  12. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  13. Relationship of Black Holes to Bulges

    E-Print Network [OSTI]

    David Merritt; Laura Ferrarese

    2001-07-08

    Supermassive black holes appear to be uniquely associated with galactic bulges. The mean ratio of black hole mass to bulge mass was until recently very uncertain, with ground based, stellar kinematical data giving a value roughly an order of magnitude larger than other techniques. The discrepancy was resolved with the discovery of the M-sigma relation, which simultaneously established a tight corrrelation between black hole mass and bulge velocity dispersion, and confirmed that the stellar kinematical mass estimates were systematically too large due to failure to resolve the black hole's sphere of influence. There is now excellent agreement between the various techniques for estimating the mean black hole mass, including dynamical mass estimation in quiescent galaxies; reverberation mapping in active galaxies and quasars; and computation of the mean density of compact objects based on integrated quasar light. Implications of the M-sigma relation for the formation of black holes are discussed.

  14. Implications for the Cosmological Landscape: Can Thermal Inputs from a Prior Universe Account for Relic Graviton Production?

    E-Print Network [OSTI]

    A. W. Beckwith

    2008-03-02

    We present a way to accomodate relic graviton production via worm hole transitions of prior universe thermal / energy density values to our present universe. This is done in the context of providing a mechanism for thermally driven relic gravitons, and also to explain how Park's 2003 observation as to how a thermally scaled vacuum energy value plays a role in forming the early universe emergent field dynamics

  15. Semi-transparent solar energy thermal storage device

    DOE Patents [OSTI]

    McClelland, John F. (Ames, IA)

    1986-04-08

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  16. Semi-transparent solar energy thermal storage device

    DOE Patents [OSTI]

    McClelland, John F. (Ames, IA)

    1985-06-18

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  17. Thermal acidization and recovery process for recovering viscous petroleum

    DOE Patents [OSTI]

    Poston, Robert S. (Winter Park, FL)

    1984-01-01

    A thermal acidization and recovery process for increasing production of heavy viscous petroleum crude oil and synthetic fuels from subterranean hydrocarbon formations containing clay particles creating adverse permeability effects is described. The method comprises injecting a thermal vapor stream through a well bore penetrating such formations to clean the formation face of hydrocarbonaceous materials which restrict the flow of fluids into the petroleum-bearing formation. Vaporized hydrogen chloride is then injected simultaneously to react with calcium and magnesium salts in the formation surrounding the bore hole to form water soluble chloride salts. Vaporized hydrogen fluoride is then injected simultaneously with its thermal vapor to dissolve water-sensitive clay particles thus increasing permeability. Thereafter, the thermal vapors are injected until the formation is sufficiently heated to permit increased recovery rates of the petroleum.

  18. Dependence of polar hole density on magnetic and solar conditions

    SciTech Connect (OSTI)

    Hoegy, W.R.; Grebowsky, J.M. (NASA Goddard Space Flight Center, Greenbelt, MD (USA))

    1991-04-01

    The dependence of electron density in the polar F region ionization hole on solar activity, universal time (UT), magnetic activity, season, and hemisphere is studied using data from the Langmuir probes on Atmosphere Explorer C and Dynamics Explorer 2. The AE-C data were obtained during solar minimum when the 3-month average 10.7-cm solar flux index varied from 70 to 140; the DE 2 data were obtained near solar maximum when 10.7-cm solar flux index varied from 120 to 220. The polar hole is a region on the nightside of the polar cap where reduced ionization exists because of the long transport time of ionization from the dayside across the polar cap. The behavior of this region as a function of 10.7-cm solar flux (F10.7), UT, and Kp is statistically modeled for equinox, summer, and winter conditions for each hemisphere separately. The strongest dependencies are observed in F10.7 and UT; the Kp dependence is weak because it poorly represents the complexities of convection across the polar cap. A strong hemispherical difference due to the offset of the magnetic poles from the Earth's rotation axis is observed in the UT dependence of the ionization hole: there is a density minimum at about 20.3 hours UT in the south and at about 4.8 hours UT in the north; the minimum to maximum UT density variation is about a factor of 8.9 in the south and about a factor of 2.1 in the north. There is a seasonal variation in the dependence of ion density (N{sub i}) on solar flux (F10.7). Use of the relationship (N{sub i}{approximately}F10.7{sup D}) yields values of D of approximately unity (1.) in the summer polar hole and about 2.1 during equinox. There is an overall asymmetry in the density level between hemispheres; it was found that the winter hole density is about a factor of 10 greater in the north than in the south. The Utah State University time dependent ionosphere model gives similar UT behavior to that found in the AE-C and DE 2 data.

  19. Boson shells harboring charged black holes

    SciTech Connect (OSTI)

    Kleihaus, Burkhard; Kunz, Jutta; Laemmerzahl, Claus; List, Meike

    2010-11-15

    We consider boson shells in scalar electrodynamics coupled to Einstein gravity. The interior of the shells can be empty space, or harbor a black hole or a naked singularity. We analyze the properties of these types of solutions and determine their domains of existence. We investigate the energy conditions and present mass formulae for the composite black hole-boson shell systems. We demonstrate that these types of solutions violate black hole uniqueness.

  20. Lower Dimensional Black Holes: Inside and Out

    E-Print Network [OSTI]

    R. B. Mann

    1995-01-27

    I survey the physics of black holes in two and three spacetime dimensions, with special attention given to an understanding of their exterior and interior properties.

  1. Black Holes: from Speculations to Observations

    E-Print Network [OSTI]

    Thomas W. Baumgarte

    2006-04-13

    This paper provides a brief review of the history of our understanding and knowledge of black holes. Starting with early speculations on ``dark stars'' I discuss the Schwarzschild "black hole" solution to Einstein's field equations and the development of its interpretation from "physically meaningless" to describing the perhaps most exotic and yet "most perfect" macroscopic object in the universe. I describe different astrophysical black hole populations and discuss some of their observational evidence. Finally I close by speculating about future observations of black holes with the new generation of gravitational wave detectors.

  2. Rotating Black Holes and Coriolis Effect

    E-Print Network [OSTI]

    Wu, Xiaoning; Yuan, Pei-Hung; Cho, Chia-Jui

    2015-01-01

    In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the Petrov-like boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.

  3. Rotating Black Holes and Coriolis Effect

    E-Print Network [OSTI]

    Xiaoning Wu; Yi Yang; Pei-Hung Yuan; Chia-Jui Cho

    2015-11-27

    In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the Petrov-like boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.

  4. Thermal and Electrical Transport in Oxide Heterostructures

    E-Print Network [OSTI]

    Ravichandran, Jayakanth

    2011-01-01

    of thermal conductivity . . . . . . . . . . . . . . . .4.4 Thermal transport in2.3.2 Thermal transport . . . . . . . . . . . . . . . .

  5. Black Hole Radiation with Modified Dispersion Relation in Tunneling Paradigm: Free-fall Frame

    E-Print Network [OSTI]

    Peng Wang; Haitang Yang; Shuxuan Ying

    2015-05-18

    Due to the exponential high gravitational red shift near the event horizon of a black hole, it might appear that the Hawking radiation would be highly sensitive to some unknown high energy physics. To study effects of any unknown physics at the Planck scale on the Hawking radiation, the dispersive field theory models have been proposed, which are variations of Unruh's sonic black hole analogy. In this paper, we use the Hamilton-Jacobi method to investigate the dispersive field theory models. The preferred frame is the free-fall frame of the black hole. The dispersion relation adopted agrees with the relativistic one at low energy but is modified near the Planck mass $m_{p}$. The corrections to the Hawking temperature are calculated for massive and charged particles to $\\mathcal{O}\\left( m_{p}^{-2}\\right) $ and neutral and massless particles with $\\lambda=0$ to all orders. The Hawking temperature of radiation agrees with the standard one at the leading order. After the spectrum of radiation near the horizon is obtained, we use the brick wall model to compute the thermal entropy of a massless scalar field near the horizon of a 4D spherically symmetric black hole and a 2D one. Finally, the luminosity of a Schwarzschild black hole is calculated by using the geometric optics approximation.

  6. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  7. New insights into the decay of ion waves to turbulence, ion heating, and soliton generation

    SciTech Connect (OSTI)

    Chapman, T. Banks, J. W.; Berger, R. L.; Cohen, B. I.; Williams, E. A.; Brunner, S.

    2014-04-15

    The decay of a single-frequency, propagating ion acoustic wave (IAW) via two-ion wave decay to a continuum of IAW modes is found to result in a highly turbulent plasma, ion soliton production, and rapid ion heating. Instability growth rates, thresholds, and sensitivities to plasma conditions are studied via fully kinetic Vlasov simulations. The decay rate of IAWs is found to scale linearly with the fundamental IAW potential amplitude ?{sub 1} for ZT{sub e}/T{sub i}?20, beyond which the instability is shown to scale with a higher power of ?{sub 1}, where Z is the ion charge number and T{sub e} (T{sub i}) is the electron (ion) thermal temperature. The threshold for instability is found to be smaller by an order of magnitude than linear theory estimates. Achieving a better understanding of the saturation of stimulated Brillouin scatter levels observed in laser-plasma interaction experiments is part of the motivation for this study.

  8. BERNAS ION SOURCE DISCHARGE SIMULATION

    SciTech Connect (OSTI)

    RUDSKOY,I.; KULEVOY, T.V.; PETRENKO, S.V.; KUIBEDA, R.P.; SELEZNEV, D.N.; PERSHIN, V.I.; HERSHCOVITCH, A.; JOHNSON, B.M.; GUSHENETS, V.I.; OKS, E.M.; POOLE, H.J.

    2007-08-26

    The joint research and development program is continued to develop steady-state ion source of decaborane beam for ion implantation industry. Bemas ion source is the wide used ion source for ion implantation industry. The new simulation code was developed for the Bemas ion source discharge simulation. We present first results of the simulation for several materials interested in semiconductors. As well the comparison of results obtained with experimental data obtained at the ITEP ion source test-bench is presented.

  9. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01

    phonon transmission and interface thermal conductance acrossF. Miao, et al. , "Superior Thermal Conductivity of Single-Advanced Materials for Thermal Management of Electronic

  10. Ion photon emission microscope

    DOE Patents [OSTI]

    Doyle, Barney L. (Albuquerque, NM)

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  11. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    time-varying solar energy inputs and thermal or powerthermal energy becomes apparent with the development of solar

  12. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); Galvin, James (2 Commodore #276, Emeryville, CA 94608)

    1987-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

  13. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, I.G.; Galvin, J.

    1987-12-22

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.

  14. Collection of ions

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM); Bounds, John Alan (Los Alamos, NM); Koster, James E. (Los Alamos, NM)

    2001-01-01

    The apparatus and method provide an improved technique for detecting ions as the area from which ions are attracted to a detector is increased, consequently increasing the number of ions detected. This is achieved by providing the outer electrodes of the detector connected to the electrical potential, together with alternate intermediate electrodes. The other intermediate electrodes and preferably the housing are grounded. The technique renders such detection techniques more sensitive and gives them a lower threshold at which they can function.

  15. Core Holes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: EnergyInformationOpen1988)|Holes Jump

  16. Multiwavelength Thermal Emission

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Multiwavelength Astronomy NASA #12;Thermal Emission #12;Thermal Emission Non-thermal p-p collisions Optical IR Radio/ Microwave sources of emission massive stars, WHIM, Ly many dust, cool objects-ray ~GeV Gamma-ray ~TeV sources of emission AGN, clusters, SNR, binaries, stars AGN (obscured), shocks

  17. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  18. Thermal Performance Benchmarking (Presentation)

    SciTech Connect (OSTI)

    Moreno, G.

    2014-11-01

    This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

  19. IMPROVEMENT OF THERMAL STABILITY OF LI-ION BATTERIES BY

    E-Print Network [OSTI]

    · Overall Technology Assessment · Appendices o Appendix A: Final Report (under separate cover) o Appendix B Funding: $75,000 Term: July 2002 ­ June 2003 PIER Subject Area: Renewable Energy Technologies #12;Page i · Renewable Energy Technologies · Environmentally-Preferred Advanced Generation · Energy-Related Environmental

  20. Polyester Separators for Lithium-ion Cells: Improving Thermal...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Sandia National Laboratories Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  1. Evidence of ion mixing increasing the thermal boundary conductance...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  2. Evidence of ion mixing increasing the thermal boundary conductance across

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) | SciTech(Journal(Patent)pressure in BaSwitching. (Journal

  3. Sensitivity of the interpretation of the experimental ion thermal

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail. (Conference) |Janka,Ferrara

  4. Correlation ion mobility spectroscopy

    DOE Patents [OSTI]

    Pfeifer, Kent B. (Los Lunas, NM); Rohde, Steven B. (Corrales, NM)

    2008-08-26

    Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.

  5. Chemical Equilibrium in Heavy Ion Collisions: Rapidity Dependence

    E-Print Network [OSTI]

    F. Becattini; J. Cleymans

    2007-01-05

    Particle yields in heavy ion collisions show an overwhelming evidence for chemical or relative chemical equilibrium at all beam energies. The rapidity dependence of the thermal parameters $T$ and $\\mu_B$ can now be determined over a wide range of rapidities and show a systematic behavior towards an increase in $\\mu_B$ away from mid-rapidity.

  6. Effects of ion abundances on electromagnetic ion cyclotron wave growth rate in the vicinity of the plasmapause

    SciTech Connect (OSTI)

    Henning, F. D. Mace, R. L.

    2014-04-15

    Electromagnetic ion cyclotron (EMIC) waves in multi-ion species plasmas propagate in branches. Except for the branch corresponding to the heaviest ion species, which has only a resonance at its gyrofrequency, these branches are bounded below by a cutoff frequency and above by a resonant gyrofrequency. The condition for wave growth is determined by the thermal anisotropies of each ion species, j, which sets an upper bound, ?{sub j}{sup ?}, on the wave frequency below which that ion species contributes positively to the growth rate. It follows that the relative positions of the cutoffs and the critical frequencies ?{sub j}{sup ?} play a crucial role in determining whether a particular wave branch will be unstable. The effect of the magnetospheric ion abundances on the growth rate of each branch of the EMIC instability in a model where all the ion species have kappa velocity distributions is investigated by appealing to the above ideas. Using the variation of the cutoff frequencies predicted by cold plasma theory as a guide, optimal ion abundances that maximise the EMIC instability growth rate are sought. When the ring current is comprised predominantly of H{sup +} ions, all branches of the EMIC wave are destabilised, with the proton branch having the maximum growth rate. When the O{sup +} ion abundance in the ring current is increased, a decrease in the growth rate of the proton branch and cyclotron damping of the helium branch are observed. The oxygen branch, on the other hand, experiences an increase in the maximum growth rate with an increase in the O{sup +} ion abundance. When the ring current is comprised predominantly of He{sup +} ions, only the helium and oxygen branches of the EMIC wave are destabilised, with the helium branch having the maximum growth rate.

  7. Class Transitions in Black Holes

    E-Print Network [OSTI]

    Sandip K. Chakrabarti

    2005-01-14

    A black hole spectrum is known to change from the hard state to the soft state when the energy spectral index $\\alpha$ ($F_E \\propto E^{-\\alpha}$) in, say, 2-20 keV range changes from $\\alpha \\sim 0.5$ to $\\sim 1.5$. However, this `classical' definition which characterizes black holes like Cyg X-1, becomes less useful for many objects such as GRS 1915+105 in which the spectral slope is seen to vary from one to the other in a matter of seconds and depending on whether or not winds form, the spectral slope also changes. The light curves and the colour-colour diagrams may look completely different on different days depending on the frequency and mode of switching from one spectral state to the other. Though RXTE observations have yielded wealth of information on such `variability classes' in GRS 1915+105, very rarely one has been able to observe how the object goes from one class to the other. In the present review, we discuss possible origins of the class transition and present several examples of such transitions. In this context, we use mostly the results of the Indian X-ray Astronomy Experiment (IXAE) which observed GRS 1915+105 more regularly.

  8. Black holes cannot support conformal scalar hair

    E-Print Network [OSTI]

    T. Zannias

    1994-09-14

    It is shown that the only static asymptotically flat non-extrema black hole solution of the Einstein-conformally invariant scalar field equations having the scalar field bounded on the horizon, is the Schwarzschild one. Thus black holes cannot be endowed with conformal scalar hair of finite length.

  9. Quantum Entropy of Charged Rotating Black Holes

    E-Print Network [OSTI]

    R. B. Mann

    1996-07-10

    I discuss a method for obtaining the one-loop quantum corrections to the tree-level entropy for a charged Kerr black hole. Divergences which appear can be removed by renormalization of couplings in the tree-level gravitational action in a manner similar to that for a static black hole.

  10. Topological Black Holes in Quantum Gravity

    E-Print Network [OSTI]

    J. Kowalski-Glikman; D. Nowak-Szczepaniak

    2000-07-31

    We derive the black hole solutions with horizons of non-trivial topology and investigate their properties in the framework of an approach to quantum gravity being an extension of Bohm's formulation of quantum mechanics. The solutions we found tend asymptotically (for large $r$) to topological black holes. We also analyze the thermodynamics of these space-times.

  11. Primordial black holes and asteroid danger

    E-Print Network [OSTI]

    Alexander Shatskiy

    2008-02-21

    Probability for a primordial black hole to invade the Kuiper belt was calculated. We showed that primordial black holes of certain masses can significantly change asteroids' orbits. These events may result in disasters, local for our solar system and global for the Earth (like the Tunguska meteorite). We also estimated how often such events occur.

  12. Canonical structure of 2D black holes

    E-Print Network [OSTI]

    Navarro-Salas, J; Talavera, C F

    1994-01-01

    We determine the canonical structure of two-dimensional black-hole solutions arising in $2D$ dilaton gravity. By choosing the Cauchy surface appropriately we find that the canonically conjugate variable to the black hole mass is given by the difference of local (Schwarzschild) time translations at right and left spatial infinities. This can be regarded as a generalization of Birkhoff's theorem.

  13. Fractal Statistics and Quantum Black Hole Entropy

    E-Print Network [OSTI]

    Wellington da Cruz

    2000-11-18

    Simple considerations about the fractal characteristic of the quantum-mechanical path give us the opportunity to derive the quantum black hole entropy in connection with the concept of fractal statistics. We show the geometrical origin of the numerical factor of four of the quantum black hole entropy expression and the statistics weight appears as a counting of the quanta of geometry.

  14. Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Blue...

  15. Effective theories and black hole production in warped compactificatio...

    Office of Scientific and Technical Information (OSTI)

    Effective theories and black hole production in warped compactifications Citation Details In-Document Search Title: Effective theories and black hole production in warped...

  16. Brookhaven National Laboratory - Sr90 - Chemical Holes | Department...

    Office of Environmental Management (EM)

    - Chemical Holes Brookhaven National Laboratory - Sr90 - Chemical Holes January 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report...

  17. Can Superconducting Cosmic Strings Piercing Seed Black Holes Generate Supermassive Black Holes in the Early Universe?

    E-Print Network [OSTI]

    Lake, Matthew J

    2015-01-01

    The discovery of a large number of supermassive black holes at redshifts $z> 6$, when the Universe was only nine hundred million years old, has raised the fundamental question of how such massive compact objects could form in a (cosmologically) short time interval. Each of the proposed standard scenarios for black hole formation, involving rapid accretion of seed black holes, or black hole mergers, faces severe theoretical difficulties in explaining the short time formation of supermassive objects. In the present Letter, we propose an alternative scenario for the formation of supermassive black holes in the early Universe in which energy transfer from superconducting cosmic strings, piercing small seed black holes, is the main physical process leading to rapid mass increase. The increase in mass of a primordial seed black hole pierced by two antipodal strings is estimated and it is shown that this increases linearly in time. Due to the high energy transfer rate from the cosmic strings, we find that supermassi...

  18. Development of ion sources for ion projection lithography

    SciTech Connect (OSTI)

    Lee, Y.; Gough, R.A.; Kunkel, W.B.; Leung, K.N.; Perkins, L.T.

    1996-05-01

    Multicusp ion sources are capable of generating ion beams with low axial energy spread as required by the Ion Projection Lithography (IPL). Longitudinal ion energy spread has been studied in two different types of plasma discharge: the filament discharge ion source characterized by its low axial energy spread, and the RF-driven ion source characterized by its long source lifetime. For He{sup +} ions, longitudinal ion energy spreads of 1-2 eV were measured for a filament discharge multicusp ion source which is within the IPL device requirements. Ion beams with larger axial energy spread were observed in the RF-driven source. A double-chamber ion source has been designed which combines the advantages of low axial energy spread of the filament discharge ion source with the long lifetime of the RF-driven source. The energy spread of the double chamber source is lower than that of the RF-driven source.

  19. Fourier Analysis of the BTZ Black Hole

    E-Print Network [OSTI]

    Ian M. Tolfree

    2009-11-11

    In this paper we extend our previous work regarding the role of the Fourier transformation in bulk to boundary mappings to include the BTZ black hole. We follow standard procedures for modifying Fourier Transformations to accommodate quotient spaces and arrive at a bulk to boundary mapping in a black hole background. We show that this mapping is consistent with known results and lends a new insight into the AdS/CFT duality. We find that the micro-states corresponding to the entropy of a bulk scalar field are the Fourier coefficients on the boundary, which transform under the principal series representation of $SL(2,R)$. Building upon this we present a toy model to analyze the implications of this for the origin of black hole entropy. We find that the black hole micro-states live on the boundary and correspond to the possible emission modes of the black hole

  20. Evidence for the Black Hole Event Horizon

    E-Print Network [OSTI]

    Ramesh Narayan

    2003-10-23

    Astronomers have discovered many candidate black holes in X-ray binaries and in the nuclei of galaxies. The candidate objects are too massive to be neutron stars, and for this reason they are considered to be black holes. While the evidence based on mass is certainly strong, there is no proof yet that any of the objects possesses the defining characteristic of a black hole, namely an event horizon. Type I X-ray bursts, which are the result of thermonuclear explosions when gas accretes onto the surface of a compact star, may provide important evidence in this regard. Type I bursts are commonly observed in accreting neutron stars, which have surfaces, but have never been seen in accreting black hole candidates. It is argued that the lack of bursts in black hole candidates is compelling evidence that these objects do not have surfaces. The objects must therefore possess event horizons.

  1. How fast can a black hole rotate?

    E-Print Network [OSTI]

    Herdeiro, Carlos A R

    2015-01-01

    Kerr black holes have their angular momentum, $J$, bounded by their mass, $M$: $Jc\\leqslant GM^2$. There are, however, known black hole solutions violating this Kerr bound. We propose a very simple universal bound on the rotation, rather than on the angular momentum, of four-dimensional, stationary and axisymmetric, asymptotically flat black holes, given in terms of an appropriately defined horizon linear velocity, $v_H$. The $v_H$ bound is simply that $v_H$ cannot exceed the velocity of light. We verify the $v_H$ bound for known black hole solutions, including some that violate the Kerr bound, and conjecture that only extremal Kerr black holes saturate the $v_H$ bound.

  2. Thermal Shock-resistant Cement

    SciTech Connect (OSTI)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved cement, causing its volume to expand.

  3. Selective ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    1996-01-01

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P.sup.+ from PH.sub.3. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P.sup.+, AS.sup.+, and B.sup.+ without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices.

  4. Selective ion source

    DOE Patents [OSTI]

    Leung, K.N.

    1996-05-14

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P{sup +} from PH{sub 3}. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P{sup +}, As{sup +}, and B{sup +} without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices. 6 figs.

  5. Microfabricated cylindrical ion trap

    DOE Patents [OSTI]

    Blain, Matthew G.

    2005-03-22

    A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.

  6. Fast thermometry for trapped ions using dark resonances

    E-Print Network [OSTI]

    Johannes Roßnagel; Karl Nicolas Tolazzi; Ferdinand Schmidt-Kaler; Kilian Singer

    2015-04-09

    We experimentally demonstrate a method to determine the temperature of trapped ions which is suitable for monitoring fast thermalization processes. We show that observing and analyzing the lineshape of dark resonances in the fluorescence spectrum provides a temperature measurement which accurate over a large dynamic range, applied to single ions and small ion crystals. Laser induced fluorescence is detected over a time of only $20\\,\\mu$s allowing for rapid determination of the ion temperature. In the measurement range of $10^{-1}-10^{+2}\\,$mK we reach better than $15\\,\\%$ accuracy. Tuning the cooling laser to selected resonance features allows for controlling the ion temperatures between $0.7\\,$mK and more than $10\\,$mK. Experimental work is supported by a solution of the 8-level optical Bloch equations when including the ions classical motion. This technique paves the way for many experiments comprising heat transport in ion strings, heat engines, non-equilibrium thermodynamics or thermometry of large ion crystals.

  7. Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements

    E-Print Network [OSTI]

    Texas at Arlington, University of

    Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat Keywords: Lithium-ion batteries Heat generation rate measurement Heat flux sensor Thermal conduction Battery safety a b s t r a c t Understanding the rate of heat generation in a Li-ion cell is critical

  8. Ion mobility sensor system

    SciTech Connect (OSTI)

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  9. Black Hole Radiation with Modified Dispersion Relation in Tunneling Paradigm: Static Frame

    E-Print Network [OSTI]

    Peng Wang; Haitang Yang

    2015-05-12

    Due to the exponential high gravitational red shift near the event horizon of a black hole, it might appears that the Hawking radiation would be highly sensitive to some unknown high energy physics. To study possible deviations from the Hawking's prediction, the dispersive field theory models have been proposed, following the Unruh's hydrodynamic analogue of a black hole radiation. In the dispersive field theory models, the dispersion relations of matter fields are modified at high energies, which leads to modifications of equations of motion. In this paper, we use the Hamilton-Jacobi method to investigate the dispersive field theory models. The preferred frame is the static frame of the black hole. The dispersion relation adopted agrees with the relativistic one at low energies but is modified near the Planck mass $m_{p}$. We calculate the corrections to the Hawking temperature for massive and charged particles to $\\mathcal{O}\\left(m_{p}^{-2}\\right) $ and massless and neutral particles to all orders. Our results suggest that the thermal spectrum of radiations near horizon is robust, e.g. corrections to the Hawking temperature are suppressed by $m_{p}$. After the spectrum of radiations near the horizon is obtained, we use the brick wall model to compute the thermal entropy of a massless scalar field near the horizon of a 4D spherically symmetric black hole. We find that the leading term of the entropy depends on how the dispersion relations of matter fields are modified, while the subleading logarithmic term does not. Finally, the luminosities of black holes are computed by using the geometric optics approximation.

  10. Unraveling the mysteries of the non-thermal universe using -ray observations of Active Galactic Nuclei

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Unraveling the mysteries of the non-thermal universe using -ray observations of Active Galactic hole at the center (~106 to 109 x solar mass) At least 5% of all galaxies are active galaxies Active galaxies: small ''bright'' core of emission in otherwise typical galaxy AGN = Active Galactic Nucleus (i

  11. Real-time, noninvasive monitoring of ion energy and ion current at a wafer surface during plasma etching

    SciTech Connect (OSTI)

    Sobolewski, Mark A. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2006-09-15

    A noninvasive, nonperturbing technique for real-time monitoring of ion energy distributions and total ion current at a wafer surface during plasma processing has been used to monitor rapid changes in CF{sub 4}/Ar etching plasmas in an inductively coupled, rf-biased plasma reactor. To mimic the effects of process recipe steps or reactor malfunctions, perturbations were made in the inductive source power, gas flow, and pressure, and the resulting effects on total ion current, sheath voltage, and ion energy were monitored. During etching of a thermal silicon dioxide film, smaller changes, which are caused by the etch process itself, were also observed. Sheath voltages determined by the noninvasive technique were in good agreement with simultaneous measurements made using a capacitive probe. In addition to providing a demonstration of the speed and accuracy of the technique, the results also provide useful information about the relative importance of different types of equipment malfunctions and suggest methods for minimizing their effects. In particular, operating at constant bias voltage, instead of constant bias power, gave more stable ion energies. The physical mechanisms that cause the observed changes in ion energy are discussed, and a comparison to other process monitoring methods is presented. No other noninvasive, nonperturbing method yields ion current or ion energies as accurately as the technique presented here.

  12. LANL: Ion Beam Materials Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and materials synthesis through ion implantation technology, and radiation damage stud- ies in gases, liquids, and solids. The laboratory's core is a 3.2 MV tandem ion...

  13. Metal-Ion-Mediated Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal-Ion-Mediated Reactions Metal-Ion-Mediated Reactions Print Monday, 19 December 2011 18:29 While mononuclear, polynuclear, and polymeric metal complexes are most often...

  14. Microscopic Models of Heavy Ion Interactions

    E-Print Network [OSTI]

    Capella, A

    2003-01-01

    An introduction to dynamical microscopic models of hadronic and nuclear interactions is presented. Special emphasis is put in the relation between multiparticle production and total cross-section contributions. In heavy ion collisions, some observables, considered as signals of the production of a Quark Gluon Plasma (QGP), are studied. It is shown that they can only be described if final state interactions are introduced. It is argued that the cross-sections required are too small to drive the system to thermal equilibrium within the duration time of the final state interaction.

  15. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01

    aquifers for thermal energy storage. Problems outlined abovean Aquifer Used for Hot Water Storage: Digital Simulation ofof Aquifer Systems for Cyclic Storage of Water," of the Fall

  16. Scattering Solar Thermal Concentrators

    Office of Environmental Management (EM)

    sunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving large mirror surfaces...

  17. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    pp. 67-73, 2003. [17] "Energy Requirements of Desalinationof solar collectors and thermal energy storage in solarapplications," Applied Energy, pp. 538-553, 2013. [20] P. G.

  18. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    C. Y. Zhao, "A review of solar collectors and thermal energya Passive Flat-Plate Solar Collector," International Journalof Flat Plate Solar Collector Equipped with Rectangular Cell

  19. Relating to ion detection

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2001-01-01

    The apparatus and method provide a technique for improving detection of alpha and/or beta emitting sources on items or in locations using indirect means. The emission forms generate ions in a medium surrounding the item or location and the medium is then moved to a detecting location where the ions are discharged to give a measure of the emission levels. To increase the level of ions generated and render the system particularly applicable for narrow pipes and other forms of conduits, the medium pressure is increased above atmospheric pressure. STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

  20. Radion clouds around evaporating black holes

    E-Print Network [OSTI]

    J. R. Morris

    2009-09-03

    A Kaluza-Klein model, with a matter source associated with Hawking radiation from an evaporating black hole, is used to obtain a simple form for the radion effective potential. The environmental effect generally causes a matter-induced shift of the radion vacuum, resulting in the formation of a radion cloud around the hole. There is an albedo due to the radion cloud, with an energy dependent reflection coefficient that depends upon the size of the extra dimensions and the temperature of the hole.

  1. Testing black hole candidates with electromagnetic radiation

    E-Print Network [OSTI]

    Bambi, Cosimo

    2015-01-01

    Astrophysical black hole candidates are thought to be the Kerr black holes of general relativity, but there is currently no direct observational evidence that the spacetime geometry around these objects is described by the Kerr solution. The study of the properties of the electromagnetic radiation emitted by gas or stars orbiting these objects can potentially test the Kerr black hole hypothesis. In this paper, I review the state of the art of this research field, describing the possible approaches to test the Kerr metric with current and future observational facilities and discussing current constraints.

  2. Quasinormal Modes of Dirty Black Holes

    E-Print Network [OSTI]

    P. T. Leung; Y. T. Liu; W. -M. Suen; C. Y. Tam; K. Young

    1999-03-08

    Quasinormal mode (QNM) gravitational radiation from black holes is expected to be observed in a few years. A perturbative formula is derived for the shifts in both the real and the imaginary part of the QNM frequencies away from those of an idealized isolated black hole. The formulation provides a tool for understanding how the astrophysical environment surrounding a black hole, e.g., a massive accretion disk, affects the QNM spectrum of gravitational waves. We show, in a simple model, that the perturbed QNM spectrum can have interesting features.

  3. Black hole microstates in AdS

    E-Print Network [OSTI]

    Shaghoulian, Edgar

    2015-01-01

    We extend a recently derived higher-dimensional Cardy formula to include angular momenta, which we use to obtain the Bekensten-Hawking entropy of AdS black branes, compactified rotating branes, and large Schwarzschild/Kerr black holes. This is the natural generalization of Strominger's microscopic derivation of the BTZ black hole entropy to higher dimensions. We propose an extension to include $U(1)$ charge, which agrees with the Bekenstein-Hawking entropy of large Reissner-Nordstrom/Kerr-Newman black holes at high temperature. We extend the results to arbitrary hyperscaling violation exponent (this captures the case of black D$p$-branes as a subclass) and reproduce logarithmic corrections.

  4. Thermodynamics of Dyonic Lifshitz Black Holes

    E-Print Network [OSTI]

    Tobias Zingg

    2011-07-15

    Black holes with asymptotic anisotropic scaling are conjectured to be gravity duals of condensed matter system close to quantum critical points with non-trivial dynamical exponent z at finite temperature. A holographic renormalization procedure is presented that allows thermodynamic potentials to be defined for objects with both electric and magnetic charge in such a way that standard thermodynamic relations hold. Black holes in asymptotic Lifshitz spacetimes can exhibit paramagnetic behavior at low temperature limit for certain values of the critical exponent z, whereas the behavior of AdS black holes is always diamagnetic.

  5. Testing the Kerr black hole hypothesis

    E-Print Network [OSTI]

    Cosimo Bambi

    2011-10-13

    It is thought that the final product of the gravitational collapse is a Kerr black hole and astronomers have discovered several good astrophysical candidates. While there is some indirect evidence suggesting that the latter have an event horizon, and therefore that they are black holes, a proof that the space-time around these objects is described by the Kerr geometry is still lacking. Recently, there has been an increasing interest in the possibility of testing the Kerr black hole hypothesis with present and future experiments. In this paper, I briefly review the state of the art of the field, focussing on some recent results and work in progress.

  6. Scalar Perturbations of Charged Dilaton Black Holes

    E-Print Network [OSTI]

    Sharmanthie Fernando; Keith Arnold

    2015-08-01

    We have studied the scalar perturbation of static charged dilaton black holes in 3+1 dimensions. The black hole considered here is a solution to the low-energy string theory in 3+1 dimensions. The quasinormal modes for the scalar perturbations are calculated using the third order WKB method. The dilaton coupling constant has a considerable effect on the values of quasi normal modes. It is also observed that there is a linear relation between the quasi normal modes and the temperature for large black holes.

  7. Is the Universe a White-Hole?

    E-Print Network [OSTI]

    Marcelo Samuel Berman

    2008-08-06

    Pathria(1972) has shown, for a pressureless closed Universe, that it is inside a black (or white) hole. We show now, that the Universe with a cosmic pressure obeying Einstein's field equations, can be inside a white-hole. In the closed case, a positive cosmological constant does the job; for the flat and open cases, the condition we find is not verified for the very early Universe, but with the growth of the scale-factor, the condition will be certainly fulfilled for a positive cosmological constant, after some time. We associate the absolute temperature of the Universe, with the temperature of the corresponding white-hole.

  8. Thermally conductive cementitious grout for geothermal heat pump systems

    DOE Patents [OSTI]

    Allan, Marita (Old Field, NY)

    2001-01-01

    A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

  9. Origins of ion irradiation-induced Ga nanoparticle motion on GaAs surfaces

    SciTech Connect (OSTI)

    Kang, M.; Wu, J. H.; Chen, H. Y.; Thornton, K.; Goldman, R. S. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Sofferman, D. L. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States) [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Department of Physics, Adelphi University, Garden City, New York 11530-0701 (United States); Beskin, I. [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States)] [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States)

    2013-08-12

    We have examined the origins of ion irradiation-induced nanoparticle (NP) motion. Focused-ion-beam irradiation of GaAs surfaces induces random walks of Ga NPs, which are biased in the direction opposite to that of ion beam scanning. Although the instantaneous NP velocities are constant, the NP drift velocities are dependent on the off-normal irradiation angle, likely due to a difference in surface non-stoichiometry induced by the irradiation angle dependence of the sputtering yield. It is hypothesized that the random walks are initiated by ion irradiation-induced thermal fluctuations, with biasing driven by anisotropic mass transport.

  10. Inner-shell photoionization and core-hole decay of Xe and XeF$_2$

    E-Print Network [OSTI]

    Southworth, Stephen H; Picón, Antonio; Lehmann, C Stefan; Cheng, Lan; Stanton, John F

    2015-01-01

    Photoionization cross sections and partial ion yields of Xe and XeF$_2$ from Xe 3d$_{5/2}$, Xe 3d$_{3/2}$, and F 1s subshells in the 660--740 eV range are compared to explore effects of the F ligands. The Xe 3d - $\\epsilon$f continuum shape resonances dominate the photoionization cross sections of both the atom and molecule, but prominent resonances appear in the XeF$_2$ cross section due to nominal excitation of Xe 3d and F 1s electrons to the lowest unoccupied molecular orbital (LUMO), a delocalized anti-bonding MO. The subshell ionization thresholds, the LUMO resonance energies and their oscillator strengths are calculated by relativistic coupled-cluster methods. Several charge states and fragment ions are produced from the atom and molecule due to alternative decay pathways from the inner-shell holes. Total and partial ion yields vary in response to the shape resonances and LUMO resonances. Previous calculations and measurements of atomic Xe 3d core-hole decay channels and our calculated results for XeF$_...

  11. Fast Thermal Simulation for Architecture Level Dynamic Thermal Management

    E-Print Network [OSTI]

    Tan, Sheldon X.-D.

    Fast Thermal Simulation for Architecture Level Dynamic Thermal Management Pu Liu, Zhenyu Qi, Hang temperature by dynamic thermal managements becomes necessary. This paper proposes a novel approach to the thermal analysis at chip architecture level for efficient dynamic thermal management. Our new approach

  12. Thermalization of gluon matter including ggggg interactions

    E-Print Network [OSTI]

    A. El; C. Greiner; Z. Xu

    2006-09-27

    Within a pQCD inspired kinetic parton cascade we simulate the space time evolution of gluons which are produced initially in a heavy ion collision at RHIC energy. The inelastic gluonic interactions $gg \\leftrightarrow ggg$ do play an important role: For various initial conditions it is found that thermalization and the close to ideal fluid dynamical behaviour sets in at very early times. Special emphasis is put on color glass condensate initial conditions and the `bottom up thermalization' scenario. Off-equilibrium $3\\to 2$ processes make up the very beginning of the evolution leading to an initial decrease in gluon number and a temporary avalanche of the gluon momentum distribution to higher transversal momenta.

  13. Thermal regeneration of an electrochemical concentration cell

    DOE Patents [OSTI]

    Krumpelt, M.; Bates, J.K.

    1980-05-09

    A system and method are described for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.

  14. Thermal regeneration of an electrochemical concentration cell

    DOE Patents [OSTI]

    Krumpelt, Michael (Naperville, IL); Bates, John K. (Plainfield, IL)

    1981-01-01

    A system and method for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 Kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.

  15. SWIFT OBSERVATIONS OF MAXI J1659-152: A COMPACT BINARY WITH A BLACK HOLE ACCRETOR

    SciTech Connect (OSTI)

    Kennea, J. A.; Romano, P.; Mangano, V.; Beardmore, A. P.; Evans, P. A.; Curran, P. A.; Markwardt, C. B.; Yamaoka, K.

    2011-07-20

    We report on the detection and follow-up high-cadence monitoring observations of MAXI J1659-152, a bright Galactic X-ray binary transient with a likely black hole accretor, by Swift over a 27 day period after its initial outburst detection. MAXI J1659-152 was discovered almost simultaneously by Swift and the Monitor of All-sky X-ray Image on 2010 September 25, and was monitored intensively from the early stages of the outburst through the rise to a brightness of {approx}0.5 Crab by the Swift X-ray, UV/Optical, and the hard X-ray Burst Alert Telescopes. We present temporal and spectral analysis of the Swift observations. The broadband light curves show variability characteristic of black hole candidate transients. We present the evolution of thermal and non-thermal components of the 0.5-150 keV combined X-ray spectra during the outburst. MAXI J1659-152 displays accretion state changes typically associated with black hole binaries, transitioning from its initial detection in the hard state, to the steep power-law state, followed by a slow evolution toward the thermal state, signified by an increasingly dominant thermal component associated with the accretion disk, although this state change did not complete before Swift observations ended. We observe an anti-correlation between the increasing temperature and decreasing radius of the inner edge of the accretion disk, suggesting that the inner edge of the accretion disk infalls toward the black hole as the disk temperature increases. We observed significant evolution in the absorption column during the initial rise of the outburst, with the absorption almost doubling, suggestive of the presence of an evolving wind from the accretion disk. We detect quasi-periodic oscillations that evolve with the outburst, as well as irregular shaped dips that recur with a period of 2.42 {+-} 0.09 hr, strongly suggesting an orbital period that would make MAXI J1659-152 the shortest period black hole binary yet known.

  16. Secondary ion collection and transport system for ion microprobe

    DOE Patents [OSTI]

    Ward, James W. (Canoga Park, CA); Schlanger, Herbert (Simi Valley, CA); McNulty, Jr., Hugh (Santa Monica, CA); Parker, Norman W. (Camarillo, CA)

    1985-01-01

    A secondary ion collection and transport system, for use with an ion microprobe, which is very compact and occupies only a small working distance, thereby enabling the primary ion beam to have a short focal length and high resolution. Ions sputtered from the target surface by the primary beam's impact are collected between two arcuate members having radii of curvature and applied voltages that cause only ions within a specified energy band to be collected. The collected ions are accelerated and focused in a transport section consisting of a plurality of spaced conductive members which are coaxial with and distributed along the desired ion path. Relatively high voltages are applied to alternate transport sections to produce accelerating electric fields sufficient to transport the ions through the section to an ion mass analyzer, while lower voltages are applied to the other transport sections to focus the ions and bring their velocity to a level compatible with the analyzing apparatus.

  17. Focused ion beam system

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Gough, Richard A. (Kensington, CA); Ji, Qing (Berkeley, CA); Lee, Yung-Hee Yvette (Berkeley, CA)

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  18. Focused ion beam system

    DOE Patents [OSTI]

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  19. HEAVY ION INERTIAL FUSION

    E-Print Network [OSTI]

    Keefe, D.

    2008-01-01

    Accelerators as Drivers for Inertially Confined Fusion, W.B.LBL-9332/SLAC-22l (1979) Fusion Driven by Heavy Ion Beams,OF CALIFORNIA f Accelerator & Fusion Research Division

  20. Ion exchange phenomena

    SciTech Connect (OSTI)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  1. Ion electric propulsion unit

    DOE Patents [OSTI]

    Light, Max E; Colestock, Patrick L

    2014-01-28

    An electron cyclotron resonance (ECR) thruster is disclosed having a plasma chamber which is electrically biased with a positive voltage. The chamber bias serves to efficiently accelerate and expel the positive ions from the chamber. Electrons follow the exiting ions, serving to provide an electrically neutral exhaust plume. In a further embodiment, a downstream shaping magnetic field serves to further accelerate and/or shape the exhaust plume.

  2. High current ion source

    DOE Patents [OSTI]

    Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); MacGill, Robert A. (645 Kern St., Richmond, CA 94805); Galvin, James E. (2 Commodore Dr. #276, Emeryville, CA 94608)

    1990-01-01

    An ion source utilizing a cathode and anode for producing an electric arc therebetween. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma leaves the generation region and expands through another regon. The density profile of the plasma may be flattened using a magnetic field formed within a vacuum chamber. Ions are extracted from the plasma to produce a high current broad on beam.

  3. Energy of 4-Dimensional Black Hole, etc

    E-Print Network [OSTI]

    Dmitriy Palatnik

    2011-07-18

    In this letter I suggest possible redefinition of mass density, not depending on speed of the mass element, which leads to a more simple stress-energy for an object. I calculate energy of black hole.

  4. Horizon Operator Approach to Black Hole Quantization

    E-Print Network [OSTI]

    G. 't Hooft

    1994-02-21

    The $S$-matrix Ansatz for the construction of a quantum theory of black holes is further exploited. We first note that treating the metric tensor $g_{\\m\

  5. Radiation transport around Kerr black holes

    E-Print Network [OSTI]

    Schnittman, Jeremy David

    2005-01-01

    This Thesis describes the basic framework of a relativistic ray-tracing code for analyzing accretion processes around Kerr black holes. We begin in Chapter 1 with a brief historical summary of the major advances in black ...

  6. Topological Black Holes -- Outside Looking In

    E-Print Network [OSTI]

    R. B. Mann

    1997-09-15

    I describe the general mathematical construction and physical picture of topological black holes, which are black holes whose event horizons are surfaces of non-trivial topology. The construction is carried out in an arbitrary number of dimensions, and includes all known special cases which have appeared before in the literature. I describe the basic features of massive charged topological black holes in $(3+1)$ dimensions, from both an exterior and interior point of view. To investigate their interiors, it is necessary to understand the radiative falloff behaviour of a given massless field at late times in the background of a topological black hole. I describe the results of a numerical investigation of such behaviour for a conformally coupled scalar field. Significant differences emerge between spherical and higher genus topologies.

  7. Time-bin entangled photon holes

    E-Print Network [OSTI]

    J. Liang; J. D. Franson; T. B. Pittman

    2012-08-23

    The general concept of entangled photon holes is based on a correlated absence of photon pairs in an otherwise constant optical background. Here we consider the specialized case when this background is confined to two well-defined time bins, which allows the formation of time-bin entangled photon holes. We show that when the typical coherent state background is replaced by a true single-photon (Fock state) background, the basic time-bin entangled photon-hole state becomes equivalent to one of the time-bin entangled photon-pair states. We experimentally demonstrate these ideas using a parametric down-conversion photon-pair source, linear optics, and post-selection to violate a Bell inequality with time-bin entangled photon holes.

  8. Evidence for the Black Hole Event Horizon

    E-Print Network [OSTI]

    Ramesh Narayan; Jeremy S. Heyl

    2002-04-26

    Roughly a dozen X-ray binaries are presently known in which the compact accreting primary stars are too massive to be neutron stars. These primaries are identified as black holes, though there is as yet no definite proof that any of the candidate black holes actually possesses an event horizon. We discuss how Type I X-ray bursts may be used to verify the presence of the event horizon in these objects. Type I bursts are caused by thermonuclear explosions when gas accretes onto a compact star. The bursts are commonly seen in many neutron star X-ray binaries, but they have never been seen in any black hole X-ray binary. Our model calculations indicate that black hole candidates ought to burst frequently if they have surfaces. Based on this, we argue that the lack of bursts constitutes strong evidence for the presence of event horizons in these objects.

  9. Black Hole Thermodynamics in Modified Gravity

    E-Print Network [OSTI]

    Jonas R. Mureika; John W. Moffat; Mir Faizal

    2015-03-03

    We analyze the thermodynamics of a non-rotating and rotating black hole in a modified theory of gravity that includes scalar and vector modifications to general relativity, which results in a modified gravitational constant $G = G_N(1+\\alpha)$ and a new gravitational charge $Q = \\sqrt{\\alpha G_N}M$. The influence of the parameter $\\alpha$ alters the non-rotating black hole's lifetime, temperature and entropy profiles from the standard Schwarzschild case. The thermodynamics of a rotating black hole is analyzed and it is shown to possess stable, cold remnants. The thermodynamic properties of a vacuum solution regular at $r=0$ are investigated and the solution without a horizon called a "gray hole" is not expected to possess an information loss problem.

  10. CHARYBDIS: A Black hole event generator.

    E-Print Network [OSTI]

    Harris, Chris M.; Richardson, P.; Webber, Bryan R.

    CHARYBDIS is an event generator which simulates the production and decay of miniature black holes at hadronic colliders as might be possible in certain extra dimension models. It interfaces via the Les Houches accord to general purpose Monte...

  11. Spacetime constraints on accreting black holes

    SciTech Connect (OSTI)

    Garofalo, David [Jet Propulsion Laboratory, California Institute of Technology, Pasadena California 91109 (United States)

    2009-06-15

    We study the spin dependence of accretion onto rotating Kerr black holes using analytic techniques. In its linear regime, angular momentum transport in MHD turbulent accretion flow involves the generation of radial magnetic field connecting plasma in a differentially rotating flow. We take a first principles approach, highlighting the constraint that limits the generation and amplification of radial magnetic fields, stemming from the transfer of energy from mechanical to magnetic form. Because the energy transferred in magnetic form is ultimately constrained by gravitational potential energy or Killing energy, the spin dependence of the latter allows us to derive spin-dependent constraints on the success of the accreting plasma to expel its angular momentum. We find an inverse relationship between this ability and black hole spin. If this radial magnetic field generation forms the basis for angular momentum transfer in accretion flows, accretion rates involving Kerr black holes are expected to be lower as the black hole spin increases in the prograde sense.

  12. Internal Short Circuits in Lithium-Ion Cells for PHEVs

    SciTech Connect (OSTI)

    Sriramulu, Suresh; Stringfellow, Richard

    2013-05-25

    Development of Plug-in Hybrid Electric Vehicles (PHEVs) has recently become a high national priority because of their potential to enable significantly reduced petroleum consumption by the domestic transportation sector in the relatively near term. Lithium-ion (Li-ion) batteries are a critical enabling technology for PHEVs. Among battery technologies with suitable operating characteristics for use in vehicles, Li-ion batteries offer the best combination of energy, power, life and cost. Consequently, worldwide, leading corporations and government agencies are supporting the development of Li-ion batteries for PHEVs, as well as the full spectrum of vehicular applications ranging from mild hybrid to all-electric. In this project, using a combination of well-defined experiments, custom designed cells and simulations, we have improved the understanding of the process by which a Li-ion cell that develops an internal short progresses to thermal runaway. Using a validated model for thermal runaway, we have explored the influence of environmental factors and cell design on the propensity for thermal runaway in full-sized PHEV cells. We have also gained important perspectives about internal short development and progression; specifically that initial internal shorts may be augmented by secondary shorts related to separator melting. Even though the nature of these shorts is very stochastic, we have shown the critical and insufficiently appreciated role of heat transfer in influencing whether a developing internal short results in a thermal runaway. This work should lead to enhanced perspectives on separator design, the role of active materials and especially cathode materials with respect to safety and the design of automotive cooling systems to enhance battery safety in PHEVs.

  13. Thermodynamics and evaporation of the noncommutative black hole

    E-Print Network [OSTI]

    Yun Soo Myung; Yong-Wan Kim; Young-Jai Park

    2007-01-21

    We investigate the thermodynamics of the noncommutative black hole whose static picture is similar to that of the nonsingular black hole known as the de Sitter-Schwarzschild black hole. It turns out that the final remnant of extremal black hole is a thermodynamically stable object. We describe the evaporation process of this black hole by using the noncommutativity-corrected Vaidya metric. It is found that there exists a close relationship between thermodynamic approach and evaporation process.

  14. Testing thermal reprocessing in AGN accretion discs

    E-Print Network [OSTI]

    E. M. Cackett; K. Horne; H. Winkler

    2007-06-11

    The thermal reprocessing hypothesis in AGN, where EUV/X-ray photons are reprocessed by the accretion disc into optical/UV photons, predicts wavelength-dependent time delays between the optical continuum at different wavelengths. Recent photometric monitoring by Sergeev et al. has shown that the time-delay is observed in 14 AGN, and generally seen to increase with increasing wavelength, as predicted in the reprocessing scenario. We fit the observed time delays and optical spectral energy distribution using a disc reprocessing model. The model delivers estimates for the nuclear reddening, the product of black hole mass times accretion rate, and the distance to each object. However, the distances at face value give H_0 = 44 +/- 5 km/s/Mpc - a factor of 1.6 smaller than generally accepted. We discuss the implications of this on the reprocessing model.

  15. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, G.A.; Elder, M.G.; Kemme, J.E.

    1984-03-20

    The disclosure is directed to an apparatus for thermally protecting sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components such as electronics to a heat sink such as ice.

  16. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A. (Los Alamos, NM); Elder, Michael G. (Los Alamos, NM); Kemme, Joseph E. (Albuquerque, NM)

    1985-01-01

    An apparatus which thermally protects sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components to a heat sink such as ice.

  17. Thermal radiation Ron Zevenhoven

    E-Print Network [OSTI]

    Zevenhoven, Ron

    .00032, similarly for 2·T = 0.7·2500 = 1750 µmK4 this gives f0-2 = 0.03392. Thus for 0.4 - 0.7 µm, f1-2 = 0Thermal radiation revisited Ron Zevenhoven Åbo Akademi University Thermal and Flow Engineering Laboratory / Värme- och strömningsteknik tel. 3223 ; ron.zevenhoven@abo.fi Process Engineering

  18. Mechanical Engineering & Thermal Group

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    LASP's mechanical analysts also lead mechanical verification testing including: random vibration, forceMechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has, and ground- based mechanical systems. Instrument Design Building on decades of design experience that has

  19. Classical and thermodynamic stability of black holes

    E-Print Network [OSTI]

    Monteiro, Ricardo

    2010-07-06

    Perturbations of the asymptotic charges . . . . . . . . . . . . . . . . 169 IV Conclusion 171 9 Conclusion and outlook 173 A Spectral numerical method 177 2 CONTENTS Part I Introduction 3 Chapter 1 Black holes Black holes are arguably the most interesting... to Newto- nian dynamics in the Solar system, and the indirect detection of gravitational waves from binary pulsars [1]. A crucial distinction from Newtonian gravity is that the “action-at-a-distance” is substituted by a built-in causality structure...

  20. Fractionated Branes and Black Hole Interiors

    E-Print Network [OSTI]

    Emil J. Martinec

    2015-05-20

    Combining a variety of results in string theory and general relativity, a picture of the black hole interior is developed wherein spacetime caps off at an inner horizon, and the inter-horizon region is occupied by a Hagedorn gas of a very low tension state of fractionated branes. This picture leads to natural resolutions of a variety of puzzles concerning quantum black holes. Gravity Research Foundation 2015 Fourth Prize Award for Essays on Gravitation.

  1. Thermodynamical Structure of AdS Black Holes in Massive Gravity with Stringy Gauge-Gravity Corrections

    E-Print Network [OSTI]

    Hendi, S H; Panahiyan, S

    2015-01-01

    Motivated by gauge/gravity group in the low energy effective theory of the heterotic string theory, the minimal coupling of Gauss-Bonnet-massive gravity with Born-Infeld electrodynamics is considered. At first the metric function is calculated and then the geometrical properties of the solutions are investigated. It is found that there is an essential singularity at the origin and the intrinsic curvature is regular elsewhere. In addition, the effects of massive parameters on the horizons of black holes are studied and the conserved and thermodynamic quantities are calculated. Also, it is shown that the solutions satisfy the first law of thermodynamics. Furthermore using heat capacity of these black holes, thermal stability and phase transitions are investigated. The variation of different parameters and related modifications on the (number of) phase transition are examined. Next, the critical behavior of the Gauss-Bonnet-Born-Infeld-massive black holes in context of extended phase space is studied. It is show...

  2. Thermodynamics of third order Lovelock adS black holes in the presence of Born-Infeld type nonlinear electrodynamics

    E-Print Network [OSTI]

    Hendi, Seyed Hossein

    2015-01-01

    In this paper, we obtain topological black hole solutions of third order Lovelock gravity couple with two classes of Born-Infeld type nonlinear electrodynamics with anti-de Sitter asymptotic structure. We investigate geometric and thermodynamics properties of the solutions and obtain conserved quantities of the black holes. We examine the first law of thermodynamics and find that the conserved and thermodynamic quantities of the black hole solutions satisfy the first law of thermodynamics. Finally, we calculate the heat capacity and determinant of Hessian matrix to evaluate thermal stability in both canonical and grand canonical ensembles. Moreover, we consider extended phase space thermodynamics to obtain generalized first law of thermodynamics as well as extended Smarr formula.

  3. Thermal treatment wall

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Livermore, CA); Knauss, Kevin G. (Livermore, CA)

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  4. Tunable thermal link

    DOE Patents [OSTI]

    Chang, Chih-Wei; Majumdar, Arunava; Zettl, Alexander K.

    2014-07-15

    Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.

  5. Solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  6. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    and Background Solar thermal energy collection is anThermal Energy Storage in Concentrated Solar Thermal PowerThermal Energy Storage in Concentrated Solar Thermal Power

  7. Solar Wind Forecasting with Coronal Holes

    E-Print Network [OSTI]

    S. Robbins; C. J. Henney; J. W. Harvey

    2007-01-09

    An empirical model for forecasting solar wind speed related geomagnetic events is presented here. The model is based on the estimated location and size of solar coronal holes. This method differs from models that are based on photospheric magnetograms (e.g., Wang-Sheeley model) to estimate the open field line configuration. Rather than requiring the use of a full magnetic synoptic map, the method presented here can be used to forecast solar wind velocities and magnetic polarity from a single coronal hole image, along with a single magnetic full-disk image. The coronal hole parameters used in this study are estimated with Kitt Peak Vacuum Telescope He I 1083 nm spectrograms and photospheric magnetograms. Solar wind and coronal hole data for the period between May 1992 and September 2003 are investigated. The new model is found to be accurate to within 10% of observed solar wind measurements for its best one-month periods, and it has a linear correlation coefficient of ~0.38 for the full 11 years studied. Using a single estimated coronal hole map, the model can forecast the Earth directed solar wind velocity up to 8.5 days in advance. In addition, this method can be used with any source of coronal hole area and location data.

  8. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect (OSTI)

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; L.Vaghjiani, Ghanshyam; Leone, Stephen R.

    2012-03-16

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1- Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  9. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect (OSTI)

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center; Institute of Chemistry, Hebrew University; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Leone, Stephen R.

    2011-07-19

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?]ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  10. Thermally-related safety issues associated with thermal batteries.

    SciTech Connect (OSTI)

    Guidotti, Ronald Armand

    2006-06-01

    Thermal batteries can experience thermal runaway under certain usage conditions. This can lead to safety issues for personnel and cause damage to associated test equipment if the battery thermally self destructs. This report discusses a number of thermal and design related issues that can lead to catastrophic destruction of thermal batteries under certain conditions. Contributing factors are identified and mitigating actions are presented to minimize or prevent undesirable thermal runaway.

  11. Nonlinear stabilization of tokamak microturbulence by fast ions

    E-Print Network [OSTI]

    Citrin, J; Garcia, J; Haverkort, J W; Hogeweij, G M D; Jenko, F; Johnson, T; Mantica, P; Pueschel, M J; Told, D; contributors, JET-EFDA

    2013-01-01

    Nonlinear electromagnetic stabilization by suprathermal pressure gradients found in specific regimes is shown to be a key factor in reducing tokamak microturbulence, augmenting significantly the thermal pressure electromagnetic stabilization. Based on nonlinear gyrokinetic simulations investigating a set of ion heat transport experiments on the JET tokamak, described by Mantica et al. [Phys. Rev. Lett. 107 135004 (2011)], this result explains the experimentally observed ion heat flux and stiffness reduction. These findings are expected to improve the extrapolation of advanced tokamak scenarios to reactor relevant regimes.

  12. Predictive modeling of synergistic effects in nanoscale ion track formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zarkadoula, Eva; Pakarinen, Olli H.; Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    2015-08-05

    Molecular dynamics techniques and the inelastic thermal spike model are used to study the coupled effects of inelastic energy loss due to 21 MeV Ni ion irradiation and pre-existing defects in SrTiO3. We determine the dependence on pre-existing defect concentration of nanoscale track formation occurring from the synergy between the inelastic energy loss and the pre-existing atomic defects. We show that the nanoscale ion tracks’ size can be controlled by the concentration of pre-existing disorder. This work identifies a major gap in fundamental understanding concerning the role played by defects in electronic energy dissipation and electron–lattice coupling.

  13. Ion transport through a graphene nanopore

    E-Print Network [OSTI]

    Guohui Hu; Mao Mao; Sandip Ghosal

    2013-01-09

    Molecular dynamics simulation is utilized to investigate the ionic transport of NaCl in solution through a graphene nanopore under an applied electric field. Results show the formation of concentration polarization layers in the vicinity of the graphene sheet. The non-uniformity of the ion distribution gives rise to an electric pressure which drives vortical motions in the fluid if the electric field is sufficiently strong to overcome the influence of viscosity and thermal fluctuations. The relative importance of hydrodynamic transport and thermal fluctuations in determining the pore conductivity is investigated. A second important effect that is observed is the mass transport of water through the nanopore, with an average velocity proportional to the applied voltage and independent of the pore diameter. The flux arises as a consequence of the asymmetry in the ion distribution with respect to reflection about the plane of the graphene sheet. The accumulation of liquid molecules in the vicinity of the nanopore due to reorientation of the water dipoles by the local electric field is seen to result in a local increasein the liquid density. Results confirm that the electric conductance is proportional to the nanopore diameter for the parameter regimes that we simulated. The occurrence of fluid vortices is found to result in an increase in the effective electrical conductance.

  14. Using a Semiconductor-to-Metal Transition to Control Optical Transmission through Subwavelength Hole Arrays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Donev, E. U.; Suh, J. Y.; Lopez, R.; Feldman, L. C.; Haglund, R. F.

    2008-01-01

    We describe a simple configuration in which the extraordinary optical transmission effect through subwavelength hole arrays in noble-metal films can be switched by the semiconductor-to-metal transition in an underlying thin film of vanadium dioxide. In these experiments, the transition is brought about by thermal heating of the bilayer film. The surprising reverse hysteretic behavior of the transmission through the subwavelength holes in the vanadium oxide suggest that this modulation is accomplished by a dielectric-matching condition rather than plasmon coupling through the bilayer film. The results of this switching, including the wavelength dependence, are qualitatively reproduced by a transfer matrix model.more »The prospects for effecting a similar modulation on a much faster time scale by using ultrafast laser pulses to trigger the semiconductor-to-metal transition are also discussed.« less

  15. Quantum Black Holes and their Lepton Signatures at the LHC with CalCHEP

    E-Print Network [OSTI]

    Alexander Belyaev; Xavier Calmet

    2014-12-08

    We discuss a field theoretical framework to describe the interactions of non-thermal quantum black holes (QBHs) with particles of the Standard Model. We propose a non-local Lagrangian to describe the production of these QBHs which is designed to reproduce the geometrical cross section for black hole production. This model is implemented into CalcHEP package and is publicly available at the High Energy Model Database (HEPMDB) for simulation of QBH events at the LHC and future colliders. We present the first phenomenological application of the QBH@HEPMDB model with spin-0 neutral QBH giving rise the $e^+e^-$ and $e\\mu$ signatures at the LHC@8TeV and LHC@13TeV and produce the respective projections for the LHC in terms of limits on the reduced Planck mass and the number of the extra-dimensions.

  16. Thermal Giant Gravitons

    E-Print Network [OSTI]

    Armas, Jay; Obers, Niels A; Orselli, Marta; Pedersen, Andreas Vigand

    2012-01-01

    We study the giant graviton solution as the AdS_5 X S^5 background is heated up to finite temperature. The analysis employs the thermal brane probe technique based on the blackfold approach. We focus mainly on the thermal giant graviton corresponding to a thermal D3-brane probe wrapped on an S^3 moving on the S^5 of the background at finite temperature. We find several interesting new effects, including that the thermal giant graviton has a minimal possible value for the angular momentum and correspondingly also a minimal possible radius of the S^3. We compute the free energy of the thermal giant graviton in the low temperature regime, which potentially could be compared to that of a thermal state on the gauge theory side. Moreover, we analyze the space of solutions and stability of the thermal giant graviton and find that, in parallel with the extremal case, there are two available solutions for a given temperature and angular momentum, one stable and one unstable. In order to write down the equations of mot...

  17. Improving hole injection efficiency by manipulating the hole transport mechanism through

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    -emitting diodes (LEDs) for elec- tron overflow suppression. However, a typical EBL also reduces the hole injection to be the key to enhancing the hole injection efficiency. InGaN/ GaN LEDs with the proposed p-type AlGaN/GaN/AlGaN EBL have demonstrated substantially higher optical output power and external quantum efficiency

  18. Multilayer thermal barrier coating systems

    DOE Patents [OSTI]

    Vance, Steven J. (Orlando, FL); Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL)

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  19. Electron thermal conductivity owing to collisions between degenerate electrons

    E-Print Network [OSTI]

    P. S. Shternin; D. G. Yakovlev

    2006-08-17

    We calculate the thermal conductivity of electrons produced by electron-electron Coulomb scattering in a strongly degenerate electron gas taking into account the Landau damping of transverse plasmons. The Landau damping strongly reduces this conductivity in the domain of ultrarelativistic electrons at temperatures below the electron plasma temperature. In the inner crust of a neutron star at temperatures T electron conductivity due to electron-ion (electron-phonon) scattering and becomes competitive with the the electron conductivity due to scattering of electrons by impurity ions.

  20. Rotating black hole thermodynamics with a particle probe

    SciTech Connect (OSTI)

    Gwak, Bogeun; Lee, Bum-Hoon

    2011-10-15

    The thermodynamics of Myers-Perry black holes in general dimensions are studied using a particle probe. When undergoing particle absorption, the changes of the entropy and irreducible mass are shown to be dependent on the particle radial momentum. The black hole thermodynamic behaviors are dependent on dimensionality for specific rotations. For a 4-dimensional Kerr black hole, its black hole properties are maintained for any particle absorption. 5-dimensional black holes can avoid a naked ring singularity by absorbing a particle in specific momenta ranges. Black holes over 6 dimensions become ultraspinning black holes through a specific form of particle absorption. The microscopical changes are interpreted in limited cases of Myers-Perry black holes using Kerr/CFT correspondence. We systematically describe the black hole properties changed by particle absorption in all dimensions.

  1. The Revival of White Holes as Small Bangs

    E-Print Network [OSTI]

    Alon Retter; Shlomo Heller

    2011-07-17

    Black holes are extremely dense and compact objects from which light cannot escape. There is an overall consensus that black holes exist and many astronomical objects are identified with black holes. White holes were understood as the exact time reversal of black holes, therefore they should continuously throw away material. It is accepted, however, that a persistent ejection of mass leads to gravitational pressure, the formation of a black hole and thus to the "death of while holes". So far, no astronomical source has been successfully tagged a white hole. The only known white hole is the Big Bang which was instantaneous rather than continuous or long-lasting. We thus suggest that the emergence of a white hole, which we name a 'Small Bang', is spontaneous - all the matter is ejected at a single pulse. Unlike black holes, white holes cannot be continuously observed rather their effect can only be detected around the event itself. Gamma ray bursts are the most energetic explosions in the universe. Long gamma-ray bursts were connected with supernova eruptions. There is a new group of gamma-ray bursts, which are relatively close to Earth, but surprisingly lack any supernova emission. We propose identifying these bursts with white holes. White holes seem like the best explanation of gamma-ray bursts that appear in voids. We also predict the detection of rare gigantic gamma-ray bursts with energies much higher than typically observed.

  2. Microwave ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.

    2005-07-26

    A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.

  3. Radioactive ion detector

    DOE Patents [OSTI]

    Bower, Kenneth E. (Los Alamos, NM); Weeks, Donald R. (Saratoga, CA)

    1997-01-01

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity.

  4. Radioactive ion detector

    DOE Patents [OSTI]

    Bower, K.E.; Weeks, D.R.

    1997-08-12

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity. 2 figs.

  5. Negative ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA)

    1984-01-01

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

  6. Negative ion source

    DOE Patents [OSTI]

    Leung, K.N.; Ehlers, K.W.

    1984-12-04

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field. 14 figs.

  7. Negative ion source

    DOE Patents [OSTI]

    Leung, K.N.; Ehlers, K.W.

    1982-08-06

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

  8. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  9. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

    2003-01-01

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  10. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  11. Thermodynamical Structure of AdS Black Holes in Massive Gravity with Stringy Gauge-Gravity Corrections

    E-Print Network [OSTI]

    S. H. Hendi; B. Eslam Panah; S. Panahiyan

    2015-10-01

    Motivated by gauge/gravity group in the low energy effective theory of the heterotic string theory, the minimal coupling of Gauss-Bonnet-massive gravity with Born-Infeld electrodynamics is considered. At first the metric function is calculated and then the geometrical properties of the solutions are investigated. It is found that there is an essential singularity at the origin and the intrinsic curvature is regular elsewhere. In addition, the effects of massive parameters on the horizons of black holes are studied and the conserved and thermodynamic quantities are calculated. Also, it is shown that the solutions satisfy the first law of thermodynamics. Furthermore using heat capacity of these black holes, thermal stability and phase transitions are investigated. The variation of different parameters and related modifications on the (number of) phase transition are examined. Next, the critical behavior of the Gauss-Bonnet-Born-Infeld-massive black holes in context of extended phase space is studied. It is shown that how the variation of the different parameters affects the existence and absence of phase transition. Also, it is found that for specific values of different parameters, these black holes may enjoy the existence of new type of phase transition which to our knowledge was not observed in black hole physics before.

  12. Thermally Polymerized Rylene Nanoparticles

    E-Print Network [OSTI]

    Andrew, Trisha Lionel

    Rylene dyes functionalized with varying numbers of phenyl trifluorovinyl ether (TFVE) moieties were subjected to a thermal emulsion polymerization to yield shape-persistent, water-soluble chromophore nanoparticles. Perylene ...

  13. Thermal Insulation Systems 

    E-Print Network [OSTI]

    Stanley, T. F.

    1982-01-01

    Thermal insulation systems are receiving a high degree of attention in view of increasing energy cost. Industrial, commercial and residential energy users are all well aware of energy cost increases and great emphasis is being directed to energy...

  14. Contact thermal lithography

    E-Print Network [OSTI]

    Schmidt, Aaron Jerome, 1979-

    2004-01-01

    Contact thermal lithography is a method for fabricating microscale patterns using heat transfer. In contrast to photolithography, where the minimum achievable feature size is proportional to the wavelength of light used ...

  15. Holographic superconductor in the exact hairy black hole

    E-Print Network [OSTI]

    Yun Soo Myung; Chanyong Park

    2011-09-13

    We study the charged black hole of hyperbolic horizon with scalar hair (charged Martinez-Troncoso-Zanelli: CMTZ black hole) as a model of analytic hairy black hole for holographic superconductor. For this purpose, we investigate the second order phase transition between CMTZ and hyperbolic Reissner-Nordstr\\"om-AdS (HRNAdS) black holes. However, this transition unlikely occur. As an analytic treatment for holographic superconductor, we develop superconductor in the bulk and superfluidity on the boundary using the CMTZ black hole below the critical temperature. The presence of charge destroys the condensates around the zero temperature, which is in accord with the thermodynamic analysis of the CMTZ black hole.

  16. Asymmetric ion trap

    DOE Patents [OSTI]

    Barlow, S.E.; Alexander, M.L.; Follansbee, J.C.

    1997-12-02

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode is disclosed. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity. 4 figs.

  17. Asymmetric ion trap

    DOE Patents [OSTI]

    Barlow, Stephan E. (Richland, WA); Alexander, Michael L. (Richland, WA); Follansbee, James C. (Pasco, WA)

    1997-01-01

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

  18. Hydrogen ion microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.; Deb, S.K.

    1990-10-02

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

  19. Photovoltaic-thermal collectors

    DOE Patents [OSTI]

    Cox, III, Charles H. (Carlisle, MA)

    1984-04-24

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  20. Thermal Resonance Fusion

    E-Print Network [OSTI]

    Bao-Guo Dong

    2015-07-07

    We first show a possible mechanism to create a new type of nuclear fusion, thermal resonance fusion, i.e. low energy nuclear fusion with thermal resonance of light nuclei or atoms, such as deuterium or tritium. The fusion of two light nuclei has to overcome the Coulomb barrier between these two nuclei to reach up to the interacting region of nuclear force. We found nuclear fusion could be realized with thermal vibrations of crystal lattice atoms coupling with light atoms at low energy by resonance to overcome this Coulomb barrier. Thermal resonances combining with tunnel effects can greatly enhance the probability of the deuterium fusion to the detectable level. Our low energy nuclear fusion mechanism research - thermal resonance fusion mechanism results demonstrate how these light nuclei or atoms, such as deuterium, can be fused in the crystal of metal, such as Ni or alloy, with synthetic thermal vibrations and resonances at different modes and energies experimentally. The probability of tunnel effect at different resonance energy given by the WKB method is shown that indicates the thermal resonance fusion mode, especially combined with the tunnel effect, is possible and feasible. But the penetrating probability decreases very sharply when the input resonance energy decreases less than 3 keV, so for thermal resonance fusion, the key point is to increase the resonance peak or make the resonance sharp enough to the acceptable energy level by the suitable compound catalysts, and it is better to reach up more than 3 keV to make the penetrating probability larger than 10^{-10}.

  1. Electrically charged black hole with scalar hair

    E-Print Network [OSTI]

    Cristian Martinez; Ricardo Troncoso

    2006-06-16

    An electrically charged black hole solution with scalar hair in four dimensions is presented. The self-interacting scalar field is real and it is minimally coupled to gravity and electromagnetism. The event horizon is a surface of negative constant curvature and the asymptotic region is locally an AdS spacetime. The asymptotic fall-off of the fields is slower than the standard one. The scalar field is regular everywhere except at the origin, and is supported by the presence of electric charge which is bounded from above by the AdS radius. In turn, the presence of the real scalar field smooths the electromagnetic potential everywhere. Regardless the value of the electric charge, the black hole is massless and has a fixed temperature. The entropy follows the usual area law. It is shown that there is a nonvanishing probability for the decay of the hairy black hole into a charged black hole without scalar field. Furthermore, it is found that an extremal black hole without scalar field is likely to undergo a spontaneous dressing up with a nontrivial scalar field, provided the electric charge is below a critical value.

  2. The Environmental Impact of Supermassive Black Holes

    E-Print Network [OSTI]

    Abraham Loeb

    2004-08-10

    The supermassive black holes observed at the centers of almost all present-day galaxies, had a profound impact on their environment. I highlight the principle of self-regulation, by which supermassive black holes grow until they release sufficient energy to unbind the gas that feeds them from their host galaxy. This principle explains several observed facts, including the correlation between the mass of a central black hole and the depth of the gravitational potential well of its host galaxy, and the abundance and clustering properties of bright quasars in the redshift interval of z~2-6. At lower redshifts, quasars might have limited the maximum mass of galaxies through the suppression of cooling flows in X-ray clusters. The seeds of supermassive black holes were likely planted in dwarf galaxies at redshifts z>10, through the collapse of massive or supermassive stars. The minimum seed mass can be identified observationally through the detection of gravitational waves from black hole binaries by Advanced LIGO or LISA. Aside from shaping their host galaxies, quasar outflows filled the intergalactic medium with magnetic fields and heavy elements. Beyond the reach of these outflows, the brightest quasars at z>6 have ionized exceedingly large volumes of gas (tens of comoving Mpc) prior to global reionization, and must have suppressed the faint end of the galaxy luminosity function in these volumes before the same occurred through the rest of the universe.

  3. BLACK HOLE FORAGING: FEEDBACK DRIVES FEEDING

    SciTech Connect (OSTI)

    Dehnen, Walter; King, Andrew, E-mail: wd11@leicester.ac.uk, E-mail: ark@astro.le.ac.uk [Theoretical Astrophysics Group, University of Leicester, Leicester LE1 7RH (United Kingdom)] [Theoretical Astrophysics Group, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2013-11-10

    We suggest a new picture of supermassive black hole (SMBH) growth in galaxy centers. Momentum-driven feedback from an accreting hole gives significant orbital energy, but little angular momentum to the surrounding gas. Once central accretion drops, the feedback weakens and swept-up gas falls back toward the SMBH on near-parabolic orbits. These intersect near the black hole with partially opposed specific angular momenta, causing further infall and ultimately the formation of a small-scale accretion disk. The feeding rates into the disk typically exceed Eddington by factors of a few, growing the hole on the Salpeter timescale and stimulating further feedback. Natural consequences of this picture include (1) the formation and maintenance of a roughly toroidal distribution of obscuring matter near the hole; (2) random orientations of successive accretion disk episodes; (3) the possibility of rapid SMBH growth; (4) tidal disruption of stars and close binaries formed from infalling gas, resulting in visible flares and ejection of hypervelocity stars; (5) super-solar abundances of the matter accreting on to the SMBH; and (6) a lower central dark-matter density, and hence annihilation signal, than adiabatic SMBH growth implies. We also suggest a simple subgrid recipe for implementing this process in numerical simulations.

  4. Black Hole Spin in AGN and GBHCs

    E-Print Network [OSTI]

    Christopher S. Reynolds; Laura W. Brenneman; David Garofalo

    2004-10-05

    We discuss constraints on black hole spin and spin-related astrophysics as derived from X-ray spectroscopy. After a brief discussion about the robustness with which X-ray spectroscopy can be used to probe strong gravity, we summarize how these techniques can constrain black hole spin. In particular, we highlight XMM-Newton studies of the Seyfert galaxy MCG-6-30-15 and the stellar-mass black hole GX339-4. The broad X-ray iron line profile, together with reasonable and general astrophysical assumptions, allow a non-rotating black hole to be rejected in both of these sources. If we make the stronger assertion of no emission from within the innermost stable circular orbit, the MCG-6-30-15 data constrain the dimensionless spin parameter to be a>0.93. Furthermore, these XMM-Newton data are already providing evidence for exotic spin-related astrophysics in the central regions of this object. We conclude with a discussion of the impact that Constellation-X will have on the study of strong gravity and black hole spin.

  5. Investigating Dark Energy with Black Hole Binaries

    E-Print Network [OSTI]

    Laura Mersini-Houghton; Adam Kelleher

    2009-06-08

    The accelerated expansion of the universe is ascribed to the existence of dark energy. Black holes accretion of dark energy induces a mass change proportional to the energy density and pressure of the background dark energy fluid. The time scale during which the mass of black holes changes considerably is too long relative to the age of the universe, thus beyond detection possibilities. We propose to take advantage of the modified black hole masses for exploring the equation of state $w[z]$ of dark energy, by investigating the evolution of supermassive black hole binaries on a dark energy background. Deriving the signatures of dark energy accretion on the evolution of binaries, we find that dark energy imprints on the emitted gravitational radiation and on the changes in the orbital radius of the binary can be within detection limits for certain supermassive black hole binaries. In this talk I describe how binaries can provide a useful tool in obtaining complementary information on the nature of dark energy, based on the work done with A.Kelleher.

  6. Thermal Resonance Fusion

    E-Print Network [OSTI]

    Dong, Bao-Guo

    2015-01-01

    We first show a possible mechanism to create a new type of nuclear fusion, thermal resonance fusion, i.e. low energy nuclear fusion with thermal resonance of light nuclei or atoms, such as deuterium or tritium. The fusion of two light nuclei has to overcome the Coulomb barrier between these two nuclei to reach up to the interacting region of nuclear force. We found nuclear fusion could be realized with thermal vibrations of crystal lattice atoms coupling with light atoms at low energy by resonance to overcome this Coulomb barrier. Thermal resonances combining with tunnel effects can greatly enhance the probability of the deuterium fusion to the detectable level. Our low energy nuclear fusion mechanism research - thermal resonance fusion mechanism results demonstrate how these light nuclei or atoms, such as deuterium, can be fused in the crystal of metal, such as Ni or alloy, with synthetic thermal vibrations and resonances at different modes and energies experimentally. The probability of tunnel effect at dif...

  7. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca

    2014-01-01

    Company-v3832/Lithium-Ion-Batteries- Outlook-Alternative-Anodes for Sodium Ion Batteries Marca M. Doeff * , Jordirechargeable sodium ion batteries, particularly for large-

  8. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01

    Anodes for Sodium Ion Batteries Identification of a suitabledevelopment of sodium ion batteries, because graphite, theanode for lithium ion batteries, does not undergo sodium

  9. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    Advances in Lithium-Ion Batteries Edited by Walter A. vanpuzzling mysteries of lithium ion batteries. The book beginssuch importance to lithium ion batteries one is amazed that

  10. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    additive for lithium-ion batteries. Elec- trochemistryOptimization of Lithium-Ion Batteries PhD thesis (Universityfor Rechargeable Lithium-Ion Batteries. Journal of The

  11. Coral Thermal Tolerance: Tuning Gene Expression to Resist Thermal Stress

    E-Print Network [OSTI]

    Coral Thermal Tolerance: Tuning Gene Expression to Resist Thermal Stress Anthony J. Bellantuono1 thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant) maintained

  12. Ion polarization in the MEIC figure-8 ion collider ring

    SciTech Connect (OSTI)

    V.S. Morozov, Ya.S. Derbenev, Y. Zhang, P. Chevtsov, A.M. Kondratenko, M.A. Kondratenko, Yu.N. Filatov

    2012-07-01

    The nuclear physics program envisaged at the Medium-energy Electron-Ion Collider (MEIC) currently being developed at the Jefferson Lab calls for collisions of 3-11 GeV/c longitudinally polarized electrons and 20-100 GeV/c, in equivalent proton momentum, longitudinally/ transversely polarized protons/ deuterons/ light ions. We present a scheme that provides the required ion polarization arrangement in the MEIC's ion collider ring.

  13. Does the thermal disc instability operate in active galactic nuclei?

    E-Print Network [OSTI]

    L. Burderi; A. R. King; E. Szuszkiewicz

    1998-03-19

    We examine all possible stationary, optically thick, geometrically thin accretion disc models relevant for active galactic nuclei (AGN) and identify the physical regimes in which they are stable against the thermal-viscous hydrogen ionization instability. Self-gravity and irradiation effects are included. We find that most if not all AGN discs are unstable. Observed AGN therefore represent the outburst state, although some or all quasars could constitute a steady population having markedly higher fuelling rates than other AGN. It has important implications for the AGN mass supply and for the presence of supermassive black holes in nearby spirals.

  14. Potential thermoelectric performance from optimization of hole-doped Bi2Se3

    SciTech Connect (OSTI)

    Parker, David S [ORNL; Singh, David J [ORNL

    2011-01-01

    We present an analysis of the potential thermoelectric performance of hole-doped Bi2Se3, which is commonly considered to show inferior room temperature performance when compared to Bi2Te3. We find that if the lattice thermal conductivity can be reduced by nanostructuring techniques (as have been applied to Bi2Te3) the material may show optimized ZT values of unity or more in the 300 - 500 K temperature range and thus be suitable for cooling and moderate temperature waste heat recovery and thermoelectric solar cell applications. Central to this conclusion are the larger band gap and the relatively heavier valence bands of Bi2Se3.

  15. Understanding X-ray reflection as a probe of accreting black holes

    E-Print Network [OSTI]

    Wilkins, Daniel Richard

    2013-07-09

    ’ telescope and the rest of the X-ray group (past and present) for their help and, of course, friendship — Julie, Jack, Dom, Abdu, Chia-Ying, to name but a few. I wish also to thank Carolin Crawford for helping hone my passion for public outreach... particles surrounding the central black hole through the process of Comptonisation. Soft, thermal seed photons originating from the accretion disc are inverse-Compton scattered to higher energies multiple times by energetic electrons (whose energy follows a...

  16. Neutrino Majorana Mass from Black Hole

    E-Print Network [OSTI]

    Yosuke Uehara

    2002-05-25

    We propose a new mechanism to generate the neutrino Majorana mass in TeV-scale gravity models. The black hole violates all non-gauged symmetries and can become the origin of lepton number violating processes. The fluctuation of higher-dimensional spacetime can result in the production of a black hole, which emits 2 neutrinos. If neutrinos are Majorana particles, this process is equivalent to the free propagation of a neutrino with the insertion of the black hole. From this fact, we derive the neutrino Majorana mass. The result is completely consistent with the recently observed evidence of neutrinoless double beta decay. And the obtained neutrino Majorana mass satisfies the constraint from the density of the neutrino dark matter, which affects the cosmic structure formation. Furthermore, we can explain the ultrahigh energy cosmic rays by the Z-burst scenario with it.

  17. Numerical Analysis of Black Hole Evaporation

    E-Print Network [OSTI]

    Tsvi Piran; Andrew Strominger

    1993-04-28

    Black hole formation/evaporation in two-dimensional dilaton gravity can be described, in the limit where the number $N$ of matter fields becomes large, by a set of second-order partial differential equations. In this paper we solve these equations numerically. It is shown that, contrary to some previous suggestions, black holes evaporate completely a finite time after formation. A boundary condition is required to evolve the system beyond the naked singularity at the evaporation endpoint. It is argued that this may be naturally chosen so as to restore the system to the vacuum. The analysis also applies to the low-energy scattering of $S$-wave fermions by four-dimensional extremal, magnetic, dilatonic black holes.

  18. No Supermassive Black Hole in M33?

    E-Print Network [OSTI]

    David Merritt; Laura Ferrarese; Charles L. Joseph

    2001-07-20

    We analyze optical long-slit spectroscopy of the nucleus of M33 obtained from the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope. Rather than the steep rise expected within the radius of influence of a supermassive black hole, the velocity dispersion drops significantly within the inner parsec. Dynamical modelling yields an estimated upper limit of 3000 solar masses for the mass of a central compact object. This upper limit is however consistent within the uncertainties with the mass predicted by the M-sigma relation, which is between 2000 and 20,000 solar masses. We therefore can not conclude that the presence of a massive black hole in the nucleus of M33 would require a different formation mechanism from that of the black holes detected in galaxies with more luminous bulges.

  19. Microwave Drilling of Ceramic Thermal-Barrier Coatings Faculty of Engineering, Tel Aviv University, Ramat Aviv 69978, Israel

    E-Print Network [OSTI]

    Jerby, Eli

    Microwave Drilling of Ceramic Thermal-Barrier Coatings Eli Jerby Faculty of Engineering, Tel Aviv, Schenectady, New York 12301 The microwave drill is a novel process for creating shaped holes in nonconductive materials. Its inherent material selec- tivity makes the microwave drill ideally suited for the con- trolled

  20. Photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-08-08

    A method and apparatus are described for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected auto-ionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy. 8 figs.

  1. Pulsed ion beam source

    DOE Patents [OSTI]

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  2. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  3. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  4. Lithium ion conducting electrolytes

    DOE Patents [OSTI]

    Angell, Charles Austen (Mesa, AZ); Liu, Changle (Midland, MI); Xu, Kang (Montgomery Village, MD); Skotheim, Terje A. (Tucson, AZ)

    1999-01-01

    The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

  5. Ion Runaway in Lightning Discharges

    E-Print Network [OSTI]

    Landreman, Matt

    Runaway ions can be produced in plasmas with large electric fields, where the accelerating electric force is augmented by the low mean ionic charge due to the imbalance between the number of electrons and ions. Here we ...

  6. Thermal Lens Spectroscopy Mladen Franko

    E-Print Network [OSTI]

    Reid, Scott A.

    Thermal Lens Spectroscopy Mladen Franko Laboratory of Environmental Research, University of Nova-beam Instruments 5 3.3 Differential Thermal Lens Instruments 7 3.4 Multiwavelength and Tunable Thermal Lens Spectrometers 8 3.5 Circular Dichroism TLS Instruments 9 3.6 Miniaturization of Thermal Lens Instruments 9 4

  7. Interior of Black Holes and Information Recovery

    E-Print Network [OSTI]

    Hikaru Kawai; Yuki Yokokura

    2015-09-28

    We analyze time evolution of a collapsing matter from a point of view that black holes evaporate by nature. We first consider a spherical thin shell that falls in the metric of an evaporating Schwarzschild black hole whose radius $a(t)$ decreases as $\\frac{da(t)}{dt}=-\\frac{2\\sigma(a(t))}{a(t)^2}$. The shell can never reach $a(t)$, but it approaches $a(t)+\\frac{2\\sigma(a(t))}{a(t)}$ in the time scale $\\sim a(t)$. Then the radiation from the hole is extremely weakened because of the large redshift caused by the shell. This time, however, the shell itself starts to radiate and exhausts energy. After that, the hole starts to radiate again. We can repeat this argument recursively because the motion of a shell in a spherically symmetric system is independent of the outside. In this way we can analyze a spherically symmetric collapsing matter with a general continuous distribution, and find that it evaporates without forming a trapped region. If the theory has considerably more species of matter fields, the trans-Planckian problems are avoided. There is a clear boundary at $r=a+\\frac{2\\sigma}{a}$ as the surface of the object. Although the matter distribution inside the object depends on the initial data, from the outside it looks almost the same as a conventional black hole. A strong angular pressure is induced by the Hawking radiation, because of which the matter loses energy when it collapses. We then discuss how the information of the matter is recovered in this picture. Next we consider a black hole that is adiabatically grown from a small one in the heat bath, and obtain the interior metric. We show that it is the self-consistent solution of $G_{\\mu\

  8. Ion plasma wave and its instability in interpenetrating plasmas

    SciTech Connect (OSTI)

    Vranjes, J.; Kono, M.

    2014-04-15

    Some essential features of the ion plasma wave in both kinetic and fluid descriptions are presented. The wave develops at wavelengths shorter than the electron Debye radius. Thermal motion of electrons at this scale is such that they overshoot the electrostatic potential perturbation caused by ion bunching, which consequently propagates as an unshielded wave, completely unaffected by electron dynamics. So in the simplest fluid description, the electrons can be taken as a fixed background. However, in the presence of magnetic field and for the electron gyro-radius shorter than the Debye radius, electrons can participate in the wave and can increase its damping rate. This is determined by the ratio of the electron gyro-radius and the Debye radius. In interpenetrating plasmas (when one plasma drifts through another), the ion plasma wave can easily become growing and this growth rate is quantitatively presented for the case of an argon plasma.

  9. Method of fabricating optical waveguides by ion implantation doping

    DOE Patents [OSTI]

    Appleton, B.R.; Ashley, P.R.; Buchal, C.J.

    1987-03-24

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO/sub 3/ crystals are implanted with high concentrations of Ti dopant at ion energies of about 360 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000/degree/C produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguiding properties.

  10. Novel Boron Based Multilayer Thermal Neutron Detector

    E-Print Network [OSTI]

    M. SCHIEBER; O. KHAKHAN

    2010-06-09

    The detector contains four or more layers of natural Boron absorbing thermal neutrons. Thickness of a layer is 0.4 - 1.2 mg/cm2. The layers are deposited on one or on both sides of a metal surface used as contacts. Between the absorbing layers there are gas-filled gaps 3 - 6 mm thick. Electric field of 100 - 200 V/cm is applied to the gas-filled gaps. Natural Boron contains almost 20% of 10B isotope. When atoms of 10B capture a thermal neutron, nuclear reaction occurs, as a result of which two heavy particles - alpha particle and ion 7Li - from the thin absorber layer are emitted in opposing sides. One of the two particles penetrates into gas-filled gap between Boron layers and ionizes the gas. An impulse of electric current is created in the gas-filled gap actuated by the applied electric field. The impulse is registered by an electronic circuit. We have made and tested detectors containing from two to sixteen layers of natural Boron with an efficiency of thermal neutron registration from 2.9% to 12.5% accordingly.

  11. CHARYBDIS: A Black Hole Event Generator

    E-Print Network [OSTI]

    C. M. Harris; P. Richardson; B. R. Webber

    2003-07-29

    CHARYBDIS is an event generator which simulates the production and decay of miniature black holes at hadronic colliders as might be possible in certain extra dimension models. It interfaces via the Les Houches accord to general purpose Monte Carlo programs like HERWIG and PYTHIA which then perform the parton evolution and hadronization. The event generator includes the extra-dimensional `grey-body' effects as well as the change in the temperature of the black hole as the decay progresses. Various options for modelling the Planck-scale terminal decay are provided.

  12. Black Hole Thermodynamics and Statistical Mechanics

    E-Print Network [OSTI]

    Steven Carlip

    2008-07-28

    We have known for more than thirty years that black holes behave as thermodynamic systems, radiating as black bodies with characteristic temperatures and entropies. This behavior is not only interesting in its own right; it could also, through a statistical mechanical description, cast light on some of the deep problems of quantizing gravity. In these lectures, I review what we currently know about black hole thermodynamics and statistical mechanics, suggest a rather speculative "universal" characterization of the underlying states, and describe some key open questions.

  13. Magnetized black hole as a gravitational lens

    E-Print Network [OSTI]

    R. A. Konoplya

    2006-11-19

    We use the Ernst-Schwarzschild solution for a black hole immersed in a uniform magnetic field to estimate corrections to the bending angle and time delay due-to presence of weak magnetic fields in galaxies and between galaxies, and also due-to influence of strong magnetic field near supermassive black holes. The magnetic field creates a kind of confinement in space, that leads to increasing of the bending angle and time delay for a ray of light propagating in the equatorial plane.

  14. Filamentation instability of current-driven dust ion-acoustic waves in a collisional dusty plasma

    SciTech Connect (OSTI)

    Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran 19839-63113 (Iran, Islamic Republic of); Haghtalab, T.; Khorashadizadeh, S. M. [Physics Department, Birjand University, Birjand 97179-63384 (Iran, Islamic Republic of)

    2011-11-15

    A theoretical investigation has been made of the dust ion-acoustic filamentation instability in an unmagnetized current-driven dusty plasma by using the Lorentz transformation formulas. The effect of collision between the charged particles with neutrals and their thermal motion on this instability is considered. Developing the filamentation instability of the current-driven dust ion-acoustic wave allows us to determine the period and the establishment time of the filamentation structure and threshold for instability development.

  15. Dynamics of galaxy cores and supermassive black holes

    E-Print Network [OSTI]

    David Merritt

    2006-05-02

    Recent work on the dynamical evolution of galactic nuclei containing supermassive black holes is reviewed. Topics include galaxy structural properties; collisionless and collisional equilibria; loss-cone dynamics; and dynamics of binary and multiple supermassive black holes.

  16. Black hole Meissner effect and Blandford-Znajek jets

    E-Print Network [OSTI]

    Penna, Robert

    Spinning black holes tend to expel magnetic fields. In this way they are similar to superconductors. It has been a persistent concern that this black hole “Meissner effect” could quench jet power at high spins. This would ...

  17. Interface Science of Thermal Barrier Coatings

    SciTech Connect (OSTI)

    Besmann, Theodore M

    2009-01-01

    The drive for greater efficiency in propulsion and industrial/power production machinery has pushed metallurgy to develop ever better alloys and taken existing metallic components to their reliability threshold. Nowhere is that better illustrated than in turbine engine materials. The nickel-based superalloys currently in use for the most demanding areas of the engines melt at 1230-1315 aC and yet see combustion environments >1600 aC. The result is that these components require thermal protection to avoid failure from phenomena such as melting, creep, oxidation, thermal fatigue, and so on [1]. The stakes are high as the equipment must remain reliable for thousands of take-offs and landings for aircraft turbine engines, and up to 40,000 hours of operation in power generating land-based gas turbines [2, 3]. One of the most critical items that see both the greatest temperatures and experience the highest stresses is the hot-section turbine blades. Two strategies have been adopted to help the superalloy turbine blades survive the demanding environment: Active air cooling and ceramic thermal protection coatings, which together can reduce metal surface temperatures by >300 aC.[2]. The combination of turbine blade external film cooling and internal air cooling requires an exceptionally complex structure with flow passages and sets of small holes in the blades where air bled from a matching stage of the compressor is directed over the surface. Stecura [4] was among the first to describe a successful coating system, and today s the ceramic insulating layer alone is credited with reducing metal temperatures as much as 165 aC [1, 5].

  18. Characterization of an RF plasma ion source for ion implantation

    SciTech Connect (OSTI)

    Kopalidis, Peter M.; Wan Zhimin

    2012-11-06

    A novel inductively coupled RF plasma ion source has been developed for use in a beamline ion implanter. Ion density data have been taken with an array of four Langmuir probes spaced equally at the source extraction arc slit. These provide ion density uniformity information as a function of source pressure, RF power and gas mixture composition. In addition, total extracted ion beam current data are presented for the same conditions. The comparative advantages of the RF source in terms of higher beam current, reduced maintenance and overall productivity improvement compared to a hot cathode source are discussed.

  19. Laser driven compact ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2005-03-15

    A laser driven compact ion source including a light source that produces an energy pulse, a light source guide that guides the energy pulse to a target and produces an ion beam. The ion beam is transported to a desired destination.

  20. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  1. Gallium hole traps in irradiated KTiOPO{sub 4}:Ga crystals

    SciTech Connect (OSTI)

    Grachev, V.; Meyer, M.; Malovichko, G.; Hunt, A. W.

    2014-12-07

    Nominally pure and gallium doped single crystals of potassium titanyl phosphate (KTiOPO{sub 4}) have been studied by Electron Paramagnetic Resonance at low temperatures before and after irradiation. Irradiation with 20?MeV electrons performed at room temperature and liquid nitrogen temperature caused an appearance of electrons and holes. Gallium impurities act as hole traps in KTiOPO{sub 4} creating Ga{sup 4+} centers. Two different Ga{sup 4+} centers were observed, Ga1 and Ga2. The Ga1 centers are dominant in Ga-doped samples. For the Ga1 center, a superhyperfine structure with one nucleus with nuclear spin ½ was registered and attributed to the interaction of gallium electrons with a phosphorus nucleus or proton in its surrounding. In both Ga1 and Ga2 centers, Ga{sup 4+} ions substitute for Ti{sup 4+} ions, but with a preference to one of two electrically distinct crystallographic positions (site selective substitution). The Ga doping eliminates one of the shortcomings of KTP crystals—ionic conductivity of bulk crystals. However, this does not improve significantly the resistance of the crystals to electron and ?-radiation.

  2. Entropy and Area of Black Holes in Loop Quantum Gravity

    E-Print Network [OSTI]

    I. B. Khriplovich

    2002-03-31

    Simple arguments related to the entropy of black holes strongly constrain the spectrum of the area operator for a Schwarzschild black hole in loop quantum gravity. In particular, this spectrum is fixed completely by the assumption that the black hole entropy is maximum. Within the approach discussed, one arrives in loop quantum gravity at a quantization rule with integer quantum numbers $n$ for the entropy and area of a black hole.

  3. SEARCH FOR SUPERMASSIVE BLACK HOLE BINARIES IN THE SLOAN DIGITAL...

    Office of Scientific and Technical Information (OSTI)

    ASTROPHYSICS; BLACK HOLES; COMPARATIVE EVALUATIONS; CORRELATIONS; COSMOLOGY; GALAXIES; GALAXY NUCLEI; NONLUMINOUS MATTER; OSCILLATIONS; QUASARS; VELOCITY Word Cloud More Like This...

  4. Virasoro Conformal Blocks and Thermality from Classical Background Fields

    E-Print Network [OSTI]

    A. Liam Fitzpatrick; Jared Kaplan; Matthew T. Walters

    2015-10-15

    We show that in 2d CFTs at large central charge, the coupling of the stress tensor to heavy operators can be re-absorbed by placing the CFT in a non-trivial background metric. This leads to a more precise computation of the Virasoro conformal blocks between heavy and light operators, which are shown to be equivalent to global conformal blocks evaluated in the new background. We also generalize to the case where the operators carry U(1) charges. The refined Virasoro blocks can be used as the seed for a new Virasoro block recursion relation expanded in the heavy-light limit. We comment on the implications of our results for the universality of black hole thermality in $AdS_3$, or equivalently, the eigenstate thermalization hypothesis for $CFT_2$ at large central charge.

  5. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    current reviews of the lithium ion battery literature byof view of the lithium ion battery scientist and engineer,

  6. MOTION OF ELECTRON-HOLE DROPS IN Ge

    E-Print Network [OSTI]

    Westervelt, R.M.

    2011-01-01

    MOTION OF ELECTRON-HOLE DROPS IN Ge R. M. Westervelt, J. C.MOTION OF ELECTRON-HOLE DROPS IN Ge R. M. Westervelt, J. C.OF ELECTRON-HOLE DROPS IN Ge R M Westervelt, J C Culbertson

  7. ANCHIALINE ECOSYSTEMS Microbial hotspots in anchialine blue holes

    E-Print Network [OSTI]

    Macalady, Jenn

    ANCHIALINE ECOSYSTEMS Microbial hotspots in anchialine blue holes: initial discoveries from+Business Media B.V. 2011 Abstract Inland blue holes of the Bahamas are anchialine ecosystems with distinct fresh and geomicrobiology exploration of blue holes are providing a first glimpse of the geochemistry and microbial life

  8. Light in tiny holes & T. W. Ebbesen1

    E-Print Network [OSTI]

    Turro, Nicholas J.

    REVIEWS Light in tiny holes C. Genet1 & T. W. Ebbesen1 The presence of tiny holes in an opaque metal film, with sizes smaller than the wavelength of incident light, leads to a wide variety of unexpected optical properties such as strongly enhanced transmission of light through the holes

  9. The Role of Primordial Kicks on Black Hole Merger Rates

    E-Print Network [OSTI]

    Miroslav Micic; Tom Abel; Steinn Sigurdsson

    2006-09-06

    Primordial stars are likely to be very massive $\\geq30\\Msun$, form in isolation, and will likely leave black holes as remnants in the centers of their host dark matter halos in the mass range $10^{6}-10^{10}\\Ms$. Such early black holes, at redshifts z$\\gtsim10$, could be the seed black holes for the many supermassive black holes found in galaxies in the local universe. If they exist, their mergers with nearby supermassive black holes may be a prime signal for long wavelength gravitational wave detectors. We simulate formation of black holes in the center of high redshift dark matter halos and explore implications of initial natal kick velocities conjectured by some formation models. The central concentration of early black holes in present day galaxies is reduced if they are born even with moderate kicks of tens of km/s. The modest kicks allow the black holes to leave their parent halo, which consequently leads to dynamical friction being less effective on the lower mass black holes as compared to those still embedded in their parent halos. Therefore, merger rates may be reduced by more than an order of magnitude. Using analytical and illustrative cosmological N--body simulations we quantify the role of natal kicks of black holes formed from massive metal free stars on their merger rates with supermassive black holes in present day galaxies. Our results also apply to black holes ejected by the gravitational slingshot mechanism.

  10. Charged fermions tunneling from accelerating and rotating black holes

    SciTech Connect (OSTI)

    Rehman, Mudassar; Saifullah, K., E-mail: mudassir051@yahoo.com, E-mail: saifullah@qau.edu.pk [Department of Mathematics, Quaid-i-Azam University, Islamabad (Pakistan)

    2011-03-01

    We study Hawking radiation of charged fermions from accelerating and rotating black holes with electric and magnetic charges. We calculate the tunneling probabilities of incoming and outgoing fermionic particles and find the Hawking temperature of these black holes. We also provide an explicit expression of the classical action for the massive and massless particles in the background of these black holes.

  11. Thermal noise driven computing

    E-Print Network [OSTI]

    Laszlo B. Kish

    2006-10-28

    The possibility of a new type of computing, where thermal noise is the information carrier and the clock in a computer, is studied. The information channel capacity and the lower limit of energy requirement/dissipation are studied in a simple digital system with zero threshold voltage, for the case of error probability close to 0.5, when the thermal noise is equal to or greater than the digital signal. In a simple hypothetical realization of a thermal noise driven gate, the lower limit of energy needed to generate the digital signal is 1.1*kT/bit. The arrangement has potentially improved energy efficiency and it is free of leakage current, crosstalk and ground plane electromagnetic interference problems. Disadvantage is the large number of redundancy elements needed for low-error operation.

  12. Thermal trim for luminaire

    DOE Patents [OSTI]

    Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

    2013-11-19

    A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

  13. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

    1988-04-05

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

  14. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

    1991-01-01

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

  15. Highly directional thermal emitter

    DOE Patents [OSTI]

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  16. Ion kinetic effects on the ignition and burn in ICF Ion kinetic effects on the ignition and burn of ICF targets

    E-Print Network [OSTI]

    and burn of the thermonuclear fuel in inertial confinement fusion pellets at the ion kinetic level to treat fusion products (suprathermal -particles) in a self-consistent manner with the thermal bulk enhancement of fusion products leads to a significant reduction of the fusion yield. I. MOTIVATION AND CONTEXT

  17. Ion aggregation in high salt solutions: Ion network versus ion cluster

    SciTech Connect (OSTI)

    Kim, Seongheun; Kim, Heejae; Choi, Jun-Ho; Cho, Minhaeng

    2014-09-28

    The critical aggregation phenomena are ubiquitous in many self-assembling systems. Ions in high salt solutions could also spontaneously form larger ion aggregates, but their effects on hydrogen-bond structures in water have long been controversial. Here, carrying out molecular dynamics (MD) simulation studies of high salt solutions and comparing the MD simulation results with infrared absorption and pump-probe spectroscopy of O–D stretch mode of HDO in highly concentrated salt solutions and {sup 13}C-NMR chemical shift of S{sup 13}CN{sup ?} in KSCN solutions, we find evidence on the onset of ion aggregate and large-scale ion-ion network formation that concomitantly breaks water hydrogen-bond structure in certain salt solutions. Despite that these experimental results cannot provide direct evidence on the three-dimensional morphological structures of ion aggregates, they serve as reference data for verifying MD simulation methods. The MD results suggest that disrupted water hydrogen-bond network is intricately intertwined with ion-ion network. This further shows morphological variation of ion aggregate structures from ion cluster to ion network in high salt solutions that are interrelated to the onset of macroscopic aggregate formation and the water hydrogen-bond structure making and breaking processes induced by Hofmeister ions.

  18. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, Roy (Columbus, IN); Kakwani, Ramesh M. (Columbus, IN); Valdmanis, Edgars (Columbus, IN); Woods, Melvins E. (Columbus, IN)

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  19. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  20. Cermet fuel thermal conductivity 

    E-Print Network [OSTI]

    Alvis, John Mark

    1988-01-01

    VITA 36 37 40 40 40 40 44 45 47 48 LIST OF FIGURES Figure Unit cell for derivation of model Page Heat Conduction Solution 22 3 Fission Gas Release Model 26 4A Metal Matrix Thermal Conductivity 4B Ceramic Fuel Thermal Conductivity 5... is based on the simple heat conduction equation. It is assumed that there is a uniform distribution of fuel particles in a regular array. A unit cell consists of a cube of matrix material of side length L, containing a spherical fuel particle of radius, r...