Powered by Deep Web Technologies
Note: This page contains sample records for the topic "holes thermal gradient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Category:Thermal Gradient Holes | Open Energy Information  

Open Energy Info (EERE)

in category "Thermal Gradient Holes" This category contains only the following page. T Thermal Gradient Holes Retrieved from "http:en.openei.orgwindex.php?titleCategory:T...

2

Thermal Gradient Holes | Open Energy Information  

Open Energy Info (EERE)

Thermal Gradient Holes Thermal Gradient Holes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermal Gradient Holes Details Activities (50) Areas (39) Regions (4) NEPA(29) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Field wide fluid flow characteristics if an array of wells are drilled Thermal: Mapping and projecting thermal anomalies Cost Information Low-End Estimate (USD): 5.00500 centUSD 0.005 kUSD 5.0e-6 MUSD 5.0e-9 TUSD / foot Median Estimate (USD): 16.501,650 centUSD 0.0165 kUSD 1.65e-5 MUSD 1.65e-8 TUSD / foot High-End Estimate (USD): 50.005,000 centUSD

3

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Date 1978 - 1985 Usefulness useful DOE-funding Unknown Exploration Basis Thermal gradient drilling also continued during this period, consisting of several holes including: The...

4

Thermal Gradient Holes At Chena Geothermal Area (EERE, 2010)...  

Open Energy Info (EERE)

EERE, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Chena Geothermal Area (EERE, 2010) Exploration Activity...

5

Thermal Gradient Holes At Cove Fort Area - Vapor (Warpinski,...  

Open Energy Info (EERE)

Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Cove Fort Area - Vapor (Warpinski, Et Al.,...

6

Thermal Gradient Holes At Chena Geothermal Area (Erkan, Et Al...  

Open Energy Info (EERE)

Erkan, Et Al., 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Chena Geothermal Area (Erkan, Et Al., 2007)...

7

Thermal Gradient Holes At Obsidian Cliff Area (Hulen, Et Al....  

Open Energy Info (EERE)

Obsidian Cliff Area (Hulen, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Obsidian Cliff Area (Hulen,...

8

Thermal Gradient Holes At Glass Mountain Area (Cumming And Mackie...  

Open Energy Info (EERE)

Area (Cumming And Mackie, 2007) Exploration Activity Details Location Glass Mountain Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not...

9

Thermal Gradient Holes At Coso Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

Thermal Gradient Holes At Coso Geothermal Area (1976) Thermal Gradient Holes At Coso Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Coso Geothermal Area (1976) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1976 Usefulness useful DOE-funding Unknown Notes Temperatures have been obtained to depths up to 133 m in 22 boreholes with measurements being made at least four times in each borehole. Geothermal gradients ranged from 240C/km to 450 0C/km. References Combs, J. (1 December 1976) Heat flow determinations and implied thermal regime of the Coso geothermal area, California Retrieved from "http://en.openei.org/w/index.php?title=Thermal_Gradient_Holes_At_Coso_Geothermal_Area_(1976)&oldid=511217"

10

Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett,  

Open Energy Info (EERE)

Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

11

Thermal Gradient Holes At Coso Geothermal Area (1974) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Area (1974) Coso Geothermal Area (1974) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1974 Usefulness useful DOE-funding Unknown Exploration Basis Use heat flow studies for the first time at Coso to indicate the presence or absence of abnormal heat Notes Located 10 sites for heat flow boreholes using available seismic ground noise and electrical resistivity data; data collected from 9 of 10; thermal conductivity measurements were completed using both the needle probe technique and the divided bar apparatus with a cell arrangement. In the upper few hundred meters of the subsurface heat is being transferred by a conductive heat transfer mechanism with a value of ~ 15 µcal/cm2sec; the background heat flow is ~ 3.5 HFU.

12

Thermal Gradient Holes At Fort Bliss Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fort Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Fort Bliss Area (DOE GTP) Exploration...

13

Thermal Gradient Holes At Hualalai Northwest Rift Area (Thomas, 1986) |  

Open Energy Info (EERE)

Hualalai Northwest Rift Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes Although not part of the current effort, two deep (approximately 2000 m) exploratory wells were drilled on the north flank of Hualalai near Puu Waawaa cinder cone. The geophysical data used for siting these wells were proprietary and hence unavailable for publication; however, the temperatures measured at the bottoms of the wells were reported to be below 20degrees C. Chemical analysis of water samples taken from these wells did not provide useful geothermal data due to contamination of the well water with drilling muds References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

14

Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen...  

Open Energy Info (EERE)

(1993) Heat Flow From Four New Research Drill Holes In The Western Cascades, Oregon, Usa Additional References Retrieved from "http:en.openei.orgwindex.php?titleThermalGr...

15

Thermal Gradient Holes At Socorro Mountain Area (Owens, Et Al., 2005) |  

Open Energy Info (EERE)

Thermal Gradient Holes At Socorro Mountain Area (Owens, Et Al., 2005) Thermal Gradient Holes At Socorro Mountain Area (Owens, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Socorro Mountain Area (Owens, Et Al., 2005) Exploration Activity Details Location Socorro Mountain Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes Pre-existing evidence includes heat gradients of upwards of 490mW/m2 from thermal-gradient wells, tepid spring waters (32oC) and silica geochemistry indicating thermal waters with a minimum of 82 degrees C at depth References Lara Owens, Richard Baars, David Norman, Harold Tobin (2005) New Methods In Exploration At The Socorro Peak Kgra- A Gred Iii Project Retrieved from

16

Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) | Open  

Open Energy Info (EERE)

Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) Exploration Activity Details Location Hot Springs Ranch Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley

17

Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009)  

Open Energy Info (EERE)

Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009) Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary wells at Pads 1, 2, 4, and 7. Notes

18

Thermal Gradient Holes At Lightning Dock Area (Cunniff & Bowers, 2005) |  

Open Energy Info (EERE)

Thermal Gradient Holes At Lightning Dock Area Thermal Gradient Holes At Lightning Dock Area (Cunniff & Bowers, 2005) Exploration Activity Details Location Lightning Dock Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes The two gradient holes were sited on federal geothermal leases owned by Lightning Dock Geothermal, Inc. and both were drilled into lakebed sediments some distance from the intense shallow geothermal anomaly located in the eastern half of Section 7, Township 25 South, Range 19 West. References Roy A. Cunniff, Roger L. Bowers (2005) Final Technical Report, Geothermal Resource Evaluation And Definitioni (Gred) Program-Phases I, Ii, And Iii For The Animas Valley, Nm Geothermal Resource Retrieved from "http://en.openei.org/w/index.php?title=Thermal_Gradient_Holes_At_Lightning_Dock_Area_(Cunniff_%26_Bowers,_2005)&oldid=387460"

19

Thermal Gradient Holes At Twenty-Nine Palms Area (Page, Et Al., 2010) |  

Open Energy Info (EERE)

Thermal Gradient Holes At Twenty-Nine Palms Thermal Gradient Holes At Twenty-Nine Palms Geothermal Area (Page, Et Al., 2010) Exploration Activity Details Location Twenty-Nine Palms Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes From November 2008 to March 2009, Seabees from the Naval Construction Division (NCD) successfully completed fivetemperature gradient holes for the GPO. Samples taken from each hole were similar in nature; mixtures of sand and conglomerates with the occasional granite sections were typically encountered. Each hole varied slightly in depth, ranging from 600ft to 1,000ft; however, each hole has been completed to acceptable standards of the GPO. Upon completion of drilling, 3" metal tubing was inserted to

20

Thermal Gradient Holes At Kilauea Summit Area (Keller, Et Al., 1979) | Open  

Open Energy Info (EERE)

Thermal Gradient Holes At Kilauea Summit Area (Keller, Et Al., 1979) Thermal Gradient Holes At Kilauea Summit Area (Keller, Et Al., 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Kilauea Summit Area (Keller, Et Al., 1979) Exploration Activity Details Location Kilauea Summit Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes A deep borehole was drilled at the summit of Kilauea volcano, Hawaii, between April 6 and July 9, 1973. The hole is located approximately 1 km south of the edge of Halemaumau crater (Figs. 1 and 2), a crater within the summit caldera of the volcano. The total depth of the hole is 1262 m (4141 ft) measured from the derrick floor at an altitude of 1102 m (3616 ft). A description of the drilling program and some of the results obtained have

Note: This page contains sample records for the topic "holes thermal gradient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Thermal Gradient Holes At Twenty-Nine Palms Area (Sabin, Et Al., 2010) |  

Open Energy Info (EERE)

Thermal Gradient Holes At Twenty-Nine Palms Area (Sabin, Et Al., 2010) Thermal Gradient Holes At Twenty-Nine Palms Area (Sabin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Twenty-Nine Palms Geothermal Area (Sabin, Et Al., 2010) Exploration Activity Details Location Twenty-Nine Palms Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes The first and only Seabee drilling project was the installation of five TGHs at the Camp Wilson region of the MCAGCC Marine base near Twenty-Nine Palms, CA. While the program was a success and GPO identified an anomaly where a deep, slim hole is to be drilled in June, 2010, the Seabee rig was sent oversees soon after drilling was completed. If/when another rig

22

Thermal Gradient Holes At Nw Basin & Range Region (Pritchett, 2004) | Open  

Open Energy Info (EERE)

Thermal Gradient Holes At Nw Basin & Range Region (Pritchett, 2004) Thermal Gradient Holes At Nw Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Nw Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

23

Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) |  

Open Energy Info (EERE)

Blue Mountain Area (Fairbank & Neggemann, 2004) Blue Mountain Area (Fairbank & Neggemann, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Exploration Activity Details Location Blue Mountain Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown References Brian D. Fairbank, Kim V. Niggemann (2004) Deep Blue No 1- A Slimhole Geothermal Discovery At Blue Mountain, Humboldt County, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Thermal_Gradient_Holes_At_Blue_Mountain_Area_(Fairbank_%26_Neggemann,_2004)&oldid=386709" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link

24

Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit & Blackwell,  

Open Energy Info (EERE)

Hot Creek Ranch Area (Benoit & Blackwell, Hot Creek Ranch Area (Benoit & Blackwell, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Exploration Activity Details Location Upper Hot Creek Ranch Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes Ten temperature gradient holes up to 500' deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400' encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The

25

Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes Two separate phases of geothermal exploratory drilling have occurred on the lower East Rift. The first was essentially a wildcat venture with relatively little surface exploratory data having been gathered, whereas the second was initiated after somewhat more geoscience information had been acquired under the Hawaii Geothermal Project. The results of the successful exploratory drilling program on the Kilauea

26

Thermal Gradient Holes At Crump's Hot Springs Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Thermal Gradient Holes At Crump's Hot Springs Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Crump's Hot Springs Area (DOE GTP) Exploration Activity Details Location Crump's Hot Springs Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes 8 wells References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Thermal_Gradient_Holes_At_Crump%27s_Hot_Springs_Area_(DOE_GTP)&oldid=402699"

27

Thermal Gradient Holes At Fish Lake Valley Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Thermal Gradient Holes At Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Fish Lake Valley Area (DOE GTP) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes 2 wells References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Thermal_Gradient_Holes_At_Fish_Lake_Valley_Area_(DOE_GTP)&oldid=511222" Categories:

28

Thermal Gradient Holes At Northern Basin & Range Region (Pritchett, 2004) |  

Open Energy Info (EERE)

Gradient Holes At Northern Basin & Range Region (Pritchett, 2004) Gradient Holes At Northern Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Northern Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

29

Thermal Gradient Holes At Hawthorne Area (Lazaro, Et Al., 2010) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Thermal Gradient Holes At Hawthorne Area (Lazaro, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Hawthorne Area (Lazaro, Et Al., 2010) Exploration Activity Details Location Hawthorne Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes The Navy recently completed a temperature gradient hole (TGH) drilling campaign. Results suggest multiple resources may exist on HAD lands. To further define the shallow resource, the Navy will drill one or two

30

Thermal Gradient Holes At Chocolate Mountains Area (Alm, Et Al., 2010) |  

Open Energy Info (EERE)

Chocolate Mountains Area (Alm, Et Al., 2010) Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Chocolate Mountains Area (Alm, Et Al., 2010) Exploration Activity Details Location Chocolate Mountains Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes "Shallow temperature gradient drilling began at the CMAGR in January of 2010. 13 temperature gradient holes were completed to a depth of 500' below ground surface. Sites were selected based on the compilation of previous exploration and resulting data is being integrated into the most recent geologic model. This model will form the basis for the selection of a deeper (2000'-4000') temperature gradient drilling campaign at the CMAGR in

31

Thermal Gradient Holes At Lightning Dock Area (Warpinski, Et Al., 2004) |  

Open Energy Info (EERE)

Thermal Gradient Holes At Lightning Dock Area Thermal Gradient Holes At Lightning Dock Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Lightning Dock Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes The awardee conducted seismic, gravity, resistivity, and airborne magnetic surveys, drilled temperature-gradient wells, and selected a location for a test well (52-7). The test well was drilled to a total depth of 770 m during 2003. Maximum temperatures approached 140degrees C and a short flow test suggested that a production well could be drilled to 600 m and produce economic volumes of 130-140degrees C fluid. A final assessment of the resource is currently being performed. References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J.

32

Thermal Gradient Holes At Chocolate Mountains Area (Sabin, Et Al., 2010) |  

Open Energy Info (EERE)

Thermal Gradient Holes At Chocolate Mountains Area Thermal Gradient Holes At Chocolate Mountains Area (Sabin, Et Al., 2010) Exploration Activity Details Location Chocolate Mountains Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes In lieu of Seabee TGH drilling, GPO awarded a large IDIQ TGH drilling contract in December, 2009. Over the next two years, 90 500-ft TGHs will be installed at select sites in California and Nevada. Interim data from this campaign are already available for the Chocolate Mountains and Hawthorne. Results of these programs can be found in the Chocolate Mountains and Hawthorne papers also available in this volume. References Andrew Sabin, S. Bjornstad, M. Lazaro, D. Meade, C. Page, S. Alm, A. Tiedeman, W. C. Huang (2010) Navy's Geothermal Program Office: Overview

33

Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski, Et Al.,  

Open Energy Info (EERE)

2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes The Lake City site, which is located in far northeastern California, consists of a previously identified geothermal site that has been explored with both geophysics and drilling (Hedel, 1981), but has not been characterized adequately to allow accurate siting or drilling of production wells. Some deep wells, several seismic lines, limited gravity surveys, and geochemical and geological studies have suggested that the geothermal

34

Thermal Gradient Holes At Walker-Lane Transitional Zone Region (Pritchett,  

Open Energy Info (EERE)

Walker-Lane Transitional Zone Region (Pritchett, Walker-Lane Transitional Zone Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Walker-Lane Transitional Zone Region (Pritchett, 2004) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

35

Thermal Gradient Holes At Spencer Hot Springs Area (Shevenell, Et Al.,  

Open Energy Info (EERE)

Hot Springs Area (Shevenell, Et Al., Hot Springs Area (Shevenell, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Spencer Hot Springs Area (Shevenell, Et Al., 2008) Exploration Activity Details Location Spencer Hot Springs Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes Collaboration with the gold mining industry has brought two new geothermal discoveries to the attention of the geothermal community. Exploration holes at Tungsten Mountain and McGuiness Hills (Spencer Hot Springs?) in 2004 and 2005 encountered hot water and steam at depths of meters with fluid geothermometry indicating reservoir temperatures of 170 to 200oC. More information can be obtained from the Nevada Bureau of Mines and Geology web

36

Thermal Gradient Holes At Hawthorne Area (Sabin, Et Al., 2010) | Open  

Open Energy Info (EERE)

Sabin, Et Al., 2010) Sabin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Hawthorne Area (Sabin, Et Al., 2010) Exploration Activity Details Location Hawthorne Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes In lieu of Seabee TGH drilling, GPO awarded a large IDIQ TGH drilling contract in December, 2009. Over the next two years, 90 500-ft TGHs will be installed at select sites in California and Nevada. Interim data from this campaign are already available for the Chocolate Mountains and Hawthorne. Results of these programs can be found in the Chocolate Mountains and Hawthorne papers also available in this volume. References Andrew Sabin, S. Bjornstad, M. Lazaro, D. Meade, C. Page, S. Alm, A.

37

Thermal Gradient Holes At Cove Fort Area (Warpinski, Et Al., 2002) | Open  

Open Energy Info (EERE)

Et Al., 2002) Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. Drilling of the test well was completed in the fall of 2001 and results are currently being evaluated. The total depth of the well is 598 m with a

38

Thermal Gradient Holes At Fort Bidwell Area (Lafleur, Et Al., 2010) | Open  

Open Energy Info (EERE)

Bidwell Area (Lafleur, Et Al., 2010) Bidwell Area (Lafleur, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Fort Bidwell Area (Lafleur, Et Al., 2010) Exploration Activity Details Location Fort Bidwell Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes "Four wells have been successfully drilled into this resource since the early 1980s using a combination of funds provided by the California Energy Commission (CEC) and the United State Department of Energy (USDOE). The first three wells, FB-1, -2 and -3 have been discussed in a previous paper (Barker et al., 2005). The current status of the FBIC project to evaluate the potential geothermal resource under the reservation is that a deep

39

Thermal Gradient Holes At Tungsten Mountain Area (Kratt, Et Al., 2008) |  

Open Energy Info (EERE)

Kratt, Et Al., 2008) Kratt, Et Al., 2008) Exploration Activity Details Location Tungsten Mountain Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes twenty-three gold exploration holes were drilled by Newcrest Resources, Inc. during 2005 and 2006 along the range front. These holes approached or exceeded 300 m in depth and all holes encountered hot water and/or steam. Despite the high temperatures encountered at relatively shallow depths, there are no active geothermal features such as hot springs or steam vents at the surface. The presence of small outcrops of argillic alteration containing anomalous gold attracted the interest of exploration geologists. References Christopher Kratt, Mark Coolbaugh, Chris Sladek, Rick Zehner, Robin

40

Thermal Gradient Holes At Chena Area (Erkan, Et. Al., 2008) | Open Energy  

Open Energy Info (EERE)

Chena Area (Erkan, Et. Al., Chena Area (Erkan, Et. Al., 2008) Exploration Activity Details Location Chena Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes MULTI-STAGE DRILLING Once a hole is drilled the natural-state pressure distribution with depth is essentially unrecoverable (Grant et al., 1982). One of the best ways to mitigate this effect is to use multi-stage drilling (White et al., 1975; Grant et al., 1982). This type of drilling was applied at Chena and its usefulness in understanding the natural flow regimes is demonstrated. Here, we illustrate how high-quality equilibrium temperature logs can often be used to identify permeable fractures. The independent interpretations of flow regimes based on temperature-depth curves and the

Note: This page contains sample records for the topic "holes thermal gradient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Thermal Gradient Holes At Tungsten Mountain Area (Shevenell, Et Al., 2008)  

Open Energy Info (EERE)

Shevenell, Et Al., 2008) Shevenell, Et Al., 2008) Exploration Activity Details Location Tungsten Mountain Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes Collaboration with the gold mining industry has brought two new geothermal discoveries to the attention of the geothermal community. Exploration holes at Tungsten Mountain and McGuiness Hills (Figure 1) in 2004 and 2005 encountered hot water and steam at depths of meters with fluid geothermometry indicating reservoir temperatures of 170 to 200oC. More information can be obtained from the Nevada Bureau of Mines and Geology web site (www.nbmg.unr.edu/geothermal/gtmap.pdf), and from a PowerPoint presentation titled 'Geothermal Exploration Short Stories' posted on the Geothermal Resources Council web site

42

Thermal Gradient Holes At Cove Fort Area - Vapor (Warpinski, Et Al., 2002)  

Open Energy Info (EERE)

2) 2) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. Drilling of the test well was completed in the fall of 2001 and results are currently being evaluated. The total depth of the well is 598 m with a non-equilibrated maximum temperature probably in the range of 157degrees C and a very complicated geologic structure.

43

Temperature, heat flow maps and temperature gradient holes |...  

Open Energy Info (EERE)

Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Organization Colorado Geological Survey in Cooperation with the U.S. Department of Energy...

44

Pumpernickel Valley Geothermal Project Thermal Gradient Wells | Open Energy  

Open Energy Info (EERE)

Valley Geothermal Project Thermal Gradient Wells Valley Geothermal Project Thermal Gradient Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Pumpernickel Valley Geothermal Project Thermal Gradient Wells Details Activities (4) Areas (1) Regions (0) Abstract: The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault,

45

General solutions for thermopiezoelectrics with various holes under thermal loading  

E-Print Network [OSTI]

induced by thermal loads. The loads may be uniform remote heat ¯ow, point heat source and temperature elastic plate with an hole of various shapes subjected to remote uniform mechanical loading. For plane

Qin, Qinghua

46

Thermal stress on bottom hole rock of gas drilling  

Science Journals Connector (OSTI)

Gas drilling has higher penetration than mud drilling. The greatest reason for this phenomenon with gas is that the gas is greatly cooled by expansion as it passes through the bit and thereby cools the bottom of the hole. The thermal stress at bottom-hole occurs during this process. The concept of thermal crushing of rocks is analysed in this study. The theoretical methods are developed to analyse thermal stresses and fragmentation induced by cooling of rock. Then, the numerical computation is conducted for the thermal stress equations with the numerical result simulated for the temperature field at the bottom hole to explain the reason of high drilling rates in gas drilling. Furthermore, an experiment was conducted to verify the theory. Therefore, the theories and simulated results in this paper have a guiding signification for best understand the technique and possibly to extend its economic advantage still further. [Received: September 23, 2011; Accepted: November 20, 2011

Shunji Yang; Gonghui Liu; Jun Li

2012-01-01T23:59:59.000Z

47

Thermal Gradient Holes At Fenton Hill HDR Geothermal Area (Purtymun...  

Open Energy Info (EERE)

Valles caldera in order to locate an of high heat flow that would serve as a favorable test site for the HDR concept. Notes Data from these wells are report in Reiter et al....

48

Thermal Gradient Holes At Roosevelt Hot Springs Geothermal Area...  

Open Energy Info (EERE)

References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

49

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

50

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

studies, and seem to prove useful in most cases (Flexser, 1991; Goff et al., 1991; Smith and Suemnicht, 1991). Results from these studies are also summarized in Sorey et al....

51

Integrated thermal-microstructure model to predict the property gradients in resistance spot steel welds  

SciTech Connect (OSTI)

An integrated model approach was proposed for relating resistance welding parameters to weldment properties. An existing microstructure model was used to determine the microstructural and property gradients in resistance spot welds of plain carbon steel. The effect of these gradients on the weld integrity was evaluated with finite element analysis. Further modifications to this integrated thermal-microstructure model are discussed.

Babu, S.S.; Riemer, B.W.; Santella, M.L. [Oak Ridge National Lab., TN (United States); Feng, Z. [Edison Welding Inst., Columbus, OH (United States)

1998-11-01T23:59:59.000Z

52

Thermal rectification and negative differential thermal resistance in lattices with mass gradient Nuo Yang,1 Nianbei Li,1 Lei Wang,1 and Baowen Li1,2,  

E-Print Network [OSTI]

Thermal rectification and negative differential thermal resistance in lattices with mass gradient thermal resistance is observed. Possible applications in constructing thermal rectifiers and thermal properties, the thermal properties of graded materials have not yet been fully studied see the recent review

Li, Baowen

53

Hot Pot Contoured Temperature Gradient Map  

SciTech Connect (OSTI)

Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

Lane, Michael

2013-06-28T23:59:59.000Z

54

Hot Pot Contoured Temperature Gradient Map  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

Lane, Michael

55

MEASUREMENTS OF ANISOTROPIC ION TEMPERATURES, NON-THERMAL VELOCITIES, AND DOPPLER SHIFTS IN A CORONAL HOLE  

SciTech Connect (OSTI)

We present a new diagnostic allowing one to measure the anisotropy of ion temperatures and non-thermal velocities, as well as Doppler shifts with respect to the ambient magnetic field. This method provides new results, as well as an independent test for previous measurements obtained with other techniques. Our spectral data come from observations of a low-latitude, on-disk coronal hole. A potential field source surface model was used to calculate the angle between the magnetic field lines and the line of sight for each spatial bin of the observation. A fit was performed to determine the line widths and Doppler shifts parallel and perpendicular to the magnetic field. For each line width component we derived ion temperatures T {sub i,} and T {sub i, Parallel-To} and non-thermal velocities v {sub nt,} and v {sub nt, Parallel-To }. T {sub i,} was cooler than off-limb polar coronal hole measurements, suggesting increasing collisional cooling with decreasing height. T {sub i, Parallel-To} is consistent with a uniform temperature of (1.8 {+-} 0.2) Multiplication-Sign 10{sup 6} K for each ion. Since parallel ion heating is expected to be weak, this ion temperature should reflect the proton temperature. A comparison between our results and others implies a large proton temperature gradient around 1.02 R {sub Sun }. The non-thermal velocities are thought to be proportional to the amplitudes of various waves. Our results for v {sub nt,} agree with Alfven wave amplitudes inferred from off-limb polar coronal hole line width measurements. Our v {sub nt, Parallel-To} results are consistent with slow magnetosonic wave amplitudes inferred from Fourier analysis of time-varying intensity fluctuations. Doppler shift measurements yield outflows of Almost-Equal-To 5 km s{sup -1} for ions formed over a broad temperature range. This differs from other studies that found a strong Doppler shift dependence on formation temperature.

Hahn, M.; Savin, D. W. [Columbia Astrophysics Laboratory, Columbia University, MC 5247, 550 West 120th Street, New York, NY 10027 (United States)] [Columbia Astrophysics Laboratory, Columbia University, MC 5247, 550 West 120th Street, New York, NY 10027 (United States)

2013-02-15T23:59:59.000Z

56

Thermodynamics of the Schwarzschild-de Sitter black hole: Thermal stability of the Nariai black hole  

SciTech Connect (OSTI)

We study the thermodynamics of the Schwarzschild-de Sitter black hole in five dimensions by introducing two temperatures based on the standard and Bousso-Hawking normalizations. We use the first-law of thermodynamics to derive thermodynamic quantities. The two temperatures indicate that the Nariai black hole is thermodynamically unstable. However, it seems that black hole thermodynamics favors the standard normalization and does not favor the Bousso-Hawking normalization.

Myung, Yun Soo [Institute of Basic Science and School of Computer Aided Science Inje University, Gimhae 621-749 (Korea, Republic of)

2008-05-15T23:59:59.000Z

57

Thermodynamics of Schwarzschild-de Sitter black hole: thermal stability of Nariai black hole  

E-Print Network [OSTI]

We study thermodynamics of the Schwarzschild-de Sitter black hole in five dimensions by introducing two temperatures based on the standard and Bousso-Hawking normalizations. We use the first-law of thermodynamics to derive thermodynamic quantities. The two temperatures indicate that the Nariai black hole is thermodynamically unstable. However, it seems that black hole thermodynamics favors the standard normalization, and does not favor the Bousso-Hawking normalization.

Yun Soo Myung

2007-12-20T23:59:59.000Z

58

Thermal gradient crystals as tuneable monochromator for high energy X-rays  

SciTech Connect (OSTI)

At the high energy synchrotron radiation beamline BW5 at DORIS III at DESY a new monochromator providing broad energy bandwidth and high reflectivity is in use. On a small 10x10x5 mm{sup 3} silicon crystal scattering at the (311) reflection a thermal gradient is applied, which tunes the scattered energy bandwidth. The (311) reflection strongly suppresses the higher harmonics allowing the use of an image plate detector for crystallography. The monochromator can be used at photon energies above 60 keV.

Ruett, U.; Schulte-Schrepping, H.; Heuer, J.; Zimmermann, M. von [Hamburger Synchrotron Strahlungslabor (HASYLAB), at Deutsches Elektronensychrotron (DESY), Notkestr. 85, 22603 Hamburg (Germany)

2010-06-23T23:59:59.000Z

59

Top hole drilling with dual gradient technology to control shallow hazards  

E-Print Network [OSTI]

3.2 Riserless Dual Gradient Drilling Technology Description .........................36 3.2.1 Kick Detection.............................................................................37 3.2.2 Well Control ?Modified Driller?s Method... ? PRESSURE @ TOP OF KICK GRAPHS ? SET #1..........................140 ix Page APPENDIX F ? PRESSURE @ TOP OF KICK GRAPHS ? SET #2 ..........................159 VITA...

Elieff, Brandee Anastacia Marie

2006-10-30T23:59:59.000Z

60

Evidence of Magnetic Breakdown on the Defects With Thermally Suppressed Critical Field in High Gradient SRF Cavities  

SciTech Connect (OSTI)

At SRF 2011 we presented the study of quenches in high gradient SRF cavities with dual mode excitation technique. The data differed from measurements done in 80's that indicated thermal breakdown nature of quenches in SRF cavities. In this contribution we present analysis of the data that indicates that our recent data for high gradient quenches is consistent with the magnetic breakdown on the defects with thermally suppressed critical field. From the parametric fits derived within the model we estimate the critical breakdown fields.

Eremeev, Grigory [JLAB; Palczewski, Ari [JLAB

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "holes thermal gradient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Thermalization with chemical potentials, and higher spin black holes  

E-Print Network [OSTI]

We study the long time behaviour of local observables following a quantum quench in 1+1 dimensional conformal field theories possessing additional conserved charges besides the energy. We show that the expectation value of an arbitrary string of {\\it local} observables supported on a finite interval exponentially approaches an equilibrium value. The equilibrium is characterized by a temperature and chemical potentials defined in terms of the quenched state. For an infinite number of commuting conserved charges, the equilibrium ensemble is a generalized Gibbs ensemble (GGE). We compute the thermalization rate in a systematic perturbation in the chemical potentials, using a new technique to sum over an infinite number of Feynman diagrams. The above technique also allows us to compute relaxation times for thermal Green's functions in the presence of an arbitrary number of chemical potentials. In the context of a higher spin (hs[\\lambda]) holography, the partition function of the final equilibrium GGE is known to...

Mandal, Gautam; Sorokhaibam, Nilakash

2015-01-01T23:59:59.000Z

62

Effective potential of a black hole in thermal equilibrium with quantum fields  

Science Journals Connector (OSTI)

Expectation values of one-loop renormalized thermal equilibrium stress-energy tensors of free conformal scalars, spin-1/2 fermions, and U(1) gauge fields on a Schwarzschild black hole background are used as sources in the semiclassical Einstein equation. The back reaction and new equilibrium metric have been found at O(?) for each spin field in previous work. In this paper, the nature of the modified black hole spacetime is explored through calculations of the effective potential for null and timelike orbits. Significant novel features affecting the motions of both massive and massless test particles show up at lowest order in ?=(MPl/M)2<1, where M is the black hole mass, and MPl is the Planck mass. Specifically, we find an increase in the black hole capture cross sections, and the existence of a region near the black hole with a repulsive contribution, generated by the U(1) back reaction, to the gravitational force. There is no such effect for other spins. Extrapolating our results suggests a tendency towards the formation of stable circular orbits, but the result cannot be established in O(?): the change in the metric becomes large and it changes its signature. We also consider the back reaction arising from multiple fields, which ultimately should be useful for treating a black hole in equilibrium with field ensembles belonging to gauge theories. In certain circumstances, however, reliable results will require calculations beyond O(?).

David Hochberg; Thomas W. Kephart; James W. York; Jr.

1994-05-15T23:59:59.000Z

63

Thermally-assisted-occupation density functional theory with generalized-gradient approximations  

SciTech Connect (OSTI)

We extend the recently proposed thermally-assisted-occupation density functional theory (TAO-DFT) [J.-D. Chai, J. Chem. Phys. 136, 154104 (2012)] to generalized-gradient approximation (GGA) exchange-correlation density functionals. Relative to our previous TAO-LDA (i.e., the local density approximation to TAO-DFT), the resulting TAO-GGAs are significantly superior for a wide range of applications, such as thermochemistry, kinetics, and reaction energies. For noncovalent interactions, TAO-GGAs with empirical dispersion corrections are shown to yield excellent performance. Due to their computational efficiency for systems with strong static correlation effects, TAO-LDA and TAO-GGAs are applied to study the electronic properties (e.g., the singlet-triplet energy gaps, vertical ionization potentials, vertical electron affinities, fundamental gaps, and symmetrized von Neumann entropy) of acenes with different number of linearly fused benzene rings (up to 100), which is very challenging for conventional electronic structure methods. The ground states of acenes are shown to be singlets for all the chain lengths studied here. With the increase of acene length, the singlet-triplet energy gaps, vertical ionization potentials, and fundamental gaps decrease monotonically, while the vertical electron affinities and symmetrized von Neumann entropy (i.e., a measure of polyradical character) increase monotonically.

Chai, Jeng-Da, E-mail: jdchai@phys.ntu.edu.tw [Department of Physics, Center for Theoretical Sciences, and Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)] [Department of Physics, Center for Theoretical Sciences, and Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

2014-05-14T23:59:59.000Z

64

Effects of surface deposition, hole blockage, and thermal barrier coating spallation on vane endwall film cooling  

SciTech Connect (OSTI)

With the increase in usage of gas turbines for power generation and given that natural gas resources continue to be depleted, it has become increasingly important to search for alternate fuels. One source of alternate fuels is coal derived synthetic fuels. Coal derived fuels, however, contain traces of ash and other contaminants that can deposit on vane and turbine surfaces affecting their heat transfer through reduced film cooling. The endwall of a first stage vane is one such region that can be susceptible to depositions from these contaminants. This study uses a large-scale turbine vane cascade in which the following effects on film cooling adiabatic effectiveness were investigated in the endwall region: the effect of near-hole deposition, the effect of partial film cooling hole blockage, and the effect of spallation of a thermal barrier coating. The results indicated that deposits near the hole exit can sometimes improve the cooling effectiveness at the leading edge, but with increased deposition heights the cooling deteriorates. Partial hole blockage studies revealed that the cooling effectiveness deteriorates with increases in the number of blocked holes. Spallation studies showed that for a spalled endwall surface downstream of the leading edge cooling row, cooling effectiveness worsened with an increase in blowing ratio.

Sundaram, N.; Thole, K.A. [Virginia Polytechnic Institute & State University, Blacksburg, VA (USA)

2007-07-15T23:59:59.000Z

65

Particle Swarm Optimization and Gradient Descent Methods for Optimization of PI Controller for AGC of Multi-area Thermal-Wind-Hydro Power Plants  

Science Journals Connector (OSTI)

The automatic generation control (AGC) of three unequal interconnected Thermal, Wind and Hydro power plant has been designed with PI controller. Further computational intelligent technique Particle Swarm Optimization and conventional Gradient Descent ... Keywords: Automatic generation control, Particle swarm optimization, Gradient Descent method, Generation rate constraint, Area control error, Wind energy conversion system

Naresh Kumari; A N. Jha

2013-04-01T23:59:59.000Z

66

Technical and economic feasibility of a Thermal Gradient Utilization Cycle (TGUC) power plant  

E-Print Network [OSTI]

has grown in energy technologies that use renewable resources such as solar (thermal conversion, ocean thermal energy conversion, photovoltaics, wind and biomass conversion), geothermal and magnetohydrodynamics (MHD) . A new concept that can...

Raiji, Ashok

1980-01-01T23:59:59.000Z

67

Slim Holes | Open Energy Information  

Open Energy Info (EERE)

Slim Holes Slim Holes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Slim Holes Details Activities (30) Areas (24) Regions (1) NEPA(6) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: If core is collected Stratigraphic/Structural: If core is collected Hydrological: Fluid flow and water chemistry Thermal: Thermal gradient or bottom hole temperature Cost Information Low-End Estimate (USD): 100.0010,000 centUSD 0.1 kUSD 1.0e-4 MUSD 1.0e-7 TUSD / foot Median Estimate (USD): 169.8916,989 centUSD 0.17 kUSD 1.6989e-4 MUSD 1.6989e-7 TUSD / foot High-End Estimate (USD): 200.0020,000 centUSD

68

Black hole in thermal equilibrium with a scalar field: The back-reaction  

Science Journals Connector (OSTI)

The accurate approximation found by Page for the expectation value of the renormalized thermal equilibrium stress-energy tensor of a free conformal scalar field in a Schwarzschild black-hole background is used as the source in the semiclassical Einstein equation. The back-reaction and new equilibrium metric are found perturbatively in order ?. The new metric is not asymptotically flat unless the system is enclosed by a reflecting wall. Solutions are obtained for systems of finite radius using microcanonical (fixed energy) and canonical (fixed temperature) boundary conditions. Explicit effects of the back-reaction on the equilibrium temperature distribution inside the cavity are given. With microcanonical boundary conditions there is an asymptotically flat region where the temperature at infinity is defined. It is shown that this temperature does not have the Schwarzschild value ?(8?M)-1 for a black hole of mass M. Curvature invariants are computed and the order-?2 correction to the conformal scalar-field trace anomaly originating from the back-reaction that this field produces is found. The principal qualitative features of the results should be valid for any quantum field at one loop in the Schwarzschild geometry.

James W. York; Jr.

1985-02-15T23:59:59.000Z

69

White holes and eternal black holes  

E-Print Network [OSTI]

We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi- thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal.

Stephen D. H. Hsu

2011-11-16T23:59:59.000Z

70

Ch. VII, Temperature, heat flow maps and temperature gradient...  

Open Energy Info (EERE)

Ch. VII, Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation with the...

71

Black holes and thermodynamics  

Science Journals Connector (OSTI)

A black hole of given mass, angular momentum, and charge can have a large number of different unobservable internal configurations which reflect the possible different initial configurations of the matter which collapsed to produce the hole. The logarithm of this number can be regarded as the entropy of the black hole and is a measure of the amount of information about the initial state which was lost in the formation of the black hole. If one makes the hypothesis that the entropy is finite, one can deduce that the black holes must emit thermal radiation at some nonzero temperature. Conversely, the recently derived quantum-mechanical result that black holes do emit thermal radiation at temperature ??2? k c, where ? is the surface gravity, enables one to prove that the entropy is finite and is equal to c3A4 G?, where A is the surface area of the event horizon or boundary of the black hole. Because black holes have negative specific heat, they cannot be in stable thermal equilibrium except when the additional energy available is less than 1/4 the mass of the black hole. This means that the standard statistical-mechanical canonical ensemble cannot be applied when gravitational interactions are important. Black holes behave in a completely random and time-symmetric way and are indistinguishable, for an external observer, from white holes. The irreversibility that appears in the classical limit is merely a statistical effect.

S. W. Hawking

1976-01-15T23:59:59.000Z

72

Core Holes | Open Energy Information  

Open Energy Info (EERE)

Core Holes Core Holes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Core Holes Details Activities (8) Areas (7) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Core holes are drilled to identify lithology and mineralization Stratigraphic/Structural: Retrieved samples can be used to identify fracture networks or faults Hydrological: Thermal: Thermal conductivity measurements can be done on retrieved samples. Dictionary.png Core Holes: A core hole is a well that is drilled using a hallow drill bit coated with synthetic diamonds for the purposes of extracting whole rock samples from

73

Shallow Drilling In The Salton Sea Region, The Thermal Anomaly  

SciTech Connect (OSTI)

During two shallow thermal drilling programs, thermal measurements were obtained in 56 shallow (76.2 m) and one intermediate (457.3 m) depth holes located both onshore and offshore along the southern margin of the Salton Sea in the Imperial Valley, California. These data complete the surficial coverage of the thermal anomaly, revealing the shape and lateral extent of the hydrothermal system. The thermal data show the region of high thermal gradients to extend only a short distance offshore to the north of the Quaternary volcanic domes which are exposed along the southern shore of the Salton Sea. The thermal anomaly has an arcuate shape, about 4 km wide and 12 km long. Across the center of the anomaly, the transition zone between locations exhibiting high thermal gradients and those exhibiting regional thermal gradients is quite narrow. Thermal gradients rise from near regional (0.09 C/m) to extreme (0.83 C/m) in only 2.4 km. The heat flow in the central part of the anomaly is >600 mW/m{sup 2} and in some areas exceeds 1200 mW/m{sup 2}. The shape of the thermal anomaly is asymmetric with respect to the line of volcanoes previously thought to represent the center of the field, with its center line offset south of the volcanic buttes. There is no broad thermal anomaly associated with the magnetic high that extends offshore to the northeast from the volcanic domes. These observations of the thermal anomaly provide important constraints for models of the circulation of the hydrothermal system. Thermal budgets based on a simple model for this hydrothermal system indicate that the heat influx rate for local ''hot spots'' in the region may be large enough to account for the rate of heat flux from the entire Salton Trough.

Newmark, R. L.; Kasameyer, P. W.; Younker, L. W.

1987-01-01T23:59:59.000Z

74

Slim Holes At Alvord Hot Springs Area (Combs, Et Al., 1999) | Open Energy  

Open Energy Info (EERE)

Combs, Et Al., 1999) Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Alvord Hot Springs Area (Combs, Et Al., 1999) Exploration Activity Details Location Alvord Hot Springs Area Exploration Technique Slim Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes Anadarko Petroleum Corporation drilled two slimhole discoveries in the 1980s, one at Salt Wells, NV, and the other at Pueblo Valley, OR. Both of these slimholes were hot enough to discharge unassisted and were successfully flow tested. A slimhole at Pueblo Valley, in south-east Oregon was planned and permitted as a test well to evaluate an interval of fractured basalt which had been discovered while drilling an earlier thermal-gradient hole. Using a UDR1500 rig, the hole was rotary-drilled to

75

Quantitative analysis of damage in an octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazonic-based composite explosive subjected to a linear thermal gradient  

Science Journals Connector (OSTI)

The microstructure within a slowly heated consolidated explosive will be influenced by both physical changes and chemical reactions prior to thermal ignition. Thermal expansion exothermic decomposition endothermic phase change and increased binder viscosity play significant roles in the cook-off to detonation. To further explore the details of this intricate cook-off process we have conducted a series of experiments in which a carefully controlled temperature gradient has been applied along a cylinder of PBX 9501 [94.9/2.5/2.5/0.1-wt % octahydro-1 3 5 7-tetranitro-1 3 5 7-tetrazocine (HMX)/Estane 5703/a eutectic mixture of bis(2 2 dinitropropyl) acetal and bis(2 2-dinitropropyl) formal [abbreviated BDNPA-F]/Irganox] and maintained for a specified amount of time. After heating and subsequent cooling of the PBX 9501 the sample morphology has been probed with polarized light microscopy and small-angle x-ray scattering. Using these techniques we have quantitatively characterized the particle morphology porosity and chemical state of the explosive as a function of position and therefore thermal treatment. Results of the analyses clearly show that thermal damage in PBX 9501 can be classified into two separate temperature regimesan initial low-temperature regime ( 155 174 C ) dominated by the endothermic ? - ? crystalline phase change thermal expansion and Ostwald ripening and a high-temperature regime ( 175 210 C ) dominated by exothermic chemical decomposition. The results further show the complex interplay between the evolving sample morphology and the chemical reactions leading to a potential thermal self-ignition in the explosive.

Paul D. Peterson; Joseph T. Mang; Blaine W. Asay

2005-01-01T23:59:59.000Z

76

Quantitative analysis of damage in an octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazonic-based composite explosive subjected to a linear thermal gradient  

SciTech Connect (OSTI)

The microstructure within a slowly heated, consolidated explosive will be influenced by both physical changes and chemical reactions prior to thermal ignition. Thermal expansion, exothermic decomposition, endothermic phase change, and increased binder viscosity play significant roles in the cook-off to detonation. To further explore the details of this intricate cook-off process, we have conducted a series of experiments in which a carefully controlled temperature gradient has been applied along a cylinder of PBX 9501 [94.9/2.5/2.5/0.1-wt % octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)/Estane 5703/a eutectic mixture of bis(2,2 dinitropropyl) acetal and bis(2,2-dinitropropyl) formal [abbreviated BDNPA-F]/Irganox] and maintained for a specified amount of time. After heating and subsequent cooling of the PBX 9501, the sample morphology has been probed with polarized light microscopy and small-angle x-ray scattering. Using these techniques we have quantitatively characterized the particle morphology, porosity, and chemical state of the explosive as a function of position, and therefore thermal treatment. Results of the analyses clearly show that thermal damage in PBX 9501 can be classified into two separate temperature regimes--an initial low-temperature regime (155-174 deg. C) dominated by the endothermic {beta}-{delta} crystalline phase change, thermal expansion, and Ostwald ripening, and a high-temperature regime (175-210 deg. C) dominated by exothermic chemical decomposition. The results further show the complex interplay between the evolving sample morphology and the chemical reactions leading to a potential thermal self-ignition in the explosive.

Peterson, Paul D.; Mang, Joseph T.; Asay, Blaine W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2005-05-01T23:59:59.000Z

77

Evaluation of liquid lift approach to dual gradient  

E-Print Network [OSTI]

the mudline to the rig floor so as to maintain the bottom hole pressure. Several methods have been developed to achieve the dual gradient drilling principle. For this research project, we paid more attention to the liquid lift, dual gradient drilling (riser...

Okafor, Ugochukwu Nnamdi

2009-05-15T23:59:59.000Z

78

Evaluation of liquid lift approach to dual gradient drilling  

E-Print Network [OSTI]

the mudline to the rig floor so as to maintain the bottom hole pressure. Several methods have been developed to achieve the dual gradient drilling principle. For this research project, we paid more attention to the liquid lift, dual gradient drilling (riser...

Okafor, Ugochukwu Nnamdi

2008-10-10T23:59:59.000Z

79

Thermal history of Bakken shale in Williston basin  

SciTech Connect (OSTI)

Stratigraphic and thermal conductivity data were combined to analyze the thermostratigraphy of the Williston basin. The present thermostratigraphy is characterized by geothermal gradients of the order of 60 mK/m in the Cenozoic and Mesozoic units, and 30 mK/m in the Paleozoic units. The differences in geothermal gradients are due to differences in thermal conductivities between the shale-dominated Mesozoic and Cenozoic units and the carbonate-dominated Paleozoic units. Subsidence and compaction rates were calculated for the basin and were used to determine models for time vs. depth and time vs. thermal conductivity relationships for the basin. The time/depth and time/conductivity relationships include factors accounting for thermal conductivity changes due to compaction, cementation, and temperature. The thermal history of the Bakken shale, a primary oil source rock in the Williston basin, was determined using four different models, and values for Lopatin's time-temperature index (TTI) were calculated for each model. The first model uses a geothermal gradient calculated from bottom-hole temperature data, the second uses present-day thermostratigraphy, the third uses the thermostratigraphic relationship determined in this analysis, and the fourth modifies the third by including assumed variations in continental heat flow. The thermal histories and the calculated TTI values differ markedly among the models with TTI values differing by a factor of about two between some models.

Gosnold, W.D. Jr.; Lefever, R.D.; Crashell, J.J. (Univ. of North Dakota, Grand Forks (USA))

1989-12-01T23:59:59.000Z

80

Trace Element Geochemical Zoning in the Roosevelt Hot Springs Thermal Area,  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Trace Element Geochemical Zoning in the Roosevelt Hot Springs Thermal Area, Utah Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Trace Element Geochemical Zoning in the Roosevelt Hot Springs Thermal Area, Utah Abstract Chemical interaction of thermal brines with reservoir rock in the Roosevelt Hot Springs thermal area has resulted in the development of distinctive trace element signatures. Geochemical analysis of soil sample, shallow temperature gradient drill hole cuttings and deep drill hole cutting provides a three dimensional perspective of trace element distributions within the system. Distributions of As, Hg and Li provide the clearest expression of hydrothermal activity. Comparison of these distribution

Note: This page contains sample records for the topic "holes thermal gradient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Gradient zone-boundary control in salt-gradient solar ponds  

DOE Patents [OSTI]

A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizeable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

Hull, J.R.

1982-09-29T23:59:59.000Z

82

Of the Black Hole Thermodynamics  

E-Print Network [OSTI]

About thirty years ago, Bekenstein and Hawking introduced three basic concepts relating to black hole, namely, the "area entropy", "gravitation temperature" and "thermal radiation". The author analyzes these concepts systematically and concludes that they are mostly inadequate or wrong. He points out that a black hole's taking in thermal radiation from the space is an energy-gathering process. It is special, even extraordinary. It reduces entropy, violating Clausius' second law.

Xinyong Fu

2005-01-11T23:59:59.000Z

83

Entropy of quasiblack holes  

SciTech Connect (OSTI)

We trace the origin of the black hole entropy S, replacing a black hole by a quasiblack hole. Let the boundary of a static body approach its own gravitational radius, in such a way that a quasihorizon forms. We show that if the body is thermal with the temperature taking the Hawking value at the quasihorizon limit, it follows, in the nonextremal case, from the first law of thermodynamics that the entropy approaches the Bekenstein-Hawking value S=A/4. In this setup, the key role is played by the surface stresses on the quasihorizon and one finds that the entropy comes from the quasihorizon surface. Any distribution of matter inside the surface leads to the same universal value for the entropy in the quasihorizon limit. This can be of some help in the understanding of black hole entropy. Other similarities between black holes and quasiblack holes such as the mass formulas for both objects had been found previously. We also discuss the entropy for extremal quasiblack holes, a more subtle issue.

Lemos, Jose P. S.; Zaslavskii, Oleg B. [Centro Multidisciplinar de Astrofisica-CENTRA, Departamento de Fisica, Instituto Superior Tecnico-IST, Universidade Tecnica de Lisboa-UTL, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Astronomical Institute of Kharkov, V. N. Karazin National University, 35 Sumskaya Street, Kharkov, 61022 (Ukraine)

2010-03-15T23:59:59.000Z

84

Simplified modeling of liquid sodium medium with temperature and velocity gradient using real thermal-hydraulic data. Application to ultrasonic thermometry in sodium fast reactor  

SciTech Connect (OSTI)

In the framework of the French R and D program for the Generation IV reactors and specifically for the sodium cooled fast reactors (SFR), studies are carried out on innovative instrumentation methods in order to improve safety and to simplify the monitoring of fundamental physical parameters during reactor operation. The aim of the present work is to develop an acoustic thermometry method to follow up the sodium temperature at the outlet of subassemblies. The medium is a turbulent flow of liquid sodium at 550 Degree-Sign C with temperature inhomogeneities. To understand the effect of disturbance created by this medium, numerical simulations are proposed. A ray tracing code has been developed with Matlab Copyright-Sign in order to predict acoustic paths in this medium. This complex medium is accurately described by thermal-hydraulic data which are issued from a simulation of a real experiment in Japan. The analysis of these results allows understanding the effects of medium inhomogeneities on the further thermometric acoustic measurement.

Massacret, N.; Jeannot, J. P. [DEN/DTN/STPA/LIET, CEA Cadarache, Saint Paul Lez Durance (France); Moysan, J.; Ploix, M. A.; Corneloup, G. [Aix-Marseille Univ, LMA UPR 7051 CNRS, site LCND, 13625 Aix-en-Provence (France)

2013-01-25T23:59:59.000Z

85

Microconvection effects at double?diffusive gradient zone boundaries  

Science Journals Connector (OSTI)

Microconvection in double?diffusive gradient zones is predicted to occur near the zone boundaries because of effects of boundary undulation and temperature modulation caused by impinging thermals in adjacent convecting zones. The equations that govern convective motion in a double?diffusive horizontal slab are solved for boundary conditions that incorporate these effects. Solution of these equations predicts a weakened salinity gradient near the gradient zone boundary between the rising thermals. When the salinity gradient is too weak instability occurs taking the form of descending plumes which are seen in experiments.

John R. Hull; Yojana Katti

1988-01-01T23:59:59.000Z

86

Ocean Thermal Gradient Hydraulic Power Plant  

Science Journals Connector (OSTI)

...for the probable life of the earth, only...low-pressure steam turbines pSrhaps hun-dreds...con-ventional hydraulic turbine under gravity flow...horizontally and the remaining available energy...through a hydraulic turbine to generatepower...between the liquid and gas-eous phases, with...

Earl J. Beck

1975-07-25T23:59:59.000Z

87

Joining of Tungsten Armor Using Functional Gradients  

SciTech Connect (OSTI)

The joining of low thermal expansion armor materials such as tungsten to high thermal expansion heat sink materials has been a major problem in plasma facing component (PFC) development. Conventional planar bonding techniques have been unable to withstand the high thermal induced stresses resulting from fabrication and high heat flux testing. During this investigation, innovative functional gradient joints produced using vacuum plasma spray forming techniques have been developed for joining tungsten armor to copper alloy heat sinks. A model was developed to select the optimum gradient architecture. Based on the modeling effort, a 2mm copper rich gradient was selected. Vacuum plasma pray parameters and procedures were then developed to produce the functional gradient joint. Using these techniques, dual cooling channel, medium scale mockups (32mm wide x 400mm length) were produced with vacuum plasma spray formed tungsten armor. The thickness of the tungsten armor was up to 5mm thick. No evidence of debonding at the interface between the heat sink and the vacuum plasma sprayed material was observed.

John Scott O'Dell

2006-12-31T23:59:59.000Z

88

Fast Self-Healing Gradients  

E-Print Network [OSTI]

We present CRF-Gradient, a self-healing gradient algorithm that provably reconfigures in O(diameter) time. Self-healing gradients are a frequently used building block for distributed self-healing systems, but previous ...

Beal, Jacob

89

Steep Gradient Flume | Open Energy Information  

Open Energy Info (EERE)

Steep Gradient Flume Steep Gradient Flume Jump to: navigation, search Basic Specifications Facility Name Steep Gradient Flume Overseeing Organization University of Iowa Hydrodynamic Testing Facility Type Flume Length(m) 20.1 Beam(m) 0.9 Depth(m) 0.5 Cost(per day) Contact POC Special Physical Features Tilting flume from -1.5 to +16% slope; <3mm sedimentation recirculation capabilities; instrumentation rails Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating Yes Wind Capabilities Wind Capabilities None Control and Data Acquisition Cameras Yes Number of Color Cameras 1 Available Sensors Acoustics, Flow, Thermal, Turbulence, Velocity Data Generation Capability Real-Time Yes

90

Thermal analysis of the southern Powder River Basin, Wyoming  

SciTech Connect (OSTI)

Temperature and geologic data from over 3,000 oil and gas wells within a 180 km x 30 km area that transect across the southern Powder River Basin in Wyoming, U.S.A., were used to determine the present thermal regime of the basin. Three-dimensional temperature fields within the transect, based on corrected bottom-hole temperatures (BHTs) and other geologic information, were assessed using: (1) A laterally constant temperature gradient model in conjunction with an L{sub 1} norm inversion method, and (2) a laterally variable temperature gradient model in conjunction with a stochastic inversion technique. The mean geothermal gradient in the transect is 29 C/km, but important lateral variations in the geothermal gradient exist. The average heat flow for the southern Powder River Basin is 52 mW/m{sup 2} with systematic variations between 40 mW/m{sup 2} and 60 mW/m{sup 2} along the transect. Extremely high local heat flow (values up to 225 mW/m{sup 2}) in the vicinity of the Teapot Dome and the Salt Creek Anticline and low heat flow of 25 mW/m{sup 2} occurring locally near the northeast end of the transect are likely caused by groundwater movement.

McPherson, B.J.O.L.; Chapman, D.S. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Geology and Geophysics] [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Geology and Geophysics

1996-11-01T23:59:59.000Z

91

Field Investigations And Temperature-Gradient Drilling At Marine Corps  

Open Energy Info (EERE)

Investigations And Temperature-Gradient Drilling At Marine Corps Investigations And Temperature-Gradient Drilling At Marine Corps Air-Ground Combat Center (Mcagcc), Twenty-Nine Palms, Ca Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Field Investigations And Temperature-Gradient Drilling At Marine Corps Air-Ground Combat Center (Mcagcc), Twenty-Nine Palms, Ca Details Activities (4) Areas (1) Regions (0) Abstract: The U.S. Navy's Geothermal Program Office (GPO) has been conducting geothermal exploration activities in the Camp Wilson area of Marine Corps Air-Ground Combat Center (MCAGCC), Twenty-nine Palms, CA, for almost two years. Work has included self-potential (SP) surveys, fault structure analyses using LiDAR surveys, and drilling and assessment of five (5) temperature-gradient holes. For several decades the GPO has worked

92

Kinetic Effects on Turbulence Driven by the Magnetorotational Instability in Black Hole Accretion  

E-Print Network [OSTI]

Magnetorotational Instability (MRI), the instability causing turbulent transport in accretion disks, is studied in the kinetic regime. Radiatively Inefficient Accretion Flows (RIAFs), like the one around the supermassive black hole in the center of our Galaxy, are believed to be collisionless. Kinetic MHD formalism, based on the moments of the Vlasov equation, is used for linear analysis and nonlinear simulations. ZEUS MHD code is modified to include key kinetic MHD terms: anisotropic pressure tensor and anisotropic thermal conduction. Simulations use the local shearing box approximation. Pressure anisotropy is created, because of the adiabatic invariance ($\\mu=p_\\perp/B$), as magnetic field is amplified by the MRI. Larmor radius scale instabilities--mirror, ion-cyclotron, and firehose--are excited at large pressure anisotropy. Pressure isotropization due to pitch angle scattering by these instabilities is included as a subgrid model. A key result of the kinetic MHD simulations is that the anisotropic (viscous) stress can be as large as the Maxwell stress. A new numerical method to simulate anisotropic thermal conduction with large temperature gradients is suggested. Simple tests show that the centered differencing of anisotropic thermal conduction can result in heat flowing from lower to higher temperatures, giving rise to negative temperatures. Limiting of transverse temperature gradients does not accentuate temperature extrema.

Prateek Sharma

2007-03-20T23:59:59.000Z

93

Recurrent policy gradients  

Science Journals Connector (OSTI)

......for recurrent neural networks Recurrent policy gradients Daan Wierstra Alexander Forster...POMDPs) is a challenge as it requires policies with an internal state. Traditional approaches...offer a natural framework for dealing with policy learning using hidden state and require......

Daan Wierstra; Alexander Frster; Jan Peters; Jrgen Schmidhuber

2010-10-01T23:59:59.000Z

94

Unified first law of black-hole dynamics and relativistic thermodynamics  

E-Print Network [OSTI]

A unified first law of black-hole dynamics and relativistic thermodynamics is derived in spherically symmetric general relativity. This equation expresses the gradient of the active gravitational energy E according to the Einstein equation, divided into energy-supply and work terms. Projecting the equation along the flow of thermodynamic matter and along the trapping horizon of a blackhole yield, respectively, first laws of relativistic thermodynamics and black-hole dynamics. In the black-hole case, this first law has the same form as the first law of black-hole statics, with static perturbations replaced by the derivative along the horizon. There is the expected term involving the area and surface gravity, where the dynamic surface gravity is defined as in the static case but using the Kodama vector and trapping horizon. This surface gravity vanishes for degenerate trapping horizons and satisfies certain expected inequalities involving the area and energy. In the thermodynamic case, the quasi-local first law has the same form, apart from a relativistic factor, as the classical first law of thermodynamics, involving heat supply and hydrodynamic work, but with E replacing the internal energy. Expanding E in the Newtonian limit shows that it incorporates the Newtonian mass, kinetic energy, gravitational potential energy and thermal energy. There is also a weak type of unified zeroth law: a Gibbs-like definition of thermal equilibrium requires constancy of an effective temperature, generalising the Tolman condition and the particular case of Hawking radiation, while gravithermal equilibrium further requires constancy of surface gravity. Finally, it is suggested that the energy operator of spherically symmetric quantum gravity is determined by the Kodama vector, which encodes a dynamic time related to E.

Sean A. Hayward

1997-10-20T23:59:59.000Z

95

Trace element geochemical zoning in the Roosevelt Hot Springs thermal area, Utah  

SciTech Connect (OSTI)

Chemical interaction of thermal brines with reservoir rock in the Roosevelt Hot Springs thermal area has resulted in the development of distinctive trace element signatures. Geochemical analysis of soil samples, shallow temperature-gradient drill hole cuttings and deep drill hole cuttings provides a three-dimensional perspective of trace element distributions within the system. Distributions of As, Hg and Li provide the clearest expression of hydrothermal activity. Comparison of these distributions suggests that Li, followed by As and Hg, are progressively deposited by outward flowing, cooling, thermal fluids. Hg, in contrast to As and Li, is distributed only within the outer portions of the thermal system where temperatures are less than about 225/sup 0/C. Heating experiments indicate that extensive Hg remobilization in Roosevelt samples occurs at temperatures as low as 200/sup 0/ to 250/sup 0/C. This suggests that the distribution of Hg largely reflects the present system thermal configuration and that this distribution may be a useful soild geothermometer.

Christensen, O.D.; Moore, J.N.; Capuano, R.M.

1980-09-01T23:59:59.000Z

96

Some remarks on black hole thermodynamics  

E-Print Network [OSTI]

Two thermodynamic "paradoxes" of black hole physics are re-examined. The first is that there is a thermal instability involving two coupled blackbody cavities containing two black holes, and second is that a classical black hole can swallow up entropy in the form of ambient blackbody photons without increasing its mass. The resolution of the second paradox by Bekenstein and by Hawking is re-visited. The link between Hawking radiation and Wigner's superluminal tunneling time is discussed using two equivalent Feynman diagrams, and Feynman's re-interpretation principle.

R. Y. Chiao

2010-12-27T23:59:59.000Z

97

Energy in density gradient  

E-Print Network [OSTI]

Inhomogeneous plasmas and fluids contain energy stored in inhomogeneity and they naturally tend to relax into lower energy states by developing instabilities or by diffusion. But the actual amount of energy in such inhomogeneities has remained unknown. In the present work the amount of energy stored in a density gradient is calculated for several specific density profiles in a cylindric configuration. This is of practical importance for drift wave instability in various plasmas, and in particular in its application in models dealing with the heating of solar corona because the instability is accompanied with stochastic heating, so the energy contained in inhomogeneity is effectively transformed into heat. It is shown that even for a rather moderate increase of the density at the axis in magnetic structures in the corona by a factor 1.5 or 3, the amount of excess energy per unit volume stored in such a density gradient becomes several orders of magnitude greater than the amount of total energy losses per unit ...

Vranjes, J

2015-01-01T23:59:59.000Z

98

High-gradient compact linear accelerator  

DOE Patents [OSTI]

A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.

Carder, Bruce M. (205 Rogue River Hwy., Gold Hill, OR 97525)

1998-01-01T23:59:59.000Z

99

High-gradient compact linear accelerator  

DOE Patents [OSTI]

A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter. 10 figs.

Carder, B.M.

1998-05-26T23:59:59.000Z

100

Gradient Resources | Open Energy Information  

Open Energy Info (EERE)

Resources Resources Jump to: navigation, search Logo: Gradient Resources Name Gradient Resources Address 9670 Gateway Drive, Suite 200 Place Reno, Nevada Zip 89521 Sector Geothermal energy Year founded 1991 Company Type For Profit Phone number (775) 284-8842 Website http://www.gradient.com/ Region Rockies Area References Gradient Resources Website[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Gradient Resources is a company based in Reno, Nevada. Gradient Resources is engaged in the exploration and development of geothermal resources as well as the construction, ownership and operation of geothermal power plants. The Company is headquartered in Reno, Nevada with a regional office, drilling operations center, and well-cementing

Note: This page contains sample records for the topic "holes thermal gradient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hierarchically deflated conjugate gradient  

E-Print Network [OSTI]

We present a multi-level algorithm for the solution of five dimensional chiral fermion formulations, including domain wall and Mobius Fermions. The algorithm operates on the red-black preconditioned Hermitian operator, and directly accelerates conjugate gradients on the normal equations. The coarse grid representation of this matrix is next-to-next-to-next-to-nearest neighbour and multiple algorithmic advances are introduced, which help minimise the overhead of the coarse grid. The treatment of the coarse grids is purely four dimensional, and the bulk of the coarse grid operations are nearest neighbour. The intrinsic cost of most of the coarse grid operations is therefore comparable to those for the Wilson case. We also document the implementation of this algorithm in the BAGEL/Bfm software package and report on the measured performance gains the algorithm brings to simulations at the physical point on IBM BlueGene/Q hardware.

P A Boyle

2014-02-11T23:59:59.000Z

102

Gradient Sliding for Composite Optimization  

E-Print Network [OSTI]

Noname manuscript No. (will be inserted by the editor). Gradient Sliding for Composite Optimization. Guanghui Lan the date of receipt and acceptance should...

2014-06-11T23:59:59.000Z

103

Solar energy storage by salinity gradient solar pond: Pilot plant construction and gradient control  

Science Journals Connector (OSTI)

An experimental solar pond pilot plant was constructed in Solvay-Martorell, facilities, Catalonia (NE part of the Iberian Peninsula) to capture and store solar energy. The body of the pond is a cylindrical reinforced concrete tank, 3m height, 8m diameter and total area of 50m2. Salinity and thermal gradient were properly established by using the salinity distribution methodology. The gradient in the pond was maintained by feeding salt (NaCl) through a cylindrical salt charger to the bottom at a height of 80cm from the pond floor. Continuous surface washing using tap water supply maintained the salinity of the top convective layer at a low level and compensate loses by evaporation. An acidification method by addition of \\{HCl\\} at different heights was used to control the clarity of the pond. The salinity gradient was fully established on 30 September 2009 and has been maintained until the date. After winter time (February 2010), the pond warms up and the temperature increased continuously until it reached its maximum (55C) in August 2010. The salinity gradient observed great stability after one year of continuous control and maintenance and under different weather conditions.

Csar Valderrama; Oriol Gibert; Jordina Arcal; Pau Solano; Aliakbar Akbarzadeh; Enric Larrotcha; Jos Luis Cortina

2011-01-01T23:59:59.000Z

104

Salt Gradient Solar Pond for Solar Heat Collection and Lang Term Storage  

Science Journals Connector (OSTI)

Work is described concerning the instrumentation, thermal modelling and laboratory tests on a salt gradient solar pond to be used for heat collection and storage. A densitameter capable of measuring the salinity....

V. Phillips; P. J. Unsworth; N. A. Al-Saleh

1983-01-01T23:59:59.000Z

105

An innovative approach to heat extraction from a salinity gradient solar pond to enhance overall efficiency.  

E-Print Network [OSTI]

??A solar pond is a simple and low-cost solar collector with long-term thermal storage. It utilizes a large body of salinity gradient water to absorb (more)

Yaakob, Y

2013-01-01T23:59:59.000Z

106

Spatially resolved lasers using a glassy cholesteric liquid crystal film with lateral pitch gradient  

E-Print Network [OSTI]

Spatially resolved lasers using a glassy cholesteric liquid crystal film with lateral pitch crystal CLC lasers, a lateral pitch gradient was introduced by thermally activated diffusion across efficiencies, 0.2%­1.5%, are superior to those reported to date for gradient-pitch CLC lasers. © 2011 American

Chen, Shaw H.

107

Black Hole Horizons and Black Hole Thermodynamics.  

E-Print Network [OSTI]

??This work investigates how black holes can be described in terms of different definitions of horizons. Global definitions in terms of event horizons and Killing (more)

Nielsen, Alex

2007-01-01T23:59:59.000Z

108

Hawking Radiation by Kerr Black Holes and Conformal Symmetry  

SciTech Connect (OSTI)

The exponential blueshift associated with the event horizon of a black hole makes conformal symmetry play a fundamental role in accounting for its thermal properties. Using a derivation based on two-point functions, we show that the full spectrum of thermal radiation of scalar particles by Kerr black holes can be explicitly derived on the basis of a conformal symmetry arising in the wave equation near the horizon. The simplicity of our approach emphasizes the depth of the connection between conformal symmetry and black hole radiance.

Agullo, Ivan; Parker, Leonard [Physics Department, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201 (United States); Navarro-Salas, Jose [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC. Facultad de Fisica, Universidad de Valencia, Burjassot-46100, Valencia (Spain); Olmo, Gonzalo J. [Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain)

2010-11-19T23:59:59.000Z

109

High field gradient particle accelerator  

DOE Patents [OSTI]

A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

Nation, J.A.; Greenwald, S.

1989-05-30T23:59:59.000Z

110

High field gradient particle accelerator  

DOE Patents [OSTI]

A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

Nation, John A. (Ithaca, NY); Greenwald, Shlomo (Haifa, IL)

1989-01-01T23:59:59.000Z

111

Determination of thermal conductivity and formation temperature from cooling history of friction-heated probes  

Science Journals Connector (OSTI)

......of geothermal gradient and thermal conductivity of rocks or sediments...the formation temperature and thermal conductivity. Ideally, to...measurements require extra battery power supply and an additional...cooling curve for deducing the thermal properties has been contemplated......

Tien-Chang Lee; A. D. Duchkov; S. G. Morozov

2003-02-01T23:59:59.000Z

112

Correlated Knowledge Gradients: Example alternatives  

E-Print Network [OSTI]

Correlated Knowledge Gradients: Example -4 -2 0 2 4 alternatives value 0 10 20 30 -10 -8 -6 -4 -2 0;Correlated Knowledge Gradients: Example -4 -2 0 2 4 alternatives value 0 10 20 30 -10 -8 -6 -4 -2 0 num measurements log(KGfactor) 0 10 20 30 0 0.5 1 1.5 2 num measurements opportunitycost #12;Correlated Knowledge

Keinan, Alon

113

Quantum Emission from Two-Dimensional Black Holes  

E-Print Network [OSTI]

We investigate Hawking radiation from two-dimensional dilatonic black holes using standard quantization techniques. In the background of a collapsing black hole solution the Bogoliubov coefficients can be exactly determined. In the regime after the black hole has settled down to an `equilibrium' state but before the backreaction becomes important these give the known result of a thermal distribution of Hawking radiation at temperature lambda/(2pi). The density matrix is computed in this regime and shown to be purely thermal. Similar techniques can be used to derive the stress tensor. The resulting expression agrees with the derivation based on the conformal anomaly and can be used to incorporate the backreaction. Corrections to the thermal density matrix are also examined, and it is argued that to leading order in perturbation theory the effect of the backreaction is to modify the Bogoliubov transformation, but not in a way that restores information lost to the black holes.

Steven B. Giddings; W. M. Nelson

2009-11-27T23:59:59.000Z

114

Black Hole Chemistry  

E-Print Network [OSTI]

The mass of a black hole has traditionally been identified with its energy. We describe a new perspective on black hole thermodynamics, one that identifies the mass of a black hole with chemical enthalpy, and the cosmological constant as thermodynamic pressure. This leads to an understanding of black holes from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. Both charged and rotating black holes exhibit novel chemical-type phase behaviour, hitherto unseen.

David Kubiznak; Robert B. Mann

2014-04-08T23:59:59.000Z

115

RHIC | Black Holes?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Black Holes at RHIC? Black Holes at RHIC? Further discussion by Physicist Dmitri Kharzeev on why RHIC cannot produce a real gravitational black hole Black holes are among the most mysterious objects in the universe. The gravitational field of a black hole is so strong that Einstein's general relativity tells us that nothing, not even light, can escape from the black hole's interior. However, in 1974 physicist Stephen Hawking demonstrated that black holes must emit radiation once the quantum effects are included. According to quantum mechanics, the physical vacuum is bubbling with short-lived virtual particle-antiparticle pairs. Creation of a particle-antiparticle pair from the vacuum conflicts with energy conservation, but energy need not be conserved at short times in quantum mechanics, according to Heisenberg's

116

The 1983 Temperature Gradient and Heat Flow Drilling Project for the State of Washington  

SciTech Connect (OSTI)

During the Summer of 1983, the Washington Division of Geology and Earth Resources carried out a three-hole drilling program to collect temperature gradient and heat flow information near potential geothermal resource target areas. The project was part of the state-coupled US Department of Energy Geothermal Program. Richardson Well Drilling of Tacoma, Washington was subcontracted through the State to perform the work. The general locations of the project areas are shown in figure 1. The first hole, DNR 83-1, was located within the Green River valley northwest of Mount St. Helens. This site is near the Green River Soda Springs and along the projection of the Mount St. Helens--Elk Lake seismic zone. The other two holes were drilled near Mount Baker. Hole DNR 83-3 was sited about 1/4 km west of the Baker Hot Springs, 10.5 km east of Mount Baker, while hole DNR 83-5 was located along Rocky Creek in the Sulphur Creek Valley. The Rocky Creek hole is about 10 km south-southwest of the peak. Two other holes, DNR 83-2 and DNR 83-4, were located on the north side of the Sulphur Creek Valley. Both holes were abandoned at early stages of drilling because of deep overburden and severe caving problems. The sites were apparently located atop old landslide deposits.

Korosec, Michael A.

1983-11-01T23:59:59.000Z

117

1983 temperature gradient and heat flow drilling project for the State of Washington  

SciTech Connect (OSTI)

During the Summer of 1983, a three-hole drilling program was carried out to collect temperature gradient and heat flow information near potential geothermal resource target areas. The general locations of the project areas are shown. The first hole, DNR 83-1, was located within the Green River valley northwest of Mount St. Helens. This site is near the Green River Soda Springs and along the projection of the Mount St. Helens - Elk Lake seismic zone. The other two holes were drilled near Mount Baker. Hole DNR 83-3 was sited about 1/4 km west of the Baker Hot Springs, 10.5 km east of Mount Baker, while hole DNR 83-5 was located along Rocky Creek in the Sulphur Creek Valley. The Rocky Creek hole is about 10 km south-southwest of the peak. Two other holes, DNR 83-2 and DNR 83-4, were located on the north side of the Sulphur Creek Valley. Both holes were abandoned at early stages of drilling because of deep overburden and severe caving problems. The sites were apparently located atop old landslide deposits.

Korosec, M.A.

1983-11-01T23:59:59.000Z

118

A Comparison of Intermediate Mass Black Hole Candidate ULXs and Stellar-Mass Black Holes  

E-Print Network [OSTI]

Cool thermal emission components have recently been revealed in the X-ray spectra of a small number of ultra-luminous X-ray (ULX) sources with L_X > 1 E+40 erg/s in nearby galaxies. These components can be well fitted with accretion disk models, with temperatures approximately 5-10 times lower than disk temperatures measured in stellar-mass Galactic black holes when observed in their brightest states. Because disk temperature is expected to fall with increasing black hole mass, and because the X-ray luminosity of these sources exceeds the Eddington limit for 10 Msun black holes (L_Edd = 1.3 E+39 erg/s), these sources are extremely promising intermediate-mass black hole candidates (IMBHCs). In this Letter, we directly compare the inferred disk temperatures and luminosities of these ULXs, with the disk temperatures and luminosities of a number of Galactic black holes. The sample of stellar-mass black holes was selected to include different orbital periods, companion types, inclinations, and column densities. These ULXs and stellar-mass black holes occupy distinct regions of a L_X -- kT diagram, suggesting these ULXs may harbor IMBHs. We briefly discuss the important strengths and weaknesses of this interpretation.

J. M. Miller; A. C. Fabian; M. C. Miller

2004-06-29T23:59:59.000Z

119

Black hole chromosphere at the CERN LHC  

Science Journals Connector (OSTI)

If the scale of quantum gravity is near a TeV, black holes will be copiously produced at the CERN LHC. In this work we study the main properties of the light descendants of these black holes. We show that the emitted partons are closely spaced outside the horizon, and hence they do not fragment into hadrons in vacuum but more likely into a kind of quark-gluon plasma. Consequently, the thermal emission occurs far from the horizon, at a temperature characteristic of the QCD scale. We analyze the energy spectrum of the particles emerging from the chromosphere, and find that the hard hadronic jets are almost entirely suppressed. They are replaced by an isotropic distribution of soft photons and hadrons, with hundreds of particles in the GeV range. This provides a new distinctive signature for black hole events at LHC.

Luis Anchordoqui and Haim Goldberg

2003-03-26T23:59:59.000Z

120

Uniformly accelerated black holes  

Science Journals Connector (OSTI)

The static and stationary C metric are examined in a generic framework and their interpretations studied in some detail, especially those with two event horizons, one for the black hole and another for the acceleration. We find that (i) the spacetime of an accelerated static black hole is plagued by either conical singularities or a lack of smoothness and compactness of the black hole horizon, (ii) by using standard black hole thermodynamics we show that accelerated black holes have a higher Hawking temperature than Unruh temperature of the accelerated frame, and (iii) the usual upper bound on the product of the mass and acceleration parameters (<1/27) is just a coordinate artifact. The main results are extended to accelerated rotating black holes with no significant changes.

Patricio S. Letelier and Samuel R. Oliveira

2001-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "holes thermal gradient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Gas Exchange, Partial Pressure Gradients,  

E-Print Network [OSTI]

Gas Exchange, Partial Pressure Gradients, and the Oxygen Window Johnny E. Brian, Jr., M of circulatory and gas transport physiology, and the best place to start is with normobaric physiology. LIFE affect the precise gas exchange occurring in individual areas of the lungs and body tissues. To make

Riba Sagarra, Jaume

122

The Extended Finite Element Method for High Gradient Solutions  

E-Print Network [OSTI]

Outline Enrichment functions for high gradient solutions Motivation High gradient inside the domain (Shocks) High gradient at the boundary (boundary layers) Optimal set of enrichment functions Numerical for high gradient solutions Outline Enrichment functions for high gradient solutions Motivation High

123

Accreting Black Holes  

E-Print Network [OSTI]

I outline the theory of accretion onto black holes, and its application to observed phenomena such as X-ray binaries, active galactic nuclei, tidal disruption events, and gamma-ray bursts. The dynamics as well as radiative signatures of black hole accretion depend on interactions between the relatively simple black-hole spacetime and complex radiation, plasma and magnetohydrodynamical processes in the surrounding gas. I will show how transient accretion processes could provide clues to these interactions. Larger global magnetohydrodynamic simulations as well as simulations incorporating plasma microphysics and full radiation hydrodynamics will be needed to unravel some of the current mysteries of black hole accretion.

Begelman, Mitchell C

2014-01-01T23:59:59.000Z

124

Design, prototyping, and testing of an apparatus for establishing a linear temperature gradient in experimental fish tanks  

E-Print Network [OSTI]

Immunology researchers require a new type of fish tank that provides a linear thermal gradient for experimental zebrafish in order to improve the accuracy and validity of their research. Zebrafish require the ability to ...

Kadri, Romi Sinclair

2014-01-01T23:59:59.000Z

125

The high energy emission from black holes  

E-Print Network [OSTI]

The origin of the high energy emission (X-rays and gamma-rays) from black holes is still a matter of debate. We present new evidence that hard X-ray emission in the low/hard state may not be dominated by thermal Comptonization. We present an alternative scenario for the origin of the high energy emission that is well suited to explain the high energy emission from GRO J1655-40.

M. D. Caballero-Garcia; J. M. Miller; E. Kuulkers

2007-11-06T23:59:59.000Z

126

Effective Thermal Conductivity of Graded Nanocomposites with Interfacial Thermal  

E-Print Network [OSTI]

.M. Yin", G. H. Paulino", W.G. Buttlar", and L.Z. Sun'' '^Department of Civil and Environmental the effective thermal conductivity distribution in functionally graded materials (FGMs) considering the Kapitza is developed to derive the averaged heat flux field of the particle phase. Then the temperature gradient can

Paulino, Glaucio H.

127

Faster Time Response by the Use of Wire Electrodes in Capacitive Salinity Gradient Energy Systems  

Science Journals Connector (OSTI)

Comparing salinity gradient power to other ocean power sources, such as wind, ocean currents, wave, tidal streams, and thermal gradients, it is supreme partly in that it has the second largest power potential, but foremost because it is focused at river deltas (rather than being distributed over the ocean areas across the world). ... We also studied the asymmetric behavior of response time in concentrated saline solution and dilute saline solution that is reported for our branch of technologies. ... solns. of different salinities. ...

Odne S. Burheim; Fei Liu; Bruno B. Sales; Olivier Schaetzle; Cees J. N. Buisman; Hubertus V. M. Hamelers

2012-08-28T23:59:59.000Z

128

Lab Trials of an Electricity Transmission Line Voltage Sensor Based on Thermally Poled Silica Fibre  

Science Journals Connector (OSTI)

Voltage sensing using helically coiled lengths of thermally poled twin-hole silica optical fibre is presented. Lab accuracy test results showing good linearity and signal to noise...

Michie, Andrew M; Hambley, Philip; Bassett, Ian M; Haywood, John H; Henry, Peter; Ingram, John

129

Temperature gradients in a portion of Michigan: a review of the usefulness of data from the AAPG geothermal survey of North America  

SciTech Connect (OSTI)

Temperature gradient data derived from drill holes in an east-west zone through the center of the southern peninsula of Michigan are analyzed. The purpose of this work is to investigate possible problems in utilizing the American Association of Petroleum Geologists data base. Michigan was chosen because a review of that State's geothermal potential shows inconsistencies between gradients from shallow wells and nearby deeper wells and because the geology of the State is relativey simple. The structure and stratigraphy are discussed because an understanding of Michigan basin geology makes it easier to predict the influence of lithology on the basin's geothermal gradients. Explanations for elevated gradients are reviewed. (MHR)

Vaught, T.L.

1980-08-01T23:59:59.000Z

130

"Hybrid" Black Holes  

E-Print Network [OSTI]

We discuss a solution of the Einstein equations, obtained by gluing the external Kerr metric and the internal Weyl metric, describing an axisymmetric static vacuum distorted black hole. These metrics are glued at the null surfaces representing their horizons. For this purpose we use the formalism of massive thin null shells. The corresponding solution is called a "hybrid" black hole. The massive null shell has an angular momentum which is the origin of the rotation of the external Kerr spacetime. At the same time, the shell distorts the geometry inside the horizon. The inner geometry of the "hybrid" black hole coincides with the geometry of the interior of a non-rotating Weyl-distorted black hole. Properties of the "hybrid" black holes are briefly discussed.

Valeri P. Frolov; Andrei V. Frolov

2014-12-30T23:59:59.000Z

131

Thermal Stress Analysis of LCA-based Solid Oxide Fuel Cells.  

E-Print Network [OSTI]

??This research characterizes the thermal stress resulting from temperature gradients in hybrid solid oxide fuel cells that are processed using a novel oxide powder slurry (more)

LeMasters, Jason Augustine

2004-01-01T23:59:59.000Z

132

Salinity Gradient Energy at River Mouths  

Science Journals Connector (OSTI)

Salinity Gradient Energy at River Mouths ... River mouths are potentially abundant locations for the exploitation of the clean and renewable salinity gradient energy (SGE) as here perpetually fresh water mixes with saline seawater. ...

Oscar Alvarez-Silva; Christian Winter; Andres F. Osorio

2014-09-03T23:59:59.000Z

133

Revisiting an Old Concept: The Gradient Wind  

Science Journals Connector (OSTI)

The gradient wind is defined as a horizontal wind having the same direction as the geostrophic wind but with a magnitude consistent with a balance of three forces: the pressure gradient force, the Coriolis force, and the centrifugal force arising ...

Keith F. Brill

2014-04-01T23:59:59.000Z

134

Measurement of Thermal Dependencies of PBG Fiber Properties  

SciTech Connect (OSTI)

Photonic crystal fibers (PCFs) represent a class of optical fibers which have a wide spectrum of applications in the telecom and sensing industries. Currently, the Advanced Accelerator Research Department at SLAC is developing photonic bandgap particle accelerators, which are photonic crystal structures with a central defect used to accelerate electrons and achieve high longitudinal electric fields. Extremely compact and less costly than the traditional accelerators, these structures can support higher accelerating gradients and will open a new era in high energy physics as well as other fields of science. Based on direct laser acceleration in dielectric materials, the so called photonic band gap accelerators will benefit from mature laser and semiconductor industries. One of the key elements to direct laser acceleration in hollow core PCFs, is maintaining thermal and structural stability. Previous simulations demonstrate that accelerating modes are sensitive to the geometry of the defect region and the variations in the effective index. Unlike the telecom modes (for which over 95% of the energy propagates in the hollow core) most of the power of these modes is located in the glass at the periphery of the central hole which has a higher thermal constant than air ({gamma}{sub SiO{sub 2}} = 1.19 x 10{sup -6} 1/K, {gamma}{sub air} = -9 x 10{sup -7} 1/K with {gamma} = dn/dT). To fully control laser driven acceleration, we need to evaluate the thermal and structural consequences of such modes on the PCFs. We are conducting series of interferometric tests to quantify the dependencies of the HC-633-02 (NKT Photonics) propagation constant (k{sub z}) on temperature, vibration amplitude, stress and electric field strength. In this paper we will present the theoretical principles characterizing the thermal behavior of a PCF, the measurements realized for the fundamental telecom mode (TE{sub 00}), and the experimental demonstration of TM-like mode propagation in the HC-633-02 fiber.

Laouar, Rachik

2011-07-06T23:59:59.000Z

135

Black holes at the IceCube neutrino telescope  

Science Journals Connector (OSTI)

If the fundamental Planck scale is about a TeV and the cosmic neutrino flux is at the Waxman-Bahcall level, quantum black holes are created daily in the Antarctic ice cap. We reexamine the prospects for observing such black holes with the IceCube neutrino-detection experiment. To this end, we first revise the black hole production rate by incorporating the effects of inelasticty, i.e., the energy radiated in gravitational waves by the multipole moments of the incoming shock waves. After that we study in detail the process of Hawking evaporation accounting for the black holes large momentum in the lab system. We derive the energy spectrum of the Planckian cloud which is swept forward with a large, O(106), Lorentz factor. (It is noteworthy that the boosted thermal spectrum is also relevant for the study of near-extremal supersymmetric black holes, which could be copiously produced at the Large Hadron Collider.) In the semiclassical regime, we estimate the average energy of the boosted particles to be less than 20% the energy of the ? progenitor. Armed with such a constraint, we determine the discovery reach of IceCube by tagging on soft (relative to what one would expect from charged current standard model processes) muons escaping the electromagnetic shower bubble produced by the black holes light descendants. The statistically significant 5? excess extends up to a quantum gravity scale ?1.3??TeV.

Luis A. Anchordoqui; Matthew M. Glenz; Leonard Parker

2007-01-09T23:59:59.000Z

136

Bayesian Policy Gradient and Actor-Critic Algorithms Bayesian Policy Gradient and Actor-Critic Algorithms  

E-Print Network [OSTI]

Bayesian Policy Gradient and Actor-Critic Algorithms Bayesian Policy Gradient and Actor Yaakov Engel yakiengel@gmail.com Editor: Abstract Policy gradient methods are reinforcement learning algorithms that adapt a param- eterized policy by following a performance gradient estimate. Many

Paris-Sud XI, Université de

137

RHIC | Black Holes?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Black Holes at RHIC? Black Holes at RHIC? Before RHIC began operations in 2000, some were concerned that it would produce black holes that would threaten the earth. Here's why those concerns were unfounded. Committee Review of Speculative "Disaster Scenarios" at RHIC In July 1999, Brookhaven Lab Director John Marburger convened a committee of distinguished physicists to write a comprehensive report on the arguments that address the safety of speculative disaster scenarios at RHIC. The scenarios are: Creation of a black hole that would "eat" ordinary matter. Initiation of a transition to a new, more stable universe. Formation of a "strangelet" that would convert ordinary matter to a new form. jaffee "We conclude that there are no credible mechanisms for catastrophic

138

Charged Schrodinger black holes  

E-Print Network [OSTI]

We construct charged and rotating asymptotically Schrdinger black hole solutions of type IIB supergravity. We begin by obtaining a closed-form expression for the null Melvin twist of a broad class of type IIB backgrounds, ...

Adams, Allan

139

Holes in Spectral Lines  

E-Print Network [OSTI]

The decay of an atom in the presence of a static perturbation is investigated. The perturbation couples a decaying state with a nondecaying state. A "hole" appears in the emission line at a frequency equal to the frequency ...

Fontana, Peter R.; Srivastava, Rajendra P.

1973-06-01T23:59:59.000Z

140

On Black Hole Entropy  

E-Print Network [OSTI]

Two techniques for computing black hole entropy in generally covariant gravity theories including arbitrary higher derivative interactions are studied. The techniques are Wald's Noether charge approach introduced recently, and a field redefinition method developed in this paper. Wald's results are extended by establishing that his local geometric expression for the black hole entropy gives the same result when evaluated on an arbitrary cross-section of a Killing horizon (rather than just the bifurcation surface). Further, we show that his expression for the entropy is not affected by ambiguities which arise in the Noether construction. Using the Noether charge expression, the entropy is evaluated explicitly for black holes in a wide class of generally covariant theories. Further, it is shown that the Killing horizon and surface gravity of a stationary black hole metric are invariant under field redefinitions of the metric of the form $\\bar{g}_{ab}\\equiv g_{ab} + \\Delta_{ab}$, where $\\Delta_{ab}$ is a tensor field constructed out of stationary fields. Using this result, a technique is developed for evaluating the black hole entropy in a given theory in terms of that of another theory related by field redefinitions. Remarkably, it is established that certain perturbative, first order, results obtained with this method are in fact {\\it exact}. The possible significance of these results for the problem of finding the statistical origin of black hole entropy is discussed.}

Ted Jacobson; Gungwon Kang; Robert C. Myers

1994-01-03T23:59:59.000Z

Note: This page contains sample records for the topic "holes thermal gradient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Slim Holes At Blue Mountain Area (Fairbank Engineering, 2009) | Open Energy  

Open Energy Info (EERE)

Fairbank Engineering, 2009) Fairbank Engineering, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Blue Mountain Area (Fairbank Engineering, 2009) Exploration Activity Details Location Blue Mountain Area Exploration Technique Slim Holes Activity Date Usefulness useful DOE-funding Unknown Notes DEEP BLUE No.1, the first slim geothermal observation test hole at Blue Mountain, was drilled under a cost-share program between the DOE and Noramex, under the DOE's Geothermal Resource Exploration and Definition (GRED) program, (Noramex Corp., 2002). The hole was sited to test an area of projected high temperature at depth from gradients measured in shallow holes drilled in the central part of the lease area (Figure 3.1), and to test an area of low apparent resistivity interpreted to reflect possible

142

Water transport inside a single-walled carbon nanotube driven by temperature gradient  

E-Print Network [OSTI]

Water transport inside a single-walled carbon nanotube driven by temperature gradient J. Shiomi mass transport of a water cluster inside a single-walled carbon nanotube (SWNT) with the diameter of about 1.4 nm. The influence of the non-equilibrium thermal environment on the confined water cluster has

Maruyama, Shigeo

143

Optimization of synchronization in gradient clustered networks  

E-Print Network [OSTI]

We consider complex clustered networks with a gradient structure, where sizes of the clusters are distributed unevenly. Such networks describe more closely actual networks in biophysical systems and in technological applications than previous models. Theoretical analysis predicts that the network synchronizability can be optimized by the strength of the gradient field but only when the gradient field points from large to small clusters. A remarkable finding is that, if the gradient field is sufficiently strong, synchronizability of the network is mainly determined by the properties of the subnetworks in the two largest clusters. These results are verified by numerical eigenvalue analysis and by direct simulation of synchronization dynamics on coupled-oscillator networks.

Xingang Wang; Liang Huang; Ying-Cheng Lai; Choy Heng Lai

2007-11-23T23:59:59.000Z

144

Optimization Online - An Accelerated Proximal Coordinate Gradient ...  

E-Print Network [OSTI]

Jul 7, 2014 ... An Accelerated Proximal Coordinate Gradient Method and its Application to Regularized Empirical Risk Minimization. Qihang Lin(qihang-lin...

Qihang Lin

2014-07-07T23:59:59.000Z

145

Black holes at accelerators.  

E-Print Network [OSTI]

ar X iv :h ep -p h/ 05 11 12 8v 3 6 A pr 2 00 6 Black Holes at Accelerators Bryan Webber Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK In theories with large extra dimensions and TeV-scale gravity, black holes... 2000 3000 Missing ET (GeV) Ar bi tra ry S ca le p p ? QCD SUSY 5 TeV BH (n=6) 5 TeV BH (n=2) (PT > 600 GeV) (SUGRA point 5) Figure 10: Missing transverse energy for various processes at the LHC. 4.2. Event Characteristics Turning from single...

Webber, Bryan R

146

Microinstabilities in weak density gradient tokamak systems  

SciTech Connect (OSTI)

A prominent characteristic of auxiliary-heated tokamak discharges which exhibit improved (''H-mode type'') confinement properties is that their density profiles tend to be much flatter over most of the plasma radius. Depsite this favorable trend, it is emphasized here that, even in the limit of zero density gradient, low-frequency microinstabilities can persist due to the nonzero temperature gradient.

Tang, W.M.; Rewoldt, G.; Chen, L.

1986-04-01T23:59:59.000Z

147

Chapter 5 Salinity Gradient Energy  

Science Journals Connector (OSTI)

There exists a huge potential for the generation of energy from the mixing of saltwater and freshwater. The potential is 2.6TW, which is more than the global electricity consumption (2.0TW). Two membrane-based technologies exist to convert this potentially available energy into useful power: pressure-retarded osmosis (PRO) and reverse electrodialysis (RED). In PRO, water is transported through a semipermeable membrane from the less concentrated solution toward the concentrated salt solution to generate power. In RED, salt ions are transported from the concentrated salt solution through ion exchange membranes toward the less concentrated solution to extract the energy. Both technologies were developed in the 1970s and 1980s and both regained interest lately due to recent developments in membrane technology and the need for sustainable energy processes. This chapter describes the potential of salinity gradient energy of both processes in detail, and an overview of the relevant literature on both technologies is presented. Furthermore, it summarizes the recent developments, pilot testing, scale-up, and future expectations of both technologies.

Kitty Nijmeijer; Sybrand Metz

2010-01-01T23:59:59.000Z

148

Inside a black hole  

Science Journals Connector (OSTI)

... interior. These models reveal several significantly different behaviours. The simplest model, of a 'Schwarzschild' black hole, which possesses mass but no charge or angular momentum, has an ... into account, seal off the 'tunnel', and yield an interior similar to the Schwarzschild model, with an all-encompassing crushing singularity. More recently, there have been attempts6- ...

William A. Hiscock

1991-10-24T23:59:59.000Z

149

Laser bottom hole assembly  

DOE Patents [OSTI]

There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

2014-01-14T23:59:59.000Z

150

Advection-Dominated Accretion and the Black Hole Event Horizon  

E-Print Network [OSTI]

As the luminosity of an accreting black hole drops to a few percent of Eddington, the spectrum switches from the familiar soft state to a hard state that is well-described by a distended and tenuous advection-dominated accretion flow (ADAF). An ADAF is a poor radiator, and the ion temperature can approach 10^{12} K near the center, although the electrons are cooler, with their temperature typically capped at ~10^{9-11} K. The foundational papers predicted that the large thermal energy in an ADAF would drive strong winds and jets, as later observed and also confirmed in computer simulations. Of chief interest, however, is the accreting gas that races inward. It carries the bulk of the accretion energy as stored thermal energy, which vanishes without a trace as the gas passes through the hole's event horizon. One thus expects black holes in the ADAF regime to be unusually faint. Indeed, this is confirmed by a comparison of accreting stellar-mass black holes and neutron stars, which reside in very similar transient X-ray binary systems. The black holes are on average observed to be fainter by a factor of ~100-1000. The natural explanation is that a neutron star must radiate the advected thermal energy from its surface, whereas a black hole can hide the energy behind its event horizon. The case for an event horizon in Sagittarius A*, which is immune to caveats on jet outflows and is furthermore independent of the ADAF model, is especially compelling. These two lines of evidence for event horizons are impervious to counterarguments that invoke strong gravity or exotic stars.

Ramesh Narayan; Jeffrey E. McClintock

2008-03-03T23:59:59.000Z

151

Quasilinear Carbon Transport In An Impurity Hole Plasma In LHD  

SciTech Connect (OSTI)

Comprehensive electrostatic gyrokinetic linear stability calculations for ion-scale microinstabilities in an LHD plasma with an ion-ITB and carbon "impurity hole" are used to make quasilinear estimates of particle flux to explore whether microturbulence can explain the observed outward carbon fluxes that flow "up" the impurity density gradient. The ion temperature is not stationary in the ion-ITB phase of the simulated discharge, during which the core carbon density decreases continuously. To fully sample these varying conditions the calculations are carried out at three radial locations and four times. The plasma parameter inputs are based on experimentally measured profiles of electron and ion temperature, as well as electron and carbon density. The spectroscopic line-average ratio of hydrogen and helium densities is used to set the density of these species. Three ion species (H,He,C) and the electrons are treated kinetically, including collisions. Electron instability drive does enhance the growth rate significantly, but the most unstable modes have characteristics of ion temperature gradient (ITG) modes in all cases. As the carbon density gradient is scanned between the measured value and zero, the quasilinear carbon flux is invariably inward when the carbon density profile is hollow, so turbulent transport due to the instabilities considered here does not explain the observed outward flux of impurities in impurity hole plasmas. The stiffness of the quasilinear ion heat flux is found to be 1.7-2.3, which is lower than several estimates in tokamaks.

Mikkelsen, David R. [PPPL; Tanaka, K. [NIFS; Nunami, M. [NIFS; Watanabe, T-H. [Nagoya University; Sugama, H. [NIFS; Yoshinuma, M. [NIFS; Suzuki, Y. [NIFS; Goto, M. [NIFS; Morita, S. [NIFS; Wieland, B. [NIFS; Yamada, I. [NIFS; Yashura, R. [NIFS; Akiyama, T. [NIFS; Pablant, Novimir A. [PPPL

2014-04-01T23:59:59.000Z

152

Thermalization of isolated quantum systems  

E-Print Network [OSTI]

Understanding the evolution towards thermal equilibrium of an isolated quantum system is at the foundation of statistical mechanics and a subject of interest in such diverse areas as cold atom physics or the quantum mechanics of black holes. Since a pure state can never evolve into a thermal density matrix, the Eigenstate Thermalization Hypothesis (ETH) has been put forward by Deutsch and Srednicki as a way to explain this apparent thermalization, similarly to what the ergodic theorem does in classical mechanics. In this paper this hypothesis is tested numerically. First, it is observed that thermalization happens in a subspace of states (the Krylov subspace) with dimension much smaller than that of the total Hilbert space. We check numerically the validity of ETH in such a subspace, for a system of hard core bosons on a two-dimensional lattice. We then discuss how well the eigenstates of the Hamiltonian projected on the Krylov subspace represent the true eigenstates. This discussion is aided by bringing the projected Hamiltonian to the tridiagonal form and interpreting it as an Anderson localization problem for a finite one-dimensional chain. We also consider thermalization of a subsystem and argue that generation of a large entanglement entropy can lead to a thermal density matrix for the subsystem well before the whole system thermalizes. Finally, we comment on possible implications of ETH in quantum gravity.

Sergei Khlebnikov; Martin Kruczenski

2014-03-12T23:59:59.000Z

153

Were Archaean continental geothermal gradients much steeper than today? (reply)  

Science Journals Connector (OSTI)

... -We did not intend to suggest that our gradients bore any relationship to near-surface geothermal gradients. It may have been clearer to have termed them average ... gradients. It may have been clearer to have termed them average geothermal gradients. Our purpose in quoting these gradients was simply to emphasise that the temperature ...

KEVIN BURKE; W. S. F. KIDD

1978-08-17T23:59:59.000Z

154

Applications of salinity gradient solar technologies in the Southwest -- An overview  

SciTech Connect (OSTI)

This paper is an overview of recent applications of salinity gradient solar technologies (SGST) in the Southwest and especially in the State of Texas. SGST is a generic title for using a salinity gradient in a body of water to suppress convection and collect solar energy for a desired application, for example, salinity gradient solar ponds. Following initial work in the early 1980s at the El Paso Solar Pond project and funding of the Texas Solar Pond Consortium by the State of Texas and the Bureau of Reclamation, several applications involving the use of salinity gradient solar technologies have emerged. These applications include a biomass waste to energy project using heat from a solar pond at Bruce Foods Corporation; an industrial process heat application for sodium sulfate mining near Seagraves, Texas; overwintering thermal refuges for mariculture in Palacios, Texas; a potential salt management project on the Brazos River near Abilene, Texas; and use of solar ponds for brine disposal at a water desalting project in a small colonia east of El Paso. This paper discusses salinity gradient solar technology requirements and the abundance of resources available in Texas and the Southwest which makes this an attractive location for the commercial development of salinity gradient projects. Barriers to development as well as catalysts are discussed before a brief overview of the projects listed above is provided.

Swift, A.H.P.; Lu, H. [Univ. of Texas, El Paso, TX (United States)

1996-12-31T23:59:59.000Z

155

Measurement of thermodynamics using gradient flow  

E-Print Network [OSTI]

We analyze bulk thermodynamics and correlation functions of the energy-momentum tensor in pure Yang-Mills gauge theory using the energy-momentum tensor defined by the gradient flow and small flow time expansion. Our results on thermodynamic observables are consistent with those obtained by the conventional integral method. The analysis of the correlation function of total energy supports the energy conservation. It is also addressed that these analyses with gradient flow require less statistics compared with the previous methods. All these results suggest that the energy-momentum tensor can be successfully defined and observed on the lattice with moderate numerical costs with the gradient flow.

Masakiyo Kitazawa; Masayuki Asakawa; Tetsuo Hatsuda; Takumi Iritani; Etsuko Itou; Hiroshi Suzuki

2014-12-15T23:59:59.000Z

156

Solution Processed Tungsten Oxide Interfacial Layer for Efficient Hole-Injection in Quantum Dot Light-Emitting Diodes  

E-Print Network [OSTI]

2/2014 Solution Processed Tungsten Oxide Interfacial Layer for Efficient Hole-Injection in Quantum Layer for Efficient Hole-Injection in Quantum Dot Light- Emitting Diodes Xuyong Yang, Evren Mutlugun-based devices, the organic interfacial buffer layers have inferior thermal stability. Efforts to replace PEDOT

Demir, Hilmi Volkan

157

Supermassive Black Holes  

E-Print Network [OSTI]

Supermassive black holes have generally been recognized as the most destructive force in nature. But in recent years, they have undergone a dramatic shift in paradigm. These objects may have been critical to the formation of structure in the early universe, spawning bursts of star formation and nucleating proto-galactic condensations. Possibly half of all the radiation produced after the Big Bang may be attributed to them, whose number is now known to exceed 300 million. The most accessible among them is situated at the Center of Our Galaxy. In the following pages, we will examine the evidence that has brought us to this point, and we will understand why many expect to actually image the event horizon of the Galaxy's central black hole within this decade.

Fulvio Melia

2007-05-10T23:59:59.000Z

158

Black hole lasers  

Science Journals Connector (OSTI)

High frequency dispersion does not alter the low frequency spectrum of Hawking radiation from a single black hole horizon, whether the dispersion entails subluminal or superluminal group velocities. We show here that in the presence of an inner horizon as well as an outer horizon the superluminal case differs dramatically however. The negative energy partners of Hawking quanta return to the outer horizon and stimulate more Hawking radiation if the field is bosonic or suppress it if the field is fermionic. This process leads to exponential growth or damping of the radiated flux and correlations among the quanta emitted at different times, unlike in the usual Hawking effect. These phenomena may be observable in condensed matter black hole analogues that exhibit superluminal dispersion.

Steven Corley and Ted Jacobson

1999-05-17T23:59:59.000Z

159

Ballistic dispersion in temperature gradient focusing  

E-Print Network [OSTI]

regime is the most familiar regime in microfluidic systems, an oft-overlooked regime is that of purely kinematic (or ballistic) dispersion. In most microfluidic systems, this dispersion regime is transient systems. Keywords: microfluidics; temperature gradient focusing; kinematic dispersion; Taylor

Santiago, Juan G.

160

Separation of carbon nanotubes in density gradients  

DOE Patents [OSTI]

The separation of single-walled carbon nanotubes (SWNTs), by chirality and/or diameter, using centrifugation of compositions of SWNTs in and surface active components in density gradient media.

Hersam, Mark C. (Evanston, IL); Stupp, Samuel I. (Chicago, IL); Arnold, Michael S. (Northbrook, IL)

2012-02-07T23:59:59.000Z

Note: This page contains sample records for the topic "holes thermal gradient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Separation of carbon nanotubes in density gradients  

DOE Patents [OSTI]

The separation of single-walled carbon nanotubes (SWNTs), by chirality and/or diameter, using centrifugation of compositions of SWNTs in and surface active components in density gradient media.

Hersam, Mark C. (Evanston, IL); Stupp, Samuel I. (Chicago, IL); Arnold, Michael S. (Northbrook, IL)

2010-02-16T23:59:59.000Z

162

The proximal-proximal gradient algorithm  

E-Print Network [OSTI]

Aug 23, 2013 ... to consider a proximal gradient algorithm [11] for solving (1), where one ...... Hence, in the case when ? = 1 and M is surjective so that T = MR for...

2013-08-24T23:59:59.000Z

163

Program predicts two-phase pressure gradients  

SciTech Connect (OSTI)

The calculator program discussed, ORK, was designed for the HP-41CV hand-held calculator and uses the Orkiszewski correlation for predicting 2-phase pressure gradients in vertical tubulars. Accurate predictions of pressure gradients in flowing and gas lift wells over a wide range of well conditions can be obtained with this method, which was developed based on data from 148 wells. The correlation is one of the best generalized 2-phase pressure gradient prediction methods developed to date for vertical flow. It is unique in that hold-up is derived from observed physical phenomena, and the pressure gradient is related to the geometrical distribution of the liquid and gas phase (flow regime).

Jacks, D.C.; Hill, A.D.

1983-11-18T23:59:59.000Z

164

Temperatures, heat flow, and water chemistry from drill holes in the Raft  

Open Energy Info (EERE)

Temperatures, heat flow, and water chemistry from drill holes in the Raft Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River area of Idaho contains a geothermal system of intermediate temperatures (approx. = 150 0C) at depths of about 1.5 km. Outside of the geothermal area, temperature measurements in three intermediate-depth drill holes (200 to 400 m) and one deep well (1500 m) indicate that the regional conductive heat flow is about 2.5 mucal/cm 2 sec or slightly higher and that temperature gradients range from 50 0 to 60

165

Modeling feedback from stars and black holes in galaxy mergers  

E-Print Network [OSTI]

We describe techniques for incorporating feedback from star formation and black hole accretion into simulations of isolated and merging galaxies. At present, the details of these processes cannot be resolved in simulations on galactic scales. Our basic approach therefore involves forming coarse-grained representations of the properties of the interstellar medium and black hole accretion starting from basic physical assumptions, so that the impact of these effects can be included on resolved scales. We illustrate our method using a multiphase description of star-forming gas. Feedback from star formation pressurises highly overdense gas, altering its effective equation of state. We show that this allows the construction of stable galaxy models with much larger gas fractions than possible in earlier numerical work. We extend the model by including a treatment of gas accretion onto central supermassive black holes in galaxies. Assuming thermal coupling of a small fraction of the bolometric luminosity of accreting...

Springel, V; Hernquist, L; Springel, Volker; Matteo, Tiziana Di; Hernquist, Lars

2004-01-01T23:59:59.000Z

166

Black/White hole radiation from dispersive theories  

E-Print Network [OSTI]

We study the fluxes emitted by black holes when using dispersive field theories. We work with stationary one dimensional backgrounds which are asymptotically flat on both sides of the horizon. The asymptotic fluxes are governed by a 3x3 Bogoliubov transformation. The fluxes emitted by the corresponding white holes are regular and governed by the inverse transformation. We numerically compute the spectral properties of these fluxes for both sub- and superluminal quartic dispersion. The leading deviations with respect to the dispersionless flux are computed and shown to be governed by a critical frequency above which there is no radiation. Unlike the UV scale governing dispersion, its value critically depends on the asymptotic properties of the background. We also study the flux outside the robust regime. In particular we show that its low frequency part remains almost thermal but with a temperature which significantly differs from the standard one. Application to four dimensional black holes and Bose-Einstein condensates are in preparation.

Jean Macher; Renaud Parentani

2009-06-02T23:59:59.000Z

167

Scattering polarization in the CaII Infrared Triplet with Velocity Gradients  

E-Print Network [OSTI]

Magnetic field topology, thermal structure and plasma motions are the three main factors affecting the polarization signals used to understand our star. In this theoretical investigation, we focus on the effect that gradients in the macroscopic vertical velocity field have on the non-magnetic scattering polarization signals, establishing the basis for general cases. We demonstrate that the solar plasma velocity gradients have a significant effect on the linear polarization produced by scattering in chromospheric spectral lines. In particular, we show the impact of velocity gradients on the anisotropy of the radiation field and on the ensuing fractional alignment of the CaII levels, and how they can lead to an enhancement of the zero-field linear polarization signals. This investigation remarks the importance of knowing the dynamical state of the solar atmosphere in order to correctly interpret spectropolarimetric measurements, which is important, among other things, for establishing a suitable zero field refe...

Carlin, E S; Ramos, A Asensio; Bueno, J Trujillo

2012-01-01T23:59:59.000Z

168

Salinity gradient solar pond technology applied to potash solution mining  

SciTech Connect (OSTI)

A solution mining facility at the Eddy Potash Mine, Eddy County, New Mexico has been proposed that will utilize salinity gradient solar pond (SGSP) technology to supply industrial process thermal energy. The process will include underground dissolution of potassium chloride (KCl) from pillars and other reserves remaining after completion of primary room and pillar mining using recirculating solutions heated in the SGSP. Production of KCl will involve cold crystallization followed by a cooling pond stage, with the spent brine being recirculated in a closed loop back to the SGSP for reheating. This research uses SGSP as a renewable, clean energy source to optimize the entire mining process, minimize environmental wastes, provide a safe, more economical extraction process and reduce the need for conventional processing by crushing, grinding and flotation. The applications of SGSP technology will not only save energy in the extraction and beneficiation processes, but also will produce excess energy available for power generation, desalination, and auxiliary structure heating.

Martell, J.A.; Aimone-Martin, C.T.

2000-06-12T23:59:59.000Z

169

Acoustical power amplification and damping by temperature gradients  

Science Journals Connector (OSTI)

Ceperley proposed a concept of a traveling wave heat engine [A pistonless Stirling engineThe traveling wave heat engine J. Acoust. Soc. Am. 66 15081513 (1979).] that provided a starting point of thermoacoustics today. This paper verifies experimentally his idea through observation of amplification and strong damping of a plane acoustic traveling wave as it passes through axial temperature gradients. The acoustic power gain is shown to obey a universal curve specified by a dimensionless parameter ???; ? is the angular frequency and ?? is the relaxation time for the gas to thermally equilibrate with channel walls. As an application of his idea a three-stage acoustic power amplifier is developed which attains the gain up to 10 with a moderate temperature ratio of 2.3.

Tetsushi Biwa; Ryo Komatsu; Taichi Yazaki

2011-01-01T23:59:59.000Z

170

Drilling Large Diameter Holes in Rocks Using Multiple Laser Beams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Drilling Large Diameter Holes in Rocks Using Multiple Laser Beams (504) Drilling Large Diameter Holes in Rocks Using Multiple Laser Beams (504) Richard Parker,. Parker Geoscience Consulting, LLC, Arvada, Colorado, USA; Zhiyue Xu and Claude Reed, Argonne National Laboratory, Argonne, Illinois, USA; Ramona Graves, Department of Petroleum Engineering, Colorado School of Mines, Golden, Colorado, USA; Brian Gahan and Samih Batarseh, Gas Technology Institute, Des Plaines, Illinois, USA ABSTRACT Studies on drilling petroleum reservoir rocks with lasers show that modern infrared lasers have the capability to spall (thermally fragment), melt and vaporize natural earth materials with the thermal spallation being the most efficient rock removal mechanism. Although laser irradiance as low as 1000 W/cm 2 is sufficient to spall rock, firing the

171

A Detailed Thermal Analysis of the Binospec Spectrograph  

E-Print Network [OSTI]

Refractive optics in astronomical instruments are potentially sensitive to temperature gradients and temperature transients. This sensitivity arises from thermally dependent refractive indices, lens spacings, and lens dimensions. We have therefore undertaken a detailed thermal analysis of Binospec, a wide-field optical spectrograph under development for the converted MMT. Our goals are to predict the temperature gradients that will be present in the Binospec optics and structure under realistic operating conditions and to determine how design choices affect these gradients. We begin our analysis by deriving thermal time constants for instrument subassemblies. We then generate a low-resolution finite difference model of the entire instrument and high-resolution models of sensitive subassemblies. This approach to thermal analysis is applicable to a variety of other instruments. We use measurements of the ambient temperature in the converted MMT's dome to model Binospec's thermal environment. During moderate conditions we find that the Binospec lens groups develop 0.14 C axial and radial temperature gradients and that lens groups of different mass develop 0.5 C temperature differences; these numbers are doubled for the extreme conditions. Internal heat sources do not significantly affect these results; heat flow from the environment dominates. The instrument must be periodically opened to insert new aperture masks, but we find that the resulting temperature gradients and thermal stresses in the optics are small. Image shifts at the detector caused by thermal deflections of the Binospec optical bench structure are approx 0.1 pixel/hr. We conclude that the proposed Binospec design has acceptable thermal properties, and briefly discuss design changes to further reduce temperature gradients.

Warren R. Brown; Daniel G. Fabricant; David A. Boyd

2002-10-28T23:59:59.000Z

172

Lattice Boltzmann approach to thermal transpiration  

SciTech Connect (OSTI)

Diffuse reflection boundary conditions are introduced in a thermal lattice Boltzmann model to allow for variable fluid density and temperature along the walls. The capability of this model to capture the main characteristics of the thermal transpiration phenomenon in a box at nonvanishing Knudsen numbers is demonstrated. The thermal creep velocity is found to be proportional to the temperature gradient imposed at the wall, whereas the accuracy of the simulation results are found to be of first or second order, depending on the numerical scheme.

Sofonea, Victor [Center for Fundamental and Advanced Technical Research, Romanian Academy, Bd. Mihai Viteazul 24, RO - 300223 Timisoara (Romania)

2006-11-15T23:59:59.000Z

173

Lattice Boltzmann model for thermal transpiration  

Science Journals Connector (OSTI)

The conventional Navier-Stokes-Fourier equations with no-slip boundary conditions are unable to capture the phenomenon of gas thermal transpiration. While kinetic approaches such as the direct simulation Monte Carlo method and direct solution of the Boltzmann equation can predict thermal transpiration, these methods are often beyond the reach of current computer technology, especially for complex three-dimensional flows. We present a computationally efficient nonequilibrium thermal lattice Boltzmann model for simulating temperature-gradient-induced flows. The good agreement between our model and kinetic approaches demonstrates the capabilities of the proposed lattice Boltzmann method.

G. H. Tang; Y. H. Zhang; X. J. Gu; R. W. Barber; D. R. Emerson

2009-02-12T23:59:59.000Z

174

Lattice Boltzmann approach to thermal transpiration  

Science Journals Connector (OSTI)

Diffuse reflection boundary conditions are introduced in a thermal lattice Boltzmann model to allow for variable fluid density and temperature along the walls. The capability of this model to capture the main characteristics of the thermal transpiration phenomenon in a box at nonvanishing Knudsen numbers is demonstrated. The thermal creep velocity is found to be proportional to the temperature gradient imposed at the wall, whereas the accuracy of the simulation results are found to be of first or second order, depending on the numerical scheme.

Victor Sofonea

2006-11-16T23:59:59.000Z

175

Transient hydrodynamic, heat and mass transfer in a salinity gradient solar pond: A numerical study  

Science Journals Connector (OSTI)

Abstract The impoverishment of our planet in non-renewable energies has incited researchers to design salinity gradient solar ponds to collect and store solar energy at a lower cost. It is in this context that the present research work lies to focus on the numerical study of the transient hydrodynamic, heat and mass transfer in a salinity gradient solar pond. The problem is tackled using the dimensionless governing equations of NavierStokes, thermal energy and mass transfer, which are solved numerically by finite-volume method to provide the temperature, concentration and velocity fields in transient regime. The pond is filled with salty water of various salinities to form three zones of salty water: Upper Convective Zone (UCZ), Non-Convective Zone (NCZ) and Lower Convective Zone (LCZ). To prevent convective movements induced by the internal heating of salty water due to solar radiation absorption, a salinity gradient is used in the solar pond. Representative results illustrating the influence of internal Rayleigh number on the thermal performance of the pond and the effect of the aspect ratio on the distribution of temperature and velocity fields in the salinity gradient solar pond (SGSP) are discussed. In addition, results for the transient average temperature of UCZ and LCZ are presented and discussed for various parametric conditions.

Ridha Boudhiaf; Mounir Baccar

2014-01-01T23:59:59.000Z

176

An indole derivative as a high triplet energy hole transport material for blue phosphorescent organic light-emitting diodes  

Science Journals Connector (OSTI)

Abstract A thermally stable high triplet energy material derived from an indoloacridine core and indole hole transport units, 8,8-bis(4-(1H-indol-1-yl)phenyl)-8H-indolo[3,2,1-de]acridine (BIPIA), was synthesized as the hole transport material for deep blue phosphorescent organic light-emitting diodes. The BIPIA hole transport material showed a high triplet energy of 2.95eV and high glass transition temperature of 142C. A high quantum efficiency of 19.3% was obtained in the deep blue device using BIPIA as the high triplet energy hole transport material.

Min Su Park; Jun Yeob Lee

2013-01-01T23:59:59.000Z

177

COSO Geothermal Exploratory Hole No. 1, CGEH No. 1. Completion report.  

Open Energy Info (EERE)

COSO Geothermal Exploratory Hole No. 1, CGEH No. 1. Completion report. COSO Geothermal Exploratory Hole No. 1, CGEH No. 1. Completion report. (Coso Hot Springs KGRA) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: COSO Geothermal Exploratory Hole No. 1, CGEH No. 1. Completion report. (Coso Hot Springs KGRA) Details Activities (1) Areas (1) Regions (0) Abstract: Coso Geothermal Exploratory Hole No. 1 (CGEH No. 1) is the first deep exploratory hole drilled in the Coso Hot Springs area of Southeastern California. CGEH No. 1 was drilled to a depth of 4,845 ft in the central area of a large thermal anomaly and was a continuation of investigative work in that locale to determine the existence of a geothermal resource. The drilling and completion of CGEH No. 1 is described. Also included are the daily drilling reports, drill bit records, descriptions of the casing,

178

Effects of Matrix Cracks on the Thermal Diffusivity of a Fiber-Reinforced Ceramic Composite  

E-Print Network [OSTI]

when the material is subjected to temperature gradients and is therefore relevant to its thermal shock resistance. The present study focuses on the effects of a periodic array of matrix cracks on thermal displacement are used to determine the contributions to the longitudinal thermal resistance due to each crack

Zok, Frank

179

The long range migration of hydrogen through Zircaloy in response to tensile and compressive stress gradients  

SciTech Connect (OSTI)

Zircaloy-4, which is used widely as a core structural material in pressurized water reactors (PWRs), picks up hydrogen during service. Hydrogen solubility in Zircaloy-4 is low and zirconium hydride phases precipitate after the Zircaloy-4 lattice becomes supersaturated with hydrogen. These hydrides embrittle the Zircaloy-4, degrading its mechanical performance as a structural material. Because hydrogen can move rapidly through the Zircaloy-4 lattice, the potential exists for large concentrations of hydride to accumulate in local regions of a Zircaloy component remote from its point of entry into the component. Much has been reported in the literature regarding the long range migration of hydrogen through Zircaloy under concentration gradients and temperature gradients. Relatively little has been reported, however, regarding the long range migration of hydrogen under stress gradients. This paper presents experimental results regarding the long range migration of hydrogen through Zircaloy in response to both tensile and compressive stress gradients. The importance of this driving force for hydrogen migration relative to concentration and thermal gradients is discussed.

Kammenzind, B.F.; Berquist, B.M.; Bajaj, R.; Kreyns, P.H.; Franklin, D.G.

1998-11-01T23:59:59.000Z

180

Formation of morphogen gradients: Local accumulation time  

Science Journals Connector (OSTI)

Spatial regulation of cell differentiation in embryos can be provided by morphogen gradients, which are defined as the concentration fields of molecules that control gene expression. For example, a cell can use its surface receptors to measure the local concentration of an extracellular ligand and convert this information into a corresponding change in its transcriptional state. We characterize the time needed to establish a steady-state gradient in problems with diffusion and degradation of locally produced chemical signals. A relaxation function is introduced to describe how the morphogen concentration profile approaches its steady state. This function is used to obtain a local accumulation time that provides a time scale that characterizes relaxation to steady state at an arbitrary position within the patterned field. To illustrate the approach we derive local accumulation times for a number of commonly used models of morphogen gradient formation.

Alexander M. Berezhkovskii; Christine Sample; Stanislav Y. Shvartsman

2011-05-06T23:59:59.000Z

Note: This page contains sample records for the topic "holes thermal gradient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Black Holes And Their Entropy  

E-Print Network [OSTI]

This dissertation covers two di erent but related topics: the construction of new black hole solutions and the study of the microscopic origin of black hole entropy. In the solution part, two di erent sets of new solutions are found. The rst...

Mei, Jianwei

2010-10-12T23:59:59.000Z

182

Black Hole Energy Extraction Problems  

Science Journals Connector (OSTI)

... non-rotating black hole the particle can be lowered to no closer than 1.14 Schwarzschild radii, and the energy extracted can be no more than 63.2 per cent ... gram of matter-and the rope could be lowered no closer than 5 x 1011 Schwarzschild radii. This seems to rule out black holes as practical sources of energy. ...

1972-11-24T23:59:59.000Z

183

Optical black holes and solitons  

E-Print Network [OSTI]

We exhibit a static, cylindrically symmetric, exact solution to the Euler-Heisenberg field equations (EHFE) and prove that its effective geometry contains (optical) black holes. It is conjectured that there are also soliton solutions to the EHFE which contain black hole geometries.

Shawn Westmoreland

2010-12-21T23:59:59.000Z

184

Entropy of Lovelock Black Holes  

E-Print Network [OSTI]

A general formula for the entropy of stationary black holes in Lovelock gravity theories is obtained by integrating the first law of black hole mechanics, which is derived by Hamiltonian methods. The entropy is not simply one quarter of the surface area of the horizon, but also includes a sum of intrinsic curvature invariants integrated over a cross section of the horizon.

Ted Jacobson; Robert C. Myers

1993-05-06T23:59:59.000Z

185

High-pressure liquid chromatographic gradient mixer  

DOE Patents [OSTI]

A gradient mixer effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum band-broadening.

Daughton, C.G.; Sakaji, R.H.

1982-09-08T23:59:59.000Z

186

String-Corrected Black Holes  

SciTech Connect (OSTI)

We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect -- the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive! The magnitude of this effect is related to the size of the compactification manifold.

Hubeny, Veronika; Maloney, Alexander; Rangamani, Mukund

2005-02-07T23:59:59.000Z

187

Photopolymerization in Microfluidic Gradient Generators: Microscale  

E-Print Network [OSTI]

-compliance profiles that are tunable on the micro- scale. The most straightforward way to create substrates with vari through the development of microfluidic networks,[7,8] with which one can easily generate solution (e microscale gradients with microfluidic networks, and a recent study that demon- strated

188

Porting the NAS-NPB Conjugate Gradient  

E-Print Network [OSTI]

Porting the NAS-NPB Conjugate Gradient Benchmark to CUDA NVIDIA Corporation #12;Outline ! Overview of CG benchmark ! Overview of CUDA Libraries ! CUSPARSE ! CUBLAS ! Porting Sequence ! Algorithm Analysis ! Data/Code Analysis This porting approach uses CUDA Libraries exclusively. (We will not write

Crawford, T. Daniel

189

Fourier Accelerated Conjugate Gradient Lattice Gauge Fixing  

E-Print Network [OSTI]

We provide details of the first implementation of a non-linear conjugate gradient method for Landau and Coulomb gauge fixing with Fourier acceleration. We find clear improvement over the Fourier accelerated steepest descent method, with the average time taken for the algorithm to converge to a fixed, high accuracy, being reduced by a factor of 2 to 4.

R. J. Hudspith

2014-05-22T23:59:59.000Z

190

Thermal treatment  

Science Journals Connector (OSTI)

Thermal treatment can be regarded as either a pre-treatment of waste prior to final disposal, or as a means of valorising waste by recovering energy. It includes both the burning of mixed MSW in municipal inciner...

Dr. P. White; Dr. M. Franke; P. Hindle

1995-01-01T23:59:59.000Z

191

Thermal Processes  

Broader source: Energy.gov [DOE]

Some thermal processes use the energy in various resources, such as natural gas, coal, or biomass, to release hydrogen, which is part of their molecular structure. In other processes, heat, in...

192

The structure of black hole magnetospheres I. Schwarzschild black holes  

Science Journals Connector (OSTI)

......2000 RAS, MNRAS 315, 89 97 force-free black hole magnetosphere...However, there is nothing fundamental about the paraboloidal shape...in stationary axisymmetric force-free magnetospheres. Therefore...Stegun I. A., 1972, Handbook of Mathematical Functions......

Pranab Ghosh

2000-06-11T23:59:59.000Z

193

Black Holes in Active Galaxies  

E-Print Network [OSTI]

Recent years have seen tremendous progress in the quest to detect supermassive black holes in the centers of nearby galaxies, and gas-dynamical measurements of the central masses of active galaxies have been valuable contributions to the local black hole census. This review summarizes measurement techniques and results from observations of spatially resolved gas disks in active galaxies, and reverberation mapping of the broad-line regions of Seyfert galaxies and quasars. Future prospects for the study of black hole masses in active galaxies, both locally and at high redshift, are discussed.

A. J. Barth

2003-10-15T23:59:59.000Z

194

Thermodynamics of Lifshitz black holes  

Science Journals Connector (OSTI)

We apply the recently extended conserved Killing charge definition of Abbott-Deser-Tekin formalism to compute, for the first time, the energies of analytic Lifshitz black holes in higher dimensions. We then calculate the temperature and the entropy of this large family of solutions, and study and discuss the first law of black hole thermodynamics. Along the way we also identify the possible critical points of the relevant quadratic curvature gravity theories. Separately, we also apply the generalized Killing charge definition to compute the energy and the angular momentum of the warped AdS3 black hole solution of the three-dimensional new massive gravity theory.

Deniz Olgu Devecio?lu and zgr Sar?o?lu

2011-06-23T23:59:59.000Z

195

Geothermal Resource-Reservoir Investigations Based On Heat Flow And Thermal  

Open Energy Info (EERE)

Resource-Reservoir Investigations Based On Heat Flow And Thermal Resource-Reservoir Investigations Based On Heat Flow And Thermal Gradient Data For The United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Resource-Reservoir Investigations Based On Heat Flow And Thermal Gradient Data For The United States Details Activities (2) Areas (2) Regions (0) Abstract: Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of

196

Fusion product measurements of the local ion thermal diffusivity in the PLT tokamak  

SciTech Connect (OSTI)

Measurement of the gradient of the d-d fusion rate profile in an ohmic PLT plasma is used to deduce the gradient of the ion temperature and, thus, the local ion thermal diffusivity through an energy balance analysis. The inferred ion diffusivity is consistent with neoclassical theory.

Heidbrink, W.W.; Lovberg, J.; Strachan, J.D.; Bell, R.E.

1986-03-01T23:59:59.000Z

197

Non-linear Plasma Wake Growth of Electron Holes  

E-Print Network [OSTI]

An object's wake in a plasma with small Debye length that drifts \\emph{across} the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind wake and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable...

Hutchinson, I H; Zhou, C

2015-01-01T23:59:59.000Z

198

Life in a Tree Hole  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tree Hole Tree Hole Nature Bulletin No. 581 November 21, 1959 Forest Preserve District of Cook County Daniel Ryan, President Roberts Mann, Conservation Editor David H Thompson, Senior Naturalist LIFE IN A TREE HOLE A forest is much more than just trees. It includes all of the underbrush, wildflowers and other vegetation that grow beneath these trees; as well as all of its animal life, both large and small. Sunshine, rain, wind, soil, and the leaf litter on the ground are part of it, too. A forest is a community -- a fabric in which the lives of its inhabitants are woven together and into their surroundings by a complex web of interrelations. Tree holes -- together with the birds, mammals and small life which they shelter -- furnish an important binding force in this forest community.

199

Thermodynamics of regular black hole  

E-Print Network [OSTI]

We investigate thermodynamics for a magnetically charged regular black hole (MCRBH), which comes from the action of general relativity and nonlinear electromagnetics, comparing with the Reissner-Norstr\\"om (RN) black hole in both four and two dimensions after dimensional reduction. We find that there is no thermodynamic difference between the regular and RN black holes for a fixed charge $Q$ in both dimensions. This means that the condition for either singularity or regularity at the origin of coordinate does not affect the thermodynamics of black hole. Furthermore, we describe the near-horizon AdS$_2$ thermodynamics of the MCRBH with the connection of the Jackiw-Teitelboim theory. We also identify the near-horizon entropy as the statistical entropy by using the AdS$_2$/CFT$_1$ correspondence.

Yun Soo Myung; Yong-Wan Kim; Young-Jai Park

2007-08-23T23:59:59.000Z

200

Dielectric-Lined High-Gradient Accelerator Structure  

SciTech Connect (OSTI)

Rectangular particle accelerator structures with internal planar dielectric elements have been studied, with a view towards devising structures with lower surface fields for a given accelerating field, as compared with structures without dielectrics. Success with this concept is expected to allow operation at higher accelerating gradients than otherwise on account of reduced breakdown probabilities. The project involves studies of RF breakdown on amorphous dielectrics in test cavities that could enable high-gradient structures to be built for a future multi-TeV collider. The aim is to determine what the limits are for RF fields at the surfaces of selected dielectrics, and the resulting acceleration gradient that could be achieved in a working structure. The dielectric of principal interest in this study is artificial CVD diamond, on account of its advertised high breakdown field ({approx}2 GV/m for dc), low loss tangent, and high thermal conductivity. Experimental studies at mm-wavelengths on materials and structures for achieving high acceleration gradient were based on the availability of the 34.3 GHz third-harmonic magnicon amplifier developed by Omega-P, and installed at the Yale University Beam Physics Laboratory. Peak power from the magnicon was measured to be about 20 MW in 0.5 {micro}s pulses, with a gain of 54 dB. Experiments for studying RF high-field effects on CVD diamond samples failed to show any evidence after more than 10{sup 5} RF pulses of RF breakdown up to a tangential surface field strength of 153 MV/m; studies at higher fields were not possible due to a degradation in magnicon performance. A rebuild of the tube is underway at this writing. Computed performance for a dielectric-loaded rectangular accelerator structure (DLA) shows highly competitive properties, as compared with an existing all-metal structure. For example, comparisons were made of a DLA structure having two planar CVD diamond elements with a all-metal CERN structure HDS operating at 30 GHz. It was shown that the ratio of maximum surface electric field to accelerating field at the metal wall is only 0.35-0.4 for DLA, much smaller than the value 2.2 for HDS; and the ratio of surface magnetic field to accelerating field is 3.0 mA/V for DLA, compared with 3.45 mA/V for HDS. These values bode well for DLA in helping to avoid breakdown and to reducing pulsed surface heating and fatigue. The shunt impedance is found to be 160-175 M{Omega}/m for DLA, as compared to 99 M{Omega}/m for HDS. Conclusions are reached from this project that CVD diamond appears promising as a dielectric with a high threshold for RF breakdown, and that rectangular accelerator structures can be devised using planar CVD diamond elements that could be operated at higher acceleration gradients with low probability of RF breakdown, as compared with corresponding all-metallic structures.

Jay L. Hirshfield

2012-04-24T23:59:59.000Z

Note: This page contains sample records for the topic "holes thermal gradient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Lattice Black Holes  

E-Print Network [OSTI]

We study the Hawking process on lattices falling into static black holes. The motivation is to understand how the outgoing modes and Hawking radiation can arise in a setting with a strict short distance cutoff in the free-fall frame. We employ two-dimensional free scalar field theory. For a falling lattice with a discrete time-translation symmetry we use analytical methods to establish that, for Killing frequency $\\omega$ and surface gravity $\\kappa$ satisfying $\\kappa\\ll\\omega^{1/3}\\ll 1$ in lattice units, the continuum Hawking spectrum is recovered. The low frequency outgoing modes arise from exotic ingoing modes with large proper wavevectors that "refract" off the horizon. In this model with time translation symmetry the proper lattice spacing goes to zero at spatial infinity. We also consider instead falling lattices whose proper lattice spacing is constant at infinity and therefore grows with time at any finite radius. This violation of time translation symmetry is visible only at wavelengths comparable to the lattice spacing, and it is responsible for transmuting ingoing high Killing frequency modes into low frequency outgoing modes.

Steven Corley; Ted Jacobson

1998-03-26T23:59:59.000Z

202

Electron profile stiffness and critical gradient studies  

SciTech Connect (OSTI)

Electron profile stiffness was studied in DIII-D L-mode discharges by systematically varying the heat flux in a narrow region with electron cyclotron heating and measuring the local change produced in {nabla}T{sub e}. Electron stiffness was found to slowly increase with toroidal rotation velocity. A critical inverse temperature gradient scale length 1/L{sub C} {approx} 3 m{sup -1} was identified at {rho}=0.6 and found to be independent of rotation. Both the heat pulse diffusivity and the power balance diffusivity, the latter determined by integrating the measured dependence of the heat pulse diffusivity on -{nabla}T{sub e}, were fit reasonably well by a model containing a critical inverse temperature gradient scale length and varying linearly with 1/L{sub T} above the threshold.

DeBoo, J. C.; Petty, C. C.; Burrell, K. H.; Smith, S. P. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); White, A. E. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Doyle, E. J.; Hillesheim, J. C.; Rhodes, T. L.; Schmitz, L.; Wang, G.; Zeng, L. [University of California-Los Angeles, Los Angeles, California 90095-7099 (United States); Holland, C. [University of California-San Diego, La Jolla, California 92093-0417 (United States); McKee, G. R. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

2012-08-15T23:59:59.000Z

203

Automated apparatus for producing gradient gels  

DOE Patents [OSTI]

Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

Anderson, Norman L. (Clarendon Hills, IL)

1986-01-01T23:59:59.000Z

204

The Argonne Zero Gradient Synchrotron (ZGS)  

Science Journals Connector (OSTI)

A 12.5 billion electron volt (BeV) particle accelerator the Zero Gradient Synchrotron was constructed and put into operation at the Argonne National Laboratory in August 1963. The ZGS will form the center for high energy physics research in the Midwestern part of this country. In this paper a brief description of the ZGS is given together with a discussion of the aims methods and equipment of experimental high energy physics research.

L. C. Teng

1964-01-01T23:59:59.000Z

205

The Boussinesq Problem in Dipolar Gradient Elasticity  

E-Print Network [OSTI]

The three-dimensional axisymmetric Boussinesq problem of an isotropic half-space subjected to a concentrated normal quasi-static load is studied within the framework of linear dipolar gradient elasticity. Our main concern is to determine possible deviations from the predictions of classical linear elastostatics when a more refined theory is employed to attack the problem. Of special importance is the behavior of the new solution near to the point of application of the load where pathological singularities exist in the classical solution. The use of the theory of gradient elasticity is intended here to model the response of materials with microstructure in a manner that the classical theory cannot afford. A linear version of this theory results by considering a linear isotropic expression for the strain-energy density that depends on strain-gradient terms, in addition to the standard strain terms appearing in classical elasticity. Through this formulation, a microstructural material constant is introduced, in addition to the standard Lam\\'e constants. The solution method is based on integral transforms and is exact. The present results show significant departure from the predictions of classical elasticity. Indeed, continuous and bounded displacements are predicted at the points of application of the concentrated load. Such a behavior of the displacement field is, of course, more natural than the singular behavior exhibited in the classical solution.

H. G. Georgiadis; P. A. Gourgiotis; D. S. Anagnostou

2014-03-31T23:59:59.000Z

206

FARADAYIC ElectroPhoretic Deposition of YSZ for Use in Thermal Barrier Coatings - Faraday Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FARADAYIC ElectroPhoretic Deposition FARADAYIC ElectroPhoretic Deposition of YSZ for Use in Thermal Barrier Coatings-Faraday Technology Background Thermal barrier coatings (TBCs) are employed to protect gas turbine engine components. These coating systems provide thermal, oxidation, and mechanical protection; reduce thermal gradients; and lower the metal substrate surface temperature, extending the life of the engine components. Faraday Technology, Inc. (Faraday) is developing a new manufacturing process, the

207

Gradient-based Methods for Production Optimization of Oil Reservoirs  

E-Print Network [OSTI]

Gradient-based Methods for Production Optimization of Oil Reservoirs Eka Suwartadi Doctoral Thesis oil reservoirs. Gradient- based optimization, which utilizes adjoint-based gradient computation optimization for water flooding in the secondary phase of oil recovery is the main topic in this thesis

Foss, Bjarne A.

208

Thermal conductivity of a kinetic ising model  

Science Journals Connector (OSTI)

Using a novel extension of the microcanonical Monte Carlo algorithm, we have simulated the behavior of a two-dimensional nearest-neighbor ferromagnetic Ising model in the presence of a temperature gradient. The technique consists of setting the temperatures of boundary spins, while allowing "demons" associated with the other sites to control heat transfer. We demonstrate that our system is in local thermodynamic equilibrium, and compute the thermal conductivity as a function of temperature.

R. Harris and Martin Grant

1988-11-01T23:59:59.000Z

209

Heat Flow From Four New Research Drill Holes In The Western Cascades,  

Open Energy Info (EERE)

From Four New Research Drill Holes In The Western Cascades, From Four New Research Drill Holes In The Western Cascades, Oregon, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat Flow From Four New Research Drill Holes In The Western Cascades, Oregon, Usa Details Activities (1) Areas (1) Regions (0) Abstract: Conceptual models of the thermal structure of the Oregon Cascade Range propose either (1) a narrow zone of magmatic heat sources, flanked by shallow heat-flow anomalies caused by lateral ground-water flow; or (2) a wide zone of magmatic heat sources, with localized, generally negligible ground-water effects. The proposed narrow heat source coincides with the Quaternary volcanic arc, whereas the wider heat source would extend 10-30 km west of the arc. To test the models, four new heat-flow holes were sited

210

Mott transition and crossover in quasi-one-dimensional electron-hole systems  

SciTech Connect (OSTI)

Manybody effects in the quasi-one-dimensional electron-hole systems are investigated under a thermal equilibrium. We figure out the Mott physics developing a self-consistent screened T-matrix approximation, by presenting a global phase diagram in terms of the exciton ionization ratio and temperature. Relevance to the optical absorption spectra is also discussed.

Asano, Kenichi [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka (Japan)

2013-12-04T23:59:59.000Z

211

Numerical Modeling of Cased-hole Instability in High Pressure and High Temperature Wells  

E-Print Network [OSTI]

mechanism of casing/cement in the non-perforated zones. We investigate the transient thermal behavior in the casing-cement-formation system resulting from the movement of wellbore fluid using finite element method. The critical value of down-hole stresses...

Shen, Zheng 1983-

2012-11-12T23:59:59.000Z

212

Circularization of Tidally Disrupted Stars around Spinning Supermassive Black Holes  

E-Print Network [OSTI]

We study the circularization of tidally disrupted stars on bound orbits around spinning supermassive black holes by performing three-dimensional smoothed particle hydrodynamic simulations with Post-Newtonian corrections. Our simulations reveal that debris circularization depends sensitively on the efficiency of radiative cooling. There are two stages in debris circularization if radiative cooling is inefficient: first, the stellar debris streams self-intersect due to relativistic apsidal precession; shocks at the intersection points thermalize orbital energy and the debris forms a geometrically thick, ring-like structure around the black hole. The ring rapidly spreads via viscous diffusion, leading to the formation of a geometrically thick accretion disk. In contrast, if radiative cooling is efficient, the stellar debris circularizes due to self-intersection shocks and forms a geometrically thin ring-like structure. In this case, the dissipated energy can be emitted during debris circularization as a precurso...

Hayasaki, Kimitake; Loeb, Abraham

2015-01-01T23:59:59.000Z

213

Non-thermal radio astronomy  

Science Journals Connector (OSTI)

Abstract This presentation starts with Karl Janskys discovery of cosmic radio emission in 1933 and notes the striking similarities to Hesss discovery of cosmic-rays in 1912. At first it was assumed that this radio emission was thermal but in 1939 Grote Reber discovered that it was stronger at longer wavelengths, requiring a non-thermal emission process. These discoveries had a revolutionary impact on astronomy and radio astronomy was born. The interpretation of this non-thermal radiation as synchrotron emission from high energy particles in the interstellar medium did not occur until the late 1940s but then it provided the link between radio astronomy and cosmic-ray research. Ginzburg, in particular, saw that cosmic-ray astrophysics was now possible using radio waves to trace sources of cosmic-rays. We discuss the discovery of extragalactic active galactic nuclei leading to the discovery of quasars and the first evidence for black holes in the nuclei of galaxies. We summarise the present status and future of some of the main radio telescopes used to image the non-thermal emission from external galaxies. Finally, we include a short description of the use of radio signals for the direct detection of cosmic-rays and UHE neutrinos.

R.D. Ekers

2014-01-01T23:59:59.000Z

214

Black hole quantum tunnelling and black hole entropy correction  

E-Print Network [OSTI]

Parikh-Wilczek tunnelling framework, which treats Hawking radiation as a tunnelling process, is investigated again. As the first order correction, the log-corrected entropy-area relation naturally emerges in the tunnelling picture if we consider the emission of a spherical shell. The second order correction of the emission rate for the Schwarzschild black hole is calculated too. In this level, the result is still in agreement with the unitary theory, however, the entropy of the black hole will contain three parts: the usual Bekenstein-Hawking entropy, the logarithmic term and the inverse area term. In our results the coefficient of the logarithmic term is -1. Apart from a coefficient, Our correction to the black hole entropy is consistent with that of loop quantum gravity.

Jingyi Zhang

2008-06-15T23:59:59.000Z

215

Lepidium latifolium reproductive potential and seed dispersal along salinity and moisture gradients  

E-Print Network [OSTI]

Preserve where the salinity gradient was narrow. Conversely,production along the salinity gradient between the freshdispersal along salinity and moisture gradients Samuel P.

Leininger, Samuel P.; Foin, Theodore C.

2009-01-01T23:59:59.000Z

216

The effect of density gradient on the growth rate of relativistic Weibel instability  

SciTech Connect (OSTI)

In this paper, the effect of density gradient on the Weibel instability growth rate is investigated. The density perturbations in the near corona fuel, where temperature anisotropy, ?, is larger than the critical temperature anisotropy, ?{sub c}, (??>??{sub c}), enhances the growth rate of Weibel instability due to the sidebands coupled with the electron oscillatory velocity. But for ??thermal spread of the energetic electrons reduces the growth rate. Also, the growth rate can be reduced if the relativistic parameter (Lorentz factor) is sufficiently large, ??>?2. The analysis shows that relativistic effects and density gradient tend to stabilize the Weibel instability. The growth rate can be reduced by 88% by reducing ? by a factor of 100 and increasing relativistic parameter by a factor of 3.

Mahdavi, M., E-mail: m.mahdavi@umz.ac.ir [Physics Department, University of Mazandaran, P.O. Box 47415-416, Babolsar (Iran, Islamic Republic of); Khodadadi Azadboni, F., E-mail: f.khodadadi@stu.umz.ac.ir [Physics Department, University of Mazandaran, P.O. Box 47415-416, Babolsar (Iran, Islamic Republic of); Young Researchers Club, Sari Branch, Islamic Azad University, P.O. Box 48161-194, Sari (Iran, Islamic Republic of)

2014-02-15T23:59:59.000Z

217

Hole in the ozone layer?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hole in the ozone layer? Hole in the ozone layer? Name: Kelley Location: N/A Country: N/A Date: N/A Question: Is there really a hole in the ozone layer? Replies: That depends on what one means by a "hole". There is a thinning of the layer that is particularly severe during certain seasons at the poles. But the ozone layer is thinning most everywhere. The thinning around the south pole of earth is particularly stunning, and has been referred to as a hole even though some ozone still exists there, it is much less concentrated. As you may know, this ozone destruction is probably due to human release of pollutants such as clorofluorocarbons (CFCs) an due to natural sources such as chemicals from volcanic eruptions. CFCs are used is cooling systems such as refrigerators and air conditioning. There is an international agreement to phase out the use of these destructive chemicals but they won't be banned entirely for years for fears of losing money. Meanwhile the ozone layer thins and we are exposed to increasingly higher doses of cancer causing radiation

218

Brine clarity maintenance in salinity-gradient solar ponds  

Science Journals Connector (OSTI)

Brine transparency is an important part of the maintenance of a salinity-gradient solar pond as it affects the amount of solar radiation reaching the storage zone and hence has an influence on the thermal performance. There is a wide range of factors that can hinder the transmission of light in a solar pond. Algal and microbial growths are the most common problems encountered in working solar ponds and control of their densities is essential to maintain transparency. Two different chemical treatment methods for algae growth prevention are described in this paper: chlorine and a novel chemical product copper ethylamine complex. The latter method has never been implemented previously in a working pond. This paper discusses the theory of the algae control methods used and presents the experimental results of the chemical treatments. The results showed that Cupricide is more effective than chlorine and is therefore the recommended chemical for algae control in solar ponds; it improves the water transparency especially in the upper convective zone and lower convective zone with all measurement values less than 1 NTU. Chlorine was found to be more corrosive than Cupricide due to the acidic effect it has on the pH. The preliminary cost analysis showed that granular chlorine is the cheapest chemical. A more detailed financial analysis is nevertheless required to refine these costs.

Neus Gasulla; Yusli Yaakob; Jimmy Leblanc; Aliakbar Akbarzadeh; Jose Luis Cortina

2011-01-01T23:59:59.000Z

219

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

220

Energy on black hole spacetimes  

E-Print Network [OSTI]

We consider the issue of defining energy for test particles on a background black hole spacetime. We revisit the different notions of energy as defined by different observers. The existence of a time-like isometry allows for the notion of a total conserved energy to be well defined, and subsequently the notion of a gravitational potential energy is also meaningful. We then consider the situation in which the test particle is adsorbed by the black hole, and analyze the energetics in detail. In particular, we show that the notion of horizon energy es defined by the isolated horizons formalism provides a satisfactory notion of energy compatible with the particle's conserved energy. As another example, we comment a recent proposal to define energy of the black hole as seen by an observer at rest. This account is intended to be pedagogical and is aimed at the level of and as a complement to the standard textbooks on the subject.

Alejandro Corichi

2012-07-18T23:59:59.000Z

Note: This page contains sample records for the topic "holes thermal gradient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Coherence effects in hole superconductivity  

Science Journals Connector (OSTI)

We discuss the behavior of various observables that depend on matrix elements of operators in the superconducting state within the model of hole superconductivity. In this model, the gap exhibits a linear dependence on the band energy, and the bandwidth depends on the carrier concentration and can become very small for low hole density. We study, in particular, the behavior of ultrasonic attenuation, NMR relaxation rate, and electromagnetic absorption, and present results for parameters expected to be in the range that describes the high-Tc oxides. It is found that the energy dependence of the gap does not give rise to qualitatively different behavior, but significant differences from weak-coupling BCS behavior occur at low hole concentration due to the extreme narrowness of the band.

F. Marsiglio and J. E. Hirsch

1991-12-01T23:59:59.000Z

222

Information loss in black holes  

Science Journals Connector (OSTI)

The question of whether information is lost in black holes is investigated using Euclidean path integrals. The formation and evaporation of black holes is regarded as a scattering problem with all measurements being made at infinity. This seems to be well formulated only in asymptotically AdS spacetimes. The path integral over metrics with trivial topology is unitary and information preserving. On the other hand, the path integral over metrics with nontrivial topologies leads to correlation functions that decay to zero. Thus at late times only the unitary information preserving path integrals over trivial topologies will contribute. Elementary quantum gravity interactions do not lose information or quantum coherence.

S. W. Hawking

2005-10-18T23:59:59.000Z

223

Preparation and characterization of gradient polymer films  

SciTech Connect (OSTI)

Gradient polymers are multicomponent polymers whose chemical constitution varies with depth in the sample. Although these polymers may possess unique mechanical, optical, and barrier properties they remain relatively unexplored. This work is a study of the preparation of gradient polymers by sequential exposure of films to a diffusing monomer followed by electron beam irradiation. Initial experiments involved immersion of poly(vinyl chloride) (PVC) films in styrene or n-butyl methacrylate (BMA) for various time periods followed by irradiation with 1 or 10 megarads of accelerated electrons. A significant amount of poly(n-butyl methacrylate) (PBMA) formed in PVC/BMA systems, but little polystyrene could be found in the PVC/styrene films. A second set of experiments involved immersion of PVC and polyethylene (PE) films in BMA for 20, 40, 60, and 720 minutes followed by irradiation with 10 megarads of electrons. These films were then characterized using optical microscopy, quantitative transmission Fourier transform infrared spectroscopy (FTIR), and a depth profiling procedure based on quantitative attenuated total reflection (ATR) FTIR. It was concluded that the mechanism of PBMA formation in the polyethylene films was a result of events immediately following irradiation. Atmospheric oxygen diffusing into irradiated films trapped free radicals at the film surfaces. This was followed by storage in an evacuated desiccator where unintentional exposure to BMA vapor took place. This BMA reacted with free radicals that remained within the film cores, polymerizing to PBMA.

Smith, S.C.

1987-01-01T23:59:59.000Z

224

Black hole binary inspiral and trajectory dominance  

E-Print Network [OSTI]

Gravitational waves emitted during the inspiral, plunge and merger of a black hole binary carry linear momentum. This results in an astrophysically important recoil to the final merged black hole, a kick that can eject ...

Price, Richard H.

225

Black hole Meissner effect and entanglement  

E-Print Network [OSTI]

Extremal black holes tend to expel magnetic and electric fields. Fields are unable to reach the horizon because the length of the black hole throat blows up in the extremal limit. The length of the throat is related to the ...

Penna, Robert

226

Analysis of Bacterial Communities in Seagrass Bed Sediments by Double-Gradient Denaturing Gradient Gel Electrophoresis  

E-Print Network [OSTI]

Microbial Ecology Analysis of Bacterial Communities in Seagrass Bed Sediments by Double, including the presence or absence of vegetation, depth into sediment, and season. Double- gradient of these similarity coefficients were used to group banding patterns by depth into sediment, presence or absence

Sherman, Tim

227

Hawking Emission and Black Hole Thermodynamics  

E-Print Network [OSTI]

A brief review of Hawking radiation and black hole thermodynamics is given, based largely upon hep-th/0409024.

Don N. Page

2006-12-18T23:59:59.000Z

228

Functionally gradient material for membrane reactors to convert methane gas into value-added products  

DOE Patents [OSTI]

A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials. 7 figs.

Balachandran, U.; Dusek, J.T.; Kleefisch, M.S.; Kobylinski, T.P.

1996-11-12T23:59:59.000Z

229

Functionally gradient material for membrane reactors to convert methane gas into value-added products  

DOE Patents [OSTI]

A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials.

Balachandran, Uthamalingam (Hinsdale, IL); Dusek, Joseph T. (Lombard, IL); Kleefisch, Mark S. (Napersville, IL); Kobylinski, Thadeus P. (Lisle, IL)

1996-01-01T23:59:59.000Z

230

Electron Thermal Transport in Tokamak: ETG or TEM Turbulences?  

E-Print Network [OSTI]

Electron Thermal Transport in Tokamak: ETG or TEM Turbulences? Z. Lin, L. Chen, Y. Nishimura, H. Qu studies of electron transport in tokamak including: (1) electron temperature gradient turbulence; (2) trapped electron mode turbulence; and (3) a new finite element solver for global electromagnetic

Zonca, Fulvio

231

Introduction When exposed to high thermal loads, many endotherms  

E-Print Network [OSTI]

ungulates, is heterothermy, the storage of body heat during the day, under positive thermal load the fact that the gradient between Tb and Ta was larger and solar radiation was lower in winter-1429 Published by The Company of Biologists 2006 doi:10.1242/jeb.02151 Heterothermy of free-living Arabian sand

Williams, Jos. B.

232

Evaluation of thermal comfort using combined CFD and experimentation study in a test room equipped with a cooling ceiling  

E-Print Network [OSTI]

temperature gradient is less than 1°C/m, which corresponds to the standards recommendations. A comparison a good indoor thermal comfort. Heating, ventilating and air conditioning (HVAC) systems, which consume

Paris-Sud XI, Université de

233

High precision, rapid laser hole drilling  

DOE Patents [OSTI]

A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

2013-04-02T23:59:59.000Z

234

Time (hole?) machines John Byron Manchak  

E-Print Network [OSTI]

Time (hole?) machines John Byron Manchak Department of Philosophy, University of Washington, Box machines Hole machines Time travel General relativity a b s t r a c t Within the context of general relativity, we consider a type of "time machine" and introduce the related "hole machine". We review what

Manchak, John

235

Absorption cross section in Lifshitz black hole  

E-Print Network [OSTI]

We derive the absorption cross section of a minimally coupled scalar in the Lifshitz black hole obtained from the new massive gravity. The absorption cross section reduces to the horizon area in the low energy and massless limit of s-wave mode propagation, indicating that the Lifshitz black hole also satisfies the universality of low energy absorption cross section for black holes.

Taeyoon Moon; Yun Soo Myung

2012-05-10T23:59:59.000Z

236

Signatures of black holes at the LHC  

E-Print Network [OSTI]

Signatures of black hole events at CERN's Large Hadron Collider are discussed. Event simulations are carried out with the Fortran Monte Carlo generator CATFISH. Inelasticity effects, exact field emissivities, color and charge conservation, corrections to semiclassical black hole evaporation, gravitational energy loss at formation and possibility of a black hole remnant are included in the analysis.

Marco Cavaglia; Romulus Godang; Lucien M. Cremaldi; Donald J. Summers

2007-07-02T23:59:59.000Z

237

Gas flow driven by thermal creep in dusty plasma T. M. Flanagan and J. Goree  

E-Print Network [OSTI]

Gas flow driven by thermal creep in dusty plasma T. M. Flanagan and J. Goree Department of Physics 2009 Thermal creep flow TCF is a flow of gas driven by a temperature gradient along a solid boundary to the bulk gas, causing the bulk gas to flow, thereby stirring the suspension of dust particles. This result

Goree, John

238

Photo of the Week: The Alternating Gradient Synchrotron | Department of  

Broader source: Energy.gov (indexed) [DOE]

The Alternating Gradient Synchrotron The Alternating Gradient Synchrotron Photo of the Week: The Alternating Gradient Synchrotron March 11, 2013 - 6:00pm Addthis Since 1960, the Alternating Gradient Synchrotron (AGS) has been one of the world's premiere particle accelerators, well known for the three Nobel Prizes won as a result of research performed there. The AGS name is derived from the concept of alternating gradient focusing, in which the field gradients of the accelerator's 240 magnets are successively alternated inward and outward, permitting particles to be propelled and focused in both the horizontal and vertical plane at the same time. In this 1958 photo, giant magnets await installation into the AGS accelerator ring tunnel at Brookhaven National Laboratory. | Photo courtesy of Brookhaven National Laboratory.

239

Photo of the Week: The Alternating Gradient Synchrotron | Department of  

Broader source: Energy.gov (indexed) [DOE]

The Alternating Gradient Synchrotron The Alternating Gradient Synchrotron Photo of the Week: The Alternating Gradient Synchrotron March 11, 2013 - 6:00pm Addthis Since 1960, the Alternating Gradient Synchrotron (AGS) has been one of the world's premiere particle accelerators, well known for the three Nobel Prizes won as a result of research performed there. The AGS name is derived from the concept of alternating gradient focusing, in which the field gradients of the accelerator's 240 magnets are successively alternated inward and outward, permitting particles to be propelled and focused in both the horizontal and vertical plane at the same time. In this 1958 photo, giant magnets await installation into the AGS accelerator ring tunnel at Brookhaven National Laboratory. | Photo courtesy of Brookhaven National Laboratory.

240

High gradient lens for charged particle beam  

DOE Patents [OSTI]

Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

Chen, Yu-Jiuan

2014-04-29T23:59:59.000Z

Note: This page contains sample records for the topic "holes thermal gradient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Thermality of the Hawking flux  

E-Print Network [OSTI]

Is the Hawking flux "thermal"? Unfortunately, the answer to this seemingly innocent question depends on a number of often unstated, but quite crucial, technical assumptions built into modern (mis-)interpretations of the word "thermal". The original 1850's notions of thermality --- based on classical thermodynamic reasoning applied to idealized "black bodies" or "lamp black surfaces" --- when supplemented by specific basic quantum ideas from the early 1900's, immediately led to the notion of the black-body spectrum, (the Planck-shaped spectrum), but "without" any specific assumptions or conclusions regarding correlations between the quanta. Many (not all) modern authors (often implicitly and unintentionally) add an extra, and quite unnecessary, assumption that there are no correlations in the black-body radiation; but such usage is profoundly ahistorical and dangerously misleading. Specifically, the Hawking flux from an evaporating black hole, (just like the radiation flux from a leaky furnace or a burning lump of coal), is only "approximately" Planck-shaped over a bounded frequency range. Standard physics (phase space and adiabaticity effects) explicitly bound the frequency range over which the Hawking flux is "approximately" Planck-shaped from both above and below --- the Hawking flux is certainly not exactly Planckian, and there is no compelling physics reason to assume the Hawking photons are uncorrelated.

Matt Visser

2014-09-27T23:59:59.000Z

242

Bernstein instability driven by thermal ring distribution  

SciTech Connect (OSTI)

The classic Bernstein waves may be intimately related to banded emissions detected in laboratory plasmas, terrestrial, and other planetary magnetospheres. However, the customary discussion of the Bernstein wave is based upon isotropic thermal velocity distribution function. In order to understand how such waves can be excited, one needs an emission mechanism, i.e., an instability. In non-relativistic collision-less plasmas, the only known Bernstein wave instability is that associated with a cold perpendicular velocity ring distribution function. However, cold ring distribution is highly idealized. The present Brief Communication generalizes the cold ring distribution model to include thermal spread, so that the Bernstein-ring instability is described by a more realistic electron distribution function, with which the stabilization by thermal spread associated with the ring distribution is demonstrated. The present findings imply that the excitation of Bernstein waves requires a sufficiently high perpendicular velocity gradient associated with the electron distribution function.

Yoon, Peter H., E-mail: yoonp@umd.edu [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Hadi, Fazal; Qamar, Anisa [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan)

2014-07-15T23:59:59.000Z

243

Filling the disk hollow following binary black hole merger: The transient accretion afterglow  

SciTech Connect (OSTI)

Tidal torques from a binary black hole empty out the central regions in any circumbinary gaseous accretion disk. The balance between tidal torques and viscosity maintain the inner edge of the disk at a radius r{approx}1.5a-2a, where a is the binary semimajor axis. Eventually, the inspiraling binary decouples from the disk and merges, leaving behind a central hollow (''donut hole'') in the disk orbiting the remnant black hole. We present a simple, time-dependent, Newtonian calculation that follows the secular (viscous) evolution of the disk as it fills up the hollow down to the black hole innermost stable circular orbit and then relaxes to stationary equilibrium. We use our model to calculate the electromagnetic radiation (''afterglow'') spectrum emitted during this transient accretion epoch. Observing the temporal increase in the total electromagnetic flux and the hardening of the spectrum as the donut hole fills may help confirm a binary black hole merger detected by a gravitational wave interferometer. We show how the very existence of the initial hollow can lead to super-Eddington accretion during this secular phase if the rate is not very far below Eddington prior to decoupling. Our model, though highly idealized, may be useful in establishing some of the key parameters, thermal emission features and scalings that characterize this transient. It can serve as a guide in the design and calibration of future radiation-magnetohydrodynamic simulations in general relativity.

Shapiro, Stuart L. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

2010-01-15T23:59:59.000Z

244

The Extreme Spin of the Black Hole in Cygnus X-1  

Science Journals Connector (OSTI)

The compact primary in the X-ray binary Cygnus X-1 was the first black hole to be established via dynamical observations. We have recently determined accurate values for its mass and distance, and for the orbital inclination angle of the binary. Building on these results, which are based on our favored (asynchronous) dynamical model, we have measured the radius of the inner edge of the black hole's accretion disk by fitting its thermal continuum spectrum to a fully relativistic model of a thin accretion disk. Assuming that the spin axis of the black hole is aligned with the orbital angular momentum vector, we have determined that Cygnus X-1 contains a near-extreme Kerr black hole with a spin parameter a * > 0.95 (3?). For a less probable (synchronous) dynamical model, we find a * > 0.92 (3?). In our analysis, we include the uncertainties in black hole mass, orbital inclination angle, and distance, and we also include the uncertainty in the calibration of the absolute flux via the Crab. These four sources of uncertainty totally dominate the error budget. The uncertainties introduced by the thin-disk model we employ are particularly small in this case given the extreme spin of the black hole and the disk's low luminosity.

Lijun Gou; Jeffrey E. McClintock; Mark J. Reid; Jerome A. Orosz; James F. Steiner; Ramesh Narayan; Jingen Xiang; Ronald A. Remillard; Keith A. Arnaud; Shane W. Davis

2011-01-01T23:59:59.000Z

245

A Sparsity Preserving Stochastic Gradient Method for Composite ...  

E-Print Network [OSTI]

Apr 23, 2011 ... Abstract: We propose new stochastic gradient algorithms for solving convex composite optimization problems. In each iteration, our algorithms...

Qihang Lin

2011-04-23T23:59:59.000Z

246

A Sparsity Preserving Stochastic Gradient Method for Composite ...  

E-Print Network [OSTI]

Apr 23, 2011 ... We propose new stochastic gradient algorithms for solving convex composite optimization problems. In each iteration, our algorithms utilize a...

2011-04-23T23:59:59.000Z

247

Policy Gradient Methods: Variance Reduction and Stochastic Convergence .  

E-Print Network [OSTI]

??In a reinforcement learning task an agent must learn a policy for performing actions so as to perform well in a given environment. Policy gradient (more)

Greensmith, Evan

2008-01-01T23:59:59.000Z

248

Evapotranspiration along an elevation gradient in California's Sierra Nevada  

E-Print Network [OSTI]

Soil-moisture use by mixed conifer forest in a summer- dryforest, Sierra mixed conifer forest, and Subalpine forest)Climate Gradient Sierran Mixed Conifer Forest Sierra Climate

Goulden, M. L.; Anderson, R. G.; Bales, R. C.; Kelly, A. E.; Meadows, M.; Winston, G. C.

2012-01-01T23:59:59.000Z

249

An inexact accelerated proximal gradient method for large scale ...  

E-Print Network [OSTI]

The accelerated proximal gradient (APG) method, first proposed by Nesterov, and later refined by Beck and Teboulle, and studied in a unifying manner by Tseng.

2011-09-09T23:59:59.000Z

250

An accelerated proximal gradient algorithm for nuclear norm ...  

E-Print Network [OSTI]

Mar 27, 2009 ... An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems. Kim-Chuan Toh (mattohkc ***at*** nus.edu.sg)

Kim-Chuan Toh

2009-03-27T23:59:59.000Z

251

Analysis of natural gradient descent for multilayer neural networks  

Science Journals Connector (OSTI)

Natural gradient descent is a principled method for adapting the parameters of a statistical model on-line using an underlying Riemannian parameter space to redefine the direction of steepest descent. The algorithm is examined via methods of statistical physics that accurately characterize both transient and asymptotic behavior. A solution of the learning dynamics is obtained for the case of multilayer neural network training in the limit of large input dimension. We find that natural gradient learning leads to optimal asymptotic performance and outperforms gradient descent in the transient, significantly shortening or even removing plateaus in the transient generalization performance that typically hamper gradient descent training.

Magnus Rattray and David Saad

1999-04-01T23:59:59.000Z

252

Supermassive black holes from supermassive stars  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supermassive black holes from supermassive stars Supermassive black holes from supermassive stars 1663 Los Alamos science and technology magazine Latest Issue:November 2013 All Issues » submit Supermassive black holes from supermassive stars Supermassive stars in the early universe gave supermassive black holes a head start March 25, 2013 simulations suggest that star formation conditions back then allowed the first stars to become supermassive themselves In this simulation, a black hole that was just formed by the collapse of a supermassive star is surrounded by a distribution of gas (color indicates density). Because the black hole (located at the center but too small to see) grows by consuming the available gas, simulations like this one help determine how quickly the black hole can grow. The progenitor of this black

253

Coronal Heating Driven by Magnetic-gradient Pumping Mechanism in Solar Plasmas  

E-Print Network [OSTI]

The solar coronal heating is a longstanding mystery in astrophysics. Considering that the solar magnetic field is spatially inhomogeneous with considerable magnetic gradient from solar surface to the corona, this work proposes a magnetic gradient pumping (MGP) mechanism and try to explain the formation of hot plasma upflows, such as the hot type II spicules and hot plasma ejections, etc. In MGP mechanism, the magnetic gradients drive the energetic particles to move upwards from the underlying solar atmosphere and form hot upflows. These upflow energetic particles deposit in corona and make it becoming very hot. Roughly estimations indicate that the solar corona can be heated to above 1 million degrees, and the upflow velocity is about 40 km/s in chromosphere and about 130 km/s in the corona. The solar magnetic flux tubes act as pumpers to extract energetic particles from the underlying thermal photosphere, convey them and deposit in the corona. The deposition of energetic particles will make the corona become...

Tan, Baolin

2014-01-01T23:59:59.000Z

254

Spatial Gradients in Particle Reinforced Polymers Characterized by X-Ray Attenuation and Laser Confocal Microscopy  

SciTech Connect (OSTI)

The goal of this work is to develop techniques for measuring gradients in particle concentration within filled polymers, such as encapsulant. A high concentration of filler particles is added to such materials to tailor physical properties such as thermal expansion coefficient. Sedimentation and flow-induced migration of particles can produce concentration gradients that are most severe near material boundaries. Therefore, techniques for measuring local particle concentration should be accurate near boundaries. Particle gradients in an alumina-filled epoxy resin are measured with a spatial resolution of 0.2 mm using an x-ray beam attenuation technique, but an artifact related to the finite diameter of the beam reduces accuracy near the specimen's edge. Local particle concentration near an edge can be measured more reliably using microscopy coupled with image analysis. This is illustrated by measuring concentration profiles of glass particles having 40 {micro}m median diameter using images acquired by a confocal laser fluorescence microscope. The mean of the measured profiles of volume fraction agrees to better than 3% with the expected value, and the shape of the profiles agrees qualitatively with simple theory for sedimentation of monodisperse particles. Extending this microscopy technique to smaller, micron-scale filler particles used in encapsulant for microelectronic devices is illustrated by measuring the local concentration of an epoxy resin containing 0.41 volume fraction of silica.

LAGASSE,ROBERT R.; THOMPSON,KYLE R.

2000-06-12T23:59:59.000Z

255

Note: Local thermal conductivities from boundary driven non-equilibrium molecular dynamics simulations  

SciTech Connect (OSTI)

We report non-equilibrium molecular dynamics simulations of heat transport in models of molecular fluids. We show that the local thermal conductivities obtained from non-equilibrium molecular dynamics simulations agree within numerical accuracy with equilibrium Green-Kubo computations. Our results support the local equilibrium hypothesis for transport properties. We show how to use the local dependence of the thermal gradients to quantify the thermal conductivity of molecular fluids for a wide range of thermodynamic states using a single simulation.

Bresme, F., E-mail: f.bresme@imperial.ac.uk [Department of Chemistry, Chemical Physics Section, Imperial College London, London SW7 2AZ (United Kingdom); Department of Chemistry, Norwegian University of Science and Technology, Trondheim (Norway); Armstrong, J., E-mail: j.armstrong@imperial.ac.uk [Department of Chemistry, Chemical Physics Section, Imperial College London, London SW7 2AZ (United Kingdom)

2014-01-07T23:59:59.000Z

256

Accelerating and rotating black holes  

E-Print Network [OSTI]

An exact solution of Einstein's equations which represents a pair of accelerating and rotating black holes (a generalised form of the spinning C-metric) is presented. The starting point is a form of the Plebanski-Demianski metric which, in addition to the usual parameters, explicitly includes parameters which describe the acceleration and angular velocity of the sources. This is transformed to a form which explicitly contains the known special cases for either rotating or accelerating black holes. Electromagnetic charges and a NUT parameter are included, the relation between the NUT parameter $l$ and the Plebanski-Demianski parameter $n$ is given, and the physical meaning of all parameters is clarified. The possibility of finding an accelerating NUT solution is also discussed.

J. B. Griffiths; J. Podolsky

2005-07-06T23:59:59.000Z

257

Black Holes at the LHC  

E-Print Network [OSTI]

In these two lectures, we will address the topic of the creation of small black holes during particle collisions in a ground-based accelerator, such as LHC, in the context of a higher-dimensional theory. We will cover the main assumptions, criteria and estimates for their creation, and we will discuss their properties after their formation. The most important observable effect associated with their creation is likely to be the emission of Hawking radiation during their evaporation process. After presenting the mathematical formalism for its study, we will review the current results for the emission of particles both on the brane and in the bulk. We will finish with a discussion of the methodology that will be used to study these spectra, and the observable signatures that will help us identify the black-hole events.

Panagiota Kanti

2008-02-15T23:59:59.000Z

258

Down hole periodic seismic generator  

DOE Patents [OSTI]

A down hole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

259

Primordial black hole minimum mass  

SciTech Connect (OSTI)

In this paper we revisit thermodynamic constraints on primordial black hole (PBH) formation in the early universe. Under the assumption that PBH mass is equal to the cosmological horizon mass, one can use the 2nd Law of Thermodynamics to put a lower limit on the PBH mass. In models of PBH formation, however, PBHs are created at some fraction of the horizon mass. We show that this thermodynamic constraint still holds for subhorizon PBH formation.

Chisholm, James R. [Institute for Fundamental Theory, University of Florida, Gainesville, Florida 32611-8440 (United States)

2006-08-15T23:59:59.000Z

260

Black Hole Thermodynamics and Electromagnetism  

E-Print Network [OSTI]

We show a strong parallel between the Hawking, Beckenstein black hole Thermodynamics and electromagnetism: When the gravitational coupling constant transform into the electromagnetic coupling constant, the Schwarzchild radius, the Beckenstein temperature, the Beckenstein decay time and the Planck mass transform to respectively the Compton wavelength, the Hagedorn temperature, the Compton time and a typical elementary particle mass. The reasons underlying this parallalism are then discussed in detail.

Burra G. Sidharth

2005-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "holes thermal gradient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Quantum Geometry and Black Holes  

E-Print Network [OSTI]

We present an overall picture of the advances in the description of black hole physics from the perspective of loop quantum gravity. After an introduction that discusses the main conceptual issues we present some details about the classical and quantum geometry of isolated horizons and their quantum geometry and then use this scheme to give a natural definition of the entropy of black holes. The entropy computations can be neatly expressed in the form of combinatorial problems solvable with the help of methods based on number theory and the use of generating functions. The recovery of the Bekenstein-Hawking law and corrections to it is explained in some detail. After this, due attention is paid to the discussion of semiclassical issues. An important point in this respect is the proper interpretation of the horizon area as the energy that should appear in the statistical-mechanical treatment of the black hole model presented here. The chapter ends with a comparison between the microscopic and semiclassical app...

G., J Fernando Barbero

2015-01-01T23:59:59.000Z

262

Entanglement entropy of black holes  

E-Print Network [OSTI]

The entanglement entropy is a fundamental quantity which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff which regulates the short-distance correlations. The geometrical nature of the entanglement entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in 4 and 6 dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as 't Hooft's brick wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields which non-minimally couple to gravity is emphasized. The holographic description of the entanglement entropy of the black hole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

Sergey N. Solodukhin

2011-04-19T23:59:59.000Z

263

Thermal tests of MC3811 rigid/flex printed wiring boards  

SciTech Connect (OSTI)

Rigid/flex multilayer printed wiring boards are more sensitive to thermal environmental changes than conventional printed wiring boards. This is manifested because of a composition of dissimilar materials used within the construction of this type of product. During fabrication and assembly, stresses can develop within the plated-through holes from differences in thermal properties of the rigid and flexible materials, primarily thermal coefficient of expansion. Thermal shock and thermal stress tests and rework simulation as defined in MIL-P-50884 have been performed in this study as indicators of processing quality to detect faults and to verify improvements in board reliability. 3 refs., 17 figs., 3 tabs.

Gentry, F.L.

1990-10-01T23:59:59.000Z

264

Were Archaean continental geothermal gradients much steeper than today?  

Science Journals Connector (OSTI)

... km depth) did not generally exceed 800 C. From this they deduce a surface geothermal gradient of less than 23 C km'1 compared with 17 C km'1 in ... P-T determinations on Archaean granulites (summarised in ref. 2) their calculation of the geothermal gradient does not comply with conductive properties and distribution of heat producing elements within the ...

S. A. DRURY

1978-08-17T23:59:59.000Z

265

Energy Conversion from Salinity Gradients by Forward OsmosisElectrokinetics  

Science Journals Connector (OSTI)

Energy Conversion from Salinity Gradients by Forward OsmosisElectrokinetics ... Through the use of a salinity gradient, a suction force is created to induce a hydrodynamic flow in the FO submodule based on the principle of FO. ... Kiviat, F. E.Energy Recovery from Saline Water by Means of Electrochemical Cells Science 1976, 194, 719 720 ...

Yanmei Jiao; Chun Yang; Yuejun Kang

2014-03-12T23:59:59.000Z

266

3D SPH Simulations of Shocks in Accretion Flows around black holes  

E-Print Network [OSTI]

We present the simulation of 3D time dependent flow of rotating ideal gas falling into a Schwarzschild black hole. It is shown that also in the 3D case steady shocks are formed in a wide range of parameters (initial angular momentum and thermal energy). We therefore highlight the stability of the phenomenon of shock formation in sub keplerian flows onto black holes, and reenforce the role of the shocks in the high luminosity emission from black hole candidates. The simulations have been performed using a parallelized code based on the Smoothed Particles Hydrodynamics method (SPH). We also discuss some properties of the shock problem that allow its use as a quantitative test of the accuracy of the used numerical method. This shows that the accuracy of SPH is acceptable although not excellent.

G. Gerardi; D. Molteni; V. Teresi

2005-01-25T23:59:59.000Z

267

Colorful quantum black holes at the LHC  

E-Print Network [OSTI]

We examine the LHC phenomenology of quantum black holes in models of TeV gravity. By quantum black holes we mean black holes of the smallest masses and entropies, far from the semiclassical regime. These black holes are formed and decay over short distances, and typically carry SU(3) color charges inherited from their parton progenitors. Based on a few minimal assumptions, such as gauge invariance, we identify interesting signatures for quantum black hole decay such as 2 jets, jet + hard photon, jet + missing energy and jet + charged lepton, which should be readily visible above background. The detailed phenomenology depends heavily on whether one requires a Lorentz invariant, low-energy effective field theory description of black hole processes.

Xavier Calmet; Wei Gong; Stephen D. H. Hsu

2008-06-27T23:59:59.000Z

268

Seasonal thermal energy storage  

SciTech Connect (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

269

Spinning Black Holes as Particle Accelerators  

Science Journals Connector (OSTI)

It has recently been pointed out that particles falling freely from rest at infinity outside a Kerr black hole can in principle collide with an arbitrarily high center of mass energy in the limiting case of maximal black hole spin. Here we aim to elucidate the mechanism for this fascinating result, and to point out its practical limitations, which imply that ultraenergetic collisions cannot occur near black holes in nature.

Ted Jacobson and Thomas P. Sotiriou

2010-01-14T23:59:59.000Z

270

Black hole entropy: inside or out?  

E-Print Network [OSTI]

A trialogue. Ted, Don, and Carlo consider the nature of black hole entropy. Ted and Carlo support the idea that this entropy measures in some sense ``the number of black hole microstates that can communicate with the outside world.'' Don is critical of this approach, and discussion ensues, focusing on the question of whether the first law of black hole thermodynamics can be understood from a statistical mechanics point of view.

Ted Jacobson; Donald Marolf; Carlo Rovelli

2005-01-14T23:59:59.000Z

271

Interaction of fermions with black holes  

SciTech Connect (OSTI)

Bekenstein and Meisels used statistical thermodynamic arguments to obtain the probability distribution of fermions emitted by a black hole when a fermion is incident. In contrast with Bekenstein and Meisels, we model the black hole as a perfect blackbody surrounded by a mirror. Our probability distribution for emitted fermions agrees with the probability distribution of Bekenstein and Meisels, but the interpretation of how fermions interact with the black hole is different from the interpreteation given by Bekenstein and Meisels.

Jones T.O. III

1986-04-15T23:59:59.000Z

272

Electromagnetic Beams Overpass the Black Hole Horizon  

E-Print Network [OSTI]

We show that the electromagnetic excitations of the Kerr black hole have very strong back reaction on metric. In particular, the electromagnetic excitations aligned with the Kerr congruence form the light-like beams which overcome horizon, forming the holes in it, which allows matter to escape interior. So, there is no information lost inside the black hole. This effect is based exclusively on the analyticity of the algebraically special solutions.

Alexander Burinskii

2008-06-16T23:59:59.000Z

273

Absorption cross section of RN black hole  

E-Print Network [OSTI]

The behavior of a charged scalar field in the RN black hole space time is studied using WKB approximation. In the present work it is assumed that matter waves can get reflected from the event horizon. Using this effect, the Hawking temperature and the absorption cross section for RN black hole placed in a charged scalar field are calculated. The absorption cross section $\\sigma _{abs}$ is found to be inversely proportional to square of the Hawking temperature of the black hole.

Sini R.; V. C. Kuriakose

2007-08-23T23:59:59.000Z

274

Thermal unobtainiums? The perfect thermal conductor and  

E-Print Network [OSTI]

contribute to thermal resistance · Isotopically pure diamond has highest thermal conductivity of any material materials: disordered layered crystals Conclude with some thoughts on promising, high-risk, research even in a computer model. #12;Thermal resistance is created by Umklapp scattering (U

Braun, Paul

275

X-ray Probes of Black Hole Accretion Disks for Testing the No-Hair Theorem  

E-Print Network [OSTI]

The spins of a number of supermassive and stellar-mass black holes have been measured based on detections of thermal continuum emission and relativistically broadened iron lines in their x-ray spectra. Likewise, quasiperiodic variability has been observed in several sources. Such measurements commonly make the assumption that black holes are described by the Kerr metric, which according to the no-hair theorem characterizes black holes uniquely in terms of their masses and spins. This fundamental property of black holes can be tested observationally by measuring potential deviations from the Kerr metric introduced by a parametrically deformed Kerr-like spacetime. Thermal spectra, iron lines, and variability have already been studied extensively in several such metrics, which usually depend on only one particular type of deviation or contain unphysical regions outside of the compact object. In this paper, I study these x-ray probes in the background of a new Kerr-like metric which depends on four independent deviation functions and is free of pathological regions outside of the event horizon. I show that the observed signals depend significantly on primarily two types of deviations and that the strong correlation between the spin and the deviation parameters found previously in other Kerr-like metrics is partially broken for rapidly spinning black holes. This suggests that high-spin sources are the best candidates for tests of the no-hair theorem with x-rays and I obtain first constraints on such deviations from the stellar-mass black hole Cygnus X-1.

Tim Johannsen

2015-01-12T23:59:59.000Z

276

A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source  

E-Print Network [OSTI]

Most ultraluminous X-ray sources (ULXs) display a typical set of properties not seen in Galactic stellar-mass black holes (BHs): higher luminosity Lx > 3 10^39 erg/s, unusually soft X-ray components (kT solar masses. Our results demonstrate that in P13, soft thermal emission and spectral curvature are indeed signatures of supercritical accretion. ...

Motch, C; Soria, R; Gris, F; Pietrzy?ski, G

2014-01-01T23:59:59.000Z

277

Efficient and robust gradient enhanced Kriging emulators.  

SciTech Connect (OSTI)

%E2%80%9CNaive%E2%80%9D or straight-forward Kriging implementations can often perform poorly in practice. The relevant features of the robustly accurate and efficient Kriging and Gradient Enhanced Kriging (GEK) implementations in the DAKOTA software package are detailed herein. The principal contribution is a novel, effective, and efficient approach to handle ill-conditioning of GEK's %E2%80%9Ccorrelation%E2%80%9D matrix, RN%CC%83, based on a pivoted Cholesky factorization of Kriging's (not GEK's) correlation matrix, R, which is a small sub-matrix within GEK's RN%CC%83 matrix. The approach discards sample points/equations that contribute the least %E2%80%9Cnew%E2%80%9D information to RN%CC%83. Since these points contain the least new information, they are the ones which when discarded are both the easiest to predict and provide maximum improvement of RN%CC%83's conditioning. Prior to this work, handling ill-conditioned correlation matrices was a major, perhaps the principal, unsolved challenge necessary for robust and efficient GEK emulators. Numerical results demonstrate that GEK predictions can be significantly more accurate when GEK is allowed to discard points by the presented method. Numerical results also indicate that GEK can be used to break the curse of dimensionality by exploiting inexpensive derivatives (such as those provided by automatic differentiation or adjoint techniques), smoothness in the response being modeled, and adaptive sampling. Development of a suitable adaptive sampling algorithm was beyond the scope of this work; instead adaptive sampling was approximated by omitting the cost of samples discarded by the presented pivoted Cholesky approach.

Dalbey, Keith R.

2013-08-01T23:59:59.000Z

278

Thermodynamics of dilaton-axion black holes  

SciTech Connect (OSTI)

Considering a generalized action for the Einstein-Maxwell theory in four dimensions coupled to scalar and pseudoscalar fields, the thermodynamic properties of asymptotically flat black hole solutions in such a background are investigated. Bekenstein-Hawking area-entropy law is verified for these class of black holes. From the property of specific heat, it is shown that such black holes can be stable for a certain choice of the parameters like charge, mass, and the scalar vacuum expectation value. The possibility of a black hole phase transition is discussed in this context.

Ghosh, Tanwi; SenGupta, Soumitra [Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Calcutta-700 032 (India)

2008-12-15T23:59:59.000Z

279

Black Holes: from Speculations to Observations  

E-Print Network [OSTI]

This paper provides a brief review of the history of our understanding and knowledge of black holes. Starting with early speculations on ``dark stars'' I discuss the Schwarzschild "black hole" solution to Einstein's field equations and the development of its interpretation from "physically meaningless" to describing the perhaps most exotic and yet "most perfect" macroscopic object in the universe. I describe different astrophysical black hole populations and discuss some of their observational evidence. Finally I close by speculating about future observations of black holes with the new generation of gravitational wave detectors.

Thomas W. Baumgarte

2006-04-13T23:59:59.000Z

280

Thermal Control & System Integration  

Broader source: Energy.gov [DOE]

The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

Note: This page contains sample records for the topic "holes thermal gradient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Thermally induced velocity gradients in electroosmotic microchannel flows: the cooling influence of optical infrastructure  

E-Print Network [OSTI]

of optical infrastructure David Sinton, Xiangchun Xuan, Dongqing Li Abstract An axially non visuali- zation (Sinton 2004) and fluid handling in capillaries and microfluidic chips (Stone et al. 2004

Xuan, Xiangchun "Schwann"

282

ESTIMATION OF IN-SITU THERMAL CONDUCTIVITIES FROM TEMPERATURE GRADIENT MEASUREMENTS  

E-Print Network [OSTI]

in the fluid, and the rate of heat transfer from the fluidSpi11ette t A.G~t "Heat Transfer During Hot Fluid Injectionin the fluid is solved, the heat transfer at the wall is

Hoang, V.T.

2010-01-01T23:59:59.000Z

283

Toward Single Crystal Thin Films of Terthiophene by Directional Crystallization Using a Thermal Gradient  

Science Journals Connector (OSTI)

We would like to thank Anne de Wit, Pierre Colinet, and Benot Haut for their help with the heat transfer simulations and Linkam for technical assistance with the hot plate. ... Price, C. P.; Grzesiak, A. L.; Matzger, A. J. J. Am. ...

Guillaume Schweicher; Nicolas Paquay; Claire Amato; Roland Resel; Markus Koini; Samuel Talvy; Vincent Lemaur; Je?ro?me Cornil; Yves Geerts; Gabin Gbabode

2011-06-27T23:59:59.000Z

284

THERMAL GRADIENT MIGRATION OF BRINE INCLUSIONS IN SYNTHETIC ALKALI HALIDE SINGLE CRYSTALS  

E-Print Network [OSTI]

Nuclear Engineering Program, University of Illinois, Urbana, Illinois This work was supported by the Director, Office of Energy Research,

Olander, D.R.

2014-01-01T23:59:59.000Z

285

X-ray Probes of Black Hole Accretion Disks for Testing the No-Hair Theorem  

E-Print Network [OSTI]

The spins of a number of supermassive and stellar-mass black holes have been measured based on detections of thermal continuum emission and relativistically broadened iron lines in their x-ray spectra. Likewise, quasiperiodic variability has been observed in several sources. Such measurements commonly make the assumption that black holes are described by the Kerr metric, which according to the no-hair theorem characterizes black holes uniquely in terms of their masses and spins. This fundamental property of black holes can be tested observationally by measuring potential deviations from the Kerr metric introduced by a parametrically deformed Kerr-like spacetime. Thermal spectra, iron lines, and variability have already been studied extensively in several such metrics, which usually depend on only one particular type of deviation or contain unphysical regions outside of the compact object. In this paper, I study these x-ray probes in the background of a new Kerr-like metric which depends on four independent de...

Johannsen, Tim

2015-01-01T23:59:59.000Z

286

Regulation of thermal conductivity in hot galaxy clusters by MHD turbulence  

E-Print Network [OSTI]

The role of thermal conduction in regulating the thermal behavior of cooling flows in galaxy clusters is reexamined. Recent investigations have shown that the anisotropic Coulomb heat flux caused by a magnetic field in a dilute plasma drives a dynamical instability. A long standing problem of cooling flow theory has been to understand how thermal conduction can offset radiative core losses without completely preventing them. In this Letter we propose that magnetohydrodynamic turbulence driven by the heat flux instability regulates field-line insulation and drives a reverse convective thermal flux, both of which may mediate the stabilization of the cooling cores of hot clusters. This model suggests that turbulent mixing should accompany strong thermal gradients in cooling flows. This prediction seems to be supported by the spatial distribution of metals in the central galaxies of clusters, which shows a much stronger correlation with the ambient hot gas temperature gradient than with the parent stellar population.

Steven A. Balbus; Christopher S. Reynolds

2008-06-05T23:59:59.000Z

287

Regulation of thermal conductivity in hot galaxy clusters by MHD turbulence  

E-Print Network [OSTI]

The role of thermal conduction in regulating the thermal behavior of cooling flows in galaxy clusters is reexamined. Recent investigations have shown that the anisotropic Coulomb heat flux caused by a magnetic field in a dilute plasma drives a dynamical instability. A long standing problem of cooling flow theory has been to understand how thermal conduction can offset radiative core losses without completely preventing them. In this Letter we propose that magnetohydrodynamic turbulence driven by the heat flux instability regulates field-line insulation and drives a reverse convective thermal flux, both of which may mediate the stabilization of the cooling cores of hot clusters. This model suggests that turbulent mixing should accompany strong thermal gradients in cooling flows. This prediction seems to be supported by the spatial distribution of metals in the central galaxies of clusters, which shows a much stronger correlation with the ambient hot gas temperature gradient than with the parent stellar populat...

Balbus, Steven A

2008-01-01T23:59:59.000Z

288

Locking Information in Black Holes  

Science Journals Connector (OSTI)

We show that a central presumption in the debate over black-hole information loss is incorrect. Ensuring that information not escape during evaporation does not require that it all remain trapped until the final stage of the process. Using the recent quantum information-theoretic result of locking, we show that the amount of information that must remain can be very small, even as the amount already radiated is negligible. Information need not be additive: A small system can lock a large amount of information, making it inaccessible. Only if the set of initial states is restricted can information leak.

John A. Smolin and Jonathan Oppenheim

2006-02-28T23:59:59.000Z

289

Determination of salinity gradient power potential in Qubec, Canada  

Science Journals Connector (OSTI)

Electrical energy can be produced from the chemical potential difference of two liquids with dissimilar salinities. This source of energy is known as salinity gradient power. In this paper the theory the technologies used to exploit the power the major challenges and their development trends are first presented. Then a modeling of fluxes across semi permeable membranes is proposed and validated. Next an energy balance study is done in order to estimate the power potential for a given salinity gradient system. By applying this study to several rivers in Quebec the salinity power gradient potential is estimated to 45 TWh/yr based on the minimal flow rate of each river.

Y. Berrouche; P. Pillay

2012-01-01T23:59:59.000Z

290

Materials Science and Engineering A 490 (2008) 2635 Mechanisms of cracking and delamination within thick thermal barrier  

E-Print Network [OSTI]

. Introduction The maximum temperature capability of thermal barrier systems used in gas turbines is often that characterizes the susceptibility to delamination of thermal barrier coated (TBC) hot-section aero-turbine and sub-surface delaminations, as well as spalls. Estimates of the residual stress gradients made on cross

Hutchinson, John W.

291

Dynamics of oscillating relativistic tori around Kerr black holes  

Science Journals Connector (OSTI)

......angular momentum discs around Schwarzschild black holes, namely that...transmission of the signal recycling mirror (Shoemaker 2004)]. This...angular momentum discs around Schwarzschild black holes were considered...accretion solution on to a Schwarzschild black hole (Michel 1972......

Olindo Zanotti; Jos A. Font; Luciano Rezzolla; Pedro J. Montero

2005-02-01T23:59:59.000Z

292

Black holes cannot support conformal scalar hair  

E-Print Network [OSTI]

It is shown that the only static asymptotically flat non-extrema black hole solution of the Einstein-conformally invariant scalar field equations having the scalar field bounded on the horizon, is the Schwarzschild one. Thus black holes cannot be endowed with conformal scalar hair of finite length.

T. Zannias

1994-09-14T23:59:59.000Z

293

A gradient index sonic lens based on acoustic metamaterials  

Science Journals Connector (OSTI)

We report a method to design and characterize broadband gradient index lenses. The lenses are based on two?dimensional sonic crystals which are periodic arrangements of elastic cylinders embedded in air. It will be shown that gradient index sonic lenses built with rigid cylinders are more powerful than conventionally curved lenses. We also demonstrate that the designing possibilities increased by considering the mixture of two types of cylinders in the sonic crystal. So a gradient index lens with zero reflectance at the surface is proposed by employing a mixture of aerogel and rigid cylinders. Finally a multiple scatteringtheory has been employed to compare the performance of conventionally curved lenses and gradient index lenses. [Work supported by MEC of Spain and GVA of Valencia.

Jos Snchez?Dehesa; Daniel Torrent

2007-01-01T23:59:59.000Z

294

Potential use of hollow spheres in dual gradient drilling  

E-Print Network [OSTI]

The increasing number of significant deepwater discoveries has pushed the operator and service oil companies to focus their efforts on developing new technologies to drill in deeper water. Dual gradient drilling (DGD) will allow reaching deeper...

Vera Vera, Liliana

2012-06-07T23:59:59.000Z

295

Use of gradient magnets in low emittance electron storage rings  

SciTech Connect (OSTI)

The use of gradient magnets for a low emittance electron storage ring is discussed and a magnetic lattice for a 6 GeV electron energy synchrotron radiation source adopting this feature is presented.

Vignola, G.

1985-01-01T23:59:59.000Z

296

A three-term conjugate gradient method with sufficient descent ...  

E-Print Network [OSTI]

k?1yk?1. ,. (1.2) where yk?1 is defined by yk?1 = gk ? gk?1 and denotes the l2 ...... [15] M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving

2009-11-02T23:59:59.000Z

297

Functionally gradient titanium-aluminide composites produced by laser cladding  

Science Journals Connector (OSTI)

The laser surface cladding of Ti-Al/TiB2...composites was investigated as a means of producing a functionally gradient material on a commercially pure Ti substrate. Single and double layers were produced. The pro...

J. H. Abboud; D. R. F. West; R. D. Rawlings

1994-07-01T23:59:59.000Z

298

A parametric study of thermomechanical behavior of functionally gradient materials  

E-Print Network [OSTI]

(FSDT) that accounts for the transverse shear strains and the rotations, coupled with a three dimensional heat conduction equation is formulated for a functionally gradient plate. Both problems are studied by varying the volume fraction of a ceramic...

Chin, Che-Doong

1996-01-01T23:59:59.000Z

299

The Hadley Circulation and the Weak Temperature Gradient Approximation  

Science Journals Connector (OSTI)

The weak temperature gradient (WTG) approximation is applied to simple shallow-water models of the Hadley circulation. While it is difficult to formally justify the use of the WTG approximation for this problem, the derived WTG solutions are ...

L. M. Polvani; A. H. Sobel

2002-05-01T23:59:59.000Z

300

Computational Inversion of Electron Tomography Images -Gradient Flows  

E-Print Network [OSTI]

Computational Inversion of Electron Tomography Images Using L2 -Gradient Flows Guoliang Xu 1) Ming Computing Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100190, China 2) Department of Computer Sciences and Institute

Texas at Austin, University of

Note: This page contains sample records for the topic "holes thermal gradient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Generation of Gradients Having Complex Shapes Using Microfluidic Networks  

E-Print Network [OSTI]

Generation of Gradients Having Complex Shapes Using Microfluidic Networks Stephan K. W. Dertinger, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138 This paper describes the generation each carrying different concentrations of substances laminarly and side-by-side generated step

Prentiss, Mara

302

Thermal Management of Solar Cells  

E-Print Network [OSTI]

a better thermal conductance and when ceramic particles areor ceramic fillers that enhances thermal conductivity. Solid

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

303

A Tree-Ring Reconstruction of the Salinity Gradient in the Northern Estuary of San Francisco Bay  

E-Print Network [OSTI]

Ring Reconstruction of the Salinity Gradient in the Northernof the seasonal salinity gradient, or low salinity zone (the longitudinal salinity gradient in the northern estuary (

2011-01-01T23:59:59.000Z

304

Effects of interspecific competition and coastal oceanography on population dynamics of the Olympia oyster, Ostrea lurida, along estuarine gradients  

E-Print Network [OSTI]

across estuarine salinity gradients. Ecology 85:2539- Dalby,abundance along a salinity gradient. Ecology Lamb, E. G. andalong an estuarine salinity gradient. Oikos Etter, R. J.

Deck, Anna K.

2011-01-01T23:59:59.000Z

305

T-623: HP Business Availability Center Input Validation Hole...  

Broader source: Energy.gov (indexed) [DOE]

Business Availability Center Input Validation Hole Permits Cross-Site Scripting Attacks T-623: HP Business Availability Center Input Validation Hole Permits Cross-Site Scripting...

306

Three Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and Transition State Analogues. Three Hydrogen Bond Donor Catalysts: Oxyanion Hole Mimics and Transition State Analogues....

307

Black hole foraging: feedback drives feeding  

E-Print Network [OSTI]

We suggest a new picture of supermassive black hole (SMBH) growth in galaxy centers. Momentum-driven feedback from an accreting hole gives significant orbital energy but little angular momentum to the surrounding gas. Once central accretion drops, the feedback weakens and swept-up gas falls back towards the SMBH on near-parabolic orbits. These intersect near the black hole with partially opposed specific angular momenta, causing further infall and ultimately the formation of a small-scale accretion disk. The feeding rates into the disk typically exceed Eddington by factors of a few, growing the hole on the Salpeter timescale and stimulating further feedback. Natural consequences of this picture include (i) the formation and maintenance of a roughly toroidal distribution of obscuring matter near the hole; (ii) random orientations of successive accretion disk episodes; (iii) the possibility of rapid SMBH growth; (iv) tidal disruption of stars and close binaries formed from infalling gas, resulting in visible fl...

Dehnen, Walter

2013-01-01T23:59:59.000Z

308

Black Hole Superradiance in Dynamical Spacetime  

E-Print Network [OSTI]

We study the superradiant scattering of gravitational waves by a nearly extremal black hole (dimensionless spin $a=0.99$) by numerically solving the full Einstein field equations, thus including backreaction effects. This allows us to study the dynamics of the black hole as it loses energy and angular momentum during the scattering process. To explore the nonlinear phase of the interaction, we consider gravitational wave packets with initial energies up to $10%$ of the mass of the black hole. We find that as the incident wave energy increases, the amplification of the scattered waves, as well as the energy extraction efficiency from the black hole, is reduced. During the interaction the apparent horizon geometry undergoes sizable nonaxisymmetric oscillations. The largest amplitude excitations occur when the peak frequency of the incident wave packet is above where superradiance occurs, but close to the dominant quasinormal mode frequency of the black hole.

William E. East; Fethi M. Ramazano?lu; Frans Pretorius

2014-03-14T23:59:59.000Z

309

Osteochondral Interface Tissue Engineering using Macroscopic Gradients of Physicochemical Signals  

E-Print Network [OSTI]

of tissue interfaces. Yet, just because tissues are separated from one another by type, function, location, or anatomical prevalence, does not necessarily mean that the interfaces are as easily distinguishable, as the interfaces themselves are highly complex... not yield a true continuous gradient, it can have many discrete advantages over continuous gradients. Because of the inherent discontinuous fabrication methods (developing sections separately and fusing together), however, design effort must be placed...

Dormer, Nathan Henry

2011-04-25T23:59:59.000Z

310

Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy  

Science Journals Connector (OSTI)

Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy ... Current status of ion exchange membranes for power generation from salinity gradients ...

Geoffrey M. Geise; Michael A. Hickner; Bruce E. Logan

2013-08-22T23:59:59.000Z

311

E-Print Network 3.0 - alternating gradient focusing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gradient focusing Page: << < 1 2 3 4 5 > >> 1 Gradient Estimation in Global Optimization Algorithms Megan Hazen, Member, IEEE and Maya R. Gupta, Member, IEEE Summary:...

312

Single molecule studies of meso/macro porous silica materials and gradient films.  

E-Print Network [OSTI]

??The preparation of mesoporous/macroporous silica materials and polarity gradient thin film are introduced in this thesis. These porous silica materials and gradient materials have the (more)

Ye, Fangmao

2009-01-01T23:59:59.000Z

313

Ultrafast thermalization of photoexcited carriers in polar semiconductors  

Science Journals Connector (OSTI)

We present a combined experimental and theoretical study of ultrafast thermalization of high-energy carriers photogenerated by femtosecond laser excitation in GaAs and InP. Luminescence up-conversion is used to monitor the spectral and temporal evolution of the carrier distribution with a time resolution of about 100 fs. A rapid redistribution of electrons and holes over a wide energy range is found within the first 100 fs after excitation. The experimental results are analyzed by Monte Carlo simulations including a molecular-dynamics scheme to describe the carrier kinetics. We show that the Coulomb interaction among carriers is responsible for the initial ultrafast thermalization.

Lucio Rota; Paolo Lugli; Thomas Elsaesser; Jagdeep Shah

1993-02-15T23:59:59.000Z

314

Grain-scale thermoelastic stresses and spatiotemporal temperature gradients on airless bodies, implications for rock breakdown  

E-Print Network [OSTI]

Thermomechanical processes such as fatigue and shock have been suggested to cause and contribute to rock breakdown on Earth, and on other planetary bodies, particularly airless bodies in the inner solar system. In this study, we modeled grain-scale stresses induced by diurnal temperature variations on simple microstructures made of pyroxene and plagioclase on various solar system bodies. We found that a heterogeneous microstructure on the Moon experiences peak tensile stresses on the order of 100 MPa. The stresses induced are controlled by the coefficient of thermal expansion and Young's modulus of the mineral constituents, and the average stress within the microstructure is determined by relative volume of each mineral. Amplification of stresses occurs at surface-parallel boundaries between adjacent mineral grains and at the tips of pore spaces. We also found that microscopic spatial and temporal surface temperature gradients do not correlate with high stresses, making them inappropriate proxies for investig...

Molaro, Jamie L; Langer, Steve A

2015-01-01T23:59:59.000Z

315

Thermal acidization and recovery process for recovering viscous petroleum  

DOE Patents [OSTI]

A thermal acidization and recovery process for increasing production of heavy viscous petroleum crude oil and synthetic fuels from subterranean hydrocarbon formations containing clay particles creating adverse permeability effects is described. The method comprises injecting a thermal vapor stream through a well bore penetrating such formations to clean the formation face of hydrocarbonaceous materials which restrict the flow of fluids into the petroleum-bearing formation. Vaporized hydrogen chloride is then injected simultaneously to react with calcium and magnesium salts in the formation surrounding the bore hole to form water soluble chloride salts. Vaporized hydrogen fluoride is then injected simultaneously with its thermal vapor to dissolve water-sensitive clay particles thus increasing permeability. Thereafter, the thermal vapors are injected until the formation is sufficiently heated to permit increased recovery rates of the petroleum.

Poston, Robert S. (Winter Park, FL)

1984-01-01T23:59:59.000Z

316

Locality, entanglement, and thermalization of isolated quantum systems  

Science Journals Connector (OSTI)

A way to understand thermalization in an isolated system is to interpret it as an increase in entanglement between subsystems. Here we test this idea through a combination of analytical and Krylov-subspace-based numerical methods applied to a quantum gas of bosons. We find that the entanglement entropy of a subsystem is rapidly generated at the initial state of the evolution, to quickly approach the thermal value. Our results also provide an accurate numerical test of the eigenstate thermalization hypothesis (ETH), according to which a single energy eigenstate of an isolated system behaves in certain respects as a thermal state. In the context of quantum black holes, we propose that the ETH is a quantum version of the classical no-hair theorem.

S. Khlebnikov and M. Kruczenski

2014-11-03T23:59:59.000Z

317

Semi-transparent solar energy thermal storage device  

DOE Patents [OSTI]

A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

McClelland, John F. (Ames, IA)

1986-04-08T23:59:59.000Z

318

Semi-transparent solar energy thermal storage device  

DOE Patents [OSTI]

A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

McClelland, John F. (Ames, IA)

1985-06-18T23:59:59.000Z

319

Thermal spin-transfer torque in magnetic tunnel junctions (invited)  

SciTech Connect (OSTI)

The thermal spin-transfer torque (TSTT) is an effect to switch the magnetic free layer in a magnetic tunnel junction by a temperature gradient only. We present ab initio calculations of the TSTT. In particular, we discuss the influence of magnetic layer composition by considering Fe{sub x}Co{sub 1x} alloys. Further, we compare the TSTT to the bias voltage driven STT and discuss the requirements for a possible thermal switching. For example, only for very thin barriers of 3 monolayers MgO, a thermal switching is imaginable. However, even for such a thin barrier, the TSTT is still too small for switching at the moment and further optimization is needed. In particular, the TSTT strongly depends on the composition of the ferromagnetic layer. In our current study, it turns out that at the chosen thickness of the ferromagnetic layer, pure Fe gives the highest thermal spin-transfer torque.

Heiliger, Christian, E-mail: christian.heiliger@physik.uni-giessen.de; Franz, C.; Czerner, Michael [I. Physikalisches Institut, Justus Liebig University, Giessen (Germany)

2014-05-07T23:59:59.000Z

320

Holographic thermal field theory on curved spacetimes  

E-Print Network [OSTI]

The AdS/CFT correspondence relates certain strongly coupled CFTs with large effective central charge $c_\\text{eff}$ to semi-classical gravitational theories with AdS asymptotics. We describe recent progress in understanding gravity duals for CFTs on non-trivial spacetimes at finite temperature, both in and out of equilibrium. Such gravity methods provide powerful new tools to access the physics of these strongly coupled theories, which often differs qualitatively from that found at weak coupling. Our discussion begins with basic aspects of AdS/CFT and progresses through thermal CFTs on the Einstein Static Universe and on periodically identified Minkowski spacetime. In the latter context we focus on states describing so-called plasma balls, which become stable at large $c_\\text{eff}$. We then proceed to out-of-equilibrium situations associated with dynamical bulk black holes. In particular, the non-compact nature of these bulk black holes allows stationary solutions with non-Killing horizons that describe time-independent flows of CFT plasma. As final a topic we consider CFTs on black hole spacetimes. This discussion provides insight into how the CFT transports heat between general heat sources and sinks of finite size. In certain phases the coupling to small sources can be strongly suppressed, resulting in negligible heat transport despite the presence of a deconfined plasma with sizeable thermal conductivity. We also present a new result, explaining how this so-called droplet behaviour is related to confinement via a change of conformal frame.

Donald Marolf; Mukund Rangamani; Toby Wiseman

2014-02-22T23:59:59.000Z

Note: This page contains sample records for the topic "holes thermal gradient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Black Hole Evaporation in an Expanding Universe  

E-Print Network [OSTI]

We calculate the quantum radiation power of black holes which are asymptotic to the Einstein-de Sitter universe at spatial and null infinities. We consider two limiting mass accretion scenarios, no accretion and significant accretion. We find that the radiation power strongly depends on not only the asymptotic condition but also the mass accretion scenario. For the no accretion case, we consider the Einstein-Straus solution, where a black hole of constant mass resides in the dust Friedmann universe. We find negative cosmological correction besides the expected redshift factor. This is given in terms of the cubic root of ratio in size of the black hole to the cosmological horizon, so that it is currently of order $10^{-5} (M/10^{6}M_{\\odot})^{1/3} (t/14 {Gyr})^{-1/3}$ but could have been significant at the formation epoch of primordial black holes. Due to the cosmological effects, this black hole has not settled down to an equilibrium state. This cosmological correction may be interpreted in an analogy with the radiation from a moving mirror in a flat spacetime. For the significant accretion case, we consider the Sultana-Dyer solution, where a black hole tends to increase its mass in proportion to the cosmological scale factor. In this model, we find that the radiation power is apparently the same as the Hawking radiation from the Schwarzschild black hole of which mass is that of the growing mass at each moment. Hence, the energy loss rate decreases and tends to vanish as time proceeds. Consequently, the energy loss due to evaporation is insignificant compared to huge mass accretion onto the black hole. Based on this model, we propose a definition of quasi-equilibrium temperature for general conformal stationary black holes.

Hiromi Saida; Tomohiro Harada; Hideki Maeda

2007-05-28T23:59:59.000Z

322

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

323

Holographic thermalization patterns  

E-Print Network [OSTI]

We investigate the behaviour of various correlators in N=4 super Yang Mills theory, taking finite coupling corrections into account. In the thermal limit we investigate the flow of the quasinormal modes as a function of the 't Hooft coupling. Then by using a specific model of holographic thermalization we investigate the deviation of the spectral densities from their thermal limit in an out-of-equilibrium situation. The main focus lies on the thermalization pattern with which the various plasma constituents of different energies approach their final thermal distribution as the coupling constant decreases from the infinite coupling limit. All results point towards the weakening of the usual top down thermalization pattern.

Stefan Stricker

2014-03-11T23:59:59.000Z

324

Holographic thermalization patterns  

E-Print Network [OSTI]

We investigate the behaviour of various correlators in N=4 super Yang Mills theory, taking finite coupling corrections into account. In the thermal limit we investigate the flow of the quasinormal modes as a function of the 't Hooft coupling. Then by using a specific model of holographic thermalization we investigate the deviation of the spectral densities from their thermal limit in an out-of-equilibrium situation. The main focus lies on the thermalization pattern with which the various plasma constituents of different energies approach their final thermal distribution as the coupling constant decreases from the infinite coupling limit. All results point towards the weakening of the usual top down thermalization pattern.

Stricker, Stefan

2014-01-01T23:59:59.000Z

325

Slim Holes for Small Power Plants  

SciTech Connect (OSTI)

Geothermal research study at Sandia National Laboratories has conducted a program in slimhole drilling research since 1992. Although our original interest focused on slim holes as an exploration method, it has also become apparent that they have substantial potential for driving small-scale, off-grid power plants. This paper summarizes Sandia's slim-hole research program, describes technology used in a ''typical'' slimhole drilling project, presents an evaluation of using slim holes for small power plants, and lists some of the research topics that deserve further investigation.

Finger, John T.

1999-08-06T23:59:59.000Z

326

Chaotic string-capture by black hole  

Science Journals Connector (OSTI)

We consider a macroscopic charge-current carrying (cosmic) string in the background of a Schwarzschild black hole. The string is taken to be circular and is allowed to oscillate and to propagate in the direction perpendicular to its plane (that is parallel to the equatorial plane of the black hole). Numerical investigations indicate that the system is non-integrable, but the interaction with the gravitational field of the black hole still gives rise to various qualitatively simple processes like `adiabatic capture' and `string transmutation'.

A L Larsen

1994-01-01T23:59:59.000Z

327

Non-thermal Plasma Chemistry Non-thermal Thermal  

E-Print Network [OSTI]

automotive industry optics biomedical technology environmental technology Plasma Technology Quote from: Pla-thermal Plasma Chemical Flow Reactor #12;Werner von Siemens ,, ... construction of an apparatus generation (1857) pollution control volatile organic components, NOx reforming, ... radiation sources excimer

Greifswald, Ernst-Moritz-Arndt-Universität

328

Borehole gravity meter survey in drill hole USW G-4, Yucca Mountain Area, Nye County, Nevada  

SciTech Connect (OSTI)

Drill hole USW G-4 was logged with the US Geological Survey borehole gravity meter (BHGM) BH-6 as part of a detailed study of the lithostratigraphic units penetrated by this hole. Because the BHGM measures a larger volume of rock than the conventional gamma-gamma density tool, it provides an independent and more accurate measurement of the in situ average bulk density of thick lithologic units. USW G-4 is an especially important hole because of its proximity to the proposed exploratory shaft at Yucca Mountain. The BHGM data were reduced to interval densities using a free-air gradient (F) of 0.3083 mGal./m (0.09397 mGal/ft) measured at the drill site. The interval densities were further improved by employing an instrument correction factor of 1.00226. This factor was determined from measurements obtained by taking gravity meter BH-6 over the Charleston Peak calibration loop. The interval density data reported herein, should be helpful for planning the construction of the proposed shaft.

Healey, D.L.; Clutsom, F.G.; Glover, D.A.

1986-12-31T23:59:59.000Z

329

Binary Black Hole Accretion Flows From a Misaligned Circumbinary Disk  

Science Journals Connector (OSTI)

......mass-accretion-rate variation per binary...because each black hole passes across the circumbinary...mass-accretion-rate variation per binary...holes|black hole physics|Galaxies: nuclei...because each black hole passes across the circumbinary...the mass accretion rates is also independent......

Kimitake Hayasaki; Hideki Saito; Shin Mineshige

2013-08-25T23:59:59.000Z

330

(1) Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA(1) Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA (2) Harvard Medical School, Boston, MA 02114 USA(2) Harvard Medical School, Boston  

E-Print Network [OSTI]

(1) Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA(1) Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA (2) Harvard Medical School, Boston, MA 02114 USA(2) Harvard Medical School, Boston, MA 02114 USA (3) Section on Auditory Mechanics, NIDCD

331

Thermal contact resistance  

E-Print Network [OSTI]

This work deals with phenomena of thermal resistance for metallic surfaces in contact. The main concern of the work is to develop reliable and practical methods for prediction of the thermal contact resistance for various ...

Mikic, B. B.

1966-01-01T23:59:59.000Z

332

Solar Thermal Processes  

Science Journals Connector (OSTI)

The use of solar energy for desalination purposes was one of ... The process is based on the use of solar thermal energy to evaporate water, thus separating pure ... brine. In this chapter an overview of solar thermal

M.T. Chaibi; Ali M. El-Nashar

2009-01-01T23:59:59.000Z

333

Thermal Neutron Scattering  

Science Journals Connector (OSTI)

... of its title. It is not for the nuclear physicist, nor even for the neutron physicist, but for the student of solids and liquids. "Thermal ... physicist, but for the student of solids and liquids. "Thermal neutron ...

G. E. BACON

1968-11-09T23:59:59.000Z

334

Phase transitions and Geometrothermodynamics of Regular black holes  

E-Print Network [OSTI]

In this paper we study the thermodynamics and state space geometry of regular black hole solutions such as Bardeen black hole, Ay\\'{o}n-Beato and Garc\\'{i}a black hole, Hayward black hole and Berej-Matyjasek-Trynieki-Wornowicz black hole. We find that all these black holes show second order thermodynamic phase transitions(SOTPT) by observing discontinuities in heat capacity-entropy graphs as well as the cusp type double point in free energy-temperature graph. Using the formulation of geometrothermodynamics we again find the singularities in the heat capacity of the black holes by calculating the curvature scalar of the Legendre invariant metric.

R. Tharanath; Jishnu Suresh; V. C. Kuriakose

2014-06-16T23:59:59.000Z

335

High electric field effects on the thermal generation in hydrogenated amorphous silicon  

SciTech Connect (OSTI)

The authors have studied the electric field dependence of the electron-hole thermal generation process in hydrogenated amorphous silicon. A model was developed which takes into account the Poole-Frenkel effect and the thermally assisted tunneling. In order to explain the experimental results it was necessary to consider a strong electron-lattice interaction describing the carrier tunneling mechanism. Deep defects relaxation is also discussed.

Ilie, A.; Equer, B.

1997-07-01T23:59:59.000Z

336

A planar ion trap chip with integrated structures for an adjustable magnetic field gradient  

E-Print Network [OSTI]

field necessary for magnetic-gradient- induced coupling between ionic effective spins. We dem- onstrate] magnetic field gradient, however, such coupling is induced. Also, coupling between spin states of different-gradient- induced coupling (MAGIC). A static gradient can be generated by permanent mag- nets [15, 16] or by current

Wunderlich, Christof

337

Conserved quantities in a black hole collision  

E-Print Network [OSTI]

The Newman-Penrose constants of the spacetime corresponding to the development of the Brill-Lindquist initial data are calculated by making use of a particular representation of spatial infinity due to H. Friedrich. The Brill-Lindquist initial data set represents the head-on collision of two non-rotating black holes. In this case one non-zero constant is obtained. Its value is given in terms of the product of the individual masses of the black holes and the square of a distance parameter separating the two black holes. This constant retains its value all along null infinity, and therefore it provides information about the late time evolution of the collision process. In particular, it is argued that the magnitude of the constants provides information about the amount of residual radiation contained in the spacetime after the collision of the black holes.

S. Dain; J. A. Valiente-Kroon

2001-05-28T23:59:59.000Z

338

Spectral line broadening in magnetized black holes  

E-Print Network [OSTI]

We consider weakly magnetized non-rotating black holes. In the presence of a regular magnetic field the motion of charged particles in the vicinity of a black hole is modified. As a result, the position of the innermost stable circular orbit (ISCO) becomes closer to the horizon. When the Lorentz force is repulsive (directed from the black hole) the ISCO radius can reach the gravitational radius. In the process of accretion charged particles (ions) of the accreting matter can be accumulated near their ISCO, while neutral particles fall down to the black hole after they reach $6M$ radius. The sharp spectral line Fe K$\\alpha$, emitted by iron ions at such orbits, is broadened when the emission is registered by a distant observer. In this paper we study this broadening effect and discuss how one can extract information concerning the strength of the magnetic field from the observed spectrum.

Valeri P. Frolov; Andrey A. Shoom; Christos Tzounis

2014-05-02T23:59:59.000Z

339

Energy of 4-Dimensional Black Hole, etc  

E-Print Network [OSTI]

In this letter I suggest possible redefinition of mass density, not depending on speed of the mass element, which leads to a more simple stress-energy for an object. I calculate energy of black hole.

Dmitriy Palatnik

2011-07-18T23:59:59.000Z

340

Horizon Operator Approach to Black Hole Quantization  

E-Print Network [OSTI]

The $S$-matrix Ansatz for the construction of a quantum theory of black holes is further exploited. We first note that treating the metric tensor $g_{\\m\

G. 't Hooft

1994-02-21T23:59:59.000Z

Note: This page contains sample records for the topic "holes thermal gradient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geology and Temperature Gradient Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Geology and Temperature Gradient Surveys Blue Mountain Geothermal Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Abstract Triassic argillite and sandstone of the Grass Valley Formation and phyllitic mudstone of the overlying Raspberry Formation, also of Triassic age, host a blind geothermal system under exploration by Blue Mountain Power Company Inc. with assistance from the Energy & Geoscience Institute. Geologically young, steeply dipping, open fault sets, striking N50-60°E,N50-60°W, and N-S intersect in the geothermal zone providing deep permeability over a wide area. Extensive silicification andhydro

342

Thermal neutron detection system  

DOE Patents [OSTI]

According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

2000-01-01T23:59:59.000Z

343

Thermal Performance Benchmarking (Presentation)  

SciTech Connect (OSTI)

This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

Moreno, G.

2014-11-01T23:59:59.000Z

344

Multiwavelength Thermal Emission  

E-Print Network [OSTI]

Multiwavelength Astronomy NASA #12;Thermal Emission #12;Thermal Emission Non-thermal p-p collisions Optical IR Radio/ Microwave sources of emission massive stars, WHIM, Ly many dust, cool objects-ray ~GeV Gamma-ray ~TeV sources of emission AGN, clusters, SNR, binaries, stars AGN (obscured), shocks

California at Santa Cruz, University of

345

Jordan Algebras and Extremal Black Holes  

E-Print Network [OSTI]

We review various properties of the exceptional Euclidean Jordan algebra of degree three. Euclidean Jordan algebras of degree three and their corresponding Freudenthal triple systems were recently shown to be intimately related to extremal black holes in N=2, d=4 homogeneous supergravities. Using a novel type of eigenvalue problem with eigenmatrix solutions, we elucidate the rich matrix geometry underlying the exceptional N=2, d=4 homogeneous supergravity and explore the relations to extremal black holes.

Michael Rios

2007-03-27T23:59:59.000Z

346

Black hole entropy and higher curvature interactions  

Science Journals Connector (OSTI)

A general formula for the entropy of stationary black holes in Lovelock higher-curvature gravity theories is obtained by integrating the first law of black hole mechanics, which is derived by Hamiltonian methods. The entropy is not simply one quarter of the surface area of the horizon, but also includes a sum of intrinsic curvature invariants integrated over a cross section of the horizon.

Ted Jacobson and Robert C. Myers

1993-06-14T23:59:59.000Z

347

Mutiny at the white-hole district  

E-Print Network [OSTI]

The white-hole sector of Kruskal's solution is almost never used in physical applications. However, it might contain the solution to many of the problems associated with gravitational collapse and evaporation. This essay tries to draw attention to some bouncing geometries that make a democratic use of the black- and white-hole sectors. We will argue that these types of behaviour could be perfectly natural in some approaches to the next physical level beyond classical general relativity.

Carlos Barcel; Ral Carballo-Rubio; Luis J. Garay

2014-07-05T23:59:59.000Z

348

Thermodynamics and evaporation of the noncommutative black hole  

E-Print Network [OSTI]

We investigate the thermodynamics of the noncommutative black hole whose static picture is similar to that of the nonsingular black hole known as the de Sitter-Schwarzschild black hole. It turns out that the final remnant of extremal black hole is a thermodynamically stable object. We describe the evaporation process of this black hole by using the noncommutativity-corrected Vaidya metric. It is found that there exists a close relationship between thermodynamic approach and evaporation process.

Yun Soo Myung; Yong-Wan Kim; Young-Jai Park

2006-11-24T23:59:59.000Z

349

Solar Wind Forecasting with Coronal Holes  

E-Print Network [OSTI]

An empirical model for forecasting solar wind speed related geomagnetic events is presented here. The model is based on the estimated location and size of solar coronal holes. This method differs from models that are based on photospheric magnetograms (e.g., Wang-Sheeley model) to estimate the open field line configuration. Rather than requiring the use of a full magnetic synoptic map, the method presented here can be used to forecast solar wind velocities and magnetic polarity from a single coronal hole image, along with a single magnetic full-disk image. The coronal hole parameters used in this study are estimated with Kitt Peak Vacuum Telescope He I 1083 nm spectrograms and photospheric magnetograms. Solar wind and coronal hole data for the period between May 1992 and September 2003 are investigated. The new model is found to be accurate to within 10% of observed solar wind measurements for its best one-month periods, and it has a linear correlation coefficient of ~0.38 for the full 11 years studied. Using a single estimated coronal hole map, the model can forecast the Earth directed solar wind velocity up to 8.5 days in advance. In addition, this method can be used with any source of coronal hole area and location data.

S. Robbins; C. J. Henney; J. W. Harvey

2007-01-09T23:59:59.000Z

350

Electrical resistance of metallized via?holes  

Science Journals Connector (OSTI)

The resistance of a via?hole laser?drilled through an alumina substrate depends on the hole geometry the type of probe the deposition technique and the properties of the film. If the walls of the hole constitute a truncated cone the resistance is R s/?[ln(d 2/d 1)]{1/4 + [h/(d 2 ? d 1)]2}1/2 where R s is the sheet resistance h is the substrate thickness and d 1 and d 2 are the diameters. Increasing the larger diameter helps by (a) reducing the rim?to?rim resistance (b) reducing the spreading resistance and (c) making the walls more accessible for metallization. A four?point probe on the other hand measures the rim?to?rim resistance as approximately (R s/?) ln cosh (h/d) where d is an average diameter. If the hole is partially bare the four?point reading will depend on probe orientation. A comparison of calculation and measurement indicates R s in the hole to be between two and forty times R s outside depending on the thickness. Electrical probing of broken?open holes showed this to be due to thickness differences not roughness or ledge resistance.

Peter M. Hall

1975-01-01T23:59:59.000Z

351

Initial data for black hole evolutions  

E-Print Network [OSTI]

We discuss the initial value problem of general relativity in its recently unified Lagrangian and Hamiltonian pictures and present a multi-domain pseudo-spectral collocation method to solve the resulting coupled nonlinear partial differential equations. Using this code, we explore several approaches to construct initial data sets containing one or two black holes: We compute quasi-circular orbits for spinning equal mass black holes and unequal mass (nonspinning) black holes using the effective potential method with Bowen-York extrinsic curvature. We compare initial data sets resulting from different decompositions, and from different choices of the conformal metric with each other. Furthermore, we use the quasi-equilibrium method to construct initial data for single black holes and for binary black holes in quasi-circular orbits. We investigate these binary black hole data sets and examine the limits of large mass-ratio and wide separation. Finally, we propose a new method for constructing spacetimes with superposed gravitational waves of possibly very large amplitude.

Harald P. Pfeiffer

2005-10-04T23:59:59.000Z

352

Nonlinear elastic free energies and gradient Young-Gibbs measures  

E-Print Network [OSTI]

We investigate, in a fairly general setting, the limit of large volume equilibrium Gibbs measures for elasticity type Hamiltonians with clamped boundary conditions. The existence of a quasiconvex free energy, forming the large deviations rate functional, is shown using a new interpolation lemma for partition functions. The local behaviour of the Gibbs measures can be parametrized by Young measures on the space of gradient Gibbs measures. In view of unboundedness of the state space, the crucial tool here is an exponential tightness estimate that holds for a vast class of potentials and the construction of suitable compact sets of gradient Gibbs measures.

Roman Koteck; Stephan Luckhaus

2012-06-26T23:59:59.000Z

353

Speed-gradient principle for nonstationary processes in thermodynamics  

E-Print Network [OSTI]

The speed-gradient variational principle (SG-principle) is formulated and applied to thermodynamical systems. It is shown that Prigogine's principle of minimum entropy production and Onsager's symmetry relations can be interpreted in terms of the SG-principle and, therefore, are equivalent to each other. In both cases entropy of the system plays a role of the goal functional. The speed-gradient formulation of thermodynamic principles provide their extended versions, describing transient dynamics of nonstationary systems far from equilibrium. As an example a model of transient (relaxation) dynamics for maximum entropy principle is derived.

Alexander L. Fradkov

2007-01-28T23:59:59.000Z

354

Thermal Insulation in Solar Thermal Devices  

Science Journals Connector (OSTI)

Thermal Insulation is a device or a practice which is used in a system for minimising heat losses caused due to transfer of heat from hotter to colder regions. It is one of the cheapest methods of energy conse...

B. C. Raychaudhuri

1986-01-01T23:59:59.000Z

355

Single-Particle Model for a Lithium-Ion Cell: Thermal Godfrey Sikha,b,  

E-Print Network [OSTI]

affected by the diffusion in the solid state. At high current densities, the concentration gradients to include an energy balance. The temperature dependence of the solid phase diffusion coefficient in the literature; for example, Newman and Pals1,2 presented cell and battery stack thermal models incorporating

356

Gradient-Based Distance Estimation for Spatial Computers  

Science Journals Connector (OSTI)

......the reduced width area, the average gradient value Gout avg and the SMG value Gout si are shown using Equation (12) and (13). If...Gin si as shown using Equation (14) and (15). Gout avg = nl (a - 1) + nl a + nl (a + 1) nl = a......

Qingzhi Liu; Andrei Pruteanu; Stefan Dulman

2013-12-01T23:59:59.000Z

357

Oil displacement through a porous medium with a temperature gradient  

E-Print Network [OSTI]

We investigate the effect of a temperature gradient on oil recovery in a two-dimensional pore-network model. The oil viscosity depends on temperature as, $\\mu_o=exp(B/T)$, where $B$ is a physico-chemical parameter depending on the type of oil, and $T$ is the temperature. A temperature gradient is applied across the medium in the flow direction. Initially, the porous medium is saturated with oil and, then, another fluid is injected. We have considered two cases representing different injection strategies. In the first case, the invading fluid viscosity is constant (finite viscosity ratio) while in the second one, the invading fluid is inviscid (infinite viscosity ratio). Our results show that, for the case of finite viscosity ratio, recovery increases with $\\Delta T$ independently on strength or sign of the gradient. For an infinite viscosity ratio, a positive temperature gradient is necessary to enhance recovery. Moreover, we show that, for $\\Delta T>0$, the percentage of oil recovery generally decreases (inc...

Oliveira, C L N; Herrmann, H J

2011-01-01T23:59:59.000Z

358

Finite-Pressure-Gradient Influences on Ideal Spheromak Equilibrium  

Science Journals Connector (OSTI)

Spatially resolved measurements of the magnetic field of a spheromak have been analyzed and compared with expectations for the ratio of j?B from the pressure-gradient-free Taylor model and a model with pressure due to Morikawa. Better agreement is found with the model containing finite pressure.

G. W. Hart; C. Chin-Fatt; A. W. DeSilva; G. C. Goldenbaum; R. Hess; R. S. Shaw

1983-10-24T23:59:59.000Z

359

Simulation of IPA Gradients in Hybrid Network Systems Benjamin Melamed  

E-Print Network [OSTI]

Simulation of IPA Gradients in Hybrid Network Systems Benjamin Melamed Rutgers University Rutgers Atlanta, GA 30332 October 26, 2005 Abstract Infinitesimal Perturbation Analysis (IPA) provides formulas paths of stochastic systems. In practice, IPA derivatives may be computed either from simulation runs

360

Seasonal mass balance gradients in Norway L. A. Rasmussen1  

E-Print Network [OSTI]

Norwegian Water Resources and Energy Directorate (NVE) P. O. Box 5091 Majorstua, N-0301 Oslo, Norway16 Aug 05 Seasonal mass balance gradients in Norway L. A. Rasmussen1 and L. M. Andreassen2 1 in Norway exists in their profiles of both seasonal balances, winter bw(z) and summer bs(z). Unlike many

Rasmussen, L.A.

Note: This page contains sample records for the topic "holes thermal gradient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Treated Wastewater Effluent Reduces Sperm Motility Along an Osmolality Gradient  

E-Print Network [OSTI]

Treated Wastewater Effluent Reduces Sperm Motility Along an Osmolality Gradient H. L. Schoenfuss ? 2008 ? Springer Science+Business Media, LLC 2008 Abstract Many toxic effects of treated wastewater environment of treated wastewater effluent frequently differs consider- ably from that of its receiving waters

Julius, Matthew L.

362

Black hole fireworks: quantum-gravity effects outside the horizon spark black to white hole tunneling  

E-Print Network [OSTI]

We show that there is a classical metric satisfying the Einstein equations outside a finite spacetime region where matter collapses into a black hole and then emerges from a white hole. We compute this metric explicitly. We show how quantum theory determines the (long) time for the process to happen. A black hole can thus quantum-tunnel into a white hole. For this to happen, quantum gravity should affect the metric also in a small region outside the horizon: we show that contrary to what is commonly assumed, this is not forbidden by causality or by the semiclassical approximation, because quantum effects can pile up over a long time. This scenario alters radically the discussion on the black hole information puzzle.

Hal M. Haggard; Carlo Rovelli

2014-07-06T23:59:59.000Z

363

The effect of injection hole geometry on flat plate film cooling and heat transfer  

E-Print Network [OSTI]

to thermal ly protect a gas turb ine blade f r om the hot gases w i th in a gas turbine engine by inject ion of a coo l ing f lu id th rough discrete holes i n the surface of the blade. Tests were conducted on a flat p late us ing the f i lm cool ing... surface w i th coo l ing a ir c i rculated w i th in the hol low core of the turb ine b lade. External cool ing employs co ld a ir inject ion th rough holes on the outer surface of the turb ine blade produc ing a f i lm of a i r that protects...

Madsen, Eric Perry

2012-06-07T23:59:59.000Z

364

Absorption cross section in warped AdS_3 black hole revisited  

E-Print Network [OSTI]

We investigate the absorption cross section for minimal-coupled scalars in the warped AdS_3 black hole. According to our calculation, the cross section reduces to the horizon area in the low energy limit as usually expected in contrast to what was previously found. We also calculate the greybody factor and find that the effective temperatures for the two chiral CFT's are consistent with that derived from the quasinormal modes. Observing the conjectured warped AdS/CFT correspondence, we suspect that a specific sector of the CFT operators with the desired conformal dimension could be responsible for the peculiar thermal behaviour of the warped AdS_3 black hole.

Hsien-Chung Kao; Wen-Yu Wen

2009-07-31T23:59:59.000Z

365

Hort-Range Wetting at Liquid Gallium-Bismuth Alloy Surfaces: X-ray Measurements and Square-Gradient Theory  

SciTech Connect (OSTI)

We present an x-ray reflectivity study of wetting at the free surface of the binary liquid metal alloy gallium-bismuth (Ga-Bi) in the region where the bulk phase separates into Bi-rich and Ga-rich liquid phases. The measurements reveal the evolution of the microscopic structure of the wetting films of the Bi-rich, low-surface-tension phase along several paths in the bulk phase diagram. The wetting of the Ga-rich bulk's surface by a Bi-rich wetting film, the thickness of which is limited by gravity to only 50 Angstroms, creates a Ga-rich/Bi-rich liquid/liquid interface close enough to the free surface to allow its detailed study by x rays. The structure of the interface is determined with Angstromsngstrem resolution, which allows the application of a mean-field square gradient model extended by the inclusion of capillary waves as the dominant thermal fluctuations. The sole free parameter of the gradient model, the influence parameter K, that characterizes the influence of concentration gradients on the interfacial excess energy, is determined from our measurements. This, in turn, allows a calculation of the liquid/liquid interfacial tension, and a separation of the intrinsic and capillary wave contributions to the interfacial structure. In spite of expected deviations from MF behavior, based on the upper critical dimensionality (Du = 3 ) of the bulk, we find that the capillary wave excitations only marginally affect the short-range complete wetting behavior. A critical wetting transition that is sensitive to thermal fluctuations appears to be absent in this binary liquid-metal alloy.

Huber, P.; Shpyrko, O; Pershan, P; Ocko, B; DiMasi, E; Deutsch, M

2009-01-01T23:59:59.000Z

366

General Relativistic Radiative Transfer and GeneralRelativistic MHD Simulations of Accretion and Outflows of Black Holes  

SciTech Connect (OSTI)

We calculate the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by general relativistic magneto-hydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and drifts of the features produce certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.

Fuerst, Steven V.; /KIPAC, Menlo Park; Mizuno, Yosuke; /USRA, Huntsville; Nishikawa, Ken-Ichi; /USRA, Huntsville /Alabama U., Huntsville; Wu, Kinwah; /Mullard Space Sci.

2007-01-05T23:59:59.000Z

367

Black Hole Evaporation in an Expanding Universe  

E-Print Network [OSTI]

We calculate the quantum radiation power of black holes which are asymptotic to the Einstein-de Sitter universe at spatial and null infinities. We consider two limiting mass accretion scenarios, no accretion and significant accretion. We find that the radiation power strongly depends on not only the asymptotic condition but also the mass accretion scenario. For the no accretion case, we consider the Einstein-Straus solution, where a black hole of constant mass resides in the dust Friedmann universe. We find negative cosmological correction besides the expected redshift factor. This is given in terms of the cubic root of ratio in size of the black hole to the cosmological horizon, so that it is currently of order $10^{-5} (M/10^{6}M_{\\odot})^{1/3} (t/14 {Gyr})^{-1/3}$ but could have been significant at the formation epoch of primordial black holes. Due to the cosmological effects, this black hole has not settled down to an equilibrium state. This cosmological correction may be interpreted in an analogy with th...

Saida, Hiromi; Maeda, Hideki

2007-01-01T23:59:59.000Z

368

The thermal conductivity of rock under hydrothermal conditions: measurements and applications  

SciTech Connect (OSTI)

The thermal conductivities of most major rock-forming minerals vary with both temperature and confining pressure, leading to substantial changes in the thermal properties of some rocks at the high temperatures characteristic of geothermal systems. In areas with large geothermal gradients, the successful use of near-surface heat flow measurements to predict temperatures at depth depends upon accurate corrections for varying thermal conductivity. Previous measurements of the thermal conductivity of dry rock samples as a function of temperature were inadequate for porous rocks and susceptible to thermal cracking effects in nonporous rocks. We have developed an instrument for measuring the thermal conductivity of water-saturated rocks at temperatures from 20 to 350 C and confining pressures up to 100 MPa. A transient line-source of heat is applied through a needle probe centered within the rock sample, which in turn is enclosed within a heated pressure vessel with independent controls on pore and confining pressure. Application of this technique to samples of Franciscan graywacke from The Geysers reveals a significant change in thermal conductivity with temperature. At reservoir-equivalent temperatures of 250 C, the conductivity of the graywacke decreases by approximately 25% relative to the room temperature value. Where heat flow is constant with depth within the caprock overlying the reservoir, this reduction in conductivity with temperature leads to a corresponding increase in the geothermal gradient. Consequently, reservoir temperature are encountered at depths significantly shallower than those predicted by assuming a constant temperature gradient with depth. We have derived general equations for estimating the thermal conductivity of most metamorphic and igneous rocks and some sedimentary rocks at elevated temperature from knowledge of the room temperature thermal conductivity. Application of these equations to geothermal exploration should improve estimates of subsurface temperatures derived from heat flow measurements.

Williams, Colin F.; Sass, John H.

1996-01-24T23:59:59.000Z

369

Thermally conductive cementitious grout for geothermal heat pump systems  

DOE Patents [OSTI]

A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

Allan, Marita (Old Field, NY)

2001-01-01T23:59:59.000Z

370

Thermal comfort during surgery  

E-Print Network [OSTI]

THERMAL COMFORT DURING SURGERY A Thesis by DAVID HAROLD MANNING Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1978 Major Subject: Industrial... Engineering THERMAL COMFORT DURING SURGERY A Thesis by DAVID HAROLD MANNING Approved as to style and content by: airman of C it ee Head of Department Member Me er December 1978 ABSTRACT Thermal Comfort During Surgery (December 1978) David Harold...

Manning, David Harold

1978-01-01T23:59:59.000Z

371

US geothermal database and Oregon cascade thermal studies: (Final report)  

SciTech Connect (OSTI)

This report describes two tasks of different nature. The first of these tasks was the preparation of a data base for heat flow and associated ancillary information for the United States. This data base is being used as the basis for preparation of the United States portion of a geothermal map of North America. The ''Geothermal Map of North America'' will be published as part of the Decade of North American Geology (DNAG) series of the Geological Society of America. The second of these tasks was to make a geothermal evaluation of holes drilled in the Cascade Range as part of a Department of Energy (DOE)/Industry co-sponsored deep drilling project. This second task involved field work, making temperature logs in the holes, and laboratory work, measuring thermal conductivity measurements on an extensive set of samples from these holes. The culmination of this task was an interpretation of heat flow values in terms of the regional thermal conditions; implications for geothermal systems in the Cascade Range; evaluation of the effect of groundwater flow on the depths that need to be drilled for successful measurements in the Cascade Range; and investigation of the nature of the surface groundwater effects on the temperature-depth curves. 40 refs., 7 figs., 7 tabs.

Blackwell, D.D.; Steele, J.L.; Carter, L.

1988-05-01T23:59:59.000Z

372

Injection of Electrons and Holes into Nanostructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Injection of Electrons and Holes into Nanostructures Injection of Electrons and Holes into Nanostructures This program targets fundamental understanding of nanoscale charge transfer processes. The proposed work draws on the strengths of the Brookhaven Chemistry Department in the areas of electron transfer experiment and theory, and extends the area of inquiry to nanoscale processes. Electron/hole injection into a wire, a nanocrystal, a nanotube or other nanostructure in solution may be brought about by light absorption, by an electron pulse (pulse radiolysis, LEAF), by a chemical reagent, or through an electrode. These processes are being studied by transient methods by following conductivity, current, but most generally, spectroscopic changes in the solutions to determine the dynamics of charge injection. The observed transient spectra can also provide values for electron-transfer coupling elements and energetics. Theoretical/computational studies can help in materials design and in the interpretation of the experimental results. The experimental systems being examined include molecular wires and metal nanoclusters.

373

Probing black holes with constellation-X  

Science Journals Connector (OSTI)

Constellation-X is a premiere X-ray spectroscopy mission due to launch within the next decade. With a factor of 100 increase in sensitivity over current X-ray spectroscopy missions and an excellent energy resolution of 2 eV at 6 keV one of the prime science goals of the mission will be to observe activity near the black hole event horizon by measuring changes in the Fe K? fluorescence emission line profile and time-linked intensity changes between the line and the continuum. Detailed variability studies with Constellation-X will allow us to reconstruct images of the accretion disk probe the effects of strong gravity in the vicinity of black holes and measure black hole mass and spin via deconvolution of the line profile.

Kimberly A. Weaver

2001-01-01T23:59:59.000Z

374

Black Hole Complementarity in Gravity's Rainbow  

E-Print Network [OSTI]

We calculate the required energy for duplication of information in the context of black hole complementarity in the rainbow Schwarzschild black hole. The resultant energy can be written as the well-defined limit given by the conventional result for the vanishing rainbow parameter which characterizes the deformation of the relativistic dispersion relation in the freely falling frame. It shows that the duplication of information in quantum mechanics could be not allowed below a certain critical value of the rainbow parameter; however, it could be possible above the critical value of the rainbow parameter, so that the consistent formulation in the rainbow Schwarzschild black hole requires additional constraints or any other resolutions for the latter case.

Gim, Yongwan

2015-01-01T23:59:59.000Z

375

Nonperturbative black hole entropy and Kloosterman sums  

E-Print Network [OSTI]

Non-perturbative quantum corrections to supersymmetric black hole entropy often involve nontrivial number-theoretic phases called Kloosterman sums. We show how these sums can be obtained naturally from the functional integral of supergravity in asymptotically AdS_2 space for a class of black holes. They are essentially topological in origin and correspond to charge-dependent phases arising from the various gauge and gravitational Chern-Simons terms and boundary Wilson lines evaluated on Dehn-filled solid 2-torus. These corrections are essential to obtain an integer from supergravity in agreement with the quantum degeneracies, and reveal an intriguing connection between topology, number theory, and quantum gravity. We give an assessment of the current understanding of quantum entropy of black holes.

Dabholkar, Atish; Murthy, Sameer

2014-01-01T23:59:59.000Z

376

The AGN Black Hole Mass Database  

E-Print Network [OSTI]

The AGN Black Hole Mass Database is a compilation of all published spectroscopic reverberation-mapping studies of active galaxies. We have created a public web interface, where users may get the most up-to-date black hole masses from reverberation mapping for any particular active galactic nucleus (AGN), as well as obtain the individual measurements upon which the masses are based and the appropriate references. While the database currently focuses on the measurements necessary for black hole mass determinations, we also plan to expand it in the future to include additional useful information, such as host-galaxy characteristics. New reverberation mapping results will also be incorporated into the database as they are published in peer-refereed journals.

Bentz, Misty C

2014-01-01T23:59:59.000Z

377

Extremal limits and black hole entropy  

E-Print Network [OSTI]

Taking the extremal limit of a non-extremal Reissner-Nordstr\\"om black hole (by externally varying the mass or charge), the region between the inner and outer event horizons experiences an interesting fate -- while this region is absent in the extremal case, it does not disappear in the extremal limit but rather approaches a patch of $AdS_2\\times S^2$. In other words, the approach to extremality is not continuous, as the non-extremal Reissner-Nordstr\\"om solution splits into two spacetimes at extremality: an extremal black hole and a disconnected $AdS$ space. We suggest that the unusual nature of this limit may help in understanding the entropy of extremal black holes.

Sean M. Carroll; Matthew C. Johnson; Lisa Randall

2009-01-08T23:59:59.000Z

378

Strings as solitons & black holes as strings  

Science Journals Connector (OSTI)

Supersymmetric closed string theories contain an infinite tower of BPS-saturated, oscillating, macroscopic strings in the perturbative spectrum. When these theories have dual formulations, this tower of states must exist nonperturbatively as solitons in the dual theories. We present a general class of exact solutions of low-energy supergravity that corresponds to all these states. After dimensional reduction they can be interpreted as supersymmetric black holes with a degeneracy related to the degeneracy of the string states. For example, in four dimensions we obtain a point-like solution which is asymptotic to a stationary, rotating, electrically-charged black hole with Regge-bounded angular momentum and with the usual ring-singularity replaced by a string source. This further supports the idea that the entropy of supersymmetric black holes can be understood in terms of counting of string states. We also discuss some applications of these solutions to string duality.

Atish Dabholkar; Jerome P. Gauntlett; Jeffrey A. Harvey; Daniel Waldram

1996-01-01T23:59:59.000Z

379

Seismic gravity-gradient noise in interferometric gravitational-wave detectors  

E-Print Network [OSTI]

When ambient seismic waves pass near an interferometric gravitational-wave detector, they induce density perturbations in the earth which produce fluctuating gravitational forces on the interferometer's test masses. These forces mimic a stochastic background of gravitational waves and thus constitute noise. We compute this noise using the theory of multimode Rayleigh and Love waves propagating in a layered medium that approximates the geological strata at the LIGO sites. We characterize the noise by a transfer function $T(f) \\equiv \\tilde x(f)/\\tilde W(f)$ from the spectrum of direction averaged ground motion $\\tilde W(f)$ to the spectrum of test mass motion $\\tilde x(f) = L\\tilde h(f)$ (where $L$ is the length of the interferometer's arms, and $\\tilde h(f)$ is the spectrum of gravitational-wave noise). This paper's primary foci are (i) a study of how $T(f)$ depends on the various seismic modes; (ii) an attempt to estimate which modes are excited at the LIGO sites at quiet and noisy times; and (iii) a corresponding estimate of the seismic gravity-gradient noise level. At quiet times the noise is below the benchmark noise level of ``advanced LIGO interferometers'' (although not by much near 10 Hz); it may significantly exceed this level at noisy times. The lower edge of our quiet-time noise is a limit beyond which there is little gain from further improvements in vibration isolation and thermal noise, unless one also reduces seismic gravity-gradient noise. Two methods of reduction are discussed: monitoring the earth's density perturbations, computing their gravitational forces, and correcting the data for those forces; and constructing narrow moats around the interferometers' test masses to shield out the fundamental-mode Rayleigh waves, which we suspect dominate at quiet times.

Scott A. Hughes; Kip S. Thorne

1998-06-03T23:59:59.000Z

380

Design, construction, and initial operation of the Los Alamos National Laboratory salt-gradient solar pond  

SciTech Connect (OSTI)

A 232 m/sup 2/ solar pond was constructed at Los Alamos National Laboratory for the purpose of studying pond hydrodynamics on a large scale and to complement the flow visualization and one-dimensional pond simulator experiments that are ongoing at the Laboratory. Design methods and construction techniques, some of which are unique to this pond, are described in detail. The pond was excavated from a soft volcanic rock known as tuff; such rock forms a large fraction of the Los Alamos area surface geology. Because tuff has a small thermal conductivity, little insulation was required to reduce perimeter energy losses. In addition, the strength of tuff permitted the pond to be built with vertical side walls; this design eliminated local side wall convection in the gradient zone that is possible with sloping side walls. Instrumentation in the pond consists of traversing and fixed rakes of thermometers and salinity probes, an underwater pyranometer, and a weather station. The traversing rake is a wheeled trolley driven vertically on a rectangular rail. Installed on the trolley are coplanar platinum RTDs, a point conductivity probe, and an induction salinometer. The stationary rake supports 28 thermocouples and 28 sample-fluid withdrawal taps located every 10 cm. About 127 T of sodium chloride has been introduced and is nearly dissolved. A 120-cm-thick salinity gradient was established and the pond is heating. Preliminary results indicate a lower-convective-zone heating rate of 1.2/sup 0/C/day during the pond's first month of operation. Recommendations on pond design, construction, and instrumentation are presented.

Jones, G.F.; Meyer, K.A.; Hedstrom, J.C.; Dreicer, J.S.; Grimmer, D.P.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "holes thermal gradient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Variable pressure thermal insulating jacket  

DOE Patents [OSTI]

A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

1994-09-20T23:59:59.000Z

382

How red is a quantum black hole?  

E-Print Network [OSTI]

Radiating black holes pose a number of puzzles for semiclassical and quantum gravity. These include the transplanckian problem -- the nearly infinite energies of Hawking particles created near the horizon, and the final state of evaporation. A definitive resolution of these questions likely requires robust inputs from quantum gravity. We argue that one such input is a quantum bound on curvature. We show how this leads to an upper limit on the redshift of a Hawking emitted particle, to a maximum temperature for a black hole, and to the prediction of a Planck scale remnant.

Viqar Husain; Oliver Winkler

2005-05-30T23:59:59.000Z

383

The effects of fastener hole defects  

E-Print Network [OSTI]

) August 1991 ABSTRACT The Effects of Fastener Hole Defects. (August 1991) Scot D. Andrews, B. S. , Texas A8rM University Chair of Advisory Committee: Dr. Orden O. Ochoa The influence of drilling-induced defects, such as delamination, on the fatigue... Of Delaminated Zone Elements . . Figure 34. Enlarged View Of Area Near Hole 58 59 61 Page Figure 35. Example Finite Element Mesh Figure 36. Selected Elements For Stress Distribution Graphs . . Figure 37. Example Of o? Stress Distribution For 18 Ply Tape...

Andrews, Scot D.

2012-06-07T23:59:59.000Z

384

CHARYBDIS: A Black Hole Event Generator  

E-Print Network [OSTI]

CHARYBDIS is an event generator which simulates the production and decay of miniature black holes at hadronic colliders as might be possible in certain extra dimension models. It interfaces via the Les Houches accord to general purpose Monte Carlo programs like HERWIG and PYTHIA which then perform the parton evolution and hadronization. The event generator includes the extra-dimensional `grey-body' effects as well as the change in the temperature of the black hole as the decay progresses. Various options for modelling the Planck-scale terminal decay are provided.

C. M. Harris; P. Richardson; B. R. Webber

2003-07-24T23:59:59.000Z

385

BLACK HOLE ENTROPY IN HIGHER CURVATURE GRAVITY  

E-Print Network [OSTI]

We discuss some recent results on black hole thermodynamics within the context of effective gravitational actions including higher-curvature interactions. Wald's derivation of the First Law demonstrates that black hole entropy can always be expressed as a local geometric density integrated over a space-like cross-section of the horizon. In certain cases, it can also be shown that these entropy expressions satisfy a Second Law. One such simple example is considered from the class of higher curvature theories where the Lagrangian consists of a polynomial in the Ricci scalar.

TED JACOBSON; GUNGWON KANG; ROBERT C. MYERS

1995-02-27T23:59:59.000Z

386

Quasilocal first law for black hole thermodynamics  

Science Journals Connector (OSTI)

We first show that stationary black holes satisfy an extremely simple quasilocal form of the first law, ?E=?8??A, where the (quasilocal) energy E=A/(8??) and (local) surface gravity ?=1/?, with A the horizon area and ? is a proper length characterizing the distance to the horizon of a preferred family of quasilocal observers suitable for thermodynamical considerations. Our construction is extended to the more general framework of isolated horizons. The local surface gravity is universal. This has important implications for semiclassical considerations of black hole physics as well as for the fundamental quantum description arising in the context of loop quantum gravity.

Ernesto Frodden; Amit Ghosh; Alejandro Perez

2013-06-24T23:59:59.000Z

387

NANO REVIEW Open Access Thermal conductivity and thermal boundary  

E-Print Network [OSTI]

NANO REVIEW Open Access Thermal conductivity and thermal boundary resistance of nanostructures and the thermal transport prop- erties is a key point to design materials with preferred thermal properties with the heat dissipation on them. The influence of the interfacial roughness on the thermal conductivity

Boyer, Edmond

388

Elastic Relaxation and Correlation of Local Strain Gradients with  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Elastic Relaxation and Correlation Elastic Relaxation and Correlation of Local Strain Gradients with Ferroelectric Domains in (001) BiFeO3 Nanostructures Elastic Relaxation and Correlation of Local Strain Gradients with Ferroelectric Domains in (001) BiFeO3 Nanostructures Researchers at Argonne National Laboratory (MSD and CNM) have recently performed first worldwide studies of effects of nanopatterning on fundamental phenomena in mutiferroic BiFeO3 (BFO) nanostructures, using the APS-CNM nanoprobe beam (50 nm diameter). Nano-focused x-ray diffraction microscopy provided new insights into the relationship between film strain and ferroelectric domains in nanostructures, namely: i) an out-of-plane strain enhancement of as much as -1.8% Δc/c in a BFO film-based nanostructure relative to a planar film; ii) out-of-plane BFO C-axis

389

Gradient Plasticity Model and its Implementation into MARMOT  

SciTech Connect (OSTI)

The influence of strain gradient on deformation behavior of nuclear structural materials, such as boby centered cubic (bcc) iron alloys has been investigated. We have developed and implemented a dislocation based strain gradient crystal plasticity material model. A mesoscale crystal plasticity model for inelastic deformation of metallic material, bcc steel, has been developed and implemented numerically. Continuum Dislocation Dynamics (CDD) with a novel constitutive law based on dislocation density evolution mechanisms was developed to investigate the deformation behaviors of single crystals, as well as polycrystalline materials by coupling CDD and crystal plasticity (CP). The dislocation density evolution law in this model is mechanism-based, with parameters measured from experiments or simulated with lower-length scale models, not an empirical law with parameters back-fitted from the flow curves.

Barker, Erin I.; Li, Dongsheng; Zbib, Hussein M.; Sun, Xin

2013-08-01T23:59:59.000Z

390

Steady and unsteady calibration of multi-hole probes  

E-Print Network [OSTI]

This thesis presents the development of a data crographics. reduction algorithm for multi-hole pressure probes. The algorithm has been developed for the reduction of calibration data from miniature non-nulling multi-hole probes in compressible...

Johansen, Espen S

1998-01-01T23:59:59.000Z

391

What is the topology of a Schwarzschild black hole?  

E-Print Network [OSTI]

We investigate the topology of Schwarzschild's black hole through the immersion of this space-time in spaces of higher dimension. Through the immersions of Kasner and Fronsdal we calculate the extension of the Schwarzschild's black hole.

Edmundo M. Monte

2011-11-24T23:59:59.000Z

392

Chapter 3 Topology and Uniqueness of Higher Dimensional Black Holes  

Science Journals Connector (OSTI)

......of Particle and Nuclear Studies, High Energy Accelerator Research Organization...asymptotically flat vacuum black holes in...of Particle and Nuclear Studies, High Energy Accelerator Research Organization...asymptotically flat vacuum black holes in......

Daisuke Ida; Akihiro Ishibashi; Tetsuya Shiromizu

2011-06-01T23:59:59.000Z

393

Gradient instabilities of electromagnetic waves in Hall thruster plasma  

SciTech Connect (OSTI)

This paper presents a linear analysis of gradient plasma instabilities in Hall thrusters. The study obtains and analyzes the dispersion equation of high-frequency electromagnetic waves based on the two-fluid model of a cold plasma. The regions of parameters corresponding to unstable high frequency modes are determined and the dependence of the increments and intrinsic frequencies on plasma parameters is obtained. The obtained results agree with those of previously published studies.

Tomilin, Dmitry [Department of Electrophysics, Keldysh Research Centre, Moscow 125438 (Russian Federation)

2013-04-15T23:59:59.000Z

394

Bioaccumulation of Perfluorochemicals in Pacific Oyster under Different Salinity Gradients  

Science Journals Connector (OSTI)

Bioaccumulation of Perfluorochemicals in Pacific Oyster under Different Salinity Gradients ... Where Kdsw and Kd0 represent the distribution coefficients in saline and pure water, respectively, S is salinity and kads is a constant for sorption salting constant (?kads = 0.0352?). ... Based on the fact that biotransformation of PFCs is negligible (35), the faster depuration rate for PFCs at higher salinities is attributable to increases in the uptake volume of water associated with increased salinity. ...

Junho Jeon; Kurunthachalam Kannan; Han Kyu Lim; Hyo Bang Moon; Jin Sung Ra; Sang Don Kim

2010-03-15T23:59:59.000Z

395

Determination of dispersivities from a natural-gradient dispersion test  

E-Print Network [OSTI]

, and radioactive wastes. Contaminant hydrogeology is presently a focal point in the realm of hydrologic modeling. Generally, models are designed to represent simplified versions of reality and The style and format of this document was taken from the Journal... dispersivities, v ia a graphical approach, from a natural-gradient dispersion test in which artificial pollution was injected into an aquifer. The dispersion test was conducted by Sud icky et al. (1983) in order to characterize the dispersive properties...

Hoover, Caroline Marie

1985-01-01T23:59:59.000Z

396

Thermal Insulation of Houses  

Science Journals Connector (OSTI)

... THE Thermal Insulation (Dwellings) Bill which Mr. G. Nabarro introduced into the House of Commons on ... , sponsored by members of both major political parties, extends the principle of the Thermal Insulation (Industrial Buildings) Act of July 1957 to all new dwelling houses built in the ...

1958-02-22T23:59:59.000Z

397

Mechanical Engineering & Thermal Group  

E-Print Network [OSTI]

Mechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has, and ground- based mechanical systems. Instrument Design Building on decades of design experience that has evolved with the complexity of instrument design demands, LASP mechanical engineers develop advanced

Mojzsis, Stephen J.

398

Diffusion coefficient and radial gradient of galactic cosmic rays  

E-Print Network [OSTI]

We present the temporal changes of the diffusion coefficient K of galactic cosmic rays (GCRs) at the Earth orbit calculated based on the experimental data using two different methods. The first approach is based on the Parker convection-diffusion approximation of GCR modulation [1]: i.e. K~Vr=dI where dI is the variation of the GCR intensity measured by neutron monitors (NM),V is the solar wind velocity and r is the radial distance. The second approach is based on the interplanetary magnetic field (IMF) data. It was suggested that parallel mean free path can be expressed in terms of B as in [2]-[4]. Using data of the product of the parallel mean free path and radial gradient of GCR calculated based on the GCR anisotropy data (Ahluwalia et al., this conference ICRC 2013, poster ID: 487 [5]), we estimate the temporal changes of the radial gradient of GCR at the Earth orbit. We show that the radial gradient exhibits a strong solar cycle dependence (11-year variation) and a weak solar magnetic cycle dependence (2...

Modzelewska, Renata

2015-01-01T23:59:59.000Z

399

Principal processes within the estuarine salinity gradient: A review  

Science Journals Connector (OSTI)

The salinity gradient is one of the main features characteristic of any estuarine ecosystem. Within this gradient in a critical salinity range of 58 PSU the major biotic and abiotic processes demonstrate non-linear dynamics of change in rates and directions. In estuaries, this salinity range acts as both external ecological factor and physiological characteristics of internal environment of aquatic organisms; it divides living conditions appropriate for freshwater and marine faunas, separates invertebrate communities with different osmotic regulation types, and defines the distribution range of high taxa. In this paper, the non-linearity of biotic processes within the estuarine salinity gradient is illustrated by the data on zooplankton from the Baltic estuaries. The non-tidal Baltic Sea provides a good demonstration of the above phenomena due to gradual changes of environmental factors and relatively stable isohalines. The non-linearity concept coupled with the ecosystem approach served the basis for a new definition of an estuary proposed by the authors.

Irena V. Telesh; Vladislav V. Khlebovich

2010-01-01T23:59:59.000Z

400

Considerations of ion-temperature-gradient-driven turbulence  

SciTech Connect (OSTI)

The ion-temperature-gradient-driven instability is considered in this paper. Physical pictures are presented to clarify the nature of the instability. The saturation of a single eddy is modeled by a simple nonlinear equation. It is shown that eddies that are elongated in the direction of the temperature gradient are the most unstable and have the highest saturation amplitudes. In a sheared magnetic field, such elongated eddies twist with the field lines. This structure is shown to be an alternative to the usual Fourier mode picture in which the mode is localized around the surface where {ital k}{sub {parallel}} =0. These elongated twisting eddies, which are an integral part of the ballooning mode'' structure, could survive in a torus. The elongated eddies are shown to be unstable to secondary instabilities that are driven by the large gradients in the long eddy. It is argued that the mixing length'' is affected by this nonlinear process, and is unlikely to be a linear eigenmode width.

Cowley, S.C.; Kulsrud, R.M. (Princeton Plasma Physics Laboratory, Princeton, New Jersey (USA)); Sudan, R. (Cornell University, Ithaca, New York (USA))

1991-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "holes thermal gradient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Thought Experiment to resolve the Black Hole Information Paradox  

E-Print Network [OSTI]

We propose a combination of two mechanisms that can resolve the black hole information paradox. The first process is that the black hole shrinks by a first order transition, since we assume the entropy is discontinuous. The black hole disappears. The second type of processes conserves unitarity. We assume that within the black hole micro-reversible quantum mechanical processes take place. These are ordinary particle processes, e.g. the decay of an electron and a positron into two photons.

Kay zum Felde

2014-07-22T23:59:59.000Z

402

Particles and scalar waves in noncommutative charged black hole spacetime  

E-Print Network [OSTI]

In this paper we have discussed geodesics and the motion of test particle in the gravitational field of noncommutative charged black hole spacetime. The motion of massive and massless particle have been discussed seperately. A comparative study of noncommutative charged black hole and usual Reissner-Nordstrom black hole has been done. The study of effective potential has also been included. Finally, we have examined the scattering of scalar waves in noncommutative charged black hole spacetime.

Bhar, Piyali; Biswas, Ritabrata; Mondal, U F

2015-01-01T23:59:59.000Z

403

Ciliate diversity and distribution across an environmental and depth gradient in Long Island  

E-Print Network [OSTI]

Ciliate diversity and distribution across an environmental and depth gradient in Long Island Sound- trichia (Spirotrichea) and Choreotrichia (Spirotrichea) across an environmental gradient. We assessed SSU- tion showed any clear relationship to measured environmental parameters (temperature, salinity

Katz, Laura

404

Virioplankton community structure along a salinity gradient in a solar saltern  

Science Journals Connector (OSTI)

The virioplankton community structure along a salinity gradient from near seawater (40) to saturated ... . The viral community structure changed along the salinity gradient. Cluster analysis of the viral genome-...

Ruth-Anne Sandaa; Evy Foss Skjoldal; Gunnar Bratbak

2003-10-01T23:59:59.000Z

405

High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation  

Science Journals Connector (OSTI)

High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation ... These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solns., such as thermolytic salts. ... saline brines because of the higher power d. ...

Jun Gao; Wei Guo; Dan Feng; Huanting Wang; Dongyuan Zhao; Lei Jiang

2014-08-19T23:59:59.000Z

406

Creation of nonlinear density gradients for use in internal wave research  

E-Print Network [OSTI]

A method was developed to create a nonlinear density gradient in a tank of water. Such gradients are useful for studying internal waves, an ocean phenomenon that plays an important role in climate and ocean circulation. ...

Harris, Victoria Sin

2007-01-01T23:59:59.000Z

407

Thermal Recovery Methods  

SciTech Connect (OSTI)

Thermal Recovery Methods describes the basic concepts of thermal recovery and explains the injection patterns used to exploit reservoir conditions. Basic reservoir engineering is reviewed with an emphasis on changes in flow characteristics caused by temperature. The authors discuss an energy balance for steam and combustion drive, and they explain in situ reactions. Heat loss, combustion drive, and steam displacement also are examined in detail, as well as cyclic steam injection, downhole ignition, well heating, and low-temperature oxidation. Contents: Thermal processes; Formation and reservoir evaluations; Well patterns and spacing; Flow and process equations; Laboratory simulation of thermal recovery; Heat loss and transmission; Displacement and production; Equipment; Basic data for field selection; Laboratory evaluation of combustion characteristics; Thermal properties of reservoirs and fluids.

White, P.D.; Moss, J.T.

1983-01-01T23:59:59.000Z

408

Tunable thermal link  

DOE Patents [OSTI]

Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.

Chang, Chih-Wei; Majumdar, Arunava; Zettl, Alexander K.

2014-07-15T23:59:59.000Z

409

Solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2007-09-18T23:59:59.000Z

410

The third law of thermodynamics for Kerr black holes  

Science Journals Connector (OSTI)

......research-article Articles The third law of thermodynamics for Kerr black holes Isao...condition under which the third law of black-hole thermodynamics for Kerr holes is not violated...diverge to infinity as a power law for , and therefore no Kerr......

Isao Okamoto; Osamu Kaburaki

1991-05-15T23:59:59.000Z

411

E-Print Network 3.0 - alpine elevation gradient Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ecosystems, generated only by a water availability gradient, the ... Source: Colorado at Boulder, University of - Alpine Microbial Observatory Collection: Environmental...

412

Dielectric-Loaded Microwave Cavity for High-Gradient Testing of Superconducting Materials  

E-Print Network [OSTI]

an energy distribution. Data was taken from the CRC Handbook 90th edition [13]. : : : : : : : : : : : : : : : : : : : : 17 10 Current state of high gradient cavities in the SRF world. Note these points are champion cavities, the average gradient of all... an energy distribution. Data was taken from the CRC Handbook 90th edition [13]. : : : : : : : : : : : : : : : : : : : : 17 10 Current state of high gradient cavities in the SRF world. Note these points are champion cavities, the average gradient of all...

Pogue, Nathaniel Johnston

2011-08-08T23:59:59.000Z

413

E-Print Network 3.0 - african latitudinal gradient Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

richness... latitudinal gradients. Keywords Fleas, geographic range, ... Source: Poulin, Robert - Department of Zoology, University of Otago Collection: Biology and Medicine...

414

Geodesic study of a charged black hole  

E-Print Network [OSTI]

The behavior of the timelike and null geodesics of charged E. Ay$\\acute{o}$n-Beato and A. Garcia (ABG) black hole are investigated. For circular and radial geodesics, we investigate all the possible motions by plotting the effective potentials for different parameters. In conclusion, we have shown that there is no phenomenon of \\textit{superradiance} in this case.

Mehedi Kalam; Nur Farhad; Sk. Monowar Hossein

2013-03-17T23:59:59.000Z

415

Black Holes and Sub-millimeter Dimensions  

E-Print Network [OSTI]

Recently, a new framework for solving the hierarchy problem was proposed which does not rely on low energy supersymmetry or technicolor. The fundamental Planck mass is at a TeV and the observed weakness of gravity at long distances is due the existence of new sub-millimeter spatial dimensions. In this letter, we study how the properties of black holes are altered in these theories. Small black holes---with Schwarzschild radii smaller than the size of the new spatial dimensions---are quite different. They are bigger, colder, and longer-lived than a usual $(3+1)$-dimensional black hole of the same mass. Furthermore, they primarily decay into harmless bulk graviton modes rather than standard-model degrees of freedom. We discuss the interplay of our scenario with the holographic principle. Our results also have implications for the bounds on the spectrum of primordial black holes (PBHs) derived from the photo-dissociation of primordial nucleosynthesis products, distortion of the diffuse gamma-ray spectrum, overcl...

Argyres, Philip C; March-Russell, John David; Argyres, Philip C.; Dimopoulos, Savas; March-Russell, John

1998-01-01T23:59:59.000Z

416

Retarded cores, black holes and galaxy formation  

Science Journals Connector (OSTI)

... It seems likely that elliptical galaxies contain massive 'black holes'?objects collapsed within their Schwarzschild radii?in their nuclei (see, for example, Wolfe and Burbidge2). The principal ... seems to be required to power the observed phenomena. For such a mass, the Schwarzschild radius (R s) is about 10?4 pc; for a mass of 1011 ...

John Gribbin

1974-12-06T23:59:59.000Z

417

Schwarzschild black hole in dark energy background  

E-Print Network [OSTI]

In this paper we present an exact solution of Einstein's field equations describing the Schwarzschild black hole in dark energy background. It is also regarded as an embedded solution that the Schwarzschild black hole is embedded into the dark energy space producing Schwarzschild-dark energy black hole. It is found that the space-time geometry of Schwarzschild-dark energy solution is non-vacuum Petrov type $D$ in the classification of space-times. We study the energy conditions (like weak, strong and dominant conditions) for the energy-momentum tensor of the Schwarzschild-dark energy solution. We also find that the energy-momentum tensor of the Schwarzschild-dark energy solution violates the strong energy condition due to the negative pressure leading to a repulsive gravitational force of the matter field in the space-time. It is shown that the time-like vector field for an observer in the Schwarzschild-dark energy space is expanding, accelerating, shearing and non-rotating. We investigate the surface gravity and the area of the horizons for the Schwarzschild-dark energy black hole.

Ngangbam Ishwarchandra; Ng. Ibohal; K. Yugindro Singh

2014-09-27T23:59:59.000Z

418

Supermassive Black Hole Binaries: The Search Continues  

E-Print Network [OSTI]

Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.

Tamara Bogdanovic

2014-06-19T23:59:59.000Z

419

Chapter 8 Black Holes in Braneworld Models  

Science Journals Connector (OSTI)

......to the four-dimensional Schwarzschild solution, there is no room...deformed from an ordinary Schwarzschild black hole and the radiation...gravitational attraction from its mirror image on the other side of...The attraction from the mirror image will not be larger than......

Norihiro Tanahashi; Takahiro Tanaka

2011-06-01T23:59:59.000Z

420

SS433a massive black hole?  

Science Journals Connector (OSTI)

... thin ring in a circular orbit at radius R = r GM/c2 around a Schwarzschild black hole of mass M, the two emission peaks will be at wavelengths given ... we would expect the profiles of the emission peaks at any given time to be mirror images of each other (at least on timescales longer than the orbital time). ...

R. J. TERLEVICH; J. E. PRINGLE

1979-04-19T23:59:59.000Z

Note: This page contains sample records for the topic "holes thermal gradient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Black Holes in 4 Nearby Radio Galaxies  

E-Print Network [OSTI]

We study the velocity dispersion profiles of the nuclei of NGC 1326, 2685, 5273 and 5838 in the CO first overtone band. There is evidence for a black hole (BH) in NGC 1326 and 5838. Gas is seen flowing out of the nuclear region of NGC 5273. We put upper limits on the nuclear BHs responsible for its activity and that of NGC 2685.

Mould, Jeremy; Cotter, Garret; Batt, David; Durre', Mark

2014-01-01T23:59:59.000Z

422

Remote down-hole well telemetry  

DOE Patents [OSTI]

The present invention includes an apparatus and method for telemetry communication with oil-well monitoring and recording instruments located in the vicinity of the bottom of gas or oil recovery pipes. Such instruments are currently monitored using electrical cabling that is inserted into the pipes; cabling has a short life in this environment, and requires periodic replacement with the concomitant, costly shutdown of the well. Modulated reflectance, a wireless communication method that does not require signal transmission power from the telemetry package will provide a long-lived and reliable way to monitor down-hole conditions. Normal wireless technology is not practical since batteries and capacitors have to frequently be replaced or recharged, again with the well being removed from service. RF energy generated above ground can also be received, converted and stored down-hole without the use of wires, for actuating down-hole valves, as one example. Although modulated reflectance reduces or eliminates the loss of energy at the sensor package because energy is not consumed, during the transmission process, additional stored extra energy down-hole is needed.

Briles, Scott D. (Los Alamos, NM); Neagley, Daniel L. (Albuquerque, NM); Coates, Don M. (Santa Fe, NM); Freund, Samuel M. (Los Alamos, NM)

2004-07-20T23:59:59.000Z

423

Benthic biodiversity indices versus salinity gradient in the southern Baltic Sea  

E-Print Network [OSTI]

Benthic biodiversity indices versus salinity gradient in the southern Baltic Sea Michael L. Zettler Biotic Index) and BQI (Benthic Quality Index), were tested along a salinity gradient in the southern; Ecological quality; Salinity gradient; Water Framework Directive; Oxygen depletion 1. Introduction

Zettler, Michael

424

Thin-Film Composite Pressure Retarded Osmosis Membranes for Sustainable Power Generation from Salinity Gradients  

Science Journals Connector (OSTI)

Thin-Film Composite Pressure Retarded Osmosis Membranes for Sustainable Power Generation from Salinity Gradients ... Pressure retarded osmosis has the potential to produce renewable energy from natural salinity gradients. ... Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. ...

Ngai Yin Yip; Alberto Tiraferri; William A. Phillip; Jessica D. Schiffman; Laura A. Hoover; Yu Chang Kim; Menachem Elimelech

2011-04-14T23:59:59.000Z

425

Long-term ecological dynamics: reciprocal insights from natural and anthropogenic gradients  

Science Journals Connector (OSTI)

...be studied by using natural springs that create gradients of CO2 gas, and which are at...gradients There are many natural gradients of climate...adjacent areas in natural forests in Hawaii...such as how trophic cascades and other community...

2005-01-01T23:59:59.000Z

426

Adaptive Restart for Accelerated Gradient Schemes Brendan O'Donoghue Emmanuel Cand`es  

E-Print Network [OSTI]

Adaptive Restart for Accelerated Gradient Schemes Brendan O'Donoghue Emmanuel Cand`es April 13- matically improve the convergence rate of accelerated gradient schemes. The analysis of the technique relies. In what we refer to as the `high momentum' regime the iterates generated by an accelerated gradient scheme

Candes, Emmanuel J.

427

Semi-flexible bimetal-based thermal energy harvesters  

Science Journals Connector (OSTI)

This paper introduces a new semi-flexible device able to turn thermal gradients into electricity by using a curved bimetal coupled to an electret-based converter. In fact, a two-step conversion is carried out: (i) a curved bimetal turns the thermal gradient into a mechanical oscillation that is then (ii) converted into electricity thanks to an electrostatic converter using electrets in Teflon. The semi-flexible and low-cost design of these new energy converters pave the way to mass production over large areas of thermal energy harvesters. Raw output powers up to 13.46?W per device were reached on a hot source at 60?Cwith forced convection. Then, a DC-to-DC flyback converter has been sized to turn the energy harvesters' raw output powers into a viable supply source for an electronic circuit (DC@3V). At the end, 10?W of directly usable output power were reached with 3 devices, which is compatible with wireless sensor network powering applications.

S Boisseau; G Despesse; S Monfray; O Puscasu; T Skotnicki

2013-01-01T23:59:59.000Z

428

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

Thermal Array for Next Generation Solar Thermal Power Production Award Number: DE-EE00025828 Report Date: March 15, 2013 PI: Stephen Obrey * Technical approach is focused on...

429

Geodesics and Geodesic Deviation in static Charged Black Holes  

E-Print Network [OSTI]

The radial motion along null geodesics in static charged black hole space-times, in particular, the Reissner-Nordstr\\"om and stringy charged black holes are studied. We analyzed the properties of the effective potential. The circular photon orbits in these space-times are investigated. We found that the radius of circular photon orbits in both charged black holes are different and differ from that given in Schwarzschild space-time. We studied the physical effects of the gravitational field between two test particles in stringy charged black hole and compared the results with that given in Schwarzschild and Reissner-Nordstr\\"om black holes.

Ragab M. Gad

2010-03-03T23:59:59.000Z

430

Abundance and diversity of tidal marsh plants along the salinity gradient of the San Francisco Estuary: implications for global change ecology  

E-Print Network [OSTI]

plants along the salinity gradient of the San Franciscotransects along the salinity gradient of the San Franciscoacross the full salinity gradient of the San Francisco

Watson, Elizabeth Burke; Byrne, Roger

2009-01-01T23:59:59.000Z

431

Theory of delayed thermal fluorescence  

Science Journals Connector (OSTI)

A theory of nonradiative thermal activation involved in delayed thermal fluorescence has been developed from the viewpoint of the breakdown of the Born-Oppenheimer adiabatic approximation.

S. H. Lin

1971-01-01T23:59:59.000Z

432

Thermal insulations using vacuum panels  

DOE Patents [OSTI]

Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)

1991-07-16T23:59:59.000Z

433

Accretion disks around binary black holes of unequal mass: GRMHD simulations near decoupling  

E-Print Network [OSTI]

We report on simulations in general relativity of magnetized disks onto black hole binaries. We vary the binary mass ratio from 1:1 to 1:10 and evolve the systems when they orbit near the binary-disk decoupling radius. We compare (surface) density profiles, accretion rates (relative to a single, non-spinning black hole), variability, effective $\\alpha$-stress levels and luminosities as functions of the mass ratio. We treat the disks in two limiting regimes: rapid radiative cooling and no radiative cooling. The magnetic field lines clearly reveal jets emerging from both black hole horizons and merging into one common jet at large distances. The magnetic fields give rise to much stronger shock heating than the pure hydrodynamic flows, completely alter the disk structure, and boost accretion rates and luminosities. Accretion streams near the horizons are among the densest structures; in fact, the 1:10 no-cooling evolution results in a refilling of the cavity. The typical effective temperature in the bulk of the disk is $\\sim 10^5 (M/10^8 M_\\odot)^{-1/4} (L/L_{\\rm edd})^{1/4} {\\rm K}$ yielding characteristic thermal frequencies $\\sim 10^{15} (M/10^8 M_\\odot)^{-1/4} (L/L_{\\rm edd})^{1/4}(1+z)^{-1}{\\rm Hz} $. These systems are thus promising targets for many extragalactic optical surveys, such as LSST, WFIRST, and PanSTARRS.

Roman Gold; Vasileios Paschalidis; Zachariah B. Etienne; Stuart L. Shapiro; Harald P. Pfeiffer

2013-12-02T23:59:59.000Z

434

Outflows from accretion disks formed in neutron star mergers: effect of black hole spin  

E-Print Network [OSTI]

The accretion disk that forms after a neutron star merger is a source of neutron-rich ejecta. The ejected material contributes to a radioactively-powered electromagnetic transient, with properties that depend sensitively on the composition of the outflow. Here we investigate how the spin of the black hole remnant influences mass ejection on the thermal and viscous timescales. To this end, we carry out two-dimensional, time-dependent hydrodynamic simulations of merger remnant accretion disks including viscous angular momentum transport and approximate neutrino self-irradiation. The gravity of the spinning black hole is included via a pseudo-Newtonian potential. We find that a disk around a spinning black hole ejects more mass, up to a factor of several, relative to the non-spinning case. The enhanced mass loss is due to energy release by accretion occurring deeper in the gravitational potential, raising the disk temperature and hence the rate of viscous heating in regions where neutrino cooling is ineffective....

Fernndez, Rodrigo; Metzger, Brian D; Quataert, Eliot

2014-01-01T23:59:59.000Z

435

Outflows from accretion disks formed in neutron star mergers: effect of black hole spin  

E-Print Network [OSTI]

The accretion disk that forms after a neutron star merger is a source of neutron-rich ejecta. The ejected material contributes to a radioactively-powered electromagnetic transient, with properties that depend sensitively on the composition of the outflow. Here we investigate how the spin of the black hole remnant influences mass ejection on the thermal and viscous timescales. We carry out two-dimensional, time-dependent hydrodynamic simulations of merger remnant accretion disks including viscous angular momentum transport and approximate neutrino self-irradiation. The gravity of the spinning black hole is included via a pseudo-Newtonian potential. We find that a disk around a spinning black hole ejects more mass, up to a factor of several, relative to the non-spinning case. The enhanced mass loss is due to energy release by accretion occurring deeper in the gravitational potential, raising the disk temperature and hence the rate of viscous heating in regions where neutrino cooling is ineffective. The mean electron fraction of the outflow increases moderately with BH spin due to a highly-irradiated (though not neutrino-driven) wind component. While the bulk of the ejecta is still very neutron-rich, thus generating heavy r-process elements, the leading edge of the wind contains a small amount of Lanthanide-free material. This component can give rise to a ~1 day blue optical `bump' in a kilonova light curve, even in the case of prompt BH formation, which may facilitate its detection.

Rodrigo Fernndez; Daniel Kasen; Brian D. Metzger; Eliot Quataert

2014-09-15T23:59:59.000Z

436

BLACK HOLE FORMATION IN FAILING CORE-COLLAPSE SUPERNOVAE  

SciTech Connect (OSTI)

We present results of a systematic study of failing core-collapse supernovae and the formation of stellar-mass black holes (BHs). Using our open-source general-relativistic 1.5D code GR1D equipped with a three-species neutrino leakage/heating scheme and over 100 presupernova models, we study the effects of the choice of nuclear equation of state (EOS), zero-age main sequence (ZAMS) mass and metallicity, rotation, and mass-loss prescription on BH formation. We find that the outcome, for a given EOS, can be estimated, to first order, by a single parameter, the compactness of the stellar core at bounce. By comparing protoneutron star (PNS) structure at the onset of gravitational instability with solutions of the Tolman-Oppenheimer-Volkof equations, we find that thermal pressure support in the outer PNS core is responsible for raising the maximum PNS mass by up to 25% above the cold NS value. By artificially increasing neutrino heating, we find the critical neutrino heating efficiency required for exploding a given progenitor structure and connect these findings with ZAMS conditions, establishing, albeit approximately, for the first time based on actual collapse simulations, the mapping between ZAMS parameters and the outcome of core collapse. We also study the effect of progenitor rotation and find that the dimensionless spin of nascent BHs may be robustly limited below a* = Jc/GM{sup 2} = 1 by the appearance of nonaxisymmetric rotational instabilities.

O'Connor, Evan; Ott, Christian D., E-mail: evanoc@tapir.caltech.edu, E-mail: cott@tapir.caltech.edu [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States)

2011-04-01T23:59:59.000Z

437

Black hole entanglement entropy regularized in a freely falling frame  

Science Journals Connector (OSTI)

We compute the black hole horizon entanglement entropy SE for a massless scalar field, first with a hard cutoff and then with high frequency dispersion, both imposed in a frame that falls freely across the horizon. Using WKB methods, we find that SE is finite for a hard cutoff or superluminal dispersion, because the mode oscillations do not diverge at the horizon and the contribution of high transverse momenta is cut off by the angular momentum barrier. For subluminal dispersion, the entropy depends on the behavior at arbitrarily high transverse momenta. In all cases it scales with the horizon area. For the hard cutoff it is linear in the cutoff, rather than quadratic. This discrepancy from the familiar result arises from the difference between the free-fall frame and the static frame in which a cutoff is usually imposed. In the superluminal case the entropy scales with a fractional power of the cutoff that depends on the index of the dispersion relation. Implications for the possible relation between regularized entanglement entropy and the Bekenstein-Hawking entropy are discussed. An appendix provides an explicit derivation of the entangled, thermal nature of the near-horizon free-fall vacuum for a dispersive scalar field in four dimensions.

Ted Jacobson and Renaud Parentani

2007-07-13T23:59:59.000Z

438

Thermally driven circulation  

E-Print Network [OSTI]

Several problems connected by the theme of thermal forcing are addressed herein. The main topic is the stratification and flow field resulting from imposing a specified heat flux on a fluid that is otherwise confined to a ...

Nelken, Haim

1987-01-01T23:59:59.000Z

439

Manipulation of Thermal Phonons  

E-Print Network [OSTI]

to manipulate the behavior of phonons is crucial for both energy applications and the cooling of integrated circuits. A novel class of artificially periodic structured materials phononic crystals might make manipulation of thermal phonons possible. In many...

Hsu, Chung-Hao

2013-03-28T23:59:59.000Z

440

Solar Thermal Energy Storage  

Science Journals Connector (OSTI)

Various types of thermal energy storage systems are introduced and their importance and desired characteristics are outlined. Sensible heat storage, which is one of the most commonly used storage systems in pract...

E. Payko; S. Kaka

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "holes thermal gradient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Contact thermal lithography  

E-Print Network [OSTI]

Contact thermal lithography is a method for fabricating microscale patterns using heat transfer. In contrast to photolithography, where the minimum achievable feature size is proportional to the wavelength of light used ...

Schmidt, Aaron Jerome, 1979-

2004-01-01T23:59:59.000Z

442

Neutron stars - thermal emitters  

E-Print Network [OSTI]

Confronting theoretical models with observations of thermal radiation emitted by neutron stars is one of the most important ways to understand the properties of both, superdense matter in the interiors of the neutron stars and dense magnetized plasmas in their outer layers. Here we review the theory of thermal emission from the surface layers of strongly magnetized neutron stars, and the main properties of the observational data. In particular, we focus on the nearby sources for which a clear thermal component has been detected, without being contaminated by other emission processes (magnetosphere, accretion, nebulae). We also discuss the applications of the modern theoretical models of the formation of spectra of strongly magnetized neutron stars to the observed thermally emitting objects.

Potekhin, A Y; Pons, J A

2014-01-01T23:59:59.000Z

443

Salinity gradient energy potential in Colombia considering site specific constraints  

Science Journals Connector (OSTI)

Abstract The theoretical potential of salinity gradient energy in river mouth systems is the maximum amount of energy that can be extracted from the controlled mixing of river water and seawater. It is calculated using the Gibbs free energy of mixing equations considering as inputs the mean rivers' discharge and the long term salinity of the ocean basin. However, this theoretical amount of energy can be far from the reality because both, the river discharge and the salinity of the ocean, have natural variations in different time scales. In this paper we expose the site constraints related with the variability of the salinity gradients that must be considered in order to make a more accurate estimation of the available resources and calculate the so-called site specific potential for the most important and feasible river mouths of Colombia. The results show that in Colombia a mean site specific potential of 15.6GW can be achieved, mainly in the Magdalena River mouth (97% of total). But more important, the results show that the salinity structure of the studied systems have different responses to variations of the environmental forcing, despite being located in the same ocean basin, and therefore, the energy potential for each river mouth has different variability patterns at different time scales. Decreases of the estimated energy potential up to 69% were found when the site specific potential is calculated instead of the theoretical potential. This prove that more detailed input data than long term discharges and salinities are necessary in order to make accurate estimations of local and regional salinity gradient energy potentials.

Oscar Alvarez-Silva; Andrs F. Osorio

2015-01-01T23:59:59.000Z

444

Texas Thermal Comfort Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thermal comfort thermal comfort Too often, the systems in our houses are both physically and intellectually inaccessible. In the SNAP House, HVAC components are integrated into the overall structure, and act as an experiential threshold between public and private spaces. They are located in a central, structural chase that supports the clerestory and gives the systems a functional presence within the interior. Each individual component is contained within a single chase

445

Photovoltaic-thermal collectors  

DOE Patents [OSTI]

A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

Cox, III, Charles H. (Carlisle, MA)

1984-04-24T23:59:59.000Z

446

Scrape-off Layer Flows With Pressure Gradient Scale Length ~ {rho}{sub p}  

SciTech Connect (OSTI)

A heuristic model for the plasma scrape-off width balances magnetic drifts against parallel loss at c{sub s} /2, resulting in a SOL width ~ {rho}{sub p}. T{sub sep} is calculated from SpitzerHrm parallel thermal conduction. This results in a prediction for the power scrape-off width in quantitative agreement both in magnitude and scaling with recent experimental data. To achieve the ~ c{sub s} /2 flow assumed in this model and measured experimentally sets requirements on the ratio of upstream to total SOL particle sources, relative to the square-root of the ratio of target to upstream temperature. The Pfisch-Schlter model for equilibrium flows has been modified to allow near-sonic flows, appropriate for gradient scale lengths of order {rho}{sub p}, resulting in a new quadrupole radial flow pattern. The strong parallel flows and plasma charging implied by this model suggest a mechanism for H-mode transition, consistent with many observations

Robert J. Goldston

2013-03-08T23:59:59.000Z

447

NEW RADIAL ABUNDANCE GRADIENTS FOR NGC 628 AND NGC 2403  

SciTech Connect (OSTI)

Motivated by recent interstellar medium studies, we present high quality MMT and Gemini spectroscopic observations of H II regions in the nearby spiral galaxies NGC 628 and NGC 2403 in order to measure their chemical abundance gradients. Using long-slit and multi-object mask optical spectroscopy, we obtained measurements of the temperature sensitive auroral lines [O III] ?4363 and/or [N II] ?5755 at a strength of 4? or greater in 11 H II regions in NGC 628 and 7 regions in NGC 2403. These observations allow us, for the first time, to derive an oxygen abundance gradient in NGC 628 based solely on 'direct' oxygen abundances of H II regions: 12 + log(O/H) = (8.43 0.03) + (0.017 0.002) R{sub g} (dex kpc{sup 1}), with a dispersion in log(O/H) of ? = 0.10 dex, from 14 regions with a radial coverage of ?2-19 kpc. This is a significantly shallower slope than found by previous 'strong-line' abundance studies. In NGC 2403, we derive an oxygen abundance gradient of 12 + log(O/H) = (8.48 0.04) + (0.032 0.007) R{sub g} (dex kpc{sup 1}), with a dispersion in log(O/H) of ? = 0.07 dex, from seven H II with a radial coverage of ?1-10 kpc. Additionally, we measure the N, S, Ne, and Ar abundances. We find the N/O ratio decreases with increasing radius for the inner disk, but reaches a plateau past R{sub 25} in NGC 628. NGC 2403 also has a negative N/O gradient with radius, but we do not sample the outer disk of the galaxy past R{sub 25} and so do not see evidence for a plateau. This bi-modal pattern measured for NGC 628 indicates dominant contributions from secondary nitrogen inside of the R{sub 25} transition and dominantly primary nitrogen farther out. As expected for ?-process elements, S/O, Ne/O, and Ar/O are consistent with constant values over a range in oxygen abundance.

Berg, Danielle A.; Skillman, Evan D. [Department of Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); Croxall, Kevin V. [Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Marble, Andrew R. [National Solar Observatory, 950 N Cherry Avenue, Tucson, AZ 85719 (United States); Smith, J. D. [Ritter Astrophysical Observatory, University of Toledo, Toledo, OH 43606 (United States); Gordon, Karl [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Kennicutt, Robert C. Jr. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Garnett, Donald R., E-mail: berg@astro.umn.edu, E-mail: skillman@astro.umn.edu, E-mail: croxall.5@osu.edu, E-mail: amarble@nso.edu, E-mail: jd.smith@utoledo.edu, E-mail: kgordon@stsci.edu, E-mail: robk@ast.cam.ac.uk

2013-10-01T23:59:59.000Z

448

Fabrication of high gradient insulators by stack compression  

DOE Patents [OSTI]

Individual layers of a high gradient insulator (HGI) are first pre-cut to their final dimensions. The pre-cut layers are then stacked to form an assembly that is subsequently pressed into an HGI unit with the desired dimension. The individual layers are stacked, and alignment is maintained, using a sacrificial alignment tube that is removed after the stack is hot pressed. The HGI's are used as high voltage vacuum insulators in energy storage and transmission structures or devices, e.g. in particle accelerators and pulsed power systems.

Harris, John Richardson; Sanders, Dave; Hawkins, Steven Anthony; Norona, Marcelo

2014-04-29T23:59:59.000Z

449

The gradient flow running coupling with twisted boundary conditions  

E-Print Network [OSTI]

We study the gradient flow for Yang-Mills theories with twisted boundary conditions. The perturbative behavior of the energy density $\\langle E(t)\\rangle$ is used to define a running coupling at a scale given by the linear size of the finite volume box. We compute the non-perturbative running of the pure gauge $SU(2)$ coupling constant and conclude that the technique is well suited for further applications due to the relatively mild cutoff effects of the step scaling function and the high numerical precision that can be achieved in lattice simulations. We also comment on the inclusion of matter fields.

A. Ramos

2014-09-04T23:59:59.000Z

450

High and ulta-high gradient quadrupole magnets  

SciTech Connect (OSTI)

Small bore conventional dc quadrupoles with apertures from 1 to 2.578cm were designed and prototypes built and measured. New fabrication techniques including the use of wire electric discharge milling (EDM) to economically generate the pole tip contours and aperture tolerances are described. Magnetic measurement data from a prototype of a 1cm aperture quadrupole with possible use in future e/sup +//e/sup -/ super colliders are presented. At a current of 400A, the lens achieved a gradient of 2.475 T/cm, and had an efficiency of 76.6%.

Brunk, W.O.; Walz, D.R.

1985-05-01T23:59:59.000Z

451

Superconducting travelling wave ring with high gradient accelerating section  

SciTech Connect (OSTI)

Use of a superconducting traveling wave accelerating (STWA) structure instead of a standing wave cavity has major advantages in increasing the accelerating gradient in the ILC. In contrast with standing wave cavity STWA requires feedback loop, which sends wave from the structure output to input, making a superconducting traveling wave ring (STWR). One or few input couplers need to excite STWR and compensate power dissipations due to beam loading. To control traveling wave regime in the structure two independent knobs can be used for tuning both resonant ring frequency and backward wave. We discuss two variants of the STWR with one and two feed couplers.

Avrakhov, P.; Solyak, N.; /Fermilab

2007-06-01T23:59:59.000Z

452

Gradient index liquid crystal devices and method of fabrication thereof  

DOE Patents [OSTI]

Laser beam apodizers using cholesteric liquid crystals provides soft edge profile by use of two separate cholesteric liquid crystal mixtures with different selective reflection bands which in an overlap region have a gradient index where reflectivity changes as a function of position. The apodizers can be configured as a one-dimensional beam apod INTRODUCTION The U.S. government has rights in the invention under Contract No. DE-FC03-85DP40200 between the University of Rochester and the Department of Energy.

Lee, J.C.; Jacobs, S.

1991-10-29T23:59:59.000Z

453

PUBLISHED ONLINE: 19 SEPTEMBER 2010 | DOI: 10.1038/NPHYS1767 Thermally driven spin injection from a  

E-Print Network [OSTI]

, enabling us to quantify this process15 . We obtain a spin-dependent Seebeck coefficient for Permalloy of -3 in Fig. 1. The scheme is essentially a lateral non-local spin-valve structure6 with the electrical for thermally driven spin injection. The Seebeck coefficient indicates that an applied temperature gradient

Loss, Daniel

454

Thermophoresis and its thermal parameters for aerosol collection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermophoresis and its thermal parameters for aerosol collection Thermophoresis and its thermal parameters for aerosol collection Title Thermophoresis and its thermal parameters for aerosol collection Publication Type Journal Article Year of Publication 2007 Authors Huang, Zhuo, Michael G. Apte, and Lara A. Gundel Journal U.S. Department of Energy Journal of Undergraduate Research Volume 7 Pagination 37-42 Abstract The particle collection effi ciency of a prototype environmental tobacco smoke (ETS) sampler based on the use of thermophoresis is determined by optimizing the operational voltage that determines its thermal gradient. This sampler's heating element was made of three sets of thermophoretic (TP) wires 25µm in diameter suspended across a channel cut in a printed circuit board and mounted with collection surfaces on both sides. The separation between the heating element and the room temperature collection surface was determined in a numerical simulation based on the Brock-Talbot model. Other thermal parameters of this TP ETS sampler were predicted by the Brock-Talbot model for TP deposition. From the normalized results the optimal collection ratio was expressed in terms of operational voltage and fi lter mass. Prior to the Brock-Talbot model simulation for this sampler, 1.0V was used arbitrarily. The operational voltage was raised

455

Dynamic modelling for thermal micro-actuators using thermal networks  

E-Print Network [OSTI]

Dynamic modelling for thermal micro-actuators using thermal networks Beatriz L´opez-Wallea,1 and analytical calculations. Key words: Micro-actuators, Thermal modelling, Electrical analogy, Thermal network 1 and MicroMechatronic Systems Department (AS2M), 24 rue Alain Savary, 25000 Besan¸con, France Abstract

Paris-Sud XI, Université de

456

Laser stabilization using spectral hole burning  

E-Print Network [OSTI]

We have frequency stabilized a Coherent CR699-21 dye laser to a transient spectral hole on the 606 nm transition in Pr^{+3}:Y_2SiO_5. A frequency stability of 1 kHz has been obtained on the 10 microsecond timescale together with a long-term frequency drift below 1 kHz/s. RF magnetic fields are used to repopulate the hyperfine levels allowing us to control the dynamics of the spectral hole. A detailed theory of the atomic response to laser frequency errors has been developed which allows us to design and optimize the laser stabilization feedback loop, and specifically we give a stability criterion that must be fulfilled in order to obtain very low drift rates. The laser stability is sufficient for performing quantum gate experiments in Pr^{+3}:Y_2SiO_5.

L. Rippe; B. Julsgaard; A. Walther; S. Krll

2006-11-05T23:59:59.000Z

457

Geometric description of BTZ black holes thermodynamics  

E-Print Network [OSTI]

We study the properties of the space of thermodynamic equilibrium states of the Ba\\~nados-Teitelboim-Zanelli (BTZ) black hole in (2+1)-gravity. We use the formalism of geometrothermodynamics to introduce in the space of equilibrium states a $2-$dimensional thermodynamic metric whose curvature is non-vanishing, indicating the presence of thermodynamic interaction, and free of singularities, indicating the absence of phase transitions. Similar results are obtained for generalizations of the BTZ black hole which include a Chern-Simons term and a dilatonic field. Small logarithmic corrections of the entropy turn out to be represented by small corrections of the thermodynamic curvature, reinforcing the idea that thermodynamic curvature is a measure of thermodynamic interaction.

Hernando Quevedo; Alberto Sanchez

2008-11-15T23:59:59.000Z

458

Hybrid black-hole binary initial data  

E-Print Network [OSTI]

Traditional black-hole binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al. [Class.Quant.Grav.27:114005,2010], a new binary black-hole initial data with radiation contents derived in the post-Newtonian (PN) calculation was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesired features; the unphysical horizon mass loss and the large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features.

Bruno C. Mundim; Bernard J. Kelly; Yosef Zlochower; Hiroyuki Nakano; Manuela Campanelli

2010-12-04T23:59:59.000Z

459

Hydrothermal alteration in research drill hole Y-2, Lower Geyser Basin, Yellowstone National Park, Wyoming  

SciTech Connect (OSTI)

Y-2, a US Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, was drilled to a depth of 157.4 meters. The hole penetrated interbedded siliceous sinter and travertine to 10.2 m, glacial sediments of the Pinedale Glaciation interlayered with pumiceous tuff from 10.2 to 31.7 m, and rhyolitic lavas of the Elephant Back flow of the Central Plateau Member and the Mallard Lake Member of the Pleistocene Plateau Rhyolite from 31.7 to 157.4 m. Hydrothermal alteration is pervasive in most of the nearly continuous drill core. Rhyolitic glass has been extensively altered to clay and zeolite minerals (intermediate heulandite, clinoptilolite, mordenite, montmorillonite, mixed-layer illite-montmorillonite, and illite) in addition to quartz and adularia. Numerous veins, vugs, and fractures in the core contain these and other minerals: silica minerals (opal, ..beta..-cristobalite, ..cap alpha..-cristobalite, and chalcedony), zeolites (analcime, wairakite, dachiardite, laumontite, and yugawaralite), carbonates (calcite and siderite), clay (kaolinite and chlorite), oxides (hematite, goethite, manganite, cryptomelane, pyrolusite, and groutite), and sulfides (pyrhotite and pyrite) along with minor aegirine, fluorite, truscottite, and portlandite. Interbedded travertine and siliceous sinter in the upper part of the drill core indicate that two distinct types of thermal water are responsible for precipitation of the surficial deposits, and further that the water regime has alternated between the two thermal waters more than once since the end of the Pinedale Glaciation (approx. 10,000 years B.P.). Alternation of zones of calcium-rich and sodium- and potassium-rich hydrothermal minerals also suggests that the calcium-rich and sodium- and potassium-rich hydrothermal minerals also suggests that the water chemistry in this drill hole varies with depth.

Bargar, K.E.; Beeson, M.H.

1981-05-01T23:59:59.000Z

460

Assessment of the geothermal resources of Kansas. Final report  

SciTech Connect (OSTI)

The following regional geological and geophysical studies are reported: establishment of a geothermal gradient data base from approximately 45,000 bottom hole temperatures recorded from well logs and interpretation of this data in terms of regional geology and establishment and interpretation of a second data base of geothermal gradients from thermal logging data from 144 holes of opportunity in the state. (MHR)

Steeples, D.W.; Stavnes, S.A.

1982-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "holes thermal gradient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Black hole remnants in the early universe  

Science Journals Connector (OSTI)

We consider the production of primordial micro black holes (MBH) remnants in the early Universe. These objects induce the Universe to be in a matter-dominated era before the onset of inflation. Effects of such an epoch on the CMB power spectrum are discussed and computed both analytically and numerically. By comparison with the latest observational data from the WMAP collaboration, we find that our model appears to explain the quadrupole anomaly of the CMB power spectrum.

Fabio Scardigli; Christine Gruber; Pisin Chen

2011-03-09T23:59:59.000Z

462

Hole cleaning requirements with seabed returns  

E-Print Network [OSTI]

size and fluid density. The least important were rotary speed, feed concentration, annulus size, and drillpipe eccentricity. They also reported that, in Newtonian fluids, transport efficiency improves with increasing viscosity; however, they noted... is set; therefore, no marine riser can be utilized. The coring occurs up to 3000 ft below the seafloor with the bit cutting an 11. 438 in. hole. The rig pumps have a maximum output of 600 gpm under normal coring operations with untreated seawater...

Nordt, David Paul

1988-01-01T23:59:59.000Z

463

Comparing quantum black holes and naked singularities  

E-Print Network [OSTI]

There are models of gravitational collapse in classical general relativity which admit the formation of naked singularities as well as black holes. These include fluid models as well as models with scalar fields as matter. Even if fluid models were to be regarded as unphysical in their matter content, the remaining class of models (based on scalar fields) generically admit the formation of visible regions of finite but arbitrarily high curvature. Hence it is of interest to ask, from the point of view of astrophysics, as to what a stellar collapse leading to a naked singularity (or to a visible region of very high curvature) will look like, to a far away observer. The emission of energy during such a process may be divided into three phases - (i) the classical phase, during which matter and gravity can both be treated according to the laws of classical physics, (ii) the semiclassical phase, when gravity is treated classically but matter behaves as a quantum field, and (iii) the quantum gravitational phase. In this review, we first give a summary of the status of naked singularities in classical relativity, and then report some recent results comparing the semiclassical phase of black holes with the semiclassical phase of spherical collapse leading to a naked singularity. In particular, we ask how the quantum particle creation during the collapse leading to a naked singularity compares with the Hawking radiation from a star collapsing to form a black hole. It turns out that there is a fundamental difference between the two cases. A spherical naked star emits only about one Planck energy during its semiclassical phase, and the further evolution can only be determined by the laws of quantum gravity. This contrasts with the semiclassical evaporation of a black hole.

T. P. Singh

2000-12-21T23:59:59.000Z

464

Electromagnetic wave scattering by Schwarzschild black holes  

E-Print Network [OSTI]

We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the electromagnetic scattering cross section, and show that they are in excellent agreement with analytical approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor and gravitational waves. We present a unified picture of the scattering of all massless fields for the first time.

Lus C. B. Crispino; Sam R. Dolan; Ednilton S. Oliveira

2009-05-20T23:59:59.000Z

465

Analytic energy gradients for constrained DFT-configuration interaction  

SciTech Connect (OSTI)

The constrained density functional theory-configuration interaction (CDFT-CI) method has previously been used to calculate ground-state energies and barrier heights, and to describe electronic excited states, in particular conical intersections. However, the method has been limited to evaluating the electronic energy at just a single nuclear configuration, with the gradient of the energy being available only via finite difference. In this paper, we present analytic gradients of the CDFT-CI energy with respect to nuclear coordinates, which gives the potential for accurate geometry optimization and molecular dynamics on both the ground and excited electronic states, a realm which is currently quite challenging for electronic structure theory. We report the performance of CDFT-CI geometry optimization for representative reaction transition states as well as molecules in an excited state. The overall accuracy of CDFT-CI for computing barrier heights is essentially unchanged whether the energies are evaluated at geometries obtained from quadratic configuration-interaction singles and doubles (QCISD) or CDFT-CI, indicating that CDFT-CI produces very good reaction transition states. These results open up tantalizing possibilities for future work on excited states.

Kaduk, Benjamin; Tsuchimochi, Takashi; Van Voorhis, Troy, E-mail: tvan@mit.edu [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States)

2014-05-14T23:59:59.000Z

466

Ultra-High Gradient Dielectric Wakefield Accelerator Experiments  

SciTech Connect (OSTI)

Ultra-high gradient dielectric wakefield accelerators are a potential option for a linear collider afterburner since they are immune to the ion collapse and electron/positron asymmetry problems implicit in a plasma based afterburner. The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. The experiment took advantage of the unique SLAC FFTB electron beam and its ultra-short pulse lengths and high currents (e.g., {sigma}{sub z} = 20 {micro}m at Q = 3 nC). The FFTB electron beam was successfully focused down and sent through short lengths of fused silica capillary tubing (ID = 200 {micro}m/OD = 325 {micro}m). The pulse length of the electron beam was varied to produce a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments being developed for the SLAC SABER and BNL ATF we plan to use the coherent Cerenkov radiation emitted from the capillary tube as a field strength diagnostic and demonstrate GV/m range particle energy gain.

Thompson, M C; Badakov, H; Rosenzweig, J B; Travish, G; Hogan, M; Ischebeck, R; Kirby, N; Siemann, R; Walz, D; Muggli, P; Scott, A; Yoder, R

2006-08-04T23:59:59.000Z

467

Ultra-High Gradient Dielectric Wakefield Accelerator Experiments  

SciTech Connect (OSTI)

Ultra-high gradient dielectric wakefield accelerators are a potential option for a linear collider afterburner since they are immune to the ion collapse and electron/positron asymmetry problems implicit in a plasma based afterburner. The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. The experiment took advantage of the unique SLAC FFTB electron beam and its ultra-short pulse lengths and high currents (e.g., {sigma}z = 20 {mu}m at Q = 3 nC). The FFTB electron beam was successfully focused down and sent through short lengths of fused silica capillary tubing (ID = 200 {mu}m / OD = 325 {mu}m). The pulse length of the electron beam was varied to produce a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments being developed for the SLAC SABER and BNL ATF we plan to use the coherent Cerenkov radiation emitted from the capillary tube as a field strength diagnostic and demonstrate GV/m range particle energy gain.

Thompson, M. C. [Lawrence Livermore National Laboratory, Livermore, California, 90095 (United States); Badakov, H.; Rosenzweig, J. B.; Travis, G. [UCLA Department of Physics and Astronomy, Los Angeles, California, 90095 (United States); Hogan, M.; Ischebeck, R.; Kirby, N.; Siemann, R.; Walz, D. [Stanford Linear Accelerator Center, Stanford, California, 94309 (United States); Muggli, P. [University of Southern California Los Angeles, California, 90089 (United States); Scott, A. [UCSB Department of Physics, Santa Barbara, California, 93106 (United States); Yoder, R. [Manhattan College, Riverdale, New York, 10471 (United States)

2006-11-27T23:59:59.000Z

468

Spectral hole burning for stopping light  

SciTech Connect (OSTI)

We propose a protocol for storage and retrieval of photon wave packets in a {lambda}-type atomic medium. This protocol derives from spectral hole burning and takes advantages of the specific properties of solid-state systems at low temperature, such as rare-earth ion-doped crystals. The signal pulse is tuned to the center of the hole that has been burnt previously within the inhomogeneously broadened absorption band. The group velocity is strongly reduced, being proportional to the hole width. This way the optically carried information and energy are carried over to the off-resonance optical dipoles. Storage and retrieval are performed by conversion to and from ground-state Raman coherence by using brief {pi} pulses. The protocol exhibits some resemblance with the well-known electromagnetically induced transparency process. It also presents distinctive features such as the absence of coupling beam. In this paper we detail the various steps of the protocol, summarize the critical parameters, and theoretically examine the recovery efficiency.

Lauro, R.; Chaneliere, T.; Le Goueet, J.-L. [Laboratoire Aime Cotton, CNRS UPR3321, Universite Paris Sud, Batiment 505, Campus Universitaire, 91405 Orsay (France)

2009-05-15T23:59:59.000Z

469

Light Loop Echoes and Blinking Black Holes  

E-Print Network [OSTI]

Radiation emitted near a black hole reaches the observer by multiple paths; and when this radiation varies in time, the time-delays between the various paths generate a "blinking" effect in the observed light curve L(t) or its auto-correlation function xi(T)= . For the particularly important "face-on" configuration (in which the hole is viewed roughly along its spin axis, while the emission comes roughly from its equatorial plane -- e.g. from the inner edge of its accretion disk, or from the violent flash of a nearby/infalling star) we calculate the blinking in detail by computing the time delay Delta t_{j}(r,a) and magnification mu_{j}(r,a) of the jth path (j=1,2,3,...), relative to the primary path (j=0), as a function of the emission radius r and black hole spin 0

470

Dark jets in solar coronal holes  

E-Print Network [OSTI]

A new solar feature termed a dark jet is identified from observations of an extended solar coronal hole that was continuously monitored for over 44 hours by the EUV Imaging Spectrometer on board the Hinode spacecraft in 2011 February 8-10. Line-of-sight velocity maps derived from the coronal Fe XII $\\lambda$195.12 emission line, formed at 1.5 MK, revealed a number of large-scale, jet-like structures that showed significant blueshifts. The structures had either weak or no intensity signal in 193 A filter images from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, suggesting that the jets are essentially invisible to imaging instruments. The dark jets are rooted in bright points and occur both within the coronal hole and at the quiet Sun-coronal hole boundary. They exhibit a wide range of shapes, from narrow columns to fan-shaped structures, and sometimes multiple jets are seen close together. A detailed study of one dark jet showed line-of-sight speeds increasing along the jet axis fr...

Young, Peter R

2015-01-01T23:59:59.000Z

471

Quantization of rotating linear dilaton black holes  

E-Print Network [OSTI]

In this paper, we firstly prove that the adiabatic invariant quantity, which is commonly used in the literature for quantizing the rotating black holes (BHs) is fallacious. We then show how its corrected form should be. The main purpose of this paper is to study the quantization of 4-dimensional rotating linear dilaton black hole (RLDBH) spacetime describing with an action, which emerges in the Einstein-Maxwell-Dilaton-Axion (EMDA) theory. The RLDBH spacetime has a non-asymptotically flat (NAF) geometry. They reduces to the linear dilaton black hole (LDBH) metric when vanishing its rotation parameter $a$. While studying its scalar perturbations, it is shown that the Schr\\"odinger-like wave equation around the event horizon reduces to a confluent hypergeometric differential equation. Then the associated complex frequencies of the quasinormal modes (QNMs) are computed. By using those QNMs in the true definition of the rotational adiabatic invariant quantity, we obtain the quantum spectra of entropy/area for the RLDBH. It is found out that both spectra are discrete and equidistant. Besides, we reveal that the quantum spectra do not depend on $a$ in spite of the QNMs are modulated by it.

I. Sakalli

2014-06-19T23:59:59.000Z

472

Large-scale spatial variability of riverbed temperature gradients in Snake River fall Chinook salmon spawning areas  

SciTech Connect (OSTI)

In the Snake River basin of the Pacific northwestern United States, hydroelectric dam operations are often based on the predicted emergence timing of salmon fry from the riverbed. The spatial variability and complexity of surface water and riverbed temperature gradients results in emergence timing predictions that are likely to have large errors. The objectives of this study were to quantify the thermal heterogeneity between the river and riverbed in fall Chinook salmon spawning areas and to determine the effects of thermal heterogeneity on fall Chinook salmon emergence timing. This study quantified river and riverbed temperatures at 15 fall Chinook salmon spawning sites distributed in two reaches throughout 160 km of the Snake River in Hells Canyon, Idaho, USA, during three different water years. Temperatures were measured during the fall Chinook salmon incubation period with self-contained data loggers placed in the river and at three different depths below the riverbed surface. At all sites temperature increased with depth into the riverbed, including significant differences (p<0.05) in mean water temperature of up to 3.8C between the river and the riverbed among all the sites. During each of the three water years studied, river and riverbed temperatures varied significantly among all the study sites, among the study sites within each reach, and between sites located in the two reaches. Considerable variability in riverbed temperatures among the sites resulted in fall Chinook salmon emergence timing estimates that varied by as much as 55 days, depending on the source of temperature data used for the estimate. Monitoring of riverbed temperature gradients at a range of spatial scales throughout the Snake River would provide better information for managing hydroelectric dam operations, and would aid in the design and interpretation of future empirical research into the ecological significance of physical riverine processes.

Hanrahan, Timothy P.

2007-02-01T23:59:59.000Z

473

Modelling Flow through Porous Media under Large Pressure Gradients  

E-Print Network [OSTI]

to contribute to global warming and adversely impact the climate. The idea of sequestering carbon dioxide to reduce the amount entering the atmosphere is fairly new. But the technology needed to do this has been developed for EOR already. Thermal power stations...

Srinivasan, Shriram

2013-11-01T23:59:59.000Z

474

THERMAL NEUTRON BACKSCATTER IMAGING.  

SciTech Connect (OSTI)

Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

2004-10-16T23:59:59.000Z

475

K-Shell-Hole Production, Multiple-Hole Production, Charge-Transfer, and Antisymmetry  

E-Print Network [OSTI]

-shell electron can occur. For example, after making a K-shell hole an L-shell electron may be knocked into it, or an L-shell vacancy may be produced and the K-shell electron promoted to that vacancy in the "Fermi sea" of the target-atom orbitals, In 1973 a.... If one is working in first-order pertur- bation theory E-shell-hole production is correctly obtained by calculating the process for the K elec- tron to be lifted above the "Fermi sea" of occupied target orbitals, i.e., the other electrons play a...

Reading, John F.; Ford, A. Lewis.

1980-01-01T23:59:59.000Z

476

Mineral Test Hole Regulatory Act (Tennessee) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mineral Test Hole Regulatory Act (Tennessee) Mineral Test Hole Regulatory Act (Tennessee) Mineral Test Hole Regulatory Act (Tennessee) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Mineral Hole Regulatory Act is applicable to any person (individual, corporation, company, association, joint venture, partnership, receiver, trustee, guardian, executor, administrator, personal representative or private organization of any kind) who wishes to drill a mineral test hole (any hole in excess of one hundred (100) feet drilled during the exploration for minerals but shall exclude auger drilling in surficial or

477

Video: Part of the 'Hole' Story (of Uranium Hexafluoride Cylinders)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hole Story Hole Story Part of the "Hole" Story (of Uranium Hexafluoride Cylinders) Holes in the depleted Uranium Hexafluoride storage cylinders are investigated. It is shown that corrosion products cause the openings to be self-healing. View this Video in Real Player format Download free RealPlayer SP Highlights of the Video: Video 00:00 Part of the 'Hole' Story Video 00:05 One of the depleted UF6 cylinder storage lots at Portsmouth Video 00:28 48G cylinders, each containing 14 tons of depleted UF6, in storage Video 00:52 Stacked 48G cylinders Video 01:35 UF6 sealed in glass tube Video 02:01 A lifting lug of one cylinder damaging a neighboring cylinder Video 02:37 Damage to small hole cylinder from impact with a lifting lub of an adjoining cylinder

478

Articles which include chevron film cooling holes, and related processes  

DOE Patents [OSTI]

An article is described, including an inner surface which can be exposed to a first fluid; an inlet; and an outer surface spaced from the inner surface, which can be exposed to a hotter second fluid. The article further includes at least one row or other pattern of passage holes. Each passage hole includes an inlet bore extending through the substrate from the inlet at the inner surface to a passage hole-exit proximate to the outer surface, with the inlet bore terminating in a chevron outlet adjacent the hole-exit. The chevron outlet includes a pair of wing troughs having a common surface region between them. The common surface region includes a valley which is adjacent the hole-exit; and a plateau adjacent the valley. The article can be an airfoil. Related methods for preparing the passage holes are also described.

Bunker, Ronald Scott; Lacy, Benjamin Paul

2014-12-09T23:59:59.000Z

479

Method and apparatus of assessing down-hole drilling conditions  

DOE Patents [OSTI]

A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

Hall, David R. (Provo, UT); Pixton, David S. (Lehl, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Fox, Joe (Spanish Fork, UT)

2007-04-24T23:59:59.000Z

480

Thermal ignition combustion system  

DOE Patents [OSTI]

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

Note: This page contains sample records for the topic "holes thermal gradient" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Scattering Solar Thermal Concentrators  

Broader source: Energy.gov [DOE]

"This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."

482

Thermal ignition combustion system  

SciTech Connect (OSTI)

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

Kamo, Roy (Columbus, IN); Kakwani, Ramesh M. (Columbus, IN); Valdmanis, Edgars (Columbus, IN); Woods, Melvins E. (Columbus, IN)

1988-01-01T23:59:59.000Z

483

Thermal ignition combustion system  

SciTech Connect (OSTI)

A thermal ignition combustion system adapted for use with an internal combustion engine is described comprising: (a) means for providing ignition chamber walls defining an ignition chamber, the chamber walls being made of a material having a thermal conductivity greater than 20 W/m/sup 0/C. and a specific heat greater than 480J/kg/sup 0/C., the ignition chamber being in constant communication with the main combustion chamber; (b) means for maintaining the temperature of the chamber walls above a threshold temperature capable of causing ignition of a fuel; and (c) means for conducting fuel to the ignition chamber.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

484

Thermal test options  

SciTech Connect (OSTI)

Shipping containers for radioactive materials must be qualified to meet a thermal accident environment specified in regulations, such at Title 10, Code of Federal Regulations, Part 71. Aimed primarily at the shipping container design, this report discusses the thermal testing options available for meeting the regulatory requirements, and states the advantages and disadvantages of each approach. The principal options considered are testing with radiant heat, furnaces, and open pool fires. The report also identifies some of the facilities available and current contacts. Finally, the report makes some recommendations on the appropriate use of these different testing methods.

Koski, J.A.; Keltner, N.R.; Sobolik, K.B.

1993-02-01T23:59:59.000Z

485

Hole Self-Energy Corrections in the Brueckner Theory  

Science Journals Connector (OSTI)

To study corrections to hole propagators in Brueckner theory, an extension of the Hugenholtz convolution theorem is proved. An integral equation is derived for a class of Brueckner hole corrections and approximate solutions are obtained, one of which gives the usual prescription that makes holes propagate on the energy shell. The derivation shows which class of diagrams are included in this prescription and suggests that a more accurate treatment might be needed.

J. Nuttall

1966-09-23T23:59:59.000Z

486

A toroidal black hole for the AGN phenomenon  

E-Print Network [OSTI]

A new approach to the study of the AGN phenomenon is proposed, in which the nucleus activity is related to the metric of the inner massive black hole. The possibility of a Toroidal Black Hole (TBH), in contrast to the usual Spherical Black Hole (SBH), is discussed as a powerful tool in understanding AGN related phenomena, such as the energetics, the production of jets and the acceleration of particles, the shape of the magnetic field and the lifetime of nucleus activity.

Fulvio Pompilio; S. M. Harun-or-Rashid; Matts Roos

2000-08-30T23:59:59.000Z

487

A Quantum Material Model of Static Schwarzschild Black Holes  

E-Print Network [OSTI]

A quantum-mechanical prescription of static Einstein field equation is proposed in order to construct the matter-metric eigen-states in the interior of a static Schwarzschild black hole where the signature of space-time is chosen as (--++). The spectrum of the quantum states is identified to be the integral multiples of the surface gravity. A statistical explanation of black hole entropy is given and a quantisation rule for the masses of Schwarzschild black holes is proposed.

S. -T. Sung

1997-03-16T23:59:59.000Z

488

On the Stability of Black Holes at the LHC  

E-Print Network [OSTI]

The eventual production of mini black holes by proton-proton collisions at the LHC is predicted by theories with large extra dimensions resolvable at the Tev scale of energies. It is expected that these black holes evaporate shortly after its production as a consequence of the Hawking radiation. We show that for theories based on the ADS/CFT correspondence, the produced black holes may have an unstable horizon, which grows proportionally to the square of the distance to the collision point.

M. D. Maia; E. M. Monte

2008-08-19T23:59:59.000Z

489

Exploring approximations to the GW self-energy ionic gradients  

E-Print Network [OSTI]

The accuracy of the many-body perturbation theory GW formalism to calculate electron-phonon coupling matrix elements has been recently demonstrated in the case of a few important systems. However, the related computational costs are high and thus represent strong limitations to its widespread application. In the present study, we explore two less demanding alternatives for the calculation of electron-phonon coupling matrix elements on the many-body perturbation theory level. Namely, we test the accuracy of the static Coulomb-hole plus screened-exchange (COHSEX) approximation and further of the constant screening approach, where variations of the screened Coulomb potential W upon small changes of the atomic positions along the vibrational eigenmodes are neglected. We find this latter approximation to be the most reliable, whereas the static COHSEX ansatz leads to substantial errors. Our conclusions are validated in a few paradigmatic cases: diamond, graphene and the C60 fullerene. These findings open the way f...

Faber, C; Attaccalite, C; Cannuccia, E; Duchemin, I; Deutsch, T; Blase, X

2015-01-01T23:59:59.000Z

490

Ion temperature gradient driven turbulence with strong trapped ion resonance  

SciTech Connect (OSTI)

A theory to describe basic characterization of ion temperature gradient driven turbulence with strong trapped ion resonance is presented. The role of trapped ion granulations, clusters of trapped ions correlated by precession resonance, is the focus. Microscopically, the presence of trapped ion granulations leads to a sharp (logarithmic) divergence of two point phase space density correlation at small scales. Macroscopically, trapped ion granulations excite potential fluctuations that do not satisfy dispersion relation and so broaden frequency spectrum. The line width from emission due only to trapped ion granulations is calculated. The result shows that the line width depends on ion free energy and electron dissipation, which implies that non-adiabatic electrons are essential to recover non-trivial dynamics of trapped ion granulations. Relevant testable predictions are summarized.

Kosuga, Y., E-mail: kosuga@riam.kyushu-u.ac.jp [Institute for Advanced Study, Kyushu University, Fukuoka (Japan); Research Institute for Applied Mechanics, Kyushu University, Fukuoka (Japan); Itoh, S.-I. [Research Center for Plasma Turbulence, Kyushu University, Fukuoka (Japan); Research Institute for Applied Mechanics, Kyushu University, Fukuoka (Japan); Diamond, P. H. [CASS and CMTFO, University of California at San Diego, La Jolla, California 92093 (United States); WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon (Korea, Republic of); Itoh, K. [National Institute for Fusion Science, Gifu (Japan); Research Center for Plasma Turbulence, Kyushu University, Fukuoka (Japan); Lesur, M. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka (Japan)

2014-10-15T23:59:59.000Z

491

Modified Magnicon for High-Gradient Accelerator R&D  

SciTech Connect (OSTI)

Analysis, and low-power cold tests are described on a modified design intended for the Ka-band pulsed magnicon now in use for high-gradient accelerator R and D and rare elementary particle searches at the Yale University Beam Physics Laboratory. The modification is mainly to the output cavity of the magnicon, which presently operates in the TM310 mode. It is proposed to substitute for this a dual-chamber TE311 cavity structure. The first chamber is to extract about 40% of the beam power (about 25 MW) at 34.272 GHz, while the second chamber is to convey the power to four WR-28 output waveguides. Minor design changes are also proposed for the penultimate 11.424 GHz cavity and the beam collector. The intention of these design changes is to allow the magnicon to operate reliably 24/7, with minor sensitivity to operating parameters.

Jay L. Hirshfield

2011-12-19T23:59:59.000Z

492

Optimization of the Oktay-Kronfeld Action Conjugate Gradient Inverter  

E-Print Network [OSTI]

Improving the Fermilab action to third order in heavy quark effective theory yields the Oktay-Kronfeld action, a promising candidate for precise calculations of the spectra of heavy quark systems and weak matrix elements relevant to searches for new physics. We have optimized the bi-stabilized conjugate gradient inverter in the SciDAC QOPQDP library and are developing a GPU code. The action is rewritten and the needed gauge-link combinations are precalculated. In tests with a MILC coarse lattice, this procedure accelerates the inverter by a factor of four. The remaining floating-point operations are mostly simple matrix multiplications between gauge links and fermion vectors, which we accelerate by more than an order of magnitude by using CUDA. Further gains could be achieved by using QUDA.

Yong-Chull Jang; Jon A. Bailey; Weonjong Lee; Carleton DeTar; Mehmet B. Oktay; Andreas S. Kronfeld

2013-11-21T23:59:59.000Z

493

Coherent structures in ion temperature gradient turbulence-zonal flow  

SciTech Connect (OSTI)

Nonlinear stationary structure formation in the coupled ion temperature gradient (ITG)-zonal flow system is investigated. The ITG turbulence is described by a wave-kinetic equation for the action density of the ITG mode, and the longer scale zonal mode is described by a dynamic equation for the m?=?n?=?0 component of the potential. Two populations of trapped and untrapped drift wave trajectories are shown to exist in a moving frame of reference. This novel effect leads to the formation of nonlinear stationary structures. It is shown that the ITG turbulence can self-consistently sustain coherent, radially propagating modulation envelope structures such as solitons, shocks, and nonlinear wave trains.

Singh, Rameswar, E-mail: rameswar.singh@lpp.polytechnique.fr [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India); Singh, R. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India); WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Kaw, P. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India); Grcan, . D. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Diamond, P. H. [WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); CMTFO and CASS, University of California, San Diego, California 92093 (United States)

2014-10-15T23:59:59.000Z

494

THE EXTENSIVE AGE GRADIENT OF THE CARINA DWARF GALAXY  

SciTech Connect (OSTI)

The evolution of small systems such as dwarf spheroidal galaxies (dSphs) is likely to have been a balance between external environmental effects and internal processes within their own relatively shallow potential wells. Assessing how strong such environmental interactions may have been is therefore an important element in understanding the baryonic evolution of dSphs and their derived dark matter distribution. Here we present results from a wide-area CTIO/MOSAIC II photometric survey of the Carina dSph, reaching down to about two magnitudes below the oldest main-sequence turnoff (MSTO). This data set enables us to trace the structure of Carina in detail out to very large distances from its center, and as a function of stellar age. We observe the presence of an extended structure made up primarily of ancient MSTO stars, at distances between 25' and 60' from Carina's center, confirming results in the literature that Carina extends well beyond its nominal tidal radius. The large number statistics of our survey reveals features such as isophote twists and tails that were undetected in other previous, shallower surveys. This is the first time that such unambiguous signs of tidal disruption have been found in a Milky Way 'classical' dwarf other than Sagittarius. We also demonstrate the presence of a negative age gradient in Carina directly from its MSTOs, and trace it out to very large distances from the galaxy center. The signs of interaction with the Milky Way make it unclear whether the age gradient was already in place before Carina underwent tidal disruption.

Battaglia, G. [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Irwin, M. [Institute of Astronomy, Madingley Road, Cambridge CB03 0HA (United Kingdom); Tolstoy, E.; De Boer, T. [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen (Netherlands); Mateo, M., E-mail: gbattaglia@oabo.inaf.it [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109-1090 (United States)

2012-12-20T23:59:59.000Z

495

Hydrodynamic model for electron-hole plasma in graphene  

E-Print Network [OSTI]

We propose a hydrodynamic model describing steady-state and dynamic electron and hole transport properties of graphene structures which accounts for the features of the electron and hole spectra. It is intended for electron-hole plasma in graphene characterized by high rate of intercarrier scattering compared to external scattering (on phonons and impurities), i.e., for intrinsic or optically pumped (bipolar plasma), and gated graphene (virtually monopolar plasma). We demonstrate that the effect of strong interaction of electrons and holes on their transport can be treated as a viscous friction between the electron and hole components. We apply the developed model for the calculations of the graphene dc conductivity, in particular, the effect of mutual drag of electrons and holes is described. The spectra and damping of collective excitations in graphene in the bipolar and monopolar limits are found. It is shown that at high gate voltages and, hence, at high electron and low hole densities (or vice-versa), the excitations are associated with the self-consistent electric field and the hydrodynamic pressure (plasma waves). In intrinsic and optically pumped graphene, the waves constitute quasineutral perturbations of the electron and hole densities (electron-hole sound waves) with the velocity being dependent only on the fundamental graphene constants.

D. Svintsov; V. Vyurkov; S. Yurchenko; T. Otsuji; V. Ryzhii

2012-01-03T23:59:59.000Z

496

Core Holes At Blue Mountain Geothermal Area (Fairbank & Niggemann...  

Open Energy Info (EERE)

Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Core Holes Activity Date 2002 - 2004 Usefulness useful DOE-funding Unknown Exploration...

497

Black Holes as Conformal Field Theories on Horizons  

E-Print Network [OSTI]

We show that any nonextreme black hole can be described by a state with $L_0=E_R$ in a $D=2$ chiral conformal field theory with central charge $c=12E_R$ where $E_R$ is the dimensionless Rindler energy of the black hole. The theory lives in the very near horizon region, i.e. around the origin of Rindler space. Black hole hair is the momentum along the Euclidean dimensionless Rindler time direction. As evidence, we show that $D$--dimensional Schwarzschild black holes and $D=2$ dilatonic ones that are obtained from them by spherical reduction are described by the same conformal field theory states.

Halyo, Edi

2015-01-01T23:59:59.000Z

498

Comparison of Black Hole Generators for the LHC  

E-Print Network [OSTI]

We compare Monte Carlo event generators dedicated to simulating the production and decay of extra-dimensional black holes at the Large Hadron Collider.

Douglas M. Gingrich

2006-10-17T23:59:59.000Z

499

Primordial Black Hole Evolution in Tensor-Scalar Cosmology  

Science Journals Connector (OSTI)

A perturbative analysis shows that black holes do not remember the value of the scalar field ? at the time they formed if ? changes in tensor-scalar cosmology. Moreover, even when the black hole mass in the Einstein frame is approximately unaffected by the changing of ?, in the Jordan-Fierz frame the mass increases. This mass increase requires a reanalysis of the evaporation of primordial black holes in tensor-scalar cosmology. It also implies that there could have been a significant magnification of the (Jordan-Fierz frame) mass of primordial black holes.

Ted Jacobson

1999-10-04T23:59:59.000Z

500

A rotating black hole in the Galactic Center  

E-Print Network [OSTI]

Recent observations of Sgr A* give strong constraints for possible models of the physical nature of Sgr A* and suggest the presence of a massive black~hole with M0.9) accreting 10^-8.5 - 10^-7 M_sun/yr at a black~hole mass of M=2 10^6 M_sunseen almost edge on. A low mass black hole of M' together with simple scaling laws to provide an easy-to-handle test for the black hole model.

Heino Falcke; Peter L. Biermann; Wolfgang J. Duschl; Peter G. Mezger

1992-12-07T23:59:59.000Z