Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hole coal field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

High-sulfur coals in the eastern Kentucky coal field  

SciTech Connect (OSTI)

The Eastern Kentucky coal field is notable for relatively low-sulfur, [open quotes]compliance[close quotes] coals. Virtually all of the major coals in this area do have regions in which higher sulfur lithotypes are common, if not dominant, within the lithologic profile. Three Middle Pennsylvanian coals, each representing a major resource, exemplify this. The Clintwood coal bed is the stratigraphically lowest coal bed mined throughout the coal field. In Whitley County, the sulfur content increase from 0.6% at the base to nearly 12% in the top lithotype. Pyrite in the high-sulfur lithotype is a complex mixture of sub- to few-micron syngenetic forms and massive epigenetic growths. The stratigraphically higher Pond Creek coal bed is extensively mined in portions of the coal field. Although generally low in sulfur, in northern Pike and southern Martin counties the top one-third can have up to 6% sulfur. Uniformly low-sulfur profiles can occur within a few hundred meters of high-sulfur coal. Pyrite occurs as 10-50 [mu]m euhedra and coarser massive forms. In this case, sulfur distribution may have been controlled by sandstone channels in the overlying sediments. High-sulfur zones in the lower bench of the Fire Clay coal bed, the stratigraphically highest coal bed considered here, are more problematical. The lower bench, which is of highly variable thickness and quality, generally is overlain by a kaolinitic flint clay, the consequence of a volcanic ash fall into the peat swamp. In southern Perry and Letcher counties, a black, illite-chlorite clay directly overlies the lower bench. General lack of lateral continuity of lithotypes in the lower bench suggests that the precursor swamp consisted of discontinuous peat-forming environments that were spatially variable and regularly inundated by sediments. Some of the peat-forming areas may have been marshlike in character.

Hower, J.C.; Graham, U.M. (Univ. of Kentucky Center for Applied Energy Research, Lexington, KY (United States)); Eble, C.F. (Kentucky Geological Survey, Lexington, KY (United States))

1993-08-01T23:59:59.000Z

2

Chemical composition and some trace element contents in coals and coal ash from Tamnava-Zapadno Polje Coal Field, Serbia  

SciTech Connect (OSTI)

The chemical compositions and trace element contents (Zn, Cu, Co, Cr, Ni, Pb, Cd, As, B, Hg, Sr, Se, Be, Ba, Mn, Th, V, U) in coal and coal ash samples from Tamnava-Zapadno Polje coal field in Serbia were studied. The coal from this field belongs to lignite. This high volatility coal has high moisture and low S contents, moderate ash yield, and high calorific value. The coal ash is abundant in alumosilicates. Many trace elements such as Ni > Cd > Cr > B > As > Cu > Co > Pb > V > Zn > Mn in the coal and Ni > Cr > As > B > Cu > Co = Pb > V > Zn > Mn in the coal ash are enriched in comparison with Clarke concentrations.

Vukasinovic-Pesic, V.; Rajakovic, L.J. [University of Montenegro, Podgorica (Montenegro)

2009-07-01T23:59:59.000Z

3

Geologic and climatic controls on the formation of the Permian coal measures in the Sohagpur coal field, Madhya Pradesh, India  

SciTech Connect (OSTI)

The U.S. Geological Survey (USGS) and the Geological Survey of India (GSI) are concluding a cooperative study of the coking coal deposits in the Sohagpur coal field in central India. Because of the importance of coal in India's economy, the Coal Wing of the Geological Survey of India has studied the area intensely since the early 1980's. This report summarizes the overall stratigraphic, tectonic, and sedimentologic framework of the Sohagpur coal field area, and the interpretations of the geologic and climatic environments required for the accumulation of the thick Gondwana coal deposits, both coking and non-coking.

Milici, R.C.; Warwick, P.D.; Mukhopadhyah, A.; Adhikari, S.; Roy, S.P.; Bhattacharyya, S.

1999-07-01T23:59:59.000Z

4

Black Holes as Conformal Field Theories on Horizons  

E-Print Network [OSTI]

We show that any nonextreme black hole can be described by a state with $L_0=E_R$ in a $D=2$ chiral conformal field theory with central charge $c=12E_R$ where $E_R$ is the dimensionless Rindler energy of the black hole. The theory lives in the very near horizon region, i.e. around the origin of Rindler space. Black hole hair is the momentum along the Euclidean dimensionless Rindler time direction. As evidence, we show that $D$--dimensional Schwarzschild black holes and $D=2$ dilatonic ones that are obtained from them by spherical reduction are described by the same conformal field theory states.

Halyo, Edi

2015-01-01T23:59:59.000Z

5

Pricetown I underground coal gasification field test: operations report  

SciTech Connect (OSTI)

An Underground Coal Gasification (UCG) field test in bituminous coal was successfully completed near Pricetown, West Virginia. The primary objective of this field test was to determine the viability of the linked vertical well (LVV) technology to recover the 900 foot deep, 6 foot thick coal seam. A methane rich product gas with an average heating value of approximately 250 Btu/SCF was produced at low air injection flow rates during the reverse combustion linkage phase. Heating value of the gas produced during the linkage enhancement phase was 221 Btu/SCF with air injection. The high methane formation has been attributed to the thermal and hydrocracking of tars and oils along with hydropyrolysis and hydrogasification of coal char. The high heating value of the gas was the combined effect of residence time, flow pattern, injection flow rate, injection pressure, and back pressure. During the gasification phase, a gas with an average heating value of 125 Btu/SCF was produced with only air injection, which resulted in an average energy production of 362 MMBtu/day.

Agarwal, A.K.; Seabaugh, P.W.; Zielinski, R.E.

1981-01-01T23:59:59.000Z

6

Black holes and the absorption rate of cosmological scalar fields  

E-Print Network [OSTI]

We study the absorption of a massless scalar field by a static black hole. Using the continuity equation that arises from the Klein-Gordon equation, it is possible to define a normalized absorption rate $\\Gamma(t)$ for the scalar field as it falls into the black hole. It is found that the absorption mainly depends upon the characteristics wavelengths involved in the physical system: the mean wavenumber and the width of the wave packet, but that it is insensitive to the scalar field's strength. By taking a limiting procedure, we determine the minimum absorption fraction of the scalar field's mass by the black hole, which is around 50%.

L. Arturo Urena-Lopez; Lizbeth M. Fernandez

2011-07-15T23:59:59.000Z

7

Quasinormal modes of test fields around regular black holes  

E-Print Network [OSTI]

We study scalar, electromagnetic and gravitational test fields in the Hayward, Bardeen and Ay\\'{o}n-Beato-Garc\\'{i}a regular black hole spacetimes and demonstrate that the test fields are stable in all these spacetimes. Using the sixth order WKB approximation of the linear "axial" perturbative scheme, we determine dependence of the quasinormal mode (QNM) frequencies on the characteristic parameters of the test fields and the spacetime charge parameters of the regular black holes. We give also the greybody factors, namely the transmission and reflection coefficients of scattered scalar, electromagnetic and gravitational waves. We show that damping of the QNMs in regular black hole spacetimes is suppressed in comparison to the case of Schwarzschild black holes, and increasing charge parameter of the regular black holes increases reflection and decreases transmission factor of incident waves for each of the test fields.

Bobir Toshmatov; Ahmadjon Abdujabbarov; Zden?k Stuchlík; Bobomurat Ahmedov

2015-03-19T23:59:59.000Z

8

Towards a characterization of fields leading to black hole hair  

E-Print Network [OSTI]

In the present work, it is shown that an asymptotically flat spherical black hole can have a nontrivial signature of any field for an exterior observer if the energy momentum tensor of the corresponding field is either tracefree or if the trace falls off at least as rapidly as inverse cube of the radial distance. In the absence of a general No Hair Theorem, this result can provide a characterization of the fields leading to black hole hair.

Narayan Banerjee; Somasri Sen

2013-07-05T23:59:59.000Z

9

Coal rank trends in western Kentucky coal field and relationship to hydrocarbon occurrence  

SciTech Connect (OSTI)

Extensive oil and gas development has occurred in the high volatile C bituminous region north of the Rough Creek fault zone, but few pools are known within the Webster syncline south of the fault zone. The rank of the Middle Pennsylvanian coals can be used to estimate the level of maturation of the Devonian New Albany Shale, a likely source rock for much of the oil and gas in the coal field. Based on relatively few data points, previous studies on the maturation of the New Albany Shale, which lies about 1 km below the Springfield coal, indicate an equivalent medium volatile bituminous (1.0-1.2% R{sub max}) rank in the Fluorspar district. New Albany rank decreases to an equivalent high volatile B/C (0.6% R{sub max}) north of the Rough Creek fault zone. Whereas the shale in the latter region is situated within the oil generation window, the higher rank region is past the peak of the level of maturation of the New Albany Shale. The significance of the New Albany reflectancy is dependent on the suppression of vitrinite reflectance in organic-rich shales. The possibility of reflectance suppression would imply that the shales could be more mature than studies have indicated.

Hower, J.C.; Rimmer, S.M.; Williams, D.A.; Beard, J.G. (Univ. of Kentucky, Lexington (USA))

1989-09-01T23:59:59.000Z

10

CO{sub 2} Sequestration Potential of Charqueadas Coal Field in Brazil  

SciTech Connect (OSTI)

The I2B coal seam in the Charqueadas coal field has been evaluated as a target for enhanced coal bed methane production and CO{sub 2} sequestration. The samples were low rank coals (high volatile bituminous and sub-bituminous) obtained from the I2B seam as ?3? cores. Such properties as sorption capacity, internal structure of the samples, porosity and permeability were of primary interest in this characterization study.

Romanov, V [NETL

2012-10-23T23:59:59.000Z

11

Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California  

E-Print Network [OSTI]

geology and gas-phase (methane) seepage for the Coal Oil Point (COP) seep field, one of the worldORIGINAL Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field's largest and best-studied marine oil and gas seep fields, located over a producing hydrocarbon reservoir

Luyendyk, Bruce

12

Field study of disposed solid wastes from advanced coal processes  

SciTech Connect (OSTI)

Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

Not Available

1992-01-01T23:59:59.000Z

13

Study of catalytic diffusion in coal. Final report for 1983/1984 SOMED Project. [Determination of pore (hole) size and pore shape distribution  

SciTech Connect (OSTI)

The purpose of our studies is to determine the pore (hole) size and pore shape distribution in standard bituminous coal samples from various Alabama coal seams such as that of the Mary Lee, Black Creek and Pratt during and after swelling of the coal with different solvents at various temperatures. These samples come from the Penn State Coal Sample Bank at Pennsylvania State University Coal Research Section and from Alabama's Mineral Industries. Methods have been developed in the laboratory whereby free radical probes of varying sizes can be diffused into the coal under various conditions. These probes can be detected and the environment surrounding the probes can be deduced by electron paramagnetic resonance (EPR) methods. To date, we have found that not only can the shape and size of the pores be determined, but that the size distribution varies from one bituminous coal seam to another, even for coal of the same rank, suggesting a different optimal catalyst should be used for each seam. The effect of oxygen on the coal samples during grinding has been studied; however, the free radical technique appears to be insensitive to the presence of oxygen effects. It is our goal to determine the structural differences between various bituminous coals. 9 references, 9 figures, 1 table.

Kispert, L.D.

1984-09-01T23:59:59.000Z

14

Petrographic investigation of River Gem Coal, Whitley County, eastern Kentucky Coal Field  

SciTech Connect (OSTI)

The River Gem coal of the Breathitt Formation (Middle Pennsylvanian) was studied at three sites in a surface mine in the Holly Hill quadrangle, Whitley County, Kentucky. The River Gem coal is correlative with the Lily and Manchester coals in neighboring Knox, Laurel, and Clay Counties, Kentucky, and the Clintwood coal in Pike County, Kentucky. At the northern site, a 14-cm rider is separated from the 92.5-cm seam by 22 cm of shale. At the two southern sites, the rider is missing. At the latter sites, the 10 cm thick top bench of the seam is separated from the lower 63 cm of the seam by a 14-cm bony lithotype not found at the northern site. The lower 63 cm of the seam in the south and the main seam in the north are characterized by moderate ash and sulfur percentages (4.4-6.8% ash, 1.4-2.3% total sulfur, 0.6-1.1% pyritic sulfur, 74-81% vitrinite, 23-32% Fe/sub 2/O/sub 3/, and 2.3-4.5% CaO). In contrast, the upper bench in the south and the rider have 18.7-27.0% ash, 8.8-11.4% total sulfur, 5.1-6.4% pyritic sulfur, 92.3-93.6% vitrinite, 45.7-57.8% Fe/sub 2/O/sub 3/ and 0.13-0.20% CaO. The bone has over 26% ash, 5.5% total sulfur, 3.2% pyritic sulfur, and 93.1% vitrinite. The overall similarity of the seam and rider characteristics between the north and south suggests that the southern bone is the lateral equivalent of the northern shale. The sulfide in the upper bench or rider and in the bone consists of fine (generally less than 10 ..mu..m), euhedral and framboidal pyrite with common massive pyrite. Massive pyrite appears as an overgrowth of fine pyrite in some places. Massive forms of marcasite, less abundant than pyrite, exhibit some evidence of developing later than the massive pyrite. A variety of < 2-..mu..m pyrite occurs as abundant, but isolated, unidimensional to tabular grains within corpocollinite, some of which is transitional to resinite.

Pollock, J.D.; Hower, J.C.

1987-09-01T23:59:59.000Z

15

Study of the properties of mine waste in the midwestern coal fields. Phase I report  

SciTech Connect (OSTI)

In an effort to assist the coal industry in complying with the applicable regulations, to design safe and environmentally acceptable disposal systems, and to encourage secondary use of coal mine waste, the US Department of Energy has initiated research programs to develop coal mine waste disposal and use technology. This study of the properties of mine wastes in the Midwestern coal fields has been limited to the waste materials obtained from underground coal mines and preparation plants attached to both underground and surface mines. The program has been divided into two phases. In Phase I, the 20 most important properties relevant to safe disposal, reclamation, underground disposal, and secondary uses have been identified. An inventory of the significant waste disposal sites in the Midwestern coal fields has been prepared. The site locations have been plotted on USGS maps. Estimates of coal production and coal mine waste production during the next 2 decades have been prepared and are presented in this report. Also, all available information obtained from a search of existing literature on physical and chemical properties, including analysis results of the general runoff from the refuse disposal areas, has been collected and is presented. In order to fill the gaps in information, 20 sites have been identified for drilling and sampling to determine the various physical and chemical properties. They have been selected on the basis of the distribution and quantity of waste at the existing locations (both abandoned and active), the future trends in production and likely locations of waste disposal areas, their geographical and geological distribution, and ease of accessibility for drilling and sampling.

None

1980-07-04T23:59:59.000Z

16

The Cherokee and Crawford County Coal Field With Analyses of the Coal  

E-Print Network [OSTI]

at $59.25 2370.00 One car 20# rails and spikes 921.22 1 #3 brass fitted pump 73.75 Railroad switch complete about 3 /4 mi, - 7450.00 Six 20# switches complete 135.00 Railroad right of way to line track - 1000,00 One well 856 ft . deep complete... and piped to engine - - - - - - - - - - 1400.00 Drain ditch 333.63 35 ft . of 24" tiling for ditch 32.00 86 tons of coal 129.75 Teaming 36.50 One 6f by 12" locomotive 25oo.00 1500 pit ties 4x6x5 275.00 50 white oak ties 6-6-8 22.50 One s±x$ engine...

Carpenter, C.B.; Brown, H.R.

1915-01-01T23:59:59.000Z

17

Static spherically symmetric black holes with scalar field  

E-Print Network [OSTI]

Static spherically symmetric black holes and particle like solutions with self interacting minimally coupled scalar field {\\phi} are analyzed. They are asymptotically flat or anti-de Sitter (AdS). We express them in terms of a single function {\\rho} which undergoes simple conditions. If {\\phi} is nontrivial the ADM mass M has to be positive. No-hair theorems are generalized to the AdS asymptotic. For both asymptotics the Killing horizon is nondegenerate and its radius cannot be bigger than 2M. Derivatives of {\\rho} at singularity determine properties of admissible potentials V({\\phi}) as regularity, boundedness and behaviour for maximal values of {\\phi}. Several classes of solutions with singular or nonsingular potentials are obtained. Their examples are presented in a form of plots.

J. Tafel

2013-06-16T23:59:59.000Z

18

Quasinormal frequencies of the Dirac field in the massless topological black hole  

E-Print Network [OSTI]

Motivated by the recent computations of the quasinormal frequencies of higher dimensional black holes we exactly calculate the quasinormal frequencies of the Dirac field propagating in D-dimensional (D > 4) massless topological black hole. From the exact values of the quasinormal frequencies for the fermion and boson fields we discuss whether the recently proposed bound on the relaxation time of a perturbed thermodynamical system is satisfied in D-dimensional massless topological black hole. Also we study the consequences of these results.

A. Lopez-Ortega

2010-06-25T23:59:59.000Z

19

Review of underground coal gasification field experiments at Hoe Creek  

SciTech Connect (OSTI)

LLNL has conducted three underground coal gasification experiments at the Hoe Creek site near Gillette, WY. Three different linking methods were used: explosive fracturing, reverse burning and directional drilling. Air was injected on all three experiments and a steam/oxygen mixture during 2 days of the second and most of the third experiment. Comparison of results show that the linking method didn't influence gas quality. The heat of combustion of the product gas was higher with steam/oxygen injection, mainly because of reduced inert diluent. Gas quality was generally independent of other operating parameters, but declined from its initial value over a period of time. This was due to heat loss to the wet overburden and extensive roof collapse in the second and third experiments.

Thorsness, C.B.; Creighton, J.R.

1983-01-01T23:59:59.000Z

20

Review of underground coal gasification field experiments at Hoe Creek  

SciTech Connect (OSTI)

In three underground coal gasification experiments at the Hoe Creek site near Gillette, WY, LLNL applied three different linking methods: explosive fracture, reverse burning, and directional drilling. Air was injected in all three experiments; a steam/oxygen mixture, during 2 days of the second and most of the third experiment. Comparison of results show that the type of linking method did not influence gas quality. The heat of combustion of the product gas was higher with steam/oxygen injection, mainly because of reduced inert diluent. Gas quality was generally independent of other operating parameters but declined from its initial value over a period of time because of heat loss to the wet overburden and extensive roof collapse in the second and third experiments.

Thorsness, C.B.; Creighton, J.R.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hole coal field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Steam tracer experiment at the Hoe Creek No. 3 underground coal gasification field test  

SciTech Connect (OSTI)

Water plays an important role in in-situ coal gasification. To better understand this role, we conducted a steam tracer test during the later stages of the Hoe Creek No. 3 underground coal gasification field test. Deuterium oxide was used as the tracer. This report describes the tracer test and the analysis of the data obtained. The analysis indicates that at Hoe Creek the injected steam interacts with a large volume of water as it passes through the underground system. We hypothesize that this water is undergoing continual reflux in the underground system, resulting in a tracer response typical of a well-stirred tank.

Thorsness, C.B.

1980-11-26T23:59:59.000Z

22

Characterizing asymptotically anti-de Sitter black holes with abundant stable gauge field hair  

E-Print Network [OSTI]

In the light of the "no-hair" conjecture, we revisit stable black holes in su(N) Einstein-Yang-Mills theory with a negative cosmological constant. These black holes are endowed with copious amounts of gauge field hair, and we address the question of whether these black holes can be uniquely characterized by their mass and a set of global non-Abelian charges defined far from the black hole. For the su(3) case, we present numerical evidence that stable black hole configurations are fixed by their mass and two non-Abelian charges. For general N, we argue that the mass and N-1 non-Abelian charges are sufficient to characterize large stable black holes, in keeping with the spirit of the "no-hair" conjecture, at least in the limit of very large magnitude cosmological constant and for a subspace containing stable black holes (and possibly some unstable ones as well).

Ben L. Shepherd; Elizabeth Winstanley

2012-06-25T23:59:59.000Z

23

Dissolved methane distributions and air-sea flux in the plume of a massive seep field, Coal Oil Point, California  

E-Print Network [OSTI]

Dissolved methane distributions and air-sea flux in the plume of a massive seep field, Coal Oil coastal ocean near Coal Oil Point, Santa Barbara Channel, California. Methane was quantified in the down current surface water at 79 stations in a 280 km2 study area. The methane plume spread over an area of $70

Washburn, Libe

24

A Mechanistic Model for CO2 Sequestration in Tiffany Coal Bed Methane Field  

SciTech Connect (OSTI)

The objective of this project is to develop mechanistic models specific to CO2 sequestration in BP's Tiffany coal bed methane (CBM) field. In this study, the original field model was modified to match the field performance of a 5-spot pattern in the northern part of the Tiffany Field where BP plans to perform a micro-pilot test. The modified model consists of one high-permeability fast layer sandwiched between two low-permeability slow layers. In this mechanistic model, the fast layer represents well-cleated and fractured coal from all geological layers while the slow layers represent coal with little or no fracture development from the same geological layers. The model successfully matched the performance of the 5-spot pattern during the enhanced recovery period. However, in order to match nitrogen breakthrough times and nitrogen cut the vertical transmissibility between layers had to be set to zero. During gas injection, nitrogen was allowed to enter all three layers, not just the high-permeability fast layer. However, because the permeabilities of the slow layers were low and there is no communication between the fast and the slow layers, most of the injected nitrogen entered the high-permeability fast layer. This suggests that the future gas injection and CO2 sequestration may be restricted to only one third of the total available pay.

Liang, J.; Raterman, K.T.; Robertson, E.P.

2003-05-01T23:59:59.000Z

25

Lawrence Livermore National Laboratory underground coal gasification data base. [US DOE-supported field tests; data  

SciTech Connect (OSTI)

The Department of Energy has sponsored a number of field projects to determine the feasibility of converting the nation's vast coal reserves into a clean efficient energy source via underground coal gasification (UCG). Due to these tests, a significant data base of process information has developed covering a range of coal seams (flat subbituminous, deep flat bituminous and steeply dipping subbituminous) and processing techniques. A summary of all DOE-sponsored tests to data is shown. The development of UCG on a commercial scale requires involvement from both the public and private sectors. However, without detailed process information, accurate assessments of the commercial viability of UCG cannot be determined. To help overcome this problem the DOE has directed the Lawrence Livermore National Laboratory (LLNL) to develop a UCG data base containing raw and reduced process data from all DOE-sponsored field tests. It is our intent to make the data base available upon request to interested parties, to help them assess the true potential of UCG.

Cena, R. J.; Thorsness, C. B.

1981-08-21T23:59:59.000Z

26

Dynamics of Scalar Fields in the Background of Rotating Black Holes  

E-Print Network [OSTI]

A numerical study of the evolution of a massless scalar field in the background of rotating black holes is presented. First, solutions to the wave equation are obtained for slowly rotating black holes. In this approximation, the background geometry is treated as a perturbed Schwarzschild spacetime with the angular momentum per unit mass playing the role of a perturbative parameter. To first order in the angular momentum of the black hole, the scalar wave equation yields two coupled one-dimensional evolution equations for a function representing the scalar field in the Schwarzschild background and a second field that accounts for the rotation. Solutions to the wave equation are also obtained for rapidly rotating black holes. In this case, the wave equation does not admit complete separation of variables and yields a two-dimensional evolution equation. The study shows that, for rotating black holes, the late time dynamics of a massless scalar field exhibit the same power-law behavior as in the case of a Schwarzschild background independently of the angular momentum of the black hole.

W. Krivan; P. Laguna; P. Papadopoulos

1996-06-04T23:59:59.000Z

27

Controls of coal fabric on coalbed gas production and compositional shift in both field production and canister desorption tests  

SciTech Connect (OSTI)

The production rates of coalbed gas wells commonly vary significantly, even in the same field with similar reservoir permeability and gas content. The compositional variation in produced gas is also not everywhere predictable, although in most fields produced gas becomes progressively enriched in CO, through the production life of a reservoir, such as parts of the San Juan basin. In contrast, it is generally observed that the ratio of CO{sub 2}:CH{sub 4} declines with time during field and laboratory desorption testing of coal cores. In this study, we investigate numerically the importance of coal fabric, namely cleat spacing and aperture width, on the performance of coalbed gas wells and gas compositional shifts during production. Because of the cubic relationship between fracture permeability and fracture aperture width (and thus fracture porosity) for a given cleat permeability, the production profile of coal seams varies depending on whether the permeability is distributed among closely spaced fractures (cleat) with narrower apertures or more widely spaced fractures (cleat) with wider apertures. There is a lower fracture porosity for coal with widely spaced fractures than for coal with closely spaced fractures. Therefore, the relative permeability to gas increases more rapidly for coals with more widely spaced cleats as less dewatering from fractures is required, assuming that the fractures are initially water saturated. The enrichment of CO{sub 2} in the production gas with time occurs because of the stronger adsorption of coals for CO{sub 2} than CH{sub 4}. However, during desorption of coal cores, CO{sub 2} desorbs more rapidly than methane because desorption rate is governed more by diffusion than by sorption affinity, and CO{sub 2} has much higher effective diffusivity in microporous coals than CH{sub 4}.

Cui, X.J.; Bustin, R.M. [University of British Columbia, Vancouver, BC (Canada)

2006-03-15T23:59:59.000Z

28

Thin-shell wormholes from black holes with dilaton and monopole fields  

E-Print Network [OSTI]

We provide a new type of thin-shell wormhole from the black holes with dilaton and monopole fields. The dilaton and monopole that built the black holes may supply fuel to construct the wormholes. Several characteristics of this thin-shell wormhole have been discussed. Finally, we discuss the stability of the thin-shell wormholes with a "phantom-like" equation of state for the exotic matter at the throat.

F. Rahaman; A. Banerjee

2011-09-08T23:59:59.000Z

29

The role of combustion diagnostics in coal quality impact and NO{sub x} emissions field test programs  

SciTech Connect (OSTI)

Many utilities are examining low sulfur coal or coal blending options to comply with the Clean Air Act Amendment SO{sub 2} emission limits. Test burns have been conducted with the more promising candidate coals to characterize the potential impact of a change in coal quality on boiler operation and performance. Utilities are also under considerable pressure to evaluate NO{sub x} control options and develop a compliance plan to meet strict NO{sub x} regulations, particularly in high population density metropolitan areas on the Eastern seaboard. Field test programs have been conducted to characterize baseline NO{sub x} emissions, evaluate the NO{sub x} reduction potential of combustion modifications, and assess the potential of combustion tuning as an alternative to burner replacement. Coal quality impacts (slagging, fouling, heat absorption, ash removal) and NO{sub x} emissions are both strongly dependent upon the coal combustion process and site-specific boiler firing practices. Non-uniform combustion in the burner region can result in adverse ash deposition characteristics, carbon carryover problems, high furnace exit gas temperatures, and NO{sub x}emission characteristics that are not representative of the coal or the combustion equipment. Advanced combustion diagnostic test procedures have been developed to evaluate and improve burner zone combustion uniformity, even in cases where the coal flow to the individual burners may be non-uniform. The paper outlines a very practical solving approach to identifying combustion related problems that affect ash deposition and NO{sub x} emissions. The benefits of using advanced diagnostic instrumentation to identify problems and tune combustion conditions is illustrated using test data from recent quality field test programs.

Thompson, R.E. [Fossil Energy Research Corp., Laguna Hills, CA (United States); Dyas, B. [New England Power Company, Westborough, MA (United States)

1995-03-01T23:59:59.000Z

30

A Mechanistic Model for CO2 Sequestration in Tiffany Coal Bed Methane Field  

SciTech Connect (OSTI)

The objective of this project is to develop mechanistic models specific to CO2 sequestration in BP’s Tiffany coal bed methane (CBM) field. In this study, the original field model was modified to match the field performance of a 5-spot pattern in the northern part of the Tiffany Field where BP plans to perform a micro-pilot test. The modified model consists of one high-permeability fast layer sandwiched between two low-permeability slow layers. In this mechanistic model, the fast layer represents well-cleated and fractured coal from all geological layers while the slow layers represent coal with little or no fracture development from the same geological layers. The model successfully matched the performance of the 5-spot pattern during the enhanced recovery period (N2 injection). However, in order to match nitrogen breakthrough times and nitrogen cut the vertical transmissibility between layers had to be set to zero. During gas injection, nitrogen was allowed to enter all three layers, not just the high-permeability fast layer. However, because the permeabilities of the slow layers were low and there is no communication between the fast and the slow layers, most of the injected nitrogen entered the high-permeability fast layer. This suggests that the future gas injection and CO2 sequestration may be restricted to only one third of the total available pay. For future gas injections, the modified model predicted early CO2 breakthrough with high CO2 cut. This suggests that the actual CO2 sequestration capability of the Tiffany Field might not be as high as originally expected. This is a direct consequence of the reduced available pay in the modified model. The modified model also predicted early inert gas (N2 plus CO2) breakthrough and high inert gas cut during future gas injections. If this is confirmed in the pilot test, the high volume of inert gas produced could overwhelm the reprocessing capability resulting in early termination of the project.

Jenn-Tai Liang; Kevin T. Raterman; Eric P. Robertson

2003-05-01T23:59:59.000Z

31

Effects of black hole's gravitational field on the luminosity of a star during close encounter  

E-Print Network [OSTI]

To complement hydrodynamic studies of the tidal disruption of the star by a massive black hole, we present the study of stellar luminosity and its variations, produced by the strong gravitational field of the black hole during a close encounter. By simulating the relativistically moving star and its emitted light and taking into account general relativistic effects on particle and light trajectories, our results show that the black hole's gravity alone induces apparent stellar luminosity variations on typical timescales of a few r_g/c (=5 sec m_bh/10^6 M_\\odot) to a few 100 r_g/c (\\sim 10 min m_bh/10^6 M_\\odot), where r_g=Gm_bh/c^2. We discern different cases with respect to the strength of tidal interaction and focus on two: a) a star encountering a giant black hole traces space-time almost as a point particle, so that the apparent luminosity variations are dominated by clearly recognizable general relativistic effects and b) in a close encounter of a star with a black hole of similar size the stellar debris is spread about the black hole by processes where hydrodynamics plays an important role. We discuss limitations and results of our approach.

Andreja Gomboc; Andrej Cadez

2005-02-24T23:59:59.000Z

32

Hawking radiation for a scalar field conformally coupled to an AdS black hole  

E-Print Network [OSTI]

The decomposition in normal modes of a scalar field conformally coupled to an AdS black hole leads to a Heun equation with simple coefficients thanks to conformal invariance. By applying the Damour-Ruffini method we can relate the critical exponent of the radial part at the horizon surface to the Hawking radiation of scalar particles.

P. Valtancoli

2015-02-05T23:59:59.000Z

33

Thermodynamics of the Three-dimensional Black Hole with a Coulomb-like Field  

E-Print Network [OSTI]

In this paper, we study the thermodynamical properties of the (2+1)dimensional black hole with a Coulomb-like electric field and the differential form of the first law of thermodynamics is derived considering a virtual displacement of its event horizon. This approach shows that it is possible to give a thermodynamical interpretation to the field equations near the horizon. The Lambda=0 solution is studied and its interesting thermodynamical properties are commented.

Alexis Larranaga; Luz Angela Garcia

2008-11-21T23:59:59.000Z

34

Horndeski meets McVittie: A scalar field theory for accretion onto cosmological black holes  

E-Print Network [OSTI]

We show that the generalized McVittie spacetime, which represents a black hole with time-dependent mass in an expanding universe, is an exact solution of a subclass of the Horndeski family of actions. The heat-flow term responsible for the energy transfer between the black hole and the cosmological background is generated by the higher-order kinetic gravity braiding term, which generalizes the cuscuton action that yields McVittie with constant mass as a solution. Finally, we show that this generalization can be understood in terms of a duality realized by a disformal transformation, connecting the cuscuton field theory to an extension of the Horndeski action which does not propagate any scalar degrees of freedom. Our finding opens a novel window into studies of non-trivial interactions between dark energy/modified gravity theories and astrophysical black holes.

Niayesh Afshordi; Michele Fontanini; Daniel C. Guariento

2014-08-24T23:59:59.000Z

35

Dynamics of Particles Around a Schwarzschild-like Black Hole in the Presence of Quintessence and Magnetic Field  

E-Print Network [OSTI]

We investigate the dynamics of a neutral and a charged particle around a static and spherically symmetric black hole in the presence of quintessence matter and external magnetic field. We explore the conditions under which the particle moving around the black hole could escape to infinity after colliding with another particle. The innermost stable circular orbit (ISCO) for the particles are studied in detail. Mainly the dependence of ISCO on dark energy and on the presence of external magnetic field in the vicinity of black hole is discussed. By using the Lyapunov exponent, we compare the stabilities of the orbits of the particles in the presence and absence of dark energy and magnetic field. The expressions for the center of mass energies of the colliding particles near the horizon of the black hole are derived. The effective force on the particles due to dark energy and magnetic field in the vicinity of black hole is also discussed.

Mubasher Jamil; Saqib Hussain; Bushra Majeed

2015-01-21T23:59:59.000Z

36

Black holes and fundamental fields: hair, kicks and a gravitational "Magnus" effect  

E-Print Network [OSTI]

Scalar fields pervade theoretical physics and are a fundamental ingredient to solve the dark matter problem, to realize the Peccei-Quinn mechanism in QCD or the string-axiverse scenario. They are also a useful proxy for more complex matter interactions, such as accretion disks or matter in extreme conditions. Here, we study the collision between scalar "clouds" and rotating black holes. For the first time we are able to compare analytic estimates and strong field, nonlinear numerical calculations for this problem. As the black hole pierces through the cloud it accretes according to the Bondi-Hoyle prediction, but is deflected through a purely kinematic gravitational "anti-Magnus" effect, which we predict to be present also during the interaction of black holes with accretion disks. After the interaction is over, we find large recoil velocities in the transverse direction. The end-state of the process belongs to the vacuum Kerr family if the scalar is massless, but can be a hairy black hole when the fundamental scalar is massive.

Hirotada Okawa; Vitor Cardoso

2014-05-19T23:59:59.000Z

37

Quasinormal frequencies of the Dirac field in a D-dimensional Lifshitz black hole  

E-Print Network [OSTI]

In a D-dimensional Lifshitz black hole we calculate exactly the quasinormal frequencies of a test Dirac field in the massless and zero angular eigenvalue limits. These results are an extension of the previous calculations in which the quasinormal frequencies of the Dirac field are determined, but in four dimensions. We discuss the four-dimensional limit of our expressions for the quasinormal frequencies and compare with the previous results. We also determine whether the Dirac field has unstable modes in the D-dimensional Lifshitz spacetime.

A. Lopez-Ortega

2014-07-03T23:59:59.000Z

38

String loops in the field of braneworld spherically symmetric black holes and naked singularities  

SciTech Connect (OSTI)

We study motion of current-carrying string loops in the field of braneworld spherically symmetric black holes and naked singularities. The spacetime is described by the Reissner-Nordström geometry with tidal charge b reflecting the non-local tidal effects coming from the external dimension; both positive and negative values of the spacetime parameter b are considered. We restrict attention to the axisymmetric motion of string loops when the motion can be fully governed by an appropriately defined effective potential related to the energy and angular momentum of the string loops. In dependence on these two constants of the motion, the string loops can be captured, trapped, or can escape to infinity. In close vicinity of stable equilibrium points at the centre of trapped states the motion is regular. We describe how it is transformed to chaotic motion with growing energy of the string loop. In the field of naked singularities the trapped states located off the equatorial plane of the system exist and trajectories unable to cross the equatorial plane occur, contrary to the trajectories in the field of black holes where crossing the equatorial plane is always admitted. We concentrate our attention to the so called transmutation effect when the string loops are accelerated in the deep gravitational field near the black hole or naked singularity by transforming the oscillatory energy to the energy of the transitional motion. We demonstrate that the influence of the tidal charge can be substantial especially in the naked singularity spacetimes with b > 1 where the acceleration to ultrarelativistic velocities with Lorentz factor ? ? 100 can be reached, being more than one order higher in comparison with those obtained in the black hole spacetimes.

Stuchlík, Z.; Kološ, M., E-mail: zdenek.stuchlik@fpf.slu.cz, E-mail: martin.kolos@fpf.slu.cz [Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezru?ovo nám.13, CZ-74601 Opava (Czech Republic)

2012-10-01T23:59:59.000Z

39

Absorption of a massive scalar field by a charged black hole  

E-Print Network [OSTI]

We calculate the absorption cross section of a massive neutral scalar field impinging upon a Reissner-Nordstr\\"om black hole. First, we derive key approximations in the high- and low-frequency regimes. Next, we develop a numerical method to compute the cross section at intermediate frequencies, and present a selection of results. Finally, we draw together our complementary approaches to give a quantitative full-spectrum description of absorption.

Carolina L. Benone; Ednilton S. de Oliveira; Sam R. Dolan; Luís C. B. Crispino

2014-07-15T23:59:59.000Z

40

Coal systems analysis  

SciTech Connect (OSTI)

This collection of papers provides an introduction to the concept of coal systems analysis and contains examples of how coal systems analysis can be used to understand, characterize, and evaluate coal and coal gas resources. Chapter are: Coal systems analysis: A new approach to the understanding of coal formation, coal quality and environmental considerations, and coal as a source rock for hydrocarbons by Peter D. Warwick. Appalachian coal assessment: Defining the coal systems of the Appalachian Basin by Robert C. Milici. Subtle structural influences on coal thickness and distribution: Examples from the Lower Broas-Stockton coal (Middle Pennsylvanian), Eastern Kentucky Coal Field, USA by Stephen F. Greb, Cortland F. Eble, and J.C. Hower. Palynology in coal systems analysis The key to floras, climate, and stratigraphy of coal-forming environments by Douglas J. Nichols. A comparison of late Paleocene and late Eocene lignite depositional systems using palynology, upper Wilcox and upper Jackson Groups, east-central Texas by Jennifer M.K. O'Keefe, Recep H. Sancay, Anne L. Raymond, and Thomas E. Yancey. New insights on the hydrocarbon system of the Fruitland Formation coal beds, northern San Juan Basin, Colorado and New Mexico, USA by W.C. Riese, William L. Pelzmann, and Glen T. Snyder.

Warwick, P.D. (ed.)

2005-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hole coal field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DOE Underground-Coal-Conversion-Program field-test activities for 1979 and 1980. [Pricetown 1, Hoe Creek 3, Hanna IV, and SDB 1  

SciTech Connect (OSTI)

Under the US Department of Energy's Underground-Coal-Conversion program, four field tests were completed in 1979 and preparations were begun in 1980 for two additional field tests to be operated in 1981. The Laramie Energy Technology Center (LETC) and Sandia National Laboratories (SNL) completed Hanna IV, an air gasification test in Wyoming subbituminous coal. The Morgantown Energy Technology Center (METC) completed Pricetown 1, an air gasification test in West Virginia bituminous coal. Lawrence Livermore National Laboratory (LLNL) completed Hoe Creek 3, a steam-oxygen gasification test in Wyoming subbituminous coal. Gulf Research and Development Co. completed Steeply Dipping Beds (SDB) Test 1, primarily an air gasification test in Wyoming subbituminous coal and the first SDB test in the US. In 1980, Gulf R and D Co. began preparation of SDB Test 2, scheduled for operation in the fall of 1981. The DOE project teams at LETC, METC, LLNL, and SNL, in association with the Washington Irrigation and Development Co. (WIDCo), Washington Water Power (WWP), and the State of Washington, are preparing a field test site in the Centralia-Chehalis coal district of Washington. A series of large coal block tests will be completed prior to the field test, scheduled for operation in 1982 or 1983. This field test will utilize a directionally drilled link and steam-oxygen gasification system. This paper summarizes the results of the four recently completed field tests and the plans for additional tests.

Bartke, T.C.

1983-08-01T23:59:59.000Z

42

Phase 2 and 3 Slim Hole Drilling and Testing at the Lake City, California Geothermal Field  

SciTech Connect (OSTI)

During Phases 2 and 3 of the Lake City GRED II project two slim holes were cored to depths of 1728 and 4727 ft. Injection and production tests with temperature and pressure logging were performed on the OH-1 and LCSH-5 core holes. OH-1 was permanently modified by cementing an NQ tubing string in place below a depth of 947 ft. The LCSH-1a hole was drilled in Quaternary blue clay to a depth of 1727 ft and reached a temperature of 193 oF at a depth of 1649 ft. This hole failed to find evidence of a shallow geothermal system east of the Mud Volcano but the conductive temperature profile indicates temperatures near 325 oF could be present below depth of 4000 ft. The LCSH-5 hole was drilled to a depth of 4727 ft and encountered a significant shallow permeability between depths of 1443 and 1923 ft and below 3955 ft. LCSH-5 drilled impermeable Quaternary fanglomerate to a depth of 1270 ft. Below 1270 ft the rocks consist primarily of Tertiary sedimentary rocks. The most significant formation deep in LCSH-5 appears to be a series of poikoilitic mafic lava flows below a depth of 4244 ft that host the major deep permeable fracture encountered. The maximum static temperature deep in LCSH-5 is 323 oF and the maximum flowing temperature is 329 oF. This hole extended the known length of the geothermal system by ľ of a mile toward the north and is located over ˝ mile north of the northernmost hot spring. The OH-1 hole was briefly flow tested prior to cementing the NQ rods in place. This flow test confirmed the zone at 947 ft is the dominant permeability in the hole. The waters produced during testing of OH-1 and LCSH-5 are generally intermediate in character between the deep geothermal water produced by the Phipps #2 well and the thermal springs. Geothermometers applied to deeper fluids tend to predict higher subsurface temperatures with the maximum being 382 oF from the Phipps #2 well. The Lake City geothermal system can be viewed as having shallow (elevation > 4000 ft and temperatures of 270 to 310 oF), intermediate (elevation 2800 to 3700 ft and temperatures 270 to 320 oF ) and deep (elevations < 1000 ft and temperatures 323 to 337 oF) components. In the south part of the field, near Phipps #2 the shallow and deep components are present. In the central part of the field, near OH-1 the shallow and intermediate components are present and presumably the deep component is also present. In the north part of the field, the intermediate and deep components are present. Most or all of the fractures in the core have dips between 45 degrees and vertical and no strong stratigraphic control on the resource has yet been demonstrated. Conceptually, the Lake City geothermal resource seems to be located along the north-south trending range front in a relatively wide zone of fractured rock. The individual fractures do not seem to be associated with any readily identifiable fault. In fact, no major hydraulically conductive faults were identified by the core drilling.

Dick Benoit; David Blackwell; Joe Moore; Colin Goranson

2005-10-27T23:59:59.000Z

43

Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California  

E-Print Network [OSTI]

the subsurface geology and the gas bubble (with oil) plumesgeology and gas-phase (methane) seepage for the Coal Oilwith offshore oil production. Geology 27:1047–1050 Shindell

Leifer, Ira; Kamerling, Marc J.; Luyendyk, Bruce P.; Wilson, Douglas S.

2010-01-01T23:59:59.000Z

44

General relativistic simulations of black hole-neutron star mergers: Effects of magnetic fields  

E-Print Network [OSTI]

As a neutron star (NS) is tidally disrupted by a black hole (BH) companion at the end of a BH-NS binary inspiral, its magnetic fields will be stretched and amplified. If sufficiently strong, these magnetic fields may impact the gravitational waveforms, merger evolution and mass of the remnant disk. Formation of highly-collimated magnetic field lines in the disk+spinning BH remnant may launch relativistic jets, providing the engine for a short-hard GRB. We analyze this scenario through fully general relativistic, magnetohydrodynamic (GRMHD) BHNS simulations from inspiral through merger and disk formation. Different initial magnetic field configurations and strengths are chosen for the NS interior for both nonspinning and moderately spinning (a/M=0.75) BHs aligned with the orbital angular momentum. Only strong interior (Bmax~10^17 G) initial magnetic fields in the NS significantly influence merger dynamics, enhancing the remnant disk mass by 100% and 40% in the nonspinning and spinning BH cases, respectively. However, detecting the imprint of even a strong magnetic field may be challenging for Advanced LIGO. Though there is no evidence of mass outflows or magnetic field collimation during the preliminary simulations we have performed, higher resolution, coupled with longer disk evolutions and different initial magnetic field configurations, may be required to definitively assess the possibility of BHNS binaries as short-hard GRB progenitors.

Zachariah B. Etienne; Yuk Tung Liu; Vasileios Paschalidis; Stuart L. Shapiro

2012-05-15T23:59:59.000Z

45

Exciton Bose condensation : the ground state of an electron-hole gas I. Mean field description of a simplified model  

E-Print Network [OSTI]

1069 Exciton Bose condensation : the ground state of an electron-hole gas I. Mean field description dégénérées. Nous étudions la condensation de Bose de ce système en fonction de la densité, négligeant dans-hole gas in a simple model semiconductor, with direct gap and isotropic, non degenerate bands. We study

Boyer, Edmond

46

Shrinkage and Swelling of Coal Induced by Desorption and Sorption of Fluids: Theoretical Model and Interpretation of a Field Project  

SciTech Connect (OSTI)

Geologic sequestration in deep unmineable coal seams and enhanced coalbed methane production is a promising choice, economically and environmentally, to reduce anthropogenic gases such as carbon dioxide in the atmosphere. Unmineable coal seams are typically known to adsorb large amounts of carbon dioxide in comparison to the sizeable amounts of sorbed methane, which raises the potential for large scale sequestration projects. During the process of sequestration, carbon dioxide is injected into the coalbed and desorbed methane is produced. The coal matrix is believed to shrink when a gas is desorbed and swell when a gas is sorbed, sometimes causing profound changes in the cleat porosity and permeability of the coal seam. These changes may have significant impact on the reservoir performance. Therefore, it is necessary to understand the combined influence of swelling and shrinkage, and geomechanical properties including elastic modulus, cleat porosity, and permeability of the reservoir. The present paper deals with the influence of swelling and shrinkage on the reservoir performance, and the geomechanical response of the reservoir system during the process of geologic sequestration of carbon dioxide and enhanced coalbed methane production in an actual field project located in northern New Mexico. A three-dimensional swelling and shrinkage model was developed and implemented into an existing reservoir model to understand the influence of geomechanical parameters, as well as swelling and shrinkage properties, on the reservoir performance. Numerical results obtained from the modified simulator were compared to available measured values from that site and previous studies. Results show that swelling and shrinkage, and the combination of geomechanical and operational parameters, have a significant influence on the performance of the reservoir system.

Siriwardane, H.J.; Gondle, R.K.; Smith, D.H.

2009-01-01T23:59:59.000Z

47

Field Theoretic Study of Bilayer Membrane Fusion: II. Mechanism of a Stalk-Hole Complex  

E-Print Network [OSTI]

We use self-consistent field theory to determine structural and energetic properties of intermediates and transition states involved in bilayer membrane fusion. In particular, we extend our original calculations from those of the standard hemifusion mechanism, which was studied in detail in the first paper of this series, to consider a possible alternative to it. This mechanism involves non-axial stalk expansion, in contrast to the axially symmetric evolution postulated in the classical mechanism. Elongation of the initial stalk facilitates the nucleation of holes and leads to destabilization of the fusing membranes via the formation of a stalk-hole complex. We study properties of this complex in detail, and show how transient leakage during fusion, previously predicted and recently observed in experiment, should vary with system architecture and tension. We also show that the barrier to fusion in the alternative mechanism is lower than that of the standard mechanism by a few $k_BT$ over most of the relevant region of system parameters, so that this alternative mechanism is a viable alternative to the standard pathway.

Kirill Katsov; Marcus Mueller; Michael Schick

2005-07-19T23:59:59.000Z

48

Particle Dynamics around Riessner-Nordström Black Hole with Magnetic Field  

E-Print Network [OSTI]

We investigate the dynamics of a neutral and a charged particle around the Reissner-Nordstr\\"om (RN) black hole immersed in magnetic field. We are interested to explore the conditions under which the moving charged particle can escape to infinity after collision with another neutral particle or a photon in the vicinity of the BH. We have calculated the expressions of the escape velocity. Further we have studied that how does the presence of magnetic field in the vicinity of BH, effect the motion of the orbiting particle. There are more than one stable regions if we consider the magnetic field in the accretion disk of BH so the stability of ISCO increases in the presence of magnetic field. We have also discussed the Lyapunov exponent in detail. Time-like geodesics of the moving particle are also studied. It is observed that the particle goes closer to the extremal RN-BH as compared to the case when it is moving around RN-BH.

Bushra Majeed; Saqib Hussain; Mubasher Jamil

2014-11-18T23:59:59.000Z

49

Charged massive particle at rest in the field of a Reissner-Nordström black hole. II. Analysis of the field lines and the electric Meissner effect  

E-Print Network [OSTI]

The properties of the electric field of a two-body system consisting of a Reissner-Nordstr\\"om black hole and a charged massive particle at rest have recently been analyzed in the framework of first order perturbation theory following the standard approach of Regge, Wheeler and Zerilli. In the present paper we complete this analysis by numerically constructing and discussing the lines of force of the "effective" electric field of the sole particle with the subtraction of the dominant contribution of the black hole. We also give the total field due to the black hole and the particle. As the black hole becomes extreme an effect analogous to the Meissner effect arises for the electric field, with the "effective field" lines of the point charge being expelled by the outer horizon of the black hole. This effect existing at the level of test field approximation, i.e. by neglecting the backreaction on the background metric and electromagnetic field due to the particle's mass and charge, is here found also at the complete perturbative level. We point out analogies with similar considerations for magnetic fields by Bi{\\v c}\\'ak and Dvo{\\v r}\\'ak. We also explicitly show that the linearization of the recently obtained Belinski-Alekseev exact solution coincides with our solution in the Regge-Wheeler gauge. Our solution thus represents a "bridge" between the test field solution, which neglects all the feedback terms, and the exact two-body solution, which takes into account all the non-linearity of the interaction.

Donato Bini; Andrea Geralico; Remo Ruffini

2014-08-20T23:59:59.000Z

50

Asymptotically locally AdS and flat black holes in the presence of an electric field in the Horndeski scenario  

E-Print Network [OSTI]

Asymptotically locally AdS and asymptotically flat black hole solutions are found for a particular case of the Horndeski action. The action contains the Einstein-Hilbert term with a cosmological constant, a real scalar field with a non minimal kinetic coupling given by the Einstein tensor, the minimal kinetic coupling and the Maxwell term. There is no scalar potential. The solution has two integration constants related with the mass and the electric charge. The solution is given for all dimensions. A new class of asymptotically locally flat spherically symmetric black holes is found when the minimal kinetic coupling vanishes and the cosmological constant is present. In this case we get a solution which represents an electric Universe. The electric field at infinity is only supported by $\\Lambda$. When the cosmological constant vanishes the black hole is asymptotically flat.

Adolfo Cisterna; Cristián Erices

2014-03-03T23:59:59.000Z

51

Early maturation processes in coal. Part 2: Reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures  

E-Print Network [OSTI]

for each source rock. This allowed the bulk rate of oil and gas generation for a source rockEarly maturation processes in coal. Part 2: Reactive dynamics simulations using the ReaxFF reactive

Goddard III, William A.

52

Acceleration of electric current-carrying string loop near a Schwarzschild black hole immersed in an asymptotically uniform magnetic field  

E-Print Network [OSTI]

We study the acceleration of an electric current-carrying and axially-symmetric string loop initially oscillating in the vicinity of a Schwarzschild black hole embedded in an external asymptotically uniform magnetic field. The plane of the string loop is orthogonal to the magnetic field lines and the acceleration of the string loop occurs due to the transmutation effect turning in the deep gravitational field the internal energy of the oscillating strings to the energy of their translational motion along the axis given by the symmetry of the black hole spacetime and the magnetic field. We restrict our attention to the motion of string loop with energy high enough, when it can overcome the gravitational attraction and escape to infinity. We demonstrate that for the current-carrying string loop the transmutation effect is enhanced by the contribution of the interaction between the electric current of the string loop and the external magnetic field and we give conditions that have to be fulfilled for an efficient acceleration. The Schwarzschild black hole combined with the strong external magnetic field can accelerate the current-carrying string loop up to the velocities close to the speed of light $v \\sim c$. Therefore, the string loop transmutation effect can potentially well serve as an explanation for acceleration of highly relativistic jets observed in microquasars and active galactic nuclei.

Arman Tursunov; Martin Kološ; Zden?k Stuchlík; Bobomurat Ahmedov

2014-09-18T23:59:59.000Z

53

Groundwater restoration field test at the Hoe Creek underground coal gasification site  

SciTech Connect (OSTI)

Three underground coal gasification burns were conducted at the Hoe Creek Site in the Powder River Basin. Some contaminants were released in the groundwater. The Department of Energy (DOE) analyzed the water from a network of wells. Two million gallons of groundwater were pumped from wells adjacent to the Hoe Creek II underground coal gasification cavity, passed through filters and carbon adsorbers, and reinjected into the cavity. Phenol was the target compound of the water treatment system. The phenol concentration pumped from well WS-10 decreased from 974 parts per billion (ppB) when treatment began on July 2, 1987, to about 200 ppB when treatment ceased on August 29, 1987. Phenol concentrations pumped from well WS-22 fluctuated during the tests, but they decreased to the 150 to 200 ppB range by the time treatment was terminated. The phenol concentration of treated water reinjected into the Hoe Creek II cavity was below detectable limits (less than 20 ppB). Pumping rates were about 18 gallons per minute (gpm) from well WS-10 and 6 to 8 gpm from well WS-22. Hoe Creek is located approximately 20 miles southwest of Gillette, Wyoming. 12 refs., 5 figs., 8 tabs.

Nordin, J.S.; Barrash, W.; Nolan, B.T.

1988-02-01T23:59:59.000Z

54

A study of production/injection data from slim holes and production wells at the Oguni Geothermal Field, Japan  

SciTech Connect (OSTI)

Production and injection data from slim holes and large-diameter wells at the Oguni Geothermal Field, Japan, were examined in an effort to establish relationships (1) between productivity of large-diameter wells and slim holes, (2) between injectivity and productivity indices and (3) between productivity index and borehole diameter. The production data from Oguni boreholes imply that the mass production from large-diameter wells may be estimated based on data from slim holes. Test data from both large- and small-diameter boreholes indicate that to first order the productivity and the injectivity indices are equal. Somewhat surprisingly, the productivity index was found to be a strong function of borehole diameter; the cause for this phenomenon is not understood at this time.

Garg, S.K.; Combs, J.; Abe, M.

1996-03-01T23:59:59.000Z

55

The Role of Magnetic Field Dissipation in the Black Hole Candidate Sgr A*  

E-Print Network [OSTI]

The compact, nonthermal radio source Sgr A* at the Galactic Center appears to be coincident with a 2.6 million solar mass point-like object. Its energy source may be the release of gravitational energy as gas from the interstellar medium descends into its potential well. Simple attempts at calculating the spectrum and flux based on this picture have come close to the observations, yet have had difficulty in accounting for the low efficiency in this source. There now appear to be two reasons for this low conversion rate: (1) the plasma separates into two temperatures, with the protons attaining a significantly higher temperature than that of the radiating electrons, and (2) the magnetic field, B, is sub-equipartition, which reduces the magnetic bremsstrahlung emissivity, and therefore the overall power of Sgr A*. We investigate the latter with improvement over what has been attempted before: rather than calculating B based on a presumed model, we instead infer its distribution with radius empirically with the requirement that the resulting spectrum matches the observations. Our ansatz for B(r) is motivated in part by earlier calculations of the expected magnetic dissipation rate due to reconnection in a compressed flow. We find reasonable agreement with the observed spectrum of Sgr A* as long as its distribution consists of 3 primary components: an outer equipartition field, a roughly constant field at intermediate radii (~1000 Schwarzschild radii), and an inner dynamo (more or less within the last stable orbit for a non-rotating black hole) which increases B to about 100 Gauss. The latter component accounts for the observed sub-millimiter hump in this source.

Robert F. Coker; Fulvio Melia

1999-09-24T23:59:59.000Z

56

Stability of Gauss-Bonnet black holes in anti-de Sitter space-time against scalar field condensation  

SciTech Connect (OSTI)

We study the stability of static, hyperbolic Gauss-Bonnet black holes in (4+1)-dimensional anti-de Sitter (AdS) space-time against the formation of scalar hair. Close to extremality the black holes possess a near-horizon topology of AdS{sub 2}xH{sup 3} such that within a certain range of the scalar field mass one would expect that they become unstable to the condensation of an uncharged scalar field. We confirm this numerically and observe that there exists a family of hairy black hole solutions labeled by the number of nodes of the scalar field function. We construct explicit examples of solutions with a scalar field that possesses zero nodes, one node, and two nodes, respectively, and show that the solutions with nodes persist in the limit of Einstein gravity, i.e. for vanishing Gauss-Bonnet coupling. We observe that the interval of the mass for which scalar field condensation appears decreases with increasing Gauss-Bonnet coupling and/or with increasing node number.

Brihaye, Yves [Physique-Mathematique, Universite de Mons-Hainaut, 7000 Mons (Belgium); Hartmann, Betti [School of Engineering and Science, Jacobs University Bremen, 28759 Bremen (Germany)

2011-10-15T23:59:59.000Z

57

Underground coal gasification: Development of theory, laboratory experimentation, interpretation, and correlation with the Hanna field tests: Final report  

SciTech Connect (OSTI)

The following report is a description of a 7 year effort to develop a theoretical understanding of the underground coal gasification process. The approach used is one of the mathematical model development from known chemical and principles, simplification of the models to isolate important effects, and through validation of models to isolate important effects, and through validation of models with laboratory experiments and field test data. Chapter I contains only introductory material. Chapter II describes the development of two models for reverse combustion: a combustion model and a linearized model for combustion front instability. Both models are required for realistic field predictions. Chapter III contains a discussion of a successful forward gasification model. Chapter IV discusses the spalling-enhanced-drying model is applicable to prediction of cavity growth and subsidence. Chapter VI decribes the correct use of energy and material balances for the analysis of UCG field test data. Chapter VII shows how laboratory experiments were used to validate the models for reverse combustion and forward gasification. It is also shown that laboratory combustion tube experiments can be used to simulate gas compositions expected from field tests. Finally, Chapter VII presents results from a comprehensive economic analysis of UCG involving 1296 separate cases. 37 refs., 49 figs., 12 tabs.

Gunn, R.D.; Krantz, W.B.

1987-03-01T23:59:59.000Z

58

In-field measurements of PCDF emissions from coal combustion and their quantitative analyses  

SciTech Connect (OSTI)

In this study, a series of polychlorinated dibenzofurans (PCDFs) emitted to the surrounding soil as the result of the combustion of coal and wood from the industrial steam boilers and household stoves have been identified. Levels of polychlorinated dibenzofurans (PCDF) in soil samples were measured at different sites in proximity to the municipal solid waste incinerator (MSWI) to determine baseline contamination and the contributory role of incinerator emissions. PCDF contaminants were concentrated from soil samples and isolated from other materials by chromatographic methods. PCDF isomers were identified separately by column chromatography utilizing column packed with materials such as Kieselgel/44 vol% H{sub 2}SO{sub 4}, Macro Alumina B Super 1, Mix. Column, Bio Beads S-X3 Gel Chromatography, Min Alumina B Super 1 + Kieselgel/AgNO{sub 3} and their quantitative determinations were performed by GC/MS (gas chromatography/mass spectroscopy). The PCDF levels were subsequently compared with established values from previous studies.

Pehlivan, M.; Beduk, D.; Pehlivan, E. [Selcuk University, Konya (Turkey)

2008-07-01T23:59:59.000Z

59

Steady General Relativistic Magnetohydrodynamic Inflow/Outflow Solution along Large-Scale Magnetic Fields that Thread a Rotating Black Hole  

E-Print Network [OSTI]

General relativistic magnetohydrodynamic (GRMHD) flows along magnetic fields threading a black hole can be divided into inflow and outflow part, according to the result of the competition between the black hole gravity and magneto-centrifugal forces along the field line. Here we present the first self-consistent, semi-analytical solution for a cold, Poynting flux-dominated (PFD) GRMHD flow, which pass all four critical (inner and outer, Alfv\\'en and fast-magnetosonic) points along a parabolic streamline. By assuming that the dominating (electromagnetic) component of the energy flux per flux tube is conserved at the surface where the inflow and outflow are separated, the outflow part of the solution can be constraint by the inflow part of the solution.The semi-analytical method can provide fiducial and complementary solutions for GRMHD simulations around the rotating black hole, given that the black hole spin, global streamline, and magnetizaion (i.e., a mass-loading at the inflow/outflow separation) are presc...

Pu, Hung-Yi; Hirotani, Kouichi; Mizuno, Yosuke; Wu, Kinwah; Asada, Keiichi

2015-01-01T23:59:59.000Z

60

Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers  

E-Print Network [OSTI]

of high Al-content AlGaN quantum well lasers Jing Zhang, Hongping Zhao, and Nelson Tansu Citation: Appl of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content Al characteristics of high Al-content AlGaN quantum wells QWs are analyzed for deep UV lasers. The effect of crystal

Gilchrist, James F.

Note: This page contains sample records for the topic "hole coal field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Field study of disposed solid wastes from advanced coal processes. Annual technical progress report, October 1991--September 1992  

SciTech Connect (OSTI)

Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute`s fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison`s limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United`s mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

Not Available

1992-12-31T23:59:59.000Z

62

Coal pump  

DOE Patents [OSTI]

A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

1983-01-01T23:59:59.000Z

63

Laboratory study and subsequent field results of chemical stimulation for use in open hole environments  

SciTech Connect (OSTI)

This paper describes the results of a two-year study conducted to optimize cleanup systems in open hole environments. Specifically, the study originated from problems encountered in the design of a series of open hole horizontal completions and the effort to improve well productivity. It was determined that the design of the drilling and completion phases would have to address not only which fluid would provide the necessary requirements for drilling the intervals, but also address the cleanup process during the completion phase. The fluid and cleanup treatment selections would have to be designed to work together to eliminate damage. A combination of a pay zone drilling fluid and an effective cleanup system resulted from the study and productivity numbers have been more than anticipated in all of the completions.

LaFontaine-McLarty, J.; Ali, S.A.; Sanclemente, L.W.; Sketchler, B.C.

1995-11-01T23:59:59.000Z

64

A field test using coal:DRDF blends in spreader stoker-fired boilers. Final report, June 1976-July 1978  

SciTech Connect (OSTI)

This program was conducted to characterize and demonstrate the technical, economic, and environmental feasibility of combustion densified forms of refuse derived fuel (dRDF) blended with coal in spreader stoker-fired boilers. A total of 258.5 Mg (285 tons) of pelletized 1/2-inch-diameter x 3/4-inch-long dRDF was co-fired with coal in 2.7 x 7.5 kg/sec (60,000 lb/hr) and 3.6 x 10 kg/sec (75,000 lb/hr) of 1.03 MPa (150 psig) saturated steam. The results indicate that coal:dRDF blends up to 1:2 can be handled and burned in conventional spreader stoker-fired boilers without major equipment modification. As more dRDF was substituted for coal, the flame volume increased, the opacity decreased, the fly ash carbon burnout improved, and the turndown ratio of boiler operation increased. The emissions from the blend firing decreased slightly in mass flux, dropped significantly in particulate size and stack opacity, and had satisfactory particulate resistivities.

Degler, G.H.; Rigo, H.G.; Riley, B.T. Jr.

1980-08-01T23:59:59.000Z

65

Observation of Rashba zero-field spin splitting in a strained germanium 2D hole gas  

SciTech Connect (OSTI)

We report the observation, through Shubnikov-de Haas oscillations in the magnetoresistance, of spin splitting caused by the Rashba spin-orbit interaction in a strained Ge quantum well epitaxially grown on a standard Si(001) substrate. The Shubnikov-de Haas oscillations display a beating pattern due to the spin split Landau levels. The spin-orbit parameter and Rashba spin-splitting energy are found to be 1.0?×?10{sup ?28?}?eVm{sup 3} and 1.4?meV, respectively. This energy is comparable to 2D electron gases in III-V semiconductors, but substantially larger than in Si, and illustrates the suitability of Ge for modulated hole spin transport devices.

Morrison, C., E-mail: c.morrison.2@warwick.ac.uk; Rhead, S. D.; Foronda, J.; Leadley, D. R.; Myronov, M. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Wi?niewski, P. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland)

2014-11-03T23:59:59.000Z

66

Probing strong-field gravity and black holes with gravitational waves  

E-Print Network [OSTI]

Gravitational wave observations will be excellent tools for making precise measurements of processes that occur in very strong- field regions of space time. Extreme mass

Hughes, Scott A.

67

Process for electrochemically gasifying coal  

DOE Patents [OSTI]

A process is claimed for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution. 7 figs.

Botts, T.E.; Powell, J.R.

1985-10-25T23:59:59.000Z

68

Noise Kernel and Stress Energy Bi-Tensor of Quantum Fields in Conformally-Optical Metrics: Schwarzschild Black Holes  

E-Print Network [OSTI]

In Paper II [N. G. Phillips and B. L. Hu, previous abstract] we presented the details for the regularization of the noise kernel of a quantum scalar field in optical spacetimes by the modified point separation scheme, and a Gaussian approximation for the Green function. We worked out the regularized noise kernel for two examples: hot flat space and optical Schwarzschild metric. In this paper we consider noise kernels for a scalar field in the Schwarzschild black hole. Much of the work in the point separation approach is to determine how the divergent piece conformally transforms. For the Schwarzschild metric we find that the fluctuations of the stress tensor of the Hawking flux in the far field region checks with the analytic results given by Campos and Hu earlier [A. Campos and B. L. Hu, Phys. Rev. D {\\bf 58} (1998) 125021; Int. J. Theor. Phys. {\\bf 38} (1999) 1253]. We also verify Page's result [D. N. Page, Phys. Rev. {\\bf D25}, 1499 (1982)] for the stress tensor, which, though used often, still lacks a rigorous proof, as in his original work the direct use of the conformal transformation was circumvented. However, as in the optical case, we show that the Gaussian approximation applied to the Green function produces significant error in the noise kernel on the Schwarzschild horizon. As before we identify the failure as occurring at the fourth covariant derivative order.

Nicholas G Phillips; B. L. Hu

2002-09-17T23:59:59.000Z

69

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

C. Jean Bustard

2001-10-01T23:59:59.000Z

70

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG and E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

C. Jean Bustard

2001-07-06T23:59:59.000Z

71

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000 to 2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG and E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

C. Jean Bustard

2001-07-31T23:59:59.000Z

72

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

Richard Schlager

2002-04-19T23:59:59.000Z

73

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

C. Jean Bustard

2002-01-07T23:59:59.000Z

74

Coal extraction  

SciTech Connect (OSTI)

Coal is extracted using a mixed solvent which includes a substantially aromatic component and a substantially naphthenic component, at a temperature of 400/sup 0/ to 500/sup 0/C. Although neither component is an especially good solvent for coal by itself, the use of mixed solvent gives greater flexibility to the process and offers efficiency gains.

Clarke, J.W.; Kimber, G.M.; Rantell, T.D.; Snape, C.E.

1985-06-04T23:59:59.000Z

75

Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation  

SciTech Connect (OSTI)

Accurate, cost-efficient monitoring instrumentation has long been considered essential to the operation of power plants. Nonetheless, for the monitoring of coal flow, such instrumentation has been sorely lacking and technically difficult to achieve. With more than half of the electrical power in the United States currently supplied by coal, energy generated by this resource is critical to the US economy. The demand for improvement in this area has only increased as a result of the following two situations: First, deregulation has produced a heightened demand for both reduced electrical cost and improved grid connectivity. Second, environmental concerns have simultaneously resulted in a need for both increased efficiency and reduced carbon and NOx emissions. A potential approach to addressing both these needs would be improvement in the area of combustion control. This would result in a better heat rate, reduced unburned carbon in ash, and reduced NOx emissions. However, before feedback control can be implemented, the ability to monitor coal flow to the burners in real-time must be established. While there are several ''commercially available'' products for real-time coal flow measurement, power plant personnel are highly skeptical about the accuracy and longevity of these systems in their current state of development. In fact, following several demonstration projects of in-situ coal flow measurement systems in full scale utility boilers, it became obvious that there were still many unknown influences on these instruments during field applications. Due to the operational environment of the power plant, it has been difficult if not impossible to sort out what parameters could be influencing the various probe technologies. Additionally, it has been recognized for some time that little is known regarding the performance of coal flow splitters, even where rifflers are employed. Often the coal flow distribution from these splitters remains mal-distributed. There have been mixed results in the field using variable orifices in coal pipes. Development of other coal flow control devices has been limited. An underlying difficulty that, to date, has hindered the development of an accurate instrument for coal flow measurements is the fact that coal flow is characterized by irregular temporal and spatial variation. However, despite the inherent complexity of the dynamic system, the system is in fact deterministic. Therefore, in principle, the coal flow can be deduced from the dynamics it exhibits. Nonetheless, the interactions are highly nonlinear, rendering standard signal processing approaches, which rely on techniques such as frequency decomposition, to be of little value. Foster-Miller, Inc. has developed a methodology that relates the complex variation in such systems to the information of interest. This technology will be described in detail in Section 2. A second concern regarding the current measurement systems is installation, which can be labor-intensive and cost-prohibitive. A process that does not require the pulverizer to be taken off line would be highly desirable. Most microwave and electrostatic methods require drilling up to 20 holes in the pipe, all with a high degree of precision so as to produce a proper alignment of the probes. At least one electrostatic method requires a special spool piece to be fitted into each existing coal pipe. Overall, these procedures are both difficult and very expensive. An alternative approach is pursued here, namely the development of an instrument that relies on an acoustic signal captured by way of a commercial accelerometer. The installation of this type of sensor is both simpler and less invasive than other techniques. An accelerometer installed in a pipe wall need not penetrate through the wall, which means that the system may be able to remain on line during the installation. Further, due to the fact that the Dynamical Instruments technology, unlike other systems, does not rely on uniformity of the air or coal profile, the installation location need not be on a long, straight run

R. Demler

2006-04-01T23:59:59.000Z

76

Gravitational Effects of Quantum Fields in the Interior of a Cylindrical Black Hole  

E-Print Network [OSTI]

The gravitational back-reaction is calculated for the conformally invariant scalar field within a black cosmic string interior with cosmological constant. Using the perturbed metric, the gravitational effects of the quantum field are calculated. It is found that the perturbations initially strengthen the singularity. This effect is similar to the case of spherical symmetry (without cosmological constant). This indicates that the behaviour of quantum effects may be universal and not dependent on the geometry of the spacetime nor the presence of a non-zero cosmological constant.

A. DeBenedictis

1998-11-18T23:59:59.000Z

77

Taking Consensus of Signed Distance Field for Hole Filling Ryusuke SAGAWA  

E-Print Network [OSTI]

distance field, SDF) SDF SDF SDF 2. SDF [5], [10], [18], [19], [21] SDF Curless Levoy[5] Wheeler [18] [14], [22], [23] Wheeler [18] n v d d = sgn(-n · v)|v| (1) sgn(x) x 1 -1 [22] 1 SDF Fig. 1 Corruption of the surface caused by wrong sign of SDF W W SDF 3. SDF SDF 1 1 2 #12;1 (marching cubes

Tokyo, University of

78

A Black Hole Levitron  

E-Print Network [OSTI]

We study the problem of spatially stabilising four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes kept in external fields we find that taking a continuum limit of Denef et al's multi-center solutions provides a supergravity description of such backgrounds within which a black hole can be trapped in a given volume. This is realised by levitating a black hole over a magnetic dipole base. We comment on how such a construction resembles a mechanical Levitron.

Xerxes D. Arsiwalla; Erik P. Verlinde

2009-02-02T23:59:59.000Z

79

Hydrothermally treated coals for pulverized coal injection. Technical progress report, April 1995--June 1995  

SciTech Connect (OSTI)

This project is investigating the suitability of hydrothermally dried low-rank coals for pulverized fuel injection into blast furnaces in order to reduce coke consumption. Coal samples from the Beluga coal field and Usibelli Coal Mine, Alaska, are being used for the study. Crushed coal samples were hydrothermally treated at three temperatures, 275, 300 and 325{degrees}C, for residence times ranging from 10 to 120 minutes. Products have been characterized to determine their suitability for pulverized coal injection. Characterization includes proximate and ultimate analyses, vitrinite reflectance, TGA reactivity and thermochemical modeling. A literature survey has been conducted.

Walsh, D.E.; Rao, P.D.; Ogunsola, O.; Lin, H.K.

1995-07-01T23:59:59.000Z

80

Clean Coal Power Initiative  

SciTech Connect (OSTI)

This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

2006-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "hole coal field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Coal industry annual 1994  

SciTech Connect (OSTI)

This report presents data on coal consumption, distribution, coal stocks, quality, prices, coal production information, and emissions for a wide audience.

NONE

1995-10-01T23:59:59.000Z

82

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the eighth reporting quarter, progress was made on the project in the following areas: (1) PG&E NEG Salem Harbor Station--Sorbent injection equipment was installed at the site during the quarter; Test plans were prepared for the field-testing phase of the project; and Baseline testing was completed during the quarter. (2) Technology Transfer--A number of technical presentations and briefings were made during the quarter. Notable among them was a paper published in the JAWMA. Also, two papers were presented at the Air Quality III Conference and one at the Pittsburgh Coal Conference.

Richard Schlager; Tom Millar

2002-10-18T23:59:59.000Z

83

Late-Time Dynamics of Scalar Fields on Rotating Black Hole Backgrounds  

E-Print Network [OSTI]

Motivated by results of recent analytic studies, we present a numerical investigation of the late-time dynamics of scalar test fields on Kerr backgrounds. We pay particular attention to the issue of mixing of different multipoles and their fall-off behavior at late times. Confining ourselves to the special case of axisymmetric modes with equatorial symmetry, we show that, in agreement with the results of previous work, the late-time behavior is dominated by the lowest allowed l-multipole. However the numerical results imply that, in general, the late-time fall-off of the dominating multipole is different from that in the Schwarzschild case, and seems to be incompatible with a result of a recently published analytic study.

William Krivan

1999-07-08T23:59:59.000Z

84

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the seventh reporting quarter, progress was made on the project in the following areas: (1) PG&E NEG Brayton Point Station--Sorbent injection equipment was installed at the site during the quarter; Test plans were prepared for the field testing phase of the project; Baseline testing was completed during the quarter and parametric testing was begun; and A paper summarizing the full-scale tests was written and submitted to A&WMA for presentation at the annual meeting in June 2002. (2) Technology Transfer--A number of technical presentations and briefings were made during the quarter. Notable among them are papers published in the A&WMA EM journal and Pollution Engineering. Also, information was provided to the EPA MACT Working Group and a paper was presented at the annual A&WMA meeting.

Richard Schlager

2002-08-01T23:59:59.000Z

85

Review of underground coal-gasification field experiments at Hoe Creek. [Hoe Creek 1, 2, and 3  

SciTech Connect (OSTI)

LLNL has conducted three underground coal gasification experiments at the Hoe Creek site near Gillette, Wyoming. Three different linking methods were used: explosive fracture, reverse burning and directional drilling. Air was injected on all three experiments and a steam/oxygen mixture during 2 days of the second and most of the third experiment. Comparison of results show that the linking method didn't influence gas quality. The heat of combustion of the product gas was higher with steam/oxygen injection, mainly because of reduced inert diluent. Gas quality was generally independent of other operating parameters, but declined from its initial value over a period of time. This was due to heat loss to the wet overburden and extensive roof collapse in the second and third experiments.

Thorsness, C.B.; Creighton, J.R.

1982-05-26T23:59:59.000Z

86

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Pollutants Associated With Coal Combustion. • E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal • . . . . Coal Desulfurization

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

87

Upgrading low-rank coals using the liquids from coal (LFC) process  

SciTech Connect (OSTI)

Three unmistakable trends characterize national and international coal markets today that help to explain coal`s continuing and, in some cases, increasing share of the world`s energy mix: the downward trend in coal prices is primarily influenced by an excess of increasing supply relative to increasing demand. Associated with this trend are the availability of capital to expand coal supplies when prices become firm and the role of coal exports in international trade, especially for developing nations; the global trend toward reducing the transportation cost component relative to the market, preserves or enhances the producer`s profit margins in the face of lower prices. The strong influence of transportation costs is due to the geographic relationships between coal producers and coal users. The trend toward upgrading low grade coals, including subbituminous and lignite coals, that have favorable environmental characteristics, such as low sulfur, compensates in some measure for decreasing coal prices and helps to reduce transportation costs. The upgrading of low grade coal includes a variety of precombustion clean coal technologies, such as deep coal cleaning. Also included in this grouping are the coal drying and mild pyrolysis (or mild gasification) technologies that remove most of the moisture and a substantial portion of the volatile matter, including organic sulfur, while producing two or more saleable coproducts with considerable added value. SGI International`s Liquids From Coal (LFC) process falls into this category. In the following sections, the LFC process is described and the coproducts of the mild pyrolysis are characterized. Since the process can be applied widely to low rank coals all around the world, the characteristics of coproducts from three different regions around the Pacific Rim-the Powder River Basin of Wyoming, the Beluga Field in Alaska near the Cook Inlet, and the Bukit Asam region in south Sumatra, Indonesia - are compared.

Nickell, R.E.; Hoften, S.A. van

1993-12-31T23:59:59.000Z

88

Carbon Dioxide Storage in Coal Seams with Enhanced Coalbed Methane Recovery: Geologic Evaluation, Capacity Assessment and Field Validation of the Central Appalachian Basin.  

E-Print Network [OSTI]

??The mitigation of greenhouse gas emissions and enhanced recovery of coalbed methane are benefits to sequestering carbon dioxide in coal seams. This is possible because… (more)

Ripepi, Nino Samuel

2009-01-01T23:59:59.000Z

89

Coal preparation: The essential clean coal technology  

SciTech Connect (OSTI)

This chapter is a brief introduction to a broad topic which has many highly specialized areas. The aim is to summarize the essential elements of coal preparation and illustrate its important role in facilitating the clean use of coal. Conventional coal preparation is the essential first step in ensuring the economic and environmentally acceptable use of coal. The aim of coal preparation is to produce saleable products of consistent, specified quality which satisfy customer requirements while optimizing the utilization of the coal resource. Coal preparation covers all aspects of preparing coal for the market. It includes size reduction, blending and homogenization and, most importantly, the process of physical beneficiation or washing, which involves separation of undesirable mineral matter from the coal substance itself. Coal preparation can be performed at different levels of sophistication and cost. The degree of coal preparation required is decided by considering the quality of the raw coal, transport costs and, in particular, the coal quality specified by the consumer. However, the cost of coal beneficiation rises rapidly with the complexity of the process and some coal is lost with the waste matter because of process inefficiencies, therefore each situation requires individual study to determine the optimum coal preparation strategy. The necessary expertise is available within APEC countries such as Australia. Coals destined for iron making are almost always highly beneficiated. Physical beneficiation is mostly confined to the higher rank, hard coals, but all other aspects of coal preparation can be applied to subbituminous and lignitic coals to improve their utilization. Also, there are some interesting developments aimed specifically at reducing the water content of lower rank coals.

Cain, D.

1993-12-31T23:59:59.000Z

90

Shaped-charge tests in support of the coal-gasification program  

SciTech Connect (OSTI)

The LLNL concept for in-situ coal gasification requires forming horizontal holes in deep coal beds to connect vertical bore shafts. These lateral holes are required to provide a passage for the gases between the vertical shafts. Shaped charges are being considered for producing these horizontal bore holes. This report describes a test method for evaluating new shaped charge designs and presents the results for three designs.

Scheloske, R.F.

1981-12-01T23:59:59.000Z

91

Coal industry annual 1997  

SciTech Connect (OSTI)

Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

NONE

1998-12-01T23:59:59.000Z

92

Coal Industry Annual 1995  

SciTech Connect (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

NONE

1996-10-01T23:59:59.000Z

93

Coal industry annual 1996  

SciTech Connect (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

NONE

1997-11-01T23:59:59.000Z

94

Microbial solubilization of coal  

DOE Patents [OSTI]

The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

Strandberg, G.W.; Lewis, S.N.

1988-01-21T23:59:59.000Z

95

On Black Hole Entropy  

E-Print Network [OSTI]

Two techniques for computing black hole entropy in generally covariant gravity theories including arbitrary higher derivative interactions are studied. The techniques are Wald's Noether charge approach introduced recently, and a field redefinition method developed in this paper. Wald's results are extended by establishing that his local geometric expression for the black hole entropy gives the same result when evaluated on an arbitrary cross-section of a Killing horizon (rather than just the bifurcation surface). Further, we show that his expression for the entropy is not affected by ambiguities which arise in the Noether construction. Using the Noether charge expression, the entropy is evaluated explicitly for black holes in a wide class of generally covariant theories. Further, it is shown that the Killing horizon and surface gravity of a stationary black hole metric are invariant under field redefinitions of the metric of the form $\\bar{g}_{ab}\\equiv g_{ab} + \\Delta_{ab}$, where $\\Delta_{ab}$ is a tensor field constructed out of stationary fields. Using this result, a technique is developed for evaluating the black hole entropy in a given theory in terms of that of another theory related by field redefinitions. Remarkably, it is established that certain perturbative, first order, results obtained with this method are in fact {\\it exact}. The possible significance of these results for the problem of finding the statistical origin of black hole entropy is discussed.}

Ted Jacobson; Gungwon Kang; Robert C. Myers

1994-01-03T23:59:59.000Z

96

Clean coal  

SciTech Connect (OSTI)

The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

2006-07-15T23:59:59.000Z

97

Process for electrochemically gasifying coal using electromagnetism  

DOE Patents [OSTI]

A process for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution.

Botts, Thomas E. (Markham, VA); Powell, James R. (Shoreham, NY)

1987-01-01T23:59:59.000Z

98

Coal industry annual 1993  

SciTech Connect (OSTI)

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

99

Coal liquefaction and hydrogenation  

DOE Patents [OSTI]

Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

1985-01-01T23:59:59.000Z

100

Coal combustion science  

SciTech Connect (OSTI)

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 91 refs., 40 figs., 9 tabs.

Hardesty, D.R. (ed.); Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

1990-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "hole coal field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Coal Mining (Iowa)  

Broader source: Energy.gov [DOE]

These sections describe procedures for coal exploration and extraction, as well as permitting requirements relating to surface and underground coal mining. These sections also address land...

102

Black Holes  

E-Print Network [OSTI]

Lecture notes for a 'Part III' course 'Black Holes' given in DAMTP, Cambridge. The course covers some of the developments in Black Hole physics of the 1960s and 1970s.

P. K. Townsend

1997-07-04T23:59:59.000Z

103

Coal cutting research slashes dust  

SciTech Connect (OSTI)

The Coal-Cutting Technology Group at the Bureau of Mine's Twin Cities Research Center is investigating ways to reduce primary dust generated by coal cutting. The progression of research within the program is from fundamental laboratory research, to fundamental field research, to field concept verification. Then the Bureau recommends warranted changes and/or prototype development to industry. Currently the Cutting Technology Group has several projects in each phase of research. The Bureau's current fundamental studies of bit characteristics are directed to determining the effects of conical bit wear on primary respirable dust generation, energy, and cutting forces; establishing best conical bit mount condition to increase life by enhancing bit rotation; and comparing chisel-type cutters to conical-type cutters. Additionally, to establish a suitable homogeneous reference material for cutting experiments, a synthetic coal with a plaster base is being developed.

Roepke, W.W.

1983-10-01T23:59:59.000Z

104

Coal cutting research slashes dust  

SciTech Connect (OSTI)

The Coal-Cutting Technology Group at the Bureau of Mines Twin Cities (MN) Research Center is investigating ways to reduce primary dust generated by coal cutting. The progression of research within the program is from fundamental laboratory research, to fundamental field research, to field concept verification. Then the Bureau recommends warranted changes and/or prototype development to industry. Currently the group has several projects in each phase of research. The Bureau's current fundamental studies of bit characteristics are directed toward determining the effects of conical bit wear on primary respirable dust generation, energy, and cutting forces; establishing best conical bit mount condition to increase life by enhancing bit rotation; and comparing chisel-type cutters to conical-type cutters. Additionally, to establish a suitable homogeneous reference material for cutting experiments, a synthetic coal with a plaster base is being developed.

Roepke, W.W.

1983-10-01T23:59:59.000Z

105

Postburn evaluation for Hanna II, Phases 2 and 3, underground coal gasification experiments, Hanna, Wyoming  

SciTech Connect (OSTI)

During 1980 and 1981 the Laramie Energy Technology Center (LETC) conducted a post-burn study at the Hanna II, Phases 2 and 3 underground coal gasification (UCG) site, Hanna, Wyoming. This report contains a summary of the field and laboratory results from the study. Lithologic and geophysical well log data from twenty-two (22) drill holes, combined with high resolution seismic data delineate a reactor cavity 42.7m (140 ft.) long, 35.1 m (115 ft.) and 21.3 m (70 ft.) high that is partially filled with rubble, char and pyrometamorphic rock. Sedimentographic studies were completed on the overburden. Reflectance data on coal samples within the reactor cavity and cavity wall reveal that the coal was altered by temperatures ranging from 245/sup 0/C to 670/sup 0/C (472/sup 0/-1238/sup 0/F). Overburden rocks found within the cavity contain various pyrometamorphic minerals, indicating that temperatures of at least 1200/sup 0/C (2192/sup 0/F) were reached during the tests. The calcite cemented fine-grained sandstone and siltstone directly above the Hanna No. 1 coal bed formed a strong roof above the cavity, unlike other UCG sites such as Hoe Creek which is not calcite cemented. 30 references, 27 figures, 8 tables.

Youngberg, A.D.; Sinks, D.J.; Craig, G.N. II; Ethridge, F.G.; Burns, L.K.

1983-12-01T23:59:59.000Z

106

Carbon Dioxide Sequestration in Geologic Coal Formations  

SciTech Connect (OSTI)

BP Corporation North America, Inc. (BP) currently operates a nitrogen enhanced recovery project for coal bed methane at the Tiffany Field in the San Juan Basin, Colorado. The project is the largest and most significant of its kind wherein gas is injected into a coal seam to recover methane by competitive adsorption and stripping. The Idaho National Engineering and Environmental Laboratory (INEEL) and BP both recognize that this process also holds significant promise for the sequestration of carbon dioxide, a greenhouse gas, while economically enhancing the recovery of methane from coal. BP proposes to conduct a CO2 injection pilot at the tiffany Field to assess CO2 sequestration potential in coal. For its part the INEEL will analyze information from this pilot with the intent to define the Co2 sequestration capacity of coal and its ultimate role in ameliorating the adverse effects of global warming on the nation and the world.

None

2001-09-30T23:59:59.000Z

107

PREVENTTVE FACILITIES AND EMERGENCY OPERATIONS IN CASE OFFIRES IN CdF COAL MINES  

E-Print Network [OSTI]

). The upper group consists of a bituminous soft coal, the lower coke coal. The field is sharply folded alongPREVENTTVE FACILITIES AND EMERGENCY OPERATIONS IN CASE OFFIRES IN CdF COAL MINES J.P. AMARTIN HJSJL a stricl methodology. It has been possjble then to resume coal winning, which has cor.tmued until

Boyer, Edmond

108

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

transportation component of coal price should also increase;investment. Coal costs and prices are functions of a numberto forecast coal demand, supply, and prices from now to

McCollum, David L

2007-01-01T23:59:59.000Z

109

LLNL underground coal gasification project. Quarterly progress report, January-March 1981  

SciTech Connect (OSTI)

We have continued our laboratory studies of forward gasification through drilled holes in small blocks of coal, approximately 1 foot on a side. Such studies give insight into cavity growth mechanisms and particulate production. However, because of the small dimensions involved, the information these tests provide is necessarily limited to aspects of cavity growth at very early times. The preliminary process design of the Tono No. 1 field experiment in Washington has been completed. The experimental plan and operational strategy have been developed to ensure that the injection point remains near the bottom of the coal seam and that the experiment continues at least until a period of stable operation has been reached and sustained for a time. We have continued to develop a mathematical model for the small coal block experiments in order to further our understanding of the physical and chemical processes governing the burning of the coal and the growth of the cavity within the block. This model will be adapted, later, to larger-scale coal block experiments, and finally to full-scale field experiments. We hope to obtain scaling laws and other insights from the model. Groundwater samples from wells located at distances of a few feet to several hundred feet from the gasification cavities were collected before, during, and after each of the Hoe Creek tests. The analysis of the groundwater contamination data pertinent to the Hoe Creek No. 3 test was completed. This is an ongoing project, and we will continue to obtain and analyze groundwater samples from these test sites.

Olness, D.U.; Clements, W. (eds.)

1981-04-27T23:59:59.000Z

110

Oxy-coal Combustion Studies  

SciTech Connect (OSTI)

The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol. To these ends, the project has focused on the following: â?˘ The development of reliable Large Eddy Simulations (LES) of oxy-coal flames using the Direct Quadrature Method of Moments (DQMOM) (Subtask 3.1). The simulations were validated for both non-reacting particle-laden jets and oxy-coal flames. â?˘ The modifications of an existing oxy-coal combustor to allow operation with high levels of input oxygen to enable in-situ laser diagnostic measurements as well as the development of strategies for directed oxygen injection (Subtask 3.2). Flame stability was quantified for various burner configurations. One configuration that was explored was to inject all the oxygen as a pure gas within an annular oxygen lance, with burner aerodynamics controlling the subsequent mixing. â?˘ The development of Particle Image Velocimetry (PIV) for identification of velocity fields in turbulent oxy-coal flames in order to provide high-fidelity data for the validation of oxy-coal simulation models (Subtask 3.3). Initial efforts utilized a laboratory diffusion flame, first using gas-fuel and later a pulverized-coal flame to ensure the methodology was properly implemented and that all necessary data and image-processing techniques were fully developed. Success at this stage of development led to application of the diagnostics in a large-scale oxy-fuel combustor (OFC). â?˘ The impact of oxy-coal-fired vs. air-fired environments on SO{sub x} (SO{sub 2}, SO{sub 3}) emissions during coal combustion in a pilot-scale circulating fluidized-bed (CFB) (Subtask 3.4). Profiles of species concentration and temperature were obtained for both conditions, and profiles of temperature over a wide range of O{sub 2} concentration were studied for oxy-firing conditions. The effect of limestone addition on SO{sub 2} and SO{sub 3} emissions were also examined for both air- and oxy- firing conditions. â?˘ The investigation of O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments on SO{sub 2 emissions during coal combustion in a bench-scale single-particle fluidized-bed reactor (Subtask 3.5). Moreover, the sulfation mechanisms of limestone in O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments were studied, and a generalized gassolid and diffusion-reaction single-particle model was developed to study the effect of major operating variables. â?˘ The investigation of the effect of oxy-coal combustion on ash formation, particle size distributions (PSD), and size-segregated elemental composition in a drop-tube furnace and the 100 kW OFC (Subtask 3.6). In particular, the effect of coal type and flue gas recycle (FGR, OFC only) was investigated.

J. Wendt; E. Eddings; J. Lighty; T. Ring; P. Smith; J. Thornock; Y. Jia, W. Morris; J. Pedel; D. Rezeai; L. Wang; J. Zhang; K. Kelly

2012-01-01T23:59:59.000Z

111

On-site field tests for study of low-rank western coal fly ash. Technical summary report, field test No. 3. Big Brown Station electrostatic precipitator  

SciTech Connect (OSTI)

This report describes the results of field and laboratory studies of combined NH/sub 3/ and SO/sub 3/ conditioning at the Big Brown Station of Texas Utilities Generating Company. This unusual combination of conditioning agents is used routinely at the Big Brown Station in order to improve the performance of the cold-side electrostatic precipitators. The primary objectives of this field study were to evaluate the performance of one of the Big Brown precipitators, and to obtain data on the concentration, composition, and size distribution of the fly ash, as well as the composition of the flue gas and the overall and fractional collection efficiencies of the precipitator. The laboratory studies of the Big Brown fly ash were intended to further characterize the ash both physically and chemically, and to study the attenuation of the electrical resistivity of the ash associated with the surface film produced by the dual conditioning process and by the use of SO/sub 3/ conditioning alone. 6 references, 22 figures, 9 tables.

Dahlin, R. S.; Bickelhaupt, R. E.; Marchant, Jr., G. H.; Gooch, J. P.

1984-02-01T23:59:59.000Z

112

COAL DESULFURIZATION PRIOR TO COMBUSTION  

E-Print Network [OSTI]

90e COAL DESULFURIZATION PRIOR TO COMBUSTION J. Wrathall, T.of coal during combustion. The process involves the additionCOAL DESULFURIZATION PRIOR TO COMBUSTION Lawrence Berkeley

Wrathall, J.

2013-01-01T23:59:59.000Z

113

Coal data: A reference  

SciTech Connect (OSTI)

This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

Not Available

1995-02-01T23:59:59.000Z

114

Investigation of coal tar mobility at a former MGP site  

SciTech Connect (OSTI)

The presence of coal tar in the subsurface of former manufactured gas plant sites poses an environmental hazard and a potential threat to public health. Coal tar can release various chemical compounds that are transported into the groundwater. Before any efforts can be made to remove coal tar from contaminated subsurface soils, it is recommended to characterize coal tar properties and composition and to delineate the residual saturation point between mobile and immobile coal tar. This paper presents a new innovative field device, the Res-SAT field tool, and laboratory procedures that can be used to determine the saturation-capillary pressure relationship for a soil-water coal-tar system and the critical pressure for coal tar mobility.

Moo-Young, H.K.; Mo, X.H.; Waterman, R.; Coleman, A.; Saroff, S. [California State University Los Angeles, Los Angeles, CA (United States)

2009-11-15T23:59:59.000Z

115

Clean Coal Program Research Activities  

SciTech Connect (OSTI)

Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

2009-03-31T23:59:59.000Z

116

Field evaluation of cofiring gas with coal for quantifying operational benefits and emissions trim in a utility boiler. Volume 2. Topical report, 1989-1990  

SciTech Connect (OSTI)

The volume consists of 14 appendixes to accompany volume 1 of the report, and covers the following test data: analysis of coal, fylash, and bottom ash samples; cleanliness factors; slagging observation record sheets; stack opacity measurements; stack sulphur dioxide and nitrogen oxides measurements; total coal flow; fuel gas flow; furnace exit gas temperature; percent oxygen at economizer outlet; percent excess air; bulk steam temperatures at secondary superheater and reheater outlets; secondary superheater and reheater tube outlet leg temperatures; unit heat rate; and models used for data interpretation.

Clark, K.J.; Torbov, T.S.; Impey, R.J.; Hara, K.G.; Burnett, T.D.

1993-02-01T23:59:59.000Z

117

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Coal Cleaning Costs Process Clean Coal Produced, * T/D (DryMM$ Net Operating Cost, $/T (Clean Coal Basis) Net OperatingCost, $/T (Clean Coal Bases) Case NA Hazen KVB Battelle

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

118

Alaska Regional Energy Resources Planning Project. Phase 2: coal, hydroelectric and energy alternatives. Volume I. Beluga Coal District Analysis  

SciTech Connect (OSTI)

This volume deals with the problems and procedures inherent in the development of the Beluga Coal District. Socio-economic implications of the development and management alternatives are discussed. A review of permits and approvals necessary for the initial development of Beluga Coal Field is presented. Major land tenure issues in the Beluga Coal District as well as existing transportation routes and proposed routes and sites are discussed. The various coal technologies which might be employed at Beluga are described. Transportation options and associated costs of transporting coal from the mine site area to a connecting point with a major, longer distance transportation made and of transporting coal both within and outside (exportation) the state are discussed. Some environmental issues involved in the development of the Beluga Coal Field are presented. (DMC)

Rutledge, G.; Lane, D.; Edblom, G.

1980-01-01T23:59:59.000Z

119

Influence of penecontemporaneous tectonism on development of Breathitt Formation coals, eastern Kentucky  

SciTech Connect (OSTI)

The Middle Pennsylvanian Breathitt Formation coals beds in the central portion of the Eastern Kentucky coal field exhibit changes in lithology, petrology, and chemistry that can be attributed to temporal continuity in the depositional systems. The study interval within northern Perry and Knott Counties includes coals from the Taylor coal bed at the base of the Magoffin marine member upward through the Hazard No. 8 (Francis) coal bed.

Hower, J.C.; Trinkle, E.J.; Pollock, J.D.

1988-08-01T23:59:59.000Z

120

Optical black holes and solitons  

E-Print Network [OSTI]

We exhibit a static, cylindrically symmetric, exact solution to the Euler-Heisenberg field equations (EHFE) and prove that its effective geometry contains (optical) black holes. It is conjectured that there are also soliton solutions to the EHFE which contain black hole geometries.

Shawn Westmoreland

2010-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "hole coal field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Method for gasification of deep, thin coal seams  

DOE Patents [OSTI]

A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.

Gregg, David W. (Moraga, CA)

1982-01-01T23:59:59.000Z

122

Method for gasification of deep, thin coal seams. [DOE patent  

DOE Patents [OSTI]

A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face is given. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.

Gregg, D.W.

1980-08-29T23:59:59.000Z

123

Coal Severance Tax (North Dakota)  

Broader source: Energy.gov [DOE]

The Coal Severance Tax is imposed on all coal severed for sale or industrial purposes, except coal used for heating buildings in the state, coal used by the state or any political subdivision of...

124

Upgraded Coal Interest Group  

SciTech Connect (OSTI)

The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

Evan Hughes

2009-01-08T23:59:59.000Z

125

BLACK HOLE AURORA POWERED BY A ROTATING BLACK HOLE  

SciTech Connect (OSTI)

We present a model for high-energy emission sources generated by a standing magnetohydrodynamical (MHD) shock in a black hole magnetosphere. The black hole magnetosphere would be constructed around a black hole with an accretion disk, where a global magnetic field could be originated by currents in the accretion disk and its corona. Such a black hole magnetosphere may be considered as a model for the central engine of active galactic nuclei, some compact X-ray sources, and gamma-ray bursts. The energy sources of the emission from the magnetosphere are the gravitational and electromagnetic energies of magnetized accreting matters and the rotational energy of a rotating black hole. When the MHD shock generates in MHD accretion flows onto the black hole, the plasma's kinetic energy and the black hole's rotational energy can convert to radiative energy. In this Letter, we demonstrate the huge energy output at the shock front by showing negative energy postshock accreting MHD flows for a rapidly rotating black hole. This means that the extracted energy from the black hole can convert to the radiative energy at the MHD shock front. When an axisymmetric shock front is formed, we expect a ring-shaped region with very hot plasma near the black hole; this would look like an 'aurora'. The high-energy radiation generated from there would carry to us the information for the curved spacetime due to the strong gravity.

Takahashi, Masaaki [Department of Physics and Astronomy, Aichi University of Education, Kariya, Aichi 448-8542 (Japan); Takahashi, Rohta, E-mail: takahasi@phyas.aichi-edu.ac.j [Cosmic Radiation Laboratory, Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

2010-05-15T23:59:59.000Z

126

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous systems of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of projected DOE/EPA early cost estimates. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that was tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology injects a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. PG&E National Energy Group provided two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company provided a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company hosted a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the fifteenth reporting quarter, progress was made on the project in the following areas: (1) Test Sites--Final Reports for the two remaining plants are being written (Salem Harbor and Brayton Point). (2) Technology Transfer--Technical information about the project was presented to a number of organizations during the quarter including members of congress, coal companies, architect/engineering firms, National Mining Association, the North Carolina Department of Air Quality, the National Coal Council and EPA.

Jean Bustard; Richard Schlager

2004-08-03T23:59:59.000Z

127

LLNL underground coal gasification project. Quarterly progress report, October-December 1980  

SciTech Connect (OSTI)

We have continued laboratory studies of forward gasification through drilled holes in small blocks of coal (approx. 30 cm on a side). Such studies give insight into cavity growth mechanisms and particulate production. In addition, we have been developing a mathematical model for these experiments in order to further our understanding of the physical and chemical processes governing the burning of the coal and the growth of the cavity within the block. This model will be adapted, later, to larger-scale coal-block experiments, and finally to full-scale field exoperiments. We hope to obtain scaling laws and other insights from the model. The small-block experiments are beginning to provide information relevant to the early-time cavity growth. The natural extension of these experiments to larger blocks, perhaps 10ft or more on a side, is presently being planned. The large-block tests will be conducted at a mine, where blocks of coal will be isolated by the experimenter; the objective will be to quantify early-time cavity growth. We completed planning for the directionally drilled injection well for DOE Experiment No. 1. Assessment of the data obtained during the various underground coal gasification tests is continuing. Results from the four different diagnostic systems have been combined to produce a description of the shape of the burn cavity as a function of time during the Hoe Creek No. 3 experiment. Groundwater samples from wells located at distances of a few feet to several hundred feet from the gasification cavities have been collected before, during, and after each of the Hoe Creek tests. The analysis of the groundwater contamination data pertinent to the Hoe Creek No. 2 test was completed.

Olness, D.U. (ed.)

1981-01-26T23:59:59.000Z

128

Coal Combustion Science  

SciTech Connect (OSTI)

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

1991-08-01T23:59:59.000Z

129

Unconventional (borehole) Technologies for Gas Fuel Producing from Coal  

E-Print Network [OSTI]

The scheme discribtion of borehole thechnologies for coal fields utilization is cited in the report. The merits and shortages of the technologies are discussed. The several conclusions are expressed. Key words: borehole technology, coal seam, coalbed methane, recovery, comparision. Geotechnology is the method of raw fossil recovery through the surface boreholes. The raw fossil may be presented both liquid and gas or hard materials. The geotechnological methods have used since beginning of XX century. Conventional methods of coal mining permit to receive 7-9 % useful energy from coal in situ potential energy (calorific value of it). This energy effectiveness have calculated on the base of mining and transportation and processing of the coal [1]. Besides, capacity of labour during underground mining activity is not very high and is evaluated as 0.02-0.5 man-sheet per one ton of coal. The coal mining is accompanied high shake of extracted rock (in Russian coal fields as many as 25-27%). As much as 8-12 tones of clean air are given for one ton of the produced coal. The coefficient of fatal accidents in the coal mines ranges as 1.2-1.5 per 1 million tons of the coal recovery. Underground (mines) and surface (open pits) mining make negative influence on the environment.

Vasyuchkov Yu. F; Vasyuchkov M. Yu

130

Utilization ROLE OF COAL COMBUSTION  

E-Print Network [OSTI]

, materials left after combustion of coal in conventional and/ or advanced clean-coal technology combustors and advanced clean-coal technology combustors. This paper describes various coal combustion products produced (FGD) products from pulverized coal and advanced clean-coal technology combustors. Over 70% of the CCPs

Wisconsin-Milwaukee, University of

131

Underground Coal Thermal Treatment Task 6 Topical Report, Utah Clean Coal Program  

SciTech Connect (OSTI)

The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: • Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand the feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. • Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. • CO2 storage. In order to help determine the amount of CO2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.

Smith, P.J.; Deo, M.; Edding, E.G.; Hradisky, M.; Kelly, K.E.; Krumm, R.; Sarofim, Adel; Wang, D.

2014-08-15T23:59:59.000Z

132

Microbial solubilization of coal  

DOE Patents [OSTI]

This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

Strandberg, Gerald W. (Farragut, TN); Lewis, Susan N. (Knoxville, TN)

1990-01-01T23:59:59.000Z

133

Petrographic characterization of Kentucky coals. Final report. Part VI. The nature of pseudovitrinites in Kentucky coals  

SciTech Connect (OSTI)

Overall average pseudovitrinite content for 1055 eastern Kentucky coal samples is nearly 9% while average percentage of pseudovitrinite for 551 western Kentucky coals is approximately 4%. Examination of variation in pseudovitrinite content relative to rank changes shows uniformity in pseudovitrinite percentages within the 4 to 7 V-type interval for eastern Kentucky coals but a gradual increase in pseudovitrinite content for western Kentucky coals over the same rank interval. Coals from both coal fields show similar, distinct increases in pseudovitrinite percentage in the highest V-type categories. However, it is suggested here that these supposed increases in pseudovitrinite percentages are not real but rather, indicate distinct increase in the brightness of nitrinite resulting from increased alteration of vitrinite beginning at this stage of coalification and continuing into the higher rank stages. This conclusion is reached when it is found that differences between pseudovitrinite and vitrinite reflectance are least in coals at these high rank intervals of Kentucky and, also, when vitrinite particles are often visually observed having brightness equal to that of pseudovitrinite particles. Relation of pseudovitrinite to other sulfur forms and total sulfur in general shows no significant trends, although the relatively high pyritic sulfur content in western Kentucky coals, coupled with relatively low inert percentages suggest the existence of predominantly reducing, or at least non-oxidizing conditions in the Pennsylvanian peat swamps of western Kentucky. Initial work involving Vicker's microhardness testing of coals indicates that microhardness values for pseudovitrinite are higher than those for vitrinite within the same sample regardless of coal rank or coal field from which the sample was collected. 15 references, 9 figures, 9 tables.

Trinkle, E.J.; Hower, J.C.

1984-02-01T23:59:59.000Z

134

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the tenth reporting quarter, progress was made on the project in the following areas: (1) All Test Sites--Ongoing data and sample analysis as well as work on the final reports. (2) Technology Transfer--A number of technical presentations and briefings were made during the quarter. One paper was presented at the American Coal Council Workshop and one at the EUCE Conference.

Richard Schlager; Tom Millar

2003-04-28T23:59:59.000Z

135

Coal gasification apparatus  

DOE Patents [OSTI]

Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

Nagy, Charles K. (Monaca, PA)

1982-01-01T23:59:59.000Z

136

Autothermal coal gasification  

SciTech Connect (OSTI)

Test data from the Ruhrchemie/Ruhrkohle Texaco coal gasification demonstration plant at Oberhausen are reported. (5 refs.)

Konkol. W.; Ruprecht, P.; Cornils, B.; Duerrfeld, R.; Langhoff, J.

1982-03-01T23:59:59.000Z

137

TOXIC SUBSTANCES FROM COAL COMBUSTION  

SciTech Connect (OSTI)

The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, the Lignite Research Council, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NO combustion systems, and new power generation x plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 July 1998 through 30 September 1998. During this period distribution of all three Phase II coals was completed. Standard analyses for the whole coal samples were also completed. Mössbauer analysis of all project coals and fractions received to date has been completed in order to obtain details of the iron mineralogy. The analyses of arsenic XAFS data for two of the project coals and for some high arsenic coals have been completed. Duplicate splits of the Ohio 5,6,7 and North Dakota lignite samples were taken through all four steps of the selective leaching procedure. Leaching analysis of the Wyodak coal has recently commenced. Preparation of polished coal/epoxy pellets for probe/SEM studies is underway. Some exploratory mercury LIII XAFS work was carried out during August at the Advanced Photon Source (APS), the new synchrotron facility at Argonne National Laboratory, Chicago, IL. Further analysis of small-scale combustion experiments conducted at PSI in Phase I was completed this quarter. The results of these experiments for the first time suggest almost complete vaporization of certain trace elements (Se, Zn) from coal combustion in the flame zone, in accordance with theoretical equilibrium predictions. Other elements (As, Sb, Cr) appeared considerably less volatile and may react with constituents in the bulk ash at combustion temperatures. The combustion section of the University of Arizona's Downflow Combustor was completely rebuilt. The University of Utah worked on setting up EPA Method 26A to give the capability to measure chlorine in flue gas. The chlorine kinetic calculations performed as part of the Phase I program were found to have an error in the initial conditions. Therefore, the calculations were re-done this quarter with the correct starting conditions. Development of a quasi-empirical emissions model based on reported emissions of particulate matter from field measurements was continued this quarter. As a first step in developing the ToPEM, we developed a sub-model that calculates the evaporation of major elements (Na, K, Fe, Si, Al, Ca and Mg) from both inherent and extraneous minerals of coal. During this quarter, this sub-model was included into EMAF, which formed the ToPEM. Experimental data from the Phase I program were used to test and modify the sub-model and the ToPEM.

A KOLKER; AF SAROFIM; CL SENIOR; FE HUGGINS; GP HUFFMAN; I OLMEZ; J LIGHTY; JOL WENDT; JOSEPH J HELBLE; MR AMES; N YAP; R FINKELMAN; T PANAGIOTOU; W SEAMES

1998-12-08T23:59:59.000Z

138

Thermodynamics of the solvent swelling of coal  

SciTech Connect (OSTI)

Sorption of pyridine by the pyridine-extracts of three premium Argonne coals was studied at several relative vapor pressures at 50{degree}C. The amount of pyridine sorbed by each extract increases linearly with pyridine vapor pressure. The extrapolated lines do not pass through the origin. At low pressures, a dual-mode sorption mechanism is proposed, whereby pyridine concurrently fills holes (microvoids) and dissolves into the extract. At higher pressures, we propose that the holes are saturated and that only dissolution is occurring. Dissolution thus increases linearly with pressure of pyridine. Not all pyridine can be desorbed from the extract. The amount remaining corresponds closely to the intercept of the straight-line curve. This result suggests that pyridine cannot be desorbed from the holes at the experimental temperature. 1 ref., 4 figs., 1 tab.

Green, T.K.

1990-01-01T23:59:59.000Z

139

The holographic mapping of the Standard Model onto the black hole horizon, Part I: Abelian vector field, scalar field and BEH Mechanism  

E-Print Network [OSTI]

Interactions between outgoing Hawking particles and ingoing matter are determined by gravitational forces and Standard Model interactions. In particular the gravitational interactions are responsible for the unitarity of the scattering against the horizon, as dictated by the holographic principle, but the Standard Model interactions also contribute, and understanding their effects is an important first step towards a complete understanding of the horizon's dynamics. The relation between in- and outgoing states is described in terms of an operator algebra. In this paper, the first of a series, we describe the algebra induced on the horizon by U(1) vector fields and scalar fields, including the case of an Englert-Brout-Higgs mechanism, and a more careful consideration of the transverse vector field components.

G. 't Hooft

2005-04-25T23:59:59.000Z

140

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

Coal Prices..AEO 2007 forecast for coal prices for PRB coal. Transmissionregimes. Sensitivity to Coal Prices Figure 9 is similar to

Phadke, Amol

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hole coal field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Coal recovery process  

DOE Patents [OSTI]

A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

1992-01-01T23:59:59.000Z

142

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous systems of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of projected DOE/EPA early cost estimates. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

Jean Bustard

2004-04-27T23:59:59.000Z

143

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the eleventh reporting quarter, progress was made on the project in the following areas: (1) All Test Sites--Final reports for Gaston and Pleasant Prairie are complete and have been issued; and Ongoing data and sample analysis is nearly complete as well as work on the final reports. (2) Technology Transfer--A number of technical presentations and briefings were made during the quarter. Several papers were presented at the MEGA Symposium in Washington DC.

Richard Schlager; Tom Millar

2003-07-01T23:59:59.000Z

144

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous systems of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of projected DOE/EPA early cost estimates. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that was tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology injects a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. PG&E National Energy Group provided two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company provided a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company hosted a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the seventeenth reporting quarter, progress was made on the project in the following areas: Test Sites--The Topical Report for the Salem Harbor Station was issued during the quarter. The Topical Report for the Brayton Point Station testing is in preparation; and Technology Transfer--Technical information about the project was presented at PowerGen and at an A&WMA Rocky Mountain States Section meeting.

Jean Bustard; Richard Schlager

2005-01-03T23:59:59.000Z

145

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the twelfth reporting quarter, progress was made on the project in the following areas: All Test Sites--Ongoing data and sample analysis for the two remaining plants is nearly complete as well as work on the final reports. Technology Transfer--A number of technical presentations and briefings were made during the quarter. Several papers were presented at Air Quality IV in Washington D.C.

Richard Schlager; Tom Millar

2003-11-04T23:59:59.000Z

146

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous systems of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of projected DOE/EPA early cost estimates. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that was tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology injects a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. PG&E National Energy Group provided two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company provided a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company hosted a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the sixteenth reporting quarter, progress was made on the project in the following areas: (1) Test Sites--The Topical Report for the Salem Harbor Station testing was completed during the quarter and will be issued early next quarter. The Topical Report for the Brayton Point Station testing is in preparation. (2) Technology Transfer--Technical information about the project was presented to a chemistry workshop during the quarter.

Jean Bustard; Richard Schlager

2004-10-25T23:59:59.000Z

147

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the thirteenth reporting quarter, progress was made on the project in the following areas: All Test Sites--Ongoing data and sample analysis for the two remaining plants is nearly complete as well as work on the final reports. Technology Transfer--A number of technical presentations and briefings were made during the quarter.

Richard Schlager; Tom Millar

2003-03-02T23:59:59.000Z

148

Quantum black hole inflation  

E-Print Network [OSTI]

In this paper we follow a new approach for particle creation by a localized strong gravitational field. The approach is based on a definition of the physical vacuum drawn from Heisenberg uncertainty principle. Using the fact that the gravitational field red-shifts the frequency modes of the vacuum, a condition on the minimum stregth of the gravitational field required to achieve real particle creation is derived. Application of this requirement on a Schwartzchid black hole resulted in deducing an upper limit on the region, outside the event horizon, where real particles can be created. Using this regional upper limit, and considering particle creation by black holes as a consequence of the Casimir effect, with the assumption that the created quanta are to be added to the initial energy, we deduce a natural power law for the development of the event horizon, and consequently a logarithmic law for the area spectrum of an inflating black hole. Application of the results on a cosmological model shows that if we start with a Planck-dimensional black hole, then through the process of particle creation we end up with a universe having the presently estimated critical density. Such a universe will be in a state of eternal inflation.

M. B. Altaie

2001-05-07T23:59:59.000Z

149

Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas  

SciTech Connect (OSTI)

This document provides a summary of the full-scale demonstration efforts involved in the project ''Field Test Program for Long-Term Operation of a COHPAC{reg_sign} System for Removing Mercury from Coal-Fired Flue Gas''. The project took place at Alabama Power's Plant Gaston Unit 3 and involved the injection of sorbent between an existing particulate collector (hot-side electrostatic precipitators) and a COHPAC{reg_sign} fabric filter (baghouse) downstream. Although the COHPAC{reg_sign} baghouse was designed originally for polishing the flue gas, when activated carbon injection was added, the test was actually evaluating the EPRI TOXECON{reg_sign} configuration. The results from the baseline tests with no carbon injection showed that the cleaning frequency in the COHPAC{reg_sign} unit was much higher than expected, and was above the target maximum cleaning frequency of 1.5 pulses/bag/hour (p/b/h), which was used during the Phase I test in 2001. There were times when the baghouse was cleaning continuously at 4.4 p/b/h. In the 2001 tests, there was virtually no mercury removal at baseline conditions. In this second round of tests, mercury removal varied between 0 and 90%, and was dependent on inlet mass loading. There was a much higher amount of ash exiting the electrostatic precipitators (ESP), creating an inlet loading greater than the design conditions for the COHPAC{reg_sign} baghouse. Tests were performed to try to determine the cause of the high ash loading. The LOI of the ash in the 2001 baseline tests was 11%, while the second baseline tests showed an LOI of 17.4%. The LOI is an indication of the carbon content in the ash, which can affect the native mercury uptake, and can also adversely affect the performance of ESPs, allowing more ash particles to escape the unit. To overcome this, an injection scheme was implemented that balanced the need to decrease carbon injection during times when inlet loading to the baghouse was high and increase carbon injection when inlet loading and mercury removal were low. The resulting mercury removal varied between 50 and 98%, with an overall average of 85.6%, showing that the process was successful at removing high percentages of vapor-phase mercury even with a widely varying mass loading. In an effort to improve baghouse performance, high-permeability bags were tested. The new bags made a significant difference in the cleaning frequency of the baghouse. Before changing the bags, the baghouse was often in a continuous clean of 4.4 p/b/h, but with the new bags the cleaning frequency was very low, at less than 1 p/b/h. Alternative sorbent tests were also performed using these high-permeability bags. The results of these tests showed that most standard, high-quality activated carbon performed similarly at this site; low-cost sorbent and ash-based sorbents were not very effective at removing mercury; and chemically enhanced sorbents did not appear to offer any benefits over standard activated carbons at this site.

C. Jean Bustard; Charles Lindsey; Paul Brignac

2006-05-01T23:59:59.000Z

150

Observational Evidence for Black Holes  

E-Print Network [OSTI]

Astronomers have discovered two populations of black holes: (i) stellar-mass black holes with masses in the range 5 to 30 solar masses, millions of which are present in each galaxy in the universe, and (ii) supermassive black holes with masses in the range 10^6 to 10^{10} solar masses, one each in the nucleus of every galaxy. There is strong circumstantial evidence that all these objects are true black holes with event horizons. The measured masses of supermassive black hole are strongly correlated with properties of their host galaxies, suggesting that these black holes, although extremely small in size, have a strong influence on the formation and evolution of entire galaxies. Spin parameters have recently been measured for a handful of black holes. Based on the data, there is an indication that the kinetic power of at least one class of relativistic jet ejected from accreting black holes may be correlated with black hole spin. If verified, it would suggest that these jets are powered by a generalized Penrose process mediated by magnetic fields.

Ramesh Narayan; Jeffrey E. McClintock

2014-07-20T23:59:59.000Z

151

Bio-coal briquette  

SciTech Connect (OSTI)

Some of the developing nations aim to earn foreign currency by exporting oil and/or gas and to increase the domestic consumption of coal to ensure a secure energy supply. Therefore, it is very important to promote effective coal utilization in these nations. Currently, these countries experience problems associated with coal use for household cooking and household industries. For household cooking, coal creates too much smoke and smells unpleasant. In addition, illegally obtained firewood is almost free in local agricultural regions. Coal is also used in household industries; however, simple stoker boilers are inefficient, since unburned coal particles tend to drop through screens during the combustion process. The bio-coal briquette, on the other hand, is an effective and efficient fuel, since it utilizes coal, which is to be used extensively in households and in small and medium-scale industry sectors in some coal-producing countries, as a primary fuel and bamboos (agricultural waste) as a secondary fuel. In addition, the use of bio-coal briquettes will greatly help reduce unburned coal content.

Honda, Hiroshi

1993-12-31T23:59:59.000Z

152

Coal: the new black  

SciTech Connect (OSTI)

Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is to convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.

Tullo, A.H.; Tremblay, J.-F.

2008-03-15T23:59:59.000Z

153

Chemical comminution of coal  

SciTech Connect (OSTI)

The objective of the present research is to study the chemical reactivity of a mixture of methyl alcohol and aqueous sodium hydroxide solution in the temperature range 298 to 363 K, and a caustic concentration of 0 to 10 wt. %, on an Iowa bituminous coal. The sample studied was collected from coal zone 4, equivalent to most historical references to Laddsdale coal. The coals in this zone are typical high-sulfur, high-ash middle Pennsylvania Cherokee group coals. The apparent rank is high-volatile C bituminous coal. The relatively high content of sulfur and 23 other elements in these coals is related to near neutral (6-8) pH conditions in the depositional and early diagenetic environments, and to postdepositional sphalerite/calcite/pyrite/kaolinite/barite mineralization.

Mamaghani, A.H.; Beddow, J.K.; Vetter, A.F.

1987-02-01T23:59:59.000Z

154

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the ninth reporting quarter, progress was made on the project in the following areas: PG&E NEG Salem Harbor Station -- Long term testing and equipment decommissioning has been completed, A web cast/conference call was held to review data, and Preliminary preparation and review of data and test results for the final report. Technology Transfer -- A number of technical presentations and briefings were made during the quarter. Notable among them was a Program Status Report presented to NETL. Also, one paper was presented at Power-Gen and one at the Annual Coal Marketing Strategies Conference.

Richard Schlager; Tom Millar

2003-01-27T23:59:59.000Z

155

A new spin on black hole hair  

E-Print Network [OSTI]

We show that scalar hair can be added to rotating, vacuum black holes of general relativity. These hairy black holes (HBHs) clarify a lingering question concerning gravitational solitons: if a black hole can be added at the centre of a boson star, as it typically can for other solitons. We argue that it can, but only if it is spinning. The existence of such HBHs is related to the Kerr superradiant instability triggered by a massive scalar field. This connection leads to the following conjecture: a (hairless) black hole which is afflicted by the superradiant instability of a given field must allow hairy generalizations with that field.

Herdeiro, Carlos A R

2014-01-01T23:59:59.000Z

156

FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{trademark}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{trademark} baghouse. Activated carbon was injected between the ESP and COHPAC{trademark} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{trademark} unit. The test also showed that activated carbon was effective in removing both forms of mercury--elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{trademark}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{trademark} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{trademark} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

2004-01-29T23:59:59.000Z

157

White holes and eternal black holes  

E-Print Network [OSTI]

We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi- thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal.

Stephen D. H. Hsu

2011-11-16T23:59:59.000Z

158

Absorption cross section of RN black hole  

E-Print Network [OSTI]

The behavior of a charged scalar field in the RN black hole space time is studied using WKB approximation. In the present work it is assumed that matter waves can get reflected from the event horizon. Using this effect, the Hawking temperature and the absorption cross section for RN black hole placed in a charged scalar field are calculated. The absorption cross section $\\sigma _{abs}$ is found to be inversely proportional to square of the Hawking temperature of the black hole.

Sini R.; V. C. Kuriakose

2007-08-23T23:59:59.000Z

159

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

Council (NCC), 2006, “Coal: America’s Energy Future”, VolumeAssessments to Inform Energy Policy, “Coal: Research andOF RAIL TRANSPORTATION OF COAL The Federal Energy Regulatory

McCollum, David L

2007-01-01T23:59:59.000Z

160

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

OF RAIL TRANSPORTATION OF COAL The Federal Energy RegulatoryPlants Due to Coal Shortages”, Federal Energy RegulatoryCouncil (NCC), 2006, “Coal: America’s Energy Future”, Volume

McCollum, David L

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hole coal field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

of total electricity generation is because coal plants haveplants come to play an important role in the electricity generationplants will be built in the years around 2020, thereby increasing coal’s share of electricity generation

McCollum, David L

2007-01-01T23:59:59.000Z

162

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

a particular type of coal, each of which is inherentlyThere are four classes of coal: bituminous, sub-bituminous,minerals Metallic ores Coal Crude petroleum Gasoline Fuel

McCollum, David L

2007-01-01T23:59:59.000Z

163

Black Hole Evaporation as a Nonequilibrium Process  

E-Print Network [OSTI]

When a black hole evaporates, there arises a net energy flow from the black hole into its outside environment due to the Hawking radiation and the energy accretion onto black hole. Exactly speaking, due to the net energy flow, the black hole evaporation is a nonequilibrium process. To study details of evaporation process, nonequilibrium effects of the net energy flow should be taken into account. In this article we simplify the situation so that the Hawking radiation consists of non-self-interacting massless matter fields and also the energy accretion onto the black hole consists of the same fields. Then we find that the nonequilibrium nature of black hole evaporation is described by a nonequilibrium state of that field, and we formulate nonequilibrium thermodynamics of non-self-interacting massless fields. By applying it to black hole evaporation, followings are shown: (1) Nonequilibrium effects of the energy flow tends to accelerate the black hole evaporation, and, consequently, a specific nonequilibrium phenomenon of semi-classical black hole evaporation is suggested. Furthermore a suggestion about the end state of quantum size black hole evaporation is proposed in the context of information loss paradox. (2) Negative heat capacity of black hole is the physical essence of the generalized second law of black hole thermodynamics, and self-entropy production inside the matter around black hole is not necessary to ensure the generalized second law. Furthermore a lower bound for total entropy at the end of black hole evaporation is given. A relation of the lower bound with the so-called covariant entropy bound conjecture is interesting but left as an open issue.

Hiromi Saida

2008-11-11T23:59:59.000Z

164

Black holes cannot support conformal scalar hair  

E-Print Network [OSTI]

It is shown that the only static asymptotically flat non-extrema black hole solution of the Einstein-conformally invariant scalar field equations having the scalar field bounded on the horizon, is the Schwarzschild one. Thus black holes cannot be endowed with conformal scalar hair of finite length.

T. Zannias

1994-09-14T23:59:59.000Z

165

Pulverized coal fuel injector  

DOE Patents [OSTI]

A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

Rini, Michael J. (Hebron, CT); Towle, David P. (Windsor, CT)

1992-01-01T23:59:59.000Z

166

Determination of Coal Permeability Using Pressure Transient Methods  

SciTech Connect (OSTI)

Coalbed methane is a significant natural resource in the Appalachian region. It is believed that coalbed methane production can be enhanced by injection of carbon dioxide into coalbeds. However, the influence of carbon dioxide injection on coal permeability is not yet well understood. Competitive sorption of carbon dioxide and methane gases onto coal is a known process. Laboratory experiments and limited field experience indicate that coal will swell during sorption of a gas and shrink during desorption of a gas. The swelling and shrinkage may change the permeability of the coal. In this study, the permeability of coal was determined by using carbon dioxide as the flowing fluid. Coal samples with different dimensions were prepared for laboratory permeability tests. Carbon dioxide was injected into the coal and the permeability was determined by using pressure transient methods. The confining pressure was variedto cover a wide range of depths. The permeability was also determined as a function of exposure time of carbon dioxide while the confining stress was kept constant. CT scans were taken before and after the introduction of carbon dioxide. Results show that the porosity and permeability of the coal matrix was very low. The paper presents experimental data and theoretical aspects of the flow of carbon dioxide through a coal sample during pressure transient tests. The suitability of the pressure transient methods for determining permeability of coal during carbon dioxide injection is discussed in the paper.

McLendon, T.R.; Siriwardane, H. (West Virginia University, Morgantown, WV); Haljasmaa, I.V.; Bromhal, G.S.; Soong, Y.; Irdi, G.A.

2007-05-01T23:59:59.000Z

167

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

coal (PC) or integrated gasification combined cycle ( IGCC)coal (PC) or integrated gasification combined cycle (IGCC)will be integrated gasification combined cycle (IGCC) (Same

McCollum, David L

2007-01-01T23:59:59.000Z

168

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Credit Extra Fuel Oil Coal to gasifier Na cost· Na processoiL Replace res. with coal as gasifier feed. 543 ton/day @$

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

169

Coal-bed methane production in eastern Kansas: Its potential and restraints  

SciTech Connect (OSTI)

In 1921 and again in 1988, workers demonstrated that the high volatile A and B coals of the Pennsylvanian Cherokee Group can be produced economically from vertically drilled holes, and that some of these coals have a gas content as high as 200 ft{sup 3}/ton. Detailed subsurface mapping on a county-by-county basis using geophysical logs shows the Weir coal seam to be the thickest (up to 6 ft thick) and to exist in numerous amoeba-shaped pockets covering several thousand acres. Lateral pinch-out into deltaic sands offers a conventional gas source. New attention to geophysical logging shows most coals have a negative SP response, high resistivities, and densities of 1.6 g/cm{sup 3}. Highly permeable coals cause lost circulation during drilling and thief zones during cementing, and they are the source of abundant unwanted salt water. Low-permeability coals can be recognized by their high fracture gradients, which are difficult to explain but are documented to exceed 2.2. Current successful completions use both limited-entry, small-volume nitrogen stimulations or an open hole below production casing. Subsurface coals are at normal Mid-Continent pressures and may be free of water. Initially, some wells flow naturally without pumping. Saltwater disposal is often helped by the need for water in nearby waterflood projects and the easy availability of state-approved saltwater disposal wells in Mississippi and Arbuckle carbonates. Recent attempts to recomplete coal zones in slim-hole completions are having mixed results. The major restraints to coal-bed methane production are restricted to low permeability of the coals and engineering problems, not to the availability or gas content of the coals.

Stoeckinger, B.T.

1989-08-01T23:59:59.000Z

170

Coal Mining Tax Credit (Arkansas)  

Broader source: Energy.gov [DOE]

The Coal Mining Tax Credit provides an income or insurance premium tax credit of $2.00 per ton of coal mined, produced or extracted on each ton of coal mined in Arkansas in a tax year. An...

171

Illinois Coal Revival Program (Illinois)  

Broader source: Energy.gov [DOE]

The Illinois Coal Revival Program is a grants program providing partial funding to assist with the development of new, coal-fueled electric generation capacity and coal gasification or IGCC units...

172

COAL DESULFURIZATION PRIOR TO COMBUSTION  

E-Print Network [OSTI]

Corporation, 5-25~79. on Coal Liquefaction at ChevronHamersma, et a L, "Meyers Process for Coal Desulfurization,"in Wheelock, Coal Desulfurization, ACS Symp. Ser 64 (1977(.

Wrathall, J.

2013-01-01T23:59:59.000Z

173

US coal market softens  

SciTech Connect (OSTI)

The operators table some near term expansion plans, meanwhile long-term fundamentals look strong. This is one of the findings of the Coal Age Forecast 2007 survey of readers predictions on production and consumption of coal and attitudes in the coal industry. 50% of respondents expected product levels in 2007 to be higher than in 2006 and 50% described the attitude in the coal industry to be more optimistic in 2007 than in 2006. Most expenditure is anticipated on going on new equipment but levels of expenditure will be less than in 2006. 7 figs.

Fiscor, S.

2007-01-15T23:59:59.000Z

174

Coal Gasification Systems Solicitations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low Cost Coal Conversion to High Hydrogen Syngas; FE0023577 Alstom's Limestone Chemical Looping Gasification Process for High Hydrogen Syngas Generation; FE0023497 OTM-Enhanced...

175

Coal extraction process  

SciTech Connect (OSTI)

Sub-divided coal is extracted under non-thermally destructive conditions with a solvent liquid containing a compound having the general formula:

Hammack, R. W.; Sears, J. T.; Stiller, A. H.

1981-06-09T23:59:59.000Z

176

Clean Coal Projects (Virginia)  

Broader source: Energy.gov [DOE]

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

177

Coal Mining Regulations (Kentucky)  

Broader source: Energy.gov [DOE]

Kentucky Administrative Regulation Title 405 chapters 1, 2, 3, 5, 7, 8, 10, 12, 16, 18 and 20 establish the laws governing coal mining in the state.

178

Coal Development (Nebraska)  

Broader source: Energy.gov [DOE]

This section provides for the development of newly-discovered coal veins in the state, and county aid for such development.

179

Clean coal technology applications  

SciTech Connect (OSTI)

{open_quotes}Coal is a stratified rock formed of the more or less altered remains of plants (together with associated mineral matter) which flourished in past ages{hor_ellipsis} The problem of the origin and maturing of coal is complicated by the fact that every coal contains, in addition to carbon, hydrogen and oxygen, variable proportions of nitrogen and sulfur which are combined in unknown ways in the organic molecules...{close_quotes}. The challenge with coal has always been the management of its mineral matter, sulfur and nitrogen contents during use. The carbon content of fuels, including coal, is a more recent concern. With clean coal technologies, there are opportunities for ensuring the sustained use of coal for a very long time. The clean coal technologies of today are already capable of reducing, if not eliminating, harmful emissions. The technologies of the future will allow coal to be burned with greatly reduced emissions, thus eliminating the necessity to treat them after they occur.

Bharucha, N.

1993-12-31T23:59:59.000Z

180

Methane emission from flooded coal seams in abandoned mines, in the light of laboratory investigations  

E-Print Network [OSTI]

Methane emission from flooded coal seams in abandoned mines, in the light of laboratory of methane from flooded unexploited coal seams Field experience from the flooding operations of the abandoned sorption capacity of coal in the dry-air state through determining the isotherm of methane sorption

Boyer, Edmond

Note: This page contains sample records for the topic "hole coal field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cooperative research program in coal liquefaction  

SciTech Connect (OSTI)

This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

Huffman, G.P. (ed.)

1991-01-01T23:59:59.000Z

182

Cooperative research program in coal liquefaction  

SciTech Connect (OSTI)

Research continues on coal liquefaction in the following areas: (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

Huffman, G.P. (ed.)

1992-01-01T23:59:59.000Z

183

Clean coal technologies market potential  

SciTech Connect (OSTI)

Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

Drazga, B. (ed.)

2007-01-30T23:59:59.000Z

184

Illinois Coal Development Program (Illinois)  

Broader source: Energy.gov [DOE]

The Illinois Coal Development Program seeks to advance promising clean coal technologies beyond research and towards commercialization. The program provides a 50/50 match with private industry...

185

Deashing of coal liquids by sonically assisted filtration  

SciTech Connect (OSTI)

This project seeks to improve the effectiveness and reduce the cost of coal liquefaction by novel applications of sonic and ultrasonic energy. The specific purpose of this project is to develop and improve means for the economical removal of dispersed solid particles of ash, unreacted coal, and spent catalyst from direct and indirect coal liquefaction resids by using sonic or ultrasonic waves. Product streams containing solids are generated in both direct and indirect coal liquefaction processes. Direct coal liquefaction processes generate liquid products which contain solids including coal-originated mineral matter, unreacted coal, and spent dispersed catalyst. The removal of these solids from a product stream is one of the most difficult problems in direct coal liquefaction processes. Crossflow filtration is suitable for continuous flow operation and, when coupled with a sonic or ultrasonic field, may constitute a solution to operational problems of solids separation in coal liquefaction. However, for the efficient and trouble-free operation of crossflow filters the problems arising from dealing with highly viscous coal liquefaction resids need to be avoided. Either crossflow filters suitable for work at elevated temperatures at reduced resid viscosity should be used or the coal liquefaction process network should be modified to allow for dilution of resids using a distillate fraction, e.g., naphtha, diesel oil, etc., to reduce the viscosity of resids. As perhaps even a more practical alternative, field-assisted crossflow filtration of the reactor`s effluent stream prior to the distillation step should be considered. Such an approach will circumvent the more difficult separation of fine and ultrafine solids from highly viscous coal liquefaction resids.

Slomka, B.J. [Ames Laboratory, IA (United States)

1994-12-31T23:59:59.000Z

186

Pulverized coal combustion characterization at the KEPRI  

SciTech Connect (OSTI)

A pilot-scale combustion test facility that can be utilized to burn pulverized coals such as anthracite coals, bituminous coals, and their blends at the rate of 200 kg/hr has been constructed to study coal-related impacts on utility boiler operations. The impacts include pulverizer performance, combustion stability, slagging, fouling, heat transfer, erosion, corrosion, pollutant emission, etc. The facility, a scale-down model of an existing boiler in Korea, consists of all the necessary components for the boiler with a distributed control system except steam generation components which have been replaced with slag panels, fouling probes, and heat exchangers. The facility, in addition, incorporates the advanced boiler technologies including tangentially-fired burners, flue gas recirculation, direct sorbent injection for desulfurization, electrostatic precipitator, wet scrubber, etc., and employs an opacity meter and gas analyzers. Low NOx burners and gas reburning system will be facilitated in the future to study low emission boiler systems being demonstrated in the developed countries. This paper represents preliminary test results including flame shapes, fouling based on the fouling factor, and pollutant emission with different coals and combustion aerodynamics. Flow fields in the furnace have been changed by varying the swirl number and the burner configurations in terms of single-wall, opposed-wall, and corner firing mode. An extensive investigation will continue to find optimum conditions for various coals of interest.

Cha, D.J.; Kim, S.C.; Bae, B.H.; Kim, T.H.; Shin, Y.J.; Lee, H.D.; Park, O.Y.; Choi, B.S.

1997-12-31T23:59:59.000Z

187

Fire Clay coal and sandstone washouts  

SciTech Connect (OSTI)

The Fire Clay coal bed has been studied in a portion of southeastern Kentucky. This seam is easily recognizable by a distinctive flint clay parting. Mine maps, field descriptions, and laboratory investigations were used to investigate this coal bed. Several elongate sandstone bodies cut the seam in the study area. These sandstone bodies are subparallel roughly east-west, and are typically 10[sup 1] to 10[sup 2] m wide, and 10[sup 2] m to tens of kilometers long. These sandstone washouts occur in areas overlain by a larger channel sandstone, which usually is found associated with the thickest areas of the coal seam. In south-central Perry County, a cross section of one washout area was well exposed. North of the washout, a 4 to 7 cm thick cannel coal was present at the base of the sequence. The coal on the north side of the cutout gradually thins from 2 m to 1.5 m away from the washout. On the south side of the washout, the coal thins abruptly from over 1.5 m to 1.25 m within 30 m of the channel. An island of slumped and slickensided coal is present within the washout region. Postdepositional differential compaction of the peat is inferred to be the control on placement of the channel system. The areas of thickest peat compacted the most, creating topographic lows through which the stream moved. The regions of thick coal were probably the result of several controlling factors. Predepositional differential compaction and erosion may have produced relief which influenced peat development. Lithologic and geochemical continuity across the channel is good, supporting postdepositional emplacement of the sandstone bodies.

Andrews, W.M. Jr.; Hower, J.C. (Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research)

1992-01-01T23:59:59.000Z

188

Method for coal liquefaction  

DOE Patents [OSTI]

A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400.degree. C. at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1.

Wiser, Wendell H. (Kaysville, UT); Oblad, Alex G. (Salt Lake City, UT); Shabtai, Joseph S. (Salt Lake City, UT)

1994-01-01T23:59:59.000Z

189

State coal profiles, January 1994  

SciTech Connect (OSTI)

The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

Not Available

1994-02-02T23:59:59.000Z

190

Coal in China  

SciTech Connect (OSTI)

The article gives an overview of the production and use of coal in China, for power generation and in other sectors. Coal use for power generation was 850 million tonnes in 2003 and 800 million tonnes in the non-power sector. The majority of power will continue to be produced from coal, with a trend towards new larger pulverised coal fired units and introduction of circulating fluidised bed combustors. Stricter regulations are forcing introduction of improved pollution control technologies. It seems likely that China will need international finance to supplement private and state investment to carry out a programme to develop and apply clean coal technologies. The author concludes that there is evidence of a market economy being established but there is a need to resolve inconsistencies with the planned aspects of the economy and that additional policies are needed in certain sectors to achieve sustainable development. 1 ref., 2 figs., 2 tabs.

Minchener, A.J. [IEA Clean Coal Centre, London (United Kingdom)

2005-07-01T23:59:59.000Z

191

CO2 Sequestration in Unmineable Coal Seams: Potential Environmental Impacts  

SciTech Connect (OSTI)

An initial investigation into the potential environmental impacts of CO2 sequestration in unmineable coal seams has been conducted, focusing on changes in the produced water during enhanced coalbed methane (ECBM) production using a CO2 injection process (CO2-ECBM). Two coals have been used in this study, the medium volatile bituminous Upper Freeport coal (APCS 1) of the Argonne Premium Coal Samples series, and an as-mined Pittsburgh #8 coal, which is a high volatile bituminous coal. Coal samples were reacted with either synthetic produced water or field collected produced water and gaseous carbon dioxide at 40 ?C and 50 bar to evaluate the potential for mobilizing toxic metals during CO2-ECBM/sequestration. Microscopic and x-ray diffraction analysis of the post-reaction coal samples clearly show evidence of chemical reaction, and chemical analysis of the produced water shows substantial changes in composition. These results suggest that changes to the produced water chemistry and the potential for mobilizing toxic trace elements from coalbeds are important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration.

Hedges, S.W.; Soong, Yee; McCarthy Jones, J.R.; Harrison, D.K.; Irdi, G.A.; Frommell, E.A.; Dilmore, R.M.; Pique, P.J.; Brown, T.D

2005-09-01T23:59:59.000Z

192

CO2 Sequestration Potential of Texas Low-Rank Coals  

SciTech Connect (OSTI)

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The primary objectives for this reporting period were to construct a coal geological model for reservoir analysis and to continue acquisition of data pertinent to coal characterization that would help in determining the feasibility of carbon dioxide sequestration. Structural analysis and detailed correlation of coal zones are important for reservoir analysis and modeling. Evaluation of existing well logs indicates local structural complexity that complicates interpretations of continuity of the Wilcox Group coal zones. Therefore, we have begun searching for published structural maps for the areas of potential injection CO{sub 2}, near the coal-fired power plants. Preliminary evaluations of data received from Anadarko Petroleum Corporation suggest that coal properties and gas content and chemical composition vary greatly among coal seams. We are assessing the stratigraphic and geographic distributions and the weight of coal samples that Anadarko has provided to select samples for further laboratory analysis. Our goal is to perform additional isotherm analyses with various pure and/or mixed gases to enhance our characterization model. Additionally, we are evaluating opportunities for field determination of permeability with Anadarko, utilizing one of their wells.

Duane A. McVay; Walter B. Ayers, Jr.; Jerry L. Jensen

2004-04-01T23:59:59.000Z

193

Study of catalytic diffusion in coal. Final report, 1983-1984  

SciTech Connect (OSTI)

The purpose of these studies is to determine the pore (hole) size and pore shape distribution in standard bituminous coal samples from various Alabama coal seams such as that of the Mary Lee, Black Creek and Pratt during and after swelling of the coal with different solvents at various temperatures. These samples come from the Penn State Coal Sample Bank at Pennsylvania State University Coal Research Section and from Alabama's Mineral Industries. Methods were developed in the laboratory whereby free-radical probes of varying sizes can be diffused into the coal under various conditions. These probes can be detected and the environment surrounding the probes can be deduced by electron paramagnetic resonance (EPR) methods. To date, it has been found that not only can the shape and size of the pores be determined, but that the size distribution varies from one bituminous coal seam to another, even for coal of the same rank, suggesting a different optimal catalyst should be used for each seam. The effect of oxygen on the coal samples during grinding has been studied; however, the free radical technique appears to be insensitive to the presence of oxygen effects. The goal is to determine the structural differences between various bituminous coals.

Kispert, L.D.

1984-09-01T23:59:59.000Z

194

Coal Pile Basin Project (4595), 5/31/2012  

Broader source: Energy.gov (indexed) [DOE]

Coal Pile Basin Project (4595) Program or Field Office: Y-12 Site Office Location(s) (CityCountyState): Oak Ridge, Anderson County, Tennessee Proposed Action Description: Submit...

195

Coal market momentum converts skeptics  

SciTech Connect (OSTI)

Tight supplies, soaring natural gas prices and an improving economy bode well for coal. Coal Age presents it 'Forecast 2006' a survey of 200 US coal industry executives. Questions asked included predicted production levels, attitudes, expenditure on coal mining, and rating of factors of importance. 7 figs.

Fiscor, S.

2006-01-15T23:59:59.000Z

196

Conditioner for flotation of coal  

SciTech Connect (OSTI)

A method for recovering coal is described which comprises the steps of floating coal in an aqueous frothing medium containing an amount of a condensation product of an alkanolamine and naphthenic acid sufficient to increase the recovery of coal as compared to the recovery of coal in an identical process using none of the condensation product.

Nimerick, K.H.

1988-03-22T23:59:59.000Z

197

Remarks on Renormalization of Black Hole Entropy  

E-Print Network [OSTI]

We elaborate the renormalization process of entropy of a nonextremal and an extremal Reissner-Nordstr\\"{o}m black hole by using the Pauli-Villars regularization method, in which the regulator fields obey either the Bose-Einstein or Fermi-Dirac distribution depending on their spin-statistics. The black hole entropy involves only two renormalization constants. We also discuss the entropy and temperature of the extremal black hole.

Sang Pyo Kim; Sung Ku Kim; Kwang-Sup Soh; Jae Hyung Yee

1996-07-07T23:59:59.000Z

198

CO2 Sequestration Potential of Texas Low-Rank Coals  

SciTech Connect (OSTI)

The objective of this project is to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to further characterize the three areas selected as potential test sites, to begin assessing regional attributes of natural coal fractures (cleats), which control coalbed permeability, and to interview laboratories for coal sample testing. An additional objective was to initiate discussions with an operating company that has interests in Texas coalbed gas production and CO{sub 2} sequestration potential, to determine their interest in participation and cost sharing in this project. Well-log data are critical for defining depth, thickness, number, and grouping of coal seams at the proposed sequestration sites. Therefore, we purchased 15 well logs from a commercial source to make coal-occurrence maps and cross sections. Log suites included gamma ray (GR), self potential (SP), resistivity, sonic, and density curves. Other properties of the coals in the selected areas were collected from published literature. To assess cleat properties and describe coal characteristics, we made field trips to a Jackson coal outcrop and visited Wilcox coal exposures at the Sandow surface mine. Coal samples at the Sandow mine were collected for CO{sub 2} and methane sorption analyses. We contacted several laboratories that specialize in analyzing coals and selected a laboratory, submitting the Sandow Wilcox coals for analysis. To address the issue of cost sharing, we had fruitful initial discussions with a petroleum corporation in Houston. We reviewed the objectives and status of this project, discussed data that they have already collected, and explored the potential for cooperative data acquisition and exchange in the future. We are pursuing a cooperative agreement with them.

Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

2003-07-01T23:59:59.000Z

199

PressurePressure Indiana Coal Characteristics  

E-Print Network [OSTI]

TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · Coal Indiana Total Consumption Electricity 59,664 Coke 4,716 Industrial 3,493 Major Coal- red power plantsTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL

Fernández-Juricic, Esteban

200

Coal liquefaction process  

DOE Patents [OSTI]

A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

Wright, Charles H. (Overland Park, KS)

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hole coal field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Coal liquefaction process  

DOE Patents [OSTI]

A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.

Wright, C.H.

1986-02-11T23:59:59.000Z

202

Enhanced Combustion Low NOx Pulverized Coal Burner  

SciTech Connect (OSTI)

For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was predicted to be the most challenging of the three coals, with the Western bituminous coal predicted to beh

David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

2007-06-30T23:59:59.000Z

203

Process for separating anthracite coal from impurities  

SciTech Connect (OSTI)

A process is described for separating a first mixture including previously mined anthracite coal, klinker-type cinder ash and other refuse consisting of: a. separating the first mixture to produce a refuse portion and a second mixture consisting of anthracite and klinker-type cinder ash, b. reducing the average particle size in the second mixture to a uniform size, c. subjecting the second mixture to a separating magnetic field to produce a klinker-type cinder ash portion and an anthracite coal portion.

Stiller, D.W.; Stiller, A.H.

1985-05-06T23:59:59.000Z

204

Coal mine ground control. 3rd ed.  

SciTech Connect (OSTI)

The third edition not only completely revises and updates the original subject areas, but also is broadened to include a number of new topics such as high horizontal stresses, computer modeling, and highwall stability. The subject areas covered in this book define the current field of coal mine ground control, except for the recently emerging topic of mine seals and some conventional subjects such as coal/rock cutting and impoundment dams. It contains 1,134 references from all published sources, and archived since 1876.

Peng, S.S.

2008-09-15T23:59:59.000Z

205

An electromagnetic black hole made of metamaterials  

E-Print Network [OSTI]

Traditionally, a black hole is a region of space with huge gravitational field in the means of general relativity, which absorbs everything hitting it including the light. In general relativity, the presence of matter-energy densities results in the motion of matter propagating in a curved spacetime1, which is similar to the electromagnetic-wave propagation in a curved space and in an inhomogeneous metamaterial2. Hence one can simulate the black hole using electromagnetic fields and metamaterials. In a recent theoretical work, an optical black hole has been proposed based on metamaterials, in which the numerical simulations showed a highly efficient light absorption3. Here we report the first experimental demonstration of electromagnetic black hole in the microwave frequencies. The proposed black hole is composed of non-resonant and resonant metamaterial structures, which can absorb electromagnetic waves efficiently coming from all directions due to the local control of electromagnetic fields. Hence the elect...

Cheng, Qiang

2009-01-01T23:59:59.000Z

206

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

generation systems. Coal energy density could be increasedfuel reserves were coal by energy content; 19% were oil, andConsumption, 2007 coal/primary energy consumption Source: BP

Aden, Nathaniel

2010-01-01T23:59:59.000Z

207

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

19 3.4. Coking coal for iron & steels FOB export value for coking coal was relatively stables FOB export value for coking coal significantly increased

Aden, Nathaniel

2010-01-01T23:59:59.000Z

208

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

12 2.6. International coal prices and18 International coal prices and trade In parallel with the2001, domestic Chinese coal prices moved from stable levels

Aden, Nathaniel

2010-01-01T23:59:59.000Z

209

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

farms with advanced coal generation facilities and operatingfarms with advanced coal generation facilities and operatingin the stand-alone coal generation option (IGCC+CCS plant)

Phadke, Amol

2008-01-01T23:59:59.000Z

210

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

services. Power generation Coal increasingly dominates28 Thermal coal electricity generation efficiency alsostudy examines four coal-thermal generation technology types

Aden, Nathaniel

2010-01-01T23:59:59.000Z

211

Clean Coal Power Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other...

212

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

Phadke, Amol

2008-01-01T23:59:59.000Z

213

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

of deploying advanced coal power in the Chinese context,”12 2.6. International coal prices and12 III. Chinese Coal

Aden, Nathaniel

2010-01-01T23:59:59.000Z

214

Aqueous coal slurry  

DOE Patents [OSTI]

An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

Berggren, Mark H.; Smit, Francis J.; Swanson, Wilbur W.

1993-04-06T23:59:59.000Z

215

Coal markets squeeze producers  

SciTech Connect (OSTI)

Supply/demand fundamentals seem poised to keep prices of competing fossil fuels high, which could cushion coal prices, but increased mining and transportation costs may squeeze producer profits. Are markets ready for more volatility?

Ryan, M.

2005-12-01T23:59:59.000Z

216

Clean Coal Research  

Broader source: Energy.gov [DOE]

DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

217

Clean Coal Technology (Indiana)  

Broader source: Energy.gov [DOE]

A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

218

Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

these provisions are assumed to result in 1 gigawatt of advanced coal-fired capacity with carbon capture and sequestration by 2017. Subtitle B which extends the phaseout of...

219

Coal Market Module This  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

together, are assumed to result in about 1 gigawatt of advanced coal-fired capacity with carbon capture and sequestration by 2017. EIEA was passed in October 2008 as part of the...

220

Quarterly coal report  

SciTech Connect (OSTI)

The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1995 and aggregated quarterly historical data for 1987 through the third quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

Young, P.

1996-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "hole coal field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Aqueous coal slurry  

DOE Patents [OSTI]

An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

Berggren, Mark H. (Golden, CO); Smit, Francis J. (Arvada, CO); Swanson, Wilbur W. (Golden, CO)

1993-01-01T23:59:59.000Z

222

Coal liquefaction process  

DOE Patents [OSTI]

This invention relates to an improved process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal. The claimed improved process includes the hydrocracking of the light SRC mixed with a suitable hydrocracker solvent. The recycle of the resulting hydrocracked product, after separation and distillation, is used to produce a solvent for the hydrocracking of the light solvent refined coal.

Skinner, Ronald W. (Allentown, PA); Tao, John C. (Perkiomenville, PA); Znaimer, Samuel (Vancouver, CA)

1985-01-01T23:59:59.000Z

223

Coal Liquefaction desulfurization process  

DOE Patents [OSTI]

In a solvent refined coal liquefaction process, more effective desulfurization of the high boiling point components is effected by first stripping the solvent-coal reacted slurry of lower boiling point components, particularly including hydrogen sulfide and low molecular weight sulfur compounds, and then reacting the slurry with a solid sulfur getter material, such as iron. The sulfur getter compound, with reacted sulfur included, is then removed with other solids in the slurry.

Givens, Edwin N. (Bethlehem, PA)

1983-01-01T23:59:59.000Z

224

Method for coal liquefaction  

DOE Patents [OSTI]

A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400 C at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1. 1 figures.

Wiser, W.H.; Oblad, A.G.; Shabtai, J.S.

1994-05-03T23:59:59.000Z

225

Pulverization Induced Charge: In-Line Dry Coal Cleaning  

SciTech Connect (OSTI)

The technical feasibility of separating mineral matter and pyrite from coal as it is transported from pulverizers to boilers in pulverized coal combustion units will be examined. The charge imparted on coal during pulverization and transport to pulverized coal (PC) burners in a utility boiler will be quantified. In addition to field charge measurements, an existing computational model will be extended to numerically simulate charged particle motion in a turbulent gas through an electric field. Results from the field tests and numerical modeling will be employed in design and construction of a laboratory scale pulverizer/classifier. This laboratory unit will be used to quantify the magnitude and differential charge imparted on bituminous and subbituminous coals during pulverization and classification at temperatures and with gaseous constituents typical to utility PC units. An electrostatic separator, designed for in-line operation between pulverizers and PC boilers, will be used to clean prepulverized coals. Theoretical and experimental data are to be used in preparing a preliminary design for a full-scale, (15 ton/hr) in-line, electrostatic coal cleaning device. Finally, the economic potential for application to PC units will be assessed.

Schaefer, J.L.; Stencel, J.M.

1997-05-13T23:59:59.000Z

226

PULVERIZATION INDUCED CHARGE: IN-LINE DRY COAL CLEANING  

SciTech Connect (OSTI)

The technical feasibility of separating mineral matter and pyrite from coal as it is transported from pulverizers to burners in pulverized coal combustion units will be examined. The charge imparted on coal during pulverization and transport to pulverized coal (PC) burners in a utility boiler will be quantified. In addition to field charge measurements, an existing computational model will be extended to numerically simulate charged particle motion in a turbulent gas through an electric field. Results from the field tests and numerical modeling will be employed in design and construction of a laboratory scale pulverizer/classifier. This laboratory unit will be used to quantify the magnitude and differential charge imparted on bituminous and subbituminous coals during pulverization and classification at temperatures and with gaseous constituents typical to utility PC units. An electrostatic separator, designed for in-line operation between pulverizers and PC boilers, will be used to clean prepulverized coals. Theoretical and experimental data are to be used in preparing a preliminary design for a full-scale, (15 ton/hr) in-line, electrostatic coal cleaning device. Finally, the economic potential for application to PC units will be assessed.

JOHN M. STENCEL

1998-07-01T23:59:59.000Z

227

Pulverization Induced Charge: In-Line Dry Coal Cleaning  

SciTech Connect (OSTI)

The technical feasibility of separating mineral matter and pyrite from coal as it is transported from pulverizers to burners in pulverized coal combustion units will be examined. The charge imparted on coal during pulverization and transport to pulverized coal (PC) burners in a utility boiler will be quantified. In addition to field charge measurements, an existing computational model will be extended to numerically simulate charged particle motion in a turbulent gas through an electric field. Results from the field tests and numerical modeling will be employed in design and construction of a laboratory scale pulverizer/classifier. This laboratory unit will be used to quantify the magnitude and differential charge imparted on bituminous and subbituminous coals during pulverization and classification at temperatures and with gaseous constituents typical to utility PC units. An electrostatic separator, designed for in-line operation between pulverizers and PC boilers, will be used to clean prepulverized coals. Theoretical and experimental data are to be used in preparing a preliminary design for a full-scale, (15 ton/hr) in-line, electrostatic coal cleaning device. Finally, the economic potential for application to PC units will be assessed.

John M. Stencel

1998-05-26T23:59:59.000Z

228

Pulverization Induced Charge: In-Line Dry Coal Cleaning  

SciTech Connect (OSTI)

The technical feasibility of separating mineral matter and pyrite from coal as it is transported from pulverizers to burners in pulverized coal combustion units will be examined. The charge imparted on coal during pulverization and transport to pulverized coal (PC) burners in a utility boiler will be quantified. In addition to field charge measurements, an existing computational model will be extended to numerically simulate charged particle motion in a turbulent gas through an electric field. Results from the field tests and numerical modeling will be employed in design and construction of a laboratory scale pulverizer/classifier. This laboratory unit will be used to quantify the magnitude and differential charge imparted on bituminous and subbituminous coals during pulverization and classification at temperatures and with gaseous constituents typical to utility PC units. An electrostatic separator, designed for in-line operation between pulverizers and PC boilers, will be used to clean prepulverized coals. Theoretical and experimental data are to be used in preparing a preliminary design for a full-scale, (15 ton/hr) in-line, electrostatic coal cleaning device. Finally, the economic potential for application to PC units will be assessed.

John M. Stencel

1998-01-21T23:59:59.000Z

229

Black Holes: from Speculations to Observations  

E-Print Network [OSTI]

This paper provides a brief review of the history of our understanding and knowledge of black holes. Starting with early speculations on ``dark stars'' I discuss the Schwarzschild "black hole" solution to Einstein's field equations and the development of its interpretation from "physically meaningless" to describing the perhaps most exotic and yet "most perfect" macroscopic object in the universe. I describe different astrophysical black hole populations and discuss some of their observational evidence. Finally I close by speculating about future observations of black holes with the new generation of gravitational wave detectors.

Thomas W. Baumgarte

2006-04-13T23:59:59.000Z

230

Assessment of underground coal gasification in bituminous coals. Volume I. Executive summary. Final report  

SciTech Connect (OSTI)

This report describes the bituminous coal resources of the United States, identifies those resources which are potentially amenable to Underground Coal Gasification (UCG), identifies products and markets in the vicinity of selected target areas, identifies UCG concepts, describes the state of the art of UCG in bituminous coal, and presents three R and D programs for development of the technology to the point of commercial viability. Of the 670 billion tons of bituminous coal remaining in-place as identified by the National Coal Data System, 32.2 billion tons or 4.8% of the total are potentially amenable to UCG technology. The identified amenable resource was located in ten states: Alabama, Colorado, Illinois, Kentucky, New Mexico, Ohio, Oklahoma, Utah, Virginia, and West Virginia. The principal criteria which eliminated 87.3% of the resource was the minimum thickness (42 inches). Three R and D programs were developed using three different concepts at two different sites. Open Borehole, Hydraulic Fracture, and Electrolinking concepts were developed. The total program costs for each concept were not significantly different. The study concludes that much of the historical information based on UCG in bituminous coals is not usable due to the poor siting of the early field tests and a lack of adequate diagnostic equipment. This information gap requires that much of the early work be redone in view of the much improved understanding of the role of geology and hydrology in the process and the recent development of analytical tools and methods.

None

1981-01-01T23:59:59.000Z

231

Large-block experiments in underground coal gasification  

SciTech Connect (OSTI)

A major objective of the nation's energy program is to develop processes for cleanly producing fuels from coal. One of the more promising of these is underground coal gasification (UCG). If successful, UCG would quadruple recoverable U.S. coal reserves. Under the sponsorship of the Department of Energy (DOE), Lawrence Livermore National Laboratory (LLNL) performed an early series of UCG field experiments from 1976 through 1979. The Hoe Creek series of tests were designed to develop the basic technology of UCG at low cost. The experiments were conducted in a 7.6-m thick subbituminous coal seam at a relatively shallow depth of 48 m at a site near Gillette, Wyoming. On the basis of the Hoe Creek results, more extensive field experiments were designed to establish the feasibility of UCG for commercial gas production under a variety of gasification conditions. Concepts and practices in UCG are described, and results of the field tests are summarized.

Not Available

1982-11-01T23:59:59.000Z

232

The development of Clean Coal Technology in China  

SciTech Connect (OSTI)

The resource conditions and energy structures of China determine that coal will continue to play a key role in the development of the electrical power industry in the coming years, thus it is necessary to develop clean coal technology in order to control the high consumption rate of energy and to control serious pollution. Clean coal technology focuses on improving the utilization rate of energy and on the control and reduction of emissions. Considering the condition of China, PC-FGD, supercritical units, CFBC, IGCC and PFBC-CC can be applied and developed under different conditions and in different periods with these technologies developing simultaneously and helping each other forward to improve clean coal technologies. China has broad development prospects and a large market for clean coal technologies. The authors hope to strengthen international exchange and cooperation in this field for the development of CCTs markets in China.

Jie, Z.; Chu, Z.X. [North China Electrical Power Design Inst., Beijing (China)

1996-10-01T23:59:59.000Z

233

Coal science for the clean use of coal  

SciTech Connect (OSTI)

Coal will need to be retained as a major source of energy in the next century. It will need to be used more effectively and more cleanly. In order to achieve this, it is necessary to introduce new technology supported by a local community of science and technology. Only in this way can the full benefits of international advances in coal utilization be fully achieved. It is important that full advantage be taken of the advances that have been achieved in laboratory techniques and in the better understanding of fundamental coal science. This paper reviews available technologies in power generation, industrial process heat, coal combustion, coal gasification, and coal analytical procedures.

Harrison, J.S. [Univ. of Leeds (United Kingdom)

1994-12-31T23:59:59.000Z

234

COAL LOGISTICS. Tracking U.S. Coal Exports  

SciTech Connect (OSTI)

COAL LOGISTICS has the capability to track coal from a U. S. mine or mining area to a foreign consumer`s receiving dock. The system contains substantial quantities of information about the types of coal available in different U. S. coalfields, present and potential inland transportation routes to tidewater piers, and shipping routes to and port capabilities in Italy, Japan, South Korea, Taiwan, and Thailand. It is designed to facilitate comparisons of coal quality and price at several stages of the export process, including delivered prices at a wide range of destinations. COAL LOGISTICS can be used to examine coal quality within or between any of 18 U. S. coalfields, including three in Alaska, or to compare alternative routes and associated service prices between coal-producing regions and ports-of-exit. It may be used to explore the possibilities of different ship sizes, marine routes, and foreign receiving terminals for coal exports. The system contains three types of information: records of coal quality, domestic coal transportation options, and descriptions of marine shipment routes. COAL LOGISTICS contains over 3100 proximate analyses of U. S. steam coals, usually supplemented by data for ash softening temperature and Hardgrove grindability; over 1100 proximate analyses for coals with metallurgical potential, usually including free swelling index values; 87 domestic coal transportation options: rail, barge, truck, and multi-mode routes that connect 18 coal regions with 15 U. S. ports and two Canadian terminals; and data on 22 Italian receiving ports for thermal and metallurgical coal and 24 coal receiving ports along the Asian Pacific Rim. An auxiliary program, CLINDEX, is included which is used to index the database files.

Sall, G.W. [US Department of Energy, Office of Fossil Energy, Washington, DC (United States)

1988-06-28T23:59:59.000Z

235

Are black holes with hair a normal state of matter?  

SciTech Connect (OSTI)

Recent observations put forward that quasars are black holes with a magnetic dipole moment and no event horizon. To model hairy black holes a quantum field for hydrogen is considered in curved space, coupled to the scalar curvature. An exact, regular solution for the interior metric occurs for supermassive black holes. The equation of state is p = -{rho}c{sup 2}/3.

Nieuwenhuizen, Th. M. [Institute for Theoretical Physics, Science Park 904, P. O. Box 94485, 1090 GL Amsterdam (Netherlands)

2011-03-28T23:59:59.000Z

236

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/this operational mode, the gasifiers and other parts of the

Phadke, Amol

2008-01-01T23:59:59.000Z

237

Predictors of plasticity in bituminous coals. Final technical report  

SciTech Connect (OSTI)

A group of 40 hvb coals, mostly from western Kentucky fields, has been examined with regard to ASTM Gieseler plastometric properties. Twenty-nine of these coals have also been studied over a range of temperatures by isothermal Gieseler plastometry. Raw Gieseler data provide melting and coking slopes and readily calculable fluidity spans. Maximum fluidity by slope intersection is a more consistent measure than observed maximum fluidity. Isothermal slopes and maximum fluidities follow Arrhenius temperature dependencies, with activation energies related systematically to fluid properties. These freshly sampled coals are also characterized by chemical, physical and petrographic criteria, by quantitative solvent extractions, by pyrolysis gas chromatography, by Fourier Transform infrared analysis of coals and extraction residues, by the HPLC analysis of coal extracts, and by optical microscopy of coals and Gieseler semi-coke residues. Multiple linear regression analysis yields three-term expressions which estimate maximum fluidities (both ASTM and isothermal) with R values of .90 to .92. Slopes and critical temperatures are similarly predictable. Plastometer experiments with selected coals under superatmospheric pressures show both melting slopes and maximum fluidities to be sharply increased, the latter by one to three orders of magnitude. Some suggestions are offered to accommodate this new information into the general body of knowledge concerning the phenomenon of plasticity in mid-ranked coals. 81 references, 28 figures, 40 tables.

Lloyd, W. G.; Reasoner, J. W.; Hower, J. C.; Yates, L. P.; Clark, C. P.; Davis, E.; Fitzpatrick, A.; Irefin, A.; Jiminez, A.; Jones, T. M.

1984-02-01T23:59:59.000Z

238

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

application of new clean coal technologies with near zeroapplication of new clean coal technologies with near zero

Phadke, Amol

2008-01-01T23:59:59.000Z

239

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

of coal sulfur K-T gasification process SRC I process U. S.flow sheet of a K-T coal gasification complex for producingProduction via K-T Gasification" © CEP Aug. 78. Feed

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

240

Method of extracting coal from a coal refuse pile  

DOE Patents [OSTI]

A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

Yavorsky, Paul M. (Monongahela, PA)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hole coal field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Early maturation processes in coal.1 Part 1: Pyrolysis mass balances and structural evolution of coalified wood from the2  

E-Print Network [OSTI]

Early maturation processes in coal.1 Part 1: Pyrolysis mass balances and structural evolution of coalified wood from the2 Morwell Brown Coal seam3 4 Elodie Salmon a, c , Françoise Behar a , François Lorant force21 field to simulate the thermal stress. The Morwell coal has been selected to study the thermal22

Paris-Sud XI, Université de

242

Composition and properties of coals from the Yurty coal occurrence  

SciTech Connect (OSTI)

Coals from the Yurty coal occurrence were studied. It was found that the samples were brown non-coking coals with low sulfur contents (to 1%) and high yields of volatile substances. The high heat value of coals was 20.6-27.7 MJ/kg. The humic acid content varied from 5.45 to 77.62%. The mineral matter mainly consisted of kaolinite, a-quartz, and microcline. The concentration of toxic elements did not reach hazardous values.

N.G. Vyazova; L.N. Belonogova; V.P. Latyshev; E.A. Pisar'kova [Irkutsk State University, Irkutsk (Russia). Research Institute of Oil and Coal Chemistry and Synthesis

2008-10-15T23:59:59.000Z

243

Black holes in Born-Infeld extended new massive gravity  

SciTech Connect (OSTI)

In this paper we find different types of black holes for the Born-Infeld extended new massive gravity. Our solutions include (un)charged warped (anti-)de Sitter black holes for four and six derivative expanded action. We also look at the black holes in unexpanded Born-Infeld action. In each case we calculate the entropy, angular momentum and mass of the black holes. We also find the central charges for the conformal field theory duals.

Ghodsi, Ahmad; Yekta, Davood Mahdavian [Department of Physics, Ferdowsi University of Mashhad, P.O. Box 1436, Mashhad (Iran, Islamic Republic of)

2011-05-15T23:59:59.000Z

244

Particles and scalar waves in noncommutative charged black hole spacetime  

E-Print Network [OSTI]

In this paper we have discussed geodesics and the motion of test particle in the gravitational field of noncommutative charged black hole spacetime. The motion of massive and massless particle have been discussed seperately. A comparative study of noncommutative charged black hole and usual Reissner-Nordstrom black hole has been done. The study of effective potential has also been included. Finally, we have examined the scattering of scalar waves in noncommutative charged black hole spacetime.

Bhar, Piyali; Biswas, Ritabrata; Mondal, U F

2015-01-01T23:59:59.000Z

245

Coal combustion system  

DOE Patents [OSTI]

In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN); Tramm, Peter C. (Indianapolis, IN)

1988-01-01T23:59:59.000Z

246

The Caterpillar Coal Gasification Facility  

E-Print Network [OSTI]

This paper is a review of one of America's premier coal gasification installations. The caterpillar coal gasification facility located in York, Pennsylvania is an award winning facility. The plant was recognized as the 'pace setter plant of the year...

Welsh, J.; Coffeen, W. G., III

1983-01-01T23:59:59.000Z

247

Hydrogen from Coal Edward Schmetz  

E-Print Network [OSTI]

Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Cells, Turbines, and Carbon Capture & Sequestration #12;Production Goal for Hydrogen from Coal Central Separation System PSA Membrane Membrane Carbon Sequestration Yes (87%) Yes (100%) Yes (100%) Hydrogen

248

The world price of coal  

E-Print Network [OSTI]

A significant increase in the seaborne trade for coal over the past twenty years has unified formerly separate coal markets into a world market in which prices move in tandem. Due to its large domestic market, the United ...

Ellerman, A. Denny

1994-01-01T23:59:59.000Z

249

Low-rank coal research  

SciTech Connect (OSTI)

This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

Weber, G. F.; Laudal, D. L.

1989-01-01T23:59:59.000Z

250

Surface Coal Mining Regulations (Mississippi)  

Broader source: Energy.gov [DOE]

The Surface Coal Mining Regulations are a combination of permitting requirements and environmental regulations that limit how, where and when coal can be mined. It protects lands that are under...

251

Montana Coal Mining Code (Montana)  

Broader source: Energy.gov [DOE]

The Department of Labor and Industry is authorized to adopt rules pertaining to safety standards for all coal mines in the state. The Code requires coal mine operators to make an accurate map or...

252

2009 Coal Age Buyers Guide  

SciTech Connect (OSTI)

The buyers guide lists more than 1200 companies mainly based in the USA, that provide equipment and services to US coal mines and coal preparation plants. The guide is subdivided by product categories.

NONE

2009-07-15T23:59:59.000Z

253

The Asia-Pacific coal technology conference  

SciTech Connect (OSTI)

The Asia-Pacific coal technology conference was held in Honolulu, Hawaii, November 14--16, 1989. Topics discussed included the following: Expanded Horizons for US Coal Technology and Coal Trade; Future Coal-Fired Generation and Capacity Requirements of the Philippines; Taiwan Presentation; Korean Presentation; Hong Kong Future Coal Requirements; Indonesian Presentation; Electric Power System in Thailand; Coal in Malaysia -- A Position Paper; The US and Asia: Pacific Partners in Coal and Coal Technology; US Coal Production and Export; US Clean Coal Technologies; Developments in Coal Transport and Utilization; Alternative/Innovative Transport; Electricity Generation in Asia and the Pacific: Power Sector Demand for Coal, Oil and Natural Gas; Role of Clean Coal Technology in the Energy Future of the World; Global Climate Change: A Fossil Energy Perspective; Speaker: The Role of Coal in Meeting Hawaii's Power Needs; and Workshops on Critical Issues Associated with Coal Usage. Individual topics are processed separately for the data bases.

Not Available

1990-02-01T23:59:59.000Z

254

A sweep efficiency model for underground coal gasification  

SciTech Connect (OSTI)

A new model to predict sweep efficiency for underground coal gasification (UCG) has been developed. The model is based on flow through rubble in the cavity as well as through the open channel and uses a tanks-in-series model for the flow characteristics. The model can predict cavity growth and product gas composition given the rate of water influx, roof collapse, and spalling. Self-gasification of coal is taken into account in the model, and the coal consumption rate and the location of the flame front are determined by material and energy balances at the char surface. The model has been used to predict the results of the Hoe Creek III field tests (for the air gasification period). Predictions made by the model such as cavity shape, product gas composition, temperature profile, and overall reaction stoichiometry between the injected oxygen and the coal show reasonable agreement with the field test results.

Chang, H.L.; Edgar, T.F.; Himmelblau, D.M.

1985-01-01T23:59:59.000Z

255

Sustainable development with clean coal  

SciTech Connect (OSTI)

This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

NONE

1997-08-01T23:59:59.000Z

256

Ashing properties of coal blends  

SciTech Connect (OSTI)

The fusion properties of sulfur materials present in coals were investigated. The treatment of the samples of eleven different coals is described. Thermal treatment of low temperature ashing (LTA) concentrates of eight of the coals was performed, and raw and wash ashing curves were examined to determine what quantitative correlations, if any, exist between ashing parameters and rank of coal. The actual form of the function which describes the ashing curve is derived.

Biggs, D.L.

1982-03-01T23:59:59.000Z

257

Pyrolysis of coal  

DOE Patents [OSTI]

A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.

Babu, Suresh P. (Willow Springs, IL); Bair, Wilford G. (Morton Grove, IL)

1992-01-01T23:59:59.000Z

258

Healy Clean Coal Project  

SciTech Connect (OSTI)

The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

None

1997-12-31T23:59:59.000Z

259

CONSORTIUM FOR CLEAN COAL UTILIZATION  

E-Print Network [OSTI]

CONSORTIUM FOR CLEAN COAL UTILIZATION Call for Proposals Date of Issue: July 29, 2013 The Consortium for Clean Coal Utilization (CCCU) at Washington University in St. Louis was established in January of Clean Coal Utilization. The format may be a conference or workshop, or a seminar given by a leading

Subramanian, Venkat

260

PNNL Coal Gasification Research  

SciTech Connect (OSTI)

This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

2010-07-28T23:59:59.000Z

Note: This page contains sample records for the topic "hole coal field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Enhanced Combustion Low NOx Pulverized Coal Burner  

SciTech Connect (OSTI)

For more than two decades, ALSTOM Power Inc. (ALSTOM) has developed a range of low cost, in-furnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes ALSTOM's internally developed TFS 2000 firing system, and various enhancements to it developed in concert with the U.S. Department of Energy (DOE). As of 2004, more than 200 units representing approximately 75,000 MWe of domestic coal fired capacity have been retrofit with ALSTOM low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coals to 0.10 lb/MMBtu for subbituminous coals, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing (retrofit) boiler equipment. If enacted, proposed Clear Skies legislation will, by 2008, require an average, effective, domestic NOx emissions rate of 0.16 lb/MMBtu, which number will be reduced to 0.13 lb/MMBtu by 2018. Such levels represent a 60% and 67% reduction, respectively, from the effective 2000 level of 0.40 lb/MMBtu. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. In light of these needs, ALSTOM, in cooperation with the DOE, is developing an enhanced combustion, low NOx pulverized coal burner which, when integrated with ALSTOM's state-of-the-art, globally air staged low NOx firing systems, will provide a means to achieve less than 0.15 lb/MMBtu NOx at less than 3/4 the cost of an SCR with low to no impact on balance of plant issues when firing a high volatile bituminous coal. Such coals can be more economic to fire than subbituminous or Powder River Basin (PRB) coals, but are more problematic from a NOx control standpoint as existing firing system technologies do not provide a means to meet current or anticipated regulations absent the use of an SCR. The DOE/ALSTOM program performed large pilot scale combustion testing in ALSTOM's Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut. During this work, the near-field combustion environment was optimized to maximize NOx reduction while minimizing the impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down under globally reducing conditions. Initially, ALSTOM utilized computational fluid dynamic modeling to evaluate a series of burner and/or near field stoichiometry controls in order to screen promising design concepts in advance of the large pilot scale testing. The third and final test, to be executed, will utilize several variants of the best nozzle tip configuration and compare performance with 3 different coals. The fuels to be tested will cover a wide range of coals commonly fired at US utilities. The completion of this work will provide sufficient data to allow ALSTOM to design, construct, and demonstrate a commercial version of an enhanced combustion low NOx pulverized coal burner. A preliminary cost/performance analysis of the developed enhanced combustion low NOx burner applied to ALSTOM's state-of-the-art TFS 2000 firing system was performed to show that the burner enhancements is a cost effective means to reduce NOx.

Ray Chamberland; Aku Raino; David Towle

2006-09-30T23:59:59.000Z

262

Fluorine in coal and coal by-products  

SciTech Connect (OSTI)

Fluorine occurs in awe amounts in most coals. It is typically associated with minerals of the apatite group, principally fluorapatite and clays, and with fluorite, tourmaline, topaz, amphiboles and micas. The average fluorine content of US coal is, according to the tabulation of Swanson, 74 {mu}g/g. In the United States, the lowest average fluorine concentration of 30 {mu}g/g is found in coals from Eastern Kentucky and the highest average value of 160 {mu}g/g is found in coals from Wyoming and New Mexico. The concentration range of fluorine in European coals is similar to that found in the US while the average fluorine content of Australian coals ranges from 15 to 500 {mu}g/g. We have determined the fluorine content in coal and fly ash standards by proton-induced gamma ray emission analysis (PIGE).

Robertson, J.D.; Wong, A.S.; Hower, J.C. [Univ. of Kentucky, Lexington, KY (United States)

1994-12-31T23:59:59.000Z

263

Flow characteristics in underground coal gasification  

SciTech Connect (OSTI)

During the underground coal gasification field test at the Hoe Creek site No. 2, Wyoming, helium pulses were introduced to develop information to characterize the flow field, and to estimate the coefficients in dispersion models of the flow. Quantitative analysis of the tracer response curves shows an increasing departure from a plug flow regime with time because of the combined effects of the free and forced convection in addition to the complex non-uniformity of the flow field. The Peclet number was a function of temperature, pressure, gas recovery and characteristic velocity, as well as the split of the gas between the parallel streams in the model. 17 refs.

Chang, H.L.; Himmelblau, D.M.; Edgar, T.F.

1982-01-01T23:59:59.000Z

264

apec coal flow: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

265

alkaline coal ash: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

266

Process for particulate removal from coal liquids  

DOE Patents [OSTI]

Suspended solid particulates are removed from liquefied coal products by first subjecting such products to hydroclone action for removal in the underflow of the larger size particulates, and then subjecting the overflow from said hydroclone action, comprising the residual finer particulates, to an electrostatic field in an electrofilter wherein such finer particulates are deposited in the bed of beads of dielectric material on said filter. The beads are periodically cleaned by backwashing to remove the accumulated solids.

Rappe, Gerald C. (Macungie, PA)

1983-01-01T23:59:59.000Z

267

Catalytic coal liquefaction process  

DOE Patents [OSTI]

An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

Garg, D.; Sunder, S.

1986-12-02T23:59:59.000Z

268

Biochemical transformation of coals  

DOE Patents [OSTI]

A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

Lin, M.S.; Premuzic, E.T.

1999-03-23T23:59:59.000Z

269

Catalytic coal liquefaction process  

DOE Patents [OSTI]

An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

Garg, Diwakar (Macungie, PA); Sunder, Swaminathan (Allentown, PA)

1986-01-01T23:59:59.000Z

270

Catalytic coal hydroliquefaction process  

DOE Patents [OSTI]

A process is described for the liquefaction of coal in a hydrogen donor solvent in the presence of hydrogen and a co-catalyst combination of iron and a Group VI or Group VIII non-ferrous metal or compounds of the catalysts.

Garg, Diwakar (Macungie, PA)

1984-01-01T23:59:59.000Z

271

National Coal Quality Inventory (NACQI)  

SciTech Connect (OSTI)

The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

Robert Finkelman

2005-09-30T23:59:59.000Z

272

Coal-oil slurry preparation  

DOE Patents [OSTI]

A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

Tao, John C. (Perkiomenville, PA)

1983-01-01T23:59:59.000Z

273

Coal mine methane global review  

SciTech Connect (OSTI)

This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

NONE

2008-07-01T23:59:59.000Z

274

Underground Coal Thermal Treatment  

SciTech Connect (OSTI)

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?˘ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?˘ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?˘ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?˘ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

275

Black holes in Asymptotically Safe Gravity  

E-Print Network [OSTI]

Black holes are among the most fascinating objects populating our universe. Their characteristic features, encompassing spacetime singularities, event horizons, and black hole thermodynamics, provide a rich testing ground for quantum gravity ideas. In this note we observe that the renormalization group improved Schwarzschild black holes constructed by Bonanno and Reuter within Weinberg's asymptotic safety program constitute a prototypical example of a Hayward geometry used to model non-singular black holes within quantum gravity phenomenology. Moreover, they share many features of a Planck star: their effective geometry naturally incorporates the one-loop corrections found in the effective field theory framework, their Kretschmann scalar is bounded, and the black hole singularity is replaced by a regular de Sitter patch. The role of the cosmological constant in the renormalization group improvement process is briefly discussed.

Saueressig, Frank; D'Odorico, Giulio; Vidotto, Francesca

2015-01-01T23:59:59.000Z

276

Black Hole Superradiance in Dynamical Spacetime  

E-Print Network [OSTI]

We study the superradiant scattering of gravitational waves by a nearly extremal black hole (dimensionless spin $a=0.99$) by numerically solving the full Einstein field equations, thus including backreaction effects. This allows us to study the dynamics of the black hole as it loses energy and angular momentum during the scattering process. To explore the nonlinear phase of the interaction, we consider gravitational wave packets with initial energies up to $10%$ of the mass of the black hole. We find that as the incident wave energy increases, the amplification of the scattered waves, as well as the energy extraction efficiency from the black hole, is reduced. During the interaction the apparent horizon geometry undergoes sizable nonaxisymmetric oscillations. The largest amplitude excitations occur when the peak frequency of the incident wave packet is above where superradiance occurs, but close to the dominant quasinormal mode frequency of the black hole.

William E. East; Fethi M. Ramazano?lu; Frans Pretorius

2014-03-14T23:59:59.000Z

277

Eight Advanced Coal Projects Chosen for Further Development by DOE's University Coal Research Program  

Broader source: Energy.gov [DOE]

DOE has selected eight new projects to further advanced coal research under the University Coal Research Program. The selected projects will improve coal conversion and use and will help propel technologies for future advanced coal power systems.

278

Alaska coal gasification feasibility studies - Healy coal-to-liquids plant  

SciTech Connect (OSTI)

The Alaska Coal Gasification Feasibility Study entailed a two-phase analysis of the prospects for greater use of Alaska's abundant coal resources in industrial applications. Phase 1, Beluga Coal Gasification Feasibility Study (Report DOE/NETL 2006/1248) assessed the feasibility of using gasification technology to convert the Agrium fertilizer plant in Nikiski, Alaska, from natural gas to coal feedstock. The Phase 1 analysis evaluated coals from the Beluga field near Anchorage and from the Usibelli Coal Mine near Healy, both of which are low in sulfur and high in moisture. This study expands the results of Phase 1 by evaluating a similar sized gasification facility at the Usibelli Coal mine to supply Fischer-Tropsch (F-T) liquids to central Alaska. The plant considered in this study is small (14,640 barrels per day, bbl/d) compared to the recommended commercial size of 50,000 bbl/d for coal-to-liquid plants. The coal supply requirements for the Phase 1 analysis, four million tons per year, were assumed for the Phase 2 analysis to match the probable capacity of the Usibelli mining operations. Alaska refineries are of sufficient size to use all of the product, eliminating the need for F-T exports out of the state. The plant could produce marketable by-products such as sulfur as well as electric power. Slag would be used as backfill at the mine site and CO{sub 2} could be vented, captured or used for enhanced coalbed methane recovery. The unexpected curtailment of oil production from Prudhoe Bay in August 2006 highlighted the dependency of Alaskan refineries (with the exception of the Tesoro facility in Nikiski) on Alaska North Slope (ANS) crude. If the flow of oil from the North Slope declines, these refineries may not be able to meet the in-state needs for diesel, gasoline, and jet fuel. Additional reliable sources of essential fuel products would be beneficial. 36 refs., 14 figs., 29 tabs., 3 apps.

Lawrence Van Bibber; Charles Thomas; Robert Chaney [Research & Development Solutions, LLC (United States)

2007-07-15T23:59:59.000Z

279

CLUSTERING OF OBSCURED AND UNOBSCURED QUASARS IN THE BOOeTES FIELD: PLACING RAPIDLY GROWING BLACK HOLES IN THE COSMIC WEB  

SciTech Connect (OSTI)

We present the first measurement of the spatial clustering of mid-infrared-selected obscured and unobscured quasars, using a sample in the redshift range 0.7 < z < 1.8 selected from the 9 deg{sup 2} Booetes multiwavelength survey. Recently, the Spitzer Space Telescope and X-ray observations have revealed large populations of obscured quasars that have been inferred from models of the X-ray background and supermassive black hole evolution. To date, little is known about obscured quasar clustering, which allows us to measure the masses of their host dark matter halos and explore their role in the cosmic evolution of black holes and galaxies. In this study, we use a sample of 806 mid-infrared-selected quasars and {approx}250,000 galaxies to calculate the projected quasar-galaxy cross-correlation function w{sub p} (R). The observed clustering yields characteristic dark matter halo masses of log(M{sub halo} [h {sup -1} M{sub sun}]) = 12.7{sup +0.4}{sub -0.6} and 13.3{sup +0.3}{sub -0.4} for unobscured quasars (QSO-1s) and obscured quasars (Obs-QSOs), respectively. The results for QSO-1s are in excellent agreement with previous measurements for optically selected quasars, while we conclude that the Obs-QSOs are at least as strongly clustered as the QSO-1s. We test for the effects of photometric redshift errors on the optically faint Obs-QSOs, and find that our method yields a robust lower limit on the clustering; photo-z errors may cause us to underestimate the clustering amplitude of the Obs-QSOs by at most {approx}20%. We compare our results to previous studies, and speculate on physical implications of stronger clustering for obscured quasars.

Hickox, Ryan C.; Alexander, David M.; Goulding, Andrew D. [Department of Physics, Durham University, South Road, Durham, DH1 3LE (United Kingdom); Myers, Adam D. [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Brodwin, Mark; Forman, William R.; Jones, Christine; Murray, Stephen S.; Eisenstein, Daniel; Caldwell, Nelson [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Brown, Michael J. I. [School of Physics, Monash University, Clayton 3800, Victoria (Australia); Cool, Richard J. [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States); Kochanek, Christopher S. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Dey, Arjun; Jannuzi, Buell T. [National Optical Astronomy Observatory, Tucson, AZ 85726 (United States); Assef, Roberto J.; Eisenhardt, Peter R.; Gorjian, Varoujan; Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Le Floc'h, Emeric, E-mail: ryan.hickox@durham.ac.uk. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Universite Paris Diderot, CE-Saclay, pt courrier 131, 91191 Gif-sur-Yvette (France)

2011-04-20T23:59:59.000Z

280

Hole burning with pressure and electric field: A window on the electronic structure and energy transfer dynamics of bacterial antenna complexes  

SciTech Connect (OSTI)

Light-harvesting (LH) complexes of cyclic (C{sub n}) symmetry from photosynthetic bacteria are studied using absorption and high pressure- and Stark-hole burning spectroscopies. The B800 absorption band of LH2 is inhomogeneously broadened while the B850 band of LH2 and the B875 band of the LH1 complex exhibit significant homogeneous broadening due to ultra-fast inter-exciton level relaxation. The B800{r_arrow}B850 energy transfer rate of ({approximately}2 ps){sup {minus}1} as determined by hole burning and femtosecond pump-probe spectroscopies, is weakly dependent on pressure and temperature, both of which significantly affect the B800-B850 energy gap. The resilience is theoretically explained in terms of a modified Foerster theory with the spectral overlap provided by the B800 fluorescence origin band and weak vibronic absorption bands of B850. Possible explanations for the additional sub-picosecond relaxation channel of B800 observed with excitation on the blue side of B800 are given. Data from pressure and temperature dependent studies show that the B800 and B850 bacteriochlorophyll a (BChl a) molecules are weakly and strongly excitonically coupled, respectively, which is consistent with the X-ray structure of LH2. The B875 BChl a molecules are also strongly coupled. It is concluded that electron-exchange, in addition to electrostatic interactions, is important for understanding the strong coupling of the B850 and B875 rings. The large linear pressure shifts of {approximately}{minus}0.6 cm{sup {minus}1}/MPa associated with B850 and B875 can serve as important benchmarks for electronic structure calculations.

Wu, H.M.

1999-02-12T23:59:59.000Z

Note: This page contains sample records for the topic "hole coal field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Slant hole completion test (1991) sidetrack ``as built`` report  

SciTech Connect (OSTI)

During the summer of 1990, a slant hole test well, funded by the US Department of Energy, was drilled to 9,466 ft to evaluate the effectiveness of directional drilling in the tight, naturally fractured gas sands and coals of the Mesaverde Group. The surface location of the SHCT No. 1 is 700 ft south of the DOE Multiwell Experiment (MWX) site in Section 34, T6S, R94W, Garfield County, Colorado, approximately 7.5 miles west of Rifle. Mechanical problems following cementing of a production liner resulted in loss of the completion interval, and operations were suspended. In early 1991, DOE decided to sidetrack the hole to permit production testing of the lost interval. The sidetrack was designed to parallel the original wellbore, but to be drilled 1,000 ft to the east to minimize the chances of encountering formation damage from the original hole. The sidetrack, like the original hole, was to intersect the paludal lenticular sands and coals at 60{degrees} and to penetrate the underlying Cozzette sand horizonally. The sidetrack was spudded May 12, 1991. After re-entering the well in late 1991, early production testing of the Cozzette showed that the 300 ft of in-pay horizontal hole can produce at rate 5 to 10 times higher than vertical wells in the same area. This report contains the geological summary and sidetrack drilling operations summary.

Myal, F.R.

1992-05-01T23:59:59.000Z

282

Slant hole completion test (1991) sidetrack as built'' report  

SciTech Connect (OSTI)

During the summer of 1990, a slant hole test well, funded by the US Department of Energy, was drilled to 9,466 ft to evaluate the effectiveness of directional drilling in the tight, naturally fractured gas sands and coals of the Mesaverde Group. The surface location of the SHCT No. 1 is 700 ft south of the DOE Multiwell Experiment (MWX) site in Section 34, T6S, R94W, Garfield County, Colorado, approximately 7.5 miles west of Rifle. Mechanical problems following cementing of a production liner resulted in loss of the completion interval, and operations were suspended. In early 1991, DOE decided to sidetrack the hole to permit production testing of the lost interval. The sidetrack was designed to parallel the original wellbore, but to be drilled 1,000 ft to the east to minimize the chances of encountering formation damage from the original hole. The sidetrack, like the original hole, was to intersect the paludal lenticular sands and coals at 60{degrees} and to penetrate the underlying Cozzette sand horizonally. The sidetrack was spudded May 12, 1991. After re-entering the well in late 1991, early production testing of the Cozzette showed that the 300 ft of in-pay horizontal hole can produce at rate 5 to 10 times higher than vertical wells in the same area. This report contains the geological summary and sidetrack drilling operations summary.

Myal, F.R.

1992-05-01T23:59:59.000Z

283

Geodesics and Geodesic Deviation in static Charged Black Holes  

E-Print Network [OSTI]

The radial motion along null geodesics in static charged black hole space-times, in particular, the Reissner-Nordstr\\"om and stringy charged black holes are studied. We analyzed the properties of the effective potential. The circular photon orbits in these space-times are investigated. We found that the radius of circular photon orbits in both charged black holes are different and differ from that given in Schwarzschild space-time. We studied the physical effects of the gravitational field between two test particles in stringy charged black hole and compared the results with that given in Schwarzschild and Reissner-Nordstr\\"om black holes.

Ragab M. Gad

2010-03-03T23:59:59.000Z

284

Moist caustic leaching of coal  

DOE Patents [OSTI]

A process for reducing the sulfur and ash content of coal. Particulate coal is introduced into a closed heated reaction chamber having an inert atmosphere to which is added 50 mole percent NaOH and 50 mole percent KOH moist caustic having a water content in the range of from about 15% by weight to about 35% by weight and in a caustic to coal weight ratio of about 5 to 1. The coal and moist caustic are kept at a temperature of about 300.degree. C. Then, water is added to the coal and caustic mixture to form an aqueous slurry, which is washed with water to remove caustic from the coal and to produce an aqueous caustic solution. Water is evaporated from the aqueous caustic solution until the water is in the range of from about 15% by weight to about 35% by weight and is reintroduced to the closed reaction chamber. Sufficient acid is added to the washed coal slurry to neutralize any remaining caustic present on the coal, which is thereafter dried to produce desulfurized coal having not less than about 90% by weight of the sulfur present in the coal feed removed and having an ash content of less than about 2% by weight.

Nowak, Michael A. (Elizabeth, PA)

1994-01-01T23:59:59.000Z

285

Topological Black Holes -- Outside Looking In  

E-Print Network [OSTI]

I describe the general mathematical construction and physical picture of topological black holes, which are black holes whose event horizons are surfaces of non-trivial topology. The construction is carried out in an arbitrary number of dimensions, and includes all known special cases which have appeared before in the literature. I describe the basic features of massive charged topological black holes in $(3+1)$ dimensions, from both an exterior and interior point of view. To investigate their interiors, it is necessary to understand the radiative falloff behaviour of a given massless field at late times in the background of a topological black hole. I describe the results of a numerical investigation of such behaviour for a conformally coupled scalar field. Significant differences emerge between spherical and higher genus topologies.

R. B. Mann

1997-09-15T23:59:59.000Z

286

Black hole hair in higher dimensions  

E-Print Network [OSTI]

We study the property of matter in equilibrium with a static, spherically symmetric black hole in D-dimensional spacetime. It requires this kind of matter has an equation of state (\\omega\\equiv p_r/\\rho=-1/(1+2kn), k,n\\in \\mathbb{N}), which seems to be independent of D. However, when we associate this with specific models, some interesting limits on space could be found: (i)(D=2+2kn) while the black hole is surrounded by cosmic strings; (ii)the black hole can be surrounded by linear dilaton field only in 4-dimensional spacetime. In both cases, D=4 is special.

Chao Cao; Yi-Xin Chen; Jian-Long Li

2008-04-02T23:59:59.000Z

287

Western Coal/Great Lakes Alternative export-coal conference  

SciTech Connect (OSTI)

This conference dealt with using the Great Lakes/St. Lawrence Seaway as an alternative to the East and Gulf Coasts for the exporting of coal to Europe and the potential for a piece of the European market for the subbituminous coals of Montana and Wyoming. The topics discussed included: government policies on coal exports; the coal reserves of Montana; cost of rail transport from Western mines to Lake Superior; the planning, design, and operation of the Superior Midwest Energy Terminal at Superior, Wisconsin; direct transfer of coal from self-unloading lakers to large ocean vessels; concept of total transportation from mines to users; disadvantage of a nine month season on the Great Lakes; costs of maritime transport of coal through the Great Lakes to Europe; facilities at the ice-free, deep water port at Sept Iles; the use of Western coals from an environmental and economic viewpoint; the properties of Western coal and factors affecting its use; the feasibility of a slurry pipeline from the Powder River Basin to Lake Superior; a systems analysis of the complete hydraulic transport of coal from the mine to users in Europe; the performance of the COJA mill-burner for the combustion of superfine coal; demand for steam coal in Western Europe; and the effect the New Source Performance Standards will have on the production and use of Western coal. A separate abstract was prepared for each of the 19 papers for the Energy Data Base (EDB); 17 will appear in Energy Research Abstracts (ERA) and 11 in Energy Abstracts for Policy Analysis (EAPA). (CKK)

Not Available

1981-01-01T23:59:59.000Z

289

Autothermal coal gasification  

SciTech Connect (OSTI)

This paper presents test results of a pilot plant study of coal gasification system based on the process developed by Texaco. This process has been improved by the project partners Ruhrchenie A.G. and Ruhrkohle A.C. in West Germany and tested in a demonstration plant that operated for more than 10,000 hours, converting over 50,000 tons of coal into gas. The aim was to develop a process that would be sufficiently flexible when used at the commercial level to incorporate all of the advantages inherent in the diverse processes of the 'first generation' - fixed bed, fluidized bed and entrained bed processes - but would be free of the disadvantages of these processes. Extensive test results are tabulated and evaluated. Forecast for future development is included. 5 refs.

Konkol, W.; Ruprecht, P.; Cornils, B.; Duerrfeld, R.; Langhoff, J.

1982-03-01T23:59:59.000Z

290

Coal Bed Methane Primer  

SciTech Connect (OSTI)

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

291

Coal | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address:Climatic SolarInformationCoal

292

Research on chemical factors in underground coal gasification. Final technical report  

SciTech Connect (OSTI)

The goal of this research has been to acquire experimental data and develop mathematical models in order to analyze results from laboratory-scale and field-scale experiments on underground coal gasification (UCG), especially for low-rank coals such as Texas lignite. Experimental data for water injection in a combustion tube, coal core combustion, and coal block gasification are reported; in parallel, a mathematical model for the combustion tube temperature profile and gas composition was developed which compared favorably with experimental data. A mathematical model for predicting gas composition and coal recovery in the Hoe Creek field experiment has been completed and verified with field data. Two experiments have been constructed to obtain data on reactions of interest to UCG; these include an apparatus for determining the kinetics of tar cracking and a microreactor for analyzing the process dynamics of the water gas shift reaction carried out in a fixed bed catalytic system. 44 refs., 60 figs., 22 tabs.

Edgar, T.F.

1985-09-01T23:59:59.000Z

293

Zero emission coal  

SciTech Connect (OSTI)

We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

Ziock, H.; Lackner, K.

2000-08-01T23:59:59.000Z

294

Sequestration and Enhanced Coal Bed Methane: Tanquary Farms Test Site, Wabash County, Illinois  

SciTech Connect (OSTI)

The Midwest Geological Sequestration Consortium (MGSC) carried out a pilot project to test storage of carbon dioxide (CO{sub 2}) in the Springfield Coal Member of the Carbondale Formation (Pennsylvanian System), in order to gauge the potential for large-scale CO{sub 2} sequestration and/or enhanced coal bed methane recovery from Illinois Basin coal beds. The pilot was conducted at the Tanquary Farms site in Wabash County, southeastern Illinois. A four-well designâ?? an injection well and three monitoring wellsâ??was developed and implemented, based on numerical modeling and permeability estimates from literature and field data. Coal cores were taken during the drilling process and were characterized in detail in the lab. Adsorption isotherms indicated that at least three molecules of CO{sub 2} can be stored for each displaced methane (CH{sub 4}) molecule. Microporosity contributes significantly to total porosity. Coal characteristics that affect sequestration potential vary laterally between wells at the site and vertically within a given seam, highlighting the importance of thorough characterization of injection site coals to best predict CO{sub 2} storage capacity. Injection of CO{sub 2} gas took place from June 25, 2008, to January 13, 2009. A â??continuousâ?ť injection period ran from July 21, 2008, to December 23, 2008, but injection was suspended several times during this period due to equipment failures and other interruptions. Injection equipment and procedures were adjusted in response to these problems. Approximately 92.3 tonnes (101.7 tons) of CO{sub 2} were injected over the duration of the project, at an average rate of 0.93 tonne (1.02 tons) per day, and a mode injection rate of 0.6â??0.7 tonne/day (0.66â??0.77 ton/day). A Monitoring, Verification, and Accounting (MVA) program was set up to detect CO{sub 2 leakage. Atmospheric CO{sub 2} levels were monitored as were indirect indicators of CO{sub 2} leakage such as plant stress, changes in gas composition at wellheads, and changes in several shallow groundwater characteristics (e.g., alkalinity, pH, oxygen content, dissolved solids, mineral saturation indices, and isotopic distribution). Results showed that there was no CO{sub 2} leakage into groundwater or CO{sub 2} escape at the surface. Post-injection cased hole well log analyses supported this conclusion. Numerical and analytical modeling achieved a relatively good match with observed field data. Based on the model results the plume was estimated to extend 152 m (500 ft) in the face cleat direction and 54.9 m (180 ft) in the butt cleat direction. Using the calibrated model, additional injection scenariosâ??injection and production with an inverted five-spot pattern and a line drive patternâ??could yield CH{sub 4} recovery of up to 70%.

Scott Frailey; Thomas Parris; James Damico; Roland Okwen; Ray McKaskle; Charles Monson; Jonathan Goodwin; E. Beck; Peter Berger; Robert Butsch; Damon Garner; John Grube; Keith Hackley; Jessica Hinton; Abbas Iranmanesh; Christopher Korose; Edward Mehnert; Charles Monson; William Roy; Steven Sargent; Bracken Wimmer

2012-05-01T23:59:59.000Z

295

Liquid chromatographic analysis of coal surface properties  

SciTech Connect (OSTI)

The main objectives of this proposed research are to refine further the inverse liquid chromatography technique for the study of surface properties of raw coals, treated coals and coal minerals in water, to evaluate relatively surface properties of raw coals, treated coals and coal minerals by inverse liquid chromatography, and to evaluate floatability of various treated coals in conjunction with surface properties of coals. Alcohols such as methanol, ethanol, isopropanol, isobutanol, tert-butanol, heptanol, 1-hexadecanol, 2-methyl-pentanol, 4-methyl-2-penthanol (methylisobutyl carbinol), n-octanol, s-octanol, and cyclohexanol as probe compounds are utilized to evaluate hydrophilicity of coals and coal minerals. N-alkanes such as hexane, heptane and octane, and stearic acid are employed as probe compounds to evaluate hydrophobicity of coals and coal minerals. Aromatic compounds such as benzene and toluene as probe compounds are used to examine aromaticity of coal surface. Aromatic acids such as o-cresol, m-cresol, p-cresol, phenol and B-naphthol are used to detect aromatic acidic sites of coal surface. Hydrophilicity, hydrophobicity and aromaticity of surfaces for either raw coals or treated coals in water are relatively determined by evaluating both equilibrium physical/chemical adsorption and dynamic adsorption of probe compounds on various raw coals and treated coals to compare affinities of coals for water.

Kwon, K.C.

1991-01-01T23:59:59.000Z

296

Transporting export coal from Appalachia  

SciTech Connect (OSTI)

This publication is part of a series titled Market Guide for Steam Coal Exports from Appalachia. It focuses on the transportation link in the steam-coal supply chain, enabling producers to further assess their transportation options and their ability to compete in the export-coal marketplace. Transportation alternatives and handling procedures are discussed, and information is provided on the costs associated with each element in the transportation network.

Not Available

1982-11-01T23:59:59.000Z

297

Automated control for coal handling operations at Bethlehem Steel, Burns Harbor Division  

SciTech Connect (OSTI)

The Burns Harbor coal handling operation processes 7,200 tons of coal per day to supply two 82 oven, six meter batteries. The operations in coal handling are subdivided into three separate sections: the coal field and stacker reclaimer operation, the crushing and storage of coal, and the coal blending operation. In 1996 a supervisory system was developed and installed to fully automate all the operations and equipment in the coal handling unit, add additional instrumentation and logic controls to prevent coal contamination, and improve data collection and logging. The supervisory system is operated from a computer based workstation and is based on a distributed control philosophy utilizing programmable logic controllers, set point controllers, and man-machine interface displays. The previous control system for the coal handling operation consisted of a switchboard from which an operator controller the set up and running of the conveyor systems and equipment to stack, reclaim, and blend coal. The new supervisory system was installed in parallel with the original control system to safeguard continued operation during the system installation and commissioning. The original system still exists and can be operated in even of failure of the supervisory system.

Zendzian, T.N. [Bethlehem Steel Corp., Chesterton, IN (United States). Burns Harbor Div.

1997-12-31T23:59:59.000Z

298

Volatile coal prices reflect supply, demand uncertainties  

SciTech Connect (OSTI)

Coal mine owners and investors say that supply and demand are now finally in balance. But coal consumers find that both spot tonnage and new contract coal come at a much higher price.

Ryan, M.

2004-12-15T23:59:59.000Z

299

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

of natural gas, along with the coal reserve base of 326s Fossil Fuel Reserve Base, 2007 Oil Natural Gas Coal 233ensured reserves”) of coal, oil and natural gas published in

Aden, Nathaniel

2010-01-01T23:59:59.000Z

300

Low-rank coal oil agglomeration  

DOE Patents [OSTI]

A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hole coal field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

coal electricity generation efficiency also varies by plantplants. The unit water requirement of coal-fired electricity generationelectricity generation is comparatively low in China due to the prevalence of small, outdated coal-fired power plants.

Aden, Nathaniel

2010-01-01T23:59:59.000Z

302

Carbon Dioxide Emission Factors for Coal  

Reports and Publications (EIA)

The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

1994-01-01T23:59:59.000Z

303

Commercialization of Coal-to-Liquids Technology  

SciTech Connect (OSTI)

The report provides an overview of the current status of coal-to-liquids (CTL) commercialization efforts, including an analysis of efforts to develop and implement large-scale, commercial coal-to-liquids projects to create transportation fuels. Topics covered include: an overview of the history of coal usage and the current market for coal; a detailed description of what coal-to-liquids technology is; the history of coal-to-liquids development and commercial application; an analysis of the key business factors that are driving the increased interest in coal-to-liquids; an analysis of the issues and challenges that are hindering the commercialization of coal-to-liquids technology; a review of available coal-to-liquids technology; a discussion of the economic drivers of coal-to-liquids project success; profiles of key coal-to-liquids developers; and profiles of key coal-to-liquids projects under development.

NONE

2007-08-15T23:59:59.000Z

304

Commercializing the H-Coal Process  

E-Print Network [OSTI]

, Hydrocarbon Research, Inc. (HRI) has observed a decided swing in interest in commercial coal liquefaction. Project owners can select one of two paths for commercial coal liquefaction using H-Coal technology. The quantum strategy involves the construction of a...

DeVaux, G. R.; Dutkiewicz, B.

1982-01-01T23:59:59.000Z

305

Coal Bed Methane Protection Act (Montana)  

Broader source: Energy.gov [DOE]

The Coal Bed Methane Protection Act establishes a long-term coal bed methane protection account and a coal bed methane protection program for the purpose of compensating private landowners and...

306

Thermodynamics of the solvent swelling of coal  

SciTech Connect (OSTI)

Sorption of benzene by the pyridine-extracts of premium Argonne Illinois {number sign}6 coal was studied at several relative vapor pressures at 50{degrees}C and 70{degrees}C. The amount of benzene sorbed by the extract increases linearly or nearly linearly with benzene vapor pressure. The extrapolated lines do not pass through the origin. At low pressures, a dual-mode sorption mechanism is proposed, whereby benzene concurrently fills holes (microvoids) and dissolves into the extract. At higher pressures, we propose that the holes are saturated and that only dissolution is occurring. Dissolution thus increases linearly with pressure of benzene. The heat of dilution, calculated from the change in slope of the curve with temperature, is positive, indicating a endothermic process. This result is in distinct contrast to results obtained previously using pyridine as solvent. The O-methylated extract absorbs considerably more benzene at 50{degrees}C compared to the extract. Again, the sorption curve is linearly, with a slope 1.5 times that of the extract. The increase in slope is consistent with the disruption of hydrogen bonds by O-methylation. 3 refs., 2 figs., 1 tab.

Green, T.K.

1991-10-10T23:59:59.000Z

307

Black Hole Chemistry  

E-Print Network [OSTI]

The mass of a black hole has traditionally been identified with its energy. We describe a new perspective on black hole thermodynamics, one that identifies the mass of a black hole with chemical enthalpy, and the cosmological constant as thermodynamic pressure. This leads to an understanding of black holes from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. Both charged and rotating black holes exhibit novel chemical-type phase behaviour, hitherto unseen.

David Kubiznak; Robert B. Mann

2014-04-08T23:59:59.000Z

308

Coal Mine Safety Act (Virginia)  

Broader source: Energy.gov [DOE]

This Act is the primary legislation pertaining to coal mine safety in Virginia. It contains information on safety rules, safety standards and required certifications for mine workers, prohibited...

309

MS_Coal_Studyguide.indd  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

what about costs? Th e mining, transportation, electricity generation, and pollution-control costs associated with using coal are increasing, but both natural gas and oil are...

310

Process analysis and simulation of underground coal gasification  

SciTech Connect (OSTI)

This investigation pertains to the prediction of cavity growth and the prediction of product gas composition in underground coal gasification (ICG) via mathematical model. The large-scale simulation model of the UCG process is comprised of a number of sub-models, each describing definable phenomena in the process. Considerable effort has been required in developing these sub-models, which are described in this work. In the first phase of the investigation, the flow field in field experiments was analyzed using five selected flow models and a combined model was developed based on the Hoe Creek II field experimental observations. The combined model was a modified tanks-in-series mode, and each tank consisted of a void space and a rubble zone. In the second phase of this work, a sub-model for self-gasification of coal was developed and simulated to determine the effect of water influx on the consumption of coal and whether self-gasification of coal alone was shown to be insufficient to explain the observed cavity growth. In the third phase of this work, a new sweep efficiency model was developed and coded to predict the cavity growth and product gas composition. Self-gasification of coal, water influx, and roof collapse and spalling were taken into account in the model. Predictions made by the model showed reasonable agreement with the experimental observations and calculations.

Chang, H.L.

1984-01-01T23:59:59.000Z

311

Impact of finite-rate kinetics on carbon conversion in a single-stage entrained flow gasifier with coal-CO2 slurry feed  

E-Print Network [OSTI]

Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 Abstract Coal-CO2 slurry Botero) #12;Clearwater Clean Coal Conference, June 3-7, 2012 Botero et al. operating costs related with coal-CO2 slurry feed Cristina Botero , Randall P. Field, Howard J. Herzog, Ahmed F. Ghoniem

312

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

Renewable Energy and Energy Efficiency, DOE. LBNL 275-E Advanced Coal Wind Hybrid:Renewable Energy Laboratory), and Ryan Wiser ( LBNL). i Advanced Coal Wind Hybrid:

Phadke, Amol

2008-01-01T23:59:59.000Z

313

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

s 2006 total primary energy consumption, compared to 24Coal Dependence of Primary Energy Consumption, 2007coal/primary energy consumption Source: BP Statistical

Aden, Nathaniel

2010-01-01T23:59:59.000Z

314

Arkansas Surface Coal Mining Reclamation Act (Arkansas)  

Broader source: Energy.gov [DOE]

The Arkansas Surface Coal Mining Reclamation Act authorizes the state to develop, adopt, issue and amend rules and regulations pertaining to surface coal mining and reclamation operations. These...

315

Utility Generation and Clean Coal Technology (Indiana)  

Broader source: Energy.gov [DOE]

This statute establishes the state's support and incentives for the development of new energy production and generating facilities implementing advanced clean coal technology, such as coal...

316

The recovery of purified coal from solution.  

E-Print Network [OSTI]

??A new process is being developed to produce graphite from prime coking coal. Coal is dissolved in dimethylformamide (DMF), on addition of sodium hydroxide. The… (more)

Botha, Mary Alliles

2008-01-01T23:59:59.000Z

317

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

Aden, Nathaniel

2010-01-01T23:59:59.000Z

318

Burn cavity growth during the Hoe Creek No. 3 underground coal gasification experiment  

SciTech Connect (OSTI)

A detailed history is given of the growth of the burn cavity during the first month of the Hoe Creek No. 3 underground coal gasification experiment near Gillette, Wyoming, in 1979. The changing shape of the cavity with time is inferred from data from three types of instruments installed throughout the experimental zone: (1) thermocouples at various levels in a number of holes, to map temperatures; (2) extensometers at various levels in other holes, to detect motions of the overburden material; and (3) high-frequency electromagnetic (HFEM) scans made between various pairs of holes, to detect cavities and zones of burning coal. Additional data on the final shape of the underground cavity are derived from the results of a core drilling program carried out from the surface after the burn had ended. This study of cavity growth history has contributed significantly to our understanding of how the in situ coal gasification process operates in sites like Hoe Creek. The diagnostic system provided invaluable information on cavity growth and on the interaction between the two coal seams. Some new problems with injection well survival and slag production in oxygen-steam burns were brought out, and the importance of understanding and controlling heat loss mechanisms was amply demonstrated. Although no one system of underground diagnostics can give all of the information needed to fully describe the in situ process, a combination of several diagnostic systems can be used to deduce a self-consistent description.

Hill, R.W.

1981-01-14T23:59:59.000Z

319

Burn cavity growth during the Hoe Creek No. 3 underground-coal-gasification experiment  

SciTech Connect (OSTI)

A detailed history is given of the growth of the burn cavity during the first month of the Hoe Creek No. 3 underground coal gasification experiment near Gillette, Wyoming, in 1979. The changing shape of the cavity with time is inferred from data from three types of instruments installed throughout the experimental zone: (1) thermocouples at various levels in a number of holes, to map temperatures; (2) extensometers at various levels in other holes, to detect motions of the overburden material; and (3) high-frequency electromagnetic scans made between various pairs of holes, to detect cavities and zones of burning coal. Additional data on the final shape of the underground cavity is derived from the results of a core drilling program carried out from the surface after the burn had ended. This study of cavity growth history has contributed significantly to our understanding of how the in-situ coal gasification process operates in sites like Hoe Creek. The diagnostic system provided invaluable information on cavity growth and on the interaction between the two coal seams. Some new problems with injection well survival and slag production in oxygen-steam burns were brought out, and the importance of understanding and controlling heat loss mechanisms was amply demonstrated. Although no one system of underground diagnostics can give all of the information needed to fully describe the in-situ process, a combination of several diagnostic systems can be used to deduce a self-consistent description.

Hill, R.W.

1981-06-08T23:59:59.000Z

320

Black holes in extra dimensions can decay on the bulk  

E-Print Network [OSTI]

In the extra dimensional theories, with TeV scale Plank constant, black holes may be produced in the Large Hadron Collider experiments. We have argued that in the d-dimensional black hole, the intrinsically 4-dimensional brane fields do not see the same geometry at the horizon, as in a 4-dimensional space-time. Kaluza-Klein modes invades the brane and surroundings and the brane fields can be considered as a thermal system at the temperature of the black hole. From energy and entropy consideration, we show that whether or not a six-dimensional black hole will decay by emitting Kaluza-Klein modes or the standard model particles, will depend on the length scale of the extra dimensions as well as on the mass of the black hole. For higher dimensional black holes, Kaluza-Klein modes will dominate the decay.

A. K. Chaudhuri

2003-01-08T23:59:59.000Z

Note: This page contains sample records for the topic "hole coal field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

COAL SLAGGING AND REACTIVITY TESTING  

SciTech Connect (OSTI)

Union Fenosa's La Robla I Power Station is a 270-MW Foster Wheeler arch-fired system. The unit is located at the mine that provides a portion of the semianthracitic coal. The remaining coals used are from South Africa, Russia, Australia, and China. The challenges at the La Robla I Station stem from the various fuels used, the characteristics of which differ from the design coal. The University of North Dakota Energy & Environmental Research Center (EERC) and the Lehigh University Energy Research Center (LUERC) undertook a program to assess problematic slagging and unburned carbon issues occurring at the plant. Full-scale combustion tests were performed under baseline conditions, with elevated oxygen level and with redistribution of air during a site visit at the plant. During these tests, operating information, observations and temperature measurements, and coal, slag deposit, and fly ash samples were obtained to assess slagging and unburned carbon. The slagging in almost all cases appeared due to elevated temperatures rather than fuel chemistry. The most severe slagging occurred when the temperature at the sampling port was in excess of 1500 C, with problematic slagging where first-observed temperatures exceeded 1350 C. The presence of anorthite crystals in the bulk of the deposits analyzed indicates that the temperatures were in excess of 1350 C, consistent with temperature measurements during the sampling period. Elevated temperatures and ''hot spots'' are probably the result of poor mill performance, and a poor distribution of the coal from the mills to the specific burners causes elevated temperatures in the regions where the slag samples were extracted. A contributing cause appeared to be poor combustion air mixing and heating, resulting in oxygen stratification and increased temperatures in certain areas. Air preheater plugging was observed and reduces the temperature of the air in the windbox, which leads to poor combustion conditions, resulting in unburned carbon as well as slagging. A second phase of the project involved advanced analysis of the baseline coal along with an Australian coal fired at the plant. These analysis results were used in equilibrium thermodynamic modeling along with a coal quality model developed by the EERC to assess slagging, fouling, and opacity for the coals. Bench-scale carbon conversion testing was performed in a drop-tube furnace to assess the reactivity of the coals. The Australian coal had a higher mineral content with significantly more clay minerals present than the baseline coal. The presence of these clay minerals, which tend to melt at relatively low temperatures, indicated a higher potential for problematic slagging than the baseline coal. However, the pyritic minerals, comprising over 25% of the baseline mineral content, may form sticky iron sulfides, leading to severe slagging in the burner region if local areas with reducing conditions exist. Modeling results indicated that neither would present significant fouling problems. The Australian coal was expected to show slagging behavior much more severe than the baseline coal except at very high furnace temperatures. However, the baseline coal was predicted to exhibit opacity problems, as well as have a higher potential for problematic calcium sulfate-based low-temperature fouling. The baseline coal had a somewhat higher reactivity than the Australian coal, which was consistent with both the lower average activation energy for the baseline coal and the greater carbon conversion at a given temperature and residence time. The activation energy of the baseline coal showed some effect of oxygen on the activation energy, with E{sub a} increasing at the lower oxygen concentration, but may be due to the scatter in the baseline coal kinetic values at the higher oxygen level tested.

Donald P. McCollor; Kurt E. Eylands; Jason D. Laumb

2003-10-01T23:59:59.000Z

322

In-situ coal gasification: a new technology  

SciTech Connect (OSTI)

While the technology for underground gasification of Western US subbituminous coals is advancing through efforts at the Hanna and Hoe Creek test sites, the development of an Eastern bituminous coal technology has only begun. The Pricetown 1 field test proved the feasibility of gasifying the thin-seam, swelling bituminous coal resources. Key issues remaining to be demonstrated include an effective linkage method, means of controlling gas production and composition, and scale-up. A major field-test program could entail three phases: (1) resolving the linkage and process control problems in the Appalachian basin, (2) assessing the technology in the untested Illinois basin, and (3) testing a multimodule commercial-scale prototype.

Agarwal, A.K.; Zielinski, R.E.; Seabaugh, P.W.; Liberatore, A.J.; Martin, J.W.

1982-01-01T23:59:59.000Z

323

First laboratory perforating tests in coal show lower-than-expected penetration  

SciTech Connect (OSTI)

Worldwide Coal Bed Methane (CBM) resources are huge, estimated at 3,000 to 9,000 Tcf. The production rate from CBM reservoirs is low, perhaps 50-100 mcf/day. Various completion methods are being evaluated and new technologies are being developed with the aim of increasing production rates. Considering this interest and activity level, little attention has been paid to the CBM completion fundamentals. Perforating is a critical part of this process, especially considering the PRB development migration from single-coal, open-hole completions into multi-zone, cased-hole completions. This paper describes the first known laboratory-testing program to investigate shaped charge penetration in coal targets. We describe mechanical properties of the coals tested, and penetration results for different shaped charges (of different designs), shot at various stress conditions. CT scan and cutaway imaging of the perforation tunnels are also discussed. Tests were conducted under dry and saturated conditions. The preliminary experiments reported here indicate that shaped charge penetration in coal is significantly less than expected, considering the target's density and strength. The authors provide insight into what may be the reasons for these unexpected results and recommend a path forward for shaped charge testing, designs, predictive tools, and how to optimize CBM completions.

Snider, P.M.; Walton, I.C.; Skinner, T.K.; Atwood, D.C.; Grove, B.M.; Graham, C.

2008-06-15T23:59:59.000Z

324

Coal: Energy for the future  

SciTech Connect (OSTI)

This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

NONE

1995-05-01T23:59:59.000Z

325

Consensus Coal Production Forecast for  

E-Print Network [OSTI]

in the consensus forecast produced in 2006, primarily from the decreased demand as a result of the current nationalConsensus Coal Production Forecast for West Virginia 2009-2030 Prepared for the West Virginia Summary 1 Recent Developments 2 Consensus Coal Production Forecast for West Virginia 10 Risks

Mohaghegh, Shahab

326

Commercialization of clean coal technologies  

SciTech Connect (OSTI)

The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

Bharucha, N. [Dept. of Primary Industries and Energy, Canberra (Australia)

1994-12-31T23:59:59.000Z

327

Flow characteristics in underground coal gasification  

SciTech Connect (OSTI)

During the Hoe Creek No. 2 (Wyoming) underground-coal-gasification field test, researchers introduced helium pulses to characterize the flow field and to estimate the coefficients in dispersion models of the flow. Flow models such as the axial-dispersion and parallel tanks-in-series models allowed interpretation of the in situ combustion flow field from the residence time distribution of the tracer gas. A quantitative analysis of the Hoe Creek tracer response curves revealed an increasing departure from a plug-flow regime with time, which was due to the combined effects of the free and forced convection in addition to the complex nonuniformity of the flow field. The Peclet number was a function of temperature, pressure, gas recovery, and characteristic velocity, as well as the split of the gas between the parallel streams in the model.

Chang, H.L.; Himmelblau, D.M.; Edgar, T.F.

1982-01-01T23:59:59.000Z

328

EIA -Quarterly Coal Distribution  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri NuclearTennesseeWashington- Coal

329

Coal | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof aChristinaCliffPublication Revision PolicyCoal

330

Coal combustion products (CCPs  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartmentPolicyClean, EEREClosureHighforCoal

331

Annual Coal Distribution Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan FebForeign Distribution of U.S. Coal

332

Annual Coal Report 2013  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil and Natural Gas AEO2015EnergyAnnual Coal

333

Annual Coal Distribution Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYear Jan Feb MarAlternative0of

334

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22, 20131Detailed0

335

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,

336

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S. Energy

337

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S. Energy0

338

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S. Energy01

339

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.

340

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.1 U.S.

Note: This page contains sample records for the topic "hole coal field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.1 U.S.1

342

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.1 U.S.12

343

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.1 U.S.120

344

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.1

345

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.10 U.S.

346

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.10 U.S.0

347

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.10 U.S.01

348

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.10

349

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.101 U.S.

350

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.101 U.S.1

351

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.101

352

Coal Distribution Database, 2008  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010 ImportsCubic Feet) Oil3Q 2009

353

Coal Distribution Database, 2008  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010 ImportsCubic Feet) Oil3Q 20093Q 2009

354

Coal Distribution Database, 2008  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010 ImportsCubic Feet) Oil3Q 20093Q

355

Coal Distribution Database, 2008  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010 ImportsCubic Feet) Oil3Q 20093Q4Q

356

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper8,170Thousand2.442 3.028 3.803 3.971Feet)06Coal

357

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousand Cubic Feet) OmanThousand36,610.05 KeroseneCoal Glossary

358

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousand Cubic Feet) OmanThousand36,610.05 KeroseneCoal

359

Coal Supply Region  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010 ImportsCubic Feet) Oil3Qc. Real12

360

EIA - Coal Distribution  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data03. U.S. uraniumFormsAnnual

Note: This page contains sample records for the topic "hole coal field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

By Coal Destination State  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566 8021 1 2 22008662 564CubicAnnual Coal

362

Strategic Center for Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4American'!Stores Catalogof SVO ResearchCoal

363

A toroidal black hole for the AGN phenomenon  

E-Print Network [OSTI]

A new approach to the study of the AGN phenomenon is proposed, in which the nucleus activity is related to the metric of the inner massive black hole. The possibility of a Toroidal Black Hole (TBH), in contrast to the usual Spherical Black Hole (SBH), is discussed as a powerful tool in understanding AGN related phenomena, such as the energetics, the production of jets and the acceleration of particles, the shape of the magnetic field and the lifetime of nucleus activity.

Fulvio Pompilio; S. M. Harun-or-Rashid; Matts Roos

2000-08-30T23:59:59.000Z

364

Classical and Quantum Properties of Liouville Black Holes  

E-Print Network [OSTI]

Black hole spacetimes can arise when a Liouville field is coupled to two- dimensional gravity. Exact solutions are obtained both classically and when quantum corrections due to back reaction effects are included. The black hole temperature depends upon the mass and the thermodynamic limit breaks down before evaporation of the black hole is complete, indicating that higher-loop effects must be included for a full description of the process.

R. B. Mann

1994-04-25T23:59:59.000Z

365

A Quantum Material Model of Static Schwarzschild Black Holes  

E-Print Network [OSTI]

A quantum-mechanical prescription of static Einstein field equation is proposed in order to construct the matter-metric eigen-states in the interior of a static Schwarzschild black hole where the signature of space-time is chosen as (--++). The spectrum of the quantum states is identified to be the integral multiples of the surface gravity. A statistical explanation of black hole entropy is given and a quantisation rule for the masses of Schwarzschild black holes is proposed.

S. -T. Sung

1997-03-16T23:59:59.000Z

366

Towards Black Hole Entropy in Shape Dynamics  

E-Print Network [OSTI]

Shape dynamics is classical theory of gravity which agrees with general relativity in many important cases, but possesses different gauge symmetries and constraints. Rather than spacetime diffeomorphism invariance, shape dynamics takes spatial diffeomorphism invariance and spatial Weyl invariance as the fundamental gauge symmetries associated with the gravitational field. Since the area of the event horizon of a black hole transforms under a generic spatial Weyl transformation, there has been some doubt that one can speak sensibly about the thermodynamics of black holes in shape dynamics. The purpose of this paper is to show that by treating the event horizon of a black hole as an interior boundary, one can recover familiar notions of black hole thermodynamics in shape dynamics and define a gauge invariant entropy that agrees with general relativity.

Gabriel Herczeg; Vasudev Shyam

2014-10-21T23:59:59.000Z

367

A Mechanism for Coronal Hole Jets  

E-Print Network [OSTI]

Bald patches are magnetic topologies in which the magnetic field is concave up over part of a photospheric polarity inversion line. A bald patch topology is believed to be the essential ingredient for filament channels and is often found in extrapolations of the observed photospheric field. Using an analytic source-surface model to calculate the magnetic topology of a small bipolar region embedded in a global magnetic dipole field, we demonstrate that although common in closed-field regions close to the solar equator, bald patches are unlikely to occur in the open-field topology of a coronal hole. Our results give rise to the following question: What happens to a bald patch topology when the surrounding field lines open up? This would be the case when a bald patch moves into a coronal hole, or when a coronal hole forms in an area that encompasses a bald patch. Our magnetostatic models show that, in this case, the bald patch topology almost invariably transforms into a null point topology with a spine and a fan. We argue that the time-dependent evolution of this scenario will be very dynamic since the change from a bald patch to null point topology cannot occur via a simple ideal evolution in the corona. We discuss the implications of these findings for recent Hinode XRT observations of coronal hole jets and give an outline of planned time-dependent 3D MHD simulations to fully assess this scenario.

D. A. N. Mueller; S. K. Antiochos

2008-04-24T23:59:59.000Z

368

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network [OSTI]

Costs References . . Coal-Electric Generation Technologyon coal preparation, coal-electric generation and emissionson coal preparation, coal-electric generation and emissions

Ferrell, G.C.

2010-01-01T23:59:59.000Z

369

Coals and coal requirements for the COREX process  

SciTech Connect (OSTI)

The utilization of non met coals for production of liquid hot metal was the motivation for the development of the COREX Process by VAI/DVAI during the 70`s. Like the conventional ironmaking route (coke oven/blast furnace) it is based on coal as source of energy and reduction medium. However, in difference to blast furnace, coal can be used directly without the necessary prestep of cokemaking. Coking ability of coals therefore is no prerequisite of suitability. Meanwhile the COREX Process is on its way to become established in ironmaking industry. COREX Plants at ISCOR, Pretoria/South Africa and POSCO Pohang/Korea, being in operation and those which will be started up during the next years comprise already an annual coal consumption capacity of approx. 5 Mio. tonnes mtr., which is a magnitude attracting the interest of industrial coal suppliers. The increasing importance of COREX as a comparable new technology forms also a demand for information regarding process requirements for raw material, especially coal, which is intended to be met here.

Heckmann, H. [Deutsche Voest-Alpine Industrieanlagenbau GmbH, Duesseldorf (Germany)

1996-12-31T23:59:59.000Z

370

Coal pile leachate treatment  

SciTech Connect (OSTI)

The steam plant located at the Oak Ridge National Laboratory was converted from oil- to coal-fired boilers. In the process, a diked, 1.6-ha coal storage yard was constructed. The purpose of this report is to describe the treatment system designed to neutralize the estimated 18,000 m/sup 3/ of acidic runoff that will be produced each year. A literature review and laboratory treatability study were conducted which identified two treatment systems that will be employed to neutralize the acidic runoff. The first, a manually operated system, will be constructed at a cost of $200,000 and will operate for an interim period of four years. This system will provide for leachate neutralization until a more automated system can be brought on-line. The second, a fully automated system, is described and will be constructed at an estimated cost of $650,000. This automated runoff treatment system will ensure that drainage from the storage yard meets current National Pollutant Discharge Elimination System Standards for pH and total suspended solids, as well as future standards, which are likely to include several metals along with selected trace elements.

Davis, E C; Kimmitt, R R

1982-09-01T23:59:59.000Z

371

Dynamics of black holes  

E-Print Network [OSTI]

This is a review of current theory of black-hole dynamics, concentrating on the framework in terms of trapping horizons. Summaries are given of the history, the classical theory of black holes, the defining ideas of dynamical black holes, the basic laws, conservation laws for energy and angular momentum, other physical quantities and the limit of local equilibrium. Some new material concerns how processes such as black-hole evaporation and coalescence might be described by a single trapping horizon which manifests temporally as separate horizons.

Sean A. Hayward

2009-02-28T23:59:59.000Z

372

Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. [Coal pyrite electrodes  

SciTech Connect (OSTI)

The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the eighth quarter, wet chemical and dry oxidation tests were done on Upper Freeport coal from the Troutville [number sign]2 Mine, Clearfield County, Pennsylvania. In addition electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania.

Doyle, F.M.

1992-01-01T23:59:59.000Z

373

Coal surface control for advanced fine coal flotation  

SciTech Connect (OSTI)

The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. (California Univ., Berkeley, CA (United States)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (United States)); Hu, W.; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (United States)); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Milpitas, CA (United States))

1992-03-01T23:59:59.000Z

374

Black Holes with Flavors of Quantum Hair?  

E-Print Network [OSTI]

We show that black holes can posses a long-range quantum hair of super-massive tensor fields, which can be detected by Aharonov-Bohm tabletop interference experiments, in which a quantum-hairy black hole, or a remnant particle, passes through the loop of a magnetic solenoid. The long distance effect does not decouple for an arbitrarily high mass of the hair-providing field. Because Kaluza-Klein and String theories contain infinite number of massive tensor fields, we study black holes with quantum Kaluza-Klein hair. We show that in five dimensions such a black hole can be interpreted as a string of `combed' generalized magnetic monopoles, with their fluxes confined along it. For the compactification on a translation-invariant circle, this substructure uncovers hidden flux conservation and quantization of the monopole charges, which constrain the quantum hair of the resulting four-dimensional black hole. For the spin-2 quantum hair this result is somewhat unexpected, since the constituent `magnetic' charges have no `electric' counterparts. Nevertheless, the information about their quantization is encoded in singularity.

Gia Dvali

2006-07-20T23:59:59.000Z

375

Low temperature aqueous desulfurization of coal  

DOE Patents [OSTI]

This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

Slegeir, William A. (Hampton Bays, NY); Healy, Francis E. (Massapequa, NY); Sapienza, Richard S. (Shoreham, NY)

1985-01-01T23:59:59.000Z

376

2011 International Pittsburgh Coal Conference Pittsburgh, PA  

E-Print Network [OSTI]

Sequestration in Unmineable Coal with Enhanced Coal Bed Methane Recovery: The Marshall County Project James E conducted in Marshall County, West Virginia, USA, to evaluate enhanced coal bed methane recovery enhanced coal bed methane (CBM) pilot test in Marshall County, West Virginia. This pilot test was developed

Mohaghegh, Shahab

377

Biogeochemistry of Microbial Coal-Bed Methane  

E-Print Network [OSTI]

Biogeochemistry of Microbial Coal-Bed Methane Dariusz Strapo´c,1, Maria Mastalerz,2 Katherine, biodegradation Abstract Microbial methane accumulations have been discovered in multiple coal- bearing basins low-maturity coals with predominantly microbial methane gas or uplifted coals containing older

Macalady, Jenn

378

Formation and retention of methane in coal  

SciTech Connect (OSTI)

The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

Hucka, V.J.; Bodily, D.M.; Huang, H.

1992-05-15T23:59:59.000Z

379

Low temperature aqueous desulfurization of coal  

DOE Patents [OSTI]

This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

Slegeir, W.A.; Healy, F.E.; Sapienza, R.S.

1985-04-18T23:59:59.000Z

380

Carbon Dioxide Capture from Coal-Fired  

E-Print Network [OSTI]

. LFEE 2005-002 Report #12;#12;i ABSTRACT Investments in three coal-fired power generation technologiesCarbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis May 2005 MIT LFEE 2005 environment. The technologies evaluated are pulverized coal (PC), integrated coal gasification combined cycle

Note: This page contains sample records for the topic "hole coal field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Commercialization of coal to liquids technology  

SciTech Connect (OSTI)

After an overview of the coal market, technologies for producing liquids from coal are outlined. Commercialisation of coal-to-liquid fuels, the economics of coal-to-liquids development and the role of the government are discussed. Profiles of 8 key players and the profiles of 14 projects are finally given. 17 figs., 8 tabs.

NONE

2007-07-01T23:59:59.000Z

382

Clean coal technologies: A business report  

SciTech Connect (OSTI)

The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base.

Not Available

1993-01-01T23:59:59.000Z

383

Nonrotating black hole in a post-Newtonian tidal environment  

E-Print Network [OSTI]

We examine the motion and tidal dynamics of a nonrotating black hole placed within a post-Newtonian external spacetime. The tidal perturbation created by the external environment is treated as a small perturbation. At a large distance from the black hole, the gravitational field of the external distribution of matter is assumed to be sufficiently weak to be adequately described by the (first) post-Newtonian approximation to general relativity. There, the black hole is treated as a monopole contribution to the total gravitational field. There exists an overlap in the domains of validity of each description, and the black-hole and post-Newtonian metrics are matched in the overlap. The matching procedure produces the equations of motion for the black hole and the gravito-electric and gravito-magnetic tidal fields acting on the black hole. We first calculate the equations of motion and tidal fields by making no assumptions regarding the nature of the post-Newtonian environment; this could contain a continuous distribution of matter or any number of condensed bodies. We next specialize our discussion to a situation in which the black hole is a member of a post-Newtonian two-body system. As an application of our results, we examine the geometry of the deformed event horizon and calculate the tidal heating of the black hole, the rate at which it acquires mass as a result of its tidal interaction with the companion body.

Stephanne Taylor; Eric Poisson

2008-09-11T23:59:59.000Z

384

Coal: the cornerstone of America's energy future  

SciTech Connect (OSTI)

In April 2005, US Secretary of Energy Samuel W. Bodman asked the National Coal Council to develop a 'report identifying the challenges and opportunities of more fully exploring our domestic coal resources to meet the nation's future energy needs'. The Council has responded with eight specific recommendations for developing and implementing advanced coal processing and combustion technologies to satisfy our unquenchable thirst for energy. These are: Use coal-to-liquids technologies to produce 2.6 million barrels/day; Use coal-to-natural gas technologies to produce 4 trillion ft{sup 3}/yr; Build 100 GW of clean coal plants by 2025; Produce ethanol from coal; Develop coal-to-hydrogen technologies; Use CO{sub 2} to enhance recovery of oil and coal-bed methane; Increase the capacity of US coal mines and railroads; and Invest in technology development and implementation. 1 ref.; 4 figs.; 1 tab.

Beck, R.A. [National Coal Council (United Kingdom)

2006-06-15T23:59:59.000Z

385

Brief review on higher spin black holes  

E-Print Network [OSTI]

We review some relevant results in the context of higher spin black holes in three-dimensional spacetimes, focusing on their asymptotic behaviour and thermodynamic properties. For simplicity, we mainly discuss the case of gravity nonminimally coupled to spin-3 fields, being nonperturbatively described by a Chern-Simons theory of two independent sl(3,R) gauge fields. Since the analysis is particularly transparent in the Hamiltonian formalism, we provide a concise discussion of their basic aspects in this context; and as a warming up exercise, we briefly analyze the asymptotic behaviour of pure gravity, as well as the BTZ black hole and its thermodynamics, exclusively in terms of gauge fields. The discussion is then extended to the case of black holes endowed with higher spin fields, briefly signaling the agreements and discrepancies found through different approaches. We conclude explaining how the puzzles become resolved once the fall off of the fields is precisely specified and extended to include chemical potentials, in a way that it is compatible with the asymptotic symmetries. Hence, the global charges become completely identified in an unambiguous way, so that different sets of asymptotic conditions turn out to contain inequivalent classes of black hole solutions being characterized by a different set of global charges.

Alfredo Perez; David Tempo; Ricardo Troncoso

2014-05-12T23:59:59.000Z

386

Simulation of CO2 Sequestration and Enhanced Coalbed Methane Production in Multiple Appalachian Basin Coal Seams  

SciTech Connect (OSTI)

A DOE-funded field injection of carbon dioxide is to be performed in an Appalachian Basin coal seam by CONSOL Energy and CNX Gas later this year. A preliminary analysis of the migration of CO2 within the Upper Freeport coal seam and the resulting ground movements has been performed on the basis of assumed material and geometric parameters. Preliminary results show that ground movements at the field site may be in a range that are measurable by tiltmeter technology.

Bromhal, G.S.; Siriwardane, H.J.; Gondle, R.K.

2007-11-01T23:59:59.000Z

387

CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS  

SciTech Connect (OSTI)

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. there were two main objectives for this reporting period. first, they wanted to collect wilcox coal samples from depths similar to those of probable sequestration sites, with the objective of determining accurate parameters for reservoir model description and for reservoir simulation. The second objective was to pursue opportunities for determining permeability of deep Wilcox coal to use as additional, necessary data for modeling reservoir performance during CO{sub 2} sequestration and enhanced coalbed methane recovery. In mid-summer, Anadarko Petroleum Corporation agreed to allow the authors to collect Wilcox Group coal samples from a well that was to be drilled to the Austin Chalk, which is several thousand feet below the Wilcox. In addition, they agreed to allow them to perform permeability tests in coal beds in an existing shut-in well. Both wells are in the region of the Sam K. Seymour power station, a site that they earlier identified as a major point source of CO{sub 2}. They negotiated contracts for sidewall core collection and core analyses, and they began discussions with a service company to perform permeability testing. To collect sidewall core samples of the Wilcox coals, they made structure and isopach maps and cross sections to select coal beds and to determine their depths for coring. On September 29, 10 sidewall core samples were obtained from 3 coal beds of the Lower Calvert Bluff Formation of the Wilcox Group. The samples were desorbed in 4 sidewall core canisters. Desorbed gas samples were sent to a laboratory for gas compositional analyses, and the coal samples were sent to another laboratory to measure CO{sub 2}, CH{sub 4}, and N{sub 2} sorption isotherms. All analyses should be finished by the end of December. A preliminary report shows methane content values for the desorbed coal samples ranged between 330 and 388 scf/t., on ''as received'' basis. Residual gas content of the coals was not included in the analyses, which results in an approximate 5-10% underestimation of in-situ gas content. Coal maps indicate that total coal thickness is 40-70 ft in the Lower Calvert Bluff Formation of the Wilcox Group in the vicinity of the Sam K. Seymour power plant. A conservative estimate indicates that methane in place for a well on 160-acre spacing is approximately 3.5 Bcf in Lower Calvert Bluff coal beds. When they receive sorption isotherm data from the laboratory, they will determine the amount of CO{sub 2} that it may be possible to sequester in Wilcox coals. In December, when the final laboratory and field test data are available, they will complete the reservoir model and begin to simulate CO{sub 2} sequestration and enhanced CH{sub 4} production.

Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

2004-11-01T23:59:59.000Z

388

Coal Combustion Products Extension Program  

SciTech Connect (OSTI)

This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to 40% by 2010, the CCP Extension Program be expanded at OSU, with support from state and federal agencies, utilities, trade groups, and the university, to focus on the following four specific areas of promise: (a) Expanding use in proven areas (such as use of fly ash in concrete); (b) Removing or reducing regulatory and perceptual barriers to use (by working in collaboration with regulatory agencies); (c) Developing new or under-used large-volume market applications (such as structural fills); and (d) Placing greater emphasis on FGD byproducts utilization.

Tarunjit S. Butalia; William E. Wolfe

2006-01-11T23:59:59.000Z

389

Primordial black hole evolution in tensor-scalar cosmology  

E-Print Network [OSTI]

A perturbative analysis shows that black holes do not remember the value of the scalar field $\\phi$ at the time they formed if $\\phi$ changes in tensor-scalar cosmology. Moreover, even when the black hole mass in the Einstein frame is approximately unaffected by the changing of $\\phi$, in the Jordan-Fierz frame the mass increases. This mass increase requires a reanalysis of the evaporation of primordial black holes in tensor-scalar cosmology. It also implies that there could have been a significant magnification of the (Jordan-Fierz frame) mass of primordial black holes.

Ted Jacobson

1999-09-06T23:59:59.000Z

390

Absorption of scalars by extremal black holes in string theory  

E-Print Network [OSTI]

We show that the low frequency absorption cross section of minimally coupled massless scalar fields by extremal spherically symmetric black holes in d dimensions in the presence of string-theoretical alpha' corrections is equal to the horizon area. Classically one has the relation sigma=4GS between the absorption cross section and the black hole entropy. We discuss the validity of such relation in the presence of alpha' corrections for extremal black holes, both nonsupersymmetric and supersymmetric. The examples we consider seem to indicate that this relation is verified in the presence of alpha' corrections for supersymmetric black holes, but not for nonsupersymmetric ones.

Filipe Moura

2014-06-13T23:59:59.000Z

391

Coal cutting research slashes dust  

SciTech Connect (OSTI)

US Bureau of Mines' research projects aimed at the reduction of coal dust during coal cutting operations are described. These include an investigation of the effects of conical bit wear on respirable dust generation, energy and cutting forces; the determination of the best conical bit mount condition to increase life by enhancing bit rotation; a comparison between chisel- and conical-type cutters. In order to establish a suitable homogeneous reference material for cutting experiments, a synthetic coal with a plaster base is being developed.

Roepke, W.W.

1983-10-01T23:59:59.000Z

392

Coal Mining on Pitching Seams  

E-Print Network [OSTI]

. 1915* App r ov e d: Department of Mining Engineering* COAL MUTING ON PITCHING SEAMS A THESIS SUBMITTED TO THE FACULTY OP THE SCHOOL OP ENGINEERING OF THE UNIVERSITY OP KANSAS for THE DEGREE OF ENGINEER OF MINES BY GEORGE MACMILLAN BROWN 1915... PREFACE In the following dissertation on the subject of "Coal Mining in Pitching Beams" the writer desires to describe more particularly those methods of mining peculiar to coal mines in Oklahoma, with which he has been more or less familiar during...

Brown, George MacMillan

1915-01-01T23:59:59.000Z

393

Coal competition: prospects for the 1980s  

SciTech Connect (OSTI)

This report consists of 10 chapters which present an historical overview of coal and the part it has played as an energy source in the economic growth of the United States from prior to World War II through 1978. Chapter titles are: definition of coals, coal mining; types of coal mines; mining methods; mining work force; development of coal; mine ownership; production; consumption; prices; exports; and imports. (DMC)

Not Available

1981-03-01T23:59:59.000Z

394

Coal conversion siting on coal mined lands: water quality issues  

SciTech Connect (OSTI)

The siting of new technology coal conversion facilities on land disturbed by coal mining results in both environmental benefits and unique water quality issues. Proximity to mining reduces transportation requirements and restores disrupted land to productive use. Uncertainties may exist, however, in both understanding the existing site environment and assessing the impact of the new technology. Oak Ridge National Laboratory is currently assessing the water-related impacts of proposed coal conversion facilities located in areas disturbed by surface and underground coal mining. Past mining practices, leaving highly permeable and unstable fill, may affect the design and quality of data from monitoring programs. Current mining and dewatering, or past underground mining may alter groundwater or surface water flow patterns or affect solid waste disposal stability. Potential acid-forming material influences the siting of waste disposal areas and the design of grading operations. These and other problems are considered in relation to the uncertainties and potentially unique problems inherent in developing new technologies.

Triegel, E.K.

1980-01-01T23:59:59.000Z

395

Clean coal technology. Coal utilisation by-products  

SciTech Connect (OSTI)

The need to remove the bulk of ash contained in flue gas from coal-fired power plants coupled with increasingly strict environmental regulations in the USA result in increased generation of solid materials referred to as coal utilisation by-products, or CUBs. More than 40% of CUBs were sold or reused in the USA in 2004 compared to less than 25% in 1996. A goal of 50% utilization has been established for 2010. The American Coal Ash Association (ACCA) together with the US Department of Energy's Power Plant Improvement Initiative (PPPI) and Clean Coal Power Initiative (CCPI) sponsor a number of projects that promote CUB utilization. Several are mentioned in this report. Report sections are: Executive summary; Introduction; Where do CUBs come from?; Market analysis; DOE-sponsored CUB demonstrations; Examples of best-practice utilization of CUB materials; Factors limiting the use of CUBs; and Conclusions. 14 refs., 1 fig., 5 tabs., 14 photos.

NONE

2006-08-15T23:59:59.000Z

396

LLNL Underground-Coal-Gasification Project. Quarterly progress report, July-September 1981  

SciTech Connect (OSTI)

We have continued our laboratory studies of forward gasification in small blocks of coal mounted in 55-gal drums. A steam/oxygen mixture is fed into a small hole drilled longitudinally through the center of the block, the coal is ignited near the inlet and burns toward the outlet, and the product gases come off at the outlet. Various diagnostic measurements are made during the course of the burn, and afterward the coal block is split open so that the cavity can be examined. Development work continues on our mathematical model for the small coal block experiments. Preparations for the large block experiments at a coal outcrop in the Tono Basin of Washington State have required steadily increasing effort with the approach of the scheduled starting time for the experiments (Fall 1981). Also in preparation is the deep gasification experiment, Tono 1, planned for another site in the Tono Basin after the large block experiments have been completed. Wrap-up work continues on our previous gasification experiments in Wyoming. Results of the postburn core-drilling program Hoe Creek 3 are presented here. Since 1976 the Soviets have been granted four US patents on various aspects of the underground coal gasification process. These patents are described here, and techniques of special interest are noted. Finally, we include ten abstracts of pertinent LLNL reports and papers completed during the quarter.

Stephens, D.R.; Clements, W. (eds.) [eds.

1981-11-09T23:59:59.000Z

397

Coal gasification vessel  

DOE Patents [OSTI]

A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

Loo, Billy W. (Oakland, CA)

1982-01-01T23:59:59.000Z

398

CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS  

SciTech Connect (OSTI)

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objective for this reporting period was to further characterize the three areas selected as potential CO{sub 2} sequestration sites. Well-log data are critical for defining depth, thickness, number, and grouping of coal seams at the proposed sequestration sites. Thus, we purchased 12 hardcopy well logs (in addition to 15 well logs obtained during previous quarter) from a commercial source and digitized them to make coal-occurrence maps and cross sections. Detailed correlation of coal zones is important for reservoir analysis and modeling. Thus, we correlated and mapped Wilcox Group subdivisions--the Hooper, Simsboro and Calvert Bluff formations, as well as the coal-bearing intervals of the Yegua and Jackson formations in well logs. To assess cleat properties and describe coal characteristics, we made field trips to Big Brown and Martin Lake coal mines. This quarter we also received CO{sub 2} and methane sorption analyses of the Sandow Mine samples, and we are assessing the results. GEM, a compositional simulator developed by the Computer Modeling Group (CMG), was selected for performing the CO{sub 2} sequestration and enhanced CBM modeling tasks for this project. This software was used to conduct preliminary CO{sub 2} sequestration and methane production simulations in a 5-spot injection pattern. We are continuing to pursue a cooperative agreement with Anadarko Petroleum, which has already acquired significant relevant data near one of our potential sequestration sites.

Duane A. McVay; Walter B. Ayers Jr.; Jerry L. Jensen

2003-10-01T23:59:59.000Z

399

CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS  

SciTech Connect (OSTI)

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objective for this reporting period was to perform pressure transient testing to determine permeability of deep Wilcox coal to use as additional, necessary data for modeling performance of CO{sub 2} sequestration and enhanced coalbed methane recovery. To perform permeability testing of the Wilcox coal, we worked with Anadarko Petroleum Corporation in selecting the well and intervals to test and in designing the pressure transient test. Anadarko agreed to allow us to perform permeability tests in coal beds in an existing shut-in well (Well APCT2). This well is located in the region of the Sam K. Seymour power station, a site that we earlier identified as a major point source of CO{sub 2} emissions. A service company, Pinnacle Technologies Inc. (Pinnacle) was contracted to conduct the tests in the field. Intervals tested were 2 coal beds with thicknesses of 3 and 7 feet, respectively, at approximately 4,100 ft depth in the Lower Calvert Bluff Formation of the Wilcox Group in east-central Texas. Analyses of pressure transient test data indicate that average values for coalbed methane reservoir permeability in the tested coals are between 1.9 and 4.2 mD. These values are in the lower end of the range of permeability used in the preliminary simulation modeling. These new coal fracture permeability data from the APCT2 well, along with the acquired gas compositional analyses and sorption capacities of CO{sub 2}, CH{sub 4}, and N{sub 2}, complete the reservoir description phase of the project. During this quarter we also continued work on reservoir and economic modeling to evaluate performance of CO{sub 2} sequestration and enhanced coalbed methane recovery.

Duane A. McVay; Walter B. Ayers Jr.; Jerry L. Jensen

2005-05-01T23:59:59.000Z

400

Entanglement entropy of black holes  

E-Print Network [OSTI]

The entanglement entropy is a fundamental quantity which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff which regulates the short-distance correlations. The geometrical nature of the entanglement entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in 4 and 6 dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as 't Hooft's brick wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields which non-minimally couple to gravity is emphasized. The holographic description of the entanglement entropy of the black hole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

Sergey N. Solodukhin

2011-04-19T23:59:59.000Z

Note: This page contains sample records for the topic "hole coal field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER  

E-Print Network [OSTI]

TABLE 1. Pittsburgh seam coal properties, Grosshandler (content of the Pittsburgh seam coal. As the ash layer beginsfrom Pittsburgh seam pulverized coal, screened through a 35

Chin, W.K.

2010-01-01T23:59:59.000Z

402

Recovery Act: Clean Coal Power Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act: Clean Coal Power Initiative Recovery Act: Clean Coal Power Initiative A report detailling the Clean Coal Power initiative funded under the American Recovery and...

403

MULTIPHASE REACTOR MODELING FOR ZINC CHLORIDE CATALYZED COAL LIQUEFACTION  

E-Print Network [OSTI]

ix Introduction. A. Coal Liquefaction Overview B.L ZnCl 2-catalyzed Coal Liquefaction . . . . . . . . . • ,Results. . . • . ZnC1 2/MeOH Coal liquefaction Process

Joyce, Peter James

2011-01-01T23:59:59.000Z

404

Southern Coal finds value in the met market  

SciTech Connect (OSTI)

The Justice family launches a new coal company (Southern Coal Corp.) to serve metallurgical and steam coal markets. 1 tab., 3 photos.

Fiscor, S.

2009-11-15T23:59:59.000Z

405

Solar Wind Forecasting with Coronal Holes  

E-Print Network [OSTI]

An empirical model for forecasting solar wind speed related geomagnetic events is presented here. The model is based on the estimated location and size of solar coronal holes. This method differs from models that are based on photospheric magnetograms (e.g., Wang-Sheeley model) to estimate the open field line configuration. Rather than requiring the use of a full magnetic synoptic map, the method presented here can be used to forecast solar wind velocities and magnetic polarity from a single coronal hole image, along with a single magnetic full-disk image. The coronal hole parameters used in this study are estimated with Kitt Peak Vacuum Telescope He I 1083 nm spectrograms and photospheric magnetograms. Solar wind and coronal hole data for the period between May 1992 and September 2003 are investigated. The new model is found to be accurate to within 10% of observed solar wind measurements for its best one-month periods, and it has a linear correlation coefficient of ~0.38 for the full 11 years studied. Using a single estimated coronal hole map, the model can forecast the Earth directed solar wind velocity up to 8.5 days in advance. In addition, this method can be used with any source of coronal hole area and location data.

S. Robbins; C. J. Henney; J. W. Harvey

2007-01-09T23:59:59.000Z

406

Lattice Black Holes  

E-Print Network [OSTI]

We study the Hawking process on lattices falling into static black holes. The motivation is to understand how the outgoing modes and Hawking radiation can arise in a setting with a strict short distance cutoff in the free-fall frame. We employ two-dimensional free scalar field theory. For a falling lattice with a discrete time-translation symmetry we use analytical methods to establish that, for Killing frequency $\\omega$ and surface gravity $\\kappa$ satisfying $\\kappa\\ll\\omega^{1/3}\\ll 1$ in lattice units, the continuum Hawking spectrum is recovered. The low frequency outgoing modes arise from exotic ingoing modes with large proper wavevectors that "refract" off the horizon. In this model with time translation symmetry the proper lattice spacing goes to zero at spatial infinity. We also consider instead falling lattices whose proper lattice spacing is constant at infinity and therefore grows with time at any finite radius. This violation of time translation symmetry is visible only at wavelengths comparable to the lattice spacing, and it is responsible for transmuting ingoing high Killing frequency modes into low frequency outgoing modes.

Steven Corley; Ted Jacobson

1998-03-26T23:59:59.000Z

407

"Hybrid" Black Holes  

E-Print Network [OSTI]

We discuss a solution of the Einstein equations, obtained by gluing the external Kerr metric and the internal Weyl metric, describing an axisymmetric static vacuum distorted black hole. These metrics are glued at the null surfaces representing their horizons. For this purpose we use the formalism of massive thin null shells. The corresponding solution is called a "hybrid" black hole. The massive null shell has an angular momentum which is the origin of the rotation of the external Kerr spacetime. At the same time, the shell distorts the geometry inside the horizon. The inner geometry of the "hybrid" black hole coincides with the geometry of the interior of a non-rotating Weyl-distorted black hole. Properties of the "hybrid" black holes are briefly discussed.

Valeri P. Frolov; Andrei V. Frolov

2014-12-30T23:59:59.000Z

408

Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics  

SciTech Connect (OSTI)

During the ninth quarter, electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis were done to characterize the morphology and composition of the surface of as-received coal, oxidized coal and coal pyrite. In addition, electrokinetic tests were done on Upper Freeport coal pyrite.

Doyle, F.M.

1992-01-01T23:59:59.000Z

409

Hydraulic fracturing experiments in the Great Northern Coal seam  

SciTech Connect (OSTI)

Two field-scale hydraulic fracturing experiments were performed in vertical boreholes on the lease of Munmorah Colliery located south of Newcastle, NSW. The treatments fractured the 3-meter thick, 220-meter deep Great Northern coal seam and were designed to provide a direct comparison between a borate-crosslinked gel and a water treatment. The fracture geometries were mapped during mining of the coal seam. Geologic mapping disclosed a well-defined coal face cleat and systematic full-seam joints perpendicular to bedding and trending NW. The vertical hydraulic fractures extended along the joint and face cleat direction. Evidence that an early slurry stage of fine mesh proppant acted to block off one of two competing parallel fractures was found at one of the mineback sites.

Jeffrey, R.G.; Weber, C.R.; Vlahovic, W.; Enever, J.R.

1994-12-31T23:59:59.000Z

410

Ash reduction in clean coal spiral product circuits  

SciTech Connect (OSTI)

The article describes the Derrick Corporation's Stack Sizer{trademark} technology for high capacity fine wet cleaning with long-lasting high open-area urethane screen panels. After field trials, a Stack Sizer fitted with a 100-micron urethane panel is currently processing approximately 40 stph of clean coal spiral product having about 20% ash at McCoy-Elkhorn's Bevin Branch coal preparation plant in Kentucky, USA. Product yield is about 32.5 short tons per hour with 10% ash. The material is then fed to screen bowl centrifuges for further processing. At Blue Diamond Coal's Leatherwood preparation plant similar Stacker Sizers are achieving the same results. 2 figs., 3 tabs., 2 photo.

Brodzik, P.

2007-04-15T23:59:59.000Z

411

A new seismic probe for coal seam hazard detection  

SciTech Connect (OSTI)

An experimental hole-to-hole seismic probe system has been developed for use in coal measure geology as a means of determining the structural conditions of coal seams. The source probe produces a 500-joule electric arc discharge whose seismic wavelet has a spectrum in the 200 to 2,000 Hz frequency range. Low compliance hydrophones contained in the source probe as well as in a separate seismic detector probe are matched to the frequency range of the source. Both probes are constructed with 5.72 cm diameter housings. The transducers in the probes are equipped with fluid-inflatable boots to permit operation in either wet or dry boreholes. Preliminary tests in vertical boreholes drilled 213 m apart in sedimentary rock formations show reliable operation and useful seismic propagation measurements along horizontal and oblique paths up to 232 m in length. Because the seismic wavelet has an accurately repeatable waveshape, multiple shots and signal averaging techniques can be used to enhance the signal-to-noise ratio and extend the transmission distances.

Peters, W.R.; Owen, T.E.; Thill, R.E.

1985-01-01T23:59:59.000Z

412

Absorption of planar massless scalar waves by Bardeen regular black holes  

E-Print Network [OSTI]

Accretion of fields by black holes is a subject of great interest in physics. It is known that accretion plays a fundamental role in active galactic nuclei and in the evolution of black holes. Accretion of fundamental fields is often related to the study of absorption cross section. Basically all black holes for which absorption of fields has been studied so far present singularities. However, even within general relativity, it is possible to construct regular black holes: objects with event horizons but without singularities. Many physically motivated regular black hole solutions have been proposed in the past years, demanding the understanding of their absorption properties. We study the absorption of planar massless scalar waves by Bardeen regular black holes. We compare the absorption cross section of Bardeen and Reissner--Nordstr\\"om black holes, showing that the former always have a bigger absorption cross section for fixed values of the field frequency and of the normalized black hole charge. We also show that it is possible for a Bardeen black hole to have the same high-frequency absorption cross section of a Reissner--Nordstr\\"om black hole. Our results suggest that, in mid-to-high-frequency regimes, regular black holes can have compatible properties with black holes with singularities, as far as absorption is concerned.

Caio F. B. Macedo; Luís C. B. Crispino

2014-09-09T23:59:59.000Z

413

Optical transitions of holes in uniaxially compressed germanium  

SciTech Connect (OSTI)

Spontaneous emission and photoconductivity of germanium with gallium impurity are studied for determining the energy spectrum of hole states in this material in which radiation can be induced as a result of transitions of holes between these states. Holes were excited by electric field pulses with a strength up to 12 kV/cm at T = 4.2 K under uniaxial compression of samples up to 12 kbar. It has been found that hole emission spectra for transitions between resonant and local states of the impurity have a structure identical to the photoconductivity and absorption spectra. Transitions from resonance states, which are associated with the heavy hole subband, have not been detected. It has been found that in an electric field lower than 100 V/cm, a compressed crystal emits as a result of transitions of heavy holes. In a strong electric field (1-3 kV/cm), emission is observed in the energy range up to 140 meV, and transitions with emission of TA and LO phonons appear in such a field. The emission spectra under pressures of 0 and 12 kbar differ insignificantly. Hence, it follows that the contributions from heavy and light holes in a strong electric field are indistinguishable.

Pokrovskii, Ya. E., E-mail: yaep@cplire.ru; Khvalkovskii, N. A. [Russian Academy of Sciences, Kotel'nikov Institute of Radio Engineering and Electronics (Russian Federation)] [Russian Academy of Sciences, Kotel'nikov Institute of Radio Engineering and Electronics (Russian Federation)

2013-10-15T23:59:59.000Z

414

An Overview of Coal based  

E-Print Network [OSTI]

An Overview of Coal based Integrated Gasification Combined Cycle (IGCC) Technology September 2005. LFEE 2005-002 WP #12;#12;Table of Contents 1 Integrated Gasification Combined Cycle (IGCC.......................................................................... 17 2.1 Gasification

415

Process for low mercury coal  

DOE Patents [OSTI]

A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

Merriam, Norman W. (Laramie, WY); Grimes, R. William (Laramie, WY); Tweed, Robert E. (Laramie, WY)

1995-01-01T23:59:59.000Z

416

Process for low mercury coal  

DOE Patents [OSTI]

A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

1995-04-04T23:59:59.000Z

417

Clean Coal Diesel Demonstration Project  

SciTech Connect (OSTI)

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

418

Surface Coal Mining Law (Missouri)  

Broader source: Energy.gov [DOE]

This law aims to provide for the regulation of coal mining in order to minimize or prevent its adverse effects, protect the environment to the extent possible, protect landowner rights, and...

419

Coal Mining Reclamation (North Dakota)  

Broader source: Energy.gov [DOE]

The Reclamation Division of the Public Service Commission is tasked with administering the regulation of surface coal mining and reclamation. Specific regulations can be found in article 69-05.2 of...

420

Coal beneficiation by gas agglomeration  

DOE Patents [OSTI]

Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

Wheelock, Thomas D.; Meiyu, Shen

2003-10-14T23:59:59.000Z

Note: This page contains sample records for the topic "hole coal field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

New developments in coal briquetting technology  

SciTech Connect (OSTI)

Briquetting of coal has been with us for well over a century. In the earliest applications of coal briquetting, less valuable fine coal was agglomerated into briquettes using a wide variety of binders, including coal tar, pitch and asphalt. Eventually, roll briquetters came into more widespread use, permitting the process to become a continuous one. Coal briquetting went out of favor during the 1950s in most of the industrialized world. The major reason for this decline in use was the discovery that the coal gas distillates used for binders were harmful to human health. Also, the abundance of cheap petroleum made coal briquettes a less attractive alternative as an industrial or domestic fuel. The re-emergence of coal as a primary industrial fuel and also its increased prominence as a fuel for thermal electric power stations led to a large increase in the annual volume of coal being mined worldwide. Coal preparation technology steadily improved over the years with the general exception of fine coal preparation. The processes available for treating this size range were considerably more expensive per unit mass of coal treated than coarse coal processes. Also, costly dewatering equipment was required after cleaning to remove surface moisture. Even with dewatering, the high surface area per unit mass of fine coal versus coarse coal resulted in high moisture contents. Therefore, little incentive existed to improve the performance of fine coal processes since this would only increase the amount of wet coal fines which would have to be dealt with. With such an ever-increasing volume of coal fines being created each year, there emerged an interest in recovering this valuable product. Several schemes were developed to recover coal fines discarded in abandoned tailings impoundments by previous operations.

Tucker, P.V. [Kilborn Inc., Ontario (Canada); Bosworth, G.B. [Kilborn Engineering Pacific Ltd., Vancouver, British Columbia (Canada); Kalb, G.W. [KKS Systems Inc., Wheeling, WV (United States)

1993-12-31T23:59:59.000Z

422

Streamline coal slurry letdown valve  

DOE Patents [OSTI]

A streamlined coal slurry letdown valve is featured which has a two-piece throat comprised of a seat and seat retainer. The two-piece design allows for easy assembly and disassembly of the valve. A novel cage holds the two-piece throat together during the high pressure letdown. The coal slurry letdown valve has long operating life as a result of its streamlined and erosion-resistance surfaces. 5 figs.

Platt, R.J.; Shadbolt, E.A.

1983-11-08T23:59:59.000Z

423

Geology in coal resource utilization  

SciTech Connect (OSTI)

The 37 papers in this book were compiled with an overriding theme in mind: to provide the coal industry with a comprehensive source of information on how geology and geologic concepts can be applied to the many facets of coal resource location, extraction, and utilization. The chapters have been arranged to address the major coal geology subfields of Exploration and Reserve Definition, Reserve Estimation, Coalbed Methane, Underground Coal Gasification, Mining, Coal Quality Concerns, and Environmental Impacts, with papers distributed on the basis of their primary emphasis. To help guide one through the collection, the author has included prefaces at the beginning of each chapter. They are intended as a brief lead-in to the subject of the chapter and an acknowledgement of the papers' connections to the subject and contributions to the chapter. In addition, a brief cross-reference section has been included in each preface to help one find papers of interest in other chapters. The subfields of coal geology are intimately intertwined, and investigations in one area may impact problems in another area. Some subfields tend to blur at their edges, such as with reserve definition and reserve estimation. Papers have been processed separately for inclusion on the data base.

Peters, D.C. (ed.)

1991-01-01T23:59:59.000Z

424

Statistical Physics of 3D Hairy Black Holes  

E-Print Network [OSTI]

We investigate the statistical behaviors of 3D hairy black holes in the presence of a scalar field. The present study is made in terms of two relevant parameters: rotation parameter a and B parameter related to the scalar field. More precisely, we compute various statistical quantities including the partition function for non-charged and charged black hole solutions. Using a partition function calculation, we show that the probability is independent of a and B parameters.

A. Belhaj; M. Chabab; H. EL Moumni; K. Masmar; M. B. Sedra

2014-12-29T23:59:59.000Z

425

Coal-tire co-liquefaction  

SciTech Connect (OSTI)

Co-liquefaction of ground coal and tire rubber was studied at 400{degrees}C both with and without catalyst. Two different tire samples were used. In the non-catalytic runs, the conversion of coal increased with the addition of tire and the increase was dependent on tire/coal ratio and hydrogen pressure. Using a ferric sulfide-based catalyst, the coal conversion increased with an increase in the catalyst loading. However, the increase was more pronounced at loadings of around 0.5 wt%. The addition of tire to coal in the catalytic runs was not particularly beneficial, especially, when the tire/coal ratio was above 1.

Sharma, R.K.; Dadyburjor, D.B.; Zondlo, J.W.; Liu, Zhenyu; Stiller, A.H. [West Virginia Univ., Morgantown, WV (United States)

1995-12-31T23:59:59.000Z

426

Coal Transportation Issues (released in AEO2007)  

Reports and Publications (EIA)

Most of the coal delivered to U.S. consumers is transported by railroads, which accounted for 64% of total domestic coal shipments in 2004. Trucks transported approximately 12% of the coal consumed in the United States in 2004, mainly in short hauls from mines in the East to nearby coal-fired electricity and industrial plants. A number of minemouth power plants in the West also use trucks to haul coal from adjacent mining operations. Other significant modes of coal transportation in 2004 included conveyor belt and slurry pipeline (12%) and water transport on inland waterways, the Great Lakes, and tidewater areas (9%).

2007-01-01T23:59:59.000Z

427

Int. J. Oil, Gas and Coal Technology, Vol. 7, No. 2, 2014 115 Copyright 2014 Inderscience Enterprises Ltd.  

E-Print Network [OSTI]

Int. J. Oil, Gas and Coal Technology, Vol. 7, No. 2, 2014 115 Copyright © 2014 Inderscience fields in Saudi Arabia', Int. J. Oil, Gas and Coal Technology, Vol. 7, No. 2, pp.115­131. Biographical economic recovery of oil and gas from a reservoir. The purpose of reservoir management is to control

Mohaghegh, Shahab

428

Beluga Coal Gasification - ISER  

SciTech Connect (OSTI)

ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

Steve Colt

2008-12-31T23:59:59.000Z

429

Coal combustion by wet oxidation  

SciTech Connect (OSTI)

The combustion of coal by wet oxidation was studied by the Center for Waste Management Programs, of Michigan Technological University. In wet oxidation a combustible material, such as coal, is reacted with oxygen in the presence of liquid water. The reaction is typically carried out in the range of 204/sup 0/C (400/sup 0/F) to 353/sup 0/C (650/sup 0/F) with sufficient pressure to maintain the water present in the liquid state, and provide the partial pressure of oxygen in the gas phase necessary to carry out the reaction. Experimental studies to explore the key reaction parameters of temperature, time, oxidant, catalyst, coal type, and mesh size were conducted by running batch tests in a one-gallon stirred autoclave. The factors exhibiting the greatest effect on the extent of reaction were temperature and residence time. The effect of temperature was studied from 204/sup 0/C (400/sup 0/F) to 260/sup 0/C (500/sup 0/F) with a residence time from 600 to 3600 seconds. From this data, the reaction activation energy of 2.7 x 10/sup 4/ calories per mole was determined for a high-volatile-A-Bituminous type coal. The reaction rate constant may be determined at any temperature from the activation energy using the Arrhenius equation. Additional data were generated on the effect of mesh size and different coal types. A sample of peat was also tested. Two catalysts were evaluated, and their effects on reaction rate presented in the report. In addition to the high temperature combustion, low temperature desulfurization is discussed. Desulfurization can improve low grade coal to be used in conventional combustion methods. It was found that 90% of the sulfur can be removed from the coal by wet oxidation with the carbon untouched. Further desulfurization studies are indicated.

Bettinger, J.A.; Lamparter, R.A.; McDowell, D.C.

1980-11-15T23:59:59.000Z

430

Holes in Spectral Lines  

E-Print Network [OSTI]

The decay of an atom in the presence of a static perturbation is investigated. The perturbation couples a decaying state with a nondecaying state. A "hole" appears in the emission line at a frequency equal to the frequency ...

Fontana, Peter R.; Srivastava, Rajendra P.

1973-06-01T23:59:59.000Z

431

Charged Schrodinger black holes  

E-Print Network [OSTI]

We construct charged and rotating asymptotically Schrödinger black hole solutions of type IIB supergravity. We begin by obtaining a closed-form expression for the null Melvin twist of a broad class of type IIB backgrounds, ...

Adams, Allan

432

Schwarzschild black hole in dark energy background  

E-Print Network [OSTI]

In this paper we present an exact solution of Einstein's field equations describing the Schwarzschild black hole in dark energy background. It is also regarded as an embedded solution that the Schwarzschild black hole is embedded into the dark energy space producing Schwarzschild-dark energy black hole. It is found that the space-time geometry of Schwarzschild-dark energy solution is non-vacuum Petrov type $D$ in the classification of space-times. We study the energy conditions (like weak, strong and dominant conditions) for the energy-momentum tensor of the Schwarzschild-dark energy solution. We also find that the energy-momentum tensor of the Schwarzschild-dark energy solution violates the strong energy condition due to the negative pressure leading to a repulsive gravitational force of the matter field in the space-time. It is shown that the time-like vector field for an observer in the Schwarzschild-dark energy space is expanding, accelerating, shearing and non-rotating. We investigate the surface gravity and the area of the horizons for the Schwarzschild-dark energy black hole.

Ngangbam Ishwarchandra; Ng. Ibohal; K. Yugindro Singh

2014-09-27T23:59:59.000Z

433

Helical superconducting black holes  

E-Print Network [OSTI]

We construct novel static, asymptotically $AdS_5$ black hole solutions with Bianchi VII$_0$ symmetry that are holographically dual to superconducting phases in four spacetime dimensions with a helical p-wave order. We calculate the precise temperature dependence of the pitch of the helical order. At zero temperature the black holes have vanishing entropy and approach domain wall solutions that reveal homogenous, non-isotropic dual ground states with emergent scaling symmetry.

Aristomenis Donos; Jerome P. Gauntlett

2012-05-17T23:59:59.000Z

434

Small Hairy Black Holes in Global AdS Spacetime  

E-Print Network [OSTI]

We study small charged black holes in global AdS spacetime in the presence of a charged massless minimally coupled scalar field. In a certain parameter range these black holes suffer from well known superradiant instabilities. We demonstrate that the end point of the resultant tachyon condensation process is a hairy black hole which we construct analytically in a perturbative expansion in the black hole radius. At leading order our solution is a small undeformed RNAdS black hole immersed into a charged scalar condensate that fills the AdS `box'. These hairy black hole solutions appear in a two parameter family labelled by their mass and charge. Their mass is bounded from below by a function of their charge; at the lower bound a hairy black hole reduces to a regular horizon free soliton which can also be thought of as a nonlinear Bose condensate. We compute the microcanonical phase diagram of our system at small mass, and demonstrate that it exhibits a second order `phase transition' between the RNAdS black hole and the hairy black hole phases.

Pallab Basu; Jyotirmoy Bhattacharya; Sayantani Bhattacharyya; R. Loganayagam; Shiraz Minwalla; V. Umesh

2010-05-16T23:59:59.000Z

435

Hydrodynamic model for electron-hole plasma in graphene  

E-Print Network [OSTI]

We propose a hydrodynamic model describing steady-state and dynamic electron and hole transport properties of graphene structures which accounts for the features of the electron and hole spectra. It is intended for electron-hole plasma in graphene characterized by high rate of intercarrier scattering compared to external scattering (on phonons and impurities), i.e., for intrinsic or optically pumped (bipolar plasma), and gated graphene (virtually monopolar plasma). We demonstrate that the effect of strong interaction of electrons and holes on their transport can be treated as a viscous friction between the electron and hole components. We apply the developed model for the calculations of the graphene dc conductivity, in particular, the effect of mutual drag of electrons and holes is described. The spectra and damping of collective excitations in graphene in the bipolar and monopolar limits are found. It is shown that at high gate voltages and, hence, at high electron and low hole densities (or vice-versa), the excitations are associated with the self-consistent electric field and the hydrodynamic pressure (plasma waves). In intrinsic and optically pumped graphene, the waves constitute quasineutral perturbations of the electron and hole densities (electron-hole sound waves) with the velocity being dependent only on the fundamental graphene constants.

D. Svintsov; V. Vyurkov; S. Yurchenko; T. Otsuji; V. Ryzhii

2012-01-03T23:59:59.000Z

436

DEVELOPMENT OF A NOVEL FINE COAL CLEANING SYSTEM  

SciTech Connect (OSTI)

The goal of the proposed project was to develop a novel fine coal separator having the ability to clean 1 mm x 0 size coal in a single processing unit. The novel fine coal separator, named as EG(Enhanced Gravity) Float Cell, utilizes a centrifugal field to clean 1 mm x 250 micron size coal, whereas a flotation environment to clean minus 250 micron coal size fraction. Unlike a conventional enhanced gravity concentrator, which rotates to produce a centrifugal field requiring more energy, the EG Float Cell is fed with a tangential feed slurry to generate an enhanced gravity field without any rotating part. A prototype EG Float Cell unit having a maximum diameter of 60 cm (24 inch) was fabricated during the first-half of the project period followed by a series of exploratory tests to make suitable design modification. Test data indicated that there was a significant concentration of coarse heavy materials in the coarse tailings discharge of the EG Float Cell. The increase in weight (%) of 1 mm x 250 micron (16 x 60 mesh) size fraction from 48.9% in the feed to 72.2% in the coarse tailings discharge and the corresponding increase in the ash content from 56.9% to 87.0% is indicative of the effectiveness of the enhanced gravity section of the EG Float Cell. However, the performance of the flotation section needs to be improved. Some of the possible design modifications may include more effective air sparging system for the flotation section to produce finer bubbles and a better wash water distributor.

Manoj K. Mohanty

2005-06-01T23:59:59.000Z

437

Repowering with clean coal technologies  

SciTech Connect (OSTI)

Repowering with clean coal technology can offer significant advantages, including lower heat rates and production costs, environmental compliance, incremental capacity increases, and life extension of existing facilities. Significant savings of capital costs can result by refurbishing and reusing existing sites and infrastructure relative to a greenfield siting approach. This paper summarizes some key results of a study performed by Parsons Power Group, Inc., under a contract with DOE/METC, which investigates many of the promising advanced power generation technologies in a repowering application. The purpose of this study was to evaluate the technical and economic results of applying each of a menu of Clean Coal Technologies in a repowering of a hypothetical representative fossil fueled power station. Pittsburgh No. 8 coal is used as the fuel for most of the cases evaluated herein, as well as serving as the fuel for the original unrepowered station. The steam turbine-generator, condenser, and circulating water system are refurbished and reused in this study, as is most of the existing site infrastructure such as transmission lines, railroad, coal yard and coal handling equipment, etc. The technologies evaluated in this study consisted of an atmospheric fluidized bed combustor, several varieties of pressurized fluid bed combustors, several types of gasifiers, a refueling with a process derived fuel, and, for reference, a natural gas fired combustion turbine-combined cycle.

Freier, M.D. [USDOE Morgantown Energy Technology Center, WV (United States); Buchanan, T.L.; DeLallo, M.L.; Goldstein, H.N. [Parsons Power Group, Inc., Reading, PA (United States)

1996-02-01T23:59:59.000Z

438

EFFECT OF COAL DUST ONEFFECT OF COAL DUST ON RAILROAD BALLAST STRENGTHRAILROAD BALLAST STRENGTH  

E-Print Network [OSTI]

Triaxial TestsTests Direct Shear TestsDirect Shear Tests Clean and Coal Dust Fouled Ballast BehaviorClean1 EFFECT OF COAL DUST ONEFFECT OF COAL DUST ON RAILROAD BALLAST STRENGTHRAILROAD BALLAST STRENGTH for Laboratory StudyFouling Mechanism / Need for Laboratory Study Mechanical Properties of Coal Dust

Barkan, Christopher P.L.

439

Arrowhead Center: Coal Production and Regional Economic Growth Report Title: Coal Production and Regional Economic Growth  

E-Print Network [OSTI]

Arrowhead Center: Coal Production and Regional Economic Growth Report Title: Coal Production@nmsu.edu #12;Arrowhead Center: Coal Production and Regional Economic Growth i Disclaimer This report States Government or any agency thereof. #12;Arrowhead Center: Coal Production and Regional Economic

Johnson, Eric E.

440

SHERIDAN COALFIELD, POWDER RIVER BASIN: GEOLOGY, COAL QUALITY, AND COAL RESOURCES  

E-Print Network [OSTI]

Chapter PH SHERIDAN COALFIELD, POWDER RIVER BASIN: GEOLOGY, COAL QUALITY, AND COAL RESOURCES By M assessment of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

Note: This page contains sample records for the topic "hole coal field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Changes in major organic contaminants in the groundwater at the Hoe Creek underground coal gasification site  

SciTech Connect (OSTI)

The results of groundwater analysis at the Hoe Creek underground coal gasification (UCG) site have indicated that, after gasification, the phenolic compounds and neutral aromatic hydrocarbons decrease more slowly than expected on the basis of our laboratory studies. The field data also fail to confirm the expected inverse relationship between a contaminant's water solubility and the extent to which it is sorbed by surrounding coal. The authors described a mechanism for the deposition of coal pyrolysis products that may help to elucidate the observed behavior of these organic contaminants. 7 refs., 7 figs.

Wang, F.; Mead, W.

1985-08-01T23:59:59.000Z

442

China's Coal: Demand, Constraints, and Externalities  

SciTech Connect (OSTI)

This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

Aden, Nathaniel; Fridley, David; Zheng, Nina

2009-07-01T23:59:59.000Z

443

Integrated coal cleaning, liquefaction, and gasification process  

DOE Patents [OSTI]

Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

Chervenak, Michael C. (Pennington, NJ)

1980-01-01T23:59:59.000Z

444

Respiratory disease in Utah coal miners  

SciTech Connect (OSTI)

Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's penumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

1981-04-01T23:59:59.000Z

445

Respiratory disease in Utah coal miners  

SciTech Connect (OSTI)

Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's pneumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

1981-04-01T23:59:59.000Z

446

Clean Coal Incentive Tax Credit (Kentucky)  

Broader source: Energy.gov [DOE]

Clean Coal Incentive Tax Credit provides for a property tax credit for new clean coal facilities constructed at a cost exceeding $150 million and used for the purposes of generating electricity....

447

Integrated Coal Gasification Power Plant Credit (Kansas)  

Broader source: Energy.gov [DOE]

Integrated Coal Gasification Power Plant Credit states that an income taxpayer that makes a qualified investment in a new integrated coal gasification power plant or in the expansion of an existing...

448

Ohio Coal Research and Development Program (Ohio)  

Broader source: Energy.gov [DOE]

The Ohio Coal Development Office invests in the development and implementation of technologies that can use Ohio's vast reserves of coal in an economical, environmentally sound manner. Projects are...

449

February 21 -22, 2014 Coast Coal Harbour  

E-Print Network [OSTI]

February 21 - 22, 2014 Coast Coal Harbour 1180 W Hastings St Vancouver, BC Healthy Mothers contact by phone: +1 604-822- 7708 or by e-mail: melissa.ipce@ubc.ca. Location The Coast Coal Harbour

Handy, Todd C.

450

The Environmental Impact of Supermassive Black Holes  

E-Print Network [OSTI]

The supermassive black holes observed at the centers of almost all present-day galaxies, had a profound impact on their environment. I highlight the principle of self-regulation, by which supermassive black holes grow until they release sufficient energy to unbind the gas that feeds them from their host galaxy. This principle explains several observed facts, including the correlation between the mass of a central black hole and the depth of the gravitational potential well of its host galaxy, and the abundance and clustering properties of bright quasars in the redshift interval of z~2-6. At lower redshifts, quasars might have limited the maximum mass of galaxies through the suppression of cooling flows in X-ray clusters. The seeds of supermassive black holes were likely planted in dwarf galaxies at redshifts z>10, through the collapse of massive or supermassive stars. The minimum seed mass can be identified observationally through the detection of gravitational waves from black hole binaries by Advanced LIGO or LISA. Aside from shaping their host galaxies, quasar outflows filled the intergalactic medium with magnetic fields and heavy elements. Beyond the reach of these outflows, the brightest quasars at z>6 have ionized exceedingly large volumes of gas (tens of comoving Mpc) prior to global reionization, and must have suppressed the faint end of the galaxy luminosity function in these volumes before the same occurred through the rest of the universe.

Abraham Loeb

2004-08-10T23:59:59.000Z

451

Estimating coal production peak and trends of coal imports in China  

SciTech Connect (OSTI)

More than 20 countries in the world have already reached a maximum capacity in their coal production (peak coal production) such as Japan, the United Kingdom and Germany. China, home to the third largest coal reserves in the world, is the world's largest coal producer and consumer, making it part of the Big Six. At present, however, China's coal production has not yet reached its peak. In this article, logistic curves and Gaussian curves are used to predict China's coal peak and the results show that it will be between the late 2020s and the early 2030s. Based on the predictions of coal production and consumption, China's net coal import could be estimated for coming years. This article also analyzes the impact of China's net coal import on the international coal market, especially the Asian market, and on China's economic development and energy security. 16 refs., 5 figs., 6 tabs.

Bo-qiang Lin; Jiang-hua Liu [Xiamen University, Xiamen (China). China Center for Energy Economics Research (CCEER)

2010-01-15T23:59:59.000Z

452

Cokemaking from coals of Kuzbas and Donbas  

SciTech Connect (OSTI)

The paper discusses features of Donetsk and Kuznetsk coals, the export capability of Ukraine coking industry, the selection of coal blends involving coals from different basins, and practical recommendations and techno-economic considerations. It is concluded that by raising the share of low-sulfur Kuznetsk coal in the blend to 50%, coke produced will meet all the requirements of European and American consumers.

Umansky, R.Z. [Resourcecomplect, Donetsk (Ukraine); Kovalev, E.T.; Drozdnik, I.D. [UKHIN, Kharkov (Ukraine)

1997-12-31T23:59:59.000Z

453

National Coal celebrates its fifth anniversary  

SciTech Connect (OSTI)

The growth and activities of the National Coal Corp since its formation in 2003 are described. 5 photos.

Fiscor, S.

2008-06-15T23:59:59.000Z

454

4th Annual Clean Coal  

E-Print Network [OSTI]

Proceedings he emphasis of the Fourth Clean Coal Technology Conference wm the marketability of clean coal projects both domestically and abroad. The success rate of clean coal projects in the U.S. for coalfired electricity generation is a beacon to foreign governments that are working toward effectively using advanced NO, and SO2 technology to substantially reduce flue-gas emissions for a cleaner environment. There is a continuing dialogue between U.S. Government, North American private industry, and the electricity producing governmental ministries and the private sector abroad. The international community was well represented at this conference. The Administration is determined to move promising, near-term technologies from the public to the private sector a ~ well a8 into the international marketplace.

Ferriter John P

455

Outlook and Challenges for Chinese Coal  

SciTech Connect (OSTI)

China has been, is, and will continue to be a coal-powered economy. The rapid growth of coal demand since 2001 has created deepening strains and bottlenecks that raise questions about supply security. Although China's coal is 'plentiful,' published academic and policy analyses indicate that peak production will likely occur between 2016 and 2029. Given the current economic growth trajectory, domestic production constraints will lead to a coal gap that is not likely to be filled with imports. Urbanization, heavy industry growth, and increasing per-capita consumption are the primary drivers of rising coal usage. In 2006, the power sector, iron and steel, and cement accounted for 71% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units could save only 14% of projected 2025 coal demand. If China follows Japan, steel production would peak by 2015; cement is likely to follow a similar trajectory. A fourth wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. New demand from coal-to-liquids and coal-to-chemicals may add 450 million tonnes of coal demand by 2025. Efficient growth among these drivers indicates that China's annual coal demand will reach 4.2 to 4.7 billion tonnes by 2025. Central government support for nuclear and renewable energy has not been able to reduce China's growing dependence on coal for primary energy. Few substitution options exist: offsetting one year of recent coal demand growth would require over 107 billion cubic meters of natural gas, 48 GW of nuclear, or 86 GW of hydropower capacity. While these alternatives will continue to grow, the scale of development using existing technologies will be insufficient to substitute significant coal demand before 2025. The central role of heavy industry in GDP growth and the difficulty of substituting other fuels suggest that coal consumption is inextricably entwined with China's economy in its current mode of growth. Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on its current growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Broadening awareness of the environmental costs of coal mining, transport, and combustion is raising the pressure on Chinese policy makers to find alternative energy sources. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China is short of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport. Transporting coal to users has overloaded the train system and dramatically increased truck use, raising transport oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 mt by 2025, significantly impacting regional markets. The looming coal gap threatens to derail China's growth path, possibly undermining political, economic, and social stability. High coal prices and domestic shortages will have regional and global effects. Regarding China's role as a global manufacturing center, a domestic coal gap will increase prices and constrain growth. Within the Asia-Pacific region, China's coal gap is likely to bring about increased competition with other coal-importing countries including Japan, South Korea, Taiwan, and India. As with petroleum, China may respond with a government-supported 'going-out' strategy of resource acquisition and vertical integration. Given its population and growing resource constraints, China may favor energy security, competitiveness, and local environmental protection over global climate change mitigation. The possibility of a large coal gap suggests that Chinese and international policy makers should maximize institutional and financial support

Aden, Nathaniel T.; Fridley, David G.; Zheng, Nina

2008-06-20T23:59:59.000Z

456

Energy Center Center for Coal Technology Research  

E-Print Network [OSTI]

Energy Center Center for Coal Technology Research http://www.purdue.edu/dp/energy/CCTR/ Consumption Production Gasification Power Plants Coking Liquid Fuels Environment Oxyfuels Byproducts Legislation, 500 Central Drive West Lafayette, IN 47907-2022 #12;INDIANA COAL REPORT 2009 Center for Coal

Fernández-Juricic, Esteban

457

Firing of pulverized solvent refined coal  

DOE Patents [OSTI]

An air-purged burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired without the coking thereof on the burner components. The air-purged burner is designed for the firing of pulverized solvent refined coal in a tangentially fired boiler.

Derbidge, T. Craig (Sunnyvale, CA); Mulholland, James A. (Chapel Hill, NC); Foster, Edward P. (Macungie, PA)

1986-01-01T23:59:59.000Z

458