National Library of Energy BETA

Sample records for holding tank centrifugal

  1. Mixing liquid holding tanks for uniform concentration

    SciTech Connect (OSTI)

    Sprouse, K.M.

    1988-01-01

    Achieving uniform concentration within liquid holding tanks can often times be a difficult task for the nuclear chemical process industry. This is due to the fact that nuclear criticality concerns require these tanks to be designed with high internal aspect ratios such that the free movement of fluid is greatly inhibited. To determine the mixing times required to achieve uniform concentrations within these tanks, an experimental program was conducted utilizing pencil tanks, double-pencil tanks, and annular tanks of varying geometries filled with salt-water solutions (simulant for nitric acid actinide solutions). Mixing was accomplished by air sparging and/or pump recirculation. Detailed fluid mechanic mixing models were developed --from first principles--to analyze and interpret the test results. These nondimensional models show the functionality of the concentration inhomogeneity (defined as the relative standard deviation of the true concentration within the tank) in relationship to the characteristic mixing time--among other variables. The results can be readily used to scale tank geometries to sizes other than those studied here.

  2. Results of Hg speciation testing on MCU strip effluent hold tank (SEHT) and decontaminated salt solution hold tank (DSSHT) materials

    SciTech Connect (OSTI)

    Bannochie, C. J.

    2015-09-17

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team.i,ii The tenth shipment of samples was designated to include Modular Caustic Side Solvent Extraction Unit (MCU) Strip Effluent Hold Tank (SEHT) and MCU Decontaminated Salt Solution Hold Tank (DSSHT) materials from processing Salt Batch 7b. The MCU SEHT (MCU-15-722) and DSSHT (MCU-15-709) samples were pulled on June 15, 2015. All MCU samples were received at SRNL on June 16, 2015. The DSSHT sample was moved the same day to refrigeration, while the SEHT sample was placed in the Shielded Cells. On July 9, 2015 it was opened and an aliquot diluted 1:100 with Eurofins deionized water and a portion of the diluted sample transferred to a Teflon® bottle prior to moving it to refrigeration that same day. All samples were kept in the dark and refrigerated until final dilutions were prepared for shipment to Eurofins.

  3. Department of Energy Manual 435.1-1 Waste Incidental To Reprocessing Determination For The West Valley Demonstration Project Concentrator Feed Makeup Tank and Melter Feed Hold Tank

    Broader source: Energy.gov [DOE]

    Department of Energy Manual 435.1-1 Waste Incidental To Reprocessing Determination For The West Valley Demonstration Project Concentrator Feed Makeup Tank and Melter Feed Hold Tank

  4. Results Of Routine Strip Effluent Hold Tank And Decontaminated Salt Solution Hold Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 5 Operations

    SciTech Connect (OSTI)

    Peters, T. B.; Fondeur, F. F.

    2013-04-30

    Strip Effluent Hold Tank (SEHT) and Decontaminated Salt Solution Hold Tank (DSSHT) samples from several of the ''microbatches'' of Integrated Salt Disposition Project (ISDP) Salt Batch (''Macrobatch'') 5 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The results indicate good decontamination performance within process design expectations. While the data set is sparse, the results of this set and the previous set of results for Macrobatch 4 samples indicate generally consistent operations. The DSSHT samples show continued presence of titanium, likely from leaching of the monosodium titanate in the Actinide Removal process (ARP).

  5. RESULTS OF ROUTINE STRIP EFFLUENT HOLD TANK AND DECONTAMINATED SALT SOLUTION HOLD TANK SAMPLES FROM MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT DURING MACROBATCH 3 OPERATIONS

    SciTech Connect (OSTI)

    Peters, T.; Fink, S.

    2011-06-10

    Strip Effluent Hold Tank (SEHT) and Decontaminated Salt Solution Hold Tank (DSSHT) samples from several of the 'microbatches' of Integrated Salt Disposition Project (ISDP) Salt Batch ('Macrobatch') 3 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The results indicate good decontamination performance within process design expectations. While the data set is sparse, the results of this set and the previous set of results for Macrobatch 3 samples indicate consistent operations. However, the Decontamination Factors for plutonium and strontium removal have declined in Macrobatch 3, compared to Macrobatch 2. This may be due to the differences in the Pu concentration or the bulk chemical concentrations in the feed material. SRNL is considering the possible reasons for this decline. The DSSHT samples show continued presence of titanium, likely from leaching of the monosodium titanate in ARP. During operation of the ISDP, quantities of salt waste are processed through the Actinide Removal Process (ARP) and MCU in batches of {approx}3800 gallons. Monosodium titanate (MST) is used in ARP to adsorb actinides and strontium from the salt waste and the waste slurry is then filtered prior to sending the clarified salt solution to MCU. The MCU uses solvent extraction technology to extract cesium from salt waste and concentrate cesium in an acidic aqueous stream (Strip Effluent - SE), leaving a decontaminated caustic salt aqueous stream (Decontaminated Salt Solution - DSS). Sampling occurs in the Decontaminated Salt Solution Hold Tank (DSSHT) and Strip Effluent Hold Tank (SEHT) in the MCU process. The MCU sample plan requires that batches be sampled and analyzed for plutonium and strontium content by Savannah River National Lab (SRNL) to determine MST effectiveness. The cesium measurement is used to monitor cesium removal effectiveness and the inductively coupled plasma emission spectroscopy (ICPES) is used to monitor inorganic carryover.

  6. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, Caustic Wash Tank And Caustic Storage Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 6 Operations

    SciTech Connect (OSTI)

    Peters, T. B.

    2014-01-02

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Caustic Storage Tank (CST) samples from the Interim Salt Disposition Project (ISDP) Salt Batch (“Macrobatch”) 6 have been analyzed for 238Pu, 90Sr, 137Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The Pu, Sr, and Cs results from the current Macrobatch 6 samples are similar to those from comparable samples in previous Macrobatch 5. In addition the SEHT and DSSHT heel samples (i.e. ‘preliminary’) have been analyzed and reported to meet NGS Demonstration Plan requirements. From a bulk chemical point of view, the ICPES results do not vary considerably between this and the previous samples. The titanium results in the DSSHT samples continue to indicate the presence of Ti, when the feed material does not have detectable levels. This most likely indicates that leaching of Ti from MST has increased in ARP at the higher free hydroxide concentrations in the current feed.

  7. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, Caustic Wash Tank And Caustic Storage Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 6 Operations

    SciTech Connect (OSTI)

    Peters, T. B.

    2013-10-01

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Caustic Storage Tank (CST) samples from several of the ''microbatches'' of Integrated Salt Disposition Project (ISDP) Salt Batch (''Macrobatch'') 6 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The results from the current microbatch samples are similar to those from comparable samples in Macrobatch 5. From a bulk chemical point of view, the ICPES results do not vary considerably between this and the previous macrobatch. The titanium results in the DSSHT samples continue to indicate the presence of Ti, when the feed material does not have detectable levels. This most likely indicates that leaching of Ti from MST in ARP continues to occur. Both the CST and CWT samples indicate that the target Free OH value of 0.03 has been surpassed. While at this time there is no indication that this has caused an operational problem, the CST should be adjusted into specification. The {sup 137}Cs results from the SRNL as well as F/H lab data indicate a potential decline in cesium decontamination factor. Further samples will be carefully monitored to investigate this.

  8. Restoring a sludge holding tank at a wastewater treatment plant using high-performance coatings

    SciTech Connect (OSTI)

    O'Dea, V.

    2005-11-01

    Faced with a serious hydrogen sulfide (H{sub 2}S) corrosion problem in two sludge holding tanks in 1993, the city of Concord, New Hampshire, repaired the deteriorating substrate by using a conventional acrylic-modified cementitious resurfacer and a coal tar epoxy (CTE) coating system. CTE failure occurred within 2 years, leading to more severe coating delamination. Restoration was delayed for 10 years, which caused extensive chemical attack on the concrete substrate-upwards of 2 in. (50 mm) of concrete loss. This article explains how one of these tanks was restored and prepared for another 15+ years of service.

  9. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, And Caustic Wash Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 4 Operations

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-10-25

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), and Caustic Wash Tank (CWT) samples from several of the ?microbatches? of Integrated Salt Disposition Project (ISDP) Salt Batch (?Macrobatch?) 4 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by inductively-coupled plasma emission spectroscopy (ICPES). Furthermore, samples from the CWT have been analyzed by a variety of methods to investigate a decline in the decontamination factor (DF) of the cesium observed at MCU. The results indicate good decontamination performance within process design expectations. While the data set is sparse, the results of this set and the previous set of results for Macrobatch 3 samples indicate generally consistent operations. There is no indication of a disruption in plutonium and strontium removal. The average cesium DF and concentration factor (CF) for samples obtained from Macrobatch 4 are slightly lower than for Macrobatch 3, but still well within operating parameters. The DSSHT samples show continued presence of titanium, likely from leaching of the monosodium titanate in Actinide Removal Process (ARP).

  10. Solvent Hold Tank Sample Results for MCU-15-556-557-558. March 2015 Monthly Sample

    SciTech Connect (OSTI)

    Fondeur, F.; Taylor-Pashow, K.

    2015-05-04

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-556, MCU-15-557, and MCU-15-558), pulled on 03/16/2015 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-556-557-558 indicated a low concentration (~ 78 % of nominal) of the suppressor (TiDG) and concentrations of the extractant (MaxCalix), and of the modifier (CS-7SB) in the solvent that were slightly lower than nominal. This analysis confirms the addition of TiDG, MaxCalix, and modifier to the solvent in February 2015. Based on the current monthly sample, the levels of TiDG, MaxCalix, and modifier are sufficient for continuing operation without adding a trim at this time. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). However, the p-nut vials that delivered the samples contained small (1 mm) droplets of oxidized modifier and amides (as detected by the FTIR analysis). In addition, up to 21 microgram of mercury per gram of solvent (or 17.4 µg/mL) was detected in this sample. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.

  11. Solvent Hold Tank Sample Results For MCU-15-750-751-752-: June Monthly Sample

    SciTech Connect (OSTI)

    Fondeur, F.; Taylor-Pashow, K.

    2015-10-07

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-750, MCU-15-751, and MCU-15-752), pulled on 06/22/2015 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-750-751-752 indicated a low concentration (~ 49 % of nominal) of the suppressor (TiDG) and slightly lower than nominal concentrations of the extractant (MaxCalix), and of the modifier (Cs-7SB) in the solvent. This analysis confirms the addition of TiDG, MaxCalix, and modifier to the solvent in February 2015. Based on the current monthly sample, the levels of TiDG, MaxCalix, and modifier are sufficient for continuing operation without adding a trim at this time but it is recommended that an addition of TiDG, modifier and Isopar™L should be made in the near future. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). In addition, up to 13.9 micrograms of mercury per gram of solvent (or 11.5 µg/mL) was detected in this sample. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.

  12. Solvent Hold Tank Sample Results for MCU-15-661-662-663: April 2015 Monthly Sample

    SciTech Connect (OSTI)

    Fondeur, F.; Taylor-Pashow, K.

    2015-07-08

    The Savannah River National Lab (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-661, MCU-15-662, and MCU-15-663 pulled on April 2, 2015) for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-661-662-663 indicated a low concentration (~ 63% of nominal) of the suppressor (TiDG) and a slightly below the nominal concentration (~ 10% below nominal) of the extractant (MaxCalix). The modifier (CS-7SB) level was also 10% below its nominal value while the Isopar™ L level was slightly above its nominal value. This analysis confirms the addition of Isopar™L to the solvent on March 6, 2015. Despite that the values are below target component levels, the current levels of TiDG, CS-7SB and MaxCalix are sufficient for continuing operation without adding a trim at this time until the next monthly sample. No impurities above the 1000 ppm level were found in this solvent. However, the sample was found to contain approximately 18.4 ug/gsolvent mercury. The gamma level increased to 8 E5 dpm/mLsolvent and it represents an order of magnitude increase relative to previous solvent samples. The increase means less cesium is being stripped from the solvent. Further analysis is needed to determine if the recent spike in the gamma measurement is due to external factors such as algae or other material that may impede stripping. The laboratory will continue to monitor the quality of the solvent in particular for any new impurity or degradation of the solvent components.

  13. Solvent Hold Tank Sample Results For MCU-15-710-711-712: June 2015 Monthly Sample

    SciTech Connect (OSTI)

    Fondeur, F.; Taylor-Pashow, K.

    2015-10-07

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-710, MCU-15-711, and MCU-15-712), pulled on 06/15/2015 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-710-711-712 indicated a low concentration (~ 55 % of nominal) of the suppressor (TiDG) and concentrations of the extractant (MaxCalix), and of the modifier (Cs-7SB) in the solvent that were slightly lower than nominal. This analysis confirms the addition of TiDG, MaxCalix, and modifier (92 % of nominal) to the solvent in February 2015. Based on the current monthly sample, the levels of TiDG, MaxCalix, and modifier were sufficient when this solvent sample was collected from MCU. A higher cesium concentration (9.3 E6 dpm/mL) was observed in this sample relative to recent samples. In the past, this level of cesium appeared to correlate with upsets in the MCU operation. It is not known at this time the reason for the higher cesium level in this solvent. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). In addition, the sample contains up to 10.4 micrograms of mercury per gram of solvent (or 8.7 µg/mL). A relatively large cesium concentration (9.3 E 6 dpm/mL) was measured in this solvent and it may indicate poor cesium stripping. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.

  14. Evaluation of an alkaline-side solvent extraction process for cesium removal from SRS tank waste using laboratory-scale centrifugal contactors

    SciTech Connect (OSTI)

    Leonard, R. A.; Conner, C.; Liberatore, M. W.; Sedlet, J.; Aase, S. B.; Vandegrift, G. F.

    1999-11-29

    An alkaline-side solvent extraction process for cesium removal from Savannah River Site (SRS) tank waste was evaluated experimentally using a laboratory-scale centrifugal contactor. Single-stage and multistage tests were conducted with this contactor to determine hydraulic performance, stage efficiency, and general operability of the process flowsheet. The results and conclusions of these tests are reported along with those from various supporting tests. Also discussed is the ability to scale-up from laboratory- to plant-scale operation when centrifugal contractors are used to carry out the solvent extraction process. While some problems were encountered, a promising solution for each problem has been identified. Overall, this alkaline-side cesium extraction process appears to be an excellent candidate for removing cesium from SRS tank waste.

  15. SOLVENT HOLD TANK SAMPLE RESULTS FOR MCU-13-1403/1404/1405/1406/1407/1408: QUARTERLY SAMPLE FROM SEPTEMBER 2013

    SciTech Connect (OSTI)

    Fondeur, F.; Taylor-Pashow, K.

    2013-11-20

    Savannah River National Laboratory (SRNL) analyzed solvent samples from the Modular Caustic-Side Solvent Extraction Unit (MCU) in support of continuing operations. A quarterly analysis of the solvent is required to maintain solvent composition within specifications. Analytical results of the analyses of Solvent Hold Tank (SHT) samples MCU-13-1403, MCU-13-1404, MCU-13-1405, MCU-13-1406, MCU-13-1407, and MCU-13-1408 received on September 17, 2013 are reported. This sample was taken after the addition of the Next Generation Solvent (NGS) cocktail to produce a NGS-MCU blended solvent. The results show that the solvent contains a slight excess of Isopar? L and a deficit concentration of modifier and TiDG when compared to the target composition. Addition of TiDG trim is recommended. SRNL also analyzed the SHT sample for {sup 137}Cs content and determined the measured value is within tolerance and that the value has returned to levels observed in 2011. In contrast to what was observed in the heel prior to adding the NGS cocktail, no organic impurities were detected in these solvent samples.

  16. Solvent hold tank sample results for MCU-15-802-803-804-805-806-807 August monthly sample

    SciTech Connect (OSTI)

    Fondeur, F. F.; Jones, D. H.

    2016-01-01

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-802-803-804-805-806-807), pulled on 08/31/2015 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-802-803-804-805-806-807 indicated a low concentration (~ 45 % of nominal) of the suppressor (TiDG) and a slightly lower than nominal concentration of the modifier (Cs-7SB) in the solvent. The extractant (MaxCalix) concentration was at its nominal value. Based on this current monthly sample, the levels of TiDG, MaxCalix, and modifier were sufficient for continuing operation without adding a trim during that time but it is recommended that an addition of TiDG, modifier and Isopar™L should be made in the next few months. This monthly sample’s rheology, as determined by Hydrogen Nuclear Magnetic Resonance (H-NMR), is consistent with the rheology of the standard NGS solvent made in the lab (Scratch solvent 5/14/2014). No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). In addition, up to 16.7 micrograms of mercury per gram of solvent (or 14 μg/mL) was detected in this sample. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.

  17. DEMONSTRATION OF THE NEXT-GENERATION CAUSTIC-SIDE SOLVENT EXTRACTION SOLVENT WITH 2-CM CENTRIFUGAL CONTRACTORS USING TANK 49H WASTE AND WASTE SIMULANT

    SciTech Connect (OSTI)

    Pierce, R.; Peters, T.; Crowder, M.; Caldwell, T.; Pak, D; Fink, S.; Blessing, R.; Washington, A.

    2011-09-27

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet using MaxCalix for the decontamination of high level waste (HLW). The demonstration was completed using a 12-stage, 2-cm centrifugal contactor apparatus at the Savannah River National Laboratory (SRNL). This represents the first CSSX process demonstration of the MaxCalix solvent system with Savannah River Site (SRS) HLW. Two tests lasting 24 and 27 hours processed non-radioactive simulated Tank 49H waste and actual Tank 49H HLW, respectively. Conclusions from this work include the following. The CSSX process is capable of reducing {sup 137}Cs in high level radioactive waste by a factor of more than 40,000 using five extraction, two scrub, and five strip stages. Tests demonstrated extraction and strip section stage efficiencies of greater than 93% for the Tank 49H waste test and greater than 88% for the simulant waste test. During a test with HLW, researchers processed 39 liters of Tank 49H solution and the waste raffinate had an average decontamination factor (DF) of 6.78E+04, with a maximum of 1.08E+05. A simulant waste solution ({approx}34.5 liters) with an initial Cs concentration of 83.1 mg/L was processed and had an average DF greater than 5.9E+03, with a maximum DF of greater than 6.6E+03. The difference may be attributable to differences in contactor stage efficiencies. Test results showed the solvent can be stripped of cesium and recycled for {approx}25 solvent turnovers without the occurrence of any measurable solvent degradation or negative effects from minor components. Based on the performance of the 12-stage 2-cm apparatus with the Tank 49H HLW, the projected DF for MCU with seven extraction, two scrub, and seven strip stages operating at a nominal efficiency of 90% is {approx}388,000. At 95% stage efficiency, the DF in MCU would be {approx}3.2 million. Carryover of organic solvent in aqueous streams (and aqueous in organic streams) was less than 0.1% when processing Tank 49H HLW. The entrained solvent concentration measured in the decontaminated salt solution (DSS) was as much as {approx}140 mg/L, although that value may be overstated by as much as 50% due to modifier solubility in the DSS. The entrained solvent concentration was measured in the strip effluent (SE) and the results are pending. A steady-state concentration factor (CF) of 15.9 was achieved with Tank 49H HLW. Cesium distribution ratios [D(Cs)] were measured with non-radioactive Tank 49H waste simulant and actual Tank 49H waste. Below is a comparison of D(Cs) values of ESS and 2-cm tests. Batch Extraction-Strip-Scrub (ESS) tests yielded D(Cs) values for extraction of {approx}81-88 for tests with Tank 49H waste and waste simulant. The results from the 2-cm contactor tests were in agreement with values of 58-92 for the Tank 49H HLW test and 54-83 for the simulant waste test. These values are consistent with the reference D(Cs) for extraction of {approx}60. In tests with Tank 49H waste and waste simulant, batch ESS tests measured D(Cs) values for the two scrub stages as {approx}3.5-5.0 for the first scrub stage and {approx}1.0-3.0 for the second scrub stage. In the Tank 49H test, the D(Cs) values for the 2-cm test were far from the ESS values. A D(Cs) value of 161 was measured for the first scrub stage and 10.8 for the second scrub stage. The data suggest that the scrub stage is not operating as effectively as intended. For the simulant test, a D(Cs) value of 1.9 was measured for the first scrub stage; the sample from the second scrub stage was compromised. Measurements of the pH of all stage samples for the Tank 49H test showed that the pH for extraction and scrub stages was 14 and the pH for the strip stages was {approx}7. It is expected that the pH of the second scrub stage would be {approx}12-13. Batch ESS tests measured D(Cs) values for the strip stages to be {approx}0.002-0.010. A high value in Strip No.3 of a test with simulant solution has been attributed to issues associated with the limits of detection for the

  18. CENTRIFUGE APPARATUS

    DOE Patents [OSTI]

    Skarstrom, C.; Urey, H.C.; Cohen, K.

    1960-08-01

    A high-speed centrifuge for the separation of gaseous isotopes is designed comprising a centrifugal pump mounted on the outlet of a centrifuge bowl and arranged to pump the heavy and light fractions out of the centrifuge bowl in two separate streams.

  19. SOLVENT HOLD TANK SAMPLE RESULTS FOR MCU-13-189, MCU-13-190, AND MCU-13-191: QUARTERLY SAMPLE FROM SEPTEMBER 2013

    SciTech Connect (OSTI)

    Fondeur, F.; Taylor-Pashow, K.

    2013-10-31

    Savannah River National Laboratory (SRNL) analyzed solvent samples from Modular Caustic-Side Solvent Extraction Unit (MCU) in support of continuing operations. A quarterly analysis of the solvent is required to maintain solvent composition within specifications. Analytical results of the analyses of Solvent Hold Tank (SHT) samples MCU-13-189, MCU-13-190, and MCU-13-191 received on September 4, 2013 are reported. The results show that the solvent (remaining heel in the SHT tank) at MCU contains excess Isopar? L and a deficit concentration of modifier and trioctylamine when compared to the standard MCU solvent. As with the previous solvent sample results, these analyses indicate that the solvent does not require Isopar? L trimming at this time. Since MCU is switching to NGS, there is no need to add TOA nor modifier. SRNL also analyzed the SHT sample for {{sup 137}Cs content and determined the measured value is within tolerance and the value has returned to levels observed in 2011.

  20. Solvent Hold Tank Sample Results for MCU-15-389-390 and MCU-15-439-440-441. February 2015 Monthly Samples

    SciTech Connect (OSTI)

    Fondeur, F.; Taylor-Pashow, K.

    2015-05-04

    Savannah River National Laboratory (SRNL) received two sets of Solvent Hold Tank (SHT) samples (MCU-15-389 and MCU-15-390 pulled on February 23, 2015 and MCU-15-439, MCU-15-440, and MCU-15-441 pulled on February 28, 2015) for analysis. The samples in each set were combined and analyzed for composition. Analysis of the composite samples MCU-15-389-390 and MCU-15-439-440- 441 indicated a low concentration (~ 92 to 93 % of nominal) of the suppressor (TiDG) and slightly below nominal concentrations of the extractant (MaxCalix), but nominal levels of the modifier (CS-7SB) and of the Isopar™ L. This analysis confirms the addition of TiDG, MaxCalix, and modifier to the solvent on February 22, 2015. Despite that the values are below the target component levels, the current levels of TiDG and MaxCalix are sufficient for continuing operation without adding a trim at this time. No impurities above the 1000 ppm level were found in this solvent. However, the p-nut vials that delivered the samples contained small (1 mm) droplets of oxidized modifier and amides. The laboratory will continue to monitor the quality of the solvent in particular for any new impurity or degradation of the solvent components.

  1. Centrifuge apparatus

    DOE Patents [OSTI]

    Sartory, Walter K.; Eveleigh, John W.

    1976-01-01

    A method and apparatus for operating a continuous flow blood separation centrifuge are provided. The hematocrit of the entrant whole blood is continuously maintained at an optimum constant value by the addition of plasma to the entrant blood. The hematocrit of the separated red cells is monitored to indicate the degree of separation taking place, thereby providing a basis for regulating the flow through the centrifuge.

  2. Centrifugal Compressors

    SciTech Connect (OSTI)

    Hastbacka, Mildred; Dieckmann, John; Bouza, Antonio

    2013-02-06

    The article discusses small high speed centrifugal compressors. This topic was covered in a previous ASHRAE Journal column (2003). This article reviews another configuration which has become an established product. The operation, energy savings and market potential of this offering are addressed as well.

  3. Centrifugal pyrocontactor

    DOE Patents [OSTI]

    Chow, L.S.; Leonard, R.A.

    1993-10-19

    A method is described for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor. 6 figures.

  4. Centrifugal pyrocontactor

    DOE Patents [OSTI]

    Chow, Lorac S.; Leonard, Ralph A.

    1993-01-01

    A method for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor.

  5. Solvent hold tank sample results for MCU-13-143, MCU-13-144, MCU-13-145, MCU-13-146, MCU-13-147 AND MCU-13-148: quarterly sample from January 2013

    SciTech Connect (OSTI)

    Fondeur, F. F.; Peters, T. B.

    2013-03-27

    Savannah River National Laboratory (SRNL) analyzed solvent samples from Modular Caustic-Side Solvent Extraction Unit (MCU) in support of continuing operations. A quarterly analysis of the solvent is required to maintain solvent composition within specifications. Analytical results of the analyses of Solvent Hold Tank (SHT) samples MCU-13-143, MCU-13-144, MCU-13-145, MCU-13-146, MCU-13-147 and MCU-13-148 received 29 January 2012 are reported. The results show that the solvent at MCU does not require an Isopar L addition, but it will require addition of trioctylamine. SRNL also analyzed the SHT sample for {sup 137}Cs content and determined the measured value is within tolerance and the value has returned to levels observed in 2012.

  6. SOLVENT HOLD TANK SAMPLE RESULTS FOR MCU-12-488, MCU-12-489, MCU-12-490, MCU-12-491, MCU-12-492 AND MCU-12-493: QUARTERLY SAMPLE FROM OCTOBER 2012

    SciTech Connect (OSTI)

    Fondeur, F. F.; Peters, T. B.; Fink, S. D.

    2013-01-16

    Savannah River National Laboratory (SRNL) analyzed solvent samples from Modular Caustic-Side Solvent Extraction Unit (MCU) in support of continuing operations. A quarterly analysis of the solvent is required to maintain solvent composition within specifications. Analytical results of the analyses of Solvent Hold Tank (SHT) samples MCU-12-488, MCU-12-489, MCU-12-490, MCU-12-491, MCU-12-492 and MCU-12-493 received 24 October 2012 are reported. The results show that the solvent at MCU does not require an Isopar L addition, but it will require addition of trioctylamine. SRNL also analyzed the SHT sample for {sup 137}Cs content and determined the measured value is within tolerance but is trending upward compared to the {sup 137}Cs measurement made last year.

  7. Solvent Hold Tank Sample Results For MCU-13-814, MCU-13-815, MCU-13-816, MCU-13,817, MCU-13-818 And MCU-13-819: Quarterly Sample From May 2013

    SciTech Connect (OSTI)

    Fondeur, F. F.; Taylor-Pashow, K. M.

    2013-08-13

    Savannah River National Laboratory (SRNL) analyzed solvent samples from Modular Caustic-Side Solvent Extraction Unit (MCU) in support of continuing operations. A quarterly analysis of the solvent is required to maintain solvent composition within specifications. Analytical results of the analyses of Solvent Hold Tank (SHT) samples MCU-13-814, MCU-13-815, MCU-13-816, MCU-13-817, MCU-13-818 and MCU-13-819 received May 28, 2013 are reported. The results show that the solvent at MCU does not require an Isopar L addition, but it will require addition of trioctylamine despite of the 272 g of TOA that was added to the solvent on June 5, 2013 based on the solvent containing a TOA level of 45% of nominal. A new TOA analysis method (HCl titration) has been used and its output was statistically similar to the results from the SVOA-TOA method. This method provides an independent method for measuring TOA and TiDG in MCU-NG solvent. An impurity containing a tert-butyl group was detected in the solvent and further analytical analysis is needed to identify it. SRNL recommends determining the impact of this impurity on the mass transfer ability of the solvent. SRNL also analyzed the SHT sample for {sup 137}Cs content and determined the measured value is above the results observed from the January 2013.

  8. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, C.A.; Rurbage, C.H.

    1982-03-17

    The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  9. METHOD OF CENTRIFUGE OPERATION

    DOE Patents [OSTI]

    Cohen, K.

    1960-05-10

    A method of isotope separation is described in which two streams are flowed axially of, and countercurrently through, a cylindrical centrifuge bowl. Under the influence of a centrifugal field, the light fraction is concentrated in a stream flowing through the central portion of the bowl, whereas the heavy fraction is concentrated in a stream at the periphery thereof.

  10. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, Charles A.; Burbage, Charles H.

    1984-01-01

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  11. SEAL FOR HIGH SPEED CENTRIFUGE

    DOE Patents [OSTI]

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  12. Tank Closure

    Office of Environmental Management (EM)

    of SRS Tank Closure Program Two Tank Farms - F Area and H Area Permitted by SC as Industrial Wastewater Facilities under the Pollution Control Act Three agency Federal...

  13. Bureau Veritas Certification Holding BVC Holding | Open Energy...

    Open Energy Info (EERE)

    Veritas Certification Holding BVC Holding Jump to: navigation, search Name: Bureau Veritas Certification Holding (BVC Holding) Place: Spain Product: Accredited as a certification...

  14. Apollo Solar Energy Technology Holdings Ltd former RBI Holdings...

    Open Energy Info (EERE)

    Holdings Ltd former RBI Holdings Ltd Jump to: navigation, search Name: Apollo Solar Energy Technology Holdings Ltd (former RBI Holdings Ltd) Place: Kowloon, Hong Kong Sector:...

  15. Centrifugal unbalance detection system

    DOE Patents [OSTI]

    Cordaro, Joseph V.; Reeves, George; Mets, Michael

    2002-01-01

    A system consisting of an accelerometer sensor attached to a centrifuge enclosure for sensing vibrations and outputting a signal in the form of a sine wave with an amplitude and frequency that is passed through a pre-amp to convert it to a voltage signal, a low pass filter for removing extraneous noise, an A/D converter and a processor and algorithm for operating on the signal, whereby the algorithm interprets the amplitude and frequency associated with the signal and once an amplitude threshold has been exceeded the algorithm begins to count cycles during a predetermined time period and if a given number of complete cycles exceeds the frequency threshold during the predetermined time period, the system shuts down the centrifuge.

  16. Centrifugally decoupling touchdown bearings

    DOE Patents [OSTI]

    Post, Richard F

    2014-06-24

    Centrifugally decoupling mechanical bearing systems provide thin tensioned metallic ribbons contained in a support structure. This assembly rotates around a stationary shaft being centered at low speeds by the action of the metal ribbons. Tension springs are connected on one end to the ribbons and on the other end to the support structure. The ribbons pass through slots in the inner ring of the support structure. The spring preloading thus insures contact (or near-contact) between the ribbons and the shaft at rotation speeds below the transition speed. Above this speed, however, the centrifugal force on the ribbons produces a tensile force on them that exceeds the spring tensile force so that the ribbons curve outward, effectively decoupling them from mechanical contact with the shaft. They still remain, however, in position to act as a touchdown bearing in case of abnormally high transverse accelerations.

  17. Gas Centrifuges and Nuclear Proliferation

    SciTech Connect (OSTI)

    Albright, David

    2004-09-15

    Gas centrifuges have been an ideal enrichment method for a wide variety of countries. Many countries have built gas centrifuges to make enriched uranium for peaceful nuclear purposes. Other countries have secretly sought centrifuges to make highly enriched uranium for nuclear weapons. In more recent times, several countries have secretly sought or built gas centrifuges in regions of tension. The main countries that have been of interest in the last two decades have been Pakistan, Iraq, Iran, and North Korea. Currently, most attention is focused on Iran, Pakistan, and North Korea. These states did not have the indigenous abilities to make gas centrifuges, focusing instead on illicit and questionable foreign procurement. The presentation covered the following main sections: Spread of centrifuges through illicit procurement; Role of export controls in stopping proliferation; Increasing the transparency of gas centrifuge programs in non-nuclear weapon states; and, Verified dismantlement of gas centrifuge programs. Gas centrifuges are important providers of low enriched uranium for civil nuclear power reactors. They also pose special nuclear proliferation risks. We all have special responsibilities to prevent the spread of gas centrifuges into regions of tension and to mitigate the consequences of their spread into the Middle East, South Asia, and North Asia.

  18. Centrifugal shot blast system

    SciTech Connect (OSTI)

    1998-02-01

    This report describes a demonstration of Concrete cleaning, Inc., modified centrifugal shot blast technology to remove the paint coating from concrete flooring. This demonstration is part of the Chicago Pile-5 (CP-5) Large-Scale Demonstration Project (LSDP) sponsored by the US Department of Energy (DOE), office of Science and Technology (OST), Deactivation and Decommissioning Focus Area (DDFA). The objective of the LSDP is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) CP-5 Research Reactor. The purpose of the LSDP is to demonstrate that using innovative and improved decontamination and decommissioning (D and D) technologies from various sources can result in significant benefits, such as decreased cost and increased health and safety, as compared with baseline D and D technologies. Potential markets exist for the innovative centrifugal shot blast system at the following sites: Fernald Environmental Management Project, Los Alamos, Nevada, Oak Ridge Y-12 and K-25, Paducah, Portsmouth Gaseous Diffusion site, and the Savannah River Site. This information is based on a revision to the OST Linkage Tables dated August 4, 1997.

  19. Centrifuge treatment of coal tar

    SciTech Connect (OSTI)

    L.A. Kazak; V.Z. Kaidalov; L.F. Syrova; O.S. Miroshnichenko; A.S. Minakov

    2009-07-15

    New technology is required for the removal of water and heavy fractions from regular coal tar. Centrifuges offer the best option. Purification of coal tar by means of centrifuges at OAO NLMK permits the production of pitch coke or electrode pitch that complies with current standards.

  20. Practical Considerations in Realizing a Magnetic Centrifugal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Magnetic Centrifugal Mass Filter concept represents a variation on the plasma centrifuge, with applications that are particularly promising for high-throughput separation of...

  1. Gas centrifuge purge method

    DOE Patents [OSTI]

    Theurich, Gordon R.

    1976-01-01

    1. In a method of separating isotopes in a high speed gas centrifuge wherein a vertically oriented cylindrical rotor bowl is adapted to rotate about its axis within an evacuated chamber, and wherein an annular molecular pump having an intake end and a discharge end encircles the uppermost portion of said rotor bowl, said molecular pump being attached along its periphery in a leak-tight manner to said evacuated chamber, and wherein end cap closure means are affixed to the upper end of said rotor bowl, and a process gas withdrawal and insertion system enters said bowl through said end cap closure means, said evacuated chamber, molecular pump and end cap defining an upper zone at the discharge end of said molecular pump, said evacuated chamber, molecular pump and rotor bowl defining a lower annular zone at the intake end of said molecular pump, a method for removing gases from said upper and lower zones during centrifuge operation with a minimum loss of process gas from said rotor bowl, comprising, in combination: continuously measuring the pressure in said upper zone, pumping gas from said lower zone from the time the pressure in said upper zone equals a first preselected value until the pressure in said upper zone is equal to a second preselected value, said first preselected value being greater than said second preselected value, and continuously pumping gas from said upper zone from the time the pressure in said upper zone equals a third preselected value until the pressure in said upper zone is equal to a fourth preselected value, said third preselected value being greater than said first, second and fourth preselected values.

  2. Minrav Holdings | Open Energy Information

    Open Energy Info (EERE)

    Minrav Holdings Jump to: navigation, search Name: Minrav Holdings Place: Israel Product: Minrav Holdings Ltd. is involved in initiating, engineering and building real estate,...

  3. Trace Holdings | Open Energy Information

    Open Energy Info (EERE)

    Holdings Jump to: navigation, search Name: Trace Holdings Product: Trace Holdings is now fully integrated in Xantrex Technologies Inc following a 2000 merger. References: Trace...

  4. CPL Holding | Open Energy Information

    Open Energy Info (EERE)

    Holding Jump to: navigation, search Name: CPL Holding Place: Brazil Product: Firm charged with building an ethanol pipeline in the state of Parana. References: CPL Holding1 This...

  5. Holding Mother Earth Sacred

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Holding Mother Earth Sacred Photo Journal Project Resource List 2010 Mountain and Plains Education and Research ... (NIOSH): www.cdc.govniosh American Industrial Hygiene ...

  6. Centrifugal dryers keep pace with the market

    SciTech Connect (OSTI)

    Fiscor, S.

    2008-03-15

    New plant design and upgrades create a shift in dewatering strategies. The article describes recent developments. Three major manufacturers supply centrifugal dryers - TEMA, Centrifugal & Mechanical Industries (CMI) and Ludowici. CMI introduced a line of vertical centrifugal dryers. TEMA improved the techniques by developing a horizontal vibratory centrifuge (HVC) which simplified maintenance. 3 figs., 1 photo.

  7. Microwave assisted centrifuge and related methods

    DOE Patents [OSTI]

    Meikrantz, David H. (Idaho Falls, ID) [Idaho Falls, ID

    2010-08-17

    Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.

  8. Automated Centrifugal Chiller Diagnostician - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Find More Like This Return to Search Automated Centrifugal Chiller Diagnostician Pacific Northwest National Laboratory Contact PNNL About This Technology Centrifugal chiller display Centrifugal chiller display Typical diagnostic display Typical diagnostic display Technology Marketing Summary Researchers and engineers at PNNL have developed an automated, sophisticated, multi-level, real-time centrifugal chiller diagnostician with diagnostics available under partial

  9. Description of the Portsmouth Gas Centrifuge Enrichment Plant

    SciTech Connect (OSTI)

    Arthur, W.B.

    1980-12-16

    The Portsmouth Gas Centrifuge Enrichment Plant (GCEP) will be located at the site of the Portsmouth Gaseous Diffusion Plant in Piketon, Ohio. The purpose of the facility is to provide enriching services for the production of low assay enriched uranium for civilian nuclear power reactors. The construction and operation of the GCEP is administered by the US Department of Energy. The facility will be operated under contract from the US Government. Control of the GCEP rests solely with the US Government, which holds and controls access to the technology. Construction of GCEP is expected to be completed in the mid-1990's. Many facility design and operating procedures are subject to change. Nonetheless, the design described in this report does reflect current thinking. Descriptions of the general facility and major buildings such as the process buildings, feed and withdrawal building, cylinder storage and transfer, recycle/assembly building, and a summary of the centrifuge uranium enriching process are provided in this report.

  10. MEANS FOR DETERMINING CENTRIFUGE ALIGNMENT

    DOE Patents [OSTI]

    Smith, W.Q.

    1958-08-26

    An apparatus is presented for remotely determining the alignment of a centrifuge. The centrifage shaft is provided with a shoulder, upon which two followers ride, one for detecting radial movements, and one upon the shoulder face for determining the axial motion. The followers are attached to separate liquid filled bellows, and a tube connects each bellows to its respective indicating gage at a remote location. Vibrations produced by misalignment of the centrifuge shaft are transmitted to the bellows, and tbence through the tubing to the indicator gage. This apparatus is particularly useful for operation in a hot cell where the materials handled are dangerous to the operating personnel.

  11. IDB Holding | Open Energy Information

    Open Energy Info (EERE)

    IDB Holding Jump to: navigation, search Name: IDB Holding Place: Tel-Aviv, Israel Zip: 67023 Product: A leading Israeli diversified business group. Coordinates: 32.045101,...

  12. Inci Holding | Open Energy Information

    Open Energy Info (EERE)

    Inci Holding Jump to: navigation, search Name: Inci Holding Place: Izmir, Turkey Zip: 35410 Sector: Solar Product: Turkey-based industrial group specializing in the manufacture of...

  13. The gas centrifuge and nuclear weapons proliferation

    SciTech Connect (OSTI)

    Wood, Houston G.; Glaser, Alexander; Kemp, R. Scott

    2014-05-09

    Uranium enrichment by centrifugation is the basis for the quick and efficient production of nuclear fuel-or nuclear weapons.

  14. Laser and gas centrifuge enrichment

    SciTech Connect (OSTI)

    Heinonen, Olli

    2014-05-09

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  15. REMOVAL OF SOLIDS FROM HIGHLY ENRICHED URANIUM SOLUTIONS USING THE H-CANYON CENTRIFUGE

    SciTech Connect (OSTI)

    Rudisill, T; Fernando Fondeur, F

    2009-01-15

    Prior to the dissolution of Pu-containing materials in HB-Line, highly enriched uranium (HEU) solutions stored in Tanks 11.1 and 12.2 of H-Canyon must be transferred to provide storage space. The proposed plan is to centrifuge the solutions to remove solids which may present downstream criticality concerns or cause operational problems with the 1st Cycle solvent extraction due to the formation of stable emulsions. An evaluation of the efficiency of the H-Canyon centrifuge concluded that a sufficient amount (> 90%) of the solids in the Tank 11.1 and 12.2 solutions will be removed to prevent any problems. We based this conclusion on the particle size distribution of the solids isolated from samples of the solutions and the calculation of particle settling times in the centrifuge. The particle size distributions were calculated from images generated by scanning electron microscopy (SEM). The mean particle diameters for the distributions were 1-3 {micro}m. A significant fraction (30-50%) of the particles had diameters which were < 1 {micro}m; however, the mass of these solids is insignificant (< 1% of the total solids mass) when compared to particles with larger diameters. It is also probable that the number of submicron particles was overestimated by the software used to generate the particle distribution due to the morphology of the filter paper used to isolate the solids. The settling times calculated for the H-Canyon centrifuge showed that particles with diameters less than 1 to 0.5 {micro}m will not have sufficient time to settle. For this reason, we recommend the use of a gelatin strike to coagulate the submicron particles and facilitate their removal from the solution; although we have no experimental basis to estimate the level of improvement. Incomplete removal of particles with diameters < 1 {micro}m should not cause problems during purification of the HEU in the 1st Cycle solvent extraction. Particles with diameters > 1 {micro}m account for > 99% of the solid mass and will be efficiently removed by the centrifuge; therefore, the formation of emulsions during solvent extraction operations is not an issue. Under the current processing plan, the solutions from Tanks 11.1 and 12.2 will be transferred to the enriched uranium storage (EUS) tank following centrifugation. The solution from Tanks 11.1 and 12.2 may remain in the EUS tank for an extended time prior to purification. The effects of extended storage on the solution were not evaluated as part of this study.

  16. Tank Farms and Waste Feed Delivery - 12507

    SciTech Connect (OSTI)

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are solid and semi-solid wastes. Known as salt-cakes, they have the consistency of wet beach sand. Some of the waste resembles small broken ice, or whitish crystals. Because the original pumps inside the tanks were designed to remove only liquid waste, other methods have been developed to reach the remaining waste. Access to the tank waste is through long, typically skinny pipes, called risers, extending out of the tanks. It is through these pipes that crews are forced to send machines and devices into the tanks that are used to break up the waste or push it toward a pump. These pipes range in size from just a few inches to just over a foot in diameter because they were never intended to be used in this manner. As part of the agreement regulating Hanford cleanup, crews must remove at least 99% of the material in every tank on the site, or at least as much waste that can be removed based on available technology. To date, seven single-shell tanks have been emptied, and work is underway in another 10 tanks in preparation for additional retrieval activities. Two barriers have been installed over single-shell tanks to prevent the intrusion of surface water down to the tanks, with additional barriers planned for the future. Single and double-shell tank integrity analyses are ongoing. Because the volume of the waste generated through plutonium production exceeded the capacity of the single-shell tanks, between 1968 and 1986 Hanford engineers built 28 double-shell tanks. These tanks were studied and made with a second shell to surround the carbon steel and reinforced concrete. The double-shell tanks have not leaked any of their waste. (authors)

  17. Dual Tank Fuel System

    DOE Patents [OSTI]

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  18. Hanford Tank Waste Residuals

    Office of Environmental Management (EM)

    Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - 27 million ...

  19. Workplace Charging Challenge Partner: Sears Holdings Corporation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sears Holdings Corporation Workplace Charging Challenge Partner: Sears Holdings Corporation Workplace Charging Challenge Partner: Sears Holdings Corporation Joined the Challenge: ...

  20. Centrifugal separator devices, systems and related methods

    DOE Patents [OSTI]

    Meikrantz, David H.; Law, Jack D.; Garn, Troy G.; Todd, Terry A.; Macaluso, Lawrence L.

    2012-03-20

    Centrifugal separator devices, systems and related methods are described. More particularly, fluid transfer connections for a centrifugal separator system having support assemblies with a movable member coupled to a connection tube and coupled to a fixed member, such that the movable member is constrained to movement along a fixed path relative to the fixed member are described. Also, centrifugal separator systems including such fluid transfer connections are described. Additionally, methods of installing, removing and/or replacing centrifugal separators from centrifugal separator systems are described.

  1. Radioactive tank waste remediation focus area

    SciTech Connect (OSTI)

    1996-08-01

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  2. Liquid–liquid mixing studies in annular centrifugal contactors comparing stationary mixing vane options

    SciTech Connect (OSTI)

    Wardle, Kent E.

    2015-09-11

    Comparative studies of multiphase operation of an annular centrifugal contactor show the impact of housing stationary mixing vane configuration. A number of experimental results for several different mixing vane options are reported for operation of a 12.5 cm engineering-scale contactor unit. Fewer straight vanes give greater mixing-zone hold-up compared to curved vanes. Quantitative comparison of droplet size distribution also showed a significant decrease in mean diameter for four straight vanes versus eight curved vanes. This set of measurements gives a compelling case for careful consideration of mixing vane geometry when evaluating hydraulic operation and extraction process efficiency of annular centrifugal contactors.

  3. Auxiliary resonant DC tank converter

    DOE Patents [OSTI]

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  4. Tank 241-U-204 tank characterization plan

    SciTech Connect (OSTI)

    Bell, K.E.

    1995-03-23

    This document is the tank characterization plan for Tank 241-U-204 located in the 200 Area Tank Farm on the Hanford Reservation in Richland, Washington. This plan describes Data Quality Objectives (DQO) and presents historical information and scheduled sampling events for tank 241-U-204.

  5. Solar Hold | Open Energy Information

    Open Energy Info (EERE)

    Hold Jump to: navigation, search Name: Solar-Hold Place: Sofia, Bulgaria Sector: Solar Product: Bulgarian solar project developer; as of September 2007, seeking permit for 10x5MW...

  6. Feed tank transfer requirements

    SciTech Connect (OSTI)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

  7. Centrifugal separators and related devices and methods

    DOE Patents [OSTI]

    Meikrantz, David H.; Law, Jack D.; Garn, Troy G.; Macaluso, Lawrence L.; Todd, Terry A.

    2012-03-06

    Centrifugal separators and related methods and devices are described. More particularly, centrifugal separators comprising a first fluid supply fitting configured to deliver fluid into a longitudinal fluid passage of a rotor shaft and a second fluid supply fitting sized and configured to sealingly couple with the first fluid supply fitting are described. Also, centrifugal separator systems comprising a manifold having a drain fitting and a cleaning fluid supply fitting are described, wherein the manifold is coupled to a movable member of a support assembly. Additionally, methods of cleaning centrifugal separators are described.

  8. CENTRIFUGES

    DOE Patents [OSTI]

    Beams, J.W.; Snoddy, L.B.

    1960-08-01

    Damping bearings for use on the shafts of an ultracentrifuge were designed which are capable of passing through critical angular speeds. The shaft extending from one end of the rotor is journaled in fixed-plain bearings mounted on annular resilient shock-absorbing elements to dampen small vibrations. The shaft at the other end of the rotor is journaled in two damper-bearing assemblies which are so spaced on the shaft that a vibration node can at no time exist at both bearing assemblies. These bearings are similar to the other bearings except that the bearing housings are slidably mounted on the supporting structure for movement transverse to the rotational axis of the rotor.

  9. Urenco centrifuge and laser development

    SciTech Connect (OSTI)

    Upson, P.C.

    1994-12-31

    The Urenco centrifuge process for the enrichment of uranium is now well developed and economically proven. The centrifuge technology that forms the basis of Urenco`s plants in the United Kingdom, the Netherlands, and Germany has evolved steadily over the last two decades since the Urenco partnership was formed, and current programs of development will see this progress continue into the next century. From the early pilot plant work, the first generation of machines was installed and commissioned in the late 1970s in the U.K. and Netherlands plants. These have both significantly exceeded the original design expectation with respect to both stress lifetime and corrosion resistance. The early U.K. plant was shut down in 1992, again well beyond the expected 10-yr lifetime, while the Netherlands plant is still operating. Since then, significant advances have been made, and a fourth-generation machine began operation in the plants in 1991; in fact, Urenco has all four generations still in operation in its plants today. Urenco`s research on laser isotope separation is also described.

  10. Tank Farms - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Farms Office of River Protection About ORP ORP Projects & Facilities Tank Farms Retrieval Activities PHOENIX - Tank Monitoring Waste Treatment & Immobilization Plant 242-A Evaporator 222-S Laboratory Newsroom Contracts & Procurements Contact ORP Tank Farms Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Tank Farms What are Tank Farms? For more than 40 years, facilities at the Hanford Site produced plutonium Tanks by the Numbers critical to the nation's

  11. Apparatus for centrifugal separation of coal particles

    DOE Patents [OSTI]

    Dickie, William; Cavallaro, Joseph A.; Killmeyer, Richard P.

    1991-01-01

    A gravimetric cell for centrifugal separation of fine coal by density has a cylindrical body and a butterfly valve or other apparatus for selectively sealing the body radially across the approximate center of the cylinder. A removable top is provided which seals the cylinder in the centrifuge and in unvented areas.

  12. Tank Waste Strategy Update

    Office of Environmental Management (EM)

    Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management ...

  13. Hanford Tank Waste Retrieval,

    Office of Environmental Management (EM)

    Tank Waste Retrieval, Treatment, and Disposition Framework September 24, 2013 U.S. Department of Energy Washington, D.C. 20585 Hanford Tank Waste Retrieval, Treatment, and ...

  14. Misawa Homes Holdings Inc | Open Energy Information

    Open Energy Info (EERE)

    Holdings Inc Jump to: navigation, search Name: Misawa Homes Holdings Inc Place: Tokyo, Japan Zip: 163-0850 Product: A quoted Japanese construction holding company; through its...

  15. Edgewood Carbon Holdings LLC | Open Energy Information

    Open Energy Info (EERE)

    Edgewood Carbon Holdings LLC Jump to: navigation, search Name: Edgewood Carbon Holdings LLC Place: Cornwall, Vermont Zip: 57530 Sector: Carbon Product: Edgewood Carbon Holdings LLC...

  16. Hanford Technology Development (Tank Farms) - 12509

    SciTech Connect (OSTI)

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of tank waste are a byproduct of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. One key part of the ongoing work at Hanford is retrieving waste from the single-shell tanks, some of which have leaked in the past, and transferring that waste to the double-shell tanks - none of which have ever leaked. The 56 million gallons of radioactive tank waste is stored in 177 underground tanks, 149 of which are single-shell tanks built between 1943 and 1964. The tanks sit approximately 250 feet above the water table. Hanford's single-shell tanks are decades past their 20-year design life. In the past, up to 67 of the single-shell tanks are known or suspected to have leaked as much as one million gallons of waste to the surrounding soil. Starting in the late 1950's, waste leaks from dozens of the single-shell tanks were detected or suspected. Most of the waste is in the soil around the tanks, but some of this waste is thought to have reached groundwater. The Vadose Zone Project was established to understand the radioactive and chemical contamination in the soil beneath the tanks as the result of leaks and discharges from past plutonium-production operations. The vadose zone is the area of soil between the ground surface and the water table 200-to-300 feet below. The project tracks and monitors contamination in the soil. Technologies are being developed and deployed to detect and monitor contaminants. Interim surface barriers, which are barriers put over the single-shell tanks, prevent rain and snow from soaking into the ground and spreading contamination. The impermeable barrier placed over T Farm, which was the site of the largest tank waste leak in Hanford's history, is 60,000 square feet and sloped to drain moisture outside the tank farm. The barrier over TY Farm is constructed of asphalt and drains moisture to a nearby evaporation basin. Our discussion of technology will address the incredible challenge of removing waste from Hanford's single-shell tanks. Under the terms of the Tri-Party Agreement, ORP is required to remove 99 percent of the tank waste, or until the limits of technology have been reached. All pumpable liquids have been removed from the single-shell tanks, and work now focuses on removing the non-pumpable liquids. Waste retrieval was completed from the first single-shell tank in late 2003. Since then, another six single-shell tanks have been retrieved to regulatory standards. (authors)

  17. Elektra Holding | Open Energy Information

    Open Energy Info (EERE)

    search Name: Elektra Holding Place: Sofia, Bulgaria Sector: Biomass, Hydro, Solar, Wind energy Product: A company owned by a group of Spanish families operating in Bulgaria,...

  18. Majdaline Holdings | Open Energy Information

    Open Energy Info (EERE)

    search Name: Majdaline Holdings Place: Morocco Product: Moroccan company involved in a joint venture with Asola to produce modules in the country. References: Majdaline...

  19. Axeon Holdings | Open Energy Information

    Open Energy Info (EERE)

    Name: Axeon Holdings Place: Aberdeen, United Kingdom Zip: AB22 8GT Product: Owns battery and battery power management system technologies, which it is commercialising for...

  20. BM Holding | Open Energy Information

    Open Energy Info (EERE)

    Name: BM Holding Address: Eskiehir Yolu Bilkent Kava No:4 Place: Ankara, Turkey Zip: 06800 Product: Turkish construction company building large scale power generating...

  1. Control Strategies for Centrifugal Pumps with Variable Flow Rate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Strategies for Centrifugal Pumps with Variable Flow Rate Requirements Control Strategies for Centrifugal Pumps with Variable Flow Rate Requirements This tip sheet discusses...

  2. Select an Energy-Efficient Centrifugal Pump: Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Centrifugal Pump Overview Centrifugal pumps handle high flow rates, provide smooth, nonpulsating delivery, and regulate the flow rate over a wide range without damaging the pump. ...

  3. EIS-0468: American Centrifuge Plant, Piketon, Ohio | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    68: American Centrifuge Plant, Piketon, Ohio EIS-0468: American Centrifuge Plant, Piketon, Ohio Summary This EIS evaluates the environmental impacts of construction, operation, and ...

  4. DOE Announces Cooperative Agreement with USEC for American Centrifuge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces Cooperative Agreement with USEC for American Centrifuge Demonstration Project DOE Announces Cooperative Agreement with USEC for American Centrifuge Demonstration Project...

  5. EIS-0468: American Centrifuge Plant in Piketon, OH | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: American Centrifuge Plant in Piketon, OH EIS-0468: American Centrifuge Plant in Piketon, OH May 20, 2011 EIS-0468: Final Environmental Impact Statement Proposed American...

  6. Safeguards at Gas Centrifuge Enrichment Plants: Why is Iran a...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Safeguards at Gas Centrifuge Enrichment Plants: Why is Iran a Threat? Citation Details In-Document Search Title: Safeguards at Gas Centrifuge Enrichment Plants: ...

  7. Safeguards at Gas Centrifuge Enrichment Plants: Why is Iran a...

    Office of Scientific and Technical Information (OSTI)

    Safeguards at Gas Centrifuge Enrichment Plants: Why is Iran a Threat? Citation Details In-Document Search Title: Safeguards at Gas Centrifuge Enrichment Plants: Why is Iran a ...

  8. Control Strategies for Centrifugal Pumps with Variable Flow Rate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Strategies for Centrifugal Pumps with Variable Flow Rate Requirements Control Strategies for Centrifugal Pumps with Variable Flow Rate Requirements This tip sheet discusses ...

  9. Rotor for centrifugal fast analyzers

    DOE Patents [OSTI]

    Lee, N.E.

    1984-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90/sup 0/ and 180/sup 0/ excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A uv-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  10. Rotor for centrifugal fast analyzers

    DOE Patents [OSTI]

    Lee, Norman E.

    1985-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90.degree. and 180.degree. excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A UV-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  11. Centrifuge workers study. Phase II, completion report

    SciTech Connect (OSTI)

    Wooten, H.D.

    1994-09-01

    Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey to evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom.

  12. AX Tank Farm tank removal study

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1998-10-14

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  13. HANFORD TANK CLEANUP UPDATE

    SciTech Connect (OSTI)

    BERRIOCHOA MV

    2011-04-07

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  14. EIS-0468: American Centrifuge Plant, Piketon, Ohio

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of construction, operation, and decommissioning of the American Centrifuge Plant (ACP), located on DOE reservation in Piketon, Ohio. (DOE adopted this EIS issued by the Nuclear Regulatory Commission on 02/16/2011.)

  15. Safety aspects of gas centrifuge enrichment plants

    SciTech Connect (OSTI)

    Hansen, A.H.

    1987-01-01

    Uranium enrichment by gas centrifuge is a commercially proven, viable technology. Gas centrifuge enrichment plant operations pose hazards that are also found in other industries as well as unique hazards as a result of processing and handling uranium hexafluoride and the handling of enriched uranium. Hazards also found in other industries included those posed by the use of high-speed rotating equipment and equipment handling by use of heavy-duty cranes. Hazards from high-speed rotating equipment are associated with the operation of the gas centrifuges themselves and with the operation of the uranium hexafluoride compressors in the tail withdrawal system. These and related hazards are discussed. It is included that commercial gas centrifuge enrichment plants have been designed to operate safely.

  16. Gas centrifuge with driving motor

    DOE Patents [OSTI]

    Dancy, Jr., William H.

    1976-01-01

    1. A centrifuge for separating gaseous constituents of different masses comprising a vertical tubular rotor, means for introducing a gas mixture of different masses into said rotor and means for removing at least one of the gas components from the rotor, a first bearing means supporting said rotor at one end for rotational movement, a support, a damping bearing mounted on said support, a shaft fixed to said rotor at the opposite end and mechanically connecting said rotor to said damping bearing, a cup-shaped tube of electrically conductive, non-magnetic material in coaxial relationship with said shaft, the open end of said tube extending away from said rotor and the closed end of said tube being directly secured to the adjacent end of the rotor, an annular core of magnetic material fixedly mounted on said support so as to be disposed within said tube and around said shaft, and a second annular magnetic core with coils arranged thereon to receive polyphase current to produce a rotating magnetic field traversing the circumference of said tube, fixedly mounted on said support so as to surround said tube, the size of said first annular core and said second annular core being such as to permit limited radial displacement of said shaft and said tube.

  17. Tank Waste | Department of Energy

    Office of Environmental Management (EM)

    Tank Waste Tank Waste May 16, 2016 EM Assistant Secretary Monica Regalbuto, directly left of the Tank Closure Monument, gathers with federal and contractor employees at SRS. Cheers ...

  18. Tank evaluation system shielded annular tank application

    SciTech Connect (OSTI)

    Freier, D.A.

    1988-10-04

    TEST (Tank Evaluation SysTem) is a research project utilizing neutron interrogation techniques to analyze the content of nuclear poisons and moderators in tank shielding. TEST experiments were performed on an experimental SAT (Shielded Annular Tank) at the Rocky Flats Plant. The purpose of these experiments was threefold: (1) to assess TEST application to SATs, (2) to determine if Nuclear Safety inspection criteria could be met, and (3) to perform a preliminary calibration of TEST for SATs. Several experiments were performed, including measurements of 11 tank shielding configurations, source-simulated holdup experiments, analysis of three detector modes, resolution studies, and TEST scanner geometry experiments. 1 ref., 21 figs., 4 tabs.

  19. A Fuzzy Feed-Forward/Feedback Control System for a Three-Phase Oil Field Centrifuge.

    SciTech Connect (OSTI)

    Parkinson, W. J. ,; Smith, R. E.; Mortensen, F. N.; Wantuck, P. J.; Ross, Timothy J.; Jamshidi, Mohammad; Miller, N.

    2002-01-01

    A set of fuzzy controllers was designed and applied to a commercial three-phase oil field centrifuge. This centrifuge is essentially a one of a kind unit. It is used to recover oil from tank bottoms and oil field and/or refinery sludge. It is unique because it can separate oily emulsions into three separate phases, oil, water, and solids, in one operation. The centrifuge is a large but portable device. It is moved form site to site and is used to separate a large variety of waste emulsions. The centrifuge feedstock varies significantly from site to site and often varies significantly during the daily operation. In this application, fuzzy logic was used on a class of problems not easily solved by classical control techniques. The oil field centrifuge is a highly nonlinear system, with a time varying input. We have been unable to develop a physical-mathematical model of the portion of the centrifuge operation that actually separates the oil, water, and solids. For this portion of the operation we developed a fuzzy feedback control system that modeled a skilled operator's knowledge and actions as opposed to the physical model of the centrifuge itself. Because of the variable feed we had to develop a feed-forward controller that would sense and react to feed changes prior to the time that the actual change reached the centrifuge separation unit. This portion of the control system was also a fuzzy controller designed around the knowledge of a skilled operator. In addition to the combined feed-forward and feedback control systems, we developed a soft-sensor that was used to determine the value of variables needed for the feed-forward control system. These variables could not actually be measured but were calculated from the measurement of other variables. The soft-sensor was developed with a combination of a physical model of the feed system and a skilled operator's expert knowledge. Finally the entire control system is tied together with a fuzzy-SPC (Statistical Process Control) filter, used to filter process and instrument noise and a fuzzy conflict resolution code used to keep the feed-forward and feedback control systems working well together.

  20. ADMP Mixing of Tank 18F: History, Modeling, Testing, and Results

    SciTech Connect (OSTI)

    LEISHEAR, ROBERTA

    2004-03-29

    Residual radioactive waste was removed from Tank 18F in the F-Area Tank Farm at Savannah River Site (SRS), using the advanced design mixer pump (ADMP). Known as a slurry pump, the ADMP is a 55 foot long pump with an upper motor mounted to a steel super structure, which spans the top of the waste tank. The motor is connected by a long vertical drive shaft to a centrifugal pump, which is submerged in waste near the tank bottom. The pump mixes, or slurries, the waste within the tank so that it may be transferred out of the tank. Tank 18F is a 1.3 million gallon, 85 foot diameter underground waste storage tank, which has no internal components such as cooling coils or structural supports. The tank contained a residual 47,000 gallons of nuclear waste, consisting of a gelatinous radioactive waste known as sludge and particulate zeolite. The prediction of the ADMP success was based on nearly twenty five years of research and the application of that research to slurry pump technology. Many personnel at SRS and Pacific Northwest National Laboratories (PNNL) have significantly contributed to these efforts. This report summarizes that research which is pertinent to the ADMP performance in Tank 18F. In particular, a computational fluid dynamics (CFD) model was applied to predict the performance of the ADMP in Tank 18F.

  1. Investigation of low-cost LNG vehicle fuel tank concepts. Final report

    SciTech Connect (OSTI)

    O`Brien, J.E.; Siahpush, A.

    1998-02-01

    The objective of this study was to investigate development of a low-cost liquid natural gas (LNG) vehicle fuel storage tank with low fuel boil-off, low tank pressure, and high safety margin. One of the largest contributors to the cost of converting a vehicle to LNG is the cost of the LNG fuel tank. To minimize heat leak from the surroundings into the low-temperature fuel, these tanks are designed as cryogenic dewars with double walls separated by an evacuated insulation space containing multi-layer insulation. The cost of these fuel tanks is driven by this double-walled construction, both in terms of materials and labor. The primary focus of the analysis was to try to devise a fuel tank concept that would allow for the elimination of the double-wall requirement. Results of this study have validated the benefit of vacuum/MLI insulation for LNG fuel tanks and the difficulty in identifying viable alternatives. The thickness of a non-vacuum insulation layer would have to be unreasonably large to achieve an acceptable non-venting hold time. Reasonable hold times could be achieved by using an auxiliary tank to accept boil-off vapor from a non-vacuum insulated primary tank, if the vapor in the auxiliary tank can be stored at high pressure. The primary focus of the analysis was to try to devise a fuel tank concept that allowed for the elimination of the double-wall requirement. Thermodynamic relations were developed for analyzing the fuel tank transient response to heat transfer, venting of vapor, and out-flow of either vapor or liquid. One of the major costs associated with conversion of a vehicle to LNG fuel is the cost of the LNG fuel tank. The cost of these tanks is driven by the cryogenic nature of the fuel and by the fundamental design requirements of long non-venting hold times and low storage pressure.

  2. Feed tank transfer requirements

    SciTech Connect (OSTI)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover; DOE responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements; records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor for use during Phase 1B.

  3. Romag Holdings plc | Open Energy Information

    Open Energy Info (EERE)

    Romag Holdings plc Jump to: navigation, search Name: Romag Holdings plc Place: United Kingdom Zip: DH8 7RS Product: Developer of specialist transparent composites such as a...

  4. Konica Minolta Holdings | Open Energy Information

    Open Energy Info (EERE)

    Holdings Jump to: navigation, search Name: Konica Minolta Holdings Place: Tokyo, Japan Sector: Solar Product: String representation "Japan-based pri ... thermal power." is...

  5. US Ethanol Holdings | Open Energy Information

    Open Energy Info (EERE)

    Holdings Jump to: navigation, search Name: US Ethanol Holdings Place: New York, New York Zip: 10022 Product: Subsidiary of boutique investment bank and advisory firm, Geneva...

  6. Generation Resources Holding Co | Open Energy Information

    Open Energy Info (EERE)

    Resources Holding Co Jump to: navigation, search Name: Generation Resources Holding Co Place: Leawood, Kansas Zip: 66211-2607 Sector: Renewable Energy, Wind energy Product:...

  7. Aventine Renewable Energy Holdings | Open Energy Information

    Open Energy Info (EERE)

    Holdings Jump to: navigation, search Name: Aventine Renewable Energy Holdings Place: Pekin, Illinois Zip: 61555-0010 Product: Illinois-based producer and marketer of ethanol in the...

  8. Living Villages Holdings Ltd | Open Energy Information

    Open Energy Info (EERE)

    Holdings Ltd Jump to: navigation, search Name: Living Villages Holdings Ltd Place: England, United Kingdom Zip: Shropshire SY9 Product: Living Villages is a residential property...

  9. Cp Holdings Llc | Open Energy Information

    Open Energy Info (EERE)

    Cp Holdings Llc Jump to: navigation, search Name: Cp Holdings Llc Place: Stillwater, Minnesota Zip: 55082 Sector: Carbon Product: An external carbon advisor. Coordinates:...

  10. Multitrade Biomass Holdings LLC | Open Energy Information

    Open Energy Info (EERE)

    Holdings LLC Jump to: navigation, search Name: Multitrade Biomass Holdings LLC Place: Ridgeway, Virginia Zip: 24148-0000 Sector: Renewable Energy Product: Virginia-based developer...

  11. Nature Elements Holding AG | Open Energy Information

    Open Energy Info (EERE)

    Holding AG Jump to: navigation, search Name: Nature Elements Holding AG Place: Baar, Switzerland Zip: CH-6340 Sector: Renewable Energy Product: Swiss developer of renewable energy...

  12. SITIZN Group Holding AG | Open Energy Information

    Open Energy Info (EERE)

    SITIZN Group Holding AG Jump to: navigation, search Name: SITIZN Group Holding AG Place: Riederich, Germany Zip: 72585 Sector: Solar Product: Germany-based solar technology and...

  13. Solar Century Holdings Solarcentury | Open Energy Information

    Open Energy Info (EERE)

    Solar Century Holdings Solarcentury Jump to: navigation, search Name: Solar Century Holdings (Solarcentury) Place: London, Greater London, United Kingdom Zip: SE1 7AB Sector:...

  14. Cornerstone Holdings LLC | Open Energy Information

    Open Energy Info (EERE)

    Holdings LLC Jump to: navigation, search Name: Cornerstone Holdings LLC Address: 11001 W. 120th Ave, Suite 330 Place: Broomfield, Colorado Zip: 80021 Region: Rockies Area...

  15. Disordered Materials Hold Promise for Better Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov ...

  16. The geotechnical centrifuge in offshore engineering

    SciTech Connect (OSTI)

    Murff, J.D.

    1996-12-31

    One of the greatest needs in offshore geotechnical engineering is for large scale test measurements on which to calibrate design procedures. The geotechnical centrifuge offers at least a partial remedy. Because it allows one to properly simulate stresses, it is a legitimate, relatively inexpensive option to full scale field testing. As such it is a valuable technique and can be an excellent complement to laboratory tests, 1-g model tests and numerical analyses. However, it has not been widely used by industry even though the capability has existed for almost thirty years. This paper argues that this technology should gain acceptance beyond the research community. The paper presents an overview of centrifuge principles, philosophies of use, and limitations of the technique. For illustration, several actual applications of centrifuge testing for complex offshore problems are described. Results are shown to provide important insights into prototype behavior and to agree well with full scale measurements where these are available.

  17. Wave-driven Countercurrent Plasma Centrifuge | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wave-driven Countercurrent Plasma Centrifuge This is an invention allowing the production of rotation and countercurrent flow patterns in a plasma centrifuge using radiofrequency waves No.: M-801 Inventor(s): Nathaniel J Fisch

  18. Control Strategies for Centrifugal Pumps with Variable Flow Rate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements | Department of Energy Control Strategies for Centrifugal Pumps with Variable Flow Rate Requirements Control Strategies for Centrifugal Pumps with Variable Flow Rate Requirements This tip sheet discusses control strategies for centrifugal pumps with variable flow rate requirements in pumping systems and includes installation considerations. PUMPING SYSTEMS TIP SHEET #12 PDF icon Control Strategies for Centrifugal Pumps with Variable Flow Rate Requirements (May 2007) More

  19. Advanced Remote Maintenance Design for Pilot-Scale Centrifugal...

    Office of Scientific and Technical Information (OSTI)

    Advanced designs of used nuclear fuel recycling processes and radioactive waste treatment ... PROCESSING; RADIOACTIVE WASTES; RECYCLING; ROTORS; TESTING; WASTES centrifugal ...

  20. Differential white cell count by centrifugal microfluidics.

    SciTech Connect (OSTI)

    Sommer, Gregory Jon; Tentori, Augusto M.; Schaff, Ulrich Y.

    2010-07-01

    We present a method for counting white blood cells that is uniquely compatible with centrifugation based microfluidics. Blood is deposited on top of one or more layers of density media within a microfluidic disk. Spinning the disk causes the cell populations within whole blood to settle through the media, reaching an equilibrium based on the density of each cell type. Separation and fluorescence measurement of cell types stained with a DNA dye is demonstrated using this technique. The integrated signal from bands of fluorescent microspheres is shown to be proportional to their initial concentration in suspension. Among the current generation of medical diagnostics are devices based on the principle of centrifuging a CD sized disk functionalized with microfluidics. These portable 'lab on a disk' devices are capable of conducting multiple assays directly from a blood sample, embodied by platforms developed by Gyros, Samsung, and Abaxis. [1,2] However, no centrifugal platform to date includes a differential white blood cell count, which is an important metric complimentary to diagnostic assays. Measuring the differential white blood cell count (the relative fraction of granulocytes, lymphocytes, and monocytes) is a standard medical diagnostic technique useful for identifying sepsis, leukemia, AIDS, radiation exposure, and a host of other conditions that affect the immune system. Several methods exist for measuring the relative white blood cell count including flow cytometry, electrical impedance, and visual identification from a stained drop of blood under a microscope. However, none of these methods is easily incorporated into a centrifugal microfluidic diagnostic platform.

  1. Development and application of centrifugal contactors in China

    SciTech Connect (OSTI)

    Cao, Pijia; Duan, Wuhua

    2008-07-01

    Compared with mixer-settlers and extraction columns, centrifugal contactors have some advantages. Since the late 1970's, a series of centrifugal contactors with rotor diameters of 10 to 550 mm have been developed and applied in some industrial fields in China. In this paper, both new improvements and applications of centrifugal contactors in China are reviewed. (authors)

  2. Hanford tanks initiative plan

    SciTech Connect (OSTI)

    McKinney, K.E.

    1997-07-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy`s Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System`s tank waste retrieval Program.

  3. Compressed/Liquid Hydrogen Tanks

    Broader source: Energy.gov [DOE]

    Currently, DOE's physical hydrogen storage R&D focuses on the development of high-pressure (10,000 psi) composite tanks, cryo-compressed tanks, conformable tanks, and other advanced concepts...

  4. Wave-driven Countercurrent Plasma Centrifuge

    SciTech Connect (OSTI)

    A.J. Fetterman and N.J. Fisch

    2009-03-20

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the ? channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  5. Tank Waste Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The permit will include a requirement for DOE to prepare a closure plan. Chris said DOE ... including evaluations of tank removal, pipeline closure, diversion boxes, and catch tanks. ...

  6. Reverberant Tank | Open Energy Information

    Open Energy Info (EERE)

    Reverberant Tank Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleReverberantTank&oldid596388" Feedback Contact needs updating Image needs...

  7. Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    Tow Tank Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleTowTank&oldid596389" Feedback Contact needs updating Image needs updating Reference...

  8. Ceres Power Holdings Plc | Open Energy Information

    Open Energy Info (EERE)

    Power Holdings Plc Jump to: navigation, search Name: Ceres Power Holdings Plc Place: Crawley, England, United Kingdom Zip: RH10 1SS Product: UK-based product development company...

  9. ED F Man Holdings | Open Energy Information

    Open Energy Info (EERE)

    ED F Man Holdings Jump to: navigation, search Name: ED&F Man Holdings Place: England, United Kingdom Product: ED&F Man is a vertically integrated service provider, encompassing the...

  10. Link Force Holdings Ltd | Open Energy Information

    Open Energy Info (EERE)

    search Name: Link Force Holdings Ltd Place: China Product: China-based energy saving LED street light maker. References: Link Force Holdings Ltd1 This article is a stub. You...

  11. Tank 241-BY-105 tank characterization plan

    SciTech Connect (OSTI)

    Schreiber, R.D.

    1995-02-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, PNL 325 Analytical Chemistry Laboratory, and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-BY-105.

  12. Pressurizer tank upper support

    DOE Patents [OSTI]

    Baker, T.H.; Ott, H.L.

    1994-01-11

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90[degree] intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure. 10 figures.

  13. Pressurizer tank upper support

    DOE Patents [OSTI]

    Baker, Tod H. (O'Hara Township, Allegheny County, PA); Ott, Howard L. (Kiski Township, Armstrong County, PA)

    1994-01-01

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90.degree. intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure.

  14. DOE Announces Cooperative Agreement with USEC for American Centrifuge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Project | Department of Energy Cooperative Agreement with USEC for American Centrifuge Demonstration Project DOE Announces Cooperative Agreement with USEC for American Centrifuge Demonstration Project March 23, 2010 - 12:00am Addthis Washington, D.C. - The U.S. Department of Energy today announced that it finalized a cost-shared $90 million cooperative agreement with USEC Inc. to provide support for the continued development and demonstration of the American Centrifuge

  15. New Measures to Safeguard Gas Centrifuge Enrichment Plants (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect SciTech Connect Search Results Conference: New Measures to Safeguard Gas Centrifuge Enrichment Plants Citation Details In-Document Search Title: New Measures to Safeguard Gas Centrifuge Enrichment Plants As Gas Centrifuge Enrichment Plants (GCEPs) increase in separative work unit (SWU) capacity, the current International Atomic Energy Agency (IAEA) model safeguards approach needs to be strengthened. New measures to increase the effectiveness of the safeguards approach are

  16. Magnetic Centrifugal Mass Filter Abraham J. Fetterman and Nathaniel J.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fisch | Princeton Plasma Physics Lab Magnetic Centrifugal Mass Filter Abraham J. Fetterman and Nathaniel J. Fisch This invention is of a magnetic centrifugal mass filter that can separate ions of different mass or ions of different energies into separate streams. The filter, which uses both the centrifugal and magnetic confinement of ions, can be used to separate radioactive fission products from nuclear waste or from spent nuclear fuel in a nonproliferative manner. No.: M-818

  17. Select an Energy-Efficient Centrifugal Pump | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This tip sheet details important considerations when selecting an energy-efficient centrifugal pump, such as performance curve. PUMPING SYSTEMS TIP SHEET 3 PDF icon Select an ...

  18. Tank 48 - Chemical Destruction

    SciTech Connect (OSTI)

    Simner, Steven P.; Aponte, Celia I.; Brass, Earl A.

    2013-01-09

    Small tank copper-catalyzed peroxide oxidation (CCPO) is a potentially viable technology to facilitate the destruction of tetraphenylborate (TPB) organic solids contained within the Tank 48H waste at the Savannah River Site (SRS). A maturation strategy was created that identified a number of near-term development activities required to determine the viability of the CCPO process, and subsequent disposition of the CCPO effluent. Critical activities included laboratory-scale validation of the process and identification of forward transfer paths for the CCPO effluent. The technical documentation and the successful application of the CCPO process on simulated Tank 48 waste confirm that the CCPO process is a viable process for the disposition of the Tank 48 contents.

  19. Emerald Biodiesel Holdings GmbH EBHG | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Holdings GmbH EBHG Jump to: navigation, search Name: Emerald Biodiesel Holdings GmbH (EBHG) Place: Germany Product: Biodiesel company Emerald Biodiesel Holdings is the...

  20. Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges Pepco Holdings, Inc. ...

  1. Tank Waste System Integrated Project Team

    Office of Environmental Management (EM)

    Tank Waste System Tank Waste System Integrated Project Team Integrated Project Team Steve Schneider Office of Engineering and Technology Tank Waste Corporate Board July 29, 2009 2 ...

  2. Solargiga Energy Holdings Ltd | Open Energy Information

    Open Energy Info (EERE)

    Energy Holdings Ltd Place: Jinzhou, Liaoning Province, China Zip: 121016 Product: Chinese manufacturer of mono and multicrystalline PV ingots and wafers; reclaims silicon....

  3. Beijing Changjiang River International Holding | Open Energy...

    Open Energy Info (EERE)

    100761 Sector: Services Product: Beijing Changjiang River International Holding is a Chinese emissions broker and services company. Coordinates: 39.90601, 116.387909 Show Map...

  4. BTX Holdings Inc | Open Energy Information

    Open Energy Info (EERE)

    Product: BTX Holdings acquires, develops, and deploys technologies to process plant derived biomass waste, extract the usable fractions, and utilise or sell the extractions in...

  5. Energiedienst Holding AG EDH | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Energiedienst Holding AG (EDH) Place: Laufenburg, Switzerland Zip: 5080 Product: Utility active in Switzerland and Germany. Coordinates:...

  6. Sunseeker Energy Holding AG | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Sunseeker Energy Holding AG Place: Schindellegi, Switzerland Zip: 8834 Sector: Solar Product: Switzerland-based company seeking to developing...

  7. Atel Holding Aare Tessin | Open Energy Information

    Open Energy Info (EERE)

    search Name: Atel Holding (Aare Tessin) Place: Olten, Switzerland Zip: 4601 Sector: Renewable Energy, Services Product: Olten-based provider of services related to energy...

  8. 3C Holding AG | Open Energy Information

    Open Energy Info (EERE)

    am Main, Germany Zip: 61118 Sector: Services Product: 3C Holding AG develops trading strategies for EU allowances, JICDM Projects and climate neutral events, products...

  9. Accent Energy Holdings, LLC | Open Energy Information

    Open Energy Info (EERE)

    Holdings, LLC Place: Ohio Website: www.igsenergy.comaccent Twitter: @igsenergy Facebook: https:www.facebook.compagesIGS-Energy References: EIA Form EIA-861 Final Data...

  10. Arcadia Windpower Holdings LLC | Open Energy Information

    Open Energy Info (EERE)

    New York Zip: 10018 Sector: Wind energy Product: Develops and finances utility-scale wind electricity generation projects. References: Arcadia Windpower Holdings LLC1 This...

  11. Renegy Holdings Inc | Open Energy Information

    Open Energy Info (EERE)

    Sector: Biomass, Renewable Energy Product: String representation "US company Rene ... ass facilities." is too long. References: Renegy Holdings, Inc.1 This article is a stub....

  12. Intec Power Holdings Ltd | Open Energy Information

    Open Energy Info (EERE)

    NG6 0GA Sector: Buildings Product: String representation "Intec's "Silent ... control system." is too long. References: Intec Power Holdings Ltd1 This article is a stub. You...

  13. Renewable Energy Holdings Plc | Open Energy Information

    Open Energy Info (EERE)

    Plc Jump to: navigation, search Name: Renewable Energy Holdings Plc Place: Greater London, United Kingdom Sector: Renewable Energy Product: Investment vehicle for proven and...

  14. Covered Product Category: Hot Food Holding Cabinets

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for hot food holding cabinets, which are covered by the ENERGY STAR program.

  15. EIS-0468: American Centrifuge Plant in Piketon, OH | Department of Energy

    Energy Savers [EERE]

    8: American Centrifuge Plant in Piketon, OH EIS-0468: American Centrifuge Plant in Piketon, OH May 20, 2011 EIS-0468: Final Environmental Impact Statement Proposed American Centrifuge Plant in Piketon, Ohio Pike County, Ohio

  16. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes

    SciTech Connect (OSTI)

    Daniel M. Dabbs; Ilhan A. Aksay

    2005-01-12

    Aluminum-containing phases compose the bulk of solids precipitating during the processing of radioactive tank wastes. Processes designed to minimize the volume of high-level waste through conversion to glassy phases require transporting waste solutions near-saturated with aluminum-containing species from holding tank to processing center. The uncontrolled precipitation within transfer lines results in clogged pipes and lines and fouled ion exchangers, with the potential to shut down processing operations.

  17. Holding fixture for metallographic mount polishing

    DOE Patents [OSTI]

    Barth, Clyde H.; Cramer, Charles E.

    1997-01-01

    A fixture for holding mounted specimens for polishing, having an arm; a body attached to one end of the arm, the body having at least one flange having an opening to accommodate a mounted specimen; and a means applying pressure against the outer surface of the mounted specimen to hold the specimen in contact with the polishing surface.

  18. Holding fixture for metallographic mount polishing

    DOE Patents [OSTI]

    Barth, C.H.; Cramer, C.E.

    1997-12-30

    A fixture is described for holding mounted specimens for polishing, having an arm; a body attached to one end of the arm, the body having at least one flange having an opening to accommodate a mounted specimen; and a means applying pressure against the outer surface of the mounted specimen to hold the specimen in contact with the polishing surface. 3 figs.

  19. Development of Centrifugal Contactor with High Reliability

    SciTech Connect (OSTI)

    Okamura, Nobuo; Takeuchi, Masayuki; Ogino, Hideki; Kase, Takeshi; Koizumi, Tsutomu

    2007-07-01

    In Japan Atomic Energy Agency (JAEA), an innovative centrifugal contactor system has been developed for a future reprocessing plant. It was confirmed that it had a higher extraction capacity through the uranium test already. But it was necessary that it had the higher mechanical reliability to be applied in a reprocessing plant. In this study, two types of driving units that use a ball bearing or a magnetic bearing have been developed for it. It was confirmed that they had enough abilities trough endurance tests. The driving unit with ball bearing could be operated continuously for 5000 hours that was equal to a term of an annual operation. It was found that it could be operated for a year without maintenance. JAEA will continue to improve them and select more advantageous one on the basis of economy and lifetime in near future. (authors)

  20. Closed continuous-flow centrifuge rotor

    DOE Patents [OSTI]

    Breillatt, Jr., Julian P.; Remenyik, Carl J.; Sartory, Walter K.; Thacker, Louis H.; Penland, William Z.

    1976-01-01

    A blood separation centrifuge rotor having a generally parabolic core disposed concentrically and spaced apart within a housing having a similarly shaped cavity. Blood is introduced through a central inlet and into a central passageway enlarged downwardly to decrease the velocity of the entrant blood. Septa are disposed inside the central passageway to induce rotation of the entrant blood. A separation chamber is defined between the core and the housing wherein the whole blood is separated into red cell, white cell, and plasma zones. The zones are separated by annular splitter blades disposed within the separation chamber. The separated components are continuously removed through conduits communicating through a face seal to the outside of the rotor.

  1. Tank Waste Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3/15 Tank Waste Committee Priorities for advice on FY17 budget Not in priority order, numbering refers to last year's related advice points, per DOE response  (#1) The Board strongly urges DOE-Headquarters (HQ) to request full funding from Congress to meet all legal requirements of the ongoing cleanup work in FY 2016 and 2017 in addition to the following specific requests.  (#2) The Board advises DOE-ORP continue to request funding to proceed to empty leaking tanks (particularly AY-102 and

  2. TANK SPACE OPTIONS REPORT

    SciTech Connect (OSTI)

    WILLIS WL; AHRENDT MR

    2009-08-11

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  3. Tank depletion flow controller

    DOE Patents [OSTI]

    Georgeson, Melvin A.

    1976-10-26

    A flow control system includes two bubbler tubes installed at different levels within a tank containing such as radioactive liquid. As the tank is depleted, a differential pressure transmitter monitors pressure differences imparted by the two bubbler tubes at a remote, shielded location during uniform time intervals. At the end of each uniform interval, balance pots containing a dense liquid are valved together to equalize the pressures. The resulting sawtooth-shaped signal generated by the differential pressure transmitter is compared with a second sawtooth signal representing the desired flow rate during each time interval. Variations in the two signals are employed by a control instrument to regulate flow rate.

  4. Tank Waste Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2013 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE May 8, 2013 Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Advice Development Regarding Double-Shell Tank AY-102 (Joint with PIC) ........................................... 1 Meeting participants

  5. High-Pressure Hydrogen Tanks

    Broader source: Energy.gov [DOE]

    Presentation on High-Pressure Hydrogen Tanks for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

  6. Stratification in hot water tanks

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1982-04-01

    Stratification in a domestic hot water tank, used to increase system performance by enabling the solar collectors to operate under marginal conditions, is discussed. Data taken in a 120 gallon tank indicate that stratification can be achieved without any special baffling in the tank. (MJF)

  7. Tank Waste Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2013 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE April 10, 2013 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Integrated Project Team Update on Double-Shell Tank AY-102 ................................................................. 2 Update on Single-Shell Tank (SST) T-111 and SSTs with Decreasing Levels

  8. Tank Waste Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2014 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE April 9, 2014 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 Update on Double-Shell Tank Construction-Extent of Conditions Report ................................................ 2 Review of Responses to HAB Advice #271 Leaking Tanks and HAB Advice #273 Openness

  9. Liquid–liquid mixing studies in annular centrifugal contactors comparing stationary mixing vane options

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wardle, Kent E.

    2015-09-11

    Comparative studies of multiphase operation of an annular centrifugal contactor show the impact of housing stationary mixing vane configuration. A number of experimental results for several different mixing vane options are reported for operation of a 12.5 cm engineering-scale contactor unit. Fewer straight vanes give greater mixing-zone hold-up compared to curved vanes. Quantitative comparison of droplet size distribution also showed a significant decrease in mean diameter for four straight vanes versus eight curved vanes. This set of measurements gives a compelling case for careful consideration of mixing vane geometry when evaluating hydraulic operation and extraction process efficiency of annular centrifugalmore » contactors.« less

  10. Centrifugal Casting Features/Metallurgical Characterization of Aluminum Alloys

    SciTech Connect (OSTI)

    Chirita, G.; Soares, D.; Cruz, D.; Silva, F. S. [Mechanical Engineering Department, School of Engineering, Minho University (Portugal); Stefanescu, I. [Faculty of Mechanical Engineering, Dunarea de Jos University Galati (Romania)

    2008-02-15

    This paper deals with the study of centrifugal effects on aluminium castings under high G values. Most of the studies in this domain (FGMs obtained by centrifugal casting) deal with functionally graded composites reinforced with a solid phase such as silicon particles or others. However, in this study it will be shown that unreinforced aluminium alloys may be significantly influenced by the centrifugal effect and that functionally graded castings are also obtained. It has been observed that the centrifugal effect may increase in some alloys, depending on the relative position in the castings, the rupture strength by approx. 50%, and rupture strain by about 300%, as compared to the gravity casting technique. The Young's modulus may also increase by about 20%. It has also been reported that in vertical centrifugal castings there are mainly three aspects that affect the components thus obtained, namely: fluid dynamics; vibration (inherent to the system); and centrifugal force. These features have a different effect on the castings depending on the aluminium alloy. In this paper, an analysis of the most important effects of the centrifugal casting process on metallurgical features is conducted. A solidification characterization at several points along the mould will be made in order to have an accurate idea of both the fluid dynamics inside the mould during the casting and the solidification behavior in different parts of the component. These two analyses will be related to the metallurgical properties (phase distribution; SDAS; eutectic silicon content and shape, pores density and shape) along the component and mainly along the direction of the centrifugal pressure. A comparison between castings obtained by both centrifugal casting technique and gravity casting technique is made for reference (gravity casting)

  11. The American Gas Centrifuge Past, Present, and Future

    SciTech Connect (OSTI)

    Waters, Dean

    2004-09-15

    The art of gas centrifugation was born in 1935 at the University of Virginia when Dr. Jesse Beams demonstrated experimentally the separation of chlorine isotopes using an ultra-high speed centrifuge. Dr. Beams experiment initiated work that created a rich history of scientific and engineering accomplishment in the United States in the art of isotope separation and even large scale biological separation by centrifugation. The early history of the gas centrifuge development was captured in a lecture and documented by Dr. Jesse Beams in 1975. Much of Dr. Beams lecture material is used in this paper up to the year 1960. Following work by Dr. Gernot Zippe at the University of Virginia between 1958 and 1960, the US government embarked on a centrifuge development program that ultimately led to the start of construction of the Gas Centrifuge Enrichment Plant in Piketon Ohio in the late 1970s. The government program was abandoned in 1985 after investing in the construction of two of six planned process buildings, a complete supply chain for process and centrifuge parts, and the successful manufacture and brief operation of an initial complement of production machines that would have met 15 percent of the planned capacity of the constructed process buildings. A declining market for enriched uranium, a glut of uranium enrichment capacity worldwide, and the promise of a new laser based separation process factored in the decision to stop the government program. By the late 1990s it had become evident that gas centrifugation held the best promise to produce enriched uranium at low cost. In1999, the United States Enrichment Corporation undertook an initiative to revive the best of the American centrifuge technology that had been abandoned fourteen years earlier. This is an exciting story and one that when complete will enable the United States to maintain its domestic supply and to be highly competitive in the world market for this important energy commodity. (auth)

  12. Plating Tank Control Software

    Energy Science and Technology Software Center (OSTI)

    1998-03-01

    The Plating Tank Control Software is a graphical user interface that controls and records plating process conditions for plating in high aspect ratio channels that require use of low current and long times. The software is written for a Pentium II PC with an 8 channel data acquisition card, and the necessary shunt resistors for measuring currents in the millampere range.

  13. Glacial Energy Holdings (Connecticut) | Open Energy Information

    Open Energy Info (EERE)

    Connecticut) Jump to: navigation, search Name: Glacial Energy Holdings Place: Connecticut Phone Number: 800.286.2000 or 800.722.5584 Website: www.glacialenergy.comoutage-n Outage...

  14. Glacial Energy Holdings (Maine) | Open Energy Information

    Open Energy Info (EERE)

    Maine) Jump to: navigation, search Name: Glacial Energy Holdings Place: Maine Phone Number: 1-888-452-2425 Website: www.glacialenergy.com Outage Hotline: 877-655-4448 References:...

  15. Oilsource Holding Group | Open Energy Information

    Open Energy Info (EERE)

    consortium composed of a group of companies involved in a specific segment of the biofuel industry. References: Oilsource Holding Group1 This article is a stub. You can help...

  16. Regenesys Holdings Ltd | Open Energy Information

    Open Energy Info (EERE)

    Regenesys Holdings Ltd Place: England, United Kingdom Product: Developer of H2 flow battery technology which used to belong to Innogy, was bought by RWE. In October 2004 its...

  17. Tank characterization technical sampling basis

    SciTech Connect (OSTI)

    Brown, T.M.

    1998-04-28

    Tank Characterization Technical Sampling Basis (this document) is the first step of an in place working process to plan characterization activities in an optimal manner. This document will be used to develop the revision of the Waste Information Requirements Document (WIRD) (Winkelman et al. 1997) and ultimately, to create sampling schedules. The revised WIRD will define all Characterization Project activities over the course of subsequent fiscal years 1999 through 2002. This document establishes priorities for sampling and characterization activities conducted under the Tank Waste Remediation System (TWRS) Tank Waste Characterization Project. The Tank Waste Characterization Project is designed to provide all TWRS programs with information describing the physical, chemical, and radiological properties of the contents of waste storage tanks at the Hanford Site. These tanks contain radioactive waste generated from the production of nuclear weapons materials at the Hanford Site. The waste composition varies from tank to tank because of the large number of chemical processes that were used when producing nuclear weapons materials over the years and because the wastes were mixed during efforts to better use tank storage space. The Tank Waste Characterization Project mission is to provide information and waste sample material necessary for TWRS to define and maintain safe interim storage and to process waste fractions into stable forms for ultimate disposal. This document integrates the information needed to address safety issues, regulatory requirements, and retrieval, treatment, and immobilization requirements. Characterization sampling to support tank farm operational needs is also discussed.

  18. Disordered Materials Hold Promise for Better Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov disorderedMAT.jpg Conventional layered lithium and transition metal cathode material (top) and the new disordered material studied by researchers at MIT (bottom) as seen through a scanning transmission electron microscope. Inset images show diagrams of the different structures in these materials. (In the disordered

  19. Increasing water holding capacity for irrigation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Increasing water holding capacity for irrigation Researchers recommend solutions for sediment trapping in irrigation system LANL and SNL leveraged technical expertise to determine the sources of sediment and recommend solutions for irrigation sediment buildup management. April 3, 2012 Santa Cruz Irrigation District (SCID) Kenny Salazar, owner of Kenny Salazar Orchards, stands beside the Santa Cruz Reservoir Dam, which holds back the waters of the Santa Cruz Irrigation District. Salazar, a board

  20. Improved screen-bowl centrifuge recovery using polymer injection technology

    SciTech Connect (OSTI)

    Burchett, R.T.; McGough, K.M.; Luttrell, G.H.

    2006-08-15

    The paper reports the improved screen-bowl centrifuge recovery process using polymer injection technology. Field test and economic analysis are also included in the paper. 3 refs., 3 figs., 1 tab.

  1. Calibration of accelerometers on the 5000 g centrifuge

    SciTech Connect (OSTI)

    Rebarchik, F.N.

    1992-05-01

    This memorandum is a synopsis of the description and operation of the equipment used and the events occurring during the calibration of an accelerometer on the 5000 g centrifuge.

  2. Calibration of accelerometers on the 1000 g centrifuge

    SciTech Connect (OSTI)

    Rebarchik, F.N.

    1991-04-01

    This memorandum is a synopsis of the description and operation of the equipment used, and the events occurring during the calibration of an accelerometer on the 1000 G centrifuge. 2 refs., 1 tab.

  3. Centrifuge modeling of LNAPL transport in partially saturated sand

    SciTech Connect (OSTI)

    Esposito, G.; Allersma, H.G.B.; Selvadurai, A.P.S.

    1999-12-01

    Model tests were performed at the Geotechnical Centrifuge Facility of Delft University of Technology, The Netherlands, to examine the mechanics of light nonaqueous phase liquid (LNAPL) movement in a partially saturated porous granular medium. The experiment simulated a 2D spill of LNAPL in an unsaturated sand prepared at two values of porosity. The duration of the centrifuge model tests corresponded to a prototype equivalent of 110 days. The choice of modeling a 2D flow together with the use of a transparent container enabled direct visual observation of the experiments. Scaling laws developed in connection with other centrifuge modeling studies were used to support the test results. Tests were conducted at two different centrifuge accelerations to verify, by means of the modeling of models technique, the similitude between the different experiments. The paper presents details of the experimental methodologies and the measuring techniques used to evaluate the final distribution of water and LNAPL content in the soils.

  4. Zero-Gravity Centrifugal Force | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to create centrifugal force create its on gravity? Example if you were spinning a iron ball in space, just as the earth spins, does the iron ball create its on gravity? scott...

  5. Gas Centrifuge Enrichment Plant Safeguards System Modeling

    SciTech Connect (OSTI)

    Elayat, H A; O'Connell, W J; Boyer, B D

    2006-06-05

    The U.S. Department of Energy (DOE) is interested in developing tools and methods for potential U.S. use in designing and evaluating safeguards systems used in enrichment facilities. This research focuses on analyzing the effectiveness of the safeguards in protecting against the range of safeguards concerns for enrichment plants, including diversion of attractive material and unauthorized modes of use. We developed an Extend simulation model for a generic medium-sized centrifuge enrichment plant. We modeled the material flow in normal operation, plant operational upset modes, and selected diversion scenarios, for selected safeguards systems. Simulation modeling is used to analyze both authorized and unauthorized use of a plant and the flow of safeguards information. Simulation tracks the movement of materials and isotopes, identifies the signatures of unauthorized use, tracks the flow and compilation of safeguards data, and evaluates the effectiveness of the safeguards system in detecting misuse signatures. The simulation model developed could be of use to the International Atomic Energy Agency IAEA, enabling the IAEA to observe and draw conclusions that uranium enrichment facilities are being used only within authorized limits for peaceful uses of nuclear energy. It will evaluate improved approaches to nonproliferation concerns, facilitating deployment of enhanced and cost-effective safeguards systems for an important part of the nuclear power fuel cycle.

  6. Evaluating the necessity of certain gas centrifuge enrichment plant process

    Office of Scientific and Technical Information (OSTI)

    parameters to a safeguards approach that includes possible remote inspections driven by information (Conference) | SciTech Connect Evaluating the necessity of certain gas centrifuge enrichment plant process parameters to a safeguards approach that includes possible remote inspections driven by information Citation Details In-Document Search Title: Evaluating the necessity of certain gas centrifuge enrichment plant process parameters to a safeguards approach that includes possible remote

  7. Evaluating the necessity of certain gas centrifuge enrichment plant process

    Office of Scientific and Technical Information (OSTI)

    parameters to a safeguards approach that includes possible remote inspections driven by information (Conference) | SciTech Connect Evaluating the necessity of certain gas centrifuge enrichment plant process parameters to a safeguards approach that includes possible remote inspections driven by information Citation Details In-Document Search Title: Evaluating the necessity of certain gas centrifuge enrichment plant process parameters to a safeguards approach that includes possible remote

  8. Evaluating the necessity of certain gas centrifuge enrichment plant process

    Office of Scientific and Technical Information (OSTI)

    parameters to a safeguards approach that includes possible remote inspections driven by information (Conference) | SciTech Connect Evaluating the necessity of certain gas centrifuge enrichment plant process parameters to a safeguards approach that includes possible remote inspections driven by information Citation Details In-Document Search Title: Evaluating the necessity of certain gas centrifuge enrichment plant process parameters to a safeguards approach that includes possible remote

  9. Evaluating the necessity of certain gas centrifuge enrichment plant process

    Office of Scientific and Technical Information (OSTI)

    parameters to a safeguards approach that includes possible remote inspections driven by information (Conference) | SciTech Connect Evaluating the necessity of certain gas centrifuge enrichment plant process parameters to a safeguards approach that includes possible remote inspections driven by information Citation Details In-Document Search Title: Evaluating the necessity of certain gas centrifuge enrichment plant process parameters to a safeguards approach that includes possible remote

  10. Advanced Remote Maintenance Design for Pilot-Scale Centrifugal Contactors

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Advanced Remote Maintenance Design for Pilot-Scale Centrifugal Contactors Citation Details In-Document Search Title: Advanced Remote Maintenance Design for Pilot-Scale Centrifugal Contactors Advanced designs of used nuclear fuel recycling processes and radioactive waste treatment processes are expected to include more ambitious goals for aqueous based separations including; higher separations efficiency, high-level waste minimization, and

  11. An Advanced Liquid Centrifuge Using Differentially Rotating Cylinders and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimized Boundary Conditions --- Inventor(s) Hantao Ji, Adam Cohen, Phil Efthimion and Eric Edlund | Princeton Plasma Physics Lab An Advanced Liquid Centrifuge Using Differentially Rotating Cylinders and Optimized Boundary Conditions --- Inventor(s) Hantao Ji, Adam Cohen, Phil Efthimion and Eric Edlund This invention discloses a concept for an advanced centrifugal contactor which can be used for (1) mixing of two or more component fluid substances to produce a uniform mixture or enhance the

  12. he Hanford Story Tank Waste Cleanup | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    he Hanford Story Tank Waste Cleanup he Hanford Story Tank Waste Cleanup Addthis Description The Hanford Story Tank Waste Cleanup

  13. experimental tank tests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experimental tank tests - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  14. Hanford tank waste pretreatment overview

    SciTech Connect (OSTI)

    Gasper, K.A.

    1994-12-31

    The U.S. Department of Energy (DOE) has established the Tank Waste Remediation System (TWRS) to safely manage and dispose of the Hanford Site tank waste. Pretreatment is one of the major program elements of the TWRS. The scope of the TWRS Tank Waste Pretreatment Program is to treat tank waste to separate it into high- and low-level waste fractions and to provide additional treatment as required to feed low-level and high-level waste immobilization processes. The Pretreatment Program activities include technology development, design, fabrication, construction, and operation of facilities to support the pretreatment of radioactive mixed waste retrieved from 28 large underground double-shell tanks and 149 single-shell tanks.

  15. Relocation and repair of the National Geotechnical Centrifuge. Final report

    SciTech Connect (OSTI)

    Cheney, J.A.

    1994-10-01

    In January of 1984, the large geotechnical centrifuge located at NASA Ames Research Center, was in the first stages of operational checkout when the main thrust bearing of the large D.C. drive motor failed. After many months of investigation and proposals for repair of the facility, it became evident that it would be far more advantageous to the engineering community to remove those components of the centrifuge that were undamaged to the Davis campus and replace the drive system completely. The large centrifuge had cost over 2 million dollars to build, and it would have been irresponsible to simply scrap it. Recognizing this fact, funds were solicited and received from various sources, and Beam Engineering Inc. was contracted to design and construct the centrifuge at its new location. The University of California contributed a quarter of a million dollars and Tyndall Air Force Base, through Los Alamos National Laboratory, contributed $140,000. There were funds also contributed by LANL, LLNL, US Navy and NSF. The first stage in the phased development of the newly located centrifuge is nearing completion, which prompts the writing of this report. By the time that this report reaches the reader the first runs of the centrifuge will have been completed. The present report describes the present capability of the centrifuge and the plans for upgrading as time goes on. Several pilot studies were carried out. The experiments involved (1) the effects of nearby explosions on buried thin walled containers and (2) the advection and dispersion of toxic waste water through soils.

  16. LETTER TEMPLATE TO PROJECTS ON HOLD

    Energy Savers [EERE]

    Energy MOVING FORWARD IN 1705 PROCESS LETTER TEMPLATE TO PROJECTS MOVING FORWARD IN 1705 PROCESS PDF icon LPO_Letter_1.pdf More Documents & Publications LPO_1.pdf LETTER TEMPLATE TO PROJECTS ON HOLD LPO_2

    LETTER TEMPLATE TO PROJECTS ON HOLD DATE, 2011 NAME ORGANIZATION ADDRESS CITY, ST ZIP Dear NAME: Thank you for your ongoing interest in the Section 1705 loan guarantee program. To date, under the 1705 program, the Department of Energy (DOE) has issued conditional commitments totaling

  17. Results of Hg speciation testing on 3Q15 tank 50, salt solution feed tank (SSFT), and solvent hold tank (SHT) materials

    SciTech Connect (OSTI)

    Bannochie, C.

    2015-08-13

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team. The results are documented in this report.

  18. National Air & Space Intelligence Center Holds Program About...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Air & Space Intelligence Center Holds Program About Empowering Women in the Workplace National Air & Space Intelligence Center Holds Program About Empowering Women in the...

  19. SeaPower Pacific subsidiary of Renewable Energy Holdings Plc...

    Open Energy Info (EERE)

    SeaPower Pacific subsidiary of Renewable Energy Holdings Plc Carnegie Corporation Ltd Jump to: navigation, search Name: SeaPower Pacific subsidiary of Renewable Energy Holdings Plc...

  20. Nippon Mining Holdings Inc aka Shinnikko | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Nippon Mining Holdings Inc (aka Shinnikko) Place: Tokyo, Japan Zip: 105-0001 Product: Japanese holding company engaged in oil, metals, and...

  1. Gamesa Energie Deutschland formerly EBV Management Holding AG...

    Open Energy Info (EERE)

    Energie Deutschland formerly EBV Management Holding AG Jump to: navigation, search Name: Gamesa Energie Deutschland (formerly EBV Management Holding AG) Place: Oldenburg, Germany...

  2. Green Renewable Energy Ethanol and Nutrition Holding LLC | Open...

    Open Energy Info (EERE)

    Ethanol and Nutrition Holding LLC Jump to: navigation, search Name: Green Renewable Energy Ethanol and Nutrition-Holding, LLC Place: Palm, Pennsylvania Zip: 18070 Product: A local...

  3. Yonghua Solar Power Investment Holding Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yonghua Solar Power Investment Holding Ltd Jump to: navigation, search Name: Yonghua Solar Power Investment Holding Ltd Place: China Sector: Solar Product: A private solar...

  4. Global Clean Energy Holdings LLC GCEH | Open Energy Information

    Open Energy Info (EERE)

    Energy Holdings LLC GCEH Jump to: navigation, search Name: Global Clean Energy Holdings LLC (GCEH) Place: Los Angeles, California Zip: CA 90045 Product: Los Angeles-based biofuel...

  5. Blue Crane Holdings Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Crane Holdings Pvt Ltd Jump to: navigation, search Name: Blue Crane Holdings Pvt. Ltd. Place: Mumbai, Maharashtra, India Zip: 400023 Sector: Efficiency, Solar, Wind energy Product:...

  6. Energy Plus Holdings LLC (Connecticut) | Open Energy Information

    Open Energy Info (EERE)

    Energy Plus Holdings LLC (Connecticut) Jump to: navigation, search Name: Energy Plus Holdings LLC Place: Connecticut Phone Number: 1-888-766-3509 Website: www.energypluscompany.com...

  7. Energy Plus Holdings LLC (New Jersey) | Open Energy Information

    Open Energy Info (EERE)

    Energy Plus Holdings LLC Name: Energy Plus Holdings LLC Place: New Jersey Service Territory: Connecticut, Illinois, Maryland, Massachusetts, New Jersey, New York, Ohio,...

  8. JA Solar Holdings Co aka Jingao | Open Energy Information

    Open Energy Info (EERE)

    Name: JA Solar Holdings Co (aka Jingao) Place: Hebei Province, China Product: Chinese PV cell manufacturer. References: JA Solar Holdings Co (aka Jingao)1 This article is a...

  9. American Green Holdings LLC AGH | Open Energy Information

    Open Energy Info (EERE)

    Green Holdings LLC AGH Jump to: navigation, search Name: American Green Holdings LLC (AGH) Place: Montana Product: Montana-based biodiesel manufacturer, using high-pressure...

  10. China Technology Solar Power Holdings Ltd | Open Energy Information

    Open Energy Info (EERE)

    Solar Power Holdings Ltd Jump to: navigation, search Name: China Technology Solar Power Holdings Ltd Place: Hong Kong Sector: Solar Product: China-based solar project developer,...

  11. China Solar Energy Holdings Ltd | Open Energy Information

    Open Energy Info (EERE)

    Holdings Ltd Jump to: navigation, search Name: China Solar Energy Holdings Ltd Place: Wan Chai, Hong Kong Sector: Solar Product: Supplies turnkey manufacturing lines for the...

  12. China Power International New Energy Holding Ltd | Open Energy...

    Open Energy Info (EERE)

    New Energy Holding Ltd Jump to: navigation, search Name: China Power International New Energy Holding Ltd Place: Shanghai Municipality, China Zip: 200052 Sector: Biomass, Hydro,...

  13. Office of Electricity Delivery And Energy Reliability To Hold...

    Office of Environmental Management (EM)

    Delivery And Energy Reliability To Hold Technical Conference On The Design Of Future Electric Transmission Office of Electricity Delivery And Energy Reliability To Hold Technical ...

  14. Solar Sailor Holdings Ltd SSHL | Open Energy Information

    Open Energy Info (EERE)

    Sailor Holdings Ltd SSHL Jump to: navigation, search Name: Solar Sailor Holdings Ltd (SSHL) Place: Chatswood, New South Wales, Australia Zip: 2067 Sector: Solar Product: Solar...

  15. China Guangdong Nuclear Power Holding Co Ltd CGNPC | Open Energy...

    Open Energy Info (EERE)

    Nuclear Power Holding Co Ltd CGNPC Jump to: navigation, search Name: China Guangdong Nuclear Power Holding Co Ltd (CGNPC) Place: Shenzhen, Guangdong Province, China Zip: 518031...

  16. Golden State Holding Group Corporation | Open Energy Information

    Open Energy Info (EERE)

    Holding Group Corporation Jump to: navigation, search Name: Golden State Holding Group Corporation Place: Beijing Municipality, China Product: Beijing-based developer and...

  17. International Framework for Nuclear Energy Cooperation to Hold...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland International Framework for Nuclear Energy Cooperation to Hold ...

  18. New Generation Biofuels Holdings Inc formerly H2Diesel | Open...

    Open Energy Info (EERE)

    Generation Biofuels Holdings Inc formerly H2Diesel Jump to: navigation, search Name: New Generation Biofuels Holdings Inc. (formerly H2Diesel) Place: Lake Mary, Florida Zip: 32746...

  19. Hanergy Holdings Group Company Ltd formerly Farsighted Group...

    Open Energy Info (EERE)

    Hanergy Holdings Group Company Ltd formerly Farsighted Group aka Huarui Group Jump to: navigation, search Name: Hanergy Holdings Group Company Ltd (formerly Farsighted Group, aka...

  20. Specialized Technology Resources Inc STR Holding Inc | Open Energy...

    Open Energy Info (EERE)

    Technology Resources Inc STR Holding Inc Jump to: navigation, search Name: Specialized Technology Resources Inc (STR Holding Inc) Place: Enfield, Connecticut Zip: 6082 Product:...

  1. Housing and Construction Holding Company | Open Energy Information

    Open Energy Info (EERE)

    Housing and Construction Holding Company Jump to: navigation, search Name: Housing and Construction Holding Company Place: Ramat-Gan, Israel Zip: 52215 Product: Israel-based...

  2. Nobao Renewable Energy Holdings Ltd | Open Energy Information

    Open Energy Info (EERE)

    Nobao Renewable Energy Holdings Ltd Jump to: navigation, search Name: Nobao Renewable Energy Holdings Ltd Place: Shanghai, Shanghai Municipality, China Zip: 201103 Sector:...

  3. GATE Global Alternative Energy Holding AG | Open Energy Information

    Open Energy Info (EERE)

    Energy Holding AG Place: Wrzburg, Bavaria, Germany Zip: 97080 Product: Germany-based biodiesel producer. References: GATE Global Alternative Energy Holding AG1 This article...

  4. Blending of Radioactive Salt Solutions in Million Gallon Tanks - 13002

    SciTech Connect (OSTI)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R. [Savannah River National Laboratory, Aiken. S.C., 29808 (United States)] [Savannah River National Laboratory, Aiken. S.C., 29808 (United States)

    2013-07-01

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 - 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, 'One good experiment fixes a lot of good theory'. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks. (authors)

  5. Blending Of Radioactive Salt Solutions In Million Gallon Tanks

    SciTech Connect (OSTI)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

    2012-12-10

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 ? 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, ?One good experiment fixes a lot of good theory?. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks.

  6. Tank Waste Remediation System Tank Waste Analysis Plan. FY 1995

    SciTech Connect (OSTI)

    Haller, C.S.; Dove, T.H.

    1994-11-01

    This documents lays the groundwork for preparing the implementing the TWRS tank waste analysis planning and reporting for Fiscal Year 1995. This Tank Waste Characterization Plan meets the requirements specified in the Hanford Federal Facility Agreement and Consent Order, better known as the Tri-Party Agreement.

  7. Rules governing the classification of coal slurries for filtering centrifuges

    SciTech Connect (OSTI)

    G.Y. Gol'berg; Y.B. Rubinshtein; S.A. Osadchii

    2008-07-01

    The feasibility of using filtering centrifuges for the cleaning of a coking-coal slurry is confirmed in principle, and regime operating parameters which ensure the production of a concentrate of conditioned quality are determined on the basis of results of experimental-industrial tests of a new procedure for this operation at the Neryungrinskaya Concentrating Mill. An equation is proposed for determination of solid carry-off in the centrifuge effluent, which completely satisfactorily (with a correlation coefficient of 0.7-0.8) describes the dependence of the parameter in question on the solid content in the centrifuge feed, and on its content of -0.2-mm material. It is noted that special investigations to determine the effect of the speed of the rotor and shape of the particles on the amount of solid carry-off in the centrifuge effluent are required for construction of a model describing the size reduction of solid-phase particles in the effluent during centrifuge filtration.

  8. A fuzzy controlled three-phase centrifuge for waste separation

    SciTech Connect (OSTI)

    Parkinson, W.J.; Smith, R.E.; Miller, N.

    1998-02-01

    The three-phase centrifuge technology discussed in this paper was developed by Neal Miller, president of Centech, Inc. The three-phase centrifuge is an excellent device for cleaning up oil field and refinery wastes which are typically composed of hydrocarbons, water, and solids. The technology is unique. It turns the waste into salable oil, reusable water, and landfill-able solids. No secondary waste is produced. The problem is that only the inventor can set up and run the equipment well enough to provide an optimal cleanup. Demand for this device has far exceeded a one man operation. There is now a need for several centrifuges to be operated at different locations at the same time. This has produced a demand for an intelligent control system, one that could replace a highly skilled operator, or at least supplement the skills of a less experienced operator. The control problem is ideally suited to fuzzy logic, since the centrifuge is a highly complicated machine operated entirely by the skill and experience of the operator. A fuzzy control system was designed for and used with the centrifuge.

  9. Centrifugally activated bearing for high-speed rotating machinery

    DOE Patents [OSTI]

    Post, R.F.

    1994-02-15

    A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation. 4 figures.

  10. Centrifugally activated bearing for high-speed rotating machinery

    DOE Patents [OSTI]

    Post, Richard F.

    1994-01-01

    A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation.

  11. Centrifuge Techniques and Apparatus for Transport Experiments in Porous Media

    SciTech Connect (OSTI)

    Earl D. Mattson; Carl D. Paler; Robert W. Smith; Markus Flury

    2010-06-01

    This paper describes experimental approaches and apparatus that we have developed to study solute and colloid transport in porous media using Idaho National Laboratory's 2-m radius centrifuge. The ex-perimental techniques include water flux scaling with applied acceleration at the top of the column and sub-atmospheric pressure control at the column base, automation of data collection, and remote experimental con-trol over the internet. These apparatus include a constant displacement piston pump, a custom designed liquid fraction collector based on switching valve technology, and modified moisture monitoring equipment. Suc-cessful development of these experimental techniques and equipment is illustrated through application to transport of a conservative tracer through unsaturated sand column, with centrifugal acceleration up to 40 gs. Development of such experimental equipment that can withstand high accelerations enhances the centrifuge technique to conduct highly controlled unsaturated solute/colloid transport experiments and allows in-flight liquid sample collection of the effluent.

  12. Tank Waste Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 17, 2012 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE MEETING April 17, 2012 Richland, WA Topics in this Meeting Summary Welcome & Introductions ............................................................................................................................. 1 Discussion of Tank-Related Permit Units ..................................................................................................... 1 Discussion of IDF and Risk Budget Tool

  13. High-Pressure Hydrogen Tank Testing

    Broader source: Energy.gov [DOE]

    Many types of compressed hydrogen tanks have been certified worldwide and demonstrated in several prototype fuel cell vehicles. The following information discusses high-pressure hydrogen tank...

  14. Tank Closure & Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RODs: Tanks with leaks removed to get at leak contamination. Tank gear, pipes, valves, etc to be removed. RTD contaminated soils where necessary. Watch for...

  15. Tank Farm Area Cleanup Decision-Making

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area Cleanup Decision-Making Groundwater Vadose Zone Single Shell Tank System Closure (tanks, structures and pipelines) * Washington State Hazardous Waste Management Act (Resource...

  16. Organic liner for thermoset composite tank

    DOE Patents [OSTI]

    Garvey, Raymond E.

    1991-01-01

    A cryogenic tank that is made leak-proof under cryogenic conditions by successive layers of epoxy lining the interior of the tank.

  17. Independent Oversight Review, Hanford Tank Farms- November 2011

    Broader source: Energy.gov [DOE]

    Review of Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades

  18. Secondary Containment Design for a High Speed Centrifuge

    SciTech Connect (OSTI)

    Snyder, K.W.

    1999-03-01

    Secondary containment for high speed rotating machinery, such as a centrifuge, is extremely important for operating personnel safety. Containment techniques can be very costly, ungainly and time consuming to construct. A novel containment concept is introduced which is fabricated out of modular sections of polycarbonate glazed into a Unistrut metal frame. A containment study for a high speed centrifuge is performed which includes the development of parameters for secondary containment design. The Unistrut/polycarbonate shield framing concept is presented including design details and proof testing procedures. The economical fabrication and modularity of the design indicates a usefulness for this shielding system in a wide variety of containment scenarios.

  19. ANALYSIS OF THE SALT FEED TANK CORE SAMPLE

    SciTech Connect (OSTI)

    Reigel, M.; Cheng, W.

    2012-01-26

    The Saltstone Production Facility (SPF) immobilizes and disposes of low-level radioactive and hazardous liquid waste (salt solution) remaining from the processing of radioactive material at the Savannah River Site (SRS). Low-level waste (LLW) streams from processes at SRS are stored in Tank 50 until the LLW can be transferred to the SPF for treatment and disposal. The Salt Feed Tank (SFT) at the Saltstone Production Facility (SPF) holds approximately 6500 gallons of low level waste from Tank 50 as well as drain water returned from the Saltstone Disposal Facility (SDF) vaults. Over the past several years, Saltstone Engineering has noted the accumulation of solids in the SFT. The solids are causing issues with pump performance, agitator performance, density/level monitoring, as well as taking up volume in the tank. The tank has been sounded at the same location multiple times to determine the level of the solids. The readings have been 12, 25 and 15 inches. The SFT is 8.5 feet high and 12 feet in diameter, therefore the solids account for approximately 10 % of the tank volume. Saltstone Engineering has unsuccessfully attempted to obtain scrape samples of the solids for analysis. As a result, Savannah River National Laboratory (SRNL) was tasked with developing a soft core sampler to obtain a sample of the solids and to analyze the core sample to aid in determining a path forward for removing the solids from the SFT. The source of the material in the SFT is the drain water return system where excess liquid from the Saltstone disposal vaults is pumped back to the SFT for reprocessing. It has been shown that fresh grout from the vault enter the drain water system piping. Once these grout solids return to the SFT, they settle in the tank, set up, and can't be reprocessed, causing buildup in the tank over time. The composition of the material indicates that it is potentially toxic for chromium and mercury and the primary radionuclide is cesium-137. Qualitative measurements show that the material is not cohesive and will break apart with some force.

  20. Tank farms hazards assessment

    SciTech Connect (OSTI)

    Broz, R.E.

    1994-09-30

    Hanford contractors are writing new facility specific emergency procedures in response to new and revised US Department of Energy (DOE) Orders on emergency preparedness. Emergency procedures are required for each Hanford facility that has the potential to exceed the criteria for the lowest level emergency, an Alert. The set includes: (1) a facility specific procedure on Recognition and Classification of Emergencies, (2) area procedures on Initial Emergency Response and, (3) an area procedure on Protective Action Guidance. The first steps in developing these procedures are to identify the hazards at each facility, identify the conditions that could release the hazardous material, and calculate the consequences of the releases. These steps are called a Hazards Assessment. The final product is a document that is similar in some respects to a Safety Analysis Report (SAR). The document could br produced in a month for a simple facility but could take much longer for a complex facility. Hanford has both types of facilities. A strategy has been adopted to permit completion of the first version of the new emergency procedures before all the facility hazards Assessments are complete. The procedures will initially be based on input from a task group for each facility. This strategy will but improved emergency procedures in place sooner and therefore enhance Hanford emergency preparedness. The purpose of this document is to summarize the applicable information contained within the Waste Tank Facility ``Interim Safety Basis Document, WHC-SD-WM-ISB-001`` as a resource, since the SARs covering Waste Tank Operations are not current in all cases. This hazards assessment serves to collect, organize, document and present the information utilized during the determination process.

  1. Select an Energy-Efficient Centrifugal Pump - Pumping System Tip Sheet #3

    SciTech Connect (OSTI)

    2005-10-01

    BestPractices Program tip sheet discussing pumping system efficiency by selecting an energy-efficient centrifugal pump.

  2. Experiments with background gas in a vacuum arc centrifuge

    SciTech Connect (OSTI)

    Dallaqua, R.S.; Simpson, S.W.; Del Bosco, E.

    1996-04-01

    Since promising isotope separation results were first reported by Krishnan et al. in 1981, a range of vacuum arc centrifuge experiments have been conducted in laboratories around the world. The PCEN (Plasma CENtrifuge) vacuum arc centrifuge at the Brazilian National Institute for Space Research has been used for isotope separation studies with cathode materials of carbon and magnesium and also to investigate the performance in terms of the rotational velocity attained for different cathode materials. Here, a vacuum arc centrifuge has been operated with an initial filling gas of either argon or hydrogen for pressures ranging from 10{sup {minus}3} to 10{sup {minus}1} Pa. The angular velocity {omega} of the plasma has been determined by cross-correlating the signals from potential probes, and the electron temperature T has been deduced from Langmuir probe data. At high gas pressures and early times during the 14 ms plasma lifetime, high-frequency nonuniformities frequently observed in the vacuum discharge disappear, suggesting that the associated instability is suppressed. Under the same conditions, nonuniformities rotating with much lower angular velocities are observed in the plasma. Temperatures are reduced in the presence of the background gas, and the theoretical figure of merit for separation proportional to {omega}{sup 2}/T is increased compared to its value in the vacuum discharge for both argon and hydrogen gas fillings.

  3. Promising Technology: Magnetic Bearing Variable-Speed Centrifugal Chillers

    Broader source: Energy.gov [DOE]

    Magnetic bearing variable speed centrifugal chillers save energy compared to conventional chillers by eliminating friction with the magnetic bearings and by improving efficiency at partial loads with the variable speed drive. In addition to saving energy, the magnetic bearings eliminate the maintenance costs associated with lubricating conventional metal bearings.

  4. Light Duty Vehicle CNG Tanks

    Energy Savers [EERE]

    Duty Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite Manufacturing Workshop Advanced Manufacturing Office, EERE, US DOE Arlington VA, January 13, 2014 Advanced Research Projects Agency-Energy Can I put my luggage in the trunk? Uh, sorry no Commercial CNG Tanks Tank Type I Type IV Material steel carbon fiber Capacity 12 gallon 12 gallon Weight 490 lb 190 lb Cost $1,700 $4,300 50% less

  5. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford tank initiative: Applications to the AX Tank Farm

    SciTech Connect (OSTI)

    Balsley, S.D.; Krumhansl, J.L.; Borns, D.J.; McKeen, R.G.

    1998-07-01

    A combined engineering and geochemistry approach is recommended for the stabilization of waste in decommissioned tanks and contaminated soils at the AX Tank Farm, Hanford, WA. A two-part strategy of desiccation and gettering is proposed for treatment of the in-tank residual wastes. Dry portland cement and/or fly ash are suggested as an effective and low-cost desiccant for wicking excess moisture from the upper waste layer. Getters work by either ion exchange or phase precipitation to reduce radionuclide concentrations in solution. The authors recommend the use of specific natural and man-made compounds, appropriately proportioned to the unique inventory of each tank. A filler design consisting of multilayered cementitous grout with interlayered sealant horizons should serve to maintain tank integrity and minimize fluid transport to the residual waste form. External tank soil contamination is best mitigated by placement of grouted skirts under and around each tank, together with installation of a cone-shaped permeable reactive barrier beneath the entire tank farm. Actinide release rates are calculated from four tank closure scenarios ranging from no action to a comprehensive stabilization treatment plan (desiccant/getters/grouting/RCRA cap). Although preliminary, these calculations indicate significant reductions in the potential for actinide transport as compared to the no-treatment option.

  6. Screen bowl centrifuge: a high-efficiency particle size separator

    SciTech Connect (OSTI)

    Mohanty, M.K.; Zhang, B.; Khanna, N.; Palit, A.; Dube, B.

    2008-05-15

    Over the years, screen bowl centrifuges have been widely used for dewatering fine coal in coal preparation plants in the United States and elsewhere. It is generally recognized in the engineering and scientific communities that screen bowl centrifuges provide some degree of particle size separation while dewatering fine coal in a common application. However, the extent of differential partitioning of coarse and fine particles achievable by a screen bowl centrifuge has not been systematically studied in the past. The present investigation was aimed at conducting a parametric study using a statistically designed experimental program to better understand and optimize the size classification performance of a screen bowl centrifuge. A continuously operating screen bowl centrifuge having a bowl diameter of 0.5 m was used for this study at the Illinois Coal Development Park. Three key operating parameters, i.e., feed flow rate, feed solid content and pool depth, were varied to conduct a total of 17 experiments using a three-level factorial test matrix. Some of the best size separation performances achieved in this study may be described as having an imperfection value of 0.13 at an effective separation size (d(50c)) of 38 mu m and an imperfection value of 0.27 at an effective separation size (d(50c)) of 2.8 mu m. Due to an effective separation of ultrafine high ash materials, the ash content of the screen bowl feed was reduced from 22.3% to a minimum of 8.84% with a combustible recovery of 84.1% and an ash rejection of 71.6%. A higher combustible recovery of 92.1% was achieved at a product ash content of 12.5% with a d(50c) of 2.8 mu m and imperfection of 0.27.

  7. Detection of illicit HEU production in gaseous centrifuge enrichment plants using neutron counting techniques on product cylinders

    SciTech Connect (OSTI)

    Freeman, Corey R; Geist, William H

    2010-01-01

    Innovative and novel safeguards approaches are needed for nuclear energy to meet global energy needs without the threat of nuclear weapons proliferation. Part of these efforts will include creating verification techniques that can monitor uranium enrichment facilities for illicit production of highly-enriched uranium (HEU). Passive nondestructive assay (NDA) techniques will be critical in preventing illicit HEU production because NDA offers the possibility of continuous and unattended monitoring capabilities with limited impact on facility operations. Gaseous centrifuge enrichment plants (GCEP) are commonly used to produce low-enriched uranium (LEU) for reactor fuel. In a GCEP, gaseous UF{sub 6} spins at high velocities in centrifuges to separate the molecules containing {sup 238}U from those containing the lighter {sup 235}U. Unfortunately, the process for creating LEU is inherently the same as HEU, creating a proliferation concern. Insuring that GCEPs are producing declared enrichments poses many difficult challenges. In a GCEP, large cascade halls operating thousands of centrifuges work together to enrich the uranium which makes effective monitoring of the cascade hall economically prohibitive and invasive to plant operations. However, the enriched uranium exiting the cascade hall fills product cylinders where the UF{sub 6} gas sublimes and condenses for easier storage and transportation. These product cylinders hold large quantities of enriched uranium, offering a strong signal for NDA measurement. Neutrons have a large penetrability through materials making their use advantageous compared to gamma techniques where the signal is easily attenuated. One proposed technique for detecting HEU production in a GCEP is using neutron coincidence counting at the product cylinder take off stations. This paper discusses findings from Monte Carlo N-Particle eXtended (MCNPX) code simulations that examine the feasibility of such a detector.

  8. Tank Waste Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... close in C Farm, and there is 6.3 miles of contaminated pipeline to go with those tanks. ... (OU) decision, and are identified in the SST closure permit and the current Part B permit. ...

  9. Retooling Michigan: Tanks to Turbines

    Broader source: Energy.gov [DOE]

    A company that has manufactured geared systems for the M1 Abrams tank for more than 20 years is now part of the forces working toward energy security and independence.

  10. Light Duty Vehicle CNG Tanks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Duty Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite Manufacturing ...

  11. Tank Waste Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Because of the stress on the tank due to it being bowed up in the middle (or "oil ... There would be no time for annulus pumping. The waste would almost instantly fill the leak ...

  12. Tank Waste Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 9, 2011 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE MEETING June 9, 2011 Richland, WA Topics in this Meeting Summary Welcome and Introductions .......................................................................................................................... 1 Waste Management Area C Performance Assessment ................................................................................. 1 Closure Schedule for WMA C

  13. Onboard Storage Tank Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Onboard Storage Tank Workshop Onboard Storage Tank Workshop The U.S. Department of Energy (DOE) and Sandia National Laboratories co-hosted the Onboard Storage Tank Workshop on April 29th, 2010. Onboard storage tank experts gathered to share lessons learned about research and development (R&D) needs; regulations, codes and standards (RCS); and a path forward to enable the successful deployment of hydrogen storage tanks in early market fuel cell applications. The workshop also included initial

  14. CENTRIFUGAL MEMBRANE FILTRATION (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Partnering. During Phase 1 testing conducted at the EERC using the SpinTek ST-IIL unit operating on a surrogate tank waste, a solids cake developed on the membrane surface....

  15. Savannah River Site - Tank 48 Briefing on SRS Tank 48 Independent...

    Office of Environmental Management (EM)

    SRS Tank 48 Independent Technical Review August 2006 2 SRS Tank 48 ITR SRS Tank 48 ITR Key ITR Observation Two distinct problems: Removing tetraphenylborate (TPB) waste and then ...

  16. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    SciTech Connect (OSTI)

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.

  17. Tank 214-AW-105, grab samples, analytical results for the finalreport

    SciTech Connect (OSTI)

    Esch, R.A.

    1997-02-20

    This document is the final report for tank 241-AW-105 grab samples. Twenty grabs samples were collected from risers 10A and 15A on August 20 and 21, 1996, of which eight were designated for the K Basin sludge compatibility and mixing studies. This document presents the analytical results for the remaining twelve samples. Analyses were performed in accordance with the Compatibility Grab Sampling and Analysis Plan (TSAP) and the Data Quality Objectives for Tank Farms Waste Compatibility Program (DO). The results for the previous sampling of this tank were reported in WHC-SD-WM-DP-149, Rev. 0, 60-Day Waste Compatibility Safety Issue and Final Results for Tank 241-A W-105, Grab Samples 5A W-95-1, 5A W-95-2 and 5A W-95-3. Three supernate samples exceeded the TOC notification limit (30,000 microg C/g dry weight). Appropriate notifications were made. No immediate notifications were required for any other analyte. The TSAP requested analyses for polychlorinated biphenyls (PCB) for all liquids and centrifuged solid subsamples. The PCB analysis of the liquid samples has been delayed and will be presented in a revision to this document.

  18. FC Holding GmbH | Open Energy Information

    Open Energy Info (EERE)

    FC Holding GmbH Jump to: navigation, search Name: FC Holding GmbH Place: Wolfschlugen, Germany Zip: 72649 Sector: Renewable Energy Product: A renewable energy investment firm...

  19. SEMI-ANNUAL REPORTS FOR PANGEA LNG (NORTH AMERICA) HOLDINGS,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PANGEA LNG (NORTH AMERICA) HOLDINGS, LLC - FE DKT. NO. 12-174-LNG - ORDER 3227 SEMI-ANNUAL REPORTS FOR PANGEA LNG (NORTH AMERICA) HOLDINGS, LLC - FE DKT. NO. 12-174-LNG - ORDER ...

  20. Z Group Steel Holding Zelezarny Veseli | Open Energy Information

    Open Energy Info (EERE)

    Z Group Steel Holding Zelezarny Veseli Jump to: navigation, search Name: Z-Group Steel Holding - Zelezarny Veseli Place: Veseli nad Moravou, Czech Republic Zip: 698 12 Sector: Wind...

  1. Aufwind Schmack Asia Holding GmbH | Open Energy Information

    Open Energy Info (EERE)

    Asia Holding GmbH Jump to: navigation, search Name: Aufwind Schmack Asia Holding GmbH Place: Bavaria, Germany Sector: Carbon Product: Bavaria-based carbon consultancy and brokerage...

  2. ScottishPower Renewable Energy Holdings | Open Energy Information

    Open Energy Info (EERE)

    ScottishPower Renewable Energy Holdings Jump to: navigation, search Name: ScottishPower Renewable Energy Holdings Place: Glasgow, Scotland, United Kingdom Zip: G2 8SP Sector: Wind...

  3. LETTER TEMPLATE TO PROJECTS ON HOLD | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ON HOLD LETTER TEMPLATE TO PROJECTS ON HOLD PDF icon LPOLetter2.pdf More Documents & Publications LPO2.pdf LETTER TEMPLATE TO PROJECTS MOVING FORWARD IN 1705 PROCESS LPO1...

  4. SeaWest Northwest Asset Holdings LLC | Open Energy Information

    Open Energy Info (EERE)

    Holdings LLC Place: Oregon Sector: Wind energy Product: Part owner and operator of the Condon Wind Project. References: SeaWest Northwest Asset Holdings LLC1 This article is a...

  5. Tank Waste and Waste Processing | Department of Energy

    Office of Environmental Management (EM)

    Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing The Defense Waste Processing Facility set a record by producing 267 canisters filled ...

  6. High-Level Liquid Waste Tank Integrity Workshop - 2008

    Office of Environmental Management (EM)

    techniques for primarysecondary tank wall and concrete * * Develop tank integrity roadmap and execution plan Develop tank integrity roadmap and execution plan including...

  7. Workplace Charging Challenge Partner: Pepco Holdings, Inc. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Pepco Holdings, Inc. Workplace Charging Challenge Partner: Pepco Holdings, Inc. Workplace Charging Challenge Partner: Pepco Holdings, Inc. Joined the Challenge: March 2013 Headquarters: Washington, DC Charging Locations: N/A Domestic Employees: 4,610 Over the past 20 years, Pepco Holdings, Inc. (PHI) has been a leader in the use of alternative fuel vehicles, most specifically with plug-in electric vehicles (PEVs) and hybrid plug-in electric vehicles (PHEVs). PHI currently has 207

  8. Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges | Department of Energy Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges. Pepco Holdings, Inc. (PHI) is pleased to respond to the US Department of Energy (DOE) request for information regarding addressing policy and logistical challenges to smart grid implementation. This follows on the heels of

  9. Evaluation of Tank 241-T-111 Level Data and In-Tank Video Inspection

    SciTech Connect (OSTI)

    Schofield, John S.; Feero, Amie J.

    2014-03-17

    This document summarizes the status of tank T-111 as of January 1, 2014 and estimates a leak rate and post-1994 leak volume for the tank.

  10. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  11. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  12. 241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Gunter, Jason R.

    2013-08-26

    This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

  13. Practical considerations in realizing a magnetic centrifugal mass filter

    SciTech Connect (OSTI)

    Gueroult, Renaud; Fisch, Nathaniel J.

    2012-12-15

    The magnetic centrifugal mass filter concept represents a variation on the plasma centrifuge, with applications that are particularly promising for high-throughput separation of ions with large mass differences. A number of considerations, however, constrain the parameter space in which this device operates best. The rotation speed, magnetic field intensity, and ion temperature are constrained by the ion confinement requirements. Collisions must also be large enough to eject ions, but small enough not to eject them too quickly. The existence of favorable regimes meeting these constraints is demonstrated by a single-particle orbit code. As an example of interest, it is shown that separation factors of about 2.3 are achievable in a single pass when separating Aluminum from Strontium ions.

  14. Integrated Reactor and Centrifugal Separator - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Integrated Reactor and Centrifugal Separator Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryA more efficient reaction and separation process for reaction products was invented by ORNL researchers. This method is specifically applicable to the production of biodiesel through the esterification of organic oils and fats. DescriptionIn conventional biodiesel manufacturing,

  15. TANK48 CFD MODELING ANALYSIS

    SciTech Connect (OSTI)

    Lee, S.

    2011-05-17

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitative mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single-phase model. The modeling results show that the flow patterns driven by four pump operation satisfy the solid suspension requirement, and the average solid concentration at the plane of the transfer pump inlet is about 12% higher than the tank average concentrations for the 70 inch tank level and about the same as the tank average value for the 29 inch liquid level. When one of the four pumps is not operated, the flow patterns are satisfied with the minimum suspension velocity criterion. However, the solid concentration near the tank bottom is increased by about 30%, although the average solid concentrations near the transfer pump inlet have about the same value as the four-pump baseline results. The flow pattern results show that although the two-pump case satisfies the minimum velocity requirement to suspend the sludge particles, it provides the marginal mixing results for the heavier or larger insoluble materials such as MST and KTPB particles. The results demonstrated that when more than one jet are aiming at the same position of the mixing tank domain, inefficient flow patterns are provided due to the highly localized momentum dissipation, resulting in inactive suspension zone. Thus, after completion of the indexed solids suspension, pump rotations are recommended to avoid producing the nonuniform flow patterns. It is noted that when tank liquid level is reduced from the highest level of 70 inches to the minimum level of 29 inches for a given number of operating pumps, the solid mixing efficiency becomes better since the ratio of the pump power to the mixing volume becomes larger. These results are consistent with the literature results.

  16. In-tank recirculating arsenic treatment system

    DOE Patents [OSTI]

    Brady, Patrick V.; Dwyer, Brian P.; Krumhansl, James L.; Chwirka, Joseph D.

    2009-04-07

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  17. Tank Waste Disposal Program redefinition

    SciTech Connect (OSTI)

    Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H.; Holton, L.K.; Hunter, V.L.; Triplett, M.B.

    1991-10-01

    The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

  18. Grouting at the Idaho National Laboratory Tank Farm Facility...

    Office of Environmental Management (EM)

    Small Tank Farm Facility * A system of 11 underground, 300,000-gallon stainless steel tanks - Tanks are fifty feet in diameter and twenty-five feet tall - Eight tanks have...

  19. TANK SPACE ALTERNATIVES ANALYSIS REPORT

    SciTech Connect (OSTI)

    TURNER DA; KIRCH NW; WASHENFELDER DJ; SCHAUS PS; WODRICH DD; WIEGMAN SA

    2010-04-27

    This report addresses the projected shortfall of double-shell tank (DST) space starting in 2018. Using a multi-variant methodology, a total of eight new-term options and 17 long-term options for recovering DST space were evaluated. These include 11 options that were previously evaluated in RPP-7702, Tank Space Options Report (Rev. 1). Based on the results of this evaluation, two near-term and three long-term options have been identified as being sufficient to overcome the shortfall of DST space projected to occur between 2018 and 2025.

  20. Hanford Site C Tank Farm Meeting Summary

    Office of Environmental Management (EM)

    ... different types of waste and the efficiency of each removal technology is a ... interior of the tanks and the contour map of residuals left in the tanks after retrieval. ...

  1. Underground Storage Tanks: New Fuels and Compatibility

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

  2. Tank Stabilization September 30, 1999 Summary

    Office of Environmental Management (EM)

    Type Consent Decree Legal Driver(s) RCRA Scope Summary Renegotiate a schedule to pump liquid radioactive hazardous waste from single-shell tanks to double-shell tanks ...

  3. Comparative safety analysis of LNG storage tanks

    SciTech Connect (OSTI)

    Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

    1982-07-01

    LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

  4. Ohmsett Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    Tank Overseeing Organization Ohmsett Hydrodynamic Testing Facility Type Tow Tank Length(m) 203.0 Beam(m) 19.8 Depth(m) 2.4 Water Type Freshwater Cost(per day) Contact POC Towing...

  5. High-Pressure Tube Trailers and Tanks

    Broader source: Energy.gov [DOE]

    Presentation on High-Pressure Tube Trailers and Tanks for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

  6. Hanford Single-Shell Tank Integrity Program

    Office of Environmental Management (EM)

    production reactors to irradiate fuel and produce plutonium. * Four large ... Type III 100 Series Tanks 241-BY, S, TX, and TY Farms, 48 Tanks 758,000 gallon capacity ...

  7. Tank waste remediation system tank waste retrieval risk management plan

    SciTech Connect (OSTI)

    Klimper, S.C.

    1997-11-07

    This Risk Management Plan defines the approach to be taken to manage programmatic risks in the TWRS Tank Waste Retrieval program. It provides specific instructions applicable to TWR, and is used to supplement the guidance given by the TWRS Risk Management procedure.

  8. RECOMMENDATIONS FOR SAMPLING OF TANK 19 IN F TANK FARM

    SciTech Connect (OSTI)

    Harris, S.; Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual material in Tank 19 prior to operational closure. Tank 19 is a Type IV underground waste storage tank located in the F-Tank Farm. It is a cylindrical-shaped, carbon steel tank with a diameter of 85 feet, a height of 34.25 feet, and a working capacity of 1.3 million gallons. Tank 19 was placed in service in 1961 and initially received a small amount of low heat waste from Tank 17. It then served as an evaporator concentrate (saltcake) receiver from February 1962 to September 1976. Tank 19 also received the spent zeolite ion exchange media from a cesium removal column that once operated in the Northeast riser of the tank to remove cesium from the evaporator overheads. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual waste, Huff and Thaxton [2009] developed a plan to sample the waste during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 19 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 19. The procedure computes the uncertainty in analyte concentration as a function of the number of samples, and the final number of samples is determined when the reduction in the uncertainty from an additional sample no longer has a practical impact on results. The characterization of the full suite of analytes in the North and South hemispheres is currently supported by a single Mantis rover sample in each hemisphere. A floor scrape sample was obtained from a compact region near the center riser slightly in the South hemisphere and has been analyzed for a shortened list of key analytes. There is not enough additional material from the floor scrape sample material for completing the full suite of constituents. No floor scrape samples have been previously taken from the North hemisphere. The criterion to determine the number of additional samples was based on the practical reduction in the uncertainty when a new sample is added. This was achieved when five additional samples are obtained. In addition, two archived samples will be used if a contingency such as failing to demonstrate the comparability of the Mantis samples to the floor scrape samples occurs. To complete sampling of the Tank 19 residual floor material, four additional samples should be taken from the North hemisphere and four additional samples should be taken from the South hemisphere. One of the samples from each hemisphere will be archived in case of need. Three of the four additional samples from each hemisphere will be analyzed. Once the results are available, differences between the Mantis and three floor scrape sample results will be evaluated. If there are no statistically significant analyte concentration differences between the Mantis and floor scrape samples, those results will be combined and then UCL95%s will be calculated. If the analyte concentration differences between the Mantis and floor scrape samples are statistically significant, the UCL95%s will be calculated without the Mantis sample results. If further reduction in the upper confidence limits is needed and can be achieved by the addition of the archived samples, they will be analyzed and included in t

  9. Savannah River Site- Tank 48 Briefing on SRS Tank 48 Independent Technical Review

    Broader source: Energy.gov [DOE]

    This presentation outlines the SRS Tank 48 ITR listing observations, conclusions, and TPB processing.

  10. Estimating Waste Inventory and Waste Tank Characterization

    Broader source: Energy.gov [DOE]

    Summary Notes from 28 May 2008 Generic Technical Issue Discussion on Estimating Waste Inventory and Waste Tank Characterization

  11. Shark Tank: Residential Energy Efficiency Edition

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Shark Tank: Residential Energy Efficiency Edition, call slides and discussion summary.

  12. Tank 12H residuals sample analysis report

    SciTech Connect (OSTI)

    Oji, L. N.; Shine, E. P.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.

    2015-06-11

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 12H final characterization samples to determine the residual tank inventory prior to grouting. Eleven Tank 12H floor and mound residual material samples and three cooling coil scrape samples were collected and delivered to SRNL between May and August of 2014.

  13. Hanford Communities Issue Briefing on Tank Farms

    Broader source: Energy.gov [DOE]

    Department of Energy Office of River Protection representatives Stacy Charboneau (Deputy Manager) and Tom Fletcher (Tank Farms Assistant Manager) and Washington State Department of Ecology's Suzanne Dahl (Tank Waste Section Manager) discuss Hanford's complex tank waste retrieval mission with members of the community.

  14. DOE Vehicular Tank Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview Monterey Gardiner, DOE 8:15 - 9:00 DOE-DOT CNG-H2 workshop summary Antonio Ruiz, DOE 9:00 - 9:30 Tank testing, R&D Joe Wong, Powertech 9:30 - 10:00 SAE J2579 ...

  15. Tank Waste Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 7, 2013 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE August 7, 2013 Richland, WA Topics in this Meeting Summary Opening ......................................................................................................................................................... 1 System Plan 7 - Part 1, Briefing and Committee Discussion ....................................................................... 1 System Plan 7 - Part 2, Committee Discussion and Potential

  16. Low-Global Warming Potential HVAC System with Ultra-Small Centrifugal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    range. Based on MSI's leading-edge research in ultra-small centrifugal compressors, ... including heat exchanger, control methodology, "drop in" replace-ability, and more ...

  17. Purchasing Energy-Efficient Hot Food Holding Cabinets | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hot Food Holding Cabinets Purchasing Energy-Efficient Hot Food Holding Cabinets The Federal Energy Management Program (FEMP) provides acquisition guidance for hot food holding cabinets, a product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition actions that are not specifically

  18. Glacial Energy Holdings (Rhode Island) | Open Energy Information

    Open Energy Info (EERE)

    Holdings Place: Rhode Island Website: www.glacialenergy.com Twitter: @nationalgridus Facebook: https:www.facebook.comnationalgrid Outage Hotline: 1-800-465-1212 Outage Map:...

  19. BioCentric Energy Inc formerly Nano Chemical Systems Holdings...

    Open Energy Info (EERE)

    search Name: BioCentric Energy Inc (formerly Nano Chemical Systems Holdings) Place: Santa Ana, California Zip: 90707 Product: California-based development-stage company that...

  20. Clean Energy Investment Center Holds its Inaugural Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Holds its Inaugural Laboratory-Investor Knowledge Seminar in Silicon Valley Clean Energy ... value proposition and commercialization pathway for bringing a technology to market. ...

  1. GCL Solar Energy Technology Holdings formerly GCL Silicon aka...

    Open Energy Info (EERE)

    GCL Silicon aka Jiangsu Zhongneng Polysilicon Jump to: navigation, search Name: GCL Solar Energy Technology Holdings (formerly GCL Silicon, aka Jiangsu Zhongneng Polysilicon)...

  2. Net Power Technology NP Holdings or NPH | Open Energy Information

    Open Energy Info (EERE)

    Holdings or NPH) Place: Chanchun, Jilin Province, China Sector: Efficiency, Renewable Energy Product: China-based company, focused on electricity storage systems based on...

  3. China Singyes Solar Technologies Holdings Ltd formerly known...

    Open Energy Info (EERE)

    formerly known as Singyes Curtain Wall Engineering Jump to: navigation, search Name: China Singyes Solar Technologies Holdings Ltd (formerly known as Singyes Curtain Wall...

  4. Energias Eolicas Europeas Holding SA | Open Energy Information

    Open Energy Info (EERE)

    SA Jump to: navigation, search Name: Energias Eolicas Europeas Holding SA Place: Spain Sector: Wind energy Product: Spain-based, company involved in the promotion of wind...

  5. Sample Memorandum to Reactivate a Directive Placed on Hold (NOTE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sample Memorandum to Reactivate a Directive Placed on Hold (NOTE: Per Office of Executive Secretariat procedures, please use Calibri, 12 point font for this memorandum.) (Effective...

  6. GCL Poly Energy Holdings Limited | Open Energy Information

    Open Energy Info (EERE)

    energy enterprise who specialize in developing, managing and operating green energy projects in mainland China. References: GCL-Poly Energy Holdings Limited1 This...

  7. BLM Manual 2803: Qualifications for Holding FLPMA Grants | Open...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: BLM Manual 2803: Qualifications for Holding FLPMA GrantsPermitting...

  8. Genesis Industries Holding Est GIH | Open Energy Information

    Open Energy Info (EERE)

    Vaduz, Liechtenstein Zip: 9495 Product: Liechtenstein-based holding group, acting as the operational management body for the Genesis Technology Fund. Coordinates: 47.138795,...

  9. Nova Biosource Fuels formerly Nova Energy Holding Inc | Open...

    Open Energy Info (EERE)

    Nova Energy Holding Inc) Place: Colbert, Washington State Zip: 99005 Product: Former oil company which has shifted its focus to biodiesel production. Coordinates: 47.831021,...

  10. Accent Energy Holdings, LLC (Texas) | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Accent Energy Holdings, LLC Place: Texas Phone Number: Business: 877-923-4447 Residential: 888-995-0992 Website: www.igsenergy.comaccent Twitter:...

  11. Innolas Holding GmbH | Open Energy Information

    Open Energy Info (EERE)

    Zip: D 82152 Sector: Solar Product: Manufactures equipment to produce crystalline silicon solar cells, thin film panels and wafers. References: Innolas Holding GmbH1 This article...

  12. Chemical Consortium Holdings Inc ChemCon | Open Energy Information

    Open Energy Info (EERE)

    Hydro, Hydrogen Product: Develops and operates projects in the bioethanol, biodiesel, methanol, hydrogen and liquid natural gas industries. References: Chemical Consortium Holdings...

  13. Hanford single-shell tank grouping study

    SciTech Connect (OSTI)

    Remund, K.M.; Anderson, C.M.; Simpson, B.C.

    1995-10-01

    A tank grouping study has been conducted to find Hanford single-shell tanks with similar waste properties. The limited sampling resources of the characterization program could be allocated more effectively by having a better understanding of the groups of tanks that have similar waste types. If meaningful groups of tanks can be identified, tank sampling requirements may be reduced, and the uncertainty of the characterization estimates may be narrowed. This tank grouping study considers the analytical sampling information and the historical information that is available for all single-shell tanks. The two primary sources of historical characterization estimates and information come from the Historical Tank Content Estimate (HTCE) Model and the Sort on Radioactive Waste Tanks (SORWT) Model. The sampling and historical information are used together to come up with meaningful groups of similar tanks. Based on the results of analyses presented in this report, credible tank grouping looks very promising. Some groups defined using historical information (HTCE and SORWT) correspond well with those based on analytical data alone.

  14. Centrifuge study of DNAPL transport in granular media

    SciTech Connect (OSTI)

    Pantazidou, M.; Abu-Hassanein, Z.S.; Riemer, M.F.

    2000-02-01

    The migration potential of dense nonaqueous phase liquids (DNAPLs) in saturated soil was investigated experimentally using the elevated acceleration field of the geotechnical centrifuge. The transport of the DNAPL was monitored with a video camera in flight, through the transparent wall of the sample box. By using measurements of the velocity of the DNAPL front from models corresponding to the same prototype and applying the technique of modeling of models, the stable infiltration of a low density, high viscosity DNAPL in saturated homogeneous media was shown to scale properly in the centrifuge. The visual observations confirmed the correlations between the DNAPL physicochemical properties and transport patterns, which have important consequences for the characterization of DNAPL-contaminated sites. Infiltrating DNAPLs of high density and low viscosity displace water in an unstable manner and create extensive contaminated areas characterized by non-uniform DNAPL distributions. In contrast, the displacement of water by DNAPLs of low density and high viscosity is stable and efficient, and hence, results in smaller contaminated areas of high DNAPL saturation. Numerical simulations yielded predictions and sensitivity analysis results that agreed well with these experimental observations.

  15. LISSAT Analysis of a Generic Centrifuge Enrichment Plant

    SciTech Connect (OSTI)

    Lambert, H; Elayat, H A; O?Connell, W J; Szytel, L; Dreicer, M

    2007-05-31

    The U.S. Department of Energy (DOE) is interested in developing tools and methods for use in designing and evaluating safeguards systems for current and future plants in the nuclear power fuel cycle. The DOE is engaging several DOE National Laboratories in efforts applied to safeguards for chemical conversion plants and gaseous centrifuge enrichment plants. As part of the development, Lawrence Livermore National Laboratory has developed an integrated safeguards system analysis tool (LISSAT). This tool provides modeling and analysis of facility and safeguards operations, generation of diversion paths, and evaluation of safeguards system effectiveness. The constituent elements of diversion scenarios, including material extraction and concealment measures, are structured using directed graphs (digraphs) and fault trees. Statistical analysis evaluates the effectiveness of measurement verification plans and randomly timed inspections. Time domain simulations analyze significant scenarios, especially those involving alternate time ordering of events or issues of timeliness. Such simulations can provide additional information to the fault tree analysis and can help identify the range of normal operations and, by extension, identify additional plant operational signatures of diversions. LISSAT analyses can be used to compare the diversion-detection probabilities for individual safeguards technologies and to inform overall strategy implementations for present and future plants. Additionally, LISSAT can be the basis for a rigorous cost-effectiveness analysis of safeguards and design options. This paper will describe the results of a LISSAT analysis of a generic centrifuge enrichment plant. The paper will describe the diversion scenarios analyzed and the effectiveness of various safeguards systems alternatives.

  16. Centrifugal microfluidic platform for ultrasensitive detection of botulinum toxin

    SciTech Connect (OSTI)

    Koh, Chung -Yan; Schaff, Ulrich Y.; Piccini, Matthew E.; Stanker, Larry H.; Cheng, Luisa W.; Ravichandran, Easwaran; Singh, Bal -Ram; Sommer, Greg J.; Singh, Anup K.

    2014-12-18

    In this study, we present an innovative centrifugal microfluidic immunoassay platform (SpinDx) to address the urgent biodefense and public health need for ultrasensitive point-of-care/incident detection of botulinum toxin. The simple, sample-to-answer centrifugal microfluidic immunoassay approach is based on binding of toxins to antibody-laden capture particles followed by sedimentation of the particles through a density-media in a microfluidic disk and quantification by laser-induced fluorescence. A blind, head-to-head comparison study of SpinDx versus the gold-standard mouse bioassay demonstrates 100-fold improvement in sensitivity (limit of detection = 0.09 pg/mL), while achieving total sample-to-answer time of <30 min with 2-μL required volume of the unprocessed sample. We further demonstrate quantification of botulinum toxin in both exogeneous (human blood and serum spiked with toxins) and endogeneous (serum from mice intoxicated via oral, intranasal, and intravenous routes) samples. SpinDx can analyze, without any sample preparation, multiple sample types including whole blood, serum, and food. It is readily expandable to additional analytes as the assay reagents (i.e., the capture beads and detection antibodies) are disconnected from the disk architecture and the reader, facilitating rapid development of new assays. SpinDx can also serve as a general-purpose immunoassay platform applicable to diagnosis of other conditions and diseases.

  17. Centrifugal microfluidic platform for ultrasensitive detection of botulinum toxin

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Koh, Chung -Yan; Schaff, Ulrich Y.; Sandstone Diagnostics, Livermore, CA; Piccini, Matthew E.; Cepheid, Sunnyvale, CA; Stanker, Larry H.; Cheng, Luisa W.; Ravichandran, Easwaran; Singh, Bal -Ram; Sommer, Greg J.; et al

    2014-12-18

    In this study, we present an innovative centrifugal microfluidic immunoassay platform (SpinDx) to address the urgent biodefense and public health need for ultrasensitive point-of-care/incident detection of botulinum toxin. The simple, sample-to-answer centrifugal microfluidic immunoassay approach is based on binding of toxins to antibody-laden capture particles followed by sedimentation of the particles through a density-media in a microfluidic disk and quantification by laser-induced fluorescence. A blind, head-to-head comparison study of SpinDx versus the gold-standard mouse bioassay demonstrates 100-fold improvement in sensitivity (limit of detection = 0.09 pg/mL), while achieving total sample-to-answer time of <30 min with 2-μL required volume of themore » unprocessed sample. We further demonstrate quantification of botulinum toxin in both exogeneous (human blood and serum spiked with toxins) and endogeneous (serum from mice intoxicated via oral, intranasal, and intravenous routes) samples. SpinDx can analyze, without any sample preparation, multiple sample types including whole blood, serum, and food. It is readily expandable to additional analytes as the assay reagents (i.e., the capture beads and detection antibodies) are disconnected from the disk architecture and the reader, facilitating rapid development of new assays. SpinDx can also serve as a general-purpose immunoassay platform applicable to diagnosis of other conditions and diseases.« less

  18. CRITICAL ASSUMPTIONS IN THE F-TANK FARM CLOSURE OPERATIONAL DOCUMENTATION REGARDING WASTE TANK INTERNAL CONFIGURATIONS

    SciTech Connect (OSTI)

    Hommel, S.; Fountain, D.

    2012-03-28

    The intent of this document is to provide clarification of critical assumptions regarding the internal configurations of liquid waste tanks at operational closure, with respect to F-Tank Farm (FTF) closure documentation. For the purposes of this document, FTF closure documentation includes: (1) Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the FTF PA) (SRS-REG-2007-00002), (2) Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site (DOE/SRS-WD-2012-001), (3) Tier 1 Closure Plan for the F-Area Waste Tank Systems at the Savannah River Site (SRR-CWDA-2010-00147), (4) F-Tank Farm Tanks 18 and 19 DOE Manual 435.1-1 Tier 2 Closure Plan Savannah River Site (SRR-CWDA-2011-00015), (5) Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 (SRRCWDA-2010-00003), and (6) Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the Tank 18/Tank 19 Special Analysis) (SRR-CWDA-2010-00124). Note that the first three FTF closure documents listed apply to the entire FTF, whereas the last three FTF closure documents listed are specific to Tanks 18 and 19. These two waste tanks are expected to be the first two tanks to be grouted and operationally closed under the current suite of FTF closure documents and many of the assumptions and approaches that apply to these two tanks are also applicable to the other FTF waste tanks and operational closure processes.

  19. Alternative Fuels Data Center: Filling CNG Fuel Tanks

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Filling CNG Fuel Tanks to someone by E-mail Share Alternative Fuels Data Center: Filling CNG Fuel Tanks on Facebook Tweet about Alternative Fuels Data Center: Filling CNG Fuel Tanks on Twitter Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Google Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Delicious Rank Alternative Fuels Data Center: Filling CNG Fuel Tanks on Digg Find More places to share Alternative Fuels Data Center: Filling CNG Fuel Tanks on

  20. RECOMMENDATIONS FOR SAMPLING OF TANK 18 IN F TANK FARM

    SciTech Connect (OSTI)

    Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual floor material in Tank 18 prior to operational closure. Tank 18 is an 85-foot diameter, 34-foot high carbon steel tank with nominal operating volume of 1,300,000 gallons. It is a Type IV tank, and has been in service storing radioactive materials since 1959. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual material, Huff and Thaxton [2009] developed a plan to sample the material during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual floor material separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 18 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 18. The procedure computes the uncertainty in analyte concentration as a function of the number of samples, and the final number of samples is determined when the reduction in the uncertainty from an additional sample no longer has a practical impact on results. The characterization of the full suite of analytes in the North hemisphere is currently supported by a single Mantis rover sample obtained from a compact region near the center riser. A floor scrape sample was obtained from a compact region near the northeast riser and has been analyzed for a shortened list of key analytes. Since the unused portion of the floor scrape sample material is archived and available in sufficient quantity, additional analyses need to be performed to complete results for the full suite of constituents. The characterization of the full suite of analytes in the South hemisphere is currently supported by a single Mantis rover sample; there have been no floor scrape samples previously taken from the South hemisphere. The criterion to determine the number of additional samples was based on the practical reduction in the uncertainty when a new sample is added. This was achieved when five additional samples are obtained. In addition, two archived samples will be used if a contingency such as failing to demonstrate the comparability of the Mantis samples to the floor scrape samples occurs. To complete sampling of the Tank 18 residual floor material, three additional samples should be taken from the North hemisphere and four additional samples should be taken from the South hemisphere. One of the samples from each hemisphere will be archived in case of need. Two of the three additional samples from the North hemisphere and three of the four additional samples from the South hemisphere will be analyzed. Once the results are available, differences between the Mantis and three floor scrape samples (the sample previously obtained near NE riser plus the two additional samples that will be analyzed) results will be evaluated. If there are no statistically significant analyte concentration differences between the Mantis and floor scrape samples, those results will be combined and then UCL95%s will be calculated. If the analyte concentration differences between the Mantis and floor scrape samples are statistically significant, the UCL95%s will be calculated without the Mantis sample results. If further reduction in the upper confidence limits is needed and can be achieved by the addition of the archived samples, they will be analyzed and included in the stati

  1. 241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-30

    This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

  2. 241-SY Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-25

    This report provides the results of an extent of condition construction history review for tanks 241-SY-101, 241-SY-102, and 241-SY-103. The construction history of the 241-SY tank farm has been reviewed to identify issues similar to those experienced during tank 241-AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank 241-AY-102 as the comparison benchmark. In the 241-SY tank farm, the third DST farm constructed, refractory quality and stress relief were improved, while similar tank and liner fabrication issues remained.

  3. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    SciTech Connect (OSTI)

    MACKEY, T.C.

    2006-03-17

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.

  4. 2020 Vision for Tank Waste Cleanup (One System Integration) - 12506

    SciTech Connect (OSTI)

    Harp, Benton; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The Cleanup of Hanford's 56 million gallons of radioactive and chemical waste stored in 177 large underground tanks represents the Department's largest and most complex environmental remediation project. Sixty percent by volume of the nation's high-level radioactive waste is stored in the underground tanks grouped into 18 'tank farms' on Hanford's central plateau. Hanford's mission to safely remove, treat and dispose of this waste includes the construction of a first-of-its-kind Waste Treatment Plant (WTP), ongoing retrieval of waste from single-shell tanks, and building or upgrading the waste feed delivery infrastructure that will deliver the waste to and support operations of the WTP beginning in 2019. Our discussion of the 2020 Vision for Hanford tank waste cleanup will address the significant progress made to date and ongoing activities to manage the operations of the tank farms and WTP as a single system capable of retrieving, delivering, treating and disposing Hanford's tank waste. The initiation of hot operations and subsequent full operations of the WTP are not only dependent upon the successful design and construction of the WTP, but also on appropriately preparing the tank farms and waste feed delivery infrastructure to reliably and consistently deliver waste feed to the WTP for many decades. The key components of the 2020 vision are: all WTP facilities are commissioned, turned-over and operational, achieving the earliest possible hot operations of completed WTP facilities, and supplying low-activity waste (LAW) feed directly to the LAW Facility using in-tank/near tank supplemental treatment technologies. A One System Integrated Project Team (IPT) was recently formed to focus on developing and executing the programs that will be critical to successful waste feed delivery and WTP startup. The team is comprised of members from Bechtel National, Inc. (BNI), Washington River Protection Solutions LLC (WRPS), and DOE-ORP and DOE-WTP. The IPT will combine WTP and WRPS capabilities in a mission-focused model that is clearly defined, empowered and cost efficient. The genesis for this new team and much of the 2020 vision is based on the work of an earlier team that was tasked with identifying the optimum approach to startup, commissioning, and turnover of WTP facilities for operations. This team worked backwards from 2020 - a date when the project will be completed and steady-state operations will be underway - and identified success criteria to achieving safe and efficient operations of the WTP. The team was not constrained by any existing contract work scope, labor, or funding parameters. Several essential strategies were identified to effectively realize the one-system model of integrated feed stream delivery, WTP operations, and product delivery, and to accomplish the team's vision of hot operations beginning in 2016: - Use a phased startup and turnover approach that will allow WTP facilities to be transitioned to an operational state on as short a timeline as credible. - Align Tank Farm (TF) and WTP objectives such that feed can be supplied to the WTP when it is required for hot operations. - Ensure immobilized waste and waste recycle streams can be recei

  5. Hanford waste tank bump accident analysis

    SciTech Connect (OSTI)

    MALINOVIC, B.

    2003-03-21

    This report provides a new evaluation of the Hanford tank bump accident analysis (HNF-SD-Wh4-SAR-067 2001). The purpose of the new evaluation is to consider new information and to support new recommendations for final safety controls. This evaluation considers historical data, industrial failure modes, plausible accident scenarios, and system responses. A tank bump is a postulated event in which gases, consisting mostly of water vapor, are suddenly emitted from the waste and cause tank headspace pressurization. A tank bump is distinguished from a gas release event in two respects: First, the physical mechanism for release involves vaporization of locally superheated liquid, and second, gases emitted to the head space are not flammable. For this reason, a tank bump is often called a steam bump. In this report, even though non-condensible gases may be considered in bump models, flammability and combustion of emitted gases are not. The analysis scope is safe storage of waste in its current configuration in single-shell tanks (SSTs) and double-shell tanks (DSTs). The analysis considers physical mechanisms for tank bump to formulate criteria for bump potential, application of the criteria to the tanks, and accident analysis of bump scenarios. The result of consequence analysis is the mass of waste released from tanks for specific scenarios where bumps are credible; conversion to health consequences is performed elsewhere using standard Hanford methods (Cowley et al. 2000). The analysis forms a baseline for future extension to consider waste retrieval.

  6. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011

    SciTech Connect (OSTI)

    West, B.; Waltz, R.

    2012-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.

  7. Centrifuge enrichment plants. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The bibliography contains citations concerning the design, control, monitoring, and safety of centrifuge enrichment plants. Power supplies, enrichment plant safeguards, facility design, cascade heater test loops to monitor the enrichment process, inspection strategies, and the socioeconomic effects of centrifuge enrichment plants are examined. Radioactive waste disposal problems are considered. (Contains a minimum of 172 citations and includes a subject term index and title list.)

  8. Centrifuge enrichment plants. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1993-09-01

    The bibliography contains citations concerning the design, control, monitoring, and safety of centrifuge enrichment plants. Power supplies, enrichment plant safeguards, facility design, cascade heater test loops to monitor the enrichment process, inspection strategies, and the socioeconomic effects of centrifuge enrichment plants are examined. Radioactive waste disposal problems are considered. (Contains a minimum of 171 citations and includes a subject term index and title list.)

  9. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    SciTech Connect (OSTI)

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature limitations of the encoder, it could not be operated at air cooled condensing temperatures. (7) The two-stage impellers/diffusers worked well separately but combined did not match well.

  10. NMAC 20.5.2 Petroleum Storage Tanks Registration of Tanks | Open...

    Open Energy Info (EERE)

    .2 Petroleum Storage Tanks Registration of Tanks Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NMAC 20.5.2 Petroleum...

  11. Method of operating a centrifugal plasma arc furnace

    DOE Patents [OSTI]

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1998-03-24

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

  12. Systems approach used in the Gas Centrifuge Enrichment Plant

    SciTech Connect (OSTI)

    Rooks, W.A. Jr.

    1982-01-01

    A requirement exists for effective and efficient transfer of technical knowledge from the design engineering team to the production work force. Performance-Based Training (PBT) is a systematic approach to the design, development, and implementation of technical training. This approach has been successfully used by the US Armed Forces, industry, and other organizations. The advantages of the PBT approach are: cost-effectiveness (lowest life-cycle training cost), learning effectiveness, reduced implementation time, and ease of administration. The PBT process comprises five distinctive and rigorous phases: Analysis of Job Performance, Design of Instructional Strategy, Development of Training Materials and Instructional Media, Validation of Materials and Media, and Implementation of the Instructional Program. Examples from the Gas Centrifuge Enrichment Plant (GCEP) are used to illustrate the application of PBT.

  13. Method of operating a centrifugal plasma arc furnace

    DOE Patents [OSTI]

    Kujawa, Stephan T.; Battleson, Daniel M.; Rademacher, Jr., Edward L.; Cashell, Patrick V.; Filius, Krag D.; Flannery, Philip A.; Whitworth, Clarence G.

    1998-01-01

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.

  14. SRS F Tank Farm Performance Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Office Art SRS F Tank Farm Performance Assessment The Department of Energy (DOE) is providing the Savannah River Site (SRS) F Tank Farm Performance Assessment (FTF PA) for external review by the Nuclear Regulatory Commission (NRC), the South Carolina Department of Health and Environmental Control (SCDHEC), and the Environmental Protection Agency (EPA). This document provides information to support subsequent DOE, NRC, SCDHEC, and EPA F Area Tank Closure Program actions and decisions,

  15. PCB Analysis Plan for Tank Archive Samples

    SciTech Connect (OSTI)

    NGUYEN, D.M.

    2001-03-22

    This analysis plan specifies laboratory analysis, quality assurance/quality control (QA/QC), and data reporting requirements for analyzing polychlorinated biphenyls (PCB) concentrations in archive samples. Tank waste archive samples that are planned for PCB analysis are identified in Nguyen 2001. The tanks and samples are summarized in Table 1-1. The analytical data will be used to establish a PCB baseline inventory in Hanford tanks.

  16. ICPP tank farm closure study. Volume 1

    SciTech Connect (OSTI)

    Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M.

    1998-02-01

    The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituents are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.

  17. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010

    SciTech Connect (OSTI)

    West, B.; Waltz, R.

    2011-06-23

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

  18. FY 1996 Tank waste analysis plan

    SciTech Connect (OSTI)

    Homi, C.S.

    1996-09-18

    This Tank Waste Analysis Plan (TWAP) describes the activities of the Tank Waste Remediation System (TWRS) Characterization Project to plan, schedule, obtain, and document characterization information on Hanford waste tanks. This information is required to meet several commitments of Programmatic End-Users and the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement. This TWAP applies to the activities scheduled to be completed in fiscal year 1996.

  19. Single-Shell Tank Evaluations - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single-Shell Tank Evaluations Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site Budget Hanford Site Safety Standards DOE - ORP Contracts/Procurements DOE - RL Contracts/Procurements Integrated Waste Feed Delivery Plan Single-Shell Tank Evaluations Deep Vadose Zone 100-F RI/FS Sitewide Probabilistic Seismic Hazard Analysis Environmental Single-Shell Tank Evaluations Email Email Page | Print Print Page |Text

  20. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    SciTech Connect (OSTI)

    Quigley, K.D.; Butterworth, St.W.; Lockie, K.A.

    2008-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

  1. Carderock Tow Tank 3 | Open Energy Information

    Open Energy Info (EERE)

    3 Jump to: navigation, search Basic Specifications Facility Name Carderock Tow Tank 3 Overseeing Organization United States Naval Surface Warfare Center Hydrodynamic Testing...

  2. Tank Farms Regulator Perspective Hanford Advisory Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Decree compliant Identify areas of improvement Determine need for double shell tank space Case 1* Consent Decree Compliant Case 2* Direct Feed Low-Activity Waste and...

  3. Dynamics of solid-containing tanks

    SciTech Connect (OSTI)

    Veletsos, A.S.; Younan, A.H.; Bandyopadhyay, K.

    1997-01-01

    Making use of a relatively simple, approximate but reliable method of analysis, a study is made of the responses to horizontal base shaking of vertical, circular cylindrical tanks that are filled with a uniform viscoelastic material. The method of analysis is described, and comprehensive numerical data are presented that elucidate the underlying response mechanisms and the effects and relative importance of the various parameters involved. In addition to the characteristics of the ground motion and a dimensionless measure of the tank wall flexibility relative to the contained medium, the parameters examined include the ratio of tank-height to tank-radius and the physical properties of the contained material. Both harmonic and earthquake-induced ground motions are considered. The response quantities investigated are the dynamic wall pressures, the critical forces in the tank wall, and the forces exerted on the foundation. Part A of the report deals with rigid tanks while the effects of tank wall flexibility are examined in Part B. A brief account is also given in the latter part of the interrelationship of the critical responses of solid-containing tanks and those induced in tanks storing a liquid of the same mass density.

  4. continuously jet-stirred tank reactor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    continuously jet-stirred tank reactor - Sandia Energy Energy Search Icon Sandia Home ... Predictive Simulation of Engines Transportation Energy Consortiums Engine Combustion ...

  5. Tank waste remediation systems technical baseline database

    SciTech Connect (OSTI)

    Porter, P.E.

    1996-10-16

    This document includes a cassette tape that contains Hanford generated data for the Tank Waste Remediation Systems Technical Baseline Database as of October 09, 1996.

  6. Hanford Site C Tank Farm Meeting Summary

    Office of Environmental Management (EM)

    4800 EDTECN: DRF UC: Cost Center: Charge Code: B&R Code: Total Pages: 13 Key Words: Waste Management Area C, Performance Assessment, tank closure, waste inventory...

  7. Hanford Site C Tank Farm Meeting Summary

    Office of Environmental Management (EM)

    EDTECN: DRF UC: Cost Center: Charge Code: B&R Code: Total Pages: 16 Key Words: Waste Management Area C, Perfonnance Assessment, tank closure, waste inventory...

  8. Shark Tank: Residential Energy Efficiency Edition | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Strengthening the Front Lines: Sales Training and Continuing Education for Contractors Shark Tank: Residential Energy Efficiency Edition - Episode 2 ...

  9. Energy Secretary Moniz to Hold Media Briefing on Energy Department's

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fiscal Year 2017 Budget Request | Department of Energy Hold Media Briefing on Energy Department's Fiscal Year 2017 Budget Request Energy Secretary Moniz to Hold Media Briefing on Energy Department's Fiscal Year 2017 Budget Request February 4, 2016 - 11:38am Addthis News Media Contact 202-586-4940 DOENews@hq.doe.gov WASHINGTON- On Tuesday, February 9, 2016, U.S. Department of Energy Secretary Ernest Moniz will hold a media briefing on DOE's Fiscal Year 2017 Budget Request, outlining DOE's

  10. Developing and Testing an Alkaline-Side Solvent Extraction Process for Technetium Separation from Tank Waste

    SciTech Connect (OSTI)

    Leonard, Ralph A.; Conner, Cliff; Liberatore, Matthew W.; Bonnesen, Peter V.; Presley, Derek J.; Moyer, Bruce A.; Lumetta, Gregg J. )

    1998-11-01

    Engineering development and testing of the SRTALK solvent extraction process are discussed in this paper. This process provides a way to carry out alkaline-side removal and recovery of technetium in the form of pertechnetate anion from nuclear waste tanks within the DOE complex. The SRTALK extractant consists of a crown ether, bis-4,4'(5')[(tert-butyl)cyclohexano]-18-crown-6, in a modifier, tributyl phosphate, and a diluent, Isopar-L. The SRTALK flowsheet given here separates technetium form the waste and concentrates it by a factor of ten to minimize the load on downstream evaporator for the technetium effluent. In this work, we initially generated and correlated the technetium extraction data, measured the dispersion number for various processing conditions, and determined hydraulic performance in a single-stage 2-cm centrifugal contactor. Then we used extraction-factor analysis, single-stage contactor tests, and stage-to-stage process calculations to develop a SRTALK flowsheet . Key features of the flowsheet are (1) a low organic-to-aqueous (O/A) flow ratio in the extraction section and a high O/A flow ratio in the strip section to concentrate the technetium and (2) the use of a scrub section to reduce the salt load in the concentrated technetium effluent. Finally, the SRTALK process was evaluated in a multistage test using a synthetic tank waste. This test was very successful. Initial batch tests with actual waste from the Hanford nuclear waste tanks show the same technetium extractability as determined with the synthetic waste feed. Therefore, technetium removal from actual tank wastes should also work well using the SRTALK process.

  11. Supporting document for the historical tank content estimate for AN-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AN-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  12. Supporting document for the historical tank content estimate for C-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on C-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  13. Supporting document for the historical tank content estimate for BY-Tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on BY-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  14. Supporting document for the historical tank content estimate for AP-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AP-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  15. Supporting document for the historical tank content estimate for AW-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H., Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AW-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  16. Supporting document for the historical tank content estimate for A-Tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on A-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  17. Supporting document for the historical tank content estimate for BX-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on BX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  18. Supporting document for the historical tank content estimate for AY-tank farm

    SciTech Connect (OSTI)

    Brevick, C H; Stroup, J L; Funk, J. W.

    1997-03-12

    This Supporting Document provides historical in-depth characterization information on AY-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  19. Supporting document for the historical tank content estimate for the S-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H., Fluor Daniel Hanford

    1997-02-25

    This Supporting Document provides historical in-depth characterization information on S-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

  20. Supporting document for the historical tank content estimate for B-Tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on B-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  1. Supporting document for the historical tank content estimate for AX-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H., Westinghouse Hanford

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on AX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  2. Supporting document for the historical tank content estimate for the SX-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H., Fluor Daniel Hanford

    1997-02-25

    This Supporting Document provides historical in-depth characterization information on SX-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

  3. Supporting document for the historical tank content estimate for S tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200 West Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to all the SSTs in the S Tank Farm of the southwest quadrant of the 200 West Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  4. Tank characterization report for single-shell tank 241-BY-112

    SciTech Connect (OSTI)

    Baldwin, J.H.

    1997-08-22

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-BY-112. This report supports the requirements of the Tri-Party Agreement Milestone M-44-10. (This tank has been designated a Ferrocyanide Watch List tank.)

  5. Tank farms essential drawing plan

    SciTech Connect (OSTI)

    Domnoske-Rauch, L.A.

    1998-08-04

    The purpose of this document is to define criteria for selecting Essential Drawings, Support Drawings, and Controlled Print File (CPF) drawings and documents for facilities that are part of East and West Tank Farms. Also, the drawings and documents that meet the criteria are compiled separate listings. The Essential Drawing list and the Support Drawing list establish a priority for updating technical baseline drawings. The CPF drawings, denoted by an asterisk (*), defined the drawings and documents that Operations is required to maintain per the TWRS Administration Manual. The Routing Boards in Buildings 272-WA and 272-AW are not part of the CPF.

  6. Proof of concept and performance optimization of high gravity batch type centrifuge for dewatering fine coal

    SciTech Connect (OSTI)

    Smith, L.B.; Durney, T.E. Jr.

    1991-04-23

    Coal Technology Corporation (CTC) believes that the new CTC high gravity, high production, batch type centrifugal dryer technology can play a significant role in improving the product quality as well as costs of operation in coal processing plants. It is further believed that the new centrifugal dryer technology can form an important part in systems used to clean up millions of tons of coal fines in refuse piles and ponds. It is anticipated that the new centrifuge can become an important ancillary to the advanced deep cleaning processes for coal. Because of these convictions, CTC has been engaged in a pioneering research effort into the new art of drying fine clean coal in high gravity, high production, batch type of centrifuge, since 1981. This work has progressed to the point where the new centrifugal dryer technology is nearly ready for commercialization. It promises to provide needed fine coal drying capability at somewhat lower capital costs and at substantially lower operating costs than competitive systems. It also promises to do so with no detrimental effects on either the coal quality or the environment. The primary objective of this project is to prove the concept of a high gravity batch centrifuge for drying coal fines in a commercial coal processing plant environment. The proof of concept tests also include testing with a variety of coals from different regions. A further objective is to optimize the efficiency and the cost effectiveness of the new centrifugal dryer technology. 2 figs., 3 tabs.

  7. SRS Waste Tanks 5 and 6 Are Operationally Closed | Department...

    Office of Environmental Management (EM)

    SRS Waste Tanks 5 and 6 Are Operationally Closed SRS Waste Tanks 5 and 6 Are Operationally Closed December 19, 2013 - 12:00pm Addthis The final amount of grout is poured into Tank ...

  8. SRS Reaches Significant Milestone with Waste Tank Closure | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy SRS Reaches Significant Milestone with Waste Tank Closure SRS Reaches Significant Milestone with Waste Tank Closure Addthis Description SRS Reaches Significant Milestone with Waste Tank Closure

  9. Independent Activity Report, Hanford Tank Farms - April 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tank Farms - April 2013 Independent Activity Report, Hanford Tank Farms - April 2013 April 2013 Operational Awareness at the Hanford Tank Farms HIAR-HANFORD-2013-04-15 The Office...

  10. Hydrogen Tank Testing R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tank Testing R&D Hydrogen Tank Testing R&D These slides were presented at the Onboard Storage Tank Workshop on April 29, 2010. PDF icon hydrogentanktestingostw.pdf More Documents ...

  11. Hanford Site C Tank Farm Meeting Summary - May 2009 | Department...

    Office of Environmental Management (EM)

    May 2009 Hanford Site C Tank Farm Meeting Summary - May 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank...

  12. Hanford Site C Tank Farm Meeting Summary - July 2010 | Department...

    Office of Environmental Management (EM)

    July 2010 Hanford Site C Tank Farm Meeting Summary - July 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank...

  13. Hanford Site C Tank Farm Meeting Summary - September 2010 | Department...

    Office of Environmental Management (EM)

    10 Hanford Site C Tank Farm Meeting Summary - September 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank...

  14. Hanford Site C Tank Farm Meeting Summary - January 2010 | Department...

    Office of Environmental Management (EM)

    0 Hanford Site C Tank Farm Meeting Summary - January 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank Farm...

  15. Hanford Site C Tank Farm Meeting Summary - May 2011 | Department...

    Office of Environmental Management (EM)

    1 Hanford Site C Tank Farm Meeting Summary - May 2011 PDF icon Hanford Site C Tank Farm Meeting Summary More Documents & Publications Hanford Site C Tank Farm Meeting Summary -...

  16. Hanford Site C Tank Farm Meeting Summary - September 2009 | Department...

    Office of Environmental Management (EM)

    09 Hanford Site C Tank Farm Meeting Summary - September 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank...

  17. Hanford Site C Tank Farm Meeting Summary - January 2011 | Department...

    Office of Environmental Management (EM)

    1 Hanford Site C Tank Farm Meeting Summary - January 2011 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank Farm...

  18. Hanford Site C Tank Farm Meeting Summary - May 2010 | Department...

    Office of Environmental Management (EM)

    0 Hanford Site C Tank Farm Meeting Summary - May 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank Farm...

  19. Alpha Calutron tank | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calutron tank Alpha Calutron tank The C-shaped alpha calutron tank, together with its emitters and collectors on the lower-edge door, was removed in a special drydock from the magnet for the recovery of uranium-235

  20. BAIC CT T SK Holdings JV | Open Energy Information

    Open Energy Info (EERE)

    JV Place: Beijing Municipality, China Product: China-based JV to manufacture and sell electric cars. References: BAIC, CT&T & SK Holdings JV1 This article is a stub. You can...

  1. Glacial Energy Holdings (District of Columbia) | Open Energy...

    Open Energy Info (EERE)

    Glacial Energy Holdings Place: District of Columbia References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA Form 861 Data Utility Id 54871 This article is a stub....

  2. Pangea LNG (North America) Holdings, LLC- 14-003-CIC

    Broader source: Energy.gov [DOE]

    Amendment of Application to Export LNG to Non-free Trade Agreement Countries to Reflect a Change in Ownership of Pangea LNG (North America) Holdings, LLC  to Next Decade Partners, LLC. and Revision...

  3. Energy Plus Holdings LLC (Texas) | Open Energy Information

    Open Energy Info (EERE)

    Energy Plus Holdings LLC Place: Texas References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA Form 861 Data Utility Id 56265 This article is a stub. You can help...

  4. Energy Plus Holdings LLC (Maryland) | Open Energy Information

    Open Energy Info (EERE)

    Energy Plus Holdings LLC Place: Maryland Phone Number: 1-877-580-3915 or 1-877-826-9931 Website: www.energypluscompany.comserv Twitter: @EnergyPlusCo Facebook: https:...

  5. Energy Plus Holdings LLC (New York) | Open Energy Information

    Open Energy Info (EERE)

    Energy Plus Holdings LLC Place: New York Phone Number: 1-877-320-0356 or 1-877-770-3372 Website: www.energypluscompany.comserv Twitter: https:twitter.comEnergyPlusCo...

  6. Fact #656: January 3, 2011 Consumers Hold onto Vehicles Longer

    Broader source: Energy.gov [DOE]

    Consumers are holding onto both their new and used vehicles for longer periods of time. The length of time a consumer keeps a new vehicle has risen each quarter since 2008 to an average of 63.9...

  7. Renewable Energy Holdings Landfill Gas Wales Ltd REH Wales |...

    Open Energy Info (EERE)

    Gas Wales Ltd REH Wales Jump to: navigation, search Name: Renewable Energy Holdings Landfill Gas (Wales) Ltd (REH Wales) Place: United Kingdom Product: A joint venture to own and...

  8. Glacial Energy Holdings (New Hampshire) | Open Energy Information

    Open Energy Info (EERE)

    Hampshire) Jump to: navigation, search Name: Glacial Energy Holdings Place: New Hampshire Phone Number: 1-888-452-2425 Website: www.glacialenergy.com Outage Hotline: 800-465-1212...

  9. Clean Energy Investment Center Holds its Inaugural Laboratory-Investor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Knowledge Seminar in Silicon Valley | Department of Energy Holds its Inaugural Laboratory-Investor Knowledge Seminar in Silicon Valley Clean Energy Investment Center Holds its Inaugural Laboratory-Investor Knowledge Seminar in Silicon Valley May 3, 2016 - 3:39pm Addthis Success! The Clean Energy Investment Center (CEIC) held its inaugural Laboratory-Investor Knowledge Seminar (LINKS) on Thursday, April 28, co-hosted with Lawrence Livermore National Laboratory at Innovate Pleasanton in

  10. Jefferson Lab holds educational, insightful science lectures in June |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab holds educational, insightful science lectures in June Jefferson Lab holds educational, insightful science lectures in June June 11, 2007 Jefferson Lab is hosting two free, public lectures on consecutive evenings in June. The Monday, June 18, presentation highlights the genius and scientific discoveries of Benjamin Franklin. By establishing that lightning is electrical and that electricity involves charge, Franklin's research opened the way for many new discoveries. Fred Dylla,

  11. GNEP Nations Hold Infrastructure Development Working Group Meeting |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy GNEP Nations Hold Infrastructure Development Working Group Meeting GNEP Nations Hold Infrastructure Development Working Group Meeting December 10, 2008 - 5:11pm Addthis WASHINGTON, DC - Representatives from the U.S. Department of Energy (DOE) participated this week in the third Global Nuclear Energy Partnership (GNEP) Infrastructure Development Working Group (IDWG), underscoring the Department's commitment to ensuring that global expansion of civilian nuclear power is

  12. Downhole Sensor Holds Transformative Potential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Downhole Sensor Holds Transformative Potential Downhole Sensor Holds Transformative Potential December 13, 2013 - 12:00am Addthis Long-term operation of electronics at high temperatures remains a challenge for the geothermal sector; many downhole sensors are prone to failure when deployed in high-temperature wells, which limits the availability and complexity of logging tools available for use in geothermal energy extraction. Funded by a GTO Recovery Act award, GE Global Research has elevated

  13. Water holding capacities of fly ashes: Effect of size fractionation

    SciTech Connect (OSTI)

    Sarkar, A.; Rano, R.

    2007-07-01

    Water holding capacities of fly ashes from different thermal power plants in Eastern India have been compared. Moreover, the effect of size fractionation (sieving) on the water holding capacities has also been determined. The desorption rate of water held by the fly ash fractions at ambient temperature (25-30{sup o}C) has been investigated. The effect of mixing various size fractions of fly ash in increasing the water holding capacities of fly ash has been studied. It is observed that the fly ash obtained from a thermal power plant working on stoker-fired combustor has the highest water holding capacity, followed by the one that works on pulverized fuel combustor. Fly ash collected from super thermal power plant has the least water holding capacity (40.7%). The coarser size fractions of fly ashes in general have higher water holding capacities than the finer ones. An attempt has been made to correlate the results obtained, with the potential use in agriculture.

  14. Double-Shell Tank Visual Inspection Changes Resulting from the Tank 241-AY-102 Primary Tank Leak

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Washenfelder, Dennis J.; Johnson, Jeremy M.; Engeman, Jason K.

    2013-11-14

    As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY-102 (AY-102) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY-102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances of the tank AY-102 1eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor.

  15. Analysis of gas centrifuge cascade for separation of multicomponent isotopes and optimal feed position

    SciTech Connect (OSTI)

    Chuntong Ying; Hongjiang Wu; Mingsheng Zhou; Yuguang Nie; Guangjun Liu

    1997-10-01

    Analysis of the concentration distribution in a gas centrifuge cascade for separation of multicomponent isotope mixtures is different from that in a cascade for separation of two-component mixtures. This paper presents the governing equations for a multicomponent isotope separation cascade. Numerically predicted separation factors for the gas centrifuge cascade agree well with the experimental data. A theoretical optimal feed position is derived for a short square cascade for a two-component mixture in a close-separation case. The optimal feed position for a gas centrifuge cascade for separation of multicomponent mixture is discussed.

  16. Tank waste remediation system compensatory measure removal

    SciTech Connect (OSTI)

    MILLIKEN, N.J.

    1999-05-18

    In support of Fiscal Year 1998 Performance Agreement TWR1.4.3, ''Replace Compensatory Measures,'' the Tank Waste Remediation System is documenting the completion of field modifications supporting the removal of the temporary exemptions from the approved Tank Waste Remediation System Technical Safety Requirements (TSRs), HNF-SD-WM-TSR-006. These temporary exemptions or compensatory measures expire September 30, 1998.

  17. H-Tank Farm Waste Determination

    Broader source: Energy.gov [DOE]

    On Dec. 19, 2014, the Energy Secretary signed a determination that allows the Savannah River Site (SRS) in South Carolina to complete cleanup and closure of the underground liquid waste tanks in the H Tank Farm as they are emptied and cleaned. The action marked a major milestone in efforts to clean up the Cold War legacy at SRS.

  18. Tanks Focus Area annual report FY2000

    SciTech Connect (OSTI)

    2000-12-01

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for over 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area.

  19. Annual radioactive waste tank inspection program - 1999

    SciTech Connect (OSTI)

    Moore, C.J.

    2000-04-14

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1999 to evaluate these vessels and auxiliary appurtenances along with evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report.

  20. Annual radioactive waste tank inspection program - 1996

    SciTech Connect (OSTI)

    McNatt, F.G.

    1997-04-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1996 to evaluate these vessels, and evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

  1. Annual radioactive waste tank inspection program - 1992

    SciTech Connect (OSTI)

    McNatt, F.G.

    1992-12-31

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1992 to evaluate these vessels and evaluations based on data accrued by inspections made since the tanks were constructed are the subject of this report.

  2. Annual Radioactive Waste Tank Inspection Program - 1997

    SciTech Connect (OSTI)

    McNatt, F.G.

    1998-05-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1997 to evaluate these vessels, and evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report.

  3. Annual Radioactive Waste Tank Inspection Program - 1998

    SciTech Connect (OSTI)

    McNatt, F.G.

    1999-10-27

    Aqueous radioactive wastes from Savannah River Site separations processes are contained in large underground carbon steel tanks. Inspections made during 1998 to evaluate these vessels and auxiliary appurtenances, along with evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

  4. Annual radioactive waste tank inspection program: 1995

    SciTech Connect (OSTI)

    McNatt, F.G. Sr.

    1996-04-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1995 to evaluate these vessels and evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report

  5. Tank Waste Committee Summaries - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Advisory Board Committee Meeting Information Tank Waste Committee Hanford Advisory Board Convening Report SSAB Guidance Memorandum of Understanding Membership Nomination and Appointment Process Operating Ground Rules Calendars Advice and Responses Full Board Meeting Information Committee Meeting Information Outgoing Board Correspondence Key Board Products and Special Reports HAB Annual Report HAB and Committee Lists Points of Contact Related Links Tank Waste Committee Summaries Email

  6. Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford...

    Office of Environmental Management (EM)

    ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report ...

  7. Montana Underground Storage Tanks Webpage | Open Energy Information

    Open Energy Info (EERE)

    Underground Storage Tanks Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Underground Storage Tanks Webpage Abstract Provides overview...

  8. Alaska Underground Storage Tanks Website | Open Energy Information

    Open Energy Info (EERE)

    Underground Storage Tanks Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska Underground Storage Tanks Website Author Division of Spill...

  9. Hawaii Department of Health Underground Storage Tank Webpage...

    Open Energy Info (EERE)

    Underground Storage Tank Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Department of Health Underground Storage Tank Webpage Abstract...

  10. Renewable Energy Plants in Your Gas Tank: From Photosynthesis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plants in Your Gas Tank: From Photosynthesis to Ethanol (4 Activities) Renewable Energy Plants in Your Gas Tank: From Photosynthesis to Ethanol (4 Activities) Below is information...

  11. Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and ...

  12. Study of Caustic Corrosion of Carbon Steel Waste Tanks (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Study of Caustic Corrosion of Carbon Steel Waste Tanks Citation Details In-Document Search Title: Study of Caustic Corrosion of Carbon Steel Waste Tanks You are ...

  13. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution of the radioactive and chemical constituents of the tank waste among the ... Information on the basis for the chemical and radionuclide composition (1) in the tanks, ...

  14. Microsoft Word - Tank Waste Report 9-30-05.doc

    Office of Environmental Management (EM)

    Accelerated Tank Waste Retrieval Activities at the Hanford Site DOEIG-0706 October 2005 REPORT ON THE ACCELERATED TANK WASTE RETRIEVAL ACTIVITIES AT THE HANFORD SITE TABLE OF ...

  15. Utah Underground Storage Tank Installation Permit | Open Energy...

    Open Energy Info (EERE)

    Storage Tank Installation Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Underground Storage Tank Installation Permit Form Type Application...

  16. Texas Petroleum Storage Tanks Webpage | Open Energy Information

    Open Energy Info (EERE)

    Petroleum Storage Tanks Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Texas Petroleum Storage Tanks Webpage Author Texas Commission on...

  17. Independent Oversight Activity Report, Hanford Waste Tank Farms...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tank Farms - October 28 - November 6, 2013 Independent Oversight Activity Report, Hanford Waste Tank Farms - October 28 - November 6, 2013 February 2014 Follow-up on Previously...

  18. Nevada Underground Tank Program Webpage | Open Energy Information

    Open Energy Info (EERE)

    Underground Tank Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Nevada Underground Tank Program Webpage Abstract Provides overview of...

  19. Hanford Tank Waste Retrieval, Treatment, and Disposition Framework...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nuclear waste legacyapproximately 56 million gallons of radioactive and chemical wastes stored in 177 underground tanks (tank farms) located on Hanford's Central Plateau. ...

  20. Issuance of the Final Tank Closure and Waste Management Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issuance of the Final Tank Closure and Waste Management Environmental Impact Statement Issuance of the Final Tank Closure and Waste Management Environmental Impact Statement ...

  1. Idaho Nuclear Technology and Engineering Center Tank Farm Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho Nuclear Technology and Engineering Center Tank Farm Facility Idaho Nuclear Technology and Engineering Center Tank Farm Facility The Secretary of Energy signed Section 3116 of ...

  2. Hanford Site C Tank Farm Meeting Summary - February 2009 | Department...

    Office of Environmental Management (EM)

    February 2009 Hanford Site C Tank Farm Meeting Summary - February 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site...

  3. Voluntary Protection Program Onsite Review, Tank Farm Operations...

    Energy Savers [EERE]

    Tank Farm Operations Contract - November 2010 Voluntary Protection Program Onsite Review, Tank Farm Operations Contract - November 2010 November 2010 Evaluation to determine...

  4. Annual radioactive waste tank inspection program -- 1993

    SciTech Connect (OSTI)

    McNatt, F.G. Sr.

    1994-05-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1993 to evaluate these vessels, and evaluations based on data accrued by inspections made since the tanks were constructed, are the subject of this report. The 1993 inspection program revealed that the condition of the Savannah River Site waste tanks had not changed significantly from that reported in the previous annual report. No new leaksites were observed. No evidence of corrosion or materials degradation was observed in the waste tanks. However, degradation was observed on covers of the concrete encasements for the out-of-service transfer lines to Tanks 1 through 8.

  5. Oil-free centrifugal hydrogen compression technology demonstration

    SciTech Connect (OSTI)

    Heshmat, Hooshang

    2014-05-31

    One of the key elements in realizing a mature market for hydrogen vehicles is the deployment of a safe and efficient hydrogen production and delivery infrastructure on a scale that can compete economically with current fuels. The challenge, however, is that hydrogen, being the lightest and smallest of gases with a lower viscosity and density than natural gas, readily migrates through small spaces and is difficult to compresses efficiently. While efficient and cost effective compression technology is crucial to effective pipeline delivery of hydrogen, the compression methods used currently rely on oil lubricated positive displacement (PD) machines. PD compression technology is very costly, has poor reliability and durability, especially for components subjected to wear (e.g., valves, rider bands and piston rings) and contaminates hydrogen with lubricating fluid. Even so called “oil-free” machines use oil lubricants that migrate into and contaminate the gas path. Due to the poor reliability of PD compressors, current hydrogen producers often install duplicate units in order to maintain on-line times of 98-99%. Such machine redundancy adds substantially to system capital costs. As such, DOE deemed that low capital cost, reliable, efficient and oil-free advanced compressor technologies are needed. MiTi’s solution is a completely oil-free, multi-stage, high-speed, centrifugal compressor designed for flow capacity of 500,000 kg/day with a discharge pressure of 1200 psig. The design employs oil-free compliant foil bearings and seals to allow for very high operating speeds, totally contamination free operation, long life and reliability. This design meets the DOE’s performance targets and achieves an extremely aggressive, specific power metric of 0.48 kW-hr/kg and provides significant improvements in reliability/durability, energy efficiency, sealing and freedom from contamination. The multi-stage compressor system concept has been validated through full scale performance testing of a single stage with helium similitude gas at full speed in accordance with ASME PTC-10. The experimental results indicated that aerodynamic performance, with respect to compressor discharge pressure, flow, power and efficiency exceeded theoretical prediction. Dynamic testing of a simulated multistage centrifugal compressor was also completed under a parallel program to validate the integrity and viability of the system concept. The results give strong confidence in the feasibility of the multi-stage design for use in hydrogen gas transportation and delivery from production locations to point of use.

  6. CHARACTERIZATION OF TANK 19F SAMPLES

    SciTech Connect (OSTI)

    Oji, L.; Diprete, D.; Click, D.

    2009-12-17

    The Savannah River National Laboratory (SRNL) was asked by Liquid Waste Operations to characterize Tank 19F closure samples. Tank 19F slurry samples analyzed included the liquid and solid fractions derived from the slurry materials along with the floor scrape bottom Tank 19F wet solids. These samples were taken from Tank 19F in April 2009 and made available to SRNL in the same month. Because of limited amounts of solids observed in Tank 19F samples, the samples from the north quadrants of the tank were combined into one Tank 19F North Hemisphere sample and similarly the south quadrant samples were combined into one Tank 19F South Hemisphere sample. These samples were delivered to the SRNL shielded cell. The Tank 19F samples were analyzed for radiological, chemical and elemental components. Where analytical methods yielded additional contaminants other than those requested by the customer, these results were also reported. The target detection limits for isotopes analyzed were based on detection values of 1E-04 {micro}Ci/g for most radionuclides and customer desired detection values of 1E-05 {micro}Ci/g for I-129, Pa-231, Np-237, and Ra-226. While many of the target detection limits, as specified in the technical task request and task technical and quality assurance plans were met for the species characterized for Tank 19F, some were not met. In a number of cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

  7. CHARACTERIZATION OF THE TANK 18F SAMPLES

    SciTech Connect (OSTI)

    Oji, L.; Click, D.; Diprete, D.

    2009-12-17

    The Savannah River National Laboratory (SRNL) was asked by Liquid Waste Operations to characterize Tank 18F closure samples. Tank 18F slurry samples analyzed included the liquid and solid fractions derived from the 'as-received' slurry materials along with the floor scrape bottom Tank 18F wet solids. These samples were taken from Tank 18F in March 2009 and made available to SRNL in the same month. Because of limited amounts of solids observed in Tank 18F samples, the samples from the north quadrants of the tank were combined into one North Tank 18F Hemisphere sample and similarly the south quadrant samples were combined into one South Tank 18F Hemisphere sample. These samples were delivered to the SRNL shielded cell. The Tank 18F samples were analyzed for radiological, chemical and elemental components. Where analytical methods yielded additional contaminants other than those requested by the customer, these results were also reported. The target detection limits for isotopes analyzed were 1E-04 {micro}Ci/g for most radionuclides and customer desired detection values of 1E-05 {micro}Ci/g for I-129, Pa-231, Np-237, and Ra-226. While many of the minimum detection limits, as specified in the technical task request and task technical and quality assurance plans were met for the species characterized for Tank 18F, some were not met due to spectral interferences. In a number of cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

  8. Mathematical modeling of mass transfer during centrifugal filtration of polydisperse suspensions

    SciTech Connect (OSTI)

    V.F. Pozhidaev; Y.B. Rubinshtein; G.Y. Golberg; S.A. Osadchii

    2009-07-15

    A mass-transfer equation, the solution of which for given boundary conditions makes it possible to derive in analytical form a relationship between the extraction of the solid phase of a suspension into the centrifuge effluent and the fineness of the particles, is suggested on the basis of a model; this is of particular importance in connection with the development of a new trend in the utilization of filtering centrifuges - concentration of coal slurries by extraction into the centrifuge effluent of the finest particles, the ash content of which is substantially higher than that of particles of the coarser classes. Results are presented for production studies under conditions at an active establishment (the Neryungrinskaya Enrichment Factory); these results confirmed the adequacy of the mathematical model proposed: convergence of computed and experimental data was within the limits of the experimental error (no more than 3%). The model in question can be used to predict results of suspension separation by centrifugal filtration.

  9. New Measures to Safeguard Gas Centrifuge Enrichment Plants

    SciTech Connect (OSTI)

    Whitaker, Jr., James; Garner, James R; Whitaker, Michael; Lockwood, Dunbar; Gilligan, Kimberly V; Younkin, James R; Hooper, David A; Henkel, James J; Krichinsky, Alan M

    2011-01-01

    As Gas Centrifuge Enrichment Plants (GCEPs) increase in separative work unit (SWU) capacity, the current International Atomic Energy Agency (IAEA) model safeguards approach needs to be strengthened. New measures to increase the effectiveness of the safeguards approach are being investigated that will be mutually beneficial to the facility operators and the IAEA. One of the key concepts being studied for application at future GCEPs is embracing joint use equipment for process monitoring of load cells at feed and withdrawal (F/W) stations. A mock F/W system was built at Oak Ridge National Laboratory (ORNL) to generate and collect F/W data from an analogous system. The ORNL system has been used to collect data representing several realistic normal process and off-normal (including diversion) scenarios. Emphasis is placed on the novelty of the analysis of data from the sensors as well as the ability to build information out of raw data, which facilitates a more effective and efficient verification process. This paper will provide a progress report on recent accomplishments and next steps.

  10. New generation enrichment monitoring technology for gas centrifuge enrichment plants

    SciTech Connect (OSTI)

    Ianakiev, Kiril D; Alexandrov, Boian S.; Boyer, Brian D.; Hill, Thomas R.; Macarthur, Duncan W.; Marks, Thomas; Moss, Calvin E.; Sheppard, Gregory A.; Swinhoe, Martyn T.

    2008-06-13

    The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF{sub 6} containing low enriched (approximately 4% {sup 235}U) and highly enriched (above 20% {sup 235}U) uranium. This instrument used the 22-keV line from a {sup 109}Cd source as a transmission source to achieve a high sensitivity to the UF{sub 6} gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF{sub 6} product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

  11. Onsite Gaseous Centrifuge Enrichment Plant UF6 Cylinder Destructive Analysis

    SciTech Connect (OSTI)

    Anheier, Norman C.; Cannon, Bret D.; Qiao, Hong; Carter, Jennifer C.; McNamara, Bruce K.; O'Hara, Matthew J.; Phillips, Jon R.; Curtis, Michael M.

    2012-07-17

    The IAEA safeguards approach for gaseous centrifuge enrichment plants (GCEPs) includes measurements of gross, partial, and bias defects in a statistical sampling plan. These safeguard methods consist principally of mass and enrichment nondestructive assay (NDA) verification. Destructive assay (DA) samples are collected from a limited number of cylinders for high precision offsite mass spectrometer analysis. DA is typically used to quantify bias defects in the GCEP material balance. Under current safeguards measures, the operator collects a DA sample from a sample tap following homogenization. The sample is collected in a small UF6 sample bottle, then sealed and shipped under IAEA chain of custody to an offsite analytical laboratory. Current practice is expensive and resource intensive. We propose a new and novel approach for performing onsite gaseous UF6 DA analysis that provides rapid and accurate assessment of enrichment bias defects. DA samples are collected using a custom sampling device attached to a conventional sample tap. A few micrograms of gaseous UF6 is chemically adsorbed onto a sampling coupon in a matter of minutes. The collected DA sample is then analyzed onsite using Laser Ablation Absorption Ratio Spectrometry-Destructive Assay (LAARS-DA). DA results are determined in a matter of minutes at sufficient accuracy to support reliable bias defect conclusions, while greatly reducing DA sample volume, analysis time, and cost.

  12. Sound generation by a centrifugal pump at blade passing frequency

    SciTech Connect (OSTI)

    Morgenroth, M.; Weaver, D.S.

    1996-12-01

    This paper reports the results of an experimental study of the pressure pulsations produced by a centrifugal volute pump at its blade passing frequency and their amplification by acoustic resonance in a connected piping system. Detailed measurements were made of the pressure fluctuations in the piping as a function of pump speed and flow rate. A semi-empirical model was used to separate acoustic standing waves from hydraulic pressure fluctuations. The effects of modifying the cut-water geometry were also studied, including the use of flow visualization to observe the flow behavior at the cut-water. The results suggest that the pump may act as an acoustic pressure or velocity source, depending on the flow rate. At conditions of acoustic resonance, the pump acted as an open termination of the piping, i.e., as a node in the acoustic pressure standing waves. Rounding the cut-water had the effect of reducing the amplitude of acoustic resonance, apparently because of the ability of the stagnation point to move and thereby reduce the vorticity generated. A notable example of this acoustic resonance in the Primary Heat Transport (PHT) system at Ontario Hydro`s Darlington nuclear power station.

  13. LITERATURE REVIEW ON THE SORPTION OF PLUTONIUM, URANIUM, NEPTUNIUM, AMERICIUM AND TECHNETIUM TO CORROSION PRODUCTS ON WASTE TANK LINERS

    SciTech Connect (OSTI)

    Li, D.; Kaplan, D.

    2012-02-29

    The Savannah River Site (SRS) has conducted performance assessment (PA) calculations to determine the risk associated with closing liquid waste tanks. The PA estimates the risk associated with a number of scenarios, making various assumptions. Throughout all of these scenarios, it is assumed that the carbon-steel tank liners holding the liquid waste do not sorb the radionuclides. Tank liners have been shown to form corrosion products, such as Fe-oxyhydroxides (Wiersma and Subramanian 2002). Many corrosion products, including Fe-oxyhydroxides, at the high pH values of tank effluent, take on a very strong negative charge. Given that many radionuclides may have net positive charges, either as free ions or complexed species, it is expected that many radionuclides will sorb to corrosion products associated with tank liners. The objective of this report was to conduct a literature review to investigate whether Pu, U, Np, Am and Tc would sorb to corrosion products on tank liners after they were filled with reducing grout (cementitious material containing slag to promote reducing conditions). The approach was to evaluate radionuclides sorption literature with iron oxyhydroxide phases, such as hematite ({alpha}-Fe{sub 2}O{sub 3}), magnetite (Fe{sub 3}O{sub 4}), goethite ({alpha}-FeOOH) and ferrihydrite (Fe{sub 2}O{sub 3} {center_dot} 0.5H{sub 2}O). The primary interest was the sorption behavior under tank closure conditions where the tanks will be filled with reducing cementitious materials. Because there were no laboratory studies conducted using site specific experimental conditions, (e.g., high pH and HLW tank aqueous and solid phase chemical conditions), it was necessary to extend the literature review to lower pH studies and noncementitious conditions. Consequently, this report relied on existing lower pH trends, existing geochemical modeling, and experimental spectroscopic evidence conducted at lower pH levels. The scope did not include evaluating the appropriateness of K{sub d} values for the Fe-oxyhydroxides, but instead to evaluate whether it is a conservative assumption to exclude this sorption process of radionuclides onto tank liner corrosion products in the PA model. This may identify another source for PA conservatism since the modeling did not consider any sorption by the tank liner.

  14. Centrifuge enrichment plants. (Latest citations from the NTIS data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The bibliography contains citations concerning the design, control, monitoring, and safety of centrifuge enrichment plants. Power supplies, enrichment plant safeguards, facility design, cascade heater test loops to monitor the enrichment process, inspection strategies, and the socioeconomic effects of centrifuge enrichment plants are examined. Radioactive waste disposal problems are briefly considered. (Contains a minimum of 169 citations and includes a subject term index and title list.)

  15. Combustion modeling in waste tanks

    SciTech Connect (OSTI)

    Mueller, C.; Unal, C.; Travis, J.R. |

    1997-08-01

    This paper has two objectives. The first one is to repeat previous simulations of release and combustion of flammable gases in tank SY-101 at the Hanford reservation with the recently developed code GASFLOW-II. The GASFLOW-II results are compared with the results obtained with the HMS/TRAC code and show good agreement, especially for non-combustion cases. For combustion GASFLOW-II predicts a steeper pressure rise than HMS/TRAC. The second objective is to describe a so-called induction parameter model which was developed and implemented into GASFLOW-II and reassess previous calculations of Bureau of Mines experiments for hydrogen-air combustion. The pressure time history improves compared with the one-step model, and the time rate of pressure change is much closer to the experimental data.

  16. Thickening of ultrafine coal-water slurries in a solid-bowl centrifuge

    SciTech Connect (OSTI)

    Pinkerton, A.P.; Klima, M.S.; Morrison, J.L.; Miller, B.G.

    1999-07-01

    As part of a study being conducted for the Electric Power Research Institute's (EPRI's) Upgraded Coal Interest Group (UCIG) to evaluate ultrafine coal dewatering technologies, testing was carried out to investigate the use of a solid-bowl (high-g) centrifuge for thickening ultrafine coalwater slurries. The objective of this study was to increase the solids concentration to a level suitable for use as a coal-water slurry fuel, while maximizing overall solids recovery. Feed material was collected from the combined discharge (centrate) streams from several screen-bowl centrifuges. These devices are currently being used in a commercial coal cleaning facility to dewater the clean coal product from a froth flotation circuit. Current plant practice is to discharge the centrate to settling ponds. The screen bowl centrate averages 5% solids by weight and contains nearly 60% material finer than 10 {mu}m. The current study examined the effects of operating conditions on centrifuge performance. The test conditions included centrifuge bowl and scroll speeds and volumetric feed rate. In addition to thickening, some cleaning was also achieved, because the finest particles (e.g. < 3 {micro}m), which contained a large percentage of liberated clays, were removed with the bulk of the water. The centrifuge products were analyzed for solids concentration, particle size distribution, and ash content. Size selectivity curves were also used to evaluate centrifuge performance.

  17. Proof of concept and performance optimization of high gravity batch type centrifuge for dewatering fine coal

    SciTech Connect (OSTI)

    Smith, L.B.; Durney, T.E. Jr.

    1990-07-24

    Coal Technology Corporation (CTC) believes that the new CTC high gravity, high production, batch type centrifugal dryer technology can play a significant role in improving the product quality as well as costs of operation in coal processing plants. It is further believed that the new centrifugal dryer technology can form an important part in systems used to clean up the millions of tons of coal fines in refuse piles and ponds. It is anticipated that the new centrifuge can become an important ancillary to the advanced deep cleaning processes for coal. Because of these convictions, CTC has been engaged in a pioneering research effort into the new art of drying fine clean coal in high gravity, high production, batch type centrifuges, since 1981. This work has progressed to the point where the new centrifugal dryer technology is nearly ready for commercialization. It promises to provide needed fine coal drying capability at somewhat lower capital costs and at substantially lower operating costs than competitive systems. It also promises to do so with no detrimental effects on either the coal quality or the evironment. The primary objective of this project is to prove the concept in a commercial coal processing plant environment. The proof of concept tests will also include testing with a variety of coals from different regions. A further objective will be to optimize the efficiency and the cost effectiveness of the new centrifugal dryer technology.

  18. TANK 4 CHARACTERIZATION, SETTLING, AND WASHING STUDIES

    SciTech Connect (OSTI)

    Bannochie, C.; Pareizs, J.; Click, D.; Zamecnik, J.

    2009-09-29

    A sample of PUREX sludge from Tank 4 was characterized, and subsequently combined with a Tank 51 sample (Tank 51-E1) received following Al dissolution, but prior to a supernate decant by the Tank Farm, to perform a settling and washing study to support Sludge Batch 6 preparation. The sludge source for the majority of the Tank 51-E1 sample is Tank 12 HM sludge. The Tank 51-E1 sample was decanted by SRNL prior to use in the settling and washing study. The Tank 4 sample was analyzed for chemical composition including noble metals. The characterization of the Tank 51-E1 sample, used here in combination with the Tank 4 sample, was reported previously. SRNL analyses on Tank 4 were requested by Liquid Waste Engineering (LWE) via Technical Task Request (TTR) HLE-TTR-2009-103. The sample preparation work is governed by Task Technical and Quality Assurance Plan (TTQAP), and analyses were controlled by an Analytical Study Plan and modifications received via customer communications. Additional scope included a request for a settling study of decanted Tank 51-E1 and a blend of decanted Tank 51-E1 and Tank 4, as well as a washing study to look into the fate of undissolved sulfur observed during the Tank 4 characterization. The chemistry of the Tank 4 sample was modeled with OLI Systems, Inc. StreamAnalyzer to determine the likelihood that sulfate could exist in this sample as insoluble Burkeite (2Na{sub 2}SO{sub 4} {center_dot} Na{sub 2}CO{sub 3}). The OLI model was also used to predict the composition of the blended tank materials for the washing study. The following conclusions were drawn from the Tank 4 analytical results reported here: (1) Any projected blend of Tank 4 and the current Tank 51 contents will produce a SB6 composition that is lower in Ca and U than the current SB5 composition being processed by DWPF. (2) Unwashed Tank 4 has a relatively large initial S concentration of 3.68 wt% on a total solids basis, and approximately 10% of the total S is present as an insoluble or undissolved form. (3) There is 19% more S than can be accounted for by IC sulfate measurement. This additional soluble S is detected by ICP-AES analysis of the supernate. (4) Total supernate and slurry sulfur by ICP-AES should be monitored during washing in addition to supernate sulfate in order to avoid under estimating the amount of sulfur species removed or remaining in the supernate. (5) OLI simulation calculations show that the presence of undissolved Burkeite in the Tank 4 sample is reasonable, assuming a small difference in the Na concentration that is well within the analytical uncertainties of the reported value. The following conclusions were drawn from the blend studies of Tank 4 and decanted Tank 51-E1: (1) The addition of Tank 4 slurry to a decanted Tank 51-E1 sample significantly improved the degree and time for settling. (2) The addition of Tank 4 slurry to a decanted Tank 51-E1 sample significantly improved the plastic viscosity and yield stress. (3) The SRNL washing test, where nearly all of the wash solution was decanted from the solids, indicates that approximately 96% or more of the total S was removed from the blend in these tests, and the removal of the sulfur tracks closely with that of Na. Insoluble (undissolved) S remaining in the washed sludge was calculated from an estimate of the final slurry liquid fraction, the S result in the slurry digestion, and the S in the final decant (which was very close to the method detection limit). Based on this calculated result, about 4% of the initial total S remained after these washes; this amount is equivalent to about 18% of the initially undissolved S.

  19. PERFORMANCE TESTING OF THE NEXT-GENERATION CSSX SOLVENT WITH ACTUAL SRS TANK WASTE

    SciTech Connect (OSTI)

    Pierce, R.; Peters, T.; Crowder, M.; Fink, S.

    2011-11-01

    Efforts are underway to qualify the Next-Generation Solvent for the Caustic Side Solvent Extraction (CSSX) process. Researchers at multiple national laboratories have been involved in this effort. As part of the effort to qualify the solvent extraction system at the Savannah River Site (SRS), SRNL performed a number of tests at various scales. First, SRNL completed a series of batch equilibrium, or Extraction-Scrub-Strip (ESS), tests. These tests used {approx}30 mL of Next-Generation Solvent and either actual SRS tank waste, or waste simulant solutions. The results from these cesium mass transfer tests were used to predict solvent behavior under a number of conditions. At a larger scale, SRNL assembled 12 stages of 2-cm (diameter) centrifugal contactors. This rack of contactors is structurally similar to one tested in 2001 during the demonstration of the baseline CSSX process. Assembly and mechanical testing found no issues. SRNL performed a nonradiological test using 35 L of cesium-spiked caustic waste simulant and 39 L of actual tank waste. Test results are discussed; particularly those related to the effectiveness of extraction.

  20. C-14/I-29 Preservation and Hold Time Survey

    SciTech Connect (OSTI)

    Kitchen, S.

    2015-04-08

    Preservation and hold time of radionuclides must account for both nuclear half-lives and nonnuclear loss mechanisms, but variations in the latter are often neglected. Metals-based defaults are inappropriate for long-lived non-metals C-14 and I-129, which are vulnerable to chemical and biological volatilization. Non-acidification is already widely practiced for them. Recommended addition measures from radiological and chemical literature include glass containers where possible, water filtration where possible, headspace minimization, light shielding, cold (4°C) storage and unfiltered water hold time of 28 days. Soil hold time may need to be shortened when water-logged, excessively sandy, or still adjusting to significant new contamination.

  1. TANK MIXING STUDY WITH FLOW RECIRCULATION

    SciTech Connect (OSTI)

    Lee, S.

    2014-06-25

    The primary objective of this work is to quantify the mixing time when two miscible fluids are mixed by one recirculation pump and to evaluate adequacy of 2.5 hours of pump recirculation to be considered well mixed in SRS tanks, JT-71/72. The work scope described here consists of two modeling analyses. They are the steady state flow pattern analysis during pump recirculation operation of the tank liquid and transient species transport calculations based on the initial steady state flow patterns. The modeling calculations for the mixing time are performed by using the 99% homogeneity criterion for the entire domain of the tank contents.

  2. Roman Seawater Concrete Holds the Secret to Cutting Carbon Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Roman Seawater Concrete Holds the Secret to Cutting Carbon Emissions Roman Seawater Concrete Holds the Secret to Cutting Carbon Emissions Print Tuesday, 04 June 2013 00:00 An international team led by Paulo Monteiro of the Advanced Light Source and UC Berkeley has analyzed samples of Roman concrete from harbor installations that have survived 2,000 years of chemical attack and wave action, "one of the most durable construction materials on the planet," says UC Berkeley's Marie Jackson,

  3. Jefferson Lab holds two special events in February | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    two special events in February Jefferson Lab holds two special events in February February 1, 2005 The Department of Energy's Jefferson Lab is holding two public events during February. The events honor both Black History Month and 2005: World Year of Physics. The first event "From Slave to Scientist: A Dramatization of the Life of George Washington Carver" takes place Tuesday, Feb. 8, in the CEBAF Center Auditorium beginning at 7 p.m. This dramatization takes the audience through

  4. CHARACTERIZATION OF TANK 11H AND TANK 51H POST ALUMINUM DISSOLUTION PROCESS SAMPLES

    SciTech Connect (OSTI)

    Hay, M; Daniel McCabe, D

    2008-05-16

    A dip sample of the liquid phase from Tank 11H and a 3-L slurry sample from Tank 51H were obtained and sent to Savannah River National Laboratory for characterization. These samples provide data to verify the amount of aluminum dissolved from the sludge as a result of the low temperature aluminum dissolution process conducted in Tank 51H. The characterization results for the as-received Tank 11H and Tank 51H supernate samples and the total dried solids of the Tank 51H sludge slurry sample appear quite good with respect to the precision of the sample replicates and minimal contamination present in the blank. The two supernate samples show similar concentrations for the major components as expected.

  5. 10:30AM TODAY: Senior Administration Officials to Hold a Background...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    :30AM TODAY: Senior Administration Officials to Hold a Background Conference Call Regarding Oil 10:30AM TODAY: Senior Administration Officials to Hold a Background Conference Call ...

  6. Centrifugal contactor operations for UREX process flowsheet. An update

    SciTech Connect (OSTI)

    Pereira, Candido; Vandegrift, George F.

    2014-08-01

    The uranium extraction (UREX) process separates uranium, technetium, and a fraction of the iodine from the other components of the irradiated fuel in nitric acid solution. In May 2012, the time, material, and footprint requirements for treatment of 260 L batches of a solution containing 130 g-U/L were evaluated for two commercial annular centrifugal contactors from CINC Industries. These calculated values were based on the expected volume and concentration of fuel arising from treatment of a single target solution vessel (TSV). The general conclusions of that report were that a CINC V-2 contactor would occupy a footprint of 3.2 m 2 (0.25 m x 15 m) if each stage required twice the nominal footprint of an individual stage, and approximately 1,131 minutes or nearly 19 hours is required to process all of the feed solution. A CINC V-5 would require approximately 9.9 m 2 (0.4 m x 25 m) of floor space but would require only 182 minutes or ~ 3 hours to process the spent target solution. Subsequent comparison with the Modular Caustic Side Solvent Extraction Unit (MCU) at Savannah River Site (SRS) in October 2013 suggested that a more compact arrangement is feasible, and the linear dimension for the CINC V-5 may be reduced to about 8 m; a comparable reduction for the CINC V-2 yields a length of 5 m. That report also described an intermediate-scale (10 cm) contactor design developed by Argonne in the early 1980s that would better align with the SHINE operations as they stood in May 2012. In this report, we revisit the previous evaluation of contactor operations after discussions with CINC Industries and analysis of the SHINE process flow diagrams for the cleanup of the TSV, which were not available at the time of the first assessment.

  7. Defining the needs for gas centrifuge enrichment plants advanced safeguards

    SciTech Connect (OSTI)

    Boyer, Brian David; Erpenbeck, Heather H; Miller, Karen A; Swinhoe, Martyn T; Ianakiev, Kiril; Marlow, Johnna B

    2010-04-05

    Current safeguards approaches used by the International Atomic Energy Agency (IAEA) at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low-enriched (LEU) production, detect undeclared LEU production and detect highly enriched uranium (HEU) production with adequate detection probability using nondestructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared UF{sub 6} containers used in the process of enrichment at GCEPs. In verifying declared LEU production, the inspectors also take samples for off-site destructive assay (DA) which provide accurate data, with 0.1% to 0.5% measurement uncertainty, on the enrichment of the UF{sub 6} feed, tails, and product. However, taking samples of UF{sub 6} for off-site analysis is a much more labor and resource intensive exercise for the operator and inspector. Furthermore, the operator must ship the samples off-site to the IAEA laboratory which delays the timeliness of results and interruptions to the continuity of knowledge (CofK) of the samples during their storage and transit. This paper contains an analysis of possible improvements in unattended and attended NDA systems such as process monitoring and possible on-site analysis of DA samples that could reduce the uncertainty of the inspector's measurements and provide more effective and efficient IAEA GCEPs safeguards. We also introduce examples advanced safeguards systems that could be assembled for unattended operation.

  8. Tank characterization report for single-shell tank 241-C-109

    SciTech Connect (OSTI)

    DiCenso, A.T.; Amato, L.C.; Lambie, R.W.; Franklin, J.D.; Seymour, B.J.; Johnson, K.W.; Stevens, R.H.; Remund, K.M.; Sasaki, L.M.; Simpson, B.C.

    1995-02-01

    This document provides the characterization information and interprets the data for Single-Shell Tank 241-C-109. Single-Shell Tank 241-C-109 is an underground storage tank containing high-level radioactive waste. It is located in the C Tank Farm in the Hanford Site`s 200 East Area. The tank was sampled in September of 1992 to address the Ferrocyanide Unreviewed Safety Question. Analyses of tank waste were also performed to support Hanford Federal Facility Agreement and Consent Order Milestone M-44-08. Tank 241-C-109 went into service in 1946 and received first-cycle decontamination waste from bismuth phosphate process operations at B Plant in 1948. Other waste types added that are expected to contribute to the current contents include ferrocyanide scavenging waste and Strontium Semiworks waste. It is the last tank in a cascade with Tanks 241-C-107 and 241-C-108. The tank has a capacity of 2,010 kL (530 kgal) and currently contains 250 kL (66 kgal) of waste, existing primarily of sludge. Approximately 9.15 kL (4 kgal) of supernate remain. The sludge is heterogeneous, with significantly different chemical compositions depending on waste depth. The major waste constituents include aluminum, calcium, iron, nickel, nitrate, nitrite, phosphate, sodium, sulfate and uranium. The major radionuclides present are Cesium 137 and Strontium 90. The results of this characterization indicate that the waste in this tank is adequately described in the Dangerous Waste Permit Application of the Single-Shell Tank System.

  9. Tank characterization report for single-shell tank 241-BY-102

    SciTech Connect (OSTI)

    Sasaki, L.M., Fluor Daniel Hanford

    1997-03-13

    This characterization report summarizes information on the historical uses, current status, and sampling and analysis results of waste stored in tank 241-BY-102.

  10. EM Tank Waste Subcommittee Report for SRS and Hanford Tank Waste...

    Office of Environmental Management (EM)

    of the Environmental Management Tank Waste Subcommittee (EM- TWS) of the ... to three charges from EM-1 regarding the Waste Treatment and Immobilization Plant at ...

  11. Tank characterization report for single-shell tank 241-BX-112

    SciTech Connect (OSTI)

    Winkelman, W.D.

    1996-09-18

    This characterization report summarizes information on the historical uses, currant status, and sampling and analysis results of waste stored in single-shell tank 241-BX-112.

  12. Savannah River Site- Tank 48 Transmittal Letter of SRS Tank 48 Review

    Broader source: Energy.gov [DOE]

    This letter reviews the Path Forward for Savannah River Site Tank 48 and outlines best judgement on all issues and recommendations on how to procede.

  13. Vitrification technology for Hanford Site tank waste

    SciTech Connect (OSTI)

    Weber, E.T.; Calmus, R.B.; Wilson, C.N.

    1995-04-01

    The US Department of Energy`s (DOE) Hanford Site has an inventory of 217,000 m{sup 3} of nuclear waste stored in 177 underground tanks. The DOE, the US Environmental Protection Agency, and the Washington State Department of Ecology have agreed that most of the Hanford Site tank waste will be immobilized by vitrification before final disposal. This will be accomplished by separating the tank waste into high- and low-level fractions. Capabilities for high-capacity vitrification are being assessed and developed for each waste fraction. This paper provides an overview of the program for selecting preferred high-level waste melter and feed processing technologies for use in Hanford Site tank waste processing.

  14. Hanford Site C Tank Farm Meeting Summary

    Office of Environmental Management (EM)

    o To avoid these problems, they will use a bounding max based on data since not enough data to figure central tendency. o C-200 tanks had big difference between estimated...

  15. Toxic chemical considerations for tank farm releases

    SciTech Connect (OSTI)

    Van Keuren, J.C.; Davis, J.S., Westinghouse Hanford

    1996-08-01

    This topical report contains technical information used to determine the accident consequences of releases of toxic chemical and gases for the Tank Farm Final Safety Analysis report (FSAR).It does not provide results for specific accident scenarios but does provide information for use in those calculations including chemicals to be considered, chemical concentrations, chemical limits and a method of summing the fractional contributions of each chemical. Tank farm composites evaluated were liquids and solids for double shell tanks, single shell tanks, all solids,all liquids, headspace gases, and 241-C-106 solids. Emergency response planning guidelines (ERPGs) were used as the limits.Where ERPGs were not available for the chemicals of interest, surrogate ERPGs were developed. Revision 2 includes updated sample data, an executive summary, and some editorial revisions.

  16. Underground Storage Tanks: New Fuels and Compatibility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 1980 1984 1990 1995 1981 1985 1988 2005 Prior to Oct. 1980: No single or double wall tanks are warrantied for any alcohol or alcohol blended fuels. Oct. 1980 to Jun. 1984: ...

  17. The Hanford Story: Tank Waste Cleanup

    Broader source: Energy.gov [DOE]

    This fourth chapter of The Hanford Story explains how the DOE Office of River Protection will use the Waste Treatment Plant to treat the 56 million gallons of radioactive waste in the Tank Farms.

  18. Renewable Energy: Plants in Your Gas Tank

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plants in Your Gas Tank: From Photosynthesis to Ethanol Grades: 5-8, 9-12 Topic: Biomass Authors: Chris Ederer, Eric Benson, Loren Lykins Owner: ACTS This educational material is...

  19. Tank waste remediation system operational scenario

    SciTech Connect (OSTI)

    Johnson, M.E.

    1995-05-01

    The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize highly radioactive Hanford waste (current and future tank waste and the strontium and cesium capsules) in an environmentally sound, safe, and cost-effective manner (DOE 1993). This operational scenario is a description of the facilities that are necessary to remediate the Hanford Site tank wastes. The TWRS Program is developing technologies, conducting engineering analyses, and preparing for design and construction of facilities necessary to remediate the Hanford Site tank wastes. An Environmental Impact Statement (EIS) is being prepared to evaluate proposed actions of the TWRS. This operational scenario is only one of many plausible scenarios that would result from the completion of TWRS technology development, engineering analyses, design and construction activities and the TWRS EIS. This operational scenario will be updated as the development of the TWRS proceeds and will be used as a benchmark by which to evaluate alternative scenarios.

  20. Haynes Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    labor) Special Physical Features The tank includes a 7.6m by 3.7m by 1.5m deep sediment pit. Towing Capabilities Towing Capabilities Yes Maximum Velocity(ms) 1.8 Length of...

  1. Tank Waste Corporate Board | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The following documents are associated with the Tank Waste Corporate Board Meeting held on November 6th, 2008. Note: (Please contact Steven Ross at steven.ross@em.doe.gov for a HLW ...

  2. MIT Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    Institute of Technology Hydrodynamics Hydrodynamic Testing Facility Type Tow Tank Length(m) 36.6 Beam(m) 2.4 Depth(m) 1.2 Water Type Saltwater Cost(per day) 750 Towing...

  3. Experts Review Tank Integrity Program at Hanford

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – An expert panel met this month to discuss the integrity of double-shell tank AY-102 on behalf of EM’s Office of River Protection (ORP).

  4. SRS Tank 48H Waste Treatment Project Technology Readiness Assessment |

    Energy Savers [EERE]

    Department of Energy Tank 48H Waste Treatment Project Technology Readiness Assessment SRS Tank 48H Waste Treatment Project Technology Readiness Assessment Full Document and Summary Versions are available for download PDF icon SRS Tank 48H Waste Treatment Project Technology Readiness Assessment PDF icon Summary - Savannah River Site Tank 48H Waste Treatment Project More Documents & Publications Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H

  5. Think Tank: Delaware Department of Natural Resources

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Spring 2009 Number 58 UST Regulations Revision Update Jill Hall The Tank Management Branch (TMB) conducted 3 public workshops in October 2008 to roll out changes to the Delaware Regulations Governing Underground Storage Tanks (UST Regulations). The UST Regulations were completely re- vamped last year and became effective January 11, 2008. Changes were made last year for 2 reasons: (1) the UST Reg- ulations were woefully out of date with regards to technological changes, and (2) the Federal

  6. Double shell tank waste analysis plan

    SciTech Connect (OSTI)

    Mulkey, C.H.; Jones, J.M.

    1994-12-15

    Waste analysis plan for the double shell tanks. SD-WM-EV-053 is Superseding SD-WM-EV-057.This document provides the plan for obtaining information needed for the safe waste handling and storage of waste in the Double Shell Tank Systems. In Particular it addresses analysis necessary to manage waste according to Washington Administrative Code 173-303 and Title 40, parts 264 and 265 of the Code of Federal Regulations.

  7. Modeling of UF{sub 6} enrichment with gas centrifuges for nuclear safeguards activities

    SciTech Connect (OSTI)

    Mercurio, G.; Peerani, P.; Richir, P.; Janssens, W.; Eklund, G.

    2012-09-26

    The physical modeling of uranium isotopes ({sup 235}U, {sup 238}U) separation process by centrifugation of is a key aspect for predicting the nuclear fuel enrichment plant performances under surveillance by the Nuclear Safeguards Authorities. In this paper are illustrated some aspects of the modeling of fast centrifuges for UF{sub 6} gas enrichment and of a typical cascade enrichment plant with the Theoretical Centrifuge and Cascade Simulator (TCCS). The background theory for reproducing the flow field characteristics of a centrifuge is derived from the work of Cohen where the separation parameters are calculated using the solution of a differential enrichment equation. In our case we chose to solve the hydrodynamic equations for the motion of a compressible fluid in a centrifugal field using the Berman - Olander vertical velocity radial distribution and the solution was obtained using the Matlab software tool. The importance of a correct estimation of the centrifuge separation parameters at different flow regimes, lies in the possibility to estimate in a reliable way the U enrichment plant performances, once the separation external parameters are set (feed flow rate and feed, product and tails assays). Using the separation parameters of a single centrifuge allow to determine the performances of an entire cascade and, for this purpose; the software Simulink was used. The outputs of the calculation are the concentrations (assays) and the flow rates of the enriched (product) and depleted (tails) gas mixture. These models represent a valid additional tool, in order to verify the compliance of the U enrichment plant operator declarations with the 'on site' inspectors' measurements.

  8. Apparatus for removably holding a plurality of microballoons

    DOE Patents [OSTI]

    Jorgensen, B.S.

    1984-06-05

    The present invention relates generally to the manipulation of microballoons and more particularly to an apparatus for removably holding a plurality of microballoons in order to more efficiently carry out the filling of the microballoons with a known quantity of gas.

  9. Purchasing Energy-Efficient Hot Food Holding Cabinets

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for hot food holding cabinets, a product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law.

  10. Tank waste remediation system mission analysis

    SciTech Connect (OSTI)

    Baynes, P.A.; Woods, J.W.; Collings, J.L.

    1993-03-01

    Mission analysis is an iterative process that expands the mission statement, identifies needed information, and provides sufficient insight to proceed with the necessary, subsequent analyses. The Tank Waste Remediation System (TWRS) mission analysis expands the TWRS Program problem statement: ``remediate tank waste.`` It also and the mission statement: ``store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost effective manner.`` The mission analysis expands the problem and mission statements to accomplish four primary tasks. First, it defines the mission in enough detail to provide any follow-on work with a consistent foundation. Second, it defines the TWRS boundaries. Third, it identifies the following for TWRS: (1) current conditions, (2) acceptable final conditions, (3) requirement sources for the final product and the necessary systems, (4) organizations authorized to issue requirements, and (5) the criteria to determine when the problem is solved. Finally, it documents the goals to be achieved.This document concludes that tank safety issues should be resolved quickly and tank waste should be treated and immobilized quickly because of the hazardous nature of the tank waste and the age and condition of the existing tanks. In addition, more information is needed (e.g., waste acceptance criteria, condition of existing waste) to complete the TWRS mission analysis.

  11. Tank waste remediation system mission analysis

    SciTech Connect (OSTI)

    Baynes, P.A.; Woods, J.W. ); Collings, J.L. )

    1993-03-01

    Mission analysis is an iterative process that expands the mission statement, identifies needed information, and provides sufficient insight to proceed with the necessary, subsequent analyses. The Tank Waste Remediation System (TWRS) mission analysis expands the TWRS Program problem statement: remediate tank waste.'' It also and the mission statement: store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost effective manner.'' The mission analysis expands the problem and mission statements to accomplish four primary tasks. First, it defines the mission in enough detail to provide any follow-on work with a consistent foundation. Second, it defines the TWRS boundaries. Third, it identifies the following for TWRS: (1) current conditions, (2) acceptable final conditions, (3) requirement sources for the final product and the necessary systems, (4) organizations authorized to issue requirements, and (5) the criteria to determine when the problem is solved. Finally, it documents the goals to be achieved.This document concludes that tank safety issues should be resolved quickly and tank waste should be treated and immobilized quickly because of the hazardous nature of the tank waste and the age and condition of the existing tanks. In addition, more information is needed (e.g., waste acceptance criteria, condition of existing waste) to complete the TWRS mission analysis.

  12. RECENT PROGRESS IN DOE WASTE TANK CLOSURE

    SciTech Connect (OSTI)

    Langton, C

    2008-02-01

    The USDOE complex currently has over 330 underground storage tanks that have been used to process and store radioactive waste generated from the production of weapons materials. These tanks contain over 380 million liters of high-level and low-level radioactive waste. The waste consists of radioactively contaminated sludge, supernate, salt cake or calcine. Most of the waste exists at four USDOE locations, the Hanford Site, the Savannah River Site, the Idaho Nuclear Technology and Engineering Center and the West Valley Demonstration Project. A summary of the DOE tank closure activities was first issued in 2001. Since then, regulatory changes have taken place that affect some of the sites and considerable progress has been made in closing tanks. This paper presents an overview of the current regulatory changes and drivers and a summary of the progress in tank closures at the various sites over the intervening six years. A number of areas are addressed including closure strategies, characterization of bulk waste and residual heel material, waste removal technologies for bulk waste, heel residuals and annuli, tank fill materials, closure system modeling and performance assessment programs, lessons learned, and external reviews.

  13. ANALYSIS OF SAMPLES FROM TANK 6F CHEMICAL CLEANING

    SciTech Connect (OSTI)

    Poirier, M.; Fink, S.

    2010-02-02

    Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. In mechanical sludge removal, personnel add liquid (e.g., inhibited water or supernate salt solution) to the tank to form a slurry. They mix the liquid and sludge with pumps, and transfer the slurry to another tank for further processing. Mechanical sludge removal effectively removes the bulk of the sludge from a tank, but is not able to remove all of the sludge. In Tank 6F, SRR estimated a sludge heel of 5,984 gallons remained after mechanical sludge removal. To remove this sludge heel, SRR performed chemical cleaning. The chemical cleaning included two oxalic acid strikes, a spray wash, and a water wash. SRR conducted the first oxalic acid strike as follows. Personnel added 110,830 gallons of 8 wt % oxalic acid to Tank 6F and mixed the contents of Tank 6F with two submersible mixer pumps (SMPs) for approximately four days. Following the mixing, they transferred 115,903 gallons of Tank 6F material to Tank 7F. The SMPs were operating when the transfer started and were shut down approximately five hours after the transfer started. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Mapping of the tank following the transfer indicated that 2,400 gallons of solids remained in the tank. SRR conducted the second oxalic acid strike as follows. Personnel added 28,881 gallons of 8 wt % oxalic acid to Tank 6F. Following the acid addition, they visually inspected the tank and transferred 32,247 gallons of Tank 6F material to Tank 7F. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Mapping of the tank following the transfer indicated that 3,248 gallons of solids remained in the tank. Following the oxalic acid strikes, SRR performed Spray Washing with oxalic acid to remove waste collected on internal structures, cooling coils, tank top internals, and tank walls. The Acid Spray Wash was followed by a Water Spray Wash to remove oxalic acid from the tank internals. SRR conducted the Spray Wash as follows. Personnel added 4,802 gallons of 8 wt % oxalic acid to Tank 6F through the spray mast installed in Riser 2, added 4,875 gallons of oxalic acid through Riser 7, added 5,000 gallons of deionized water into the tank via Riser 2, and 5,000 gallons of deionized water into the tank via Riser 7. Following the Spray Wash, they visually inspected the tank and transferred 22,430 gallons of Tank 6F material to Tank 7F. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Following the Spray Wash and transfer, Savannah River Site (SRS) added 113,935 gallons of well water to Tank 6F. They mixed the tank contents with a single SMP and transferred 112,699 gallons from Tank 6F to Tank 7F. SRR collected a sample of the liquid from Tank 6F and submitted to SRNL for analysis. Mapping of the tank following the transfer indicated that 3,488 gallons of solids remained in the tank. Following the Water Wash, SRR personnel collected a solid sample and submitted it to SRNL for analysis to assess the effectiveness of the chemical cleaning and to provide a preliminary indication of the composition of the material remaining in the tank.

  14. Underground storage tank management plan

    SciTech Connect (OSTI)

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

  15. ICPP tank farm closure study. Volume 2: Engineering design files

    SciTech Connect (OSTI)

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-grouted polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.

  16. Endpointtool: An Excel{sup R}-Based Workbook for Hanford Tank Waste Treatment Planning

    SciTech Connect (OSTI)

    Agnew, S.F. [Nuclear Waste Consulting, San Diego, CA (United States); Corbin, R.A.; Anderson, M. [Columbia Energy and Environmental Services, Inc., Richland, WA (United States)

    2008-07-01

    The EndpointTool is a Microsoft Excel{sup R}-based workbook with a set of macros and worksheets for the evaluation of Hanford Site tank treatment scenarios. This tool enables the user to determine bottlenecks in processes and storage and address regulatory issues. It also provides an avenue to evaluate new technologies, as well as changes in existing technologies and their impact to the current baseline. The EndpointTool tracks 46 radionuclides, 52 species, and 10 properties for each event. Seventeen different processes are modeled, each with its own worksheet that describes that process, has its assumptions, qualifications, and calculations, and holds the historical results of each process event. This enables the user to not only look at the big picture, but to evaluate process parameters such as flowrates, sizing, etc. The user composes an event that is a combination of a sender tank, a process tank, and a receiver tank. Each event involves one of the processes and each process can have up to a total of 81 assumptions and 180 qualifications. The starting point for all tank inventories is the Hanford tank Best-Basis Inventory (BBI). Each tank comprises up to three phases: salt-cake, sludge, and supernatant. Each of these BBI phases has an insoluble solids fraction that was derived from the embedded solubility model. Each composed event must meet a set of qualifications that are dependent on the process, as well as whether the sender tank has any inventory, whether the receiver tank has sufficient space, etc. For example, supernatant events are limited to a maximum solids specified in its assumptions, usually 5 wt%. Above this solids contents, a slurry transfer must be used. Once a qualified event is added to the Event List, the inventories of involved tanks are updated in a status worksheet and the results of that event appear in the timeline and metrics charts. Although the EndpointTool is not a true dynamic model, it provides a useful desktop capability for quite complex process sequences. While only schedule and variances are presently performed, a cost module is in development. In summary: The EndpointTool is a powerful Excel-based planning resource. It is portable and test runs have shown that about 600 Events can effectively represent the processing of all of Hanford tank waste. Since each Event takes approximately 3 seconds to run on a 1.8 GHz CPU with 512 MB ram, a complete run only takes approximately 30 minutes. As a result, extensive scenario planning and process optimization is possible with this tool. Moreover, Event List 'scenarios' can be easily shared among users and scenario planning can then be distributed among a large number of users. (authors)

  17. The use of a solid-bowl centrifuge for ultrafine coal thickening

    SciTech Connect (OSTI)

    Pinkerton, A.P.; Klima, M.S.; Morrison, J.L.; Miller, B.G.

    2000-07-01

    Testing was carried out to investigate the use of a solid-bowl (decanter) centrifuge for thickening ultrafine coal-water slurries. This study was conducted for Electric Power Research Institute's (EPRI's) Upgraded Coal Interest Group (UCIG) to evaluate ultrafine dewatering technologies. The objective was to increase the solids concentration of an ultrafine coal discard stream to a level suitable for use as a coal-water slurry fuel, while maximizing overall solids recovery. The feed material was collected from the combined discharge (centrate) streams from several screen-bowl centrifuges, which are currently being used in a commercial coal cleaning facility to dewater froth flotation product. The centrate averages 5% solids by weight and contains nearly 60% material finer than 10 {micro}m. This study examined the effects of operating conditions on centrifuge performance, including centrifuge bowl and scroll speeds, and feed solids concentration. The effects of flocculation addition on centrifuge performance and slurry rheology were also examined. The results indicated that solids concentrations exceeding 55% were obtained in nearly all cases.

  18. Proof of concept and performance optimization of high gravity batch type centrifuge for dewatering fine coal

    SciTech Connect (OSTI)

    Smith, L.B.; Durney, T.E. Jr.

    1990-10-24

    Coal Technology Corporation (CTC) believes that the new CTC high gravity, high production, batch type centrifugal dryer technology can play a significant role in improving the product quality as well as costs of operation in coal processing plants. It is further believed that the new centrifugal dryer technology can form an important part in systems used to clean up the millions of tons of coal fines in refuse piles and ponds. Work has progressed to the point where the new centrifugal dryer technology is nearly ready for commercialization. The primary objective of this project is to prove the concept in a commercial coal processing plant environment. The proof of concept tests will include testing with a variety of coals from different regions. A further objective will be to optimize the efficiency and the cost effectiveness of the new centrifugal dryer technology. To supply some perspective on the ability of the new centrifuges to successfully dry a variety of coals from various coal fields, it was decided that coals ranging from very fine to course size consists and with both low and high inherent moistures would be tested. Coals tested include: Pittsburgh no. 8 seam (Pennsylvania), Pittsburgh no. 8 seam (West Virginia), and Blue Creek Seam (Alabama). 6 figs.

  19. Supporting document for the historical tank content estimate for SY-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.

    1997-08-12

    The purpose of this historical characterization document is to present the synthesized summaries of the historical records concerning the physical characteristics, radiological, and chemical composition of mixed wastes stored in underground double-shell tanks and the physical condition of these tanks. The double-shell tanks are located on the United States Department of Energy`s Hanford Site, approximately 25 miles northwest or Richland, Washington. The document will be used to assist in characterizing the waste in the tanks in conjunction with the current program of sampling and analyzing the tank wastes. Los Alamos National Laboratory (LANL) developed computer models that used the historical data to attempt to characterize the wastes and to generate estimates of each tank`s inventory. A historical review of the tanks may reveal anomalies or unusual contents that could be critical to characterization and post characterization activities. This document was developed by reviewing the operating plant process histories, waste transfer data, and available physical and chemical data from numerous resources. These resources were generated by numerous contractors from 1945 to the present. Waste characterization, the process of describing the character or quality of a waste, is required by Federal law (Resource Conservation and Recovery Act [RCRA]) and state law (Washington Administrative Code [WAC] 173-303, Dangerous Waste Regulations). Characterizing the waste is necessary to determine methods to safely retrieve, transport, and/or treat the wastes.

  20. Discovery of the First Leaking Double-Shell Tank - Hanford Tank 241-AY-102

    SciTech Connect (OSTI)

    Harrington, Stephanie J.; Sams, Terry L.

    2013-11-06

    A routine video inspection of the annulus space between the primary tank and secondary liner of double-shell tank 241-AY-102 was performed in August 2012. During the inspection, unexpected material was discovered. A subsequent video inspection revealed additional unexpected material on the opposite side of the tank, none of which had been observed during inspections performed in December 2006 and January 2007. A formal leak assessment team was established to review the tank's construction and operating histories, and preparations for sampling and analysis began to determine the material's origin. A new sampling device was required to collect material from locations that were inaccessible to the available sampler. Following its design and fabrication, a mock-up test was performed for the new sampling tool to ensure its functionality and capability of performing the required tasks. Within three months of the discovery of the unexpected material, sampling tools were deployed, material was collected, and analyses were performed. Results indicated that some of the unknown material was indicative of soil, whereas the remainder was consistent with tank waste. This, along with the analyses performed by the leak assessment team on the tank's construction history, lead to the conclusion that the primary tank was leaking into the annulus. Several issues were encountered during the deployment of the samplers into the annulus. As this was the first time samples had been required from the annulus of a double-shell tank, a formal lessons learned was created concerning designing equipment for unique purposes under time constraints.

  1. Tank 241-C-106 in-tank imaging system operational test report

    SciTech Connect (OSTI)

    Pedersen, L.T.

    1998-07-07

    This document presents the results of operational testing of the 241-C-106 In-Tank Video Camera Imaging System. This imaging system was installed as a component of Project W-320 to monitor sluicing and waste retrieval activities in Tank 241-C-106.

  2. Hanford Tank Farm Workers Begin Tank Waste Retrieval Ahead of Schedule

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – EM’s Office of River Protection (ORP) and tank farms contractor Washington River Protection Solutions (WRPS) began retrieving waste from underground double-shell tank AY-102 this month, ahead of schedule, meeting requirements of a settlement agreement with the State of Washington.

  3. QER- Comment of GenConn Energy on behalf of UIL Holdings Corporation

    Broader source: Energy.gov [DOE]

    Provided are comments of UIL Holdings Corporation on New England Regional Infrastructure Constraints.

  4. System for removing liquid waste from a tank

    DOE Patents [OSTI]

    Meneely, Timothy K. (Penn Hills, PA); Sherbine, Catherine A. (N. Versailles Township, Allegheny County, PA)

    1994-01-01

    A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid therethrough. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank.

  5. System for removing liquid waste from a tank

    DOE Patents [OSTI]

    Meneely, T.K.; Sherbine, C.A.

    1994-04-26

    A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid there through. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank. 2 figures.

  6. Tank Inspection NDE Results for Fiscal Year 2014, Waste Tanks 26, 27, 28 and 33

    SciTech Connect (OSTI)

    Elder, J.; Vandekamp, R.

    2014-09-29

    Ultrasonic nondestructive examinations (NDE) were performed on waste storage tanks 26, 27, 28 and 33 at the Savannah River Site as a part of the In-Service Inspection (ISI) Program for High Level Waste Tanks. No reportable conditions were identified during these inspections. The results indicate that the implemented corrosion control program continues to effectively mitigate corrosion in the SRS waste tanks. Ultrasonic inspection (UT) is used to detect general wall thinning, pitting and interface attack, as well as vertically oriented cracks through inspection of an 8.5 inch wide strip extending over the accessible height of the primary tank wall and accessible knuckle regions. Welds were also inspected in tanks 27, 28 and 33 with no reportable indications. In a Type III/IIIA primary tank, a complete vertical strip includes scans of five plates (including knuckles) so five plate/strips would be completed at each vertical strip location. In FY 2014, a combined total of 79 plate/strips were examined for thickness mapping and crack detection, equating to over 45,000 square inches of area inspected on the primary tank wall. Of the 79 plate/strips examined in FY 2014 all but three have average thicknesses that remain at or above the construction minimum thickness which is nominal thickness minus 0.010 inches. There were no service induced reportable thicknesses or cracking encountered. A total of 2 pits were documented in 2014 with the deepest being 0.032 inches deep. One pit was detected in Tank 27 and one in Tank 33. No pitting was identified in Tanks 26 or 28. The maximum depth of any pit encountered in FY 2014 is 5% of nominal thickness, which is less than the minimum reportable criteria of 25% through-wall for pitting. In Tank 26 two vertical strips were inspected, as required by the ISI Program, due to tank conditions being outside normal chemistry controls for more than 3 months. Tank 28 had an area of localized thinning on the exterior wall of the secondary tank noted during the initial inspections in 2005. That area was inspected again in 2014 and found to be larger and slightly deeper. The deepest area of thinning in the secondary wall is less than 20% wall loss. The maximum length of thinning is less than 24 inches and does not impact structural or leak integrity per WSRC-TR-2002-00063. Inspection results were presented to the In-service Inspection Review Committee (ISIRC) where it was determined that no additional data was required to complete these inspections.

  7. TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS

    SciTech Connect (OSTI)

    Lee, S.; Leishear, R.; Poirier, M.

    2012-05-31

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest the solid particles have higher density and/or larger size than indicated by previous analysis of SRS sludge and sludge simulants. (5) Tank 21 waste characterization, laboratory settling tests, and additional field turbidity measurements during mixing evolutions are recommended to better understand potential risk for extended (> 60 days) settling times in Tank 21.

  8. Tank waste decision analysis report. Draft

    SciTech Connect (OSTI)

    Johnson, M.E.; Grygiel, M.L.; Baynes, P.A.; Bekemeier, J.P.; Zimmerman, B.D.; Triplett, M.B.

    1993-03-31

    The Assistant Secretary for Environmental Restoration and Waste Management and the director of the Washington State Department of Ecology agreed to the need to re-evaluate treatment and disposal plans for Hanford Site tank waste. Re-evaluation of the tank waste treatment and disposal plans (referred to as rebaselining) was necessary to (1) provide an integrated system approach for achieving safe storage, (2) resolve tank safety issues, and (3) treat and dispose of all Hanford Site tank waste. Rebaselining evaluated new approaches to remediate Hanford Site tank waste and, thus, reaffirm existing plans or recommend a new technical strategy. To facilitate this integrated system approach for managing the program elements, the US Department of Energy formed the Tank Waste Remediation System (TWRS). While conducting this re-evaluation, the US Department of Energy agreed to continue supporting the existing plan for treatment and disposal of Hanford Site tank waste. The selection of a proposed new technical strategy for the TWRS Program is a complex task involving the evaluation of a large body of data. The data that is available to support the selection of a proposed new technical strategy is based on engineering estimates and preliminary technology development. To accommodate this complex, dynamic situation, a systems engineering approach is being applied to structure and analyze technical strategies and to manage the TWRS Program. Systems engineering is a generalized and systematic methodology for defining problems, evaluating solutions, and implementing the solutions. This report describes the development of the TWRS Program systems engineering analysis, the analytical methodologies that support it, and the results of the analyses that were used to define the proposed new technical strategy.

  9. Reducing the moisture content of clean coals. Volume 2, High-G solid-bowl centrifuge: Final report

    SciTech Connect (OSTI)

    Kehoe, D.

    1992-12-01

    Coal moisture content can profoundly effect the cost of burning coal in utility boilers. Because of the large effect of coal moisture, the Empire State Electric Energy Research Corporation (ESEERCO) contracted with the Electric Power Research Institute to investigate advanced coal dewatering methods at its Coal Quality Development Center. This report contains the test result on the high-G solid-bowl centrifuge, the second of four devices to be tested. The high-G solid-bowl centrifuge removes water for coal by spinning the coal/water mixture rapidly in a rotating bowl. This causes the coal to cling to the sides of the bowl where it can be removed, leaving the water behind. Testing was performed at the CQDC to evaluate the effect of four operating variables (G-ratio, feed solids concentration, dry solids feed rate, and differential RPM) on the performance of the high-G solid-bowl centrifuge. Two centrifuges of different bowl diameter were tested to establish the effect of scale-up of centrifuge performance. Testing of the two centrifuges occurred from 1985 through 1987. CQDC engineers performed 32 tests on the smaller of the two centrifuges, and 47 tests on the larger. Equations that predict the performance of the two centrifuges for solids recovery, moisture content of the produced coal, and motor torque were obtained. The equations predict the observed data well. Traditional techniques of establishing the performance of centrifuge of different scale did not work well with the two centrifuges, probably because of the large range of G-ratios used in the testing. Cost of operating a commercial size bank of centrifuges is approximately $1.72 per ton of clean coal. This compares well with thermal drying, which costs $1.82 per ton of clean coal.

  10. International Atomic Energy Agency holds conference on fusion roadmap |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab International Atomic Energy Agency holds conference on fusion roadmap By John Greenwald November 8, 2012 Tweet Widget Google Plus One Share on Facebook Hutch Neilson, third from left, chaired the four-day International Atomic Energy Agency Conference at the University of California at Los Angeles in mid-October, which drew 70 participants from 16 countries and international groups. Pictured here from left to right are Keeman Kim, National Fusion Research

  11. Public Utility Holding Company Act of 1935: 1935-1992

    Reports and Publications (EIA)

    1993-01-01

    This report provides an economic and legislative history and analysis of the Public Utilities Holding Company Act (PUHCA) of 1935. This Act was substantially amended for the first time in 1992 by passage of the Energy Policy Act (EPACT). The report also includes a discussion of the issues which led to the amendment of PUHCA and projections of the impact of these changes on the electric industry.

  12. DOE to Hold Public Meetings On Draft Environmental Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE to Hold Public Meetings On Draft Environmental Assessment Carlsbad, N.M., October 26, 2000 - The public is invited to comment on a draft environmental assessment for conducting astrophysics and other basic scientific experiments at the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP). The October 23 release of the draft environmental assessment begins a formal review process that includes a 30-day public comment period and two separate public information meetings. Public

  13. NNSA's holds Stewardship Science Academic Programs Annual Review Symposium

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Home / Blog NNSA's holds Stewardship Science Academic Programs Annual Review Symposium Thursday, February 20, 2014 - 4:00pm This week, NNSA brought together researchers from various academic programs to report on their accomplishments over the past year and promote interaction in areas of physical science relevant to stockpile stewardship. Sponsored by NNSA's Office of Research, Development, Test, and Evaluation, the symposium is geared toward

  14. Strategic Energy Analysis Institute to Hold Annual Meeting - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL Strategic Energy Analysis Institute to Hold Annual Meeting Second Annual Meeting Brings Key Stakeholders Together March 5, 2012 The Joint Institute for Strategic Energy Analysis (JISEA), a transdisciplinary global research group focused on the nexus of energy, environment, finance and society, headquartered at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), will address transformational trends in the global energy economy at its annual meeting, March 7-8

  15. TANK 50 BATCH 0 SALTSTONE FORMULATION CONFIRMATION

    SciTech Connect (OSTI)

    Langton, C.

    2006-06-05

    Savannah River National Laboratory (SRNL) personnel were requested to confirm the Tank 50 Batch 0 grout formulation per Technical Task Request, SSF-TTR-2006-0001 (task 1 of 2) [1]. Earlier Batch 0 formulation testing used a Tank 50 sample collected in September 2005 and is described elsewhere [2]. The current testing was performed using a sample of Tank 50 waste collected in May 2006. This work was performed according to the Technical Task and Quality Assurance Plan (TT/QAP), WSRC-RP-2006-00594 [3]. The salt solution collected from Tank 50 in May 2006 contained approximately 3 weight percent more solids than the sample collected in September 2005. The insoluble solids took longer to settle in the new sample which was interpreted as indicating finer particles in the current sample. The saltstone formulation developed for the September 2005 Tank 50 Batch 0 sample was confirmed for the May 2006 sample with one minor exception. Saltstone prepared with the Tank 50 sample collected in May 2006 required 1.5 times more Daratard 17 set retarding admixture than the saltstone prepared with the September In addition, a sample prepared with lower shear mixing (stirring with a spatula) had a higher plastic viscosity (57 cP) than samples made with higher shear mixing in a blender (23cP). The static gel times of the saltstone slurries made with low shear mixing were also shorter ({approx}32 minutes) than those for comparable samples made in the blender ({approx}47 minutes). The addition of the various waste streams (ETP, HEU-HCAN, and GPE-HCAN) to Tank 50 from September 2005 to May 2006 has increased the amount of set retarder, Daratard 17, required for processing saltstone slurries through the Saltstone facility. If these streams are continued to be added to Tank 50, the quantity of admixtures required to maintain the same processing conditions for the Saltstone facility will probably change and additional testing is recommended to reconfirm the Tank 50 Saltstone formulation.

  16. Hanford Story: Tank Waste Cleanup - Questions - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Hanford Story Hanford Story: Tank Waste Cleanup - Questions The Hanford Story Hanford Story: Tank Waste Cleanup - Questions Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Why is the Waste Treatment Plant being built? Where did the waste in the Tank Farms come from? How many gallons of waste are contained in the tanks? Why is removing the waste from the tanks so challenging? What is the Mobile Arm Retrieval System (MARS)? How will the tank waste be delivered

  17. Progress Continues Toward Closure of Two Underground Waste Tanks at

    Energy Savers [EERE]

    Savannah River Site | Department of Energy Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site October 30, 2013 - 12:00pm Addthis Grouting of two Savannah River Site waste tanks began in August. Here, the first trucks with grout arrive at F Tank Farm. Grouting of two Savannah River Site waste tanks began in August. Here, the first trucks with grout arrive at F Tank

  18. Grouting Begins on Next SRS Waste Tank | Department of Energy

    Office of Environmental Management (EM)

    Grouting Begins on Next SRS Waste Tank Grouting Begins on Next SRS Waste Tank June 30, 2015 - 12:00pm Addthis Cement trucks hauling specially-formulated grout are once again traversing SRS after grouting activities on Tank 16 began in June. Cement trucks hauling specially-formulated grout are once again traversing SRS after grouting activities on Tank 16 began in June. Workers at SRS monitor the grouting process of Tank 16. Workers at SRS monitor the grouting process of Tank 16. Cement trucks

  19. Plutonium purification cycle in centrifugal extractors: from flowsheet design to industrial operation

    SciTech Connect (OSTI)

    Baron, P.; Dinh, B.; Duhamet, J.; Drain, F.; Meze, F.; Lavenu, A.

    2008-07-01

    The extension of the UP2 plant at La Hague includes a new plutonium purification cycle using multistage centrifugal extractors to replace the previous cycle that used mixer/settler banks. This type of extractor is suitable for the treatment of fuel containing a high proportion of plutonium-238, as its short residence time limits solvent degradation. This paper deals with the research done to devise its flowsheet, the centrifugal extractors in which it is operated, as well as the feedback of six years of industrial operation.

  20. Safeguards at Gas Centrifuge Enrichment Plants: Why is Iran a Threat?

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Safeguards at Gas Centrifuge Enrichment Plants: Why is Iran a Threat? Citation Details In-Document Search Title: Safeguards at Gas Centrifuge Enrichment Plants: Why is Iran a Threat? Authors: Boyer, Brian D. [1] + Show Author Affiliations Los Alamos National Laboratory [Los Alamos National Laboratory Publication Date: 2014-06-25 OSTI Identifier: 1136096 Report Number(s): LA-UR-14-24695 DOE Contract Number: AC52-06NA25396 Resource Type: