National Library of Energy BETA

Sample records for hogen pem stationary

  1. HOGEN{trademark} proton exchange membrane hydrogen generators: Commercialization of PEM electrolyzers

    SciTech Connect (OSTI)

    Smith, W.F.; Molter, T.M.

    1997-12-31

    PROTON Energy Systems` new HOGEN series hydrogen generators are Proton Exchange Membrane (PEM) based water electrolyzers designed to generate 300 to 1000 Standard Cubic Feet Per Hour (SCFH) of high purity hydrogen at pressures up to 400 psi without the use of mechanical compressors. This paper will describe technology evolution leading to the HOGEN, identify system design performance parameters and describe the physical packaging and interfaces of HOGEN systems. PEM electrolyzers have served US and UK Navy and NASA needs for many years in a variety of diverse programs including oxygen generators for life support applications. In the late 1970`s these systems were advocated for bulk hydrogen generation through a series of DOE sponsored program activities. During the military buildup of the 1980`s commercial deployment of PEM hydrogen generators was de-emphasized as priority was given to new Navy and NASA PEM electrolysis systems. PROTON Energy Systems was founded in 1996 with the primary corporate mission of commercializing PEM hydrogen generators. These systems are specifically designed and priced to meet the needs of commercial markets and produced through manufacturing processes tailored to these applications. The HOGEN series generators are the first step along the path to full commercial deployment of PEM electrolyzer products for both industrial and consumer uses. The 300/1000 series are sized to meet the needs of the industrial gases market today and provide a design base that can transition to serve the needs of a decentralized hydrogen infrastructure tomorrow.

  2. Intergovernmental Advanced Stationary PEM Fuel Cell System Demonstration Final Report

    SciTech Connect (OSTI)

    Rich Chartrand

    2011-08-31

    A program to complete the design, construction and demonstration of a PEMFC system fuelled by Ethanol, LPG or NG for telecom applications was initiated in October 2007. Early in the program the economics for Ethanol were shown to be unfeasible and permission was given by DOE to focus on LPG only. The design and construction of a prototype unit was completed in Jun 2009 using commercially available PEM FC stack from Ballard Power Systems. During the course of testing, the high pressure drop of the stack was shown to be problematic in terms of control and stability of the reformer. Also, due to the power requirements for air compression the overall efficiency of the system was shown to be lower than a similar system using internally developed low pressure drop FC stack. In Q3 2009, the decision was made to change to the Plug power stack and a second prototype was built and tested. Overall net efficiency was shown to be 31.5% at 3 kW output. Total output of the system is 6 kW. Using the new stack hardware, material cost reduction of 63% was achieved over the previous Alpha design. During a November 2009 review meeting Plug Power proposed and was granted permission, to demonstrate the new, commercial version of Plug Power's telecom system at CERL. As this product was also being tested as part of a DOE Topic 7A program, this part of the program was transferred to the Topic 7A program. In Q32008, the scope of work of this program was expanded to include a National Grid demonstration project of a micro-CHP system using hightemperature PEM technology. The Gensys Blue system was cleared for unattended operation, grid connection, and power generation in Aug 2009 at Union College in NY state. The system continues to operate providing power and heat to Beuth House. The system is being continually evaluated and improvements to hardware and controls will be implemented as more is learned about the system's operation. The program is instrumental in improving the efficiency and reducing costs of PEMFC based power systems using LPG fuel and continues to makes steps towards meeting DOE's targets. Plug Power would like to thank DOE for their support of this program.

  3. Demonstration of Next Generation PEM CHP Systems for Global Markets Using

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PBI Membrane Technology | Department of Energy Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 7a_plugpwr.pdf More Documents & Publications International Stationary Fuel Cell Demonstration Intergovernmental Stationary Fuel Cell System

  4. Manufacturing Barriers to High Temperature PEM Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D ...

  5. PEM/SPE fuel cell

    DOE Patents [OSTI]

    Grot, Stephen Andreas

    1998-01-01

    A PEM/SPE fuel cell including a membrane-electrode assembly (MEA) having a plurality of oriented filament embedded the face thereof for supporting the MEA and conducting current therefrom to contiguous electrode plates.

  6. PEM/SPE fuel cell

    DOE Patents [OSTI]

    Grot, S.A.

    1998-01-13

    A PEM/SPE fuel cell is described including a membrane-electrode assembly (MEA) having a plurality of oriented filament embedded the face thereof for supporting the MEA and conducting current therefrom to contiguous electrode plates. 4 figs.

  7. Advanced Electrocatalysts for PEM Fuel Cells

    Broader source: Energy.gov [DOE]

    Presentation slides from the DOE Fuel Cell Technologies Office webinar, Advanced Electrocatalysts for PEM Fuel Cells, held February 12, 2013.

  8. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2002-01-01

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  9. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2011-06-07

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  10. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen J.; Doll, Gary L.

    1997-01-01

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  11. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Li, Y.; Meng, W.J.; Swathirajan, S.; Harris, S.J.; Doll, G.L.

    1997-04-29

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell`s operating environment. Stainless steels rich in Cr, Ni, and Mo are particularly effective protective interlayers. 6 figs.

  12. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen Joel; Doll, Gary Lynn

    2001-07-17

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  13. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen Joel; Doll, Gary Lynn

    2002-01-01

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  14. PEM fuel cell monitoring system

    DOE Patents [OSTI]

    Meltser, M.A.; Grot, S.A.

    1998-06-09

    Method and apparatus are disclosed for monitoring the performance of H{sub 2}--O{sub 2} PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H{sub 2} sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken. 2 figs.

  15. PEM fuel cell monitoring system

    DOE Patents [OSTI]

    Meltser, Mark Alexander; Grot, Stephen Andreas

    1998-01-01

    Method and apparatus for monitoring the performance of H.sub.2 --O.sub.2 PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H.sub.2 sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken.

  16. New Membranes for PEM Fuel Cells

    Broader source: Energy.gov [DOE]

    Presentation on New Membranes for PEM Fuel Cells to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  17. Platinum-Loading Reduction in PEM Fuel Cells - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the hydrogen atom, which enables the membrane within a PEM (proton exchange membrane) fuel cell to generate a charge, and thus generate clean, direct current electricity. In PEM...

  18. Research and Development of a PEM Fuel Cell, Hydrogen Reformer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility Technical paper ...

  19. Demonstration of Next Generation PEM CHP Systems for Global Markets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI ...

  20. Low-Cost Manufacturable Microchannel Systems for Passive PEM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management This presentation, which ...

  1. Low Cost Manufacturable Microchannel Systems for Passive PEM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost Manufacturable Microchannel Systems for Passive PEM Water Management Low Cost Manufacturable Microchannel Systems for Passive PEM Water Management Part of a 100 million ...

  2. Progress and Challenges for PEM Transit Fleet Applications |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Challenges for PEM Transit Fleet Applications Progress and Challenges for PEM Transit Fleet Applications Presentation at DOE and DOT Joint Fuel Cell Bus Workshop, June 7, 2010 ...

  3. Development of Micro-structural Mitigation Strategies for PEM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Micro-structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulation and Experimental Approaches Development of Micro-structural Mitigation Strategies for PEM Fuel ...

  4. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for ... PDF icon Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for ...

  5. Zongshen PEM Canada Chongqing Hydrogen Energy Ltd | Open Energy...

    Open Energy Info (EERE)

    Zongshen PEM Canada Chongqing Hydrogen Energy Ltd Jump to: navigation, search Name: Zongshen PEM (Canada) Chongqing Hydrogen Energy Ltd Place: Chongqing Municipality, China...

  6. Bootstrapping a Sustainable North American PEM Fuel Cell Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Sustainable North American PEM Fuel Cell Industry: Could a Federal Acquisition ... ORNLTM-2008183 BOOTSTRAPPING A SUSTAINABLE NORTH AMERICAN PEM FUEL CELL INDUSTRY: COULD ...

  7. PEM Degradation Investigation Final Technical Report

    SciTech Connect (OSTI)

    Dan Stevenson; Lee H Spangler

    2010-10-18

    This project conducted fundamental studies of PEM MEA degradation. Insights gained from these studies were disseminated to assist MEA manufacturers in understanding degradation mechanisms and work towards DOE 2010 fuel cell durability targets.

  8. Next Generation Bipolar Plates for Automotive PEM Fuel Cells...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Bipolar Plates for Automotive PEM Fuel Cells Next Generation Bipolar Plates for Automotive PEM Fuel Cells Part of a 100 million fuel cell award announced by DOE ...

  9. Development of a New Generation, High Efficiency PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Part of a 100 million fuel cell ...

  10. Webinar: Advanced Electrocatalysts for PEM Fuel Cells | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Advanced Electrocatalysts for PEM Fuel Cells Webinar: Advanced Electrocatalysts for PEM Fuel Cells Above is the video recording for the webinar, "Advanced Electrocatalysts for PEM Fuel Cells," originally held on February 12, 2013. In addition to this recording, you can access the presentation slides. A text version of this recording will be available soon

  11. Trends in stationary energy

    Broader source: Energy.gov [DOE]

    Trends in Stationary Energy Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review

  12. Trends in stationary energy

    SciTech Connect (OSTI)

    2013-04-01

    Trends in Stationary Energy Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review

  13. Brazed bipolar plates for PEM fuel cells

    DOE Patents [OSTI]

    Neutzler, Jay Kevin

    1998-01-01

    A liquid-cooled, bipolar plate separating adjacent cells of a PEM fuel cell comprising corrosion-resistant metal sheets brazed together so as to provide a passage between the sheets through which a dielectric coolant flows. The brazement comprises a metal which is substantially insoluble in the coolant.

  14. Brazed bipolar plates for PEM fuel cells

    DOE Patents [OSTI]

    Neutzler, J.K.

    1998-07-07

    A liquid-cooled, bipolar plate separating adjacent cells of a PEM fuel cell comprises corrosion-resistant metal sheets brazed together so as to provide a passage between the sheets through which a dielectric coolant flows. The brazement comprises a metal which is substantially insoluble in the coolant. 6 figs.

  15. Webinar: Micro-Structural Mitigation Strategies for PEM Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Micro-Structural Mitigation Strategies for PEM Fuel Cells Webinar: Micro-Structural Mitigation Strategies for PEM Fuel Cells Above is the webinar recording for the Fuel Cell Technologies Office webinar, "Micro-Structural Mitigation Strategies for PEM Fuel Cells," originally presented on November 19, 2013. In addition to this recording, you can access the presentation slides. A text version of this recording will be available soon

  16. Hydrogen Production by Polymer Electrolyte Membrane (PEM)Electrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner ... Fuel Cell Technologies Office webinar "Hydrogen Production by Polymer Electrolyte ...

  17. PEM Fuel Cell Technology, Key Research Needs and Approaches ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology, Key Research Needs and Approaches (Presentation) PEM Fuel Cell Technology, Key Research Needs and Approaches (Presentation) Presented at the DOE Fuel Cell ...

  18. PEM Fuel Cell Pre-Solicitation Workshop Questions & Answers ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PEM Fuel Cell Pre-Solicitation Workshop Questions & Answers Questions & Answers about Department of Energy Hydrogen Program fuel cell solicitation. PDF icon pemfuelwkspqa.pdf ...

  19. Water Transport in PEM Fuel Cells: Advanced Modeling, Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing, and Design Optimization Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization This presentation, which focuses on ...

  20. Water Transport in PEM Fuel Cells: Advanced Modeling, Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Design Optimization Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization Part of a 100 million fuel cell award ...

  1. High Pressure PEM Electrolysis: Status, Key Issues, and Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drawback is high back diffusion. Similar faradaic losses in PEM fuel cells and ... durability testingvalidation Full optimization studies Hydrogen safety codes and ...

  2. PEM Electrolysis H2A Production Case Study Documentation

    SciTech Connect (OSTI)

    James, Brian; Colella, Whitney; Moton, Jennie; Saur, G.; Ramsden, T.

    2013-12-31

    This report documents the development of four DOE Hydrogen Analysis (H2A) case studies for polymer electrolyte membrane (PEM) electrolysis. The four cases characterize PEM electrolyzer technology for two hydrogen production plant sizes (Forecourt and Central) and for two technology development time horizons (Current and Future).

  3. Pattern recognition monitoring of PEM fuel cell

    DOE Patents [OSTI]

    Meltser, Mark Alexander

    1999-01-01

    The CO-concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H.sub.2 fuel stream.

  4. Pattern recognition monitoring of PEM fuel cell

    DOE Patents [OSTI]

    Meltser, M.A.

    1999-08-31

    The CO-concentration in the H{sub 2} feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H{sub 2} fuel stream. 4 figs.

  5. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    SciTech Connect (OSTI)

    Edward F. Kiczek

    2007-08-31

    Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

  6. Stationary nonlinear Airy beams

    SciTech Connect (OSTI)

    Lotti, A.; Faccio, D.; Couairon, A.; Papazoglou, D. G.; Panagiotopoulos, P.; Tzortzakis, S.; Abdollahpour, D.

    2011-08-15

    We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a variety of applications are suggested.

  7. Hydrogen Production by PEM Electrolysis: Spotlight on Giner and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PRODUCTION BY PEM ELECTROLYSIS: SPOTLIGHT ON GINER AND PROTON US DOE WEBINAR (May 23, 2011) 2 Webinar Outline *Water Electrolysis H 2 Production Overview DOE-EERE-FCT: Eric L. ...

  8. Advanced Materials for PEM-Based Fuel Cell Systems

    SciTech Connect (OSTI)

    James E. McGrath

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 °C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic fillers, such as phosphotungstic acid and zirconium hydrogen phosphate. Block copolymers were also studied due to the possibility to achieve a desired combination of homopolymer properties as well as the unique morphologies that are possible with block copolymers. Bezoyl substituted poly(p-phenylene) blocks were combined with poly(arylene ether) blocks to merge the structural rigidity of the poly(p-phenylene) with the ductility and high protonic conductivity of the poly(arylene ether)s. As evidenced by our many refereed publications and preprints, the research that we have conducted over the past several years has made a valuable and significant contribution to the literature and to the state of understanding of proton exchange membranes. Our early efforts at scale-up have suggested that the directly polymerized disulfonated poly(arylene ether sulfone) copolymers are commercially viable alternatives for proton exchange membranes. A new process for bipolar plates was developed and is described. An important single domain PEMFC model was developed and is documented in this final report.

  9. Advanced Materials for PEM-Based Fuel Cell Systems

    SciTech Connect (OSTI)

    James E. McGrath; Donald G. Baird; Michael von Spakovsky

    2005-10-26

    Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 degrees C. However, application of these membranes is limited due to their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic fillers, such as phosphotungstic acid and zirconium hydrogen phosphate. Block copolymers were also studied due to the possibility to achieve a desired combination of homopolymer properties as well as the unique morphologies that are possible with block copolymers. Bezoyl substituted poly(p-phenylene) blocks were combined with poly(arylene ether) blocks to merge the structural rigidity of the poly(p-phenylene) with the ductility and high protonic conductivity of the poly(arylene ether)s. As evidenced by our many refereed publications and preprints, the research that we have conducted over the past several years has made a valuable and significant contribution to the literature and to the state of understanding of proton exchange membranes. Our early efforts at scale-up have suggested that the directly polymerized disulfonated poly(arylene ether sulfone) copolymers are commercially viable alternatives for proton exchange membranes. A new process for bipolar plates was developed and is described. An important single domain PEMFC model was developed and is documented in herein.

  10. Method of monitoring CO concentrations in hydrogen feed to a PEM fuel cell

    DOE Patents [OSTI]

    Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk

    2000-01-01

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. The PEM-probe is intermittently purged of any CO build-up on the anode catalyst (e.g., by (1) flushing the anode with air, (2) short circuiting the PEM-probe, or (3) reverse biasing the PEM-probe) to keep the PEM-probe at peak performance levels.

  11. Manufacturing R&D of PEM Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PEM Fuel Cells Manufacturing R&D of PEM Fuel Cells Background paper prepared for the 2005 Hydrogen Manufacturing R&D workshop. PDF icon mfgwkshpfuelcell.pdf More Documents & ...

  12. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications: 2008 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell ... PDF icon Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for ...

  13. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications: 2007 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell ... PDF icon Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for ...

  14. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications: 2010 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell ... PDF icon Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for ...

  15. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application: 2009 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell ... PDF icon Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for ...

  16. Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project...

    Energy Savers [EERE]

    Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility ...

  17. Micro-Structural Mitigation Strategies for PEM Fuel Cells | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Micro-Structural Mitigation Strategies for PEM Fuel Cells Micro-Structural Mitigation Strategies for PEM Fuel Cells Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Micro-Structural Mitigation Strategies for PEM Fuel Cells" held on November 19, 2013. PDF icon Micro-Structural Mitigation Strategies for PEM Fuel Cells Webinar Slides More Documents & Publications 2012 Fuel Cell Technologies Market Report 2011 Fuel Cell Technologies Market

  18. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application

    Broader source: Energy.gov [DOE]

    This presentation reports on the status of mass production cost estimation for direct hydrogen PEM fuel cell systems.

  19. Recent Progress in Nanostructured Electrocatalysts for PEM Fuel Cells

    SciTech Connect (OSTI)

    Zhang, Sheng; Shao, Yuyan; Yin, Geping; Lin, Yuehe

    2013-03-30

    Polymer electrolyte membrane (PEM) fuel cells are attracting much attention as promising clean power sources and an alternative to conventional internal combustion engines, secondary batteries, and other power sources. Much effort from government laboratories, industry, and academia has been devoted to developing PEM fuel cells, and great advances have been achieved. Although prototype cars powered by fuel cells have been delivered, successful commercialization requires fuel cell electrocatalysts, which are crucial components at the heart of fuel cells, meet exacting performance targets. In this review, we present a brief overview of the recent progress in fuel cell electrocatalysts, which involves catalyst supports, Pt and Pt-based electrocatalysts, and non-Pt electrocatalysts.

  20. Transportation and Stationary Power Integration: Workshop Proceedings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration: Workshop Proceedings Transportation and Stationary Power Integration: Workshop Proceedings Proceedings for the Transportation and Stationary Power Integration Workshop ...

  1. Development of Novel PEM Membrane and Multiphase CD Modeling of PEM Fuel Cell

    SciTech Connect (OSTI)

    K. J. Berry; Susanta Das

    2009-12-30

    To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance. To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance.

  2. The use of experimental design to find the operating maximum power point of PEM fuel cells

    SciTech Connect (OSTI)

    Crăciunescu, Aurelian; Pătularu, Laurenţiu; Ciumbulea, Gloria; Olteanu, Valentin; Pitorac, Cristina; Drugan, Elena

    2015-03-10

    Proton Exchange Membrane (PEM) Fuel Cells are difficult to model due to their complex nonlinear nature. In this paper, the development of a PEM Fuel Cells mathematical model based on the Design of Experiment methodology is described. The Design of Experiment provides a very efficient methodology to obtain a mathematical model for the studied multivariable system with only a few experiments. The obtained results can be used for optimization and control of the PEM Fuel Cells systems.

  3. Effects of Fuel and Air Impurities on PEM Fuel Cell Performance

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on PEM fuel cell performance, was given by Fernando Garzon of LANL at a February 2007 meeting on new fuel cell projects.

  4. Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton

    Broader source: Energy.gov [DOE]

    Slides presented at the DOE Fuel Cell Technologies Office webinar "Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton" on May 23, 2011.

  5. Webinar: Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton

    Broader source: Energy.gov [DOE]

    Video recording of the webinar, Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton, originally presented on May 23, 2011.

  6. Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on passive PEM water management, was given by Susie Stenkamp of PNNL at a February 2007 meeting on new fuel cell projects.

  7. Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on water transport in PEM fuel cells, was given by CFDRC's J. Vernon Cole at a DOE fuel cell meeting in February 2007.

  8. Upcoming Webinar November 19: Micro-Structural Mitigation Strategies for PEM Fuel Cells

    Broader source: Energy.gov [DOE]

    On November 19, the Energy Department will present a webinar on micro-structural mitigation strategies for PEM fuel cells focusing on morphological simulations and experimental approaches.

  9. Universal Membrane Classification Scheme: Maximizing the Return on High Temperature PEM Membrane Research

    Broader source: Energy.gov [DOE]

    This presentation on maximizing the return of high temperature PEM membrane research was given at the High Temperature Membrane Working Group Meeting in May 2007.

  10. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application This presentation reports on the status of mass production cost ...

  11. Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on cathode supports for PEM fuel cells, was given by Yong Wang of PNNL at a February 2007 meeting on new fuel cell projects.

  12. WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization

    SciTech Connect (OSTI)

    J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

    2012-10-02

    Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated costs and weight of blowers and pumps to force air and hydrogen gas through the fuel cell. Promising improvements to materials structure and surface treatments that can potentially aid in managing the distribution and removal of liquid water were developed; and improved steady-state and freeze-thaw performance was demonstrated for a fuel cell stack under the self-humidified operating conditions that are promising for stationary power generation with reduced operating costs.

  13. Transportation and Stationary Power Integration Workshop Attendees...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation and Stationary Power Integration Workshop Attendees List List of attendees for the Transportation and Stationary Power Integration Workshop PDF icon ...

  14. Transportation and Stationary Power Integration Workshop Agenda...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation and Stationary Power Integration Workshop Agenda, October 27, 2008, Phoenix, Arizonia Agenda for the Transportation and Stationary Power Integration Workshop held on ...

  15. Stationary Fuel Cell Evaluation (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

    2012-05-01

    This powerpoint presentation discusses its objectives: real world operation data from the field and state-of-the-art lab; collection; analysis for independent technology validation; collaboration with industry and end users operating stationary fuel cell systems and reporting on technology status, progress and technical challenges. The approach and accomplishments are: A quarterly data analysis and publication of first technical stationary fuel cell composite data products (data through June 2012).

  16. Advanced Cathode Catalysts and Supports for PEM Fuel Cells | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 3_3m.pdf More Documents & Publications Advanced Cathode Catalysts and Supports for PEM Fuel Cells Advanced Cathode Catalysts and Supports for PEM Fuel Cells

  17. Advanced Cathode Catalysts and Supports for PEM Fuel Cells | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy This presentation, which focuses on advanced cathode catalysts and supports for PEM fuel cells, was given by Mark Debe of 3M at a February 2007 meeting on new fuel cell projects. PDF icon new_fc_debe_3m.pdf More Documents & Publications Advanced Cathode Catalysts Light Weight, Low Cost PEM Fuel Cell Stacks

  18. Novel Hydrogen Purification Device Integrated with PEM Fuel Cells

    SciTech Connect (OSTI)

    Joseph Schwartz; Hankwon Lim; Raymond Drnevich

    2010-12-31

    A prototype device containing twelve membrane tubes was designed, built, and demonstrated. The device produced almost 300 scfh of purified hydrogen at 200 psig feed pressure. The extent of purification met the program target of selectively removing enough impurities to enable industrial-grade hydrogen to meet purity specifications for PEM fuel cells. An extrusion process was developed to produce substrate tubes. Membranes met several test objectives, including completing 20 thermal cycles, exceeding 250 hours of operating life, and demonstrating a flux of 965 scfh/ft2 at 200 psid and 400 C.

  19. Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping

    Energy Savers [EERE]

    and Feasibility | Department of Energy Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility This Sandia National Laboratories study examines the feasibility of a hydrogen-fueled PEM fuel cell barge to provide electrical power to vessels at anchorage or at berth. The study includes both a determination of the technical feasibility of the idea as well as an analysis of

  20. Transportation and Stationary Power Integration: Workshop Proceedings

    Broader source: Energy.gov [DOE]

    Proceedings for the Transportation and Stationary Power Integration Workshop held on October 27, 2008 in Phoenix, Arizona

  1. Table IV: Technical Targets for Membranes: Stationary

    Broader source: Energy.gov [DOE]

    "Technical targets for fuel cell membranes in stationary applications defined by the High Temperature Working Group (February 2003). "

  2. Cerium migration during PEM fuel cell assembly and operation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baker, Andrew M.; Torraco, Dennis; Judge, Elizabeth J.; Spernjak, Dusan; Mukundan, Rangachary; Borup, Rod L.; Advani, Suresh G.; Prasad, Ajay K.

    2015-09-14

    Cerium migration between PEM fuel cell components is influenced by potential-driven mobility, ionic diffusion, and gradients in water content. These factors were investigated in ex situ experiments and in operating fuel cells. Potential-induced migration was measured ex situ in hydrated window cells. Cerium-containing MEAs were also fabricated and tested under ASTs. MEA disassembly and subsequent XRF analysis were used to observe rapid cerium migration during cell assembly and operation. During MEA hot pressing, humidification, and low RH operation at OCV, ionic diffusion causes uniform migration from the membrane into the catalyst layers. During high RH operation at OCV, in-plane ceriummore » gradients arise due to variations in water content. These gradients may diminish the scavenging efficacy of cerium by reducing its proximity to generated radicals.« less

  3. Method of making MEA for PEM/SPE fuel cell

    DOE Patents [OSTI]

    Hulett, Jay S.

    2000-01-01

    A method of making a membrane-electrode-assembly (MEA) for a PEM/SPE fuel cell comprising applying a slurry of electrode-forming material directly onto a membrane-electrolyte film. The slurry comprises a liquid vehicle carrying catalyst particles and a binder for the catalyst particles. The membrane-electrolyte is preswollen by contact with the vehicle before the electrode-forming slurry is applied to the membrane-electrolyte. The swollen membrane-electrolyte is constrained against shrinking in the "x" and "y" directions during drying. Following assembly of the fuel cell, the MEA is rehydrated inside the fuel cell such that it swells in the "z" direction for enhanced electrical contact with contiguous electrically conductive components of the fuel cell.

  4. A portable power system using PEM fuel cells

    SciTech Connect (OSTI)

    Long, E.

    1997-12-31

    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  5. Cerium migration during PEM fuel cell assembly and operation

    SciTech Connect (OSTI)

    Baker, Andrew M.; Torraco, Dennis; Judge, Elizabeth J.; Spernjak, Dusan; Mukundan, Rangachary; Borup, Rod L.; Advani, Suresh G.; Prasad, Ajay K.

    2015-09-14

    Cerium migration between PEM fuel cell components is influenced by potential-driven mobility, ionic diffusion, and gradients in water content. These factors were investigated in ex situ experiments and in operating fuel cells. Potential-induced migration was measured ex situ in hydrated window cells. Cerium-containing MEAs were also fabricated and tested under ASTs. MEA disassembly and subsequent XRF analysis were used to observe rapid cerium migration during cell assembly and operation. During MEA hot pressing, humidification, and low RH operation at OCV, ionic diffusion causes uniform migration from the membrane into the catalyst layers. During high RH operation at OCV, in-plane cerium gradients arise due to variations in water content. These gradients may diminish the scavenging efficacy of cerium by reducing its proximity to generated radicals.

  6. Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In this multi-year project, SA estimates the material and manufacturing costs of complete 80 kWnet direct-hydrogen proton exchange membrane (PEM) fuel cell systems suitable for ...

  7. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    Broader source: Energy.gov [DOE]

    Technical paper on the development of a hydrogen reformer, vehicle refueling facility, and PEM fuel cell for Las Vegas, NV presented at the 2002 Annual Hydrogen Review held May 6-8, 2002 in Golden, CO.

  8. Light Weight, Low Cost PEM Fuel Cell Stacks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Oct. 25, 2006. PDF icon 5cwru.pdf More Documents & Publications Fuel Cell Kickoff Meeting Agenda Light Weight, Low Cost PEM Fuel Cell Stacks Fuel Cell Projects Kickoff Meeting

  9. Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 IPHE Stationary Fuel Cell Workshop Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop Presentation by Rick Farmer at the IPHE Stationary Fuel ...

  10. PEM Electrolyzer Incorporating an Advanced Low-Cost Membrane

    SciTech Connect (OSTI)

    Hamdan, Monjid

    2013-08-29

    The Department of Energy (DOE) has identified hydrogen production by electrolysis of water at forecourt stations as a critical technology for transition to the hydrogen economy; however, the cost of hydrogen produced by present commercially available electrolysis systems is considerably higher than the DOE 2015 and 2020 cost targets. Analyses of proton-exchange membrane (PEM) electrolyzer systems indicate that reductions in electricity consumption and electrolyzer stack and system capital cost are required to meet the DOE cost targets. The primary objective is to develop and demonstrate a cost-effective energy-based system for electrolytic generation of hydrogen. The goal is to increase PEM electrolyzer efficiency and to reduce electrolyzer stack and system capital cost to meet the DOE cost targets for distributed electrolysis. To accomplish this objective, work was conducted by a team consisting of Giner, Inc. (Giner), Virginia Polytechnic Institute & University (VT), and domnick hunter group, a subsidiary of Parker Hannifin (Parker). The project focused on four (4) key areas: (1) development of a high-efficiency, high-strength membrane; (2) development of a long-life cell-separator; (3) scale-up of cell active area to 290 cm2 (from 160 cm); and (4) development of a prototype commercial electrolyzer system. In each of the key stack development areas Giner and our team members conducted focused development in laboratory-scale hardware, with analytical support as necessary, followed by life-testing of the most promising candidate materials. Selected components were then scaled up and incorporated into low-cost scaled-up stack hardware. The project culminated in the fabrication and testing of a highly efficient electrolyzer system for production of 0.5 kg/hr hydrogen and validation of the stack and system in testing at the National Renewable Energy Laboratory (NREL).

  11. Development of Ultra-low Platinum Alloy Cathode Catalyst for PEM Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Ultra-low Platinum Alloy Cathode Catalyst for PEM Fuel Cells Development of Ultra-low Platinum Alloy Cathode Catalyst for PEM Fuel Cells These slides were presented at the 2010 New Fuel Cell Projects Meeting on September 28, 2010. PDF icon 7_usc_popov.pdf More Documents & Publications DOE's Fuel Cell Catalyst R&D Activities 2006 Alkaline Membrane Fuel Cell Workshop Final Report Highly Dispersed Alloy Cathode Catalyst for Durability

  12. Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System | Department of Energy a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 7_intelligent.pdf More Documents & Publications 2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2011 Pathways to Commercial Success: Technologies and

  13. Engineered Nano-scale Ceramic Supports for PEM Fuel Cells | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Engineered Nano-scale Ceramic Supports for PEM Fuel Cells Engineered Nano-scale Ceramic Supports for PEM Fuel Cells Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 PDF icon brosha_lanl_kickoff.pdf More Documents & Publications Long Term Innovative Technologies The Science And Engineering of Duralbe Ultralow PGM Catalysts DOE Durability Working Group October 2010 Meeting Minutes

  14. Analysis of the Durability of PEM FC Membrane Electrode Assemblies in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Applications | Department of Energy the Durability of PEM FC Membrane Electrode Assemblies in Automotive Applications Analysis of the Durability of PEM FC Membrane Electrode Assemblies in Automotive Applications These slides were presented at the 2010 New Fuel Cell Projects Meeting on September 28, 2010. PDF icon 10_dupont_perry.pdf More Documents & Publications DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 2: MEAs, Components, and Integration Membranes and MEAs for

  15. Draft Funding Opportunity Announcement for Research and Development of Polymer Electrolyte Membrane (PEM) Fuel Cells for the Hydrogen Economy

    Broader source: Energy.gov [DOE]

    Proposed statement of work for the upcoming solicitation for Research and Development of Polymer Electrolyte Membrane (PEM) Fuel Cells for the Hydrogen Economy.

  16. Transportation and Stationary Power Integration with Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Hydrogen and Fuel Cell Technology in Connecticut Transportation and Stationary Power Integration with Hydrogen and Fuel Cell Technology in Connecticut Overview of strengths, ...

  17. Transportation and Stationary Power Integration Workshop Session...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration Workshop Session II: State and Industry Perspectives Transportation and Stationary Power Integration Workshop Session II: State and Industry Perspectives Opportunities ...

  18. H2S removal with ZnO during fuel processing for PEM fuel cell applications

    SciTech Connect (OSTI)

    Li, Liyu; King, David L.

    2006-09-15

    The possibility of using ZnO as a H2S absorbent to protect catalysts in the gasoline and diesel fuel processor for PEM fuel cell applications was studied. It is possible to use commercial ZnO absorbent as a guard bed to protect the PROX catalyst and PEM fuel cell. However, it is not feasible to use ZnO to protect high and low temperature WGS catalysts, most likely due to COS formation via reactions CO + H2S = COS + H2 and CO2 + H2S = COS + H2O.

  19. Adaptive Process Controls and Ultrasonics for High Temperature PEM MEA Manufacture

    SciTech Connect (OSTI)

    Walczyk, Daniel F.

    2015-08-26

    The purpose of this 5-year DOE-sponsored project was to address major process bottlenecks associated with fuel cell manufacturing. New technologies were developed to significantly reduce pressing cycle time for high temperature PEM membrane electrode assembly (MEA) through the use of novel, robust ultrasonic (U/S) bonding processes along with low temperature (<100°C) PEM MEAs. In addition, greater manufacturing uniformity and performance was achieved through (a) an investigation into the causes of excessive variation in ultrasonically and thermally bonded MEAs using more diagnostics applied during the entire fabrication and cell build process, and (b) development of rapid, yet simple quality control measurement techniques for use by industry.

  20. Next Generation Bipolar Plates for Automotive PEM Fuel Cells

    SciTech Connect (OSTI)

    Orest Adrianowycz; Julian Norley; David J. Stuart; David Flaherty; Ryan Wayne; Warren Williams; Roger Tietze; Yen-Loan H. Nguyen; Tom Zawodzinski; Patrick Pietrasz

    2010-04-15

    The results of a successful U.S. Department of Energy (DoE) funded two-year $2.9 MM program lead by GrafTech International Inc. (GrafTech) are reported and summarized. The program goal was to develop the next generation of high temperature proton exchange membrane (PEM) fuel cell bipolar plates for use in transportation fuel cell applications operating at temperatures up to 120 °C. The bipolar plate composite developed during the program is based on GrafTech’s GRAFCELL resin impregnated flexible graphite technology and makes use of a high temperature Huntsman Advanced Materials resin system which extends the upper use temperature of the composite to the DoE target. High temperature performance of the new composite is achieved with the added benefit of improvements in strength, modulus, and dimensional stability over the incumbent resin systems. Other physical properties, including thermal and electrical conductivity of the new composite are identical to or not adversely affected by the new resin system. Using the new bipolar plate composite system, machined plates were fabricated and tested in high temperature single-cell fuel cells operating at 120 °C for over 1100 hours by Case Western Reserve University. Final verification of performance was done on embossed full-size plates which were fabricated and glued into bipolar plates by GrafTech. Stack testing was done on a 10-cell full-sized stack under a simulated drive cycle protocol by Ballard Power Systems. Freeze-thaw performance was conducted by Ballard on a separate 5-cell stack and shown to be within specification. A third stack was assembled and shipped to Argonne National Laboratory for independent performance verification. Manufacturing cost estimate for the production of the new bipolar plate composite at current and high volume production scenarios was performed by Directed Technologies Inc. (DTI). The production cost estimates were consistent with previous DoE cost estimates performed by DTI for the DoE on metal plates. The final result of DTI’s analysis for the high volume manufacturing scenario ($6.85 /kW) came in slightly above the DoE target of $3 to $5/kW. This estimate was derived using a “Best Case Scenario” for many of the production process steps and raw material costs with projections to high volumes. Some of the process improvements assumed in this “Best Case Scenario” including high speed high impact forming and solvent-less resins, have not yet been implemented, but have a high probability of potential success.

  1. PEM fuel cell cost minimization using ``Design For Manufacture and Assembly`` techniques

    SciTech Connect (OSTI)

    Lomax, F.D. Jr.; James, B.D.; Mooradian, R.P.

    1997-12-31

    Polymer Electrolyte Membrane (PEM) fuel cells fueled with direct hydrogen have demonstrated substantial technical potential to replace Internal Combustion Engines (ICE`s) in light duty vehicles. Such a transition to a hydrogen economy offers the potential of substantial benefits from reduced criteria and greenhouse emissions as well as reduced foreign fuel dependence. Research conducted for the Ford Motor Co. under a US Department of Energy contract suggests that hydrogen fuel, when used in a fuel cell vehicle (FCV), can achieve a cost per vehicle mile less than or equal to the gasoline cost per mile when used in an ICE vehicle. However, fuel cost parity is not sufficient to ensure overall economic success: the PEM fuel cell power system itself must be of comparable cost to the ICE. To ascertain if low cost production of PEM fuel cells is feasible, a powerful set of mechanical engineering tools collectively referred to as Design for Manufacture and Assembly (DFMA) has been applied to several representative PEM fuel cell designs. The preliminary results of this work are encouraging, as presented.

  2. Webinar: Procuring Fuel Cells for Stationary Power: A Guide for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procuring Fuel Cells for Stationary Power: A Guide for Federal Decision Makers Webinar: Procuring Fuel Cells for Stationary Power: A Guide for Federal Decision Makers Download ...

  3. Overview of Options to Integrate Stationary Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector Overview of Options to Integrate Stationary Power Generation ...

  4. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

  5. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Environmental Management (EM)

    Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage Program is ...

  6. Cost Analysis of NOx Control Alternatives for Stationary Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 The use of ...

  7. An Overview of Stationary Fuel Cell Technology (Technical Report...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Overview of Stationary Fuel Cell Technology Citation Details In-Document Search Title: An Overview of Stationary Fuel Cell Technology You are accessing a document from the ...

  8. Intergovernmental Stationary Fuel Cell System Demonstration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intergovernmental Stationary Fuel Cell System Demonstration Part of a 100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 7bplugpwr.pdf More ...

  9. Stationary phase deposition based on onium salts

    DOE Patents [OSTI]

    Wheeler, David R.; Lewis, Patrick R.; Dirk, Shawn M.; Trudell, Daniel E.

    2008-01-01

    Onium salt chemistry can be used to deposit very uniform thickness stationary phases on the wall of a gas chromatography column. In particular, the stationary phase can be bonded to non-silicon based columns, especially microfabricated metal columns. Non-silicon microfabricated columns may be manufactured and processed at a fraction of the cost of silicon-based columns. In addition, the method can be used to phase-coat conventional capillary columns or silicon-based microfabricated columns.

  10. Stationary Liquid Fuel Fast Reactor

    SciTech Connect (OSTI)

    Yang, Won Sik; Grandy, Andrew; Boroski, Andrew; Krajtl, Lubomir; Johnson, Terry

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel container is penetrated by twelve hexagonal control assembly (CA) guide tubes, each of which has 3.0 mm thickness and 69.4 mm flat-to-flat outer distance. The distance between two neighboring CA guide tube is selected to be 26 cm to provide an adequate space for CA driving systems. The fuel container has 18181 penetrating coolant tubes of 6.0 mm inner diameter and 2.0 mm thickness. The coolant tubes are arranged in a triangular lattice with a lattice pitch of 1.21 cm. The fuel, structure, and coolant volume fractions inside the fuel container are 0.386, 0.383, and 0.231, respectively. Separate steel reflectors and B4C shields are used outside of the fuel container. Six gas expansion modules (GEMs) of 5.0 cm thickness are introduced in the radial reflector region. Between the radial reflector and the fuel container is a 2.5 cm sodium gap. The TRU inventory at the beginning of equilibrium cycle (BOEC) is 5081 kg, whereas the TRU inventory at the beginning of life (BOL) was 3541 kg. This is because the equilibrium cycle fuel contains a significantly smaller fissile fraction than the LWR TRU feed. The fuel inventory at BOEC is composed of 34.0 a/o TRU, 41.4 a/o Ce, 23.6 a/o Co, and 1.03 a/o solid fission products. Since uranium-free fuel is used, a theoretical maximum TRU consumption rate of 1.011 kg/day is achieved. The semi-continuous fuel cycle based on the 300-batch, 1- day cycle approximation yields a burnup reactivity loss of 26 pcm/day, and requires a daily reprocessing of 32.5 kg of SLFFR fuel. This yields a daily TRU charge rate of 17.45 kg, including a makeup TRU feed of 1.011 kg recovered from the LWR used fuel. The charged TRU-Ce-Co fuel is composed of 34.4 a/o TRU, 40.6 a/o Ce, and 25.0 a/o Co.

  11. Stationary and Portable Fuel Cell Systems Codes and Standards Citations

    Broader source: Energy.gov [DOE]

    This document lists codes and standards typically used for US stationary and portable fuel cell systems.

  12. Table III: Technical Targets for Catalyst Coated Membranes (CCMs): Stationary

    Broader source: Energy.gov [DOE]

    Technical targets for CCMs in stationary applications defined by the High Temperature Working Group (February 2003).

  13. Process for recycling components of a PEM fuel cell membrane electrode assembly

    DOE Patents [OSTI]

    Shore, Lawrence

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  14. Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen Polymer Electrolyte Membrane (PEM) Fuel Cell for Material Handling Applications

    Broader source: Energy.gov [DOE]

    This report provides cost estimates for the manufacture of 10 kW and 25 kW PEM fuel cells designed for material handling applications.

  15. A Total Cost of Ownership Model for Low Temperature PEM Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for emerging applications in stationary fuel cell systems. The analysis considers low temperature proton exchange membrane systems for use in combined heat and power ...

  16. DOE Technical Targets for Fuel Cell Systems for Stationary Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Stationary Applications DOE Technical Targets for Fuel Cell Systems for Stationary Applications These tables list the U.S. Department of Energy (DOE) technical targets for stationary fuel cell applications. These targets have been developed with input from developers of stationary fuel cell power systems. More information about targets can be found in the Fuel Cells section of the Fuel Cell Technologies Office's Multi-Year Research, Development, and Demonstration Plan.

  17. Stationary/Distributed Generation Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Validation » Stationary/Distributed Generation Projects Stationary/Distributed Generation Projects Stationary power is the most mature application for fuel cells. Stationary fuel cell units are used for backup power, power for remote locations, stand-alone power plants for towns and cities, distributed generation for buildings, and co-generation (in which excess thermal energy from electricity generation is used for heat). Approximately, 600 systems that produce 10 kilowatts or more

  18. Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for

    Broader source: Energy.gov (indexed) [DOE]

    Transportation Applications: 2013 Update | Department of Energy report is the seventh annual update of a comprehensive automotive fuel cell cost analysis conducted by Strategic Analysis under contract to the U.S. Department of Energy. In this multi-year project, SA estimates the material and manufacturing costs of complete 80 kWnet direct-hydrogen proton exchange membrane (PEM) fuel cell systems suitable for powering light-duty automobiles and 160 kWnet systems of the same type suitable for

  19. Final Report: Development of a Thermal and Water Management System for PEM Fuel Cell

    SciTech Connect (OSTI)

    Zia Mirza, Program Manager

    2011-12-06

    This final program report is prepared to provide the status of program activities performed over the period of 9 years to develop a thermal and water management (TWM) system for an 80-kW PEM fuel cell power system. The technical information and data collected during this period are presented in chronological order by each calendar year. Balance of plant (BOP) components of a PEM fuel cell automotive system represents a significant portion of total cost based on the 2008 study by TIAX LLC, Cambridge, MA. The objectives of this TWM program were two-fold. The first objective was to develop an advanced cooling system (efficient radiator) to meet the fuel cell cooling requirements. The heat generated by the fuel cell stack is a low-quality heat (small difference between fuel cell stack operating temperature and ambient air temperature) that needs to be dissipated to the ambient air. To minimize size, weight, and cost of the radiator, advanced fin configurations were evaluated. The second objective was to evaluate air humidification systems which can meet the fuel cell stack inlet air humidity requirements. The moisture from the fuel cell outlet air is transferred to inlet air, thus eliminating the need for an outside water source. Two types of humidification devices were down-selected: one based on membrane and the other based on rotating enthalpy wheel. The sub-scale units for both of these devices have been successfully tested by the suppliers. This project addresses System Thermal and Water Management.

  20. Transportation and Stationary Power Integration Workshop | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Transportation and Stationary Power Integration Workshop Transportation and Stationary Power Integration Workshop On October 27, 2008, more than 55 participants from industry, state and federal government, utilities, national laboratories, and other groups met to discuss the topic of integrating stationary fuel cell combined heat and power (CHP) systems and hydrogen production infrastructure for vehicles. The workshop was co-hosted by the U.S. Department of Energy, the U.S. Fuel Cell

  1. Advanced Materials and Devices for Stationary Electrical Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Materials and Devices for Stationary Electrical Energy Storage Applications Advanced Materials and Devices for Stationary Electrical Energy Storage Applications Reliable access to cost-effective electricity is the backbone of the U.S. economy, and electrical energy storage is an integral element in this system. Without significant investments in stationary electrical energy storage, the current electric grid infrastructure will increasingly struggle to

  2. Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 1999 | Department of Energy Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 The use of stationary gas turbines for power generation has been growing rapidly with continuing trends predicted well into the future. This study compares the costs of the principal emission control technologies being employed or nearing commercialization for control of oxides of

  3. Advanced Materials and Devices for Stationary Electrical Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (e.g., the distributed grid and electric vehicles), and the projected increase in renewable energy sources. Advanced Materials and Devices for Stationary Electrical Energy...

  4. Power Generating Stationary Engines Nox Control: A Closed Loop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Generating Stationary Engines Nox Control: A Closed Loop Control Technology Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) ...

  5. Transportation and Stationary Power Integration Workshop: A California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A California Perspective Transportation and Stationary Power Integration Workshop: A California Perspective Overview of California regulations, latest funded hydrogen stations, and ...

  6. Advanced Materials and Devices for Stationary Electrical Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials and Devices for Stationary Electrical Energy Storage Applications Advanced Materials ... electrical energy storage, the current electric grid infrastructure will increasingly ...

  7. The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary...

    Open Energy Info (EERE)

    Interface: Spreadsheet Website: www.ghgprotocol.orgcalculation-toolsall-tools Cost: Free References: Stationary Combustion Guidance1 The Greenhouse Gas Protocol tool for...

  8. Fuel Quality Issues in Stationary Fuel Cell Systems

    Broader source: Energy.gov [DOE]

    This report, prepared by Argonne National Laboratory, looks at impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells.

  9. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis More Documents & Publications MCFC and PAFC R&D Workshop Summary Report PAFC Cost Challenges DFC Technology Status...

  10. Procuring Fuel Cells for Stationary Power: A Guide for Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decision Makers Procuring Fuel Cells for Stationary Power: A Guide for Federal Decision Makers Download presentation slides from the May 8, 2012, Fuel Cell Technologies Program ...

  11. Study of Stationary Phase Metabolism Via Isotopomer Analysis...

    Office of Scientific and Technical Information (OSTI)

    production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. ...

  12. Procuring Fuel Cells for Stationary Power: A Guide for Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers OCTOBER 2011 Fuel Cell Technologies Program Oak Ridge National Laboratory 2 October 2011 NOTICE This ...

  13. Procuring Fuel Cells for Stationary Power: A Guide for Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers Federal Facilities Guide to Fuel Cells May 8, 2012 - Outline * Distributed Generation and ...

  14. Evaluation of Stationary Fuel Cell Deployments, Costs, and Fuels (Presentation)

    SciTech Connect (OSTI)

    Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

    2013-10-01

    This presentation summarizes NREL's technology validation of stationary fuel cell systems and presents data on number of deployments, system costs, and fuel types.

  15. Stationary turbine component with laminated skin

    DOE Patents [OSTI]

    James, Allister W.

    2012-08-14

    A stationary turbine engine component, such as a turbine vane, includes a internal spar and an external skin. The internal spar is made of a plurality of spar laminates, and the external skin is made of a plurality of skin laminates. The plurality of skin laminates interlockingly engage the plurality of spar laminates such that the external skin is located and held in place. This arrangement allows alternative high temperature materials to be used on turbine engine components in areas where their properties are needed without having to make the entire component out of such material. Thus, the manufacturing difficulties associated with making an entire component of such a material and the attendant high costs are avoided. The skin laminates can be made of advanced generation single crystal superalloys, intermetallics and refractory alloys.

  16. Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility.

    SciTech Connect (OSTI)

    Pratt, Joseph William; Harris, Aaron P

    2013-01-01

    A barge-mounted hydrogen-fueled proton exchange membrane (PEM) fuel cell system has the potential to reduce emissions and fossil fuel use of maritime vessels in and around ports. This study determines the technical feasibility of this concept and examines specific options on the U.S. West Coast for deployment practicality and potential for commercialization.The conceptual design of the system is found to be straightforward and technically feasible in several configurations corresponding to various power levels and run times.The most technically viable and commercially attractive deployment options were found to be powering container ships at berth at the Port of Tacoma and/or Seattle, powering tugs at anchorage near the Port of Oakland, and powering refrigerated containers on-board Hawaiian inter-island transport barges. Other attractive demonstration options were found at the Port of Seattle, the Suisun Bay Reserve Fleet, the California Maritime Academy, and an excursion vessel on the Ohio River.

  17. Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates

    DOE Patents [OSTI]

    Brady, Michael P. [Oak Ridge, TN; Yang, Bing [Oak Ridge, TN; Maziasz, Philip J. [Oak Ridge, TN

    2010-11-09

    A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.

  18. On-board diesel autothermal reforming for PEM fuel cells: Simulation and optimization

    SciTech Connect (OSTI)

    Cozzolino, Raffaello Tribioli, Laura

    2015-03-10

    Alternative power sources are nowadays the only option to provide a quick response to the current regulations on automotive pollutant emissions. Hydrogen fuel cell is one promising solution, but the nature of the gas is such that the in-vehicle conversion of other fuels into hydrogen is necessary. In this paper, autothermal reforming, for Diesel on-board conversion into a hydrogen-rich gas suitable for PEM fuel cells, has investigated using the simulation tool Aspen Plus. A steady-state model has been developed to analyze the fuel processor and the overall system performance. The components of the fuel processor are: the fuel reforming reactor, two water gas shift reactors, a preferential oxidation reactor and H{sub 2} separation unit. The influence of various operating parameters such as oxygen to carbon ratio, steam to carbon ratio, and temperature on the process components has been analyzed in-depth and results are presented.

  19. Irreversible reactions and diffusive escape: Stationary properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Krapivsky, Paul L.; Ben-Naim, Eli

    2015-05-01

    We study three basic diffusion-controlled reaction processes—annihilation, coalescence, and aggregation. We examine the evolution starting with the most natural inhomogeneous initial configuration where a half-line is uniformly filled by particles, while the complementary half-line is empty. We show that the total number of particles that infiltrate the initially empty half-line is finite and has a stationary distribution. We determine the evolution of the average density from which we derive the average total number N of particles in the initially empty half-line; e.g. for annihilationmore » $$\\langle N\\rangle = \\frac{3}{16}+\\frac{1}{4\\π}$$ . For the coalescence process, we devise a procedure that in principle allows one to compute P(N), the probability to find exactly N particles in the initially empty half-line; we complete the calculations in the first non-trivial case (N = 1). As a by-product we derive the distance distribution between the two leading particles.« less

  20. Bootstrapping a Sustainable North American PEM Fuel Cell Industry: Could a Federal Acquisition Program Make a Difference?

    Broader source: Energy.gov [DOE]

    The North American Proton Exchange Membrane (PEM) fuel cell industry may be at a critical juncture. A large-scale market for automotive fuel cells appears to be several years away and in any case will require a long-term, coordinated commitment by government and industry to insure the co-evolution of hydrogen infrastructure and fuel cell vehicles (Greene et al., 2008). The market for non-automotive PEM fuel cells, on the other hand, may be much closer to commercial viability (Stone, 2006). Cost targets are less demanding and manufacturers appear to be close, perhaps within a factor of two, of meeting them. Hydrogen supply is a significant obstacle to market acceptance but may not be as great a barrier as it is for hydrogen-powered vehicles due to the smaller quantities of hydrogen required.

  1. "Stationary Flowing Liquid Lithium System For Pumping Out Atomic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium System For Pumping Out Atomic Hydrogen Isotopes and Ions" Leonid E. Zakharov and Charles Gentile The system is comprised of a stationary closed loop for liquid lithium flow ...

  2. Procuring Fuel Cells for Stationary Power: A Guide for Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers This step-by-step manual guides readers through the process of implementing a fuel cell ...

  3. Geophysics-based method of locating a stationary earth object

    DOE Patents [OSTI]

    Daily, Michael R.; Rohde, Steven B.; Novak, James L.

    2008-05-20

    A geophysics-based method for determining the position of a stationary earth object uses the periodic changes in the gravity vector of the earth caused by the sun- and moon-orbits. Because the local gravity field is highly irregular over a global scale, a model of local tidal accelerations can be compared to actual accelerometer measurements to determine the latitude and longitude of the stationary object.

  4. NREL: Hydrogen and Fuel Cells Research - Stationary Fuel Cell Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Stationary Fuel Cell Systems Analysis NREL's technology validation team analyzes the performance of stationary fuel cell systems operating in real-world conditions and reports on the technology's performance, progress, and challenges. This analysis includes multiple fuel cell types-proton exchange membrane, solid oxide, phosphoric acid, and molten carbonate-with system sizes ranging from 5 kW to 2.8 MW. Overview Composite Data Products Publications Learn More Contacts Photo of

  5. Ice formation in PEM fuel cells operated isothermally at sub-freezing temperatures

    SciTech Connect (OSTI)

    Mukundan, Rangachary; Luhan, Roger W; Davey, John R; Spendelow, Jacob S; Borup, Rodney L; Hussey, Daniel S; Jacobson, David L; Arif, Muhammad

    2009-01-01

    The effect of MEA and GDL structure and composition on the performance of single-PEM fuel cells operated isothermally at subfreezing temperatures is presented. The cell performance and durability are not only dependent on the MEA/GDL materials used but also on their interfaces. When a cell is operated isothermally at sub-freezing temperatures in constant current mode, the water formation due to the current density initially hydrates the membrane/ionomer and then forms ice in the catalyst layer/GDL. An increase in high frequency resistance was also observed in certain MEAs where there is a possibility of ice formation between the catalyst layer and GDL leading to a loss in contact area. The total water/ice holding capacity for any MEA was lower at lower temperatures and higher current densities. The durability of MEAs subjected to multiple isothermal starts was better for LANL prepared MEAs as compared to commercial MEAs, and cloth GDLs when compared to paper GDLs. The ice formation was monitored using high-resolution neutron radiography and was found to be concentrated near the cathode catalyst layer. However, there was significant ice formation in the GDLs especially at the higher temperature ({approx} -10 C) and lower current density (0.02 A/cm{sup 2}) operations. These results are consistent with the longer-term durability observations that show more severe degradation at the lower temperatures.

  6. Final Project Report: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches

    SciTech Connect (OSTI)

    Wessel, Silvia; Harvey, David

    2013-06-28

    The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications that target operational lifetimes of 5,000 hours and 40,000 hours by 2015, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifying the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different structural compositions and under different fuel cell conditions remains an area not well understood. The focus of this project was to address catalyst durability by using a dual path approach that coupled an extensive range of experimental analysis and testing with a multi-scale modeling approach. With this, the major technical areas/issues of catalyst and catalyst layer performance and durability that were addressed are: 1. Catalyst and catalyst layer degradation mechanisms (Pt dissolution, agglomeration, Pt loss, e.g. Pt in the membrane, carbon oxidation and/or corrosion). a. Driving force for the different degradation mechanisms. b. Relationships between MEA performance, catalyst and catalyst layer degradation and operational conditions, catalyst layer composition, and structure. 2. Materials properties a. Changes in catalyst, catalyst layer, and MEA materials properties due to degradation. 3. Catalyst performance a. Relationships between catalyst structural changes and performance. b. Stability of the three-phase boundary and its effect on performance/catalyst degradation. The key accomplishments of this project are: The development of a molecular-dynamics based description of the carbon supported-Pt and ionomer system The development of a composition-based, 1D-statistical Unit Cell Performance model A modified and improved multi-pathway ORR model An extension of the existing micro-structural catalyst model to transient operation The coupling of a Pt Dissolution model to the modified ORR pathway model The Development A Semi-empirical carbon corrosion model The integration and release of an open-source forward predictive MEA performance and degradation model Completion of correlations of BOT (beginning of test) and EOT (end of test) performance loss breakdown with cathode catalyst layer composition, morphology, material properties, and operational conditions Catalyst layer durability windows and design curves A design flow path of interactions from materials properties and catalyst layer effective properties to performance loss breakdown for virgin and degraded catalyst layers In order to ensure the best possible user experience we will perform a staged release of the software leading up to the webinar scheduled in October 2013. The release schedule will be as follows (please note that the manual will be released with the beta release as direct support is provided in Stage 1): Stage 0 - Internal Ballard Release o Cross check of compilation and installation to ensure machine independence o Implement code on portable virtual machine to allow for non-UNIX use (pending) Stage 1 - Alpha Release o The model code will be made available via a GIT, sourceforge, or other repository (under discussion at Ballard) for download and installation by a small pre-selected group of users o Users will be given three weeks to install, apply, and evaluate features of the code, providing feedback on issues or software bugs that require correction prior to beta release Stage 2 - Beta Release o The model code repository is opened to the general public on a beta release concept, with a mechanism for bug tracking and feedback from a large user group o Code will be tracked and patched for any discovered bugs or relevant feedback from the user community, upon the completion of three months without a major bug submission the code will be moved to a full version release Stage 3 - Full Version Release o Code is version to revision 1.0 and that version is frozen in development/patching

  7. Development and testing of a PEM SO2-depolarized electrolyzer and an operating method that prevents sulfur accumulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Steimke, John L.; Steeper, Timothy J.; Colon-Mercado, Hector R.; Gorensek, Maximilian B.

    2015-09-02

    The hybrid sulfur (HyS) cycle is being developed as a technology to generate hydrogen by splitting water, using heat and electrical power from a nuclear or solar power plant. A key component is the SO2-depolarized electrolysis (SDE) cell, which reacts SO2 and water to form hydrogen and sulfuric acid. SDE could also be used in once-through operation to consume SO2 and generate hydrogen and sulfuric acid for sale. A proton exchange membrane (PEM) SDE cell based on a PEM fuel cell design was fabricated and tested. Measured cell potential as a function of anolyte pressure and flow rate, sulfuric acidmore » concentration, and cell temperature are presented for this cell. Sulfur accumulation was observed inside the cell, which could have been a serious impediment to further development. A method to prevent sulfur formation was subsequently developed. As a result, this was made possible by a testing facility that allowed unattended operation for extended periods.« less

  8. Engineered Nano-scale Ceramic Supports for PEM Fuel Cells. Tech Team Meeting Presentaion

    SciTech Connect (OSTI)

    Brosha, Eric L.; Elbaz Alon, Lior; Henson, Neil J.; Rockward, Tommy; Roy, Aaron; Serov, Alexey; Ward, Timothy

    2012-08-13

    Catalyst support durability is currently a technical barrier for commercialization of polymer electrolyte membrane (PEM) fuel cells, especially for transportation applications. Degradation and corrosion of the conventional carbon supports leads to losses in active catalyst surface area and, consequently, reduced performance. As a result, the goal of this work is to develop support materials that interact strongly with Pt, yet sustain bulk-like catalytic activities with very highly dispersed particles. Ceramic materials that are prepared using conventional solid-state methods have large grain sizes and low surface areas that can only be minimally ameliorated through grinding and ball milling. Other synthesis routes to produce ceramic materials must be investigated and utilized in order to obtain desired surface areas. In this work, several different synthesis methods are being utilized to prepare electronically conductive ceramic boride, nitride, and oxide materials with high surface areas and have the potential for use as PEMFC catalyst supports. Polymer-assisted deposition (PAD) and aerosol-through plasma (A-T-P) torch are among several methods used to obtain ceramic materials with surface areas that are equal to, or exceed Vulcan XC-72R supports. Cubic Mo-based ceramic phases have been prepared with average XRD-determined crystallite sizes as low as 1.6 nm (from full profile, XRD fitting) and a BET surface area exceeding 200 m{sup 2}/g. Additionally, black, sub-stoichiometric TiO{sub 2-x}, have been prepared with an average crystallite size in the 4 nm range and surface areas exceeding 250 m{sup 2}/gr. Pt disposition using an incipient wetness approach produced materials with activity for hydrogen redox reactions and ORR. Cyclic voltammetry data will be shown for a variety of potential Pt/ceramic catalysts. Initial experiments indicate enhanced Pt metal-support interactions as well. Plane wave periodic density functional calculations (VASP) are being used to predict the thermodynamic and activation barriers for fundamental electrode processes occurring at platinum surfaces supported on thin films of the ceramic support materials. The results of this work will be used in order to optimize support properties.

  9. 1-10 kW Stationary Combined Heat and Power Systems Status and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review 1-10 kW Stationary Combined Heat and Power Systems Status and Technical...

  10. Stationary Fuel Cell Systems Analysis Project: Partnership Opportunities; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This fact sheet describes opportunities for interested stationary fuel cell developers and end users to participate in an objective and credible analysis of stationary fuel cell systems to benchmark the current state of the technology and support industry growth.

  11. Webinar: Procuring Fuel Cells for Stationary Power: A Guide for Federal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decision Makers | Department of Energy Procuring Fuel Cells for Stationary Power: A Guide for Federal Decision Makers Webinar: Procuring Fuel Cells for Stationary Power: A Guide for Federal Decision Makers Download presentation slides from the May 8, 2012, Fuel Cell Technologies Program webinar, "Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers." PDF icon Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers

  12. Stationary and Portable Fuel Cell Systems Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    This document lists codes and standards typically used for U.S. stationary and portable fuel cell systems.

  13. NREL: Hydrogen and Fuel Cells Research - Stationary Fuel Cell Units Greater

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Than 100 kW Achieve 2015 Target for Electrical Efficiency Stationary Fuel Cell Units Greater Than 100 kW Achieve 2015 Target for Electrical Efficiency Project Technology Validation: Stationary Fuel Cell Evaluation Contact Genevieve Saur Related Publications Stationary Fuel Cell System Composite Data Products Stationary Fuel Cell Systems Analysis Project: Partnership Opportunities In a newly released composite data product (CDP), NREL's National Fuel Cell Technology Evaluation Center (NFCTEC)

  14. Transportation and Stationary Power Integration Workshop Agenda, October 27, 2008, Phoenix, Arizonia

    Broader source: Energy.gov [DOE]

    Agenda for the Transportation and Stationary Power Integration Workshop held on October 27, 2008 in Phoenix, AZ

  15. Freeze drying for gas chromatography stationary phase deposition

    DOE Patents [OSTI]

    Sylwester, Alan P.

    2007-01-02

    The present disclosure relates to methods for deposition of gas chromatography (GC) stationary phases into chromatography columns, for example gas chromatography columns. A chromatographic medium is dissolved or suspended in a solvent to form a composition. The composition may be inserted into a chromatographic column. Alternatively, portions of the chromatographic column may be exposed or filled with the composition. The composition is permitted to solidify, and at least a portion of the solvent is removed by vacuum sublimation.

  16. Alpha Channeling in Rotating Plasma with Stationary Waves

    SciTech Connect (OSTI)

    A. Fetterman and N.J. Fisch

    2010-02-15

    An extension of the alpha channeling effect to supersonically rotating mirrors shows that the rotation itself can be driven using alpha particle energy. Alpha channeling uses radiofrequency waves to remove alpha particles collisionlessly at low energy. We show that stationary magnetic fields with high n? can be used for this purpose, and simulations show that a large fraction of the alpha energy can be converted to rotation energy.

  17. Superconducting PM undiffused machines with stationary superconducting coils

    DOE Patents [OSTI]

    Hsu, John S.; Schwenterly, S. William

    2004-03-02

    A superconducting PM machine has a stator, a rotor and a stationary excitation source without the need of a ferromagnetic frame which is cryogenically cooled for operation in the superconducting state. PM material is placed between poles on the rotor to prevent leakage or diffusion of secondary flux before reaching the main air gap, or to divert PM flux where it is desired to weaken flux in the main air gap. The PM material provides hop-along capability for the machine in the event of a fault condition.

  18. Longer life for glyco-based stationary engine coolants

    SciTech Connect (OSTI)

    Hohlfeld, R.

    1996-07-01

    Large, stationary diesel engines used to compress natural gas that is to be transported down pipelines generate a great deal of heat. Unless this heat is dissipated efficiently, it will eventually cause an expensive breakdown. Whether the coolant uses ethylene glycol or propylene glycol, the two major causes of glycol degradation are heat and oxidation. The paper discusses inhibitors that enhance coolant service life and presents a comprehensive list of do`s and don`ts for users to gain a 20-year coolant life.

  19. Stationary bubbles and their tunneling channels toward trivial geometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Pisin; Domènech, Guillem; Sasaki, Misao; Yeom, Dong-han

    2016-04-07

    In the path integral approach, one has to sum over all histories that start from the same initial condition in order to obtain the final condition as a superposition of histories. Applying this into black hole dynamics, we consider stable and unstable stationary bubbles as a reasonable and regular initial condition. We find examples where the bubble can either form a black hole or tunnel toward a trivial geometry, i.e., with no singularity nor event horizon. We investigate the dynamics and tunneling channels of true vacuum bubbles for various tensions. In particular, in line with the idea of superposition ofmore » geometries, we build a classically stable stationary thin-shell solution in a Minkowski background where its fate is probabilistically given by non-perturbative effects. Since there exists a tunneling channel toward a trivial geometry in the entire path integral, the entire information is encoded in the wave function. This demonstrates that the unitarity is preserved and there is no loss of information when viewed from the entire wave function of the universe, whereas a semi-classical observer, who can see only a definitive geometry, would find an effective loss of information. Ultimately, this may provide a resolution to the information loss dilemma.« less

  20. Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids

    Office of Scientific and Technical Information (OSTI)

    from an Isolated Protein (Journal Article) | SciTech Connect Journal Article: Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids from an Isolated Protein Citation Details In-Document Search Title: Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids from an Isolated Protein Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase

  1. Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Workshop | Department of Energy 1 IPHE Stationary Fuel Cell Workshop Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop Presentation by Rick Farmer at the IPHE Stationary Fuel Cell Workshop on March 1, 2011. PDF icon Overview of Hydrogen and Fuel Cell Activities More Documents & Publications Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Expos

  2. Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decision Makers | Department of Energy Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers This step-by-step manual guides readers through the process of implementing a fuel cell stationary power project. The guide outlines the basics of fuel cell technology and describes how fuel cell projects can meet on-site energy service needs as well as support strategic agency

  3. Balance of Plant Needs and Integration of Stack Components for Stationary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power and CHP Applications | Department of Energy Needs and Integration of Stack Components for Stationary Power and CHP Applications Balance of Plant Needs and Integration of Stack Components for Stationary Power and CHP Applications Presentation on Balance of Plant Needs and Integration of Stack Components for Stationary Power and CHP Applications for Fuel Cell Pre-solicitation Workshop March 10, 2010 PDF icon fuelcell_pre-solicitation_wkshop_mar10_ainscough.pdf More Documents &

  4. Fuel quality issues in stationary fuel cell systems.

    SciTech Connect (OSTI)

    Papadias, D.; Ahmed, S.; Kumar, R.

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough, component sizing, and utility needs. These data, along with process efficiency results from the model, were subsequently used to calculate the cost of electricity. Sensitivity analyses were conducted to correlate the concentrations of key impurities in the fuel gas feedstock to the cost of electricity.

  5. Research and development of proton-exchange membrane (PEM) fuel cell system for transportation applications. Phase I final report

    SciTech Connect (OSTI)

    1996-01-01

    Objective during Phase I was to develop a methanol-fueled 10-kW fuel cell power source and evaluate its feasibility for transportation applications. This report documents research on component (fuel cell stack, fuel processor, power source ancillaries and system sensors) development and the 10-kW power source system integration and test. The conceptual design study for a PEM fuel cell powered vehicle was documented in an earlier report (DOE/CH/10435-01) and is summarized herein. Major achievements in the program include development of advanced membrane and thin-film low Pt-loaded electrode assemblies that in reference cell testing with reformate-air reactants yielded performance exceeding the program target (0.7 V at 1000 amps/ft{sup 2}); identification of oxidation catalysts and operating conditions that routinely result in very low CO levels ({le} 10 ppm) in the fuel processor reformate, thus avoiding degradation of the fuel cell stack performance; and successful integrated operation of a 10-kW fuel cell stack on reformate from the fuel processor.

  6. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    Broader source: Energy.gov [DOE]

    This report prepared by the Lawrence Berkeley National Laboratory describes a total cost of ownership model for emerging applications in stationary fuel cell systems.

  7. Webinar: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers, originally presented on May 8, 2012.

  8. Fuel Cell Tri-Generation System Case Study using the H2A Stationary Model

    Broader source: Energy.gov [DOE]

    Overview of H2A stationary model concept, results, strategy for analysis, Federal incentives for fuel cells, and summary of next steps

  9. Procuring Fuel Cells for Stationary Power: A Guide for Federal Decision Makers

    Broader source: Energy.gov [DOE]

    Presentation slides from the May 8, 2012, Fuel Cell Technologies Program webinar, Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers.

  10. National Template: Stationary & Portable Fuel Cell Systems (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: Energy.gov [DOE]

    This graphic template shows the SDOs responsible for leading the support and development of key codes and standards for stationary and portable fuel cell systems.

  11. Stationary Fuel Cell Application Codes and Standards: Overview and Gap Analysis

    SciTech Connect (OSTI)

    Blake, C. W.; Rivkin, C. H.

    2010-09-01

    This report provides an overview of codes and standards related to stationary fuel cell applications and identifies gaps and resolutions associated with relative codes and standards.

  12. File:5 CCR 1001-5 Colorado Stationary Source Permitting and Air...

    Open Energy Info (EERE)

    5 CCR 1001-5 Colorado Stationary Source Permitting and Air Pollution Control Emission Notice Requirements.pdf Jump to: navigation, search File File history File usage Metadata...

  13. 5 CCR 1001-5 Colorado Stationary Source Permitting and Air Pollution...

    Open Energy Info (EERE)

    -5 Colorado Stationary Source Permitting and Air Pollution Control Emission Notice Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: 5 CCR...

  14. Stationary Fuel Cell System Composite Data Products: Data through Quarter 4 of 2013

    SciTech Connect (OSTI)

    Saur, G.; Kurtz, J.; Ainscough, C.; Peters, M.

    2014-05-01

    This report includes 25 composite data products (CDPs) produced for stationary fuel cell systems, with data through the fourth quarter of 2013.

  15. Stationary Fuel Cell System Composite Data Products: Data through Quarter 2 of 2013

    SciTech Connect (OSTI)

    Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

    2013-11-01

    This report includes 24 composite data products (CDPs) produced for stationary fuel cell systems, with data through the second quarter of 2013.

  16. Ceramic Stationary Gas Turbine Development. Technical progress report, April 1, 1993--October 31, 1994

    SciTech Connect (OSTI)

    1994-12-01

    This report summarizes work performed by Solar Technologies Inc. and its subcontractors, during the period April 1, 1993 through October 31, 1994 under Phase II of the DOE Ceramic Stationary Gas Turbine Development program. The objective of the program is to improve the performance of stationary gas turbines in cogeneration through the implementation of selected ceramic components.

  17. Thermodynamical description of stationary, asymptotically flat solutions with conical singularities

    SciTech Connect (OSTI)

    Herdeiro, Carlos; Rebelo, Carmen; Radu, Eugen

    2010-05-15

    We examine the thermodynamical properties of a number of asymptotically flat, stationary (but not static) solutions having conical singularities, with both connected and nonconnected event horizons, using the thermodynamical description recently proposed in [C. Herdeiro, B. Kleihaus, J. Kunz, and E. Radu, Phys. Rev. D 81, 064013 (2010).]. The examples considered are the double-Kerr solution, the black ring rotating in either S{sup 2} or S{sup 1}, and the black Saturn, where the balance condition is not imposed for the latter two solutions. We show that not only the Bekenstein-Hawking area law is recovered from the thermodynamical description, but also the thermodynamical angular momentum is the Arnowitt-Deser-Misner angular momentum. We also analyze the thermodynamical stability and show that, for all these solutions, either the isothermal moment of inertia or the specific heat at constant angular momentum is negative, at any point in parameter space. Therefore, all these solutions are thermodynamically unstable in the grand canonical ensemble.

  18. Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report

    SciTech Connect (OSTI)

    Scott E. Grasman; John W. Sheffield; Fatih Dogan; Sunggyu Lee; Umit O. Koylu; Angie Rolufs

    2010-04-30

    This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways and a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.

  19. Development and testing of a PEM SO2-depolarized electrolyzer and an operating method that prevents sulfur accumulation

    SciTech Connect (OSTI)

    Steimke, John L.; Steeper, Timothy J.; Colon-Mercado, Hector R.; Gorensek, Maximilian B.

    2015-09-02

    The hybrid sulfur (HyS) cycle is being developed as a technology to generate hydrogen by splitting water, using heat and electrical power from a nuclear or solar power plant. A key component is the SO2-depolarized electrolysis (SDE) cell, which reacts SO2 and water to form hydrogen and sulfuric acid. SDE could also be used in once-through operation to consume SO2 and generate hydrogen and sulfuric acid for sale. A proton exchange membrane (PEM) SDE cell based on a PEM fuel cell design was fabricated and tested. Measured cell potential as a function of anolyte pressure and flow rate, sulfuric acid concentration, and cell temperature are presented for this cell. Sulfur accumulation was observed inside the cell, which could have been a serious impediment to further development. A method to prevent sulfur formation was subsequently developed. As a result, this was made possible by a testing facility that allowed unattended operation for extended periods.

  20. Water Vapor Turbulence Profiles in Stationary Continental Convective Mixed Layers

    SciTech Connect (OSTI)

    Turner, D. D.; Wulfmeyer, Volker; Berg, Larry K.; Schween, Jan

    2014-10-08

    The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program’s Raman lidar at the ARM Southern Great Plains (SGP) site in north-central Oklahoma has collected water vapor mixing ratio (q) profile data more than 90% of the time since October 2004. Three hundred (300) cases were identified where the convective boundary layer was quasi-stationary and well-mixed for a 2-hour period, and q mean, variance, third order moment, and skewness profiles were derived from the 10-s, 75-m resolution data. These cases span the entire calendar year, and demonstrate that the q variance profiles at the mixed layer (ML) top changes seasonally, but is more related to the gradient of q across the interfacial layer. The q variance at the top of the ML shows only weak correlations (r < 0.3) with sensible heat flux, Deardorff convective velocity scale, and turbulence kinetic energy measured at the surface. The median q skewness profile is most negative at 0.85 zi, zero at approximately zi, and positive above zi, where zi is the depth of the convective ML. The spread in the q skewness profiles is smallest between 0.95 zi and zi. The q skewness at altitudes between 0.6 zi and 1.2 zi is correlated with the magnitude of the q variance at zi, with increasingly negative values of skewness observed lower down in the ML as the variance at zi increases, suggesting that in cases with larger variance at zi there is deeper penetration of the warm, dry free tropospheric air into the ML.

  1. 1-10 kW Stationary Combined Heat and Power Systems Status and Technical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential: Independent Review | Department of Energy 1-10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review 1-10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review This independent review examines the status and technical potential of 1-10 kW stationary combined heat and power fuel cell systems and analyzes the achievability of the DOE cost, efficiency, and durability targets for 2012, 2015, and

  2. Job and Output Benefits of Stationary Fuel Cells (JOBS FC): An...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Job and Output Benefits of Stationary Fuel Cells (JOBS FC): An Economic Impact Tool Developed for USDOE Presented at the Technology Transition Corporation and U.S. Department of ...

  3. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report details technical and cost gap analyses of molten carbonate fuel cell and phosphoric acid fuel cell stationary fuel cell power plants and identifies pathways for reducing costs.

  4. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis

    Broader source: Energy.gov [DOE]

    This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants.

  5. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells. Overview and Gap Analysis

    SciTech Connect (OSTI)

    Remick, Robert; Wheeler, Douglas

    2010-09-01

    This report details technical and cost gap analyses of molten carbonate fuel cell and phosphoric acid fuel cell stationary fuel cell power plants and identifies pathways for reducing costs.

  6. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis

    SciTech Connect (OSTI)

    Remick, R.; Wheeler, D.

    2010-09-01

    This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants.

  7. Stationary Fuel Cell System Composite Data Products: Data Through Quarter 4 of 2012

    SciTech Connect (OSTI)

    Ainscough, C.; Kurtz, J.; Saur, G.

    2013-05-01

    This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes stationary fuel cell system composite data products for data through the fourth quarter of 2012.

  8. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012) | Department of Energy Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage Program is funding research to develop longer-lifetime, lower-cost Li-ion batteries. Researchers at Pacific Northwest National Laboratory are investigating cost-effective electrode materials and electrolytes, as well as novel low-cost synthesis approaches for making highly efficient electrode

  9. Stationary Fuel Cell Systems Analysis Project: Partnership Opportunities (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind.energy.gov WIND PROGRAM NEWSLETTER - MAY 2015 1 National Renewable Energy Laboratory 15013 Denver West Parkway, Golden, CO 80401 303-275-3000 * www.nrel.gov NREL prints on paper that contains recycled content. Stationary Fuel Cell Systems Analysis Project: Partnership Opportunities The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) is seeking partners to participate in an objective and credible analysis of stationary fuel cell systems to benchmark the

  10. Metal-Organic Framework Thin Films as Stationary Phases in Microfabricated Gas-Chromatography Columns.

    SciTech Connect (OSTI)

    Read, Douglas; Sillerud, Colin Halliday

    2016-01-01

    The overarching goal of this project is to integrate Sandia's microfabricated gas-chromatography ( GC) columns with a stationary phase material that is capable of retaining high-volatility chemicals and permanent gases. The successful integration of such a material with GCs would dramatically expand the repertoire of detectable compounds for Sandia's various microanalysis systems. One such promising class of candidate materials is metal-organic frameworks (MOFs). In this report we detail our methods for controlled deposition of HKUST-1 MOF stationary phases within GC columns. We demonstrate: the chromatographic separation of natural gas; a method for determining MOF film thickness from chromatography alone; and the first-reported GC x GC separation of natural gas -- in general -- let alone for two disparate MOF stationary phases. In addition we determine the fundamental thermodynamic constant for mass sorption, the partition coefficient, for HKUST-1 and several light hydrocarbons and select toxic industrial chemicals.

  11. Stationary Fuel Cell System Composite Data Products: Data through Quarter 4 of 2014; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Saur, G.; Kurtz, J.; Ainscough, C.; Sprik, S.; Post, M.

    2015-04-01

    This publication includes 33 composite data products (CDPs) produced for stationary fuel cell systems, with data through the fourth quarter of 2014.

  12. "Dedicated To The Continued Education, Training and Demonstration of PEM Fuel Cell Powered Lift Trucks In Real-World Applications."

    SciTech Connect (OSTI)

    Dever, Thomas J.

    2011-11-29

    The project objective was to further assist in the commercialization of fuel cell and H2 technology by building further upon the successful fuel cell lift truck deployments that were executed by LiftOne in 2007, with longer deployments of this technology in real-world applications. We involved facilities management, operators, maintenance personnel, safety groups, and Authorities Having Jurisdiction. LiftOne strived to educate a broad group from many areas of industry and the community as to the benefits of this technology. Included were First Responders from the local areas. We conducted month long deployments with end-users to validate the value proposition and the market requirements for fuel cell powered lift trucks. Management, lift truck operators, Authorities Having Jurisdiction and the general public experienced 'hands on' fuel cell experience in the material handling applications. We partnered with Hydrogenics in the execution of the deployment segment of the program. Air Products supplied the compressed H2 gas and the mobile fueler. Data from the Fuel Cell Power Packs and the mobile fueler was sent to the DOE and NREL as required. Also, LiftOne conducted the H2 Education Seminars on a rotating basis at their locations for lift trucks users and for other selected segments of the community over the project's 36 month duration. Executive Summary The technology employed during the deployments program was not new, as the equipment had been used in several previous demos and early adoptions within the material handling industry. This was the case with the new HyPx Series PEM - Fuel Cell Power Packs used, which had been demo'd before during the 2007 Greater Columbia Fuel Cell Challenge. The Air Products HF-150 Fueler was used outdoors during the deployments and had similarly been used for many previous demo programs. The methods used centered on providing this technology as the power for electric sit-down lift trucks at high profile companies operating large fleets. As a long-standing lift truck dealership, LiftOne was able to introduce the fuel cells to such companies in the demanding applications. Accomplishments vs Objectives: We were successful in respect to the stated objectives. The Education Segment's H2 Education Sessions were able to introduce fuel cell technology to many companies and reached the intended broad audience. Also, demos of the lift truck at the sessions as well as the conferences; expos and area events provided great additional exposure. The Deployments were successful in allowing the 6 participating companies to test the 2 fuel cell powered lift trucks in their demanding applications. One of the 6 sites (BMW) eventually adopted over 80 fuel cells from Plug Power. LiftOne was one of the 3 fuel cell demonstrators at BMW for this trial and played a major role in helping to prove the viability and efficiency of this alternative form of energy for BMW. The other 5 companies that participated in the project's deployments were encouraged by the trials and while not converting over to fuel cell power at this time, expressed the desire to revisit acquisition scenarios in the near future as the cost of fuel cells and infrastructure continue to improve. The Education sessions began in March of 2009 at the 7 LiftOne Branches and continued throughout the duration of the project. Attendees came from a large base of lift truck users in North Carolina, South Carolina and Virginia. The sessions were free and invitations were sent out to potential users and companies with intrigue. In addition to the Education content at the sessions (which was offered in a 'H2 101' format), LiftOne was able to demonstrate a working fuel cell powered lift truck, which proved to be a big draw with the 'hands on' experience. LiftOne also demo'd the fuel cell lift trucks at many conferences, expos, professional association meetings, trade shows and 'Green' events in major cities region including Charlotte, Greenville, and Columbia. Such events allowed for H2 Education Material to be presented, and recruit attendees for future sessi

  13. Three-dimensional stationary cyclic symmetric Einstein-Maxwell solutions; black holes

    SciTech Connect (OSTI)

    Garcia, Alberto A.

    2009-09-15

    From a general metric for stationary cyclic symmetric gravitational fields coupled to Maxwell electromagnetic fields within the (2 + 1)-dimensional gravity the uniqueness of wide families of exact solutions is established. Among them, all uniform electromagnetic solutions possessing electromagnetic fields with vanishing covariant derivatives, all fields having constant electromagnetic invariants F{sub {mu}}{sub {nu}}F{sup {mu}}{sup {nu}} and T{sub {mu}}{sub {nu}}T{sup {mu}}{sup {nu}}, the whole classes of hybrid electromagnetic solutions, and also wide classes of stationary solutions are derived for a third-order nonlinear key equation. Certain of these families can be thought of as black hole solutions. For the most general set of Einstein-Maxwell equations, reducible to three nonlinear equations for the three unknown functions, two new classes of solutions - having anti-de Sitter spinning metric limit - are derived. The relationship of various families with those reported by different authors' solutions has been established. Among the classes of solutions with cosmological constant a relevant place is occupied by the electrostatic and magnetostatic Peldan solutions, the stationary uniform and spinning Clement classes, the constant electromagnetic invariant branches with the particular Kamata-Koikawa solution, the hybrid cyclic symmetric stationary black hole fields, and the non-less important solutions generated via SL(2,R)-transformations where the Clement spinning charged solution, the Martinez-Teitelboim-Zanelli black hole solution, and Dias-Lemos metric merit mention.

  14. STATIONARY HIGH-PERFORMANCE DISCHARGES IN THE DII-D TOKAMAK

    SciTech Connect (OSTI)

    LUCE,TC; WADE,MR; FERRON,JR; HYATT,AW; KELLMAN,AG; KINSEY,JE; LAHAYE,RJ; LASNIER,CJ; MURAKAMI,M; POLITZER,PA; SCOVILLE,JT

    2002-11-01

    A271 STATIONARY HIGH-PERFORMANCE DISCHARGES IN THE DII-D TOKAMAK. Discharges which can satisfy the high gain goals of burning plasma experiments have been demonstrated in the DIII-D tokamak under stationary conditions at relatively low plasma current (q{sub 95} > 4). A figure of merit for fusion gain ({beta}{sub N}H{sub 89}/q{sub 95}{sup 2}) has been maintained at values corresponding to ! = 10 operation in a burning plasma for > 6 s or 36{tau}{sub E} and 2{tau}{sub R}. The key element is the relaxation of the current profile to a stationary state with q{sub min} > 1. In the absence of sawteeth and fishbones, stable operation has been achieved up to the estimated no-wall {beta} limit. Feedback control of the energy content and particle inventory allow reproducible, stationary operation. The particle inventory is controlled by gas fueling and active pumping; the wall plays only a small role in the particle balance. The reduced current lessens significantly the potential for structural damage in the event of a major disruption. In addition, the pulse length capability is greatly increased, which is essential for a technology testing phase of a burning plasma experiment where fluence (duty cycle) is important.

  15. Modeling and Optimization of Commercial Buildings and Stationary Fuel Cell Systems (Presentation)

    SciTech Connect (OSTI)

    Ainscough, C.; McLarty, D.; Sullivan, R.; Brouwer, J.

    2013-10-01

    This presentation describes the Distributed Generation Building Energy Assessment Tool (DG-BEAT) developed by the National Renewable Energy Laboratory and the University of California Irvine. DG-BEAT is designed to allow stakeholders to assess the economics of installing stationary fuel cell systems in a variety of building types in the United States.

  16. Regulation of Emissions from Stationary Diesel Engines (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    On July 11, 2006, the Environmental Protection Agency (EPA) issued regulations covering emissions from stationary diesel engines New Source Performance Standards that limit emissions of NOx, particulate matter, SO2, carbon monoxide, and hydrocarbons to the same levels required for nonroad diesel engines. The regulation affects new, modified, and reconstructed diesel engines. Beginning with model year 2007, engine manufacturers must specify that new engines less than 3,000 horsepower meet the same emissions standard as nonroad diesel engines. For engines greater than 3,000 horsepower, the standard will be fully effective in 2011. Stationary diesel engine fuel will also be subject to the same standard as nonroad diesel engine fuel, which reduces the sulfur content of the fuel to 500 parts per million by mid-2007 and 15 parts per million by mid-2010.

  17. System for monitoring the growth of crystalline films on stationary substrates

    DOE Patents [OSTI]

    Sheldon, Peter

    1996-01-01

    A system for monitoring the growth of crystalline films on stationary or rotating substrates includes a combination of some or all of the elements including a photodiode sensor for detecting the intensity of incoming light and converting it to a measurable current, a lens for focusing the RHEED pattern emanating from the phosphor screen onto the photodiode, an interference filter for filtering out light other than that which emanates from the phosphor screen, a current amplifier for amplifying and convening the current produced by the photodiode into a voltage, a computer for receiving the amplified photodiode current for RHEED data analysis, and a graphite impregnated triax cable for improving the signal to noise ratio obtained while sampling a stationary or rotating substrate. A rotating stage for supporting the substrate with diametrically positioned electron beam apertures and an optically encoded shaft can also be used to accommodate rotation of the substrate during measurement.

  18. System for monitoring the growth of crystalline films on stationary substrates

    DOE Patents [OSTI]

    Sheldon, P.

    1996-12-31

    A system for monitoring the growth of crystalline films on stationary or rotating substrates includes a combination of some or all of the elements including a photodiode sensor for detecting the intensity of incoming light and converting it to a measurable current, a lens for focusing the RHEED pattern emanating from the phosphor screen onto the photodiode, an interference filter for filtering out light other than that which emanates from the phosphor screen, a current amplifier for amplifying and convening the current produced by the photodiode into a voltage, a computer for receiving the amplified photodiode current for RHEED data analysis, and a graphite impregnated triaxial cable for improving the signal to noise ratio obtained while sampling a stationary or rotating substrate. A rotating stage for supporting the substrate with diametrically positioned electron beam apertures and an optically encoded shaft can also be used to accommodate rotation of the substrate during measurement. 16 figs.

  19. System for monitoring the growth of crystalline films on stationary substrates

    DOE Patents [OSTI]

    Sheldon, P.

    1995-10-10

    A system for monitoring the growth of crystalline films on stationary or rotating substrates includes a combination of some or all of the elements including a photodiode sensor for detecting the intensity of incoming light and converting it to a measurable current, a lens for focusing the RHEED pattern emanating from the phosphor screen onto the photodiode, an interference filter for filtering out light other than that which emanates from the phosphor screen, a current amplifier for amplifying and converting the current produced by the photodiode into a voltage, a computer for receiving the amplified photodiode current for RHEED data analysis, and a graphite impregnated triaxial cable for improving the signal-to-noise ratio obtained while sampling a stationary or rotating substrate. A rotating stage for supporting the substrate with diametrically positioned electron beam apertures and an optically encoded shaft can also be used to accommodate rotation of the substrate during measurement. 16 figs.

  20. System for monitoring the growth of crystalline films on stationary substrates

    DOE Patents [OSTI]

    Sheldon, Peter

    1995-01-01

    A system for monitoring the growth of crystalline films on stationary or rotating substrates includes a combination of some or all of the elements including a photodiode sensor for detecting the intensity of incoming light and converting it to a measurable current, a lens for focusing the RHEED pattern emanating from the phosphor screen onto the photodiode, an interference filter for filtering out light other than that which emanates from the phosphor screen, a current amplifier for amplifying and converting the current produced by the photodiode into a voltage, a computer for receiving the amplified photodiode current for RHEED data analysis, and a graphite impregnated triax cable for improving the signal to noise ratio obtained while sampling a stationary or rotating substrate. A rotating stage for supporting the substrate with diametrically positioned electron beam apertures and an optically encoded shaft can also be used to accommodate rotation of the substrate during measurement.

  1. Non-stationary dynamics in the bouncing ball: A wavelet perspective

    SciTech Connect (OSTI)

    Behera, Abhinna K., E-mail: abhinna@iiserkol.ac.in; Panigrahi, Prasanta K., E-mail: pprasanta@iiserkol.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246 (India); Sekar Iyengar, A. N., E-mail: ansekar.iyengar@saha.ac.in [Plasma Physics Division, Saha Institute of Nuclear Physics (SINP), Sector 1, Block-AF, Bidhannagar, Kolkata 700064 (India)

    2014-12-01

    The non-stationary dynamics of a bouncing ball, comprising both periodic as well as chaotic behavior, is studied through wavelet transform. The multi-scale characterization of the time series displays clear signatures of self-similarity, complex scaling behavior, and periodicity. Self-similar behavior is quantified by the generalized Hurst exponent, obtained through both wavelet based multi-fractal detrended fluctuation analysis and Fourier methods. The scale dependent variable window size of the wavelets aptly captures both the transients and non-stationary periodic behavior, including the phase synchronization of different modes. The optimal time-frequency localization of the continuous Morlet wavelet is found to delineate the scales corresponding to neutral turbulence, viscous dissipation regions, and different time varying periodic modulations.

  2. Method for making a non-extractable stationary phase of polymer within a capillary column

    DOE Patents [OSTI]

    Springston, S.R.

    1990-10-30

    A method is described for coating interior capillary column surfaces, or packing material of a packed column, used for gas chromatography, with a stationary polymer phase that is cross-linked by exposing it to a low-temperature plasma that is uniformly distributed over the column or packing material for a predetermined period of time to effect the desired degree of cross-linking of the coating. 7 figs.

  3. Method for making a non-extractable stationary phase of polymer within a capillary column

    DOE Patents [OSTI]

    Springston, Stephen R.

    1990-01-01

    A method for coating interior capillary column surfaces, or packing material of a packed column, used for gas chromatography, with a stationary polymer phase that is cross-linked by exposing it to a low-temperature plasma that is uniformly distributed over the column or packing material for a predetermined period of time to effect the desired degree of cross-linking of the coating.

  4. Stationary Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  5. Plug Power Inc | Open Energy Information

    Open Energy Info (EERE)

    York Zip: 12110 Product: Designs, manufactures and markets proton exchange membrane (PEM) fuel cells for stationary applications and for forklifts. Coordinates: 39.098856,...

  6. Liquid–liquid mixing studies in annular centrifugal contactors comparing stationary mixing vane options

    SciTech Connect (OSTI)

    Wardle, Kent E.

    2015-09-11

    Comparative studies of multiphase operation of an annular centrifugal contactor show the impact of housing stationary mixing vane configuration. A number of experimental results for several different mixing vane options are reported for operation of a 12.5 cm engineering-scale contactor unit. Fewer straight vanes give greater mixing-zone hold-up compared to curved vanes. Quantitative comparison of droplet size distribution also showed a significant decrease in mean diameter for four straight vanes versus eight curved vanes. This set of measurements gives a compelling case for careful consideration of mixing vane geometry when evaluating hydraulic operation and extraction process efficiency of annular centrifugal contactors.

  7. Stationary self-focusing of intense laser beam in cold quantum plasma using ramp density profile

    SciTech Connect (OSTI)

    Habibi, M.; Ghamari, F.

    2012-10-15

    By using a transient density profile, we have demonstrated stationary self-focusing of an electromagnetic Gaussian beam in cold quantum plasma. The paper is devoted to the prospects of using upward increasing ramp density profile of an inhomogeneous nonlinear medium with quantum effects in self-focusing mechanism of high intense laser beam. We have found that the upward ramp density profile in addition to quantum effects causes much higher oscillation and better focusing of laser beam in cold quantum plasma in comparison to that in the classical relativistic case. Our computational results reveal the importance and influence of formation of electron density profiles in enhancing laser self-focusing.

  8. Design and development of Stirling engines for stationary power generation applications in the 500 to 3000 horsepower range

    SciTech Connect (OSTI)

    1980-02-01

    Initial work in a project on the design and development of Stirling engines for stationary integrated energy systems is reported. Information is included on a market assessment, design methodology, evaluation of engine thermodynamic performance, and preliminary system design. It is concluded that Stirling engines employing clean fossil fuels cannot compete with diesel engines. However, combustion technology exists for the successful burning of coal-derived fuels in a large stationary stirling engine. High thermal efficiency is predicted for such an engine and further development work is recommended. (LCL)

  9. Novel metal-organic frameworks for efficient stationary sources via oxyfuel combustion

    SciTech Connect (OSTI)

    Nenoff, Tina M.; Sava Gallis, Dorina Florentina; Parkes, Marie Vernell; Greathouse, Jeffery A.; Rodriguez, Mark A.; Paap, Scott M; Williams, Timothy; Shaddix, Christopher R.

    2015-09-01

    Oxy-fuel combustion is a well-known approach to improve the heat transfer associated with stationary energy processes. Its overall penetration into industrial and power markets is constrained by the high cost of existing air separation technologies for generating oxygen. Cryogenic air separation is the most widely used technology for generating oxygen but is complex and expensive. Pressure swing adsorption is a competing technology that uses activated carbon, zeolites and polymer membranes for gas separations. However, it is expensive and limited to moderate purity O₂ . MOFs are cutting edge materials for gas separations at ambient pressure and room temperature, potentially revolutionizing the PSA process and providing dramatic process efficiency improvements through oxy-fuel combustion. This LDRD combined (1) MOF synthesis, (2) gas sorption testing, (3) MD simulations and crystallography of gas siting in pores for structure-property relationship, (4) combustion testing and (5) technoeconomic analysis to aid in real-world implementation.

  10. Aging management guideline for commercial nuclear power plants-stationary batteries. Final report

    SciTech Connect (OSTI)

    Berg, R.; Shao, J.; Krencicki, G.; Giachetti, R.

    1994-03-01

    The Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant stationary batteries important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  11. Liquid–liquid mixing studies in annular centrifugal contactors comparing stationary mixing vane options

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wardle, Kent E.

    2015-09-11

    Comparative studies of multiphase operation of an annular centrifugal contactor show the impact of housing stationary mixing vane configuration. A number of experimental results for several different mixing vane options are reported for operation of a 12.5 cm engineering-scale contactor unit. Fewer straight vanes give greater mixing-zone hold-up compared to curved vanes. Quantitative comparison of droplet size distribution also showed a significant decrease in mean diameter for four straight vanes versus eight curved vanes. This set of measurements gives a compelling case for careful consideration of mixing vane geometry when evaluating hydraulic operation and extraction process efficiency of annular centrifugalmore » contactors.« less

  12. Automotive Perspective on PEM Evaluation

    Broader source: Energy.gov [DOE]

    Presented at the 2009 High Temperature Membrane Working Group Meeting held May 18, 2009, in Arlington, Virginia

  13. 1?10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review

    SciTech Connect (OSTI)

    Maru, H. C.; Singhal, S. C.; Stone, C.; Wheeler, D.

    2010-11-01

    This independent review examines the status and technical potential of 1-10 kW stationary combined heat and power fuel cell systems and analyzes the achievability of the DOE cost, efficiency, and durability targets for 2012, 2015, and 2020.

  14. Modeled heating and surface erosion comparing motile (gas borne) and stationary (surface coating) inert particle additives

    SciTech Connect (OSTI)

    Buckingham, A.C.; Siekhaus, W.J.

    1982-09-27

    The unsteady, non-similar, chemically reactive, turbulent boundary layer equations are modified for gas plus dispersed solid particle mixtures, for gas phase turbulent combustion reactions and for heterogeneous gas-solid surface erosive reactions. The exterior (ballistic core) edge boundary conditions for the solutions are modified to include dispersed particle influences on core propellant combustion-generated turbulence levels, combustion reactants and products, and reaction-induced, non-isentropic mixture states. The wall surface (in this study it is always steel) is considered either bare or coated with a fixed particle coating which is conceptually non-reactive, insulative, and non-ablative. Two families of solutions are compared. These correspond to: (1) consideration of gas-borne, free-slip, almost spontaneously mobile (motile) solid particle additives which influence the turbulent heat transfer at the uncoated steel surface and, in contrast, (2) consideration of particle-free, gas phase turbulent heat transfer to the insulated surface coated by stationary particles. Significant differences in erosive heat transfer are found in comparing the two families of solutions over a substantial range of interior ballistic flow conditions. The most effective influences on reducing erosive heat transfer appear to favor mobile, gas-borne particle additives.

  15. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Dr. Takashi Nakamura

    2003-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2002 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on feasibility demonstration of direct feeding of coal combustion gas to microalgae. Aquasearch continued their effort on selection and characterization of microalgae suitable for CO{sub 2} sequestration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  16. Dynamic Response of an Optomechanical System to a Stationary Random Excitation in the Time Domain

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Palmer, Jeremy A.; Paez, Thomas L.

    2011-01-01

    Modern electro-optical instruments are typically designed with assemblies of optomechanical members that support optics such that alignment is maintained in service environments that include random vibration loads. This paper presents a nonlinear numerical analysis that calculates statistics for the peak lateral response of optics in an optomechanical sub-assembly subject to random excitation of the housing. The work is unique in that the prior art does not address peak response probability distribution for stationary random vibration in the time domain for a common lens-retainer-housing system with Coulomb damping. Analytical results are validated by using displacement response data from random vibration testingmore » of representative prototype sub-assemblies. A comparison of predictions to experimental results yields reasonable agreement. The Type I Asymptotic form provides the cumulative distribution function for peak response probabilities. Probabilities are calculated for actual lens centration tolerances. The probability that peak response will not exceed the centration tolerance is greater than 80% for prototype configurations where the tolerance is high (on the order of 30 micrometers). Conversely, the probability is low for those where the tolerance is less than 20 micrometers. The analysis suggests a design paradigm based on the influence of lateral stiffness on the magnitude of the response.« less

  17. Experimental study of stationary flame propagation in a tube under conditions of weightlessness

    SciTech Connect (OSTI)

    Samsonov, V.P.; Abrukov, S.A.; Danilkin, V.A.; Davydov, A.E.; Tyameikin, V.Y.

    1983-05-01

    The development of detailed concepts of the effect of gravitational conditions on a wide class of combustion phenomena has been hindered by the lack of a sufficient amount of experimental data on combustion under conditions of weightlessness. The present study investigates the changes in form of a laminar flame under the influence of natural thermal convection with stationary propagation in a vertical tube under normal gravitational conditions and under conditions of weightlessness, in which case convection is absent. Lean propane/CO/air mixtures were ignited in a reaction tube suspended in a weightlessness simulation chamber. High speed photographic recording of the flame front revealed that for flame propagation from an open lower end under normal gravitational conditions the flame front is more convex than under weightless conditions. Under conditions of weightlessness the form of the flame front is the same for propagation from either end. Equations are derived describing the change in flame front convexity produced by convection. Some divergence of the calculation results from the experimental data may be explained by the fact that the equations do not consider factors such as thermal expansion and viscosity of the combustion products, and the peculiarities of convective ascent of these products.

  18. WAITING TIME DISTRIBUTION OF SOLAR ENERGETIC PARTICLE EVENTS MODELED WITH A NON-STATIONARY POISSON PROCESS

    SciTech Connect (OSTI)

    Li, C.; Su, W.; Fang, C.; Zhong, S. J.; Wang, L.

    2014-09-10

    We present a study of the waiting time distributions (WTDs) of solar energetic particle (SEP) events observed with the spacecraft WIND and GOES. The WTDs of both solar electron events (SEEs) and solar proton events (SPEs) display a power-law tail of ??t {sup ?}. The SEEs display a broken power-law WTD. The power-law index is ?{sub 1} = 0.99 for the short waiting times (<70 hr) and ?{sub 2} = 1.92 for large waiting times (>100 hr). The break of the WTD of SEEs is probably due to the modulation of the corotating interaction regions. The power-law index, ? ? 1.82, is derived for the WTD of the SPEs which is consistent with the WTD of type II radio bursts, indicating a close relationship between the shock wave and the production of energetic protons. The WTDs of SEP events can be modeled with a non-stationary Poisson process, which was proposed to understand the waiting time statistics of solar flares. We generalize the method and find that, if the SEP event rate ? = 1/?t varies as the time distribution of event rate f(?) = A?{sup ?}exp ( ??), the time-dependent Poisson distribution can produce a power-law tail WTD of ??t {sup ?} {sup 3}, where 0 ? ? < 2.

  19. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Takashi Nakamura

    2004-11-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run further, pilot and full scale, carbon sequestration tests with actual propane combustion gases utilizing two different strains of microalgae. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns. Aquasearch also tested an alternative cell separation technology. University of Hawaii performed experiments at the Mera Pharmaceuticals facility in Kona in mid June to obtain data on the carbon venting rate out of the photobioreactor; gas venting rates were measured with an orifice flow meter and gas samples were collected for GC analysis to determine the carbon content of the vented gases.

  20. Recovery and Sequestration of CO2 from Stationary Combustion Systems by Photosynthesis of Microalgae

    SciTech Connect (OSTI)

    Takashi Nakamura; Miguel Olaizola; Stephen M. Masutani

    2003-11-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 July to 30 September 2003 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch and PSI continued preparation work on direct feeding of coal combustion gas to microalgae. Aquasearch started the first full scale carbon sequestration tests with propane combustion gases. Aquasearch started to model the costs associated with biomass harvest from different microalgal strains. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  1. Generation of Stationary Non-Gaussian Time Histories with a Specified Cross-spectral Density

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smallwood, David O.

    1997-01-01

    The paper reviews several methods for the generation of stationary realizations of sampled time histories with non-Gaussian distributions and introduces a new method which can be used to control the cross-spectral density matrix and the probability density functions (pdfs) of the multiple input problem. Discussed first are two methods for the specialized case of matching the auto (power) spectrum, the skewness, and kurtosis using generalized shot noise and using polynomial functions. It is then shown that the skewness and kurtosis can also be controlled by the phase of a complex frequency domain description of the random process. The general casemore » of matching a target probability density function using a zero memory nonlinear (ZMNL) function is then covered. Next methods for generating vectors of random variables with a specified covariance matrix for a class of spherically invariant random vectors (SIRV) are discussed. Finally the general case of matching the cross-spectral density matrix of a vector of inputs with non-Gaussian marginal distributions is presented.« less

  2. On the structure of quasi-stationary laser ablation fronts in strongly radiating plasmas

    SciTech Connect (OSTI)

    Basko, M. M. Novikov, V. G.; Grushin, A. S.

    2015-05-15

    The effect of strong thermal radiation on the structure of quasi-stationary laser ablation fronts is investigated under the assumption that all the laser flux is absorbed at the critical surface. Special attention is paid to adequate formulation of the boundary-value problem for a steady-state planar ablation flow. The dependence of the laser-to-x-ray conversion efficiency ϕ{sub r} on the laser intensity I{sub L} and wavelength λ{sub L} is analyzed within the non-equilibrium diffusion approximation for radiation transfer. The scaling of the main ablation parameters with I{sub L} and λ{sub L} in the strongly radiative regime 1−ϕ{sub r}≪1 is derived. It is demonstrated that strongly radiating ablation fronts develop a characteristic extended cushion of “radiation-soaked” plasma between the condensed ablated material and the critical surface, which can efficiently suppress perturbations from the instabilities at the critical surface.

  3. Modelling on dynamics properties of a stationary argon cascaded arc plasma flows

    SciTech Connect (OSTI)

    Wei, G. D.; Qi, X.; Yang, L.

    2014-03-15

    The gas dynamics properties of a stationary arc plasma flows are studied through the numerical simulations. A two dimensional axis-symmetric turbulent magneto-hydrodynamic plasma model is developed with the commercial code ANSYS FLUENT. The reliable ?-? model is used to account for turbulence. In this paper, the plasma is assumed to be a fluid following NavierStokes equations, respecting local thermodynamic equilibrium, and described by only one temperature. Distributions of the pressure, velocity, temperature, density, and electric potential inside of thus cascaded arc are obtained for an arc current density of 10{sup 6}?A/m{sup 2}. The pressure inside the arc varies from 10{sup 5}?Pa to 100?Pa. The temperature at the arc axis can reach as high as 13?600?K. The electric potential drops uniformly along the axis with a magnitude of 160?V. In addition, distributions of the sonic velocity and Mach number are shown to describe supersonic behavior of thus cascaded arc, which have a good agreement with the analytical formula.

  4. Non-stationary Return Levels of CMIP5 Multi-model Temperature Extremes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, L.; Phillips, T. J.; AghaKouchak, A.

    2015-05-01

    The objective of this study is to evaluate to what extent the CMIP5 climate model simulations of the climate of the twentieth century can represent observed warm monthly temperature extremes under a changing environment. The biases and spatial patterns of 2-, 10-, 25-, 50- and 100-year return levels of the annual maxima of monthly mean temperature (hereafter, annual temperature maxima) from CMIP5 simulations are compared with those of Climatic Research Unit (CRU) observational data considered under a non-stationary assumption. The results show that CMIP5 climate models collectively underestimate the mean annual maxima over arid and semi-arid regions that are mostmore » subject to severe heat waves and droughts. Furthermore, the results indicate that most climate models tend to underestimate the historical annual temperature maxima over the United States and Greenland, while generally disagreeing in their simulations over cold regions. Return level analysis shows that with respect to the spatial patterns of the annual temperature maxima, there are good agreements between the CRU observations and most CMIP5 simulations. However, the magnitudes of the simulated annual temperature maxima differ substantially across individual models. Discrepancies are generally larger over higher latitudes and cold regions.« less

  5. Batteries: An Advanced Na-FeCl2 ZEBRA Battery for Stationary Energy Storage Application

    SciTech Connect (OSTI)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Viswanathan, Vilayanur V.; Meinhardt, Kerry D.; Engelhard, Mark H.; Sprenkle, Vincent L.

    2015-06-17

    Sodium-metal chloride batteries, ZEBRA, are considered as one of the most important electrochemical devices for stationary energy storage applications because of its advantages of good cycle life, safety, and reliability. However, sodium-nickel chloride (Na-NiCl2) batteries, the most promising redox chemistry in ZEBRA batteries, still face great challenges for the practical application due to its inevitable feature of using Ni cathode (high materials cost). In this work, a novel intermediate-temperature sodium-iron chloride (Na-FeCl2) battery using a molten sodium anode and Fe cathode is proposed and demonstrated. The first use of unique sulfur-based additives in Fe cathode enables Na-FeCl2 batteries can be assembled in the discharged state and operated at intermediate-temperature (<200°C). The results in this work demonstrate that intermediate-temperature Na-FeCl2 battery technology could be a propitious solution for ZEBRA battery technologies by replacing the traditional Na-NiCl2 chemistry.

  6. RECOVERY AND SEQUESTRATION OF CO{sub 2} FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Takashi Nakamura

    2004-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2003 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run first pilot scale production run with coal combustion gas to microalgae. Aquasearch started the second full scale carbon sequestration tests with propane combustion gases. Aquasearch also conducted modeling work to study the change in alkalinity in the medium resulting form microalgal photosynthesis and growth. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  7. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Takashi Nakamura; Miguel Olaizola; Stephen M. Masutani

    2005-03-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run the first set of experiments with actual coal combustion gases with two different strains of microalgae. In addition further, full scale carbon sequestration tests with propane combustion gases were conducted. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns.

  8. RECOVERY AND SEQUESTRATION OF CO{sub 2} FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Takashi Nakamura; Miguel Olaizola; Stephen M. Masutani

    2004-07-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 January to 31 March 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run first pilot scale production run with coal combustion gas to microalgae. Aquasearch started the second full scale carbon sequestration tests with propane combustion gases. Aquasearch also conducted modeling work to study the change in alkalinity in the medium resulting form microalgal photosynthesis and growth. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  9. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Takashi Nakamura; Miguel Olaizola; Stephen M. Masutani

    2004-12-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 July to 30 September 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run the first set of experiments with actual coal combustion gases with two different strains of microalgae. In addition further, full scale carbon sequestration tests with propane combustion gases were conducted. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns.

  10. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    SciTech Connect (OSTI)

    University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

    2014-06-23

    A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

  11. Procuring Stationary Fuel Cells For CHP: A Guide for Federal Facility Decision Makers

    SciTech Connect (OSTI)

    Stinton, David P; McGervey, Joseph; Curran, Scott

    2011-11-01

    Federal agency leaders are expressing growing interest in using innovative fuel cell combined heat and power (CHP) technology at their sites, motivated by both executive branch sustainability targets and a desire to lead by example in the transition to a clean energy economy. Fuel cell CHP can deliver reliable electricity and heat with 70% to 85% efficiency. Implementing this technology can be a high efficiency, clean energy solution for agencies striving to meet ambitious sustainability requirements with limited budgets. Fuel cell CHP systems can use natural gas or renewable fuels, such as biogas. Procuring Stationary Fuel Cells for CHP: A Guide for Federal Facility Decision Makers presents an overview of the process for planning and implementing a fuel cell CHP project in a concise, step-by-step format. This guide is designed to help agency leaders turn their interest in fuel cell technology into successful installations. This guide concentrates on larger (100 kW and greater) fuel cell CHP systems and does not consider other fuel cell applications such as cars, forklifts, backup power supplies or small generators (<100 kW). Because fuel cell technologies are rapidly evolving and have high up front costs, their deployment poses unique challenges. The electrical and thermal output of the CHP system must be integrated with the building s energy systems. Innovative financing mechanisms allow agencies to make a make versus buy decision to maximize savings. This guide outlines methods that federal agencies may use to procure fuel cell CHP systems with little or no capital investment. Each agency and division, however, has its own set of procurement procedures. This guide was written as a starting point, and it defers to the reader s set of rules if differences exist. The fuel cell industry is maturing, and project developers are gaining experience in working with federal agencies. Technology improvements, cost reductions, and experienced project developers are making fuel cell projects easier to put into service. In this environment, federal decision makers can focus on being smart buyers of fuel cell energy instead of attempting to become experts in fuel cell technology. For agencies that want to pursue a fuel cell CHP this guide presents a four step process for a successful project. 1. Perform a preliminary screening of the energy needs energy costs and incentives. 2. Compare a detailed project plan. 3. Make a financing and contracting decision. 4. Execute the project plan including financing, installation, and operation. The simplest procurement method is designated funding for the outright purchase of the fuel cell CHP system, although this is usually not the most cost-effective option. This guide describes the following financing options: Power purchase agreement Energy savings performance contract Utility energy services contract Enhanced use lease Fuel cell CHP technology can help federal facility managers comply with agency objectives for reducing energy consumption and air pollution emissions. Fuel cells do not generate particulate pollutants, unburned hydrocarbons or the gases that produce acid rain. Fuel cells emit less carbon dioxide (CO2) than other, less efficient technologies and use of renewable fuels can make them carbon neutral. Fuel cell CHP technology can deliver reliable electricity and heat with high efficiency (70% to 85%) in a small physical footprint with little noise, making it a cost-effective option for federal facilities.

  12. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    SciTech Connect (OSTI)

    Nigel N. Clark

    2006-12-31

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions, with added EGR to prevent preignition. It was observed that the relative air/fuel ratio, injected NO quantity, added EGR fraction, and engine operating points affected the NO decomposition rates. While operating under these modified conditions, the highest NO decomposition rate of 92% was observed. In-cylinder pressure data gathered during the experiments showed minimum deviation from peak pressure as a result of NO injections into the engine. A NOx adsorption system, from Sorbent Technologies, Inc., was integrated with the Cummins engine, comprised a NOx adsorbent chamber, heat exchanger, demister, and a hot air blower. Data were gathered to show the possibility of NOx adsorption from the engine exhaust, and desorption of NOx from the sorbent material. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a benchtop adsorption system was constructed. The temperature of this apparatus was controlled while data were gathered on the characteristics of the sorbent material for development of a system model. A simplified linear driving force model was developed to predict NOx adsorption into the sorbent material as cooled exhaust passed over fresh sorbent material. A mass heat transfer analysis was conducted to analyze the possibility of using hot exhaust gas for the desorption process. It was found in the adsorption studies, and through literature review, that NO adsorption was poor when the carrier gas was nitrogen, but that NO in the presence of oxygen was adsorbed at levels exceeding 1% by mass of the sorbent. From the three experimental campaigns, chemical kinetic modeling analysis, and the scaled benchtop NOx adsorption system, an overall SNR system model was developed. An economic analysis was completed, and showed that the system was impractical in cost for small engines, but that economies of scale favored the technology.

  13. A finite difference Davidson procedure to sidestep full ab initio hessian calculation: Application to characterization of stationary points and transition state searches

    SciTech Connect (OSTI)

    Sharada, Shaama Mallikarjun; Bell, Alexis T. E-mail: bell@cchem.berkeley.edu; Head-Gordon, Martin E-mail: bell@cchem.berkeley.edu

    2014-04-28

    The cost of calculating nuclear hessians, either analytically or by finite difference methods, during the course of quantum chemical analyses can be prohibitive for systems containing hundreds of atoms. In many applications, though, only a few eigenvalues and eigenvectors, and not the full hessian, are required. For instance, the lowest one or two eigenvalues of the full hessian are sufficient to characterize a stationary point as a minimum or a transition state (TS), respectively. We describe here a method that can eliminate the need for hessian calculations for both the characterization of stationary points as well as searches for saddle points. A finite differences implementation of the Davidson method that uses only first derivatives of the energy to calculate the lowest eigenvalues and eigenvectors of the hessian is discussed. This method can be implemented in conjunction with geometry optimization methods such as partitioned-rational function optimization (P-RFO) to characterize stationary points on the potential energy surface. With equal ease, it can be combined with interpolation methods that determine TS guess structures, such as the freezing string method, to generate approximate hessian matrices in lieu of full hessians as input to P-RFO for TS optimization. This approach is shown to achieve significant cost savings relative to exact hessian calculation when applied to both stationary point characterization as well as TS optimization. The basic reason is that the present approach scales one power of system size lower since the rate of convergence is approximately independent of the size of the system. Therefore, the finite-difference Davidson method is a viable alternative to full hessian calculation for stationary point characterization and TS search particularly when analytical hessians are not available or require substantial computational effort.

  14. Development of Polybenzimidazole-Based High-Temperature Membrane and Electrode Assemblies for Stationary and Automotive Applications

    SciTech Connect (OSTI)

    Vogel, John A.

    2008-09-03

    The program began on August 1, 2003 and ended on July 31, 2007. The goal of the project was to optimize a high-temperature polybenzimidazole (PBI) membrane to meet the performance, durability, and cost targets required for stationary fuel cell applications. These targets were identified in the Fuel Cell section (3.4) of DOEs Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan. A membrane that operates at high temperatures is important to the fuel cell industry because it is insensitive to carbon monoxide (a poison to low-temperature fuel cells), and does not require complex water management strategies. Together, these two benefits greatly simplify the fuel cell system. As a result, the high-temperature fuel cell system realizes a cost benefit as the number of components is reduced by nearly 30%. There is also an inherent reliability benefit as components such as humidifiers and pumps for water management are unnecessary. Furthermore, combined heat and power (CHP) systems may be the best solution for a commercial, grid-connected, stationary product that must offer a cost benefit to the end user. For a low-temperature system, the quality of the heat supplied is insufficient to meet consumer needs and comfort requirements, so peak heaters or supplemental boilers are required. The higher operating temperature of PBI technology allows the fuel cell to meet the heat and comfort demand without the additional equipment. Plug Power, working with the Rensselaer Polytechnic Institute (RPI) Polymer Science Laboratory, made significant advances in optimizing the PBI membrane material for operation at temperatures greater than 160oC with a lifetime of 40,000 hours. Supporting hardware such as flow field plates and a novel sealing concept were explored to yield the lower-cost stack assembly and corresponding manufacturing process. Additional work was conducted on acid loss, flow field design and cathode electrode development. Membranes and MEAs were supplied by team member BASF Fuel Cell (formerly PEMEAS), a manufacturer of polymer and fiber. Additional subcontractors Entegris, the University of South Carolina (USC) Fuel Cell Center, and RPIs Fuel Cell Center conducted activities with regard to stack sealing, acid modeling, and electrode development.

  15. Manufacturing Cost Analysis of Novel Steel/Concrete Composite Vessel for Stationary Storage of High-Pressure Hydrogen

    SciTech Connect (OSTI)

    Feng, Zhili; Zhang, Wei; Wang, Jy-An John; Ren, Fei

    2012-09-01

    A novel, low-cost, high-pressure, steel/concrete composite vessel (SCCV) technology for stationary storage of compressed gaseous hydrogen (CGH2) is currently under development at Oak Ridge National Laboratory (ORNL) sponsored by DOE s Fuel Cell Technologies (FCT) Program. The SCCV technology uses commodity materials including structural steels and concretes for achieving cost, durability and safety requirements. In particular, the hydrogen embrittlement of high-strength low-alloy steels, a major safety and durability issue for current industry-standard pressure vessel technology, is mitigated through the use of a unique layered steel shell structure. This report presents the cost analysis results of the novel SCCV technology. A high-fidelity cost analysis tool is developed, based on a detailed, bottom-up approach which takes into account the material and labor costs involved in each of the vessel manufacturing steps. A thorough cost study is performed to understand the SCCV cost as a function of the key vessel design parameters, including hydrogen pressure, vessel dimensions, and load-carrying ratio. The major conclusions include: The SCCV technology can meet the technical/cost targets set forth by DOE s FCT Program for FY2015 and FY2020 for all three pressure levels (i.e., 160, 430 and 860 bar) relevant to the hydrogen production and delivery infrastructure. Further vessel cost reduction can benefit from the development of advanced vessel fabrication technologies such as the highly automated friction stir welding (FSW). The ORNL-patented multi-layer, multi-pass FSW can not only reduce the amount of labor needed for assembling and welding the layered steel vessel, but also make it possible to use even higher strength steels for further cost reductions and improvement of vessel structural integrity. It is noted the cost analysis results demonstrate the significant cost advantage attainable by the SCCV technology for different pressure levels when compared to the industry-standard pressure vessel technology. The real-world performance data of SCCV under actual operating conditions is imperative for this new technology to be adopted by the hydrogen industry for stationary storage of CGH2. Therefore, the key technology development effort in FY13 and subsequent years will be focused on the fabrication and testing of SCCV mock-ups. The static loading and fatigue data will be generated in rigorous testing of these mock-ups. Successful tests are crucial to enabling the near-term impact of the developed storage technology on the CGH2 storage market, a critical component of the hydrogen production and delivery infrastructure. In particular, the SCCV has high potential for widespread deployment in hydrogen fueling stations.

  16. Dynamic Changes in LSM Nanoparticles on YSZ: A Model System for Non-stationary SOFC Cathode Behavior

    SciTech Connect (OSTI)

    Woo, L Y; Glass, R S; Gorte, R J; Orme, C A; Nelson, A J

    2009-01-05

    The interaction between nanoparticles of strontium-doped lanthanum manganite (LSM) and single crystal yttria-stabilized zirconia (YSZ) was investigated using atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM)/energy-dispersive x-ray spectroscopy (EDX). Nanoparticles of LSM were deposited directly onto single crystal YSZ substrates (100) using an ultrasonic spray nozzle. As samples were annealed from 850 C to 1250 C, nanoparticles gradually decreased in height and eventually disappeared completely. Subsequent reduction in H{sub 2}/H{sub 2}O at 700 C resulted in the reappearance of nanoparticles. Studies were carried out on identical regions of the sample allowing the same nanoparticles to be characterized at different temperatures. Morphological changes indicate the formation of a thin layer of LSM, and XPS results support the observation by indicating an increase in signal from the La and Sr and a decrease in signal from the Y and Zr with increasing temperature. SEM/EDX was used to verify that the nanoparticles in the reduced sample contained La. The changes in the LSM/YSZ morphology may be important in explaining the non-stationary behavior observed in operating fuel cells. The thin layer of LSM initially results in poor cathode performance; reducing conditions then lead to film disruptions, indicating nano/microporosity, that increase oxygen ion diffusion and performance.

  17. On the existence of astationary measure for the stochastic system of the Lorenz model describing abaroclinic atmosphere

    SciTech Connect (OSTI)

    Klevtsova, Yu Yu

    2013-09-30

    The paper is concerned with a nonlinear system of partial differential equations with parameters. This system describes the two-layer quasi-solenoidal Lorenz model for abaroclinic atmosphere on arotating two-dimensional sphere. The right-hand side of the system is perturbed by white noise. Sufficient conditions on the parameters and the right-hand side are obtained for the existence of astationary measure. Bibliography: 25 titles.

  18. Procedure for Performing PEM Single Cell Testing

    Broader source: Energy.gov [DOE]

    Presented at the 2009 High Temperature Membrane Working Group Meeting held May 18, 2009, in Arlington, Virginia

  19. PEM Electrolysis R&D Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... High Pressure System * Bob Avery * Steve Tommell 36 High Capacity System * Steve Porter * Ken Dreier * Larry Moulthrop * Mike Spaner * Curt Ebner * John Griffin * Chau Chuong ...

  20. Advanced Electrocatalysts for PEM Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Article, 11(2011)919 AuFePt 3 Nanoparticle STABILITY: PtC, PtFeC and AuFePt... and Stability of Chemically Modified Platinum Nanocatalysts Angewandte Chemie ...

  1. Polyphenylene Sulfonic Acid: a new PEM

    Broader source: Energy.gov [DOE]

    "Summary of Case Westernミs highly sulfonated polymers research presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003 "

  2. Manufacturing Barriers to High Temperature PEM Commercialization

    Broader source: Energy.gov [DOE]

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

  3. Low Temperature PEM Fuel Cell Manufacturing Needs

    Office of Environmental Management (EM)

    Los Alamos Needs Assessment Los Alamos Needs Assessment February 1999 This Needs Assessment for former Los Alamos National Laboratory workers was developed for the purpose of collecting existing information relevant to exposure and health outcomes among former workers, utilizing this information to develop viable methods for contacting these former workers, and providing an initial determination of the most significant worker hazards, problems, and concerns for the site. PDF icon Los Alamos

  4. High Temperature PEM - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have high termperature capabilities, and have lower SO2 crossover rates. Benefits Crosslinking allow for the density of ionic functional groups to be increased, which means...

  5. Low Temperature PEM Fuel Cell Manufacturing Needs

    Broader source: Energy.gov [DOE]

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

  6. Trends in stationary energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    storage * Resiliency and distributed generation * New focus on grid resiliency from Sandy * Costs of outages are large * Investment models are challenging * Buildings: ...

  7. Lean-Burn Stationary Natural Gas Reciprocating Engine Operation with a Prototype Miniature Diode Side Pumped Passively Q-switched Laser Spark Plug

    SciTech Connect (OSTI)

    McIntyre, D.L.; Woodruff, S.D.; McMillian, M.H.; Richardson, S.W.; Gautam, Mridul

    2008-04-01

    To meet the ignition system needs of large bore lean burn stationary natural gas engines a laser diode side pumped passively Q-switched laser igniter was developed and used to ignite lean mixtures in a single cylinder research engine. The laser design was produced from previous work. The in-cylinder conditions and exhaust emissions produced by the miniaturized laser were compared to that produced by a laboratory scale commercial laser system used in prior engine testing. The miniaturized laser design as well as the combustion and emissions data for both laser systems was compared and discussed. It was determined that the two laser systems produced virtually identical combustion and emissions data.

  8. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    SciTech Connect (OSTI)

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  9. Design and development of Stirling engines for stationary power generation applications in the 500 to 3000 horsepower range. Volume 1. Technical report

    SciTech Connect (OSTI)

    Not Available,

    1980-09-15

    This project was Phase I of a multiphased program for the design and development of Stirling engines for stationary power generation applications in the 500 to 3000 horsepower range. Phase I comprised the conceptual design and associated cost estimates of a stationary Stirling engine capable of being fueled by a variety of heat sources, with emphasis on coal firing, followed by the preparation of a plan for implementing the design, fabrication and testing of a demonstration engine by 1985. The development and evaluation of conceptual designs have been separated into two broad categories: the A designs which represent the present state-of-the-art and which are demonstrable by 1985 with minimum technical risk; and the B designs which involve advanced technology and therefore would require significant research and development prior to demonstration and commercialization, but which may ultimately offer advantages in terms of lower cost, better performance, or higher reliability. The majority of the effort in Phase I was devoted to the A designs.

  10. Dilaton field minimally coupled to 2+1 gravity; uniqueness of the static Chan-Mann black hole and new dilaton stationary metrics

    SciTech Connect (OSTI)

    García-Diaz, Alberto A.

    2014-01-14

    Using the Schwarzschild coordinate frame for a static cyclic symmetric metric in 2+1 gravity coupled minimally to a dilaton logarithmically depending on the radial coordinate in the presence of an exponential potential, by solving first order linear Einstein equations, the general solution is derived and it is identified with the Chan–Mann dilaton solution. In these coordinates, a new stationary dilaton solution is obtained; it does not allow for a de Sitter–Anti-de Sitter limit at spatial infinity, where its structural functions increase indefinitely. On the other hand, it is horizonless and allows for a naked singularity at the origin of coordinates; moreover, one can identify at a large radial coordinate a (quasi-local) mass parameter and in the whole space a constant angular momentum. Via a general SL(2,R)–transformation, applied on the static cyclic symmetric metric, a family of stationary dilaton solutions has been generated. A particular SL(2,R)–transformation is identified, which gives rise to the rotating Chan–Mann dilaton solution. All the exhibited solutions have been characterized by their quasi-local energy, mass, and momentum through their series expansions at spatial infinity. The algebraic structure of the Ricci–energy-momentum, and Cotton tensors is given explicitly.

  11. On square-integrability of solutions of the stationary Schrödinger equation for the quantum harmonic oscillator in two dimensional constant curvature spaces

    SciTech Connect (OSTI)

    Noguera, Norman; Rózga, Krzysztof

    2015-07-15

    In this work, one provides a justification of the condition that is usually imposed on the parameters of the hypergeometric equation, related to the solutions of the stationary Schrödinger equation for the harmonic oscillator in two-dimensional constant curvature spaces, in order to determine the solutions which are square-integrable. One proves that in case of negative curvature, it is a necessary condition of square integrability and in case of positive curvature, a necessary condition of regularity. The proof is based on the analytic continuation formulas for the hypergeometric function. It is observed also that the same is true in case of a slightly more general potential than the one for harmonic oscillator.

  12. High Temperature Polymer Capacitor Dielectric Films | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The High Temperature Membrane Working Group consists of government, industry, and university researchers interested in developing high temperature membranes for fuel cells. Description Technical Targets Meetings Contacts Description Polymer electrolyte membrane (PEM) fuel cells typically operate at temperatures no higher than 60°C-80°C due to structural limitations of the membrane. Operating PEM fuel cell stacks at higher temperatures (120°C for transportation and 150°C for stationary

  13. Durability Improvements Through Degradation Mechanism Studies

    SciTech Connect (OSTI)

    Borup, Rodney L.; Mukundan, Rangachary; Spernjak, Dusan; Baker, Andrew M.; Lujan, Roger W.; Langlois, David Alan; Ahluwalia, Rajesh; Papadia, D. D.; Weber, Adam Z.; Kusoglu, Ahmet; Shi, Shouwnen; More, K. L.; Grot, Steve

    2015-08-03

    The durability of polymer electrolyte membrane (PEM) fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. By investigating cell component degradation modes and defining the fundamental degradation mechanisms of components and component interactions, new materials can be designed to improve durability. To achieve a deeper understanding of PEM fuel cell durability and component degradation mechanisms, we utilize a multi-institutional and multi-disciplinary team with significant experience investigating these phenomena.

  14. Design and development of Stirling Engines for stationary power generation applications in the 500 to 3000 hp range. Subtask 1A report: state-of-the-art conceptual design

    SciTech Connect (OSTI)

    1980-03-01

    The first portion of the Conceptual Design Study of Stirling Engines for Stationary Power Application in the 500 to 3000 hp range which was aimed at state-of-the-art stationary Stirling engines for a 1985 hardware demonstration is summarized. The main goals of this effort were to obtain reliable cost data for a stationary Stirling engine capable of meeting future needs for total energy/cogeneration sysems and to establish a pragmatic and conservative base design for a first generation hardware. Starting with an extensive screening effort, 4 engine types, i.e., V-type crank engine, radial engine, swashplate engine, and rhombic drive engine, and 3 heat transport systems, i.e., heat pipe, pressurized gas heat transport loop, and direct gas fired system, were selected. After a preliminary layout cycle, the rhombic drive engine was eliminated due to intolerable maintenance difficulties on the push rod seals. V, radial and swashplate engines were taken through a detailed design/layout cycle, to establish all important design features and reliable engine weights. After comparing engine layouts and analyzing qualitative and quantitative evaluation criteria, the V-crank engine was chosen as the candidate for a 1985 hardware demonstration.

  15. International Stationary Fuel Cell Demonstration

    Broader source: Energy.gov [DOE]

    This presentation by John Vogel of Plug Power was given at the New Fuel Cell Projects Meeting in February 2007.

  16. Three-wheel air turbocompressor for PEM fuel cell systems

    DOE Patents [OSTI]

    Rehg, Tim; Gee, Mark; Emerson, Terence P.; Ferrall, Joe; Sokolov, Pavel

    2003-08-19

    A fuel cell system comprises a compressor and a fuel processor downstream of the compressor. A fuel cell stack is in communication with the fuel processor and compressor. A combustor is downstream of the fuel cell stack. First and second turbines are downstream of the fuel processor and in parallel flow communication with one another. A distribution valve is in communication with the first and second turbines. The first and second turbines are mechanically engaged to the compressor. A bypass valve is intermediate the compressor and the second turbine, with the bypass valve enabling a compressed gas from the compressor to bypass the fuel processor.

  17. Analysis of the Durability of PEM FC Membrane Electrode Assemblies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These slides were presented at the 2010 New Fuel Cell Projects Meeting on September 28, 2010. PDF icon 10dupontperry.pdf More Documents & Publications DOE Fuel Cell ...

  18. PEM Fuel Cell Technology, Key Research Needs and Approaches (Presentation)

    Broader source: Energy.gov [DOE]

    Presented at the DOE Fuel Cell Pre-Solicitation Workshop held January 23-24, 2008 in Golden, Colorado.

  19. Novel Intermetallic Catalysts to Enhance PEM Membrane Durability

    SciTech Connect (OSTI)

    Francis J. DiSalvo

    2009-01-06

    The research examined possible sources of degradation of platinum based anode catalysts under long term use. Scientists at the United Technologies Research Center had shown that the anode as well as the cathode catalysts degrade in hydrogen fuel cells. This goal of this research was to see if mechanisms of anode degradation could be understood using forefront electrochemical techniques in an aqueous system. We found that this method is limited by the very low levels of impurities (perhaps less than a part per trillion) in the electrolyte. This limitation comes from the relatively small catalyst surface area (a few sq cm or less) compared to the electrolyte volume of 10 to 25 ml. In real fuel cells this ratio is completelyreversed: high catalyst surface area and low electrolyte violume, making the system much less sensitive to impurities in the electrolyte. We conclude that degradation mechanisms should be studied in real fuel cell systems, rather than in ex-situ, large electrolyte volume experiments.

  20. Light Weight, Low Cost PEM Fuel Cell Stacks

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on fuel cell stacks, was given at a February 2007 meeting on new fuel cell projects.

  1. Surface modified stainless steels for PEM fuel cell bipolar plates

    DOE Patents [OSTI]

    Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO

    2007-07-24

    A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.

  2. Advanced Cathode Catalysts and Supports for PEM Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... times, roll-to-roll dealloy web speeds, and SET treatment process ... (right). 0 5 10 15 20 25 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 ORR Specific Activity at 900 ...

  3. Techno-economic Analysis of PEM Electrolysis for Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    system Bill of Materials * Estimate capital costs * Define system performance ... are implemented * Potential reduction in capital cost from existing values * Plant ...

  4. Membrane Durability in PEM Fuel Cells: Chemical Degradation

    Broader source: Energy.gov [DOE]

    Presentation at the 2008 High Temperature Membrane Working Group Meeting held June 9, 2008, in Washington, DC

  5. Advanced Cathode Catalysts and Supports for PEM Fuel Cells

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Low Cost PEM Fuel Cell Metal Bipolar Plates

    SciTech Connect (OSTI)

    Wang, Conghua

    2013-05-30

    Bipolar plate is an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is the metal plate corrosion protection at low cost for the broad commercial applications. This project is aimed to develop innovative technological solutions to overcome the corrosion barrier of low cost metal plates. The feasibility of has been demonstrated and patented (US Patent 7,309,540). The plan is to further reduce the cost, and scale up the technology. The project is built on three pillars: 1) robust experimental evidence demonstrating the feasibility of our technology, 2) a team that consists of industrial leaders in fuel cell stack application, design, and manufactures; 3) a low-risk, significant-milestone driven program that proves the feasibility of meeting program objectives The implementation of this project will reduce the fuel cell stack metal bipolar separator plate cost which accounts 15-21% of the overall stack cost. It will contribute to the market adoption of fuel cell technologies. In addition, this corrosion protection technology can be used similar energy devices, such as batteries and electrolyzers. Therefore, the success of the project will be benefit in broad markets.

  7. Low Cost PEM Fuel Cell Metal Bipolar Plates

    Broader source: Energy.gov [DOE]

    Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 – October 1, 2009

  8. Higher Temperature PEM Composite Systems for Fuel Cells

    Broader source: Energy.gov [DOE]

    Presentation by Virginia Polytechnic Institute and State University to the High Temperature Membrane Working Group Meeting held in Honolulu, Hawaii October 8, 2004.

  9. PEM Stack Manufacturing: Industry Status | Department of Energy

    Office of Environmental Management (EM)

    5 U.S.C. § 772(b); 42 U.S.C. § 7135(b). 2 See H.R. Rep. No. 373, 96th Cong., 1st Sess., reprinted in 1979 U.S. Code Cong. & Admin. News 1764, 1781 (H.R. Report 373). May 15, 2009 DEPARTMENT OF ENERGY OFFICE OF HEARINGS AND APPEALS Application for Exception Name of Case: Sauder Fuel Inc. Date of Filing: April 28, 2009 Case No.: TEE-0059 On April 28, 2009, Sauder Fuel Inc. (Sauder), filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy

  10. Micro-Structural Mitigation Strategies for PEM Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    component thickness, permeability) Statistical variability of operational andor ... characteristics for each component Statistical variation can be applied to all ...

  11. Bootstrapping a Sustainable North American PEM Fuel Cell Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    case will require a long-term, coordinated commitment by government and industry to insure the co-evolution of hydrogen infrastructure and fuel cell vehicles (Greene et al., 2008). ...

  12. Dedicated to The Continued Education, Training and Demonstration of PEM

    Broader source: Energy.gov (indexed) [DOE]

    Utilities, Clean Energy Policies in States and Communities, National Renewable Energy Laboratory (NREL) (Brochure) | Department of Energy This document discusses the policy of decoupling in utilities and how it can be used to encourage energy efficiency. PDF icon 46606.pdf More Documents & Publications Greensburg, Kansas: Building a Model Green Community, How Would You Rebuild a Town - Green? April 2009 (Brochure) Greensburg, Kansas: A Better, Greener Place to Live (Revised) (Brochure)

  13. High-performance batteries for electric-vehicle propulsion and stationary energy storage. Progress report, October 1978-September 1979. [40 kWh, Li-Al and Li-Si anodes

    SciTech Connect (OSTI)

    Barney, D. L.; Steunenberg, R. K.; Chilenskas, A. A.; Gay, E. C.; Battles, J. E.; Hornstra, F.; Miller, W. E.; Vissers, D. R.; Roche, M. F.; Shimotake, H.; Hudson, R.; Askew, B. A.; Sudar, S.

    1980-03-01

    The research, development, and management activities of the programs at Argonne National Laboratory (ANL) and at contractors' laboratories on high-temperature batteries during the period October 1978 to September 1979 are reported. These batteries are being developed for electric-vehicle propulsion and for stationary energy-storage applications. The present cells, which operate at 400 to 500/sup 0/C, are of a vertically oriented, prismatic design with one or more inner positive electrodes of FeS or FeS/sub 2/, facing negative electrodes of lithium-aluminum or lithium-silicon alloy, and molten LiCl-KC1 electrolyte. During this reporting period, cell and battery development work has continued at ANL and contractors' laboratories. A 40 kWh electric-vehicle battery (designated Mark IA) was fabricated and delivered to ANL for testing. During the initial heat-up, one of the two modules failed due to a short circuit. A failure analysis was conducted, and the Mark IA program completed. Development work on the next electric-vehicle battery (Mark II) was initiated at Eagle-Picher Industries, Inc. and Gould, Inc. Work on stationary energy-storage batteries during this period has consisted primarily of conceptual design studies. 107 figures, 67 tables.

  14. Transportation and Stationary Power Integration Workshop: ""An...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of electricity and fuel cell vehicles, commercialization, where we are, observations, next steps PDF icon tspigross.pdf More Documents & Publications NREL Alt Fuel ...

  15. Stationary Power Services | Open Energy Information

    Open Energy Info (EERE)

    Services Place: Clearwater, Florida Zip: 33760 Product: Developer and manufacturer of lithium primary (non-rechargeable), lithium ion and lithium polymer rechargeable batteries....

  16. Stationary Applications and Freeze/Thaw Challenges

    Broader source: Energy.gov [DOE]

    Presentation by Richard Gaylord to DOE's Fuel Cell Operations at Sub-Freezing Temperatures Workshop held February 1-5, 2005 in Phoenix, Arizona.

  17. Stationary High-Pressure Hydrogen Storage

    Broader source: Energy.gov [DOE]

    This presentation by Zhili Feng of Oak Ridge National Laboratory was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013.

  18. Development of Alternative and Durable High Performance Cathode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supports for PEM Fuel Cells Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells This presentation, which focuses on cathode supports for PEM ...

  19. Panel 3, PEM Electrolysis Technology R&D and Near-Term Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Markets Power Plants Energy Markets capability Power Plants Heat Treating Semiconductors Laboratories Government Fueling Backup Power Renewable Energy Storage 2 Energy ...

  20. Improving Costs and Efficiency of PEM Fuel Cell Vehicles by Modifying...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    it with a nitridation process wherein titanium andor aluminum in the stainless steel ... is now chemically heterogeneous rather than uniform, with chromium, titanium, or aluminum. ...

  1. HYBRID SULFUR FLOWSHEETS USING PEM ELECTROLYSIS AND A BAYONET DECOMPOSITION REACTOR

    SciTech Connect (OSTI)

    Gorensek, M; William Summers, W

    2008-05-30

    A conceptual design is presented for a Hybrid Sulfur process for the production of hydrogen using a high-temperature nuclear heat source to split water. The process combines proton exchange membrane-based SO{sub 2}-depolarized electrolyzer technology being developed at Savannah River National Laboratory with silicon carbide bayonet decomposition reactor technology being developed at Sandia National Laboratories. Both are part of the US DOE Nuclear Hydrogen Initiative. The flowsheet otherwise uses only proven chemical process components. Electrolyzer product is concentrated from 50 wt% sulfuric acid to 75 wt% via recuperative vacuum distillation. Pinch analysis is used to predict the high-temperature heat requirement for sulfuric acid decomposition. An Aspen Plus{trademark} model of the flowsheet indicates 340.3 kJ high-temperature heat, 75.5 kJ low-temperature heat, 1.31 kJ low-pressure steam, and 120.9 kJ electric power are consumed per mole of H{sub 2} product, giving an LHV efficiency of 35.3% (41.7% HHV efficiency) if electric power is available at a conversion efficiency of 45%.

  2. Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets

    Broader source: Energy.gov [DOE]

    July 9th presentation for the U.S. DOE HFCIT bi-montly informational call series for state and regional initiatives

  3. Development and Validation of a Two-phase, Three-dimensional Model for PEM Fuel Cells

    Broader source: Energy.gov [DOE]

    Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 – October 1, 2009

  4. Development of Micro-structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulation and Experimental Approaches

    Broader source: Energy.gov [DOE]

    Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 – October 1, 2009

  5. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update

    Broader source: Energy.gov [DOE]

    This report is the sixth annual update of a comprehensive automotive fuel cell cost analysis conducted by Strategic Analysis under contract to the U.S. Department of Energy. This 2012 update will cover current status technology updates since the 2011 report, as well as introduce a 2012 bus system analysis considered alongside the automotive system.

  6. Using Heteropolyacids in the Anode Catalyst Layer of Dimethyl Ether PEM Fuel Cells

    SciTech Connect (OSTI)

    Ferrell III, J. R.; Turner, J. A.; Herring, A. M.

    2008-01-01

    In this study, polarization experiments were performed on a direct dimethyl ether fuel cell (DMEFC). The experimental setup allowed for independent control of water and DME flow rates. Thus the DME flow rate, backpressure, and water flow rate were optimized. Three heteropoly acids, phosphomolybdic acid (PMA), phosphotungstic acid (PTA), and silicotungstic acid (STA) were incorporated into the anode catalyst layer in combination with Pt/C. Both PTA-Pt and STA-Pt showed higher performance than the Pt control at 30 psig of backpressure. Anodic polarizations were also performed, and Tafel slopes were extracted from the data. The trends in the Tafel slope values are in agreement with the polarization data. The addition of phosphotungstic acid more than doubled the power density of the fuel cell, compared to the Pt control.

  7. A Semi-Empirical Two Step Carbon Corrosion Reaction Model in PEM Fuel Cells

    SciTech Connect (OSTI)

    Young, Alan; Colbow, Vesna; Harvey, David; Rogers, Erin; Wessel, Silvia

    2013-01-01

    The cathode CL of a polymer electrolyte membrane fuel cell (PEMFC) was exposed to high potentials, 1.0 to 1.4 V versus a reversible hydrogen electrode (RHE), that are typically encountered during start up/shut down operation. While both platinum dissolution and carbon corrosion occurred, the carbon corrosion effects were isolated and modeled. The presented model separates the carbon corrosion process into two reaction steps; (1) oxidation of the carbon surface to carbon-oxygen groups, and (2) further corrosion of the oxidized surface to carbon dioxide/monoxide. To oxidize and corrode the cathode catalyst carbon support, the CL was subjected to an accelerated stress test cycled the potential from 0.6 VRHE to an upper potential limit (UPL) ranging from 0.9 to 1.4 VRHE at varying dwell times. The reaction rate constants and specific capacitances of carbon and platinum were fitted by evaluating the double layer capacitance (Cdl) trends. Carbon surface oxidation increased the Cdl due to increased specific capacitance for carbon surfaces with carbon-oxygen groups, while the second corrosion reaction decreased the Cdl due to loss of the overall carbon surface area. The first oxidation step differed between carbon types, while both reaction rate constants were found to have a dependency on UPL, temperature, and gas relative humidity.

  8. Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets

    Fuel Cell Technologies Publication and Product Library (EERE)

    This document provides information about near-term markets (such as for forklifts and telecommunications) for proton exchange membrane fuel cells.

  9. Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets

    SciTech Connect (OSTI)

    Mahadevan, K.; Judd, K.; Stone, H.; Zewatsky, J.; Thomas, A.; Mahy, H.; Paul, D.

    2007-04-15

    This document provides information about near-term markets (such as for forklifts and telecommunications) for proton exchange membrane fuel cells.

  10. Synthesis and Characterization of CO- and H2S-Tolerant Electrocatalysts for PEM Fuel Cell

    SciTech Connect (OSTI)

    Shamsuddin Ilias

    2005-07-20

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period we synthesized several tri-metallic electrocatalysts catalysts (Pt/Ru/Mo, Pt/Ru/Ir, Pt/Ru/W, Ptr/Ru/Co, and Pt/Ru/Se on Vulcan XG72 Carbon) by ultrasonication method. These catalysts were tested in MEAs for CO tolerance at 20 and 100 ppm CO concentrations. From Galvonstatic study the catalytic activity was found in the order of: Pt/Ru/Mo/C > Pt/Ru/Ir/C > Pt/Ru/W/C > Ptr/Ru/Co/C > and Pt/Ru/Se. The catalysts performed very well at 20 ppm CO but at 100 ppm CO performance dropped significantly.

  11. Fuel Cells for Transportation- Research and Development: Program Abstracts

    Broader source: Energy.gov [DOE]

    Remarkable progress has been achieved in the development of proton-exchange-membrane(PEM) fuel cell technology since the U.S. Department of Energy (DOE) initiated a significant developmental program in the early 1990s. This progress has stimulated enormous interest worldwide in developing fuel cell products for transportation as well as for stationary and portable power applications. The potential markets are huge, but so are the R&D risks. Given the potential for PEM fuel cells to deliver large economic and environmental benefits to the Nation, DOE continues to take a leadership role in developing and validating this technology. DOE’s strategy to implement its Fuel Cells for Transportation program has three components: an R&D strategy, a fuels strategy, and a management strategy.

  12. National Template: Stationary & Portable Fuel Cell Systems (Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Standards (Fact Sheet), NREL (National Renewable Energy Laboratory) US DRIVE Hydrogen Codes and Standards Technical Team Roadmap CODES & STANDARDS FOR THE HYDROGEN ECONOMY...

  13. Advanced Redox Flow Batteries for Stationary Electrical Energy Storage

    SciTech Connect (OSTI)

    Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

    2012-03-19

    This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

  14. Grain-grain interaction in stationary dusty plasma (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; BINDING ENERGY; COMPUTERIZED SIMULATION; DUSTS; ELECTRIC FIELDS; EV RANGE; ...

  15. Mass dependency of turbulent parameters in stationary glow discharge plasmas

    SciTech Connect (OSTI)

    Titus, J. B.; Alexander, A. B.; Wiggins, D. L.; Johnson, J. A. III

    2013-05-15

    A direct current glow discharge tube is used to determine how mass changes the effects of certain turbulence characteristics in a weakly ionized gas. Helium, neon, argon, and krypton plasmas were created, and an axial magnetic field, varied from 0.0 to 550.0 Gauss, was used to enhance mass dependent properties of turbulence. From the power spectra of light emission variations associated with velocity fluctuations, determination of mass dependency on turbulent characteristic unstable modes, energy associated with turbulence, and the rate at which energy is transferred from scale to scale are measured. The magnetic field strength is found to be too weak to overcome particle diffusion to the walls to affect the turbulence in all four types of plasmas, though mass dependency is still detected. Though the total energy and the rate at which the energy moves between scales are mass invariant, the amplitude of the instability modes that characterize each plasma are dependent on mass.

  16. Energy Storage Technologies: State of Development for Stationary...

    Broader source: Energy.gov (indexed) [DOE]

    Testimony of Thomas S. Key, Technical Leader, Renewables and Distributed Generation, Electric Power Research Institute (EPRI) on Energy Storage Technologies: State of Development ...

  17. Stationary/Distributed Generation Projects - Non-DOE Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The system will provide heat and electricity to the high school as well as learning opportunities for students. The school has developed an extensive fuel cell curriculum for ...

  18. Stationary bubbles and their tunneling channels toward trivial...

    Office of Scientific and Technical Information (OSTI)

    We investigate the dynamics and tunneling channels of true vacuum bubbles for various tensions. In particular, in line with the idea of superposition of geometries, we build a ...

  19. Stationary Fuel Cell System Composite Data Products: Data through...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Equipment, Waste Heat Recovery Costs, ... Fuel Cell CHP Fuel Cell Electric Gas Turbine Internal Combustion ... Equipment, Waste Heat Recovery Costs, ...

  20. Pseudo-stationary separation materials for highly parallel separations.

    SciTech Connect (OSTI)

    Singh, Anup K.; Palmer, Christopher

    2005-05-01

    Goal of this study was to develop and characterize novel polymeric materials as pseudostationary phases in electrokinetic chromatography. Fundamental studies have characterized the chromatographic selectivity of the materials as a function of chemical structure and molecular conformation. The selectivities of the polymers has been studied extensively, resulting in a large body of fundamental knowledge regarding the performance and selectivity of polymeric pseudostationary phases. Two polymers have also been used for amino acid and peptide separations, and with laser induced fluorescence detection. The polymers performed well for the separation of derivatized amino acids, and provided some significant differences in selectivity relative to a commonly used micellar pseudostationary phase. The polymers did not perform well for peptide separations. The polymers were compatible with laser induced fluorescence detection, indicating that they should also be compatible with chip-based separations.

  1. Webinar: Procuring Fuel Cells for Stationary Power: A Guide for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The speaker today is Pete Devlin, the Fuel Cell Technologies Office's Market ... which means the ability to use waste biogas from wastewater treatment plants or landfills. ...

  2. Methods for gas detection using stationary hyperspectral imaging sensors

    DOE Patents [OSTI]

    Conger, James L. (San Ramon, CA); Henderson, John R. (Castro Valley, CA)

    2012-04-24

    According to one embodiment, a method comprises producing a first hyperspectral imaging (HSI) data cube of a location at a first time using data from a HSI sensor; producing a second HSI data cube of the same location at a second time using data from the HSI sensor; subtracting on a pixel-by-pixel basis the second HSI data cube from the first HSI data cube to produce a raw difference cube; calibrating the raw difference cube to produce a calibrated raw difference cube; selecting at least one desired spectral band based on a gas of interest; producing a detection image based on the at least one selected spectral band and the calibrated raw difference cube; examining the detection image to determine presence of the gas of interest; and outputting a result of the examination. Other methods, systems, and computer program products for detecting the presence of a gas are also described.

  3. Cooled silicon nitride stationary turbine vane risk reduction. Final report

    SciTech Connect (OSTI)

    Holowczak, John

    1999-12-31

    The purpose of this program was to reduce the technical risk factors for demonstration of air cooled silicon nitride turbine vanes. The effort involved vane prototype fabrication efforts at two U.S. based gas turbine grade silicon nitride component manufacturers. The efficacy of the cooling system was analyzed via a thermal time/temperature flow test technique previously at UTRC. By having multiple vendors work on parts fabrication, the chance of program success increased for producing these challenging components. The majority of the effort under this contract focused on developing methods for, and producing, the complex thin walled silicon nitride vanes. Components developed under this program will undergo engine environment testing within N00014-96-2-0014.

  4. Chapter 4: Advancing Clean Electric Power Technologies | Stationary...

    Energy Savers [EERE]

    Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid ... basins and, even with after-treatment, are unlikely to reach the low NO x and other emission levels of ...

  5. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Energy Savers [EERE]

    batteries offer high energy and power density, making them popular in a variety of mobile applications from cellular telephones to electric vehicles. Li-ion batteries ...

  6. "1. Carbon Dioxide Emission Factors for Stationary Combustion1...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... composition for 2006 reported in U.S. Environmental Protection Agency, 2006 MSW Characterization Data Tables, http:www.epa.govepaoswernon-hwmuncplpubs06data.pdf. " "8 ...

  7. Stationary semi-solid battery module and method of manufacture

    DOE Patents [OSTI]

    Slocum, Alexander; Doherty, Tristan; Bazzarella, Ricardo; Cross, III, James C.; Limthongkul, Pimpa; Duduta, Mihai; Disko, Jeffry; Yang, Allen; Wilder, Throop; Carter, William Craig; Chiang, Yet-Ming

    2015-12-01

    A method of manufacturing an electrochemical cell includes transferring an anode semi-solid suspension to an anode compartment defined at least in part by an anode current collector and an separator spaced apart from the anode collector. The method also includes transferring a cathode semi-solid suspension to a cathode compartment defined at least in part by a cathode current collector and the separator spaced apart from the cathode collector. The transferring of the anode semi-solid suspension to the anode compartment and the cathode semi-solid to the cathode compartment is such that a difference between a minimum distance and a maximum distance between the anode current collector and the separator is maintained within a predetermined tolerance. The method includes sealing the anode compartment and the cathode compartment.

  8. Low Cost, Durable Seal

    SciTech Connect (OSTI)

    Roberts, George; Parsons, Jason; Friedman, Jake

    2010-12-17

    Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

  9. Multi-Phenomenology Explosion Monitoring (Multi-PEM). Signal Detection. Research to target smaller sources for tomorrow’s missions

    SciTech Connect (OSTI)

    Carmichael, Joshua Daniel

    2015-12-12

    This a guide on how to detect and identify explosions from various sources. For example, nuclear explosions produce acoustic, optical, and EMP outputs. Each signal can be buried in noise, but fusing detection statistics from seismic, acoustic, and electromagnetic signals results in clear detection otherwise unobtainable.

  10. Research and Development of Proton-Exchange Membrane (PEM) Fuel Cell System for Transportation Applications: Initial Conceptual Design Report

    SciTech Connect (OSTI)

    Not Available

    1993-11-30

    This report addresses Task 1.1, model development and application, and Task 1.2, vehicle mission definition. Overall intent is to produce a methanol-fueled 10-kW power source, and to evaluate electrochemical engine (ECE) use in transportation. Major achievements include development of an ECE power source model and its integration into a comprehensive power source/electric vehicle propulsion model, establishment of candidate FCV (fuel cell powered electric vehicle) mission requirements, initial FCV studies, and a candidate FCV recommendation for further study.

  11. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application: 2009 Update

    Broader source: Energy.gov [DOE]

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis conducted by Directed Technologies (DTI), under contract to the US Department of Energy (DOE).

  12. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update

    Broader source: Energy.gov [DOE]

    Report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

  13. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications: 2010 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct‐hydrogen proton ex

  14. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

  15. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2009 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exch

  16. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report estimates fuel cell system cost for systems produced in the years 2007, 2010, and 2015, and is the first annual update of a comprehensive automotive fuel cell cost analysis.

  17. SYNTHESIS AND CHARACTERIZATION OF CO-AND H2S-TOLERANT ELECTROCATALYSTS FOR PEM FUEL CELL

    SciTech Connect (OSTI)

    Shamsuddin Ilias

    2004-03-31

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period several bi-metallic electrocatalysts were synthesized and tested in MEAs. From Galvonstatic study the catalytic activity was found in the order of: Pt/Ru/C > Pt/Mo/C > Pt/Ir/C > Pt/Ni/C > Pt/Cr/C. Work in progress to further study these catalysts for CO-tolerance in PEMFC and identify potential candidate metals for synthesis of trimetallic electrocatalysts.

  18. SYNTHESIS AND CHARACTERIZATION OF CO-AND H2S-TOLERANT ELECTROCATALYSTS FOR PEM FUEL CELL

    SciTech Connect (OSTI)

    Shamsuddin Ilias

    2005-03-29

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period several bi-metallic electrocatalysts were synthesized using ultra-sonication. These catalysts (Pt/Ru, Pt/Mo and Pt/Ir) were tested in MEAs. From Galvonstatic study the catalytic activity was found in the order of: Pt/Ru/C > Pt/Mo/C > Pt/Ir/C. It appears that electrocatalysts prepared by ultra-sonication process are more active compared to the conventional technique. Work is in progress to further study these catalysts for CO-tolerance in PEMFC and identify potential candidate metals for synthesis of tri-metallic electrocatalysts.

  19. SYNTHESIS AND CHARACTERIZATION OF CO- AND H{sub 2}S-TOLERANT ELECTROCATALYSTS FOR PEM FUEL CELL

    SciTech Connect (OSTI)

    Shamsuddin Ilias

    2005-04-05

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period several tri-metallic electrocatalysts were synthesized using both ultra-sonication and conventional method. These catalysts (Pt/Ru/Mo, Pt/Ru/Ir, Pt/Ru/W, Ptr/Ru/Co, and Pt/Ru/Se on carbon) were tested in MEAs. From Galvonstatic study the catalytic activity was found in the order of: Pt/Ru/Mo/C > Pt/Ru/Ir/C > Pt/Ru/W/C > Ptr/Ru/Co/C > and Pt/Ru/Se. It appears that electrocatalysts prepared by ultra-sonication process are more active compared to the conventional technique. Work is in progress to further study these catalysts for CO-tolerance in PEMFC.

  20. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2009 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.; Baum, Kevin N.

    2010-01-01

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exchange membrane fuel cell systems suitable for powering light duty automobiles.

  1. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2008 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.

    2009-03-26

    This report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

  2. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications. 2010 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.; Baum, Kevin N.

    2010-09-30

    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct-hydrogen proton exchange membrane fuel cell systems suitable for powering light-duty automobiles.

  3. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.

    2008-02-29

    This report estimates fuel cell system cost for systems produced in the years 2007, 2010, and 2015, and is the first annual update of a comprehensive automotive fuel cell cost analysis.

  4. Draft Funding Opportunity Announcement for Research and Development of Polymer Electrolyte Membrane (PEM) Fuel Cells for the Hydrogen Economy

    Office of Environmental Management (EM)

    2013, the Department of Energy (Department or DOE), has produced an Agency Financial Report, and will provide an Annual Performance Report and a Summary of Performance and Financial Information, pursuant to OMB Circular A-136. They will be available at the website below, as each report is completed. This reporting approach simplifies and streamlines the performance presentations. T Agency Financial Report (AFR) - The AFR is organized by three major sections.  Management's Discussion and

  5. Shanghai TL Chemical Company | Open Energy Information

    Open Energy Info (EERE)

    Shanghai TL Chemical Company Place: Shanghai, China Zip: 200240 Product: Focuses on novel chemical structure PEM and PE Resin, PEM FC materials and parts, Key chemical...

  6. Fuel Cell Tech Team Accelerated Stress Test and Polarization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tech Team Accelerated Stress Test and Polarization Curve Protocols for PEM Fuel Cells Fuel Cell Tech Team Accelerated Stress Test and Polarization Curve Protocols for PEM Fuel ...

  7. Analysis of the Durability of PEM FC Membrane Electrode Assemblies in Automotive Applications through the Fundamental Understanding of Membrane and MEA Degradation Pathways

    SciTech Connect (OSTI)

    Perry, Randal L.

    2013-10-31

    The Project focused on mitigation of degradation processes on membrane electrode assemblies. The approach was to develop a model to improve understanding of the mechanisms, and to use it to focus mitigation strategies. The detailed effects of various accelerated stress tests (ASTs) were evaluated to determine the best subset to use in model development. A combination of ASTs developed by the Fuel Cell Commercialization Conference of Japan and the Fuel Cell Tech Team were selected for use. The ASTs were compared by measuring effects on performance, running in-situ diagnostics, and performing microscopic analyses of the membrane electrode assemblies after the stress tests were complete. Nissan ran FCCJ AST protocols and performed in situ and ex-situ electrochemical testing. DuPont ran FCTT and USFCC AST protocols, performed scanning and transmission electron microscopy and ran in-situ electrochemical tests. Other ex-situ testing was performed by IIT, along with much of the data analysis and model development. These tests were then modified to generate time-dependent data of the degradation mechanisms. Three different catalyst types and four membrane variants were then used to generate data for a theoretically-based degradation model. An important part of the approach was to use commercially available materials in the electrodes and membranes made in scalable semiworks processes rather than lab-based materials. This constraint ensured all materials would be practicable for full-scale testing. The initial model for the electrode layer was tested for internal consistency and agreement with the data. A Java-based computer application was developed to analyze the time-dependent AST data using polarization curves with four different cathode gas feeds and generate model parameters. Data showed very good reproducibility and good consistency as cathode catalyst loadings were varied. At the point of termination of the project, a basic electrode model was in hand with several areas identified for improvement. Time dependence and the membrane portion of the model were not addressed due to cancellation of Phase 2 of the Project.

  8. Research and development of Proton-Exchange-Membrane (PEM) fuel cell system for transportation applications. Fuel cell infrastructure and commercialization study

    SciTech Connect (OSTI)

    1996-11-01

    This paper has been prepared in partial fulfillment of a subcontract from the Allison Division of General Motors under the terms of Allison`s contract with the U.S. Department of Energy (DE-AC02-90CH10435). The objective of this task (The Fuel Cell Infrastructure and Commercialization Study) is to describe and prepare preliminary evaluations of the processes which will be required to develop fuel cell engines for commercial and private vehicles. This report summarizes the work undertaken on this study. It addresses the availability of the infrastructure (services, energy supplies) and the benefits of creating public/private alliances to accelerate their commercialization. The Allison prime contract includes other tasks related to the research and development of advanced solid polymer fuel cell engines and preparation of a demonstration automotive vehicle. The commercialization process starts when there is sufficient understanding of a fuel cell engine`s technology and markets to initiate preparation of a business plan. The business plan will identify each major step in the design of fuel cell (or electrochemical) engines, evaluation of the markets, acquisition of manufacturing facilities, and the technical and financial resources which will be required. The process will end when one or more companies have successfully developed and produced fuel cell engines at a profit. This study addressed the status of the information which will be required to prepare business plans, develop the economic and market acceptance data, and to identify the mobility, energy and environment benefits of electrochemical or fuel cell engines. It provides the reader with information on the status of fuel cell or electrochemical engine development and their relative advantages over competitive propulsion systems. Recommendations and descriptions of additional technical and business evaluations that are to be developed in more detail in Phase II, are included.

  9. Sodium/sulfur battery engineering for stationary energy storage. Final report

    SciTech Connect (OSTI)

    Koenig, A.; Rasmussen, J.

    1996-04-01

    The use of modular systems to distribute power using batteries to store off-peak energy and a state of the art power inverter is envisioned to offer important national benefits. A 4-year, cost- shared contract was performed to design and develop a modular, 300kVA/300-kWh system for utility and customer applications. Called Nas-P{sub AC}, this system uses advanced sodium/sulfur batteries and requires only about 20% of the space of a lead-acid-based system with a smaller energy content. Ten, 300-VDC, 40-kWh sodium/sulfur battery packs are accommodated behind a power conversion system envelope with integrated digital control. The resulting design facilities transportation, site selection, and deployment because the system is quiet and non-polluting, and can be located in proximity to the load. This report contains a detailed description of the design and supporting hardware development performed under this contract.

  10. System and method for identifying, validating, weighing and characterizing moving or stationary vehicles and cargo

    DOE Patents [OSTI]

    Beshears, David L.; Batsell, Stephen G.; Abercrombie, Robert K.; Scudiere, Matthew B.; White, Clifford P.

    2007-12-04

    An asset identification and information infrastructure management (AI3M) device having an automated identification technology system (AIT), a Transportation Coordinators' Automated Information for Movements System II (TC-AIMS II), a weigh-in-motion system (WIM-II), and an Automated Air Load Planning system (AALPS) all in electronic communication for measuring and calculating actual asset characteristics, either statically or in-motion, and further calculating an actual load plan.

  11. System and method for weighing and characterizing moving or stationary vehicles and cargo

    DOE Patents [OSTI]

    Beshears, David L [Knoxville, TN; Scudiere, Matthew B [Oak Ridge, TN; White, Clifford P [Seymour, TN

    2008-05-20

    A weigh-in-motion device and method having at least one transducer pad, each transducer pad having at least one transducer group with transducers positioned essentially perpendicular to the direction of travel. At least one pad microcomputer is provided on each transducer pad having a means for calculating first output signal indicative of weight, second output signal indicative of time, and third output signal indicative of speed. At least one host microcomputer is in electronic communication with each pad microcomputer, and having a means for calculating at least one unknown selected from the group consisting of individual tire weight, individual axle weight, axle spacing, speed profile, longitudinal center of balance, and transverse center of balance.

  12. Fuel Cell Tri-Generation System Case Study using the H2A Stationary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Economics and Performance Analysis Tri-Generation Success Story: World's First Tri-Gen Energy Station-Fountain Valley Expanding the Use of Biogas with Fuel Cell Technologies

  13. R&D of Large Stationary Hydrogen/CNG/HCNG Storage Vessels

    Broader source: Energy.gov [DOE]

    These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 – 29, 2010, in Beijing, China.

  14. Evaluation of NH3-SCR Catalyst Technology on a 250-kW Stationary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

  15. Coal fueled diesel system for stationary power applications-technology development

    SciTech Connect (OSTI)

    1995-08-01

    The use of coal as a fuel for diesel engines dates back to the early days of the development of the engine. Dr. Diesel envisioned his concept as a multi-fuel engine, with coal a prime candidate due to the fact that it was Germany`s primary domestic energy resource. It is interesting that the focus on coal burning diesel engines appears to peak about every twenty years as shortages of other energy resources increase the economic attractiveness of using coal. This periodic interest in coal started in Germany with the work of Diesel in the timeframe 1898-1906. Pawlikowski carried on the work from 1916 to 1928. Two German companies commercialized the technology prior to and during World War II. The next flurry of activity occurred in the United States in the period from 1957-69, with work done at Southwest Research Institute, Virginia Polytechnical University, and Howard University. The current period of activity started in 1978 with work sponsored by the Conservation and Renewable Energy Branch of the US Department of Energy. This work was done at Southwest Research Institute and by ThermoElectron at Sulzer Engine in Switzerland. In 1982, the Fossil Energy Branch of the US Department of Energy, through the Morgantown Energy Technology Center (METC) initiated a concentrated effort to develop coal burning diesel and gas turbine engines. The diesel engine work in the METC sponsored program was performed at Arthur D. Little (Cooper-Bessemer as subcontractor), Bartlesville Energy Technology Center (now NIPER), Caterpillar, Detroit Diesel Corporation, General Motor Corporation (Electromotive Division), General Electric, Southwest Research Institute, and various universities and other research and development organizations. This DOE-METC coal engine RD & D initiative which spanned the 1982-1993 timeframe is the topic of this review document. The combustion of a coal-water fuel slurry in a diesel engine is described. The engine modifications necessary are discussed.

  16. SELECTIVE NOx RECIRCULATION FOR STATIONARY LEAN-BURN NATURAL GAS ENGINES

    SciTech Connect (OSTI)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Chamila Tissera; Matt Swartz; Emre Tatli; Ramprabhu Vellaisamy

    2005-01-01

    The research program conducted at the West Virginia University Engine and Emissions Research Laboratory (EERL) is working towards the verification and optimization of an approach to remove nitric oxides from the exhaust gas of lean burn natural gas engines. This project was sponsored by the US Department of Energy, National Energy Technology Laboratory (NETL) under contract number: DE-FC26-02NT41608. Selective NOx Recirculation (SNR) involves three main steps. First, NOx is adsorbed from the exhaust stream, followed by periodic desorption from the aftertreatment medium. Finally the desorbed NOx is passed back into the intake air stream and fed into the engine, where a percentage of the NOx is decomposed. This reporting period focuses on the NOx decomposition capability in the combustion process. Although researchers have demonstrated NOx reduction with SNR in other contexts, the proposed program is needed to further understand the process as it applies to lean burn natural gas engines. SNR is in support of the Department of Energy goal of enabling future use of environmentally acceptable reciprocating natural gas engines through NOx reduction under 0.1 g/bhp-hr. The study of decomposition of oxides of nitrogen (NOx) during combustion in the cylinder was conducted on a 1993 Cummins L10G 240 hp lean burn natural gas engine. The engine was operated at different air/fuel ratios, and at a speed of 800 rpm to mimic a larger bore engine. A full scale dilution tunnel and analyzers capable of measuring NOx, CO{sub 2}, CO, HC concentrations were used to characterize the exhaust gas. Commercially available nitric oxide (NO) was used to mimic the NOx stream from the desorption process through a mass flow controller and an injection nozzle. The same quantity of NOx was injected into the intake and exhaust line of the engine for 20 seconds at various steady state engine operating points. NOx decomposition rates were obtained by averaging the peak values at each set point minus the baseline and finding the ratio between the injected NO amounts. It was observed that the air/fuel ratio, injected NO quantity and engine operating points affected the NOx decomposition rates of the natural gas engine. A highest NOx decomposition rate of 27% was measured from this engine. A separate exploratory tests conducted with a gasoline engine with a low air/fuel ratio yielded results that suggested, that high NOx decomposition rates may be possible if a normally lean burn engine were operated at conditions closer to stoichiometric, with high exhaust gas recirculation (EGR) for a brief period of time during the NOx decomposition phase and with a wider range of air/fuel ratios. Chemical kinetic model predictions using CHEMKIN were performed to relate the experimental data with the established rate and equilibrium models. NOx decomposition rates from 35% to 42% were estimated using the CHEMKIN software. This provided insight on how to maximize NOx decomposition rates for a large bore engine. In the future, the modeling will be used to examine the effect of higher NO{sub 2}/NO ratios that are associated with lower speed and larger bore lean burn operation.

  17. Castable three-dimensional stationary phase for electric field-driven applications

    DOE Patents [OSTI]

    Shepodd, Timothy J.; Whinnery, Jr., Leroy; Even, Jr., William R.

    2009-02-10

    A polymer material useful as the porous dielectric medium for microfluidic devices generally and electrokinetic pumps in particular. The polymer material is produced from an inverse (water-in-oil) emulsion that creates a 3-dimensional network characterized by small pores and high internal volume, characteristics that are particularly desirable for the dielectric medium for electrokinetic pumps. Further, the material can be cast-to-shape inside a microchannel. The use of bifunctional monomers provides for charge density within the polymer structure sufficient to support electroosmotic flow. The 3-dimensional polymeric material can also be covalently bound to the channel walls thereby making it suitable for high-pressure applications.

  18. Castable three-dimensional stationary phase for electric field-driven applications

    DOE Patents [OSTI]

    Shepodd, Timothy J.; Whinnery, Jr., Leroy; Even, Jr., William R.

    2005-01-25

    A polymer material useful as the porous dielectric medium for microfluidic devices generally and electrokinetic pumps in particular. The polymer material is produced from an inverse (water-in-oil) emulsion that creates a 3-dimensional network characterized by small pores and high internal volume, characteristics that are particularly desirable for the dielectric medium for electrokinetic pumps. Further, the material can be cast-to-shape inside a microchannel. The use of bifunctional monomers provides for charge density within the polymer structure sufficient to support electroosmotic flow. The 3-dimensional polymeric material can also be covalently bound to the channel walls thereby making it suitable for high-pressure applications.

  19. Simulation of Alpha Particles in Rotating Plasma Interacting with a Stationary Ripple

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-01-11

    Superthermal ExB rotation can provide magnetohydrodynamic (MHD) stability and enhanced confinement to axisymmetric mirrors. However, the rotation speed has been limited by phenomena at end electrodes. A new prediction is that rotation might instead be produced using a magnetic ripple and alpha particle kinetic energy, in an extension of the alpha channeling concept. The interaction of alpha particles with the ripple results in visually interesting and practically useful orbits.

  20. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    SciTech Connect (OSTI)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Richard Turton; Chamila Tissera; Emre Tatli; Andy Zimmerman

    2005-12-28

    Selective NOx Recirculation (SNR) involves cooling the engine exhaust gas and then adsorbing the oxides of nitrogen (NOx) from the exhaust stream, followed by the periodic desorption of NOx. By returning the desorbed, concentrated NOx into the engine intake and through the combustion chamber, a percentage of the NOx is decomposed during the combustion process. An initial study of NOx decomposition during lean-burn combustion was concluded in 2004 using a 1993 Cummins L10G 240hp natural gas engine. It was observed that the air/fuel ratio, injected NO (nitric oxide) quantity and engine operating points affected NOx decomposition rates of the engine. Chemical kinetic modeling results were also used to determine optimum NOx decomposition operating points and were published in the 2004 annual report. A NOx decomposition rate of 27% was measured from this engine under lean-burn conditions while the software model predicted between 35-42% NOx decomposition for similar conditions. A later technology 1998 Cummins L10G 280hp natural gas engine was procured with the assistance of Cummins Inc. to replace the previous engine used for 2005 experimental research. The new engine was equipped with an electronic fuel management system with closed-loop control that provided a more stable air/fuel ratio control and improved the repeatability of the tests. The engine was instrumented with an in-cylinder pressure measurement system and electronic controls, and was adapted to operate over a range of air/fuel ratios. The engine was connected to a newly commissioned 300hp alternating current (AC) motoring dynamometer. The second experimental campaign was performed to acquire both stoichiometric and slightly rich (0.97 lambda ratio) burn NOx decomposition rates. Effects of engine load and speed on decomposition were quantified, but Exhaust Gas Recirculation (EGR) was not varied independently. Decomposition rates of up to 92% were demonstrated. Following recommendations at the 2004 ARES peer review meeting at Argonne National Laboratories, in-cylinder pressure was measured to calculate engine indicated mean effective pressure (IMEP) changes due to NOx injections and EGR variations, and to observe conditions in the cylinder. The third experimental campaign gathered NOx decomposition data at 800, 1200 and 1800 rpm. EGR was added via an external loop, with EGR ranging from zero to the point of misfire. The air/fuel ratio was set at both stoichiometric and slightly rich conditions, and NOx decomposition rates were calculated for each set of runs. Modifications were made to the engine exhaust manifold to record individual exhaust temperatures. The three experimental campaigns have provided the data needed for a comprehensive model of NOx decomposition during the combustion process, and data have confirmed that there was no significant impact of injected NO on in-cylinder pressure. The NOx adsorption system provided by Sorbent Technologies Corp. (Twinsburg, OH), comprised a NOx adsorber, heat exchanger and a demister. These components were connected to the engine, and data were gathered to show both the adsorption of NOx from the engine, and desorption of NOx from the carbon-based sorbent material back into the engine intake, using a heated air stream. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a bench top adsorption system was constructed and instrumented with thermocouples and the system output was fed into a NOx analyzer. The temperature of this apparatus was controlled while gathering data on the characteristics of the sorbent material. These data were required for development of a system model. Preliminary data were gathered in 2005, and will continue in early 2006. To assess the economic benefits of the proposed SNR technology the WVU research team has been joined in the last quarter by Dr Richard Turton (WVU-Chemical Engineering), who is modeling, sizing and costing the major components. The tasks will address modeling and preliminary design of the heat exchanger, demister and NOx sorbent chamber s

  1. Opacity meter for monitoring exhaust emissions from non-stationary sources

    DOE Patents [OSTI]

    Dec, John Edward

    2000-01-01

    Method and apparatus for determining the opacity of exhaust plumes from moving emissions sources. In operation, a light source is activated at a time prior to the arrival of a diesel locomotive at a measurement point, by means of a track trigger switch or the Automatic Equipment Identification system, such that the opacity measurement is synchronized with the passage of an exhaust plume past the measurement point. A beam of light from the light source passes through the exhaust plume of the locomotive and is detected by a suitable detector, preferably a high-rate photodiode. The light beam is well-collimated and is preferably monochromatic, permitting the use of a narrowband pass filter to discriminate against background light. In order to span a double railroad track and provide a beam which is substantially stronger than background, the light source, preferably a diode laser, must provide a locally intense beam. A high intensity light source is also desirable in order to increase accuracy at the high sampling rates required. Also included is a computer control system useful for data acquisition, manipulation, storage and transmission of opacity data and the identification of the associated diesel engine to a central data collection center.

  2. Transportation and Stationary Power Integration with Hydrogen and Fuel Cell Technology in Connecticut

    Broader source: Energy.gov [DOE]

    Overview of strengths, weaknesses, and barriers, deployment phases, military sites, environmental value, and potential partnerships

  3. Grid artifact reduction for direct digital radiography detectors based on rotated stationary grids with homomorphic filtering

    SciTech Connect (OSTI)

    Kim, Dong Sik; Lee, Sanggyun

    2013-06-15

    Purpose: Grid artifacts are caused when using the antiscatter grid in obtaining digital x-ray images. In this paper, research on grid artifact reduction techniques is conducted especially for the direct detectors, which are based on amorphous selenium. Methods: In order to analyze and reduce the grid artifacts, the authors consider a multiplicative grid image model and propose a homomorphic filtering technique. For minimal damage due to filters, which are used to suppress the grid artifacts, rotated grids with respect to the sampling direction are employed, and min-max optimization problems for searching optimal grid frequencies and angles for given sampling frequencies are established. The authors then propose algorithms for the grid artifact reduction based on the band-stop filters as well as low-pass filters. Results: The proposed algorithms are experimentally tested for digital x-ray images, which are obtained from direct detectors with the rotated grids, and are compared with other algorithms. It is shown that the proposed algorithms can successfully reduce the grid artifacts for direct detectors. Conclusions: By employing the homomorphic filtering technique, the authors can considerably suppress the strong grid artifacts with relatively narrow-bandwidth filters compared to the normal filtering case. Using rotated grids also significantly reduces the ringing artifact. Furthermore, for specific grid frequencies and angles, the authors can use simple homomorphic low-pass filters in the spatial domain, and thus alleviate the grid artifacts with very low implementation complexity.

  4. Development of 50 kW Fuel Processor for Stationary Fuel Cell Applications

    SciTech Connect (OSTI)

    James F. Stevens; Balaji Krishnamurthy; Paolina Atanassova; Kerry Spilker

    2007-08-29

    The objective of the project was to develop and test a fuel processor capable of producing high hydrogen concentration (>98%) with less than ppm quantities of carbon dioxide and carbon monoxide at lower capital cost and higher efficiency, compared to conventional natural gas reformers. It was intended that we achieve our objective by developing simple reactor/process design, and high durability CO2 absorbents, to replace pressure swing adsorption (PSA) or membrane separators. Cost analysis indicated that we would not meet DOE cost goals so the project was terminated before construction of the full scale fuel processor. The work on adsorbent development was focused on the development of calcium oxide-based reversible CO2 absorbents with various microstructures and morphologies to determine the optimum microstructure for long-term reversible CO2 absorption. The effect of powder production process variables was systematically studied including: the final target compositions, the reagents from which the final products were derived, the pore forming additives, the processing time and temperature. The sorbent materials were characterized in terms of their performance in the reversible reaction with CO2 and correlation made to their microstructure.

  5. Power Generating Stationary Engines Nox Control: A Closed Loop Control Technology

    Broader source: Energy.gov [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  6. Job and Output Benefits of Stationary Fuel Cells (JOBS FC): An...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USDOE Marianne Mintz Argonne National Lab 2 2 What is JOBS FC? JOBS FC is a user friendly model that can be used to show the economic benefits of near- to mid-term fuel cell ...

  7. An Overview of Stationary Fuel Cell Technology (Technical Report) | SciTech

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study of LNG Release Prevention and Control Systems P. J. Pelto E. C. Baker C. M. Holter T. B. Powers March 1982 Prepared for the U.S. Department of Energy under Contract DE-AC06-76RLP 1830 Pacific Northwest Laboratory Operated for the U.S. Department of Energy by Battelle Memorial Institute DISCLAIMER This report was prepared a s an account of work sponsored by an agency of the Unked States Government. Neither the United States Government nor any agency thereof, nor m y d their employees, makes

  8. California ARB Verification Testing of the CBSTM Soot Filter for Stationary

    Broader source: Energy.gov (indexed) [DOE]

    Diesel Applications | Department of Energy 5 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_newburry1.pdf More Documents & Publications MobiCleanTM Soot Filter for Diesel Locomotiive Applications Retrofit and Testing of a Pre-Turbo, Diesel Oxidation Catalyst on a Tier 0, SD60M Freight Locomotive Achieving Over 50% PM Reduction CARB Verification of Catalyzed Diesel Particulate Filters for Emergency Generator Sets

  9. Evaluation of NH3-SCR Catalyst Technology on a 250-kW Stationary Diesel

    Broader source: Energy.gov (indexed) [DOE]

    Genset | Department of Energy 5 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_malyala.pdf More Documents & Publications Two Catalyst Formulations - One Solution for NOx After-treatment Systems Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

  10. Development of Ultra-low Platinum Alloy Cathode Catalyst for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra-low Platinum Alloy Cathode Catalyst for PEM Fuel Cells Development of Ultra-low Platinum Alloy Cathode Catalyst for PEM Fuel Cells These slides were presented at the 2010 New ...

  11. Development of Alternative and Durable High Performance Cathode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supporst for PEM Fuel Cells Development of Alternative and Durable High Performance Cathode Supporst for PEM Fuel Cells Part of a 100 million fuel cell award announced by DOE ...

  12. Parts of a Fuel Cell | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells Parts of a Fuel Cell Parts of a Fuel Cell Polymer electrolyte membrane (PEM) fuel cells are the current focus of research for fuel cell vehicle applications. PEM fuel ...

  13. Fuel Cell Tech Team Accelerated Stress Test and Polarization Curve

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protocols for PEM Fuel Cells | Department of Energy Tech Team Accelerated Stress Test and Polarization Curve Protocols for PEM Fuel Cells Fuel Cell Tech Team Accelerated Stress Test and Polarization Curve Protocols for PEM Fuel Cells Accelerated stress test and polarization curve protocols developed by the U.S. DRIVE Fuel Cell Technical Team for polymer electrolyte membrane (PEM) fuel cells, revised January 14, 2013. PDF icon Fuel Cell Tech Team Accelerated Stress Test and Polarization Curve

  14. Jefferson Lab Medical Imager Spots Breast Cancer | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Medical Imager Spots Breast Cancer PEM This PEM image shows two cancerous lesions. The one on the right was depicted by conventional mammography, but the one on the left was only identified by the PEM unit. Image courtesy: Eric Rosen, Duke University Medical Center Jefferson Lab Medical Imager Spots Breast Cancer March 3, 2005 Newport News, VA - A study published in the February issue of the journal Radiology shows that a positron emission mammography (PEM) device designed and built by Jefferson

  15. Comparison of Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (LHV) Applications Advantages Challenges Polymer Electrolyte Membrane (PEM) ... Aqueous potassium hydroxide soaked in a porous matrix, or alkaline polymer membrane ...

  16. Electrolytic Hydrogen Production Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Experts from industry and national laboratories representing polymer electrolyte membrane, ...SOEC Development Hydrogen Production by Polymer Electrolyte Membrane (PEM) ...

  17. Development of Alternative and Durable High Performance Cathode Supporst

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for PEM Fuel Cells | Department of Energy Supporst for PEM Fuel Cells Development of Alternative and Durable High Performance Cathode Supporst for PEM Fuel Cells Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 3_pnnl.pdf More Documents & Publications Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells Fuel Cell Kickoff Meeting Agenda 2015 Pathways to Commercial Success: Technologies and Products

  18. Is predictive emission monitoring an acceptable low cost alternative to continuous emission monitoring for complying with enhanced monitoring requirements?

    SciTech Connect (OSTI)

    Jernigan, J.R.

    1995-12-01

    Title VII of the 1990 Clean Air Act Amendments (the {open_quotes}Act{close_quotes}) expanded and clarified the Environmental Protection Agency`s (EPA) enforcement capabilities under the Act. Section 702 of the 1990 Amendments clarified EPA`s ability to require sources to provide information. Additionally, Section 702(b) required EPA to promulgate rules on enhanced monitoring and compliance certifications by adding a new section 114(a)(3) of the Act which states in part: {open_quotes}The Administrator shall in the case of any person which is the owner or operator of a major stationary source, and any in the case of any other person, require enhanced monitoring and submission of compliance certifications. Compliance certifications shall include (A) identification of the applicable requirement that is the basis of the certification, (B) the method used for determining the compliance status of the source, (C) the compliance status, (D) whether compliance is continuous or intermittent, (E) such other facts as the Administrator may require...{close_quotes} The 1990 Amendments contained several other changes that either relate directly to section 114(a)(3) or provide additional indications of the intent behind the new section. First, section 504(b) of the Amendments permits the Administrator to promulgate appropriate tests methods and monitoring requirements for determining compliance. That section states that {open_quotes}continuous emissions monitoring need not be required if alternative methods are available that provide sufficiently reliable and timely information for determining compliance.{close_quotes} This paper will describe Predictive Emission Systems (PEMS) and how the applications of PEMS may be a low cost, accurate, and acceptable alternative to Continuous Emission Monitoring Systems (CEMS) for complying with Enhanced Monitoring requirements.

  19. Fuel cell CO sensor

    DOE Patents [OSTI]

    Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk

    1999-12-14

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. A CO sensor includes the PEM-probe, an electrical discharge circuit for discharging the PEM-probe to monitor the CO concentration, and an electrical purging circuit to intermittently raise the anode potential of the PEM-probe's anode to at least about 0.8 V (RHE) to electrochemically oxidize any CO adsorbed on the probe's anode catalyst.

  20. Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector

    Broader source: Energy.gov [DOE]

    Overview of lessons learned, integration, barriers, enablers, federal incentives, state programs, and benefits

  1. Comment on Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma [Phys. Plasmas 20, 072703 (2013)

    SciTech Connect (OSTI)

    Habibi, M.; Ghamari, F.

    2014-06-15

    Patil and Takale in their recent article [Phys. Plasmas 20, 072703 (2013)], by evaluating the quantum dielectric response in thermal quantum plasma, have modeled the relativistic self-focusing of Gaussian laser beam in a plasma. We have found that there are some important shortcomings and fundamental mistakes in Patil and Takale [Phys. Plasmas 20, 072703 (2013)] that we give a brief description about them and refer readers to important misconception about the use of the Fermi temperature in quantum plasmas, appearing in Patil and Takale [Phys. Plasmas 20, 072703 (2013)].

  2. Transportation and Stationary Power Integration Workshop: ""An Automaker's Views on the Transition to Hydrogen and Fuel Cell Vehicles

    Broader source: Energy.gov [DOE]

    Overview of electricity and fuel cell vehicles, commercialization, where we are, observations, next steps

  3. Dependance of TWRS FSAR X/Qs on distance and example doses at Highway 240 with stationary and moving receptors

    SciTech Connect (OSTI)

    Himes, D.A.

    1996-09-23

    A discussion of the reasons for the dependance of X/Q on receptor distance and compass sector is presented. In addition, X/Qs are calculated for three receptor scenarios on Highway 240 including a moving receptor. Example radiological doses and toxicological exposures at Highway 240 are calculated for two accidents already analyzed in the TWRS FSAR.

  4. The manufacture of replacement low pressure carrier casings and associated stationary guide vane blading through on site component sample measurement

    SciTech Connect (OSTI)

    Fraser, M.J.

    1996-12-31

    In today`s competitive utility market place, the manufacture of replacement components by alternate manufacturing has become an increasingly important available option for turbine operators seeking to achieve substantive cost and lead time reductions in spare part purchasing. Essential to this strategy--in the absence of a total redesign of the component(s) or their assemblies--is the provision or access to the selected alternate manufacture of the necessary sample parts. This paper details the manufacture by reverse engineering of 3 replacement low pressure carrier guide vane blade casings for a 60 MW steam turbine complete with their associated blading and ancillary parts where the necessary sample parts and assemblies could not be released from site due to outage constraints.

  5. Development and Demonstration of a New Generation High Efficiency 10kW Stationary Fuel Cell System

    SciTech Connect (OSTI)

    Howell, Thomas Russell

    2013-04-30

    The overall project objective is to develop and demonstrate a polymer electrolyte membrane fuel cell combined heat and power (PEMFC CHP) system that provides the foundation for commercial, mass produced units which achieve over 40% electrical efficiency (fuel to electric conversion) from 50-100% load, greater than 70% overall efficiency (fuel to electric energy + usable waste heat energy conversion), have the potential to achieve 40,000 hours durability on all major process components, and can be produced in high volumes at under $400/kW (revised to $750/kW per 2011 DOE estimates) capital cost.

  6. Manufacturing Process Modeling of 100-400 kWe Combined Heat and Power Stationary Fuel Cells

    SciTech Connect (OSTI)

    Warren, Joshua A; Das, Sujit; Zhang, Wei

    2012-07-01

    Both technical reviewers are external and Phyllis Daley is serving as proxy. A non-disclosure form is not needed for this report.

  7. Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions

    SciTech Connect (OSTI)

    Zambolin, E.; Del Col, D.

    2010-08-15

    New comparative tests on two different types of solar collectors are presented in this paper. A standard glazed flat plate collector and an evacuated tube collector are installed in parallel and tested at the same working conditions; the evacuated collector is a direct flow through type with external compound parabolic concentrator (CPC) reflectors. Efficiency in steady-state and quasi-dynamic conditions is measured following the standard and it is compared with the input/output curves measured for the whole day. The first purpose of the present work is the comparison of results in steady-state and quasi-dynamic test methods both for flat plate and evacuated tube collectors. Besides this, the objective is to characterize and to compare the daily energy performance of these two types of collectors. An effective mean for describing and analyzing the daily performance is the so called input/output diagram, in which the collected solar energy is plotted against the daily incident solar radiation. Test runs have been performed in several conditions to reproduce different conventional uses (hot water, space heating, solar cooling). Results are also presented in terms of daily efficiency versus daily average reduced temperature difference: this allows to represent the comparative characteristics of the two collectors when operating under variable conditions, especially with wide range of incidence angles. (author)

  8. Job and Output Benefits of Stationary Fuel Cells (JOBS FC): An Economic Impact Tool Developed for USDOE

    Broader source: Energy.gov [DOE]

    Presented at the Technology Transition Corporation and U.S. Department of Energy Webinar: Where the Jobs Are: Hydrogen and Fuel Cells in Your Area, July 19, 2011.

  9. Coal-fueled diesel system for stationary power applications -- Technology development. Final report, March 1988--June 1994

    SciTech Connect (OSTI)

    1995-10-01

    Morgantown Energy Technology Center, Cooper-Bessemer and Arthur D. Little have developed the technology to enable coal-water slurry to be utilized in large-bore, medium-speed diesel engines. The target application is modular power generation in the 10 to 100 MW size, with each plant using between two and eight engines. Such systems are expected to be economically attractive in the non-utility generation market after 2000, when oil and natural gas prices are expected to escalate rapidly compared to the price of coal. During this development program, over 1,000 hours of prototype engine operation have been achieved on coal-water slurry (CWS), including over 100 hours operation of a six-cylinder, 1.8 MW engine with an integrated emissions control system. Arthur D. Little, Inc., managed the coal-fueled diesel development, with Cooper-Bessemer as the principal subcontractor responsible for the engine design and testing. Several key technical advances which enable the viability of the coal-fueled diesel engine were made under this program. Principal among them are the development and demonstration of (1) durable injection nozzles; (2) an integrated emissions control system; ad (3) low-cost clean coal slurry formulations optimized for the engine. Significant advances in all subsystem designs were made to develop the full-scale Cooper-Bessemer coal engine components in preparation for a 100-hour proof-of-concept test of an integrated system, including emissions controls. The Clean Coal Diesel power plant of the future will provide a cost-competitive, low-emissions, modular, coal-based power generation option to the non-utility generation, small utility, independent power producer, and cogeneration markets. Combined cycle efficiencies will be approximately 48% (lower heating value basis) and installed cost will be approximately $1,300/kW (1992 dollars).

  10. Metastable Metal Hydrides for Hydrogen Storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Graetz, Jason

    2012-01-01

    The possibility of using hydrogen as a reliable energy carrier for both stationary and mobile applications has gained renewed interest in recent years due to improvements in high temperature fuel cells and a reduction in hydrogen production costs. However, a number of challenges remain and new media are needed that are capable of safely storing hydrogen with high gravimetric and volumetric densities. Metal hydrides and complex metal hydrides offer some hope of overcoming these challenges; however, many of the high capacity “reversible” hydrides exhibit a large endothermic decomposition enthalpy making it difficult to release the hydrogen at low temperatures. Onmore » the other hand, the metastable hydrides are characterized by a low reaction enthalpy and a decomposition reaction that is thermodynamically favorable under ambient conditions. The rapid, low temperature hydrogen evolution rates that can be achieved with these materials offer much promise for mobile PEM fuel cell applications. However, a critical challenge exists to develop new methods to regenerate these hydrides directly from the reactants and hydrogen gas. This spotlight paper presents an overview of some of the metastable metal hydrides for hydrogen storage and a few new approaches being investigated to address the key challenges associated with these materials.« less

  11. FUNDAMENTAL ENVIRONMENTAL REACTIVITY TESTING AND ANALYSIS OF THE HYDROGEN STORAGE MATERIAL 2LIBH4 MGH2

    SciTech Connect (OSTI)

    James, C.; Anton, D.; Cortes-Concepcion, J.; Brinkman, K.; Gray, J.

    2012-01-10

    While the storage of hydrogen for portable and stationary applications is regarded as critical in bringing PEM fuel cells to commercial acceptance, little is known of the environmental exposure risks posed in utilizing condensed phase chemical storage options as in complex hydrides. It is thus important to understand the effect of environmental exposure of metal hydrides in the case of accident scenarios. Simulated tests were performed following the United Nations standards to test for flammability and water reactivity in air for a destabilized lithium borohydride and magnesium hydride system in a 2 to 1 molar ratio respectively. It was determined that the mixture acted similarly to the parent, lithium borohydride, but at slower rate of reaction seen in magnesium hydride. To quantify environmental exposure kinetics, isothermal calorimetry was utilized to measure the enthalpy of reaction as a function of exposure time to dry and humid air, and liquid water. The reaction with liquid water was found to increase the heat flow significantly during exposure compared to exposure in dry or humid air environments. Calorimetric results showed the maximum normalized heat flow the fully charged material was 6 mW/mg under liquid phase hydrolysis; and 14 mW/mg for the fully discharged material also occurring under liquid phase hydrolysis conditions.

  12. Fuel Cell R&D Pre-Solicitiation Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D Pre-Solicitiation Workshop Fuel Cell R&D Pre-Solicitiation Workshop Presentation on upcoming fuel cell solicitation presented at the PEM fuel cell pre-solicitation meeting held May 26, 2005 in Arlington, VA. PDF icon pre_sol_wrkshp_valri.pdf More Documents & Publications Draft Funding Opportunity Announcement for Research and Development of Polymer Electrolyte Membrane (PEM) Fuel Cells for the Hydrogen Economy US DRIVE Fuel Cell Technical Team Roadmap PEM Fuel Cell

  13. ACAL Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    United Kingdom Zip: L69 7ZB Product: Specialises in improving catalytic conversion in PEM fuel cells. Coordinates: 53.409773, -2.978481 Show Map Loading map......

  14. Beijing Feichi Green Power Corporation | Open Energy Information

    Open Energy Info (EERE)

    Beijing Municipality, China Zip: 100094 Product: A company engages in producing PEM fuel cells, especially for buses. References: Beijing Feichi Green Power Corporation1...

  15. Nu Element Inc | Open Energy Information

    Open Energy Info (EERE)

    Place: Tacoma, Washington State Zip: 98403 Product: Development and manufacture of PEM fuel cells for residential and small business auxiliary power markets. Coordinates:...

  16. Fuel Cells for Transportation - FY 2001 Progress Report | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2001 Progress Report Fuel Cells for Transportation - FY 2001 Progress Report V. PEM STACK COMPONENT COST REDUCTION PDF icon 159.pdf More Documents & Publications 2013 Pathways ...

  17. Fuel Cells For Transportation - 1999 Annual Progress Report Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1999 Annual Progress Report Energy Conversion Team Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Developing Advanced PEM Fuel Cell Technologies ...

  18. Fuel Cells For Transportation - 2001 Annual Progress Report ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2001 Annual Progress Report Fuel Cells For Transportation - 2001 Annual Progress Report Developing Advanced PEM Fuel Cell Technologies for Transportation Power Systems PDF icon ...

  19. Manufacturing and Scale Up Challenges: Cell Components, Membranes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    M Confidential. 1 28 April 2014 . All Rights Reserved. 3M Electrolytic Hydrogen ... All Rights Reserved. 3M Greatest Challenges and Opportunities: PEM electrolyzer ...

  20. EERE Success Story-Dynalene Fuel Cell Coolants Achieve Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Office of Energy Efficiency and Renewable Energy (EERE) success stories highlight the ... in their PEM fuel cells, hybrid electric, electric vehicles and back-up power systems. ...

  1. Nuvera Fuel Cells Inc | Open Energy Information

    Open Energy Info (EERE)

    Place: Billerica, Massachusetts Zip: 1821 Product: US-based developer of bipolar fuel cell stack plates to develop Proton Exchange Membrane (PEM) fuel cells. Coordinates:...

  2. Riesaer Brennstoffzellentechnik GmbH | Open Energy Information

    Open Energy Info (EERE)

    Riesaer Brennstoffzellentechnik GmbH Place: Germany Product: Developer of PEM fuel cell systems for the home. References: Riesaer Brennstoffzellentechnik GmbH1 This article...

  3. Manufacturing Readiness Assessment for Fuel Cell Stacks and Systems for the Back-up Power and Material Handling Equipment Emerging Markets (Revised)

    SciTech Connect (OSTI)

    Wheeler, D.; Ulsh, M.

    2010-02-01

    This report details NREL's activity to address the need to understand the current status and associated risk levels of the polymer electrolyte membrane (PEM) fuel cell industry.

  4. Durability of Low Pt Fuel Cells Operating at High Power Density...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks Advanced Cathode Catalysts and Supports for PEM Fuel Cells ...

  5. Dalian Sunrise Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Power Co Ltd Place: Dalian, Liaoning Province, China Zip: 116025 Product: Focuses on the research, development and the application of PEM fuel cells. References: Dalian Sunrise...

  6. PBI-Phosphoric Acid Based Membrane Electrode Assemblies: Status...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MCFC and PAFC R&D Workshop Summary Report Manufacturing Barriers to High Temperature PEM Commercialization Membrane Development for Medium and High Temperature PEMFC in Europe ...

  7. Requirements for status for volume fuel cell manufacturing |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications Direct Hydrogen PEMFC Manufacturing Cost Estimation for ...

  8. Webinar January 7: FCTO Consortia Overview Webinar (FC-PAD and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To accelerate the rate of progress in developing technologies to improve the performance and durability of proton exchange membrane (PEM) fuel cell systems and to develop advanced ...

  9. Non carbon mixed conducting materials for PEFC electrocatalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of PEM FC Membrane Electrode Assemblies in Automotive Applications Development of Novel Non Pt Group Metal Electrocatalysts for Proton Exchange Membrane Fuel Cell Applications

  10. Spanish Research Centre for Energy Environment and Technology...

    Open Energy Info (EERE)

    CIEMAT, a Research Public Institution attached to the Ministry of Education and Science, is actively working on the research projects for PEM fuel cell, biofuel, solar and...

  11. SAE TIR J2719/1 Application Guideline for Use of Hydrogen Specificatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Gas (CG) Liquid CG Liquid ProcessPurification ElectrolysisDehydration ReformationPSA Liquified Hydrogen Feedstock Alkaline PEM Chloralkali Natural Gas Methanol Ethanol ...

  12. Draft Funding Opportunity Announcement for Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Polymer Electrolyte Membrane (PEM) Fuel Cells for the Hydrogen Economy Draft Funding Opportunity Announcement for Research and Development of Polymer Electrolyte ...

  13. Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Polymer Electrolyte Membrane (PEM) Fuel Cell for Material Handling Applications Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen Polymer Electrolyte ...

  14. Basic Research for the Hydrogen Fuel Initiative

    Broader source: Energy.gov (indexed) [DOE]

    PEM Fuel Cells Carnegie Mellon University Rapid Ab Initio Screening of Ternary Alloys for Hydrogen Production Rensselaer Polytechnic Institute Sol-Gel Based Polybenzimidazole...

  15. CALIBRATION OF PHOTOELASTIC MODULATORS IN THE VACUUM UV.

    SciTech Connect (OSTI)

    OAKBERG, T.C.; TRUNK, J.; SUTHERLAND, J.C.

    2000-02-15

    Measurements of circular dichroism (CD) in the UV and vacuum UV have used photoelastic modulators (PEMs) for high sensitivity (to about 10{sup -6}). While a simple technique for wavelength calibration of the PEMs has been used with good results, several features of these calibration curves have not been understood. The authors have calibrated a calcium fluoride PEM and a lithium fluoride PEM using the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory as a light source. These experiments showed calibration graphs that are linear bit do not pass through the graph origin. A second ''multiple pass'' experiment with laser light of a single wavelength, performed on the calcium fluoride PEM, demonstrates the linearity of the PEM electronics. This implies that the calibration behavior results from intrinsic physical properties of the PEM optical element material. An algorithm for generating calibration curves for calcium fluoride and lithium fluoride PEMs has been developed. The calibration curves for circular dichroism measurement for the two PEMs investigated in this study are given as examples.

  16. Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    markovicanlkickoff.pdf More Documents & Publications Advanced Electrocatalysts for PEM Fuel Cells Fuel Cells: Just a Dream - or Future Reality Catalysis Working Group Meeting: ...

  17. NREL Wind to Hydrogen Project: Renewable Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner ...

  18. Summary of Electrolytic Hydrogen Production: Milestone Completion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner ...

  19. Preliminary Fuel Cell Manufacturing R&D Topics | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications DOE Hydrogen Program Manufacturing R&D Pre-Solicitation Meeting PEM Stack Manufacturing: Industry Status 2011 NRELDOE Hydrogen and Fuel Cell ...

  20. Pascua Yaqui Tribe - Renewable Energy Development and Deployment Feasibility Study

    Energy Savers [EERE]

    Fuel Cells » Parts of a Fuel Cell Parts of a Fuel Cell Polymer electrolyte membrane (PEM) fuel cells are the current focus of research for fuel cell vehicle applications. PEM fuel cells are made from several layers of different materials. The main parts of a PEM fuel cell are described below. The heart of a PEM fuel cell is the membrane electrode assembly (MEA), which includes the membrane, the catalyst layers, and gas diffusion layers (GDLs). Hardware components used to incorporate an MEA into

  1. Webinar: Hydrogen Production by Polymer Electrolyte Membrane...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar: Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton Above is the video recording for the webinar, "Hydrogen Production by ...

  2. Identification and Characterization of Near-Term Direct Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets ... More Documents & Publications Full Fuel-Cycle Comparison of Forklift Propulsion Systems ...

  3. Nanostellar Inc | Open Energy Information

    Open Energy Info (EERE)

    designs and develops new types of precious metal alloy composite nanoparticles for PEM fuel cell catalysts. References: Nanostellar Inc1 This article is a stub. You can help...

  4. DOE Announces Webinars on Engaging Students in Energy, Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The Energy Department presented a live webinar titled "Micro-Structural Mitigation Strategies for PEM Fuel Cells" on Tuesday, November 19. During the webinar, Ballard Power Systems ...

  5. Application Content and Evaluation Criteria/Process

    Broader source: Energy.gov [DOE]

    Presentation on Application Content and Evaluation Criteria/Process presented at the PEM fuel cell pre-solicitation meeting held May 26, 2005 in Arlington, VA.

  6. Visualization of Fuel Cell Water Transport and Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies Fundamental Issues in Subzero PEMFC Startup and Operation Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization

  7. EcoComposite LLC | Open Energy Information

    Open Energy Info (EERE)

    California Zip: 95814 Product: Focused on development of products based on alternative energy sources such as PEM fuel cells. Coordinates: 38.579065, -121.491014 Show Map...

  8. Nitrided Metallic Bipolar Plates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Nitrided Metallic Bipolar Plates Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update Mass ...

  9. BILIWG Meeting: DOE Hydrogen Quality Working Group Update and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Effects of Fuel and Air Impurities on PEM Fuel Cell Performance Effects of Impurities on Fuel Cell Performance and Durability Biogas Impurities and ...

  10. 2011 NREL/DOE Hydrogen and Fuel Cell Manufacturing R&D Workshop...

    Office of Environmental Management (EM)

    ......... 7 2.1.6 Low Temperature PEM Fuel Cell Manufacturing Needs; ... multi-layer), and other heat treatment processes, an example of which is ...

  11. Industry Interactive Procurement System (IIPS)

    Broader source: Energy.gov [DOE]

    Presentation on DOE’s Industry Interactive Procurement System (IIPS) presented at the PEM fuel cell pre-solicitation meeting held May 26, 2005 in Arlington, VA.

  12. Membranes > Batteries & Fuel Cells > Research > The Energy Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries & Fuel Cells In This Section Battery Anodes Battery Cathodes Depletion Aggregation Membranes Membranes Fig. 1 PEM Fuel Cell Fuel cells are highly efficient devices that ...

  13. Dedicated to The Continued Education, Training and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dedicated to The Continued Education, Training and Demonstration of PEM Fuel Cell Powered ... Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington ...

  14. Biodiesel and Pollutant Emissions (Presentation)

    SciTech Connect (OSTI)

    McCormick, R.; Williams, A.; Ireland, J.; Hayes, B.

    2006-09-28

    Presents the results from three methods of testing--engine, chassis, and PEM--for testing nitrogen oxide (NOx) emissions from B20.

  15. Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes

    Broader source: Energy.gov [DOE]

    This report is an initial investigation of the use of proton exchange membrane (PEM) fuel cells on-board commercial aircraft.

  16. Proton Energy Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Proton Energy Systems Inc Place: Wallingford, Connecticut Zip: 6492 Sector: Hydro, Hydrogen Product: Develops, manufactures and sells proprietary Proton Exchange Membrane (PEM)...

  17. DOE Fuel Cell Technologies Office Record 14014: Fuel Cell System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4014 Date: September 25, 2014 Title: Fuel Cell System Cost - 2014 Update to: Record 14012 ... polymer electrolyte membrane (PEM) fuel cell system based on next-generation ...

  18. DAVID Fuel Cell Components SL | Open Energy Information

    Open Energy Info (EERE)

    manufacture and marketing of components and devices for PEM fuel cells, direct methanol fuel cells (DMFC) and fuel reformers. References: DAVID Fuel Cell Components SL1...

  19. Final Report - Membranes and MEA's for Dry, Hot Operating Conditions

    SciTech Connect (OSTI)

    Hamrock, Steven J.

    2011-06-30

    The focus of this program was to develop a new Proton Exchange Membrane (PEM) which can operate under hotter, dryer conditions than the state of the art membranes today and integrate it into a Membrane Electrode Assembly (MEA). These MEA's should meet the performance and durability requirements outlined in the solicitation, operating under low humidification conditions and at temperatures ranging from -20???ºC to 120???ºC, to meet 2010 DOE technical targets for membranes. This membrane should operate under low humidification conditions and at temperatures ranging from -20???ºC to 120???ºC in order to meet DOE HFCIT 2010 commercialization targets for automotive fuel cells. Membranes developed in this program may also have improved durability and performance characteristics making them useful in stationary fuel cell applications. The new membranes, and the MEA?¢????s comprising them, should be manufacturable at high volumes and at costs which can meet industry and DOE targets. This work included: A) Studies to better understand factors controlling proton transport within the electrolyte membrane, mechanisms of polymer degradation (in situ and ex situ) and membrane durability in an MEA; B) Development of new polymers with increased proton conductivity over the range of temperatures from -20???ºC to 120???ºC and at lower levels of humidification and with improved chemical and mechanical stability; C) Development of new membrane additives for increased durability and conductivity under these dry conditions; D) Integration of these new materials into membranes and membranes into MEA?¢????s, including catalyst and gas diffusion layer selection and integration; E) Verification that these materials can be made using processes which are scalable to commercial volumes using cost effective methods; F) MEA testing in single cells using realistic automotive testing protocols. This project addresses technical barriers A (Durability) and C (Performance) from the Fuel Cells section of the 2005 Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year R&D Plan. In the course of this four-year program we developed a new PEM with improved proton conductivity, chemical stability and mechanical stability. We incorporated this new membrane into MEAs and evaluated performance and durability.

  20. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    SciTech Connect (OSTI)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor subsystems (fuel reformer, CO cleanup, and exhaust cleanup) that were small enough to integrate on a vehicle and (2) evaluating the fuel processor system performance for hydrogen production, efficiency, thermal integration, startup, durability and ability to integrate with fuel cells. Nuvera carried out a three-part development program that created multi-fuel (gasoline, ethanol, natural gas) fuel processing systems and investigated integration of fuel cell / fuel processor systems. The targets for the various stages of development were initially based on the goals of the DOE's Partnership for New Generation Vehicles (PNGV) initiative and later on the Freedom Car goals. The three parts are summarized below with the names based on the topic numbers from the original Solicitation for Financial Assistance Award (SFAA).

  1. Two modulator generalized ellipsometer for complete mueller matrix measurement

    DOE Patents [OSTI]

    Jellison, Jr., Gerald E.; Modine, Frank A.

    1999-01-01

    A two-modulator generalized ellipsometer (2-MGE) comprising two polarizer-photoelastic modulator (PEM) pairs, an optical light source, an optical detection system, and associated data processing and control electronics, where the PEMs are free-running. The input light passes through the first polarizer-PEM pair, reflects off the sample surface or passes through the sample, passes through the second PEM-polarizer pair, and is detected. Each PEM is free running and operates at a different resonant frequency, e.g., 50 and 60 kHz. The resulting time-dependent waveform of the light intensity is a complicated function of time, and depends upon the exact operating frequency and phase of each PEM, the sample, and the azimuthal angles of the polarizer-PEM pairs, but can be resolved into a dc component and eight periodic components. In one embodiment, the waveform is analyzed using a new spectral analysis technique that is similar to Fourier analysis to determine eight sample Mueller matrix elements (normalized to the m.sub.00 Mueller matrix element). The other seven normalized elements of the general 4.times.4 Mueller matrix can be determined by changing the azimuthal angles of the PEM-polarizer pairs with respect to the plane of incidence. Since this instrument can measure all elements of the sample Mueller matrix, it is much more powerful than standard ellipsometers.

  2. Automation Status | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automation Status Automation Status Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. PDF icon Automation Status More Documents & Publications PEM Stack Manufacturing: Industry Status 2011 NREL/DOE Hydrogen and Fuel Cell Manufacturing R&D Workshop Report Manufacturing Barriers to High Temperature PEM Commercialization

  3. Design and development of Stirling engines for stationary-power-generation applications in the 500- to 3000-horsepower range. Phase I final report

    SciTech Connect (OSTI)

    1980-10-01

    A program plan and schedule for the implementation of the proposed conceptual designs through the remaining four phases of the overall large Stirling engine development program was prepared. The objective of Phase II is to prepare more detailed designs of the conceptual designs prepared in Phase I. At the conclusion of Phase II, a state-of-the-art design will be selected from the candidate designs developed in Phase I for development. The objective of Phase III is to prepare manufacturing drawings of the candidate engine design. Also, detailed manufacturing drawings of both 373 kW (500 hp) and 746 kW (1000 hp) power pack skid systems will be completed. The power pack skid systems will include the generator, supporting skid, controls, and other supporting auxiliary subsystems. The Stirling cycle engine system (combustion system, Stirling engine, and heat transport system) will be mounted in the power pack skid system. The objective of Phase IV is to procure parts for prototype engines and two power pack skid systems and to assemble Engines No. 1 and 2. The objective of Phase V is to perform extensive laboratory and demonstration testing of the Stirling engines and power pack skid systems, to determine the system performance and cost and commercialization strategy. Scheduled over a 6 yr period the cost of phases II through V is estimated at $22,063,000. (LCL)

  4. A Low-Cost Continuous Emissions Monitoring System for Mobile and Stationary Engine SCR/DPF Applications/Data-Logger for Vehicle Data Acquisition

    Broader source: Energy.gov [DOE]

    This project describes a novel system of sensors that continuously monitor emissions in real time and a data logger to gather real-time data from a vehicle

  5. Response to Comment on Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma [Phys. Plasmas 21, 064701 (2014)

    SciTech Connect (OSTI)

    Patil, S. D.; Takale, M. V.

    2014-06-15

    Habibi and Ghamari have presented a Comment on our paper [Phys. Plasmas 20, 072703 (2013)] by examining quantum dielectric response in thermal quantum plasma. They have modeled the relativistic self-focusing of Gaussian laser beam in cold and warm quantum plasmas and reported that self-focusing length does not change in both situations. In this response, we have reached the following important conclusions about the comment itself.

  6. Real-time measurements of particulate matter and polycyclic aromatic hydrocarbon emissions from stationary combustion sources used in oil and gas production

    SciTech Connect (OSTI)

    D. w. Hahn; K. r. Hencken; H. A. Johnsen; J. R. Ross; P. M. Walsh

    1998-12-10

    Particulate matter emissions and some components of the particles were measured in the exhaust from combustion equipment used in oil and gas production operations near Bakersfield, California. The combustion sources included a 22.5 MW (electric) turbine generator, a 342-Bhp rich-burn spark ignition engine, and a 50 million Btu/h steam generator, all fired using natural gas. The particle components and measurement techniques were as follows: (1) Calcium, magnesium, sodium, silicon, and iron were measured using laser-induced breakdown spectroscopy (LIBS), (2) particle-bound polycyclic aromatic hydrocarbons (PAH) were detected using the charge produced by photoionization, (3) particles having sizes between 0.1 and 7.5 {micro}m were counted using an instrument based on light scattering, and (4) total particulate matter was measured according to US EPA Method 5. Not all of the methods were applied to all of the sources. Measurements were also made in the ambient air near the combustion air inlets to the units, for comparison with the concentrations in the exhaust, but the inlet and outlet measurements were not done simultaneously. Calcium, sodium, and silicon were found in the exhaust from the steam generator at concentrations similar to those in the ambient air near the inlet to the burner. Sodium and silicon were observed in the engine exhaust at levels a factor of four higher than their concentrations in the air. The principal metal observed in the engine exhaust was calcium, a component of the lubricating oil, at a concentration of 11.6 {micro}g/m{sup 3}. The air entering the gas turbine is filtered, so the average concentrations of metals in the turbine exhaust under steady operating conditions were even lower than in the air. During start-up following a shut-down to wash the turbine, silicon and iron were the major species in the stack, at concentrations of 6.4 and 16.2 {micro}g/m{sup 3}, respectively. A possible source of silicon is the water injected into the turbine for NO{sub x} control. Iron-containing particles are expected to be scale from ferrous metals. A commercial photoelectric aerosol sensor was used to measure PAH adsorbed on particles in the exhaust from the steam generator and the rich-burn engine. The conversion of the instrument readings to PAH concentrations is dependent upon the specific distribution of PAH species present. Using the typical calibration factor recommended by the instrument manufacturer, the estimated average concentration of particle-bound PAH was below the instrument detection limit (3--10 ng/m{sup 3}) in the stack gas from the steam generator, and was estimated to be 0.045--0.15 {micro}g/m{sup 3} in the exhaust from the rich-burn engine. Particle mass concentrations estimated from number concentrations determined using the particle counting and sizing instrument were only small fractions of the concentrations measured using Method 5. This is thought to be due primarily to the limited range over which size was quantified (0.1 to 7.5 {micro}m) and the poor efficiency with which the sampling system transferred large particles.

  7. Preventing CO poisoning in fuel cells

    DOE Patents [OSTI]

    Gottesfeld, Shimshon

    1990-01-01

    Proton exchange membrane (PEM) fuel cell performance with CO contamination of the H.sub.2 fuel stream is substantially improved by injecting O.sub.2 into the fuel stream ahead of the fuel cell. It is found that a surface reaction occurs even at PEM operating temperatures below about 100.degree. C. to oxidatively remove the CO and restore electrode surface area for the H.sub.2 reaction to generate current. Using an O.sub.2 injection, a suitable fuel stream for a PEM fuel cell can be formed from a methanol source using conventional reforming processes for producing H.sub.2.

  8. Novel Materials for Cell Studies and Harvesting

    SciTech Connect (OSTI)

    Barkhudarova, Sophia M.

    2012-08-01

    The ease and versatility in assembling polyelectrolyte multilayers (PEMs) has resulted in numerous wide ranging applications of these materials. For instance: (1) Biomedicine - Biomaterials, biosensors; (2) Tissue engineering - Enhanced ability for cell lines to attach to culture plates (3) Regenerative medicine; and (4) Drug delivery - Multilayered films exhibit very good pH and thermal stability and greater control over dosage and timing. Some results are: (1) PEM thickness varied linearly with the number of layers deposited; (2) Homogenization of the multilayered structure; (3) No cyto-toxicity observed; (4) The PEM substrates proved suitable for 3T3 and HEK-293 growth; and (5) Lipids spread homogeneously.

  9. Intelligent Energy Holdings | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: W1K 5DB Product: Intelligent Energy provides energy solutions based on PEM fuel cells for the distributed power and transport industries. It purchased micro scale...

  10. ITM Power Plc | Open Energy Information

    Open Energy Info (EERE)

    Power Plc Place: Stamford, United Kingdom Zip: PE9 3DY Product: The ITM approach for PEM fuel cells involves making composite membrane-electrode assemblies (cMEA) and composite...

  11. Cemtrex Duncon JV | Open Energy Information

    Open Energy Info (EERE)

    between Cemtrex and Duncon Technologies for development of Proton Exchange Membrane (PEM) Fuel Cells. References: Cemtrex - Duncon JV1 This article is a stub. You can help OpenEI...

  12. Dynalene Fuel Cell Coolants Achieve Commercial Success | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dynalene has been working with several automotive and fuel cell manufacturers on using the coolants in their PEM fuel cells, hybrid electric, electric vehicles and back-up power ...

  13. P21 GmbH | Open Energy Information

    Open Energy Info (EERE)

    Germany Zip: 81541 Product: P21 is focused on development, production and sales of fuel cell systems and their components around PEM fuel cell stacks. References: P21 GmbH1 This...

  14. Altergy Systems | Open Energy Information

    Open Energy Info (EERE)

    95630 Product: Designs and manufactures proprietary proton exchange membrane (PEM) fuel cell systems. References: Altergy Systems1 This article is a stub. You can help OpenEI by...

  15. IdaTech UK | Open Energy Information

    Open Energy Info (EERE)

    IdaTech UK Place: United Kingdom Product: Former UK subsidiary of US PEM fuel cell developer, IdaTech LLC, which completed acquisition of the parent company in July 2006....

  16. Identification and Characterization of Near-Term Direct Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... membrane (PEM, also referred to as polymer electrolyte membrane) fuel cell vehicles. ... pack (frozen) 38 3,347 1,205.3 2037-0103 Potato products, quick frozen and cold pack 24 ...

  17. Reactor for removing ammonia

    DOE Patents [OSTI]

    Luo, Weifang; Stewart, Kenneth D.

    2009-11-17

    Disclosed is a device for removing trace amounts of ammonia from a stream of gas, particularly hydrogen gas, prepared by a reformation apparatus. The apparatus is used to prevent PEM "poisoning" in a fuel cell receiving the incoming hydrogen stream.

  18. AMFC Technical Challenges and Status: From Single Cell to Stack...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 2016 by Elbit Systems | Elbit Systems Proprietary Present performance of AMFC and PEMFC of low cell Pt loading * Performance boost still needed to match low-Pt PEM cells * ...

  19. Alkaline Anion Exchange Membrane Fuel Cells (AEM-FC) Status

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Most of the papers are focused on development of anion conducting polymers for AEMs 2000 2005 2010 2015 2020 Year Dario R. Dekel Web of Science @Feb 2016 PEM: TS"proton exchange ...

  20. Assessment of the Emissions Behavior of Higher Mileage Class-8 Trucks and Engines

    Broader source: Energy.gov [DOE]

    Study of in-use emission levels of trucks near the mid-point of their regulatory useful life, including PEMS (on-road) testing as well as engine dynamometer testing

  1. Dynalene Fuel Cell Coolants Achieve Commercial Success

    Broader source: Energy.gov [DOE]

    Dynalene has been working with several automotive and fuel cell manufacturers on using the coolants in their PEM fuel cells, hybrid electric, electric vehicles and back-up power systems.

  2. BCS Fuel Cells | Open Energy Information

    Open Energy Info (EERE)

    BCS Fuel Cells Jump to: navigation, search Name: BCS Fuel Cells Place: Bryan, Texas Zip: TX 77801 Product: A privately held corporation from Texas, BCS is a developer of PEM fuel...

  3. IdaTech plc | Open Energy Information

    Open Energy Info (EERE)

    IdaTech is a developer of fuel processors and integrated proton exchange membrane (PEM) fuel cell systems. Coordinates: 44.05766, -121.315549 Show Map Loading map......

  4. Breaking the Fuel Cell Cost Barrier

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mainstream Polymer Electrolyte Fuel Cell ( PEM) Cost ... CellEra's Platinum-Free Membrane Fuel Cell (PFM-FC) ... Enabler for price parity at volume with lead acid batteries ...

  5. Small Business Innovation Research Award Success Story: Proton Energy Systems

    Fuel Cell Technologies Publication and Product Library (EERE)

    This success story describes Proton Energy Systems, a small business that designs and manufactures proton exchange membrane (PEM) electrolysis sytems to produce hydrogen from water. The U.S. Departmen

  6. SBIR/STTR FY16 Phase 1 Release 1 Awards Announced-Includes Four...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NEI Corporation, of New Jersey, will develop a novel PEM, using highly proton-conducting heteropolyacids in an organic matrix in a novel way. Amsen Technologies LLC, of Arizona, ...

  7. Assessment of the Emissions Behavior of Higher Mileage Class...

    Broader source: Energy.gov (indexed) [DOE]

    including PEMS (on-road) testing as well as engine dynamometer testing PDF icon p-11smith.pdf More Documents & Publications Recent Research to Address Technical Barriers to ...

  8. Borup wins Electrochemical Society Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rod Borup Borup and his team are focused on improving the polymer electrolyte membrane (PEM) fuel cell, which converts hydrogen to electricity for power, but emits only water. Rod ...

  9. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    led consortium works to enhance fuel cell technology October 8, 2015 Alternative energy key to a greener future LOS ALAMOS, N.M., Oct. 8, 2015-Los Alamos National Laboratory is leading a Department of Energy- Fuel Cells Technologies Office-funded project to enhance the performance and durability of polymer electrolyte membrane (PEM) fuel cells, while simultaneously reducing their cost. "The cost and durability of current PEM fuel cells is a major barrier to their commercial use for

  10. Final Report - Effects of Impurities on Fuel Cell Performance and Durability

    SciTech Connect (OSTI)

    Trent Molter

    2012-08-18

    This program is focused on the experimental determination of the effects of key hydrogen side impurities on the performance of PEM fuel cells. Experimental data has been leveraged to create mathematical models that predict the performance of PEM fuel cells that are exposed to specific impurity streams. These models are validated through laboratory experimentation and utilized to develop novel technologies for mitigating the effects of contamination on fuel cell performance. Results are publicly disseminated through papers, conference presentations, and other means.

  11. Potential for Distributed and Central Electrolysis to Provide Grid Support Services (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    This NREL Hydrogen and Fuel Cell Technical Highlight describes how NREL operated both commercially available low-temperature electrolyzer technologies (PEM and alkaline) to evaluate their response to commands to increase and decrease stack power that shorten frequency disturbances on an alternating current (AC) mini-grid. Results show that both the PEM and alkaline electrolyzers are capable of adding or removing stack power to provide sub-second response that reduced the duration of frequency disturbances.

  12. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery | Department

    Broader source: Energy.gov (indexed) [DOE]

    Download the presentation slides from the DOE Fuel Cell Technologies Office webinar, "Advanced Electrocatalysts for PEM Fuel Cell," held February 12, 2013. PDF icon Advanced Electrocatalysts for PEM Fuel Cells Webinar Slides More Documents & Publications Catalysis Working Group Meeting: January 2015 Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading Fuel Cells: Just a Dream - or Future Reality of Energy

    2 DOE Hydrogen and Fuel Cells Program and Vehicle

  13. Mixed-mu superconducting bearings

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Mulcahy, Thomas M. (Western Springs, IL)

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  14. Mixed-mu superconducting bearings

    DOE Patents [OSTI]

    Hull, J.R.; Mulcahy, T.M.

    1998-03-03

    A mixed-mu superconducting bearing is disclosed including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure. 9 figs.

  15. Concept of a demonstrational hybrid reactor—a tokamak with molten-salt blanket for {sup 233}U fuel production: 1. Concept of a stationary Tokamak as a neutron source

    SciTech Connect (OSTI)

    Azizov, E. A.; Gladush, G. G. Dokuka, V. N.; Khayrutdinov, R. R.

    2015-12-15

    On the basis of current understanding of physical processes in tokamaks and taking into account engineering constraints, it is shown that a low-cost facility of a moderate size can be designed within the adopted concept. This facility makes it possible to achieve the power density of neutron flux which is of interest, in particular, for solving the problem of {sup 233}U fuel production from thorium. By using a molten-salt blanket, the important task of ensuring the safe operation of such a reactor in the case of possible coolant loss is accomplished. Moreover, in a hybrid reactor with the blanket based on liquid salts, the problem of periodic refueling that is difficult to perform in solid blankets can be solved.

  16. Back-Up/ Peak Shaving Fuel Cell System

    SciTech Connect (OSTI)

    Staudt, Rhonda L.

    2008-05-28

    This Final Report covers the work executed by Plug Power from 8/11/03 10/31/07 statement of work for Topic 2: advancing the state of the art of fuel cell technology with the development of a new generation of commercially viable, stationary, Back-up/Peak-Shaving fuel cell systems, the GenCore II. The Program cost was $7.2 M with the Department of Energy share being $3.6M and Plug Powers share being $3.6 M. The Program started in August of 2003 and was scheduled to end in January of 2006. The actual program end date was October of 2007. A no cost extension was grated. The Department of Energy barriers addressed as part of this program are: Technical Barriers for Distributed Generation Systems: o Durability o Power Electronics o Start up time Technical Barriers for Fuel Cell Components: o Stack Material and Manufacturing Cost o Durability o Thermal and water management Background The next generation GenCore backup fuel cell system to be designed, developed and tested by Plug Power under the program is the first, mass-manufacturable design implementation of Plug Powers GenCore architected platform targeted for battery and small generator replacement applications in the telecommunications, broadband and UPS markets. The next generation GenCore will be a standalone, H2 in-DC-out system. In designing the next generation GenCore specifically for the telecommunications market, Plug Power is teaming with BellSouth Telecommunications, Inc., a leading industry end user. The final next generation GenCore system is expected to represent a market-entry, mass-manufacturable and economically viable design. The technology will incorporate: A cost-reduced, polymer electrolyte membrane (PEM) fuel cell stack tailored to hydrogen fuel use An advanced electrical energy storage system A modular, scalable power conditioning system tailored to market requirements A scaled-down, cost-reduced balance of plant (BOP) Network Equipment Building Standards (NEBS), UL and CE certifications.

  17. California ARB Verification Testing of the CBSTM Soot Filter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California ARB Verification Testing of the CBSTM Soot Filter for Stationary Diesel Applications California ARB Verification Testing of the CBSTM Soot Filter for Stationary Diesel ...

  18. Table III: Technical Targets for Catalyst Coated Membranes (CCMs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    III: Technical Targets for Catalyst Coated Membranes (CCMs): Stationary Table III: Technical Targets for Catalyst Coated Membranes (CCMs): Stationary Technical targets for CCMs in ...

  19. Balance of Plant Needs and Integration of Stack Components for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Needs and Integration of Stack Components for Stationary Power and CHP Applications Balance of Plant Needs and Integration of Stack Components for Stationary Power and CHP ...

  20. An investigation of DUA caching strategies for public key certificates

    SciTech Connect (OSTI)

    Cheung, T.C.

    1993-11-01

    Internet Privacy Enhanced Mail (PEM) provides security services to users of Internet electronic mail. PEM is designed with the intention that it will eventually obtain public key certificates from the X.500 directory service. However, such a capability is not present in most PEM implementations today. While the prevalent PEM implementation uses a public key certificate-based strategy, certificates are mostly distributed via e-mail exchanges, which raises several security and performance issues. In this thesis research, we changed the reference PEM implementation to make use of the X.500 directory service instead of local databases for public key certificate management. The thesis discusses some problems with using the X.500 directory service, explores the relevant issues, and develops an approach to address them. The approach makes use of a memory cache to store public key certificates. We implemented a centralized cache server and addressed the denial-of-service security problem that is present in the server. In designing the cache, we investigated several cache management strategies. One result of our study is that the use of a cache significantly improves performance. Our research also indicates that security incurs extra performance cost. Different cache replacement algorithms do not seem to yield significant performance differences, while delaying dirty-writes to the backing store does improve performance over immediate writes.

  1. Recommendations for Guidelines for EMF Personal Exposure Measurements, Rapid Project #4

    SciTech Connect (OSTI)

    T. Dan Bracken, Inc.

    1997-08-01

    The purpose of developing guidelines for electric and magnetic field (EMF) personal exposure measurements (lF'EM) is to ensure reliable and comparable data across I?EM studies. Study techniques may vary due to different populations or objectives, but the resulting data should be consistently reported and comparable, to the extent possible. Any guideline must allow creativity by the research-oriented investigator and provide specific guidance to industrial hygienists or other results-oriented investigators, requiring a standard protocol. Recognizing measurement studies with different purposes is an important aspect of these recommendations. The guidelines presented here intend to produce comparable data across studies while remaining flexible. The recommendations for designing and implementing an EMF PEM program describe a three-stage process. The first step is to clearly state the purpose of the PEM program. The next stage addresses the fundamental elements of an EMF PEM study, including an assessment of the scientific and organizational resources that will be required. This process is codified in a written study plan. These stages are described in 1 Section 5 of this report. The third stage of a PEM study involves the design, implementation and documentation of specific procedures and protocols fo~ sampling strategies, selection of measurement parameters; instrumentation, measurement and data collection, data management, data analysis, quality assurance, uncertainty evaluation, and archiving the study methods and results. The methods for designing these elements of an EMF PEM study are described in Section 6: Specific Guidelines for EMF I?EM Study Design.

  2. Measurement of Species Distributions in Operating Fuel Cells

    SciTech Connect (OSTI)

    Partridge Jr, William P; Toops, Todd J; Parks, II, James E; Armstrong, Timothy R.

    2004-10-01

    Measurement and understanding of transient species distributions across and within fuel cells is a critical need for advancing fuel cell technology. The Spatially Resolved Capillary Inlet Mass Spectrometer (SpaciMS) instrument has been applied for in-situ measurement of transient species distributions within operating reactors; including diesel catalyst, air-exhaust mixing systems, and non-thermal plasma reactors. The work described here demonstrates the applicability of this tool to proton exchange membrane (PEM) and solid oxide fuel cells (SOFC) research. Specifically, we have demonstrated SpaciMS measurements of (1) transient species dynamics across a PEM fuel cell (FC) associated with load switching, (2) intra-PEM species distributions, and transient species dynamics at SOFC temperatures associated with FC load switching.

  3. Systems and methods for selective hydrogen transport and measurement

    DOE Patents [OSTI]

    Glatzmaier, Gregory C

    2013-10-29

    Systems and methods for selectively removing hydrogen gas from a hydrogen-containing fluid volume are disclosed. An exemplary system includes a proton exchange membrane (PEM) selectively permeable to hydrogen by exclusively conducting hydrogen ions. The system also includes metal deposited as layers onto opposite sides or faces of the PEM to form a membrane-electrode assembly (MEA), each layer functioning as an electrode so that the MEA functions as an electrochemical cell in which the ionic conductors are hydrogen ions, and the MEA functioning as a hydrogen selective membrane (HSM) when located at the boundary between a hydrogen-containing fluid volume and a second fluid.

  4. The Investigation and Development of Low Cost Hardware Components for Proton-Exchange Membrane Fuel Cells - Final Report

    SciTech Connect (OSTI)

    George A. Marchetti

    1999-12-15

    Proton exchange membrane (PEM) fuel cell components, which would have a low-cost structure in mass production, were fabricated and tested. A fuel cell electrode structure, comprising a thin layer of graphite (50 microns) and a front-loaded platinum catalyst layer (600 angstroms), was shown to produce significant power densities. In addition, a PEM bipolar plate, comprising flexible graphite, carbon cloth flow-fields and an integrated polymer gasket, was fabricated. Power densities of a two-cell unit using this inexpensive bipolar plate architecture were shown to be comparable to state-of-the-art bipolar plates.

  5. Advanced Cathode Material Development for PHEV Lithium Ion Batteries |

    Broader source: Energy.gov (indexed) [DOE]

    Energy This presentation, which focuses on advanced cathode catalysts and supports for PEM fuel cells, was given by Mark Debe of 3M at a February 2007 meeting on new fuel cell projects. PDF icon new_fc_debe_3m.pdf More Documents & Publications Advanced Cathode Catalysts Light Weight, Low Cost PEM Fuel Cell Stacks Durable Catalysts for Fuel Cell Protection during Transient Conditions Department of Energy

    11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program

  6. Nanocrystalline cerium oxide materials for solid fuel cell systems

    SciTech Connect (OSTI)

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  7. SBIR/STTR Release 2 Topics Announced—Includes Hydrogen and Fuel Cells

    Broader source: Energy.gov [DOE]

    The 2015 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 2 topics include fuel cell-battery electric hybrid trucks and in-line quality control devices for polymer electrolyte membrane (PEM) fuel cells.

  8. CX-000208: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Recovery Act - PEM (Polymer Electrolyte Membrane) Fuel Cell Systems Providing Emergency Reserve and Backup PowerCX(s) Applied: B5.1Date: 11/23/2009Location(s): WashingtonOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  9. EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    China Lake Naval Air Stationadmin2016-04-18T20:58:24+00:00 Popular Downloads Solar Energy ... China Lake, CA was a chosen site for one Plug Power GenSysTM 5CS-5kW PEM fuel cell. The ...

  10. Small Business Innovation Research (SBIR) Award Success Story: Proton Energy Systems

    Broader source: Energy.gov [DOE]

    This success story describes Proton Energy Systems, a small business that designs and manufactures proton exchange membrane (PEM) electrolysis sytems to produce hydrogen from water. The U.S. Department of Energy's Fuel Cell Technologies Program has supported much of Proton's technology development through Small Business Innovation Research (SBIR) Awards and other non-SBIR funding.

  11. Epoxy-crosslinked sulfonated poly (phenylene) copolymer proton exchange membranes

    DOE Patents [OSTI]

    Hibbs, Michael; Fujimoto, Cy H.; Norman, Kirsten; Hickner, Michael A.

    2010-10-19

    An epoxy-crosslinked sulfonated poly(phenylene) copolymer composition used as proton exchange membranes, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cell, in electrode casting solutions and electrodes, and in sulfur dioxide electrolyzers. These improved membranes are tougher, have higher temperature capability, and lower SO.sub.2 crossover rates.

  12. Photocatalytic methods for preparation of electrocatalyst materials

    DOE Patents [OSTI]

    Li, Wen; Kawamura, Tetsuo; Nagami, Tetsuo; Takahashi, Hiroaki; Muldoon, John; Shelnutt, John A; Song, Yujiang; Miller, James E; Hickner, Michael A; Medforth, Craig

    2013-09-24

    The invention relates to methods of preparing metal particles on a support material, including platinum-containing nanoparticles on a carbon support. Such materials can be used as electrocatalysts, for example as improved electrocatalysts in polymer electrolyte membrane fuel cells (PEM-FCs).

  13. Photocatalytic methods for preparation of electrocatalyst materials

    DOE Patents [OSTI]

    Nwoga, Tochi Tudor; Kawahara, Kazuo; Li, Wen; Song, Yujiang; Shelnutt, John A; Miller, James E; Medforth, Craig John; Ueno, Yukiyoshi; Kawamura, Tetsuo

    2013-12-17

    The invention relates to methods of preparing metal particles on a support material, including platinum-containing nanoparticles on a carbon support. Such materials can be used as electrocatalysts, for example as improved electrocatalysts in proton exchange membrane fuel cells (PEM-FCs).

  14. Fuel cell flooding detection and correction

    DOE Patents [OSTI]

    DiPierno Bosco, Andrew; Fronk, Matthew Howard

    2000-08-15

    Method and apparatus for monitoring an H.sub.2 -O.sub.2 PEM fuel cells to detect and correct flooding. The pressure drop across a given H.sub.2 or O.sub.2 flow field is monitored and compared to predetermined thresholds of unacceptability. If the pressure drop exists a threshold of unacceptability corrective measures are automatically initiated.

  15. Corrosion resistant metallic bipolar plate

    DOE Patents [OSTI]

    Brady, Michael P.; Schneibel, Joachim H.; Pint, Bruce A.; Maziasz, Philip J.

    2007-05-01

    A corrosion resistant, electrically conductive component such as a bipolar plate for a PEM fuel cell includes 20 55% Cr, balance base metal such as Ni, Fe, or Co, the component having thereon a substantially external, continuous layer of chromium nitride.

  16. Corrugated Membrane Fuel Cell Structures | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corrugated Membrane Fuel Cell Structures Corrugated Membrane Fuel Cell Structures These slides were presented at the 2010 New Fuel Cell Projects Meeting on September 28, 2010. PDF icon 4_ion_power_grot.pdf More Documents & Publications Breakout Group 3: Water Management US DRIVE Fuel Cell Technical Team Roadmap Automotive Perspective on PEM Evaluation

  17. Multi-block sulfonated poly(phenylene) copolymer proton exchange membranes

    DOE Patents [OSTI]

    Fujimoto, Cy H.; Hibbs, Michael; Ambrosini, Andrea

    2012-02-07

    Improved multi-block sulfonated poly(phenylene) copolymer compositions, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cells, in electrode casting solutions and electrodes. The multi-block architecture has defined, controllable hydrophobic and hydrophilic segments. These improved membranes have better ion transport (proton conductivity) and water swelling properties.

  18. Wireless power transfer test system

    DOE Patents [OSTI]

    Gilchrist, Aaron; Wu, Hunter; Sealy, Kylee D.; Israelsen, Paul D.

    2015-09-22

    A testing system for wireless power transfer systems, including a stationary plate, a rotating plate, and a driver to rotate the rotating plate with respect to the stationary plate.

  19. Sandia Energy - Conventional Water Power: Technology Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Development Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Technology Development Conventional Water Power: Technology...

  20. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  1. seca-workshop | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Fuel Cells Division Siemens Westinghouse Power Corporation Power ... Director of Technology and Innovation Siemens Westinghouse Power Corporation ...

  2. ARPA-E Announces $30 Million for Distributed Generation Technologies

    Broader source: Energy.gov [DOE]

    REBELS Program Aims to Develop Innovative Intermediate-Temperature Fuel Cells for Low-Cost Stationary Power Generation

  3. Sandia Energy - Solar Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Resource Assessment Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Resource Assessment Solar Resource AssessmentTara...

  4. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Transmission Grid Integration Transmission Grid...

  5. Sandia Energy - Past Market Transformation Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Past Market Transformation Activities Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Past Market Transformation...

  6. Sandia Energy - Solar Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Market Transformation Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Market TransformationTara...

  7. Sandia Energy - Permitting, Inspection, and Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Permitting, Inspection, and Interconnection Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Permitting, Inspection, and...

  8. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Distribution Grid Integration Distribution Grid...

  9. Sandia Energy - Inverter Reliability Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inverter Reliability Program Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Systems Reliability Inverter Reliability Program Inverter Reliability...

  10. Sandia Energy - Advanced Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Research & Development Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Advanced Research & Development Advanced Research & DevelopmentCoryne...

  11. Sandia Energy - Installation Energy Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Installation Energy Security Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Resilient Electric Infrastructures Military...

  12. Sandia Energy - SCADA Program Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Overview Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for Electric Infrastructure National Supervisory...

  13. Sandia Energy - Standards and Industry Outreach/Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Industry OutreachPartnerships Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for Electric...

  14. Sandia Energy - Research and Development of Next Generation Scada...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Next Generation Scada Systems Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for Electric...

  15. Sandia Energy - SCADA Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for Electric Infrastructure National Supervisory Control...

  16. Sandia Energy - Grid Modernization Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Modernization Consortium Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Renewable Energy Integration Grid Modernization...

  17. Sandia Energy - SCADA Training Courses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Courses Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for Electric Infrastructure National Supervisory...

  18. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  19. Low-loss, high-speed, high-{Tc} superconducting bearings

    DOE Patents [OSTI]

    Hull, J.R.; Mulcahy, T.M.; Uherka, K.L.

    1997-06-24

    A flywheel energy storage device is disclosed including an iron structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet. The stationary permanent magnet levitates the iron structure while the superconductor structure can stabilize the rotating iron structure. 15 figs.

  20. Internal split field generator

    DOE Patents [OSTI]

    Thundat; Thomas George (Knoxville, TN); Van Neste, Charles W. (Kingston, TN); Vass, Arpad Alexander (Oak Ridge, TN)

    2012-01-03

    A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.