Sample records for hobson isr plant

  1. Physics for All, Art Hobson 1 Millikan Award Lecture, 2006

    E-Print Network [OSTI]

    Hobson, Art

    Physics for All, Art Hobson 1 Millikan Award Lecture, 2006: Physics For All Art Hobson Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701 ahobson@uark.edu Abstract: We physics teachers must broaden our focus from physics for physicists and other scientists to physics for all

  2. Keeping ISRS Within Reason | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEtheInspection15Department ofofKahuku WindTrendsKeeping ISRS

  3. A Study of Publish/Subscribe Systems for Real-Time Grid Monitoring Chenxi Huang, Peter R. Hobson, Gareth A. Taylor

    E-Print Network [OSTI]

    Taylor, Gary

    monitoring is a distributed soft real-time monitoring system. Most of the data for monitoring should1 A Study of Publish/Subscribe Systems for Real-Time Grid Monitoring Chenxi Huang, Peter R. Hobson terms ­ monitoring, real time systems, distributed computing, grid computing, publish/subscribe system I

  4. Proposed Adjudication of the Contract for the Heating, Ventilating and Air Conditioning Installations for the ISR Buildings

    E-Print Network [OSTI]

    1968-01-01T23:59:59.000Z

    Proposed Adjudication of the Contract for the Heating, Ventilating and Air Conditioning Installations for the ISR Buildings

  5. 40th Anniversary of the First Proton-Proton Collisions in the CERN Intersecting Storage Rings (ISR)

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    Welcome, Luigi di Lella and Rolf HeuerDesign and Construction of the ISR, Kurt HubnerPhysics at small angles, Ugo Amaldi (TERA Foundation)The Impact of the ISR on Accelerator Physics and Technology, Philip J. BryantPhysics at high transverse momentum, Pierre Darriulat (VATLY-Hanoi)Concluding remarks, Rolf Heuer

  6. The implementation of the Cii Honeywell Bull disks as backup medium for the file storage of the main control computers of the ISR

    E-Print Network [OSTI]

    Tausch, Lothar A; Wolstenholme, P

    1981-01-01T23:59:59.000Z

    The implementation of the Cii Honeywell Bull disks as backup medium for the file storage of the main control computers of the ISR

  7. The implementation of a new Operating System for the ISR Main Computers based on the Cii-Honeywell Bull disks of 10 Megabytes

    E-Print Network [OSTI]

    Tausch, Lothar A

    1983-01-01T23:59:59.000Z

    The implementation of a new Operating System for the ISR Main Computers based on the Cii-Honeywell Bull disks of 10 Megabytes

  8. ISR3: Communication and Data Storage for an Unmanned Ground Bruce A. Draper Gokhan Kutlu Edward M. Riseman Allen R. Hanson

    E-Print Network [OSTI]

    Draper, Bruce A.

    ISR3: Communication and Data Storage for an Unmanned Ground Vehicle Bruce A. Draper Gokhan Kutlu these are communication, or how to get data from one process to another, data storage and retrieval, primarily systems for mobile robotics, and presents a new tool, called ISR3, for com- munication, data storage

  9. Test Report on ISR Double-Loop, Spray-Cooled Inverter

    SciTech Connect (OSTI)

    Hsu, John S [ORNL; Coomer, Chester [ORNL; Campbell, Steven L [ORNL; Wiles, Randy H [ORNL; Lowe, Kirk T [ORNL; McFee, Marshall T [ORNL

    2007-02-01T23:59:59.000Z

    The Isothermal Systems Research, Inc. (ISR) double-loop, two-phase spray cooling system was designed to use 85 C transmission oil to cool a heat exchanger via a second cooling loop. The heat exchanger condenses the working fluid vapor back to liquid inside a sealed enclosure to allow for continuous spray cooling of electronics. In the ORNL tests, 85 C water/ethylene/glycol (WEG), which has better thermal properties than transmission oil, was substituted for the transmission oil. Because the ISR spray-cooling system requires a second cooling loop, the final inverter might be inherently larger than inverters that do not require a second-loop cooling system. The ISR test setup did not include a dc bus capacitor. Because the insulated gate bipolar transistor (IGBT) conduction test indicated that the ISR test setup could not be properly loaded thermally, no switching tests were conducted. Therefore it was not necessary to attach external capacitors outside the test setup. During load situations not exceeding 400A, the WEG inlet temperature was higher than the WEG outlet temperature. This meant that the 85 C WEG heat exchanger was not cooling the inverter and became a thermal load to the inverter. Only when the load was higher than 400A with a higher coolant temperature and the release valve actuated did the WEG heat exchanger start to cool the 2-phase coolant. The inverter relied strongly on the cooling of the huge aluminum enclosure located inside the ventilation chamber. In a hybrid vehicle, the inverter is situated under the hood, where the dependency on cooling provided by the enclosure may become a problem. The IGBT power dissipation with both sides being spray cooled was around 34 W/cm{sup 2} at 403A, with 995W total IGBT loss at 113.5 C projected junction temperature before the release valve was actuated. The current loading could rise higher than 403 A before reaching the 125 C junction temperature limit if the pressure buildup inside the enclosure could be prevented by improving the secondary cooling loop. This 34 w/cm{sup 2} was an average across all dies. There is no doubt that the cooling capability of the ISR spray-cooling test setup can be improved by (1) lowering the WEG inlet temperature from 85 C to say 70 C, this would condense the vapor better and lower the container pressure, (2) modification of the vapor condenser inside the container to cool both the vapor and the liquid of the 2-phase coolant, in the present setup only the vapor is cooled by the condenser inside the container, and (3) lower the liquid temperature through (1) and (2) to avoid the vaporization that causes cavitations in the pump for ensuring the pump's life expectance.

  10. US policy in the Balkans: A Hobson`s choice

    SciTech Connect (OSTI)

    Blank, S.J.; Johnson, W.T.; Tilford, E.H.

    1995-08-28T23:59:59.000Z

    At this writing, the strategic balance may have shifted in the ongoing war in the former Yugoslavia, and the region could be on the verge of a settlement. But, the window of opportunity may be fleeting, and the failures and frustrations of the past four years temper any optimism that conflict in the former Yugoslavia will end quickly or completely. If this opening passes without an end to the fighting, the United States may have to reassess its fundamental policy objectives-and the ways and means to achieve them-if peace is to be effected in the Balkans. The intent of this report, therefore, is to analyze and assess existing policies, to identify any conflicts or contradictions that may stymie U.S. efforts to bring about a peaceful resolution of the crisis, and to offer potential solutions. The report does not offer an ambitious criticism of policy or an expert`s solution to an intractable problem. Its more modest goal is to examine current policy within a context that fits Bosnia into the larger pattern of U.S. interests and policy. In this manner, the report offers a broader framework for the strategic decisions that may face the United States in the not so distant future.

  11. Isr. J. Earth Sci.; 40: 191-197 Magnetostratigraphy of the hominid tool-bearing Erk el Ahmar Formation in the

    E-Print Network [OSTI]

    Marco, Shmuel "Shmulik"

    Isr. J. Earth Sci.; 40: 191-197 Magnetostratigraphy of the hominid tool-bearing Erk el Ahmar Braun, D., Ron, n., Marco, S. 1991. Magnetostratigraphy of the hominid tool- bearing Erk el Ahmar and fluviatile sediments ofthe Erkel Ahmar Fonnation (Erk el Ahmar) (Horowitz, 1979). No ex

  12. Preprint of paper which appeared in the Proceedings of the 41st International Symposium on Robotics (ISR 2010) / 6th German

    E-Print Network [OSTI]

    Stryk, Oskar von

    , a prerequisite for developing robots with human-like movements is understanding the funda- mental principles (ISR 2010) / 6th German Conference on Robotics (ROBOTIK 2010), pp. 696-703 Towards Human-Like Bipedal projects leading to a new generation of human-like robots. Furthermore, we present the hardware design

  13. Improving ISR Radar Utilization (How I quit blaming the user and made the radar easier to use).

    SciTech Connect (OSTI)

    Doerry, Armin W.

    2014-08-01T23:59:59.000Z

    In modern multi - sensor multi - mode Intelligence, Surveillance, and Reconnaissance ( ISR ) platforms, the plethora of options available to a sensor/payload operator are quite large, leading to an over - worked operator often down - selecting to favorite sensors an d modes. For example, Full Motion Video (FMV) is justifiably a favorite sensor at the expense of radar modes, even if radar modes can offer unique and advantageous information. The challenge is then to increase the utilization of the radar modes in a man ner attractive to the sensor/payload operator. We propose that this is best accomplished by combining sensor modes and displays into 'super - modes'. - 4 - Acknowledgements This report is the result of a n unfunded research and development activity . Sandia Natio nal Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL850 00.

  14. J. A. Hobson and the Machinery Question

    E-Print Network [OSTI]

    Wilson, Daniel C. S.

    2015-04-15T23:59:59.000Z

    small number of automobiles on the roads.25 The history of technology has often had an awkward relation to broader questions in British history and so has remained strangely marginal.26 However, when understood in its fullest context as both knowledge... fellow at CRASSH, University of Cambridge. He is grateful to archival staff at Conway Hall, the LSE, and the Hull History Centre, as well as to Jos Betts, Rowan Boyson, Gregory Claeys, Thomas Dixon, Stuart Jones, Michael Ledger-Lomas, Peter Mandler, Niall...

  15. P. J. Antsaklis, "Intelligent Control for High Autonomy in Unmanned Underwater Vehicles," P r oceedings of t he N SF/ISR W orkshop o n ' Undersea R obotics a nd I ntelligent C ontrol ' , pp. 25-32, Lisboa, Portugal,

    E-Print Network [OSTI]

    Antsaklis, Panos

    P. J. Antsaklis, "Intelligent Control for High Autonomy in Unmanned Underwater Vehicles," P r in Unmanned Underwater Vehicles," P r oceedings of t he N SF/ISR W orkshop o n ' Undersea R obotics a nd I Control for High Autonomy in Unmanned Underwater Vehicles," P r oceedings of t he N SF/ISR W orkshop o n

  16. Power Plant Power Plant

    E-Print Network [OSTI]

    Tingley, Joseph V.

    Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

  17. Plants & Animals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plants & Animals Plants & Animals Plant and animal monitoring is performed to determine whether Laboratory operations are impacting human health via the food chain. February 2,...

  18. Space Instrument Realization (ISR-5)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Space Instrument Realization Providing expertise to support the design and fabrication of space-based custom instrumentation Contacts Group Leader Amy Regan Email Staff...

  19. Space Data Systems (ISR-3)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Space Data Systems Data collection and processing, information exploitation and delivery Contacts Group Leader Michael Cai Email Staff Operations Manager Nancy Graves Email...

  20. Space Data Systems (ISR-3)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYouofSolvingexplore correlation613 Space Data

  1. Space Instrument Realization (ISR-5)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYouofSolvingexplore correlation613Space45 Space

  2. The New Generation of Uranium In Situ Recovery Facilities: Design Improvements Should Reduce Radiological Impacts Relative to First Generation Uranium Solution Mining Plants

    SciTech Connect (OSTI)

    Brown, S.H. [CHP, SHB INC., Centennial, Colorado (United States)

    2008-07-01T23:59:59.000Z

    In the last few years, there has been a significant increase in the demand for Uranium as historical inventories have been consumed and new reactor orders are being placed. Numerous mineralized properties around the world are being evaluated for Uranium recovery and new mining / milling projects are being evaluated and developed. Ore bodies which are considered uneconomical to mine by conventional methods such as tunneling or open pits, can be candidates for non-conventional recovery techniques, involving considerably less capital expenditure. Technologies such as Uranium In Situ Leaching / In Situ Recovery (ISL / ISR - also referred to as 'solution mining'), have enabled commercial scale mining and milling of relatively small ore pockets of lower grade, and are expected to make a significant contribution to overall world wide uranium supplies over the next ten years. Commercial size solution mining production facilities have operated in the US since the mid 1970's. However, current designs are expected to result in less radiological wastes and emissions relative to these 'first' generation plants (which were designed, constructed and operated through the 1980's). These early designs typically used alkaline leach chemistries in situ including use of ammonium carbonate which resulted in groundwater restoration challenges, open to air recovery vessels and high temperature calcining systems for final product drying vs the 'zero emissions' vacuum dryers as typically used today. Improved containment, automation and instrumentation control and use of vacuum dryers in the design of current generation plants are expected to reduce production of secondary waste byproduct material, reduce Radon emissions and reduce potential for employee exposure to uranium concentrate aerosols at the back end of the milling process. In Situ Recovery in the U.S. typically involves the circulation of groundwater, fortified with oxidizing (gaseous oxygen e.g) and complexing agents (carbon dioxide, e.g) into an ore body, solubilizing the uranium in situ, and then pumping the solutions to the surface where they are fed to a processing plant ( mill). Processing involves ion exchange and may also include precipitation, drying or calcining and packaging operations depending on facility specifics. This paper presents an overview of the ISR process and the health physics monitoring programs developed at a number of commercial scale ISL / ISR Uranium recovery and production facilities as a result of the radiological character of these processes. Although many radiological aspects of the process are similar to that of conventional mills, conventional-type tailings as such are not generated. However, liquid and solid byproduct materials may be generated and impounded. The quantity and radiological character of these by products are related to facility specifics. Some special monitoring considerations are presented which are required due to the manner in which radon gas is evolved in the process and the unique aspects of controlling solution flow patterns underground. The radiological character of these processes are described using empirical data collected from many operating facilities. Additionally, the major aspects of the health physics and radiation protection programs that were developed at these first generation facilities are discussed and contrasted to circumstances of the current generation and state of the art of uranium ISR technologies and facilities. In summary: This paper has presented an overview of in situ Uranium recovery processes and associated major radiological aspects and monitoring considerations. Admittedly, the purpose was to present an overview of those special health physics considerations dictated by the in situ Uranium recovery technology, to point out similarities and differences to conventional mill programs and to contrast these alkaline leach facilities to modern day ISR designs. As evidenced by the large number of ISR projects currently under development in the U.S. and worldwide, non conventional Uranium recovery techniques

  3. Primitive Land Plants 37 PRIMITIVE LAND PLANTS

    E-Print Network [OSTI]

    Koptur, Suzanne

    Primitive Land Plants 37 PRIMITIVE LAND PLANTS These are the plants that were present soon after land was colonized, over 400 mil- lion years ago. A few plants living today are closely related to those ancient plants, and we often call them "living fossils". Two major lineages of plants evolved

  4. Physical Plant Power Plant - 32 

    E-Print Network [OSTI]

    Unknown

    2005-06-30T23:59:59.000Z

    ) for producing single-node cuttings. Regardless of reapplication stages, nutrient termination on 1 Oct. caused taller plants with more nodes, more leaves, more flowering nodes, more total flowers, and fewer aborted flowers than those being terminated earlier...

  5. Space Electronics and Signal Processing (ISR-4)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    detection and communications) LANL signature capabilities Nano-satellites Remote ultra low light imaging Quantum secured communications PDF JOBS Electrical Design Engineer...

  6. Space and Remote Sensing (ISR-2)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance assessment, anomaly resolution, support of electro-magnetic pulse (EMP) sensor missions Science: ionospheric propagation and effects, lightning science Designing...

  7. Space Electronics and Signal Processing (ISR-4)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYouofSolvingexplore correlation613Space4 Space

  8. Space and Remote Sensing (ISR-2)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYouofSolvingexplore2 Space and Remote Sensing

  9. Plant Operational Status - Pantex Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear AstrophysicsPayroll,Physics Physics An errorPlant

  10. Waste Treatment Plant Overview

    Office of Environmental Management (EM)

    contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the...

  11. Polyhydroxyalkanoate synthesis in plants

    DOE Patents [OSTI]

    Srienc, Friedrich (Lake Elmo, MN); Somers, David A. (Roseville, MN); Hahn, J. J. (New Brighton, MN); Eschenlauer, Arthur C. (Circle Pines, MN)

    2000-01-01T23:59:59.000Z

    Novel transgenic plants and plant cells are capable of biosynthesis of polyhydroxyalkanoate (PHA). Heterologous enzymes involved in PHA biosynthesis, particularly PHA polymerase, are targeted to the peroxisome of a transgenic plant. Transgenic plant materials that biosynthesize short chain length monomer PHAs in the absence of heterologous .beta.-ketothiolase and acetoacetyl-CoA reductase are also disclosed.

  12. Ethylene insensitive plants

    DOE Patents [OSTI]

    Ecker, Joseph R. (Carlsbad, CA); Nehring, Ramlah (La Jolla, CA); McGrath, Robert B. (Philadelphia, PA)

    2007-05-22T23:59:59.000Z

    Nucleic acid and polypeptide sequences are described which relate to an EIN6 gene, a gene involved in the plant ethylene response. Plant transformation vectors and transgenic plants are described which display an altered ethylene-dependent phenotype due to altered expression of EIN6 in transformed plants.

  13. NUCLEAR PLANT OPERATIONS AND

    E-Print Network [OSTI]

    Pázsit, Imre

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: neutron flux, cur- rent noise, vibration diagnostics: Swedish Nuclear Powe

  14. Art Hobson, ahobson@uark.edu For publication on 12 Oct 2014

    E-Print Network [OSTI]

    Hobson, Art

    , and between fossil fuels and global warming, then pulled out all the stops to deny the science linking ozone Among environmental disasters such as increasing carbon-dioxide levels, biological extinctions are finally increasing from their present dangerously low levels. Such ozone assessments are made every four

  15. Art Hobson, ahobson@uark.edu NWA Times, 31 August 2014

    E-Print Network [OSTI]

    Hobson, Art

    War II heavy bombers. People still debate the effect of the Hiroshima and Nagasaki bombs weapons, but without intercontinental range. Today, these weapons are humankind's greatest threat is Israel, with some 100 nuclear weapons. Pakistan is a nuclear power, but it's not in the Middle East

  16. Art Hobson, ahobson@uark.edu For publication on 21 Sep 2014

    E-Print Network [OSTI]

    Hobson, Art

    on this issue is terrible. He voted for the Keystone XL Pipeline, against the cap-and-trade bill, for Senator

  17. Art Hobson, ahobson@uark.edu For publication on 23 Nov 2014

    E-Print Network [OSTI]

    Hobson, Art

    or outlawed on environmental grounds. Now, as predicted, those chickens have come home to roost, upsetting of carbon dioxide--a carbon tax." Smart business thinking has for years taken a similar approach. In 2006 market failure the world has seen. ...The sooner we act, the lower the risk and cost." George Shultz

  18. Plant centromere compositions

    DOE Patents [OSTI]

    Mach, Jennifer M. (Chicago, IL); Zieler, Helge (Del Mar, CA); Jin, RongGuan (Chesterfield, MO); Keith, Kevin (Three Forks, MT); Copenhaver, Gregory P. (Chapel Hill, NC); Preuss, Daphne (Chicago, IL)

    2011-08-02T23:59:59.000Z

    The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  19. Plant centromere compositions

    DOE Patents [OSTI]

    Mach, Jennifer (Chicago, IL); Zieler, Helge (Chicago, IL); Jin, RongGuan (Chicago, IL); Keith, Kevin (Chicago, IL); Copenhaver, Gregory (Chapel Hill, NC); Preuss, Daphne (Chicago, IL)

    2007-06-05T23:59:59.000Z

    The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  20. Plant centromere compositions

    DOE Patents [OSTI]

    Keith, Kevin; Copenhaver, Gregory; Preuss, Daphne

    2006-10-10T23:59:59.000Z

    The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  1. Plant centromere compositions

    DOE Patents [OSTI]

    Mach, Jennifer (Chicago, IL); Zieler, Helge (Chicago, IL); Jin, James (Chicago, IL); Keith, Kevin (Chicago, IL); Copenhaver, Gregory (Chapel Hill, NC); Preuss, Daphne (Chicago, IL)

    2006-06-26T23:59:59.000Z

    The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  2. Plant centromere compositions

    DOE Patents [OSTI]

    Mach; Jennifer M. (Chicago, IL), Zieler; Helge (Del Mar, CA), Jin; RongGuan (Chesterfield, MO), Keith; Kevin (Three Forks, MT), Copenhaver; Gregory P. (Chapel Hill, NC), Preuss; Daphne (Chicago, IL)

    2011-11-22T23:59:59.000Z

    The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  3. HYDROCARBONS & ENERGY FROM PLANTS

    E-Print Network [OSTI]

    Nemethy, E.K.

    2011-01-01T23:59:59.000Z

    LBL-8596 itr-t C,d.. HYDROCARBONS & ENERGY FROM PLANTS jmethods of isolating the hydrocarbon-like material from I.privatelyownedrights. HYDROCARBONS AND ENERGY FROM PLANTS

  4. NUCLEAR PLANT AND CONTROL

    E-Print Network [OSTI]

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: software require- ments, safety analysis, formal, the missiles, and the digital protection systems embed- ded in nuclear power plants. Obviously, safety method SOFTWARE SAFETY ANALYSIS OF DIGITAL PROTECTION SYSTEM REQUIREMENTS USING A QUALITATIVE FORMAL

  5. Propagation of Ornamental Plants.

    E-Print Network [OSTI]

    DeWerth, A. F.

    1955-01-01T23:59:59.000Z

    Propagation of Ornamental Plants I A. I?. DEWERTH, Head Department of Floriculture and Landscape Architecture Texas A. & M. College System THE MULTIPLICATION of ornamental plants is After sterilizing, firm the soil to within 1; receiving more...

  6. Poisonous Plant Management. 

    E-Print Network [OSTI]

    McGinty, Allan

    1985-01-01T23:59:59.000Z

    . Toxic plants also contribute to indirect losses such as reduced calving , lambing or kidding percentages and reduced fiber production and weight gain. Direct and indirect losses from poisonous plants in Texas cost livestock producers from $50 million... to $100 million annually. In the United States, more than 400 species of poisonous plants have been identified. These toxic plants are generally not found in greatest abundance on good-to-excellent condition range but are, with few exceptions...

  7. PERSPECTIVES Interpretingphenotypicvariationin plants

    E-Print Network [OSTI]

    Saleska, Scott

    PERSPECTIVES Interpretingphenotypicvariationin plants James S. Coleman Kelly D.M. McConnaughay David D. Ackerly Plant ecologists and evolutionary biologists frequently examine patterns of phenotypic phenotypic traits change throughout growth and development of individual plants, and that rates of growth

  8. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01T23:59:59.000Z

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  9. Plant evolution The Evolution

    E-Print Network [OSTI]

    Rieseberg, Loren

    Plant evolution The Evolution of Plants by Kathy J. Willis and Jenny C. McElwain. Oxford University Press, 2002. $40.00/£22.99 pbk (378 pages) ISBN 0 19 850065 3 Developmental Genetics and Plant Evolution is observed for treatments of evolution and development. Titles of major monographs on the subject imply

  10. Insect-Plant Interactions Insects & Plants Evolution of land plants (especially

    E-Print Network [OSTI]

    Brown, Christopher A.

    1 Insect-Plant Interactions Insects & Plants Evolution of land plants (especially flowering plants) a major force driving the diversity of insects As diversity of land plants has increased, the diversity of insects has increased Interaction between plants and insects is an example of coevolution Coevolution

  11. Conditional sterility in plants

    DOE Patents [OSTI]

    Meagher, Richard B. (Athens, GA); McKinney, Elizabeth (Athens, GA); Kim, Tehryung (Taejeon, KR)

    2010-02-23T23:59:59.000Z

    The present disclosure provides methods, recombinant DNA molecules, recombinant host cells containing the DNA molecules, and transgenic plant cells, plant tissue and plants which contain and express at least one antisense or interference RNA specific for a thiamine biosynthetic coding sequence or a thiamine binding protein or a thiamine-degrading protein, wherein the RNA or thiamine binding protein is expressed under the regulatory control of a transcription regulatory sequence which directs expression in male and/or female reproductive tissue. These transgenic plants are conditionally sterile; i.e., they are fertile only in the presence of exogenous thiamine. Such plants are especially appropriate for use in the seed industry or in the environment, for example, for use in revegetation of contaminated soils or phytoremediation, especially when those transgenic plants also contain and express one or more chimeric genes which confer resistance to contaminants.

  12. Modulating lignin in plants

    DOE Patents [OSTI]

    Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

    2013-01-29T23:59:59.000Z

    Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

  13. Plant pathogen resistance

    DOE Patents [OSTI]

    Greenberg, Jean T; Jung, Ho Won; Tschaplinski, Timothy

    2012-11-27T23:59:59.000Z

    Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

  14. NUCLEAR PLANT OPERATIONS AND

    E-Print Network [OSTI]

    Demazière, Christophe

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: moderator temper ature coefficient, reactivity co reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed absorption cross-section behavior. Consequently, if NUCLEAR TECHNOLOGY VOL. 140 NOV. 2002 147 #12;Demazière

  15. NUCLEAR PLANT OPERATIONS AND

    E-Print Network [OSTI]

    Pázsit, Imre

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: moderator temper- ature coefficient, reactivity co reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed. Consequently, if*E-mail: demaz@nephy.chalmers.se NUCLEAR TECHNOLOGY VOL. 140 NOV. 2002 147 #12;high-burnup fuel

  16. PHYSICAL PLANT POLICY & PROCEDURE

    E-Print Network [OSTI]

    Fernandez, Eduardo

    PHYSICAL PLANT POLICY & PROCEDURE TITLE PHYSICAL PLANT HIGH VOLTAGE PREVENTIVE MAINTENANCE OBJECTIVE AND PURPOSE To establish a consistent policy of performing Preventive Maintenance on high voltage by the G.S.A. Preventive Maintenance sections E- 29 (high voltage oil circuit breaker), E-32 (high voltage

  17. Plant Ecology An Introduction

    E-Print Network [OSTI]

    Cochran-Stafira, D. Liane

    1 Plant Ecology An Introduction Ecology as a Science Study of the relationships between living and causes of the abundance and distribution of organisms Ecology as a Science We'll use the perspective of terrestrial plants Basic ecology - ecological principles Applied ecology - application of principles

  18. Sandia Energy - Wind Plant Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Plant Optimization Home Stationary Power Energy Conversion Efficiency Wind Energy Wind Plant Optimization Wind Plant OptimizationTara Camacho-Lopez2015-05-29T21:33:21+00:00...

  19. Calibration of Cotton Planting Mechanisms.

    E-Print Network [OSTI]

    Smith, H. P. (Harris Pearson); Byrom, Mills H. (Mills Herbert)

    1936-01-01T23:59:59.000Z

    per foot. To obtain a perfect stand of one plant to Foot, a minimum of 1 to a maximum of 11 plants per foot wonld have to be thinned out. The number for picker wheel- drop planting mechanisms ranged from a minimum of 2 to a maxi- mum of 27 plants... per foot, requiring the removal of from 1 to 26 nlants per foot to leave one plant per foot. CONTENTS Introduction History of cotton planter development ------------.---------------------------------- Cottonseed planting mechanisms Requirements...

  20. Nuclear Power Plant Design Project

    E-Print Network [OSTI]

    Nuclear Power Plant Design Project A Response to the Environmental and Economic Challenge Of Global.............................................................................................................. 4 3. Assessment of the Issues and Needs for a New Plant

  1. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  2. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  3. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  4. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  5. California Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  6. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  7. Texas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  8. Pennsylvania Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  9. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  10. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  11. Nebraska Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  12. Arizona Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  13. Connecticut Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  14. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  15. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  16. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  17. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  18. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  19. Plant Vascular Biology 2010

    SciTech Connect (OSTI)

    Ding, Biao

    2014-11-17T23:59:59.000Z

    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  20. Poisonous Plant Management.

    E-Print Network [OSTI]

    McGinty, Allan

    1985-01-01T23:59:59.000Z

    are most grass, acid leg paralysis, dribbling urine susceptible to poisoning sorghum, by sorghum sorghum alum Stillingia Trecul Hydrocyanic See prussic acid poisoning Numerous sheep losses to treculiana queensdelight acid this plant have occurred...

  1. Geothermal Demonstration Plant

    Office of Scientific and Technical Information (OSTI)

    a 50 W e binary conversion plant at Heber was initiated and is presented herein. Chevron Oil Company (the field operator) predicts that the reservoir i ill decline from an initial...

  2. Plant Site Refrigeration Upgrade

    E-Print Network [OSTI]

    Zdrojewski, R.; Healy, M.; Ramsey, J.

    Bayer Corporation operates a multi-division manufacturing facility in Bushy Park, South Carolina. Low temperature refrigeration (-4°F) is required by many of the chemical manufacturing areas and is provided by a Plant Site Refrigeration System...

  3. AJH November 2012 PLANT QUALITY

    E-Print Network [OSTI]

    AJH November 2012 PLANT QUALITY TESTING SERVICE THE SERVICE uses morphological standards for forest to obtain information about the quality of their planting stock before planting. will indicate the likely Potential (RGP) 15 150 FURTHER INFORMATION See the Forest Research, Plant Quality Testing web page: http

  4. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01T23:59:59.000Z

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  5. Willow plant name 'Preble'

    SciTech Connect (OSTI)

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2014-06-10T23:59:59.000Z

    A distinct female cultivar of Salix viminalis.times.(Salix sachalinensis.times.Salix miyabeana) named `Preble`, characterized by rapid stem growth producing 29% more woody biomass than the average of three current production cultivars (Salix.times.dasyclados `SV1` (unpatented), Salix sachalinensis `SX61` (unpatented), and Salix miyabeana `SX64` (unpatented)) when grown in the same field for the same length of time (three growing seasons after coppice) in two different trials in Constableville, N.Y. and Middlebury, Vt. `Preble` can be planted from dormant stem cuttings, produces multiple stems after coppice and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested repeatedly after two to four years of growth. `Preble` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

  6. THE PLANT SOIL INTERFACE: NICKEL BIOAVAILABILITY AND THE MECHANISMS OF PLANT HYPERACCUMULATION

    E-Print Network [OSTI]

    Sparks, Donald L.

    THE PLANT SOIL INTERFACE: NICKEL BIOAVAILABILITY AND THE MECHANISMS OF PLANT HYPERACCUMULATION and Learning Company. #12;ii THE PLANT SOIL INTERFACE: NICKEL BIOAVAILABILITY AND THE MECHANISMS OF PLANT

  7. Mechanisms in Plant Development

    SciTech Connect (OSTI)

    Hake, Sarah [USDA ARS Plant Gene Expression Center

    2013-08-21T23:59:59.000Z

    This meeting has been held every other year for the past twenty-two years and is the only regularly held meeting focused specifically on plant development. Topics covered included: patterning in developing tissues; short and long distance signaling; differentiation of cell types; the role of epigenetics in development; evolution; growth.

  8. B Plant hazards assessment

    SciTech Connect (OSTI)

    Broz, R.E.

    1994-09-23T23:59:59.000Z

    This document establishes the technical basis in support of Emergency Planning Activities for B Plant on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE Order 5500.3A. Through this document, the technical basis for the development of facility specific , Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  9. Pinellas Plant facts

    SciTech Connect (OSTI)

    NONE

    1990-11-01T23:59:59.000Z

    The Pinellas Plant, near St. Petersburg, Florida, is wholly owned by the United States Government. It is operated for the Department of Energy (DOE) by GE Aerospace, Neutron Devices (GEND). This plant was built in 1956 to manufacture neutron generators, a principal component in nuclear weapons. The neutron generators built at Neutron Devices consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. Production of these devices has necessitated the development of several uniquely specialized areas of competence and supporting facilities. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology; hermetic seals between glass, ceramic, glass-ceramic, and metal materials; plus high voltage generation and measurement technology. The existence of these capabilities at Neutron Devices has led directly to the assignment of other weapon application products: the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Other product assignments such as active and reserve batteries and the radioisotopically-powered thermoelectric generator evolved from the plant`s materials measurement and controls technologies which are required to ensure neutron generator life.

  10. Native Vegetation Planting Guidelines

    E-Print Network [OSTI]

    Wang, Yan

    1 Native Vegetation Planting Guidelines Based on Sustainability Goals for the Macquarie Campus #12.................................................................................................................................10 4.2.5 Shale-Sandstone soil transition...................................................................................................................................11 #12;3 1. Purpose This document provides a guideline for specific grounds management procedures

  11. Steam Plant, 6% Irrigation,

    E-Print Network [OSTI]

    Zhou, Pei

    Steam Plant, 6% School of Medicine, 17% Irrigation, 3% Hospital, 22% Athletics, 2% Housing, 5 · Rainwater Cisterns · Reducing the number of once through cooling systems in labs · Expediting the connection for Irrigation ~15 million gallons Percent of Water Used for Irrigation that is Non-Potable ~10-15% Number

  12. Scale Insects on Ornamental Plants 

    E-Print Network [OSTI]

    Muegge, Mark A.; Merchant, Michael E.

    2000-08-21T23:59:59.000Z

    Scale insects on o rnamental plants B-6097 8-00 Mark A. Muegge and Michael Merchant* M any species of scale insects damage land- scape plants, shrubs and trees. Scale insects insert their mouthparts into plant tissues and suck out the sap. When... period. Most species never move again in their lives. Scale insects feed by inserting their hairlike mouth- parts into plant tissue and siphoning the plant?s sap. While feeding, many species excrete a sweet, sticky liquid referred to as ?honeydew...

  13. MSU Departmental Assessment Plan Department: Plant Sciences and Plant Pathology

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Environmental Horticulture major Environmental Horticulture Science option Landscape Design option Biotechnology (Environmental Horticultural Science, Landscape Design, Plant Biology, Crop Science, and Biotechnology major Plant Biotechnology option Sustainable Food and Bioenergy Systems major Sustainable Crop

  14. Top 10 plant pathogenic bacteria in molecular plant pathology.

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    Foster, G.D. (2012) The top 10 fungal pathogens in molecularBLACKWELL PUBLISHING LTD Top 10 plant pathogenic bacteriaC. and Foster, G.D. (2011) Top 10 plant viruses in molecular

  15. Production of virus resistant plants

    DOE Patents [OSTI]

    Dougherty, W.G.; Lindbo, J.A.

    1996-12-10T23:59:59.000Z

    A method of suppressing virus gene expression in plants using untranslatable plus sense RNA is disclosed. The method is useful for the production of plants that are resistant to virus infection. 9 figs.

  16. Gene encoding plant asparagine synthetase

    DOE Patents [OSTI]

    Coruzzi, Gloria M. (New York, NY); Tsai, Fong-Ying (New York, NY)

    1993-10-26T23:59:59.000Z

    The identification and cloning of the gene(s) for plant asparagine synthetase (AS), an important enzyme involved in the formation of asparagine, a major nitrogen transport compound of higher plants is described. Expression vectors constructed with the AS coding sequence may be utilized to produce plant AS; to engineer herbicide resistant plants, salt/drought tolerant plants or pathogen resistant plants; as a dominant selectable marker; or to select for novel herbicides or compounds useful as agents that synchronize plant cells in culture. The promoter for plant AS, which directs high levels of gene expression and is induced in an organ specific manner and by darkness, is also described. The AS promoter may be used to direct the expression of heterologous coding sequences in appropriate hosts.

  17. Production of virus resistant plants

    DOE Patents [OSTI]

    Dougherty, William G. (Philomath, OR); Lindbo, John A. (Kent, WA)

    1996-01-01T23:59:59.000Z

    A method of suppressing virus gene expression in plants using untranslatable plus sense RNA is disclosed. The method is useful for the production of plants that are resistant to virus infection.

  18. Louisiana Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  19. Belgrade Lot Steam Plant Lot

    E-Print Network [OSTI]

    Thomas, Andrew

    2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Chadbourne Merrill Aubert Hannibal Hamlin Steam Plant Crosby Machine Tool Lab Children's Center Rogers N

  20. Belgrade Lot Steam Plant Lot

    E-Print Network [OSTI]

    Thomas, Andrew

    2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Hamlin Steam Plant Crosby Machine Tool Lab Children's Center Rogers N S Estabrooke Memorial Gym Stevens

  1. Belgrade Lot Steam Plant Lot

    E-Print Network [OSTI]

    Thomas, Andrew

    2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Oceanographic Operations 1 2 8 5 3 4 7 6 AMC Chadbourne Merrill Aubert Hannibal Hamlin Steam Plant Crosby

  2. http://www.isr.uci.edu/ Knowledge-based Architectural

    E-Print Network [OSTI]

    Georgas, John

    autonomously change in response to dynamic conditions: Behavior, property, environment, etc. Architecture sensor nodes. Connector (C1) Battery Monitor (M) Monitors battery levels and emits notifications. Data: Sensor Network Re-Transmission Data Receiver (R) Receives data from sensor nodes. Connector (C1) Battery

  3. Sandia National Laboratories: Pathfinder Airborne ISR Systems: Areas of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTube Flickr RSSStrategic Plan Annual

  4. Sandia National Laboratories: Pathfinder Airborne ISR Systems: Areas of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTube Flickr RSSStrategic Plan AnnualExpertise:

  5. Sandia National Laboratories: Pathfinder Airborne ISR Systems: Areas of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTube Flickr RSSStrategic Plan

  6. Sandia National Laboratories: Pathfinder Airborne ISR Systems: Areas of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTube Flickr RSSStrategic PlanExpertise: Missions

  7. Sandia National Laboratories: Pathfinder Airborne ISR Systems: Areas of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTube Flickr RSSStrategic PlanExpertise:

  8. Sandia National Laboratories: Pathfinder Airborne ISR Systems: Areas of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTube Flickr RSSStrategic PlanExpertise:Expertise:

  9. Sandia National Laboratories: Pathfinder Airborne ISR Systems: Areas of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTube Flickr RSSStrategic

  10. Sandia National Laboratories: Pathfinder Airborne ISR Systems: What is

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTube Flickr RSSStrategicSynthetic Aperture Radar?

  11. Sandia National Laboratories: Pathfinder Airborne ISR and Synthetic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and NuclearReport PartnershipsNews Videos San

  12. Los Alamos plants willows for flood recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plants willows Los Alamos plants willows for flood recovery The Laboratory's Corrective Actions Program (CAP) planted nearly 10,000 willows to help preserve the Pueblo Canyon...

  13. CONSTRUCTION OF NUCLEAR POWER PLANTS

    E-Print Network [OSTI]

    CONSTRUCTION OF NUCLEAR POWER PLANTS A Workshop on "NUCLEAR ENERGY RENAISSANCE" Addressing WAS DEEPLY INVOLVED IN ALMOST EVERY ASPECT OF BUILDING THE PLANTS THROUGH · Quality Assurance · Nuclear IN CONSTRUCTION OF ST. LUCIE-2 #12;LESSONS LEARNED FROM St. Lucie-2 NUCLEAR POWER PLANTS CAN BE BUILT

  14. Regulating nutrient allocation in plants

    DOE Patents [OSTI]

    Udvardi, Michael; Yang, Jiading; Worley, Eric

    2014-12-09T23:59:59.000Z

    The invention provides coding and promoter sequences for a VS-1 and AP-2 gene, which affects the developmental process of senescence in plants. Vectors, transgenic plants, seeds, and host cells comprising heterologous VS-1 and AP-2 genes are also provided. Additionally provided are methods of altering nutrient allocation and composition in a plant using the VS-1 and AP-2 genes.

  15. Jennings Demonstration PLant

    SciTech Connect (OSTI)

    Russ Heissner

    2010-08-31T23:59:59.000Z

    Verenium operated a demonstration plant with a capacity to produce 1.4 million gallons of cellulosic ethanol from agricultural resiues for about two years. During this time, the plant was able to evaluate the technical issues in producing ethanol from three different cellulosic feedstocks, sugar cane bagasse, energy cane, and sorghum. The project was intended to develop a better understanding of the operating parameters that would inform a commercial sized operation. Issues related to feedstock variability, use of hydrolytic enzymes, and the viability of fermentative organisms were evaluated. Considerable success was achieved with pretreatment processes and use of enzymes but challenges were encountered with feedstock variability and fermentation systems. Limited amounts of cellulosic ethanol were produced.

  16. Integrated turbomachine oxygen plant

    SciTech Connect (OSTI)

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17T23:59:59.000Z

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  17. Pinellas Plant Environmental Baseline Report

    SciTech Connect (OSTI)

    Not Available

    1997-06-01T23:59:59.000Z

    The Pinellas Plant has been part of the Department of Energy`s (DOE) nuclear weapons complex since the plant opened in 1957. In March 1995, the DOE sold the Pinellas Plant to the Pinellas County Industry Council (PCIC). DOE has leased back a large portion of the plant site to facilitate transition to alternate use and safe shutdown. The current mission is to achieve a safe transition of the facility from defense production and prepare the site for alternative uses as a community resource for economic development. Toward that effort, the Pinellas Plant Environmental Baseline Report (EBR) discusses the current and past environmental conditions of the plant site. Information for the EBR is obtained from plant records. Historical process and chemical usage information for each area is reviewed during area characterizations.

  18. Texas Plant Diseases Handbook.

    E-Print Network [OSTI]

    Horne, C. Wendell; Amador, Jose M.; Johnson, Jerral D.; McCoy, Norman L.; Philley, George L.; Lee, Thomas A. Jr.; Kaufman, Harold W.; Jones, Roger K.; Barnes, Larry W.; Black, Mark C.

    1988-01-01T23:59:59.000Z

    of the lesion turns brown. With age, 1 es ions en 1 arge and coa 1 esce. The ent i re 1 eaf fi na 11 y drops. Stem lesions appear as long, reddish colored spots. When the plant begins to set fruit, lesions are formed at the nodes \\'Jhich girdle the stem... gi v i ng the 1 eaf a "shot-ho 1 e" appearance, simi 1 ar to those caused by anthracnose. Spots on fruit are usua lly sma 11 er and circul ar in shape. Bacteria overwinter in crop residue and on seed. Hard rains splash the bacteria to stems...

  19. Plants & Animals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum ReservesThrustBonnevillePlans arePlants &

  20. B Plant - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumni AlumniFederalAshleymonthlyAwards SmallStatutesPacificPlant

  1. Gasification Plant Databases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding OpportunityF GGaryPortalPlant

  2. Nuclear Plant/Hydrogen Plant Safety: Issues and Approaches

    SciTech Connect (OSTI)

    Steven R. Sherman

    2007-06-01T23:59:59.000Z

    The U.S. Department of Energy, through its agents the Next Generation Nuclear Plant Project and the Nuclear Hydrogen Initiative, is working on developing the technologies to enable the large scale production of hydrogen using nuclear power. A very important consideration in the design of a co-located and connected nuclear plant/hydrogen plant facility is safety. This study provides an overview of the safety issues associated with a combined plant and discusses approaches for categorizing, quantifying, and addressing the safety risks.

  3. How Plants Grow name______________ Plants can grow from more than just seeds. Let's look at

    E-Print Network [OSTI]

    Koptur, Suzanne

    How Plants Grow name______________ Plants can grow from more than just seeds. Let's look at some of these ways you can grow plants. CUTTINGS Many plants can be started from cuttings (pieces of a bigger plant). A good place to make a cutting is fromone of the growing points of the plant (stem-tip). Some plants like

  4. Morris Plant Energy Efficiency Program 

    E-Print Network [OSTI]

    Betczynski, M. T.

    2004-01-01T23:59:59.000Z

    installed on several olefins cracking furnaces in order to improve heat recovery from the cracked process gas. As a result of the additional heat recovery, steam imported from the cogeneration facility was reduced by 45,000 lbs/hr. The large turbines... integrated an Aspen-based plant-wide data historian, which is utilized to compile process data from control and measurement points throughout the Morris plant. On-line optimization using this extensive data repository has helped the plant better...

  5. Overview BETTER BUILDINGS, BETTER PLANTS

    Energy Savers [EERE]

    are available to Better Plants Partners on a facilitated basis. These resources include free energy audits for qualifying facilities, energy analysis software tools, and...

  6. Power Plant Modeling and Simulation

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    The National Energy Technology Laboratory's Office of Research and Development provides open source tools and expetise for modeling and simulating power plants and carbon sequestration technologies.

  7. Owners of nuclear power plants

    SciTech Connect (OSTI)

    Hudson, C.R.; White, V.S.

    1996-11-01T23:59:59.000Z

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  8. Plant Population Viability and Restoration Potential for Rare Plants

    E-Print Network [OSTI]

    Plant Population Viability and Restoration Potential for Rare Plants Near Solar Installations ENVIRONMENTAL AREA RESEARCH PIER Environmental Research www.energy.ca.gov/research/ environmental March 2011 with renewable energy by 2020. Largescale solar developments are needed to achieve this goal

  9. Plant Importation Importing "Plant Material" From Outside Canada

    E-Print Network [OSTI]

    Plant Importation Importing "Plant Material" From Outside Canada 1) Determine whether) If a permit is required from the CFIA* (a division of Agriculture Canada), please go to the CFIA website Agency Canada (PHAC) or the Canadian Food Inspection Agency (CFIA). #12;

  10. Managing plant symbiosis: fungal endophyte genotype alters plant community composition

    E-Print Network [OSTI]

    Rudgers, Jennifer

    Managing plant symbiosis: fungal endophyte genotype alters plant community composition Jennifer A hosts the foliar endophytic fungus, Neotypho- dium coenophialum. We quantified vegetation development of the endophyte (KY-31, AR-542) in two tall fescue cultivars (Georgia-5, Jesup). The KY-31 endophyte produces

  11. Planting and Mulching Trees and Shrubs Selecting healthy plants

    E-Print Network [OSTI]

    New Hampshire, University of

    Planting and Mulching Trees and Shrubs Selecting healthy plants Take a step back to examine swollen nodules at the container edge, rather than circling like in a plastic container. The nodules store with soil or mulch ­ ignore these and find the first permanent woody root growing radially out from

  12. Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation Plants

    E-Print Network [OSTI]

    Bushnell, James B.; Wolfram, Catherine

    2005-01-01T23:59:59.000Z

    ciency of Electric Generating Plants: A Stochastic Frontierthe existing stock of electricity generating plants. Betweenover 300 electric generating plants in the US, accounting

  13. Next Generation Geothermal Power Plants

    SciTech Connect (OSTI)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01T23:59:59.000Z

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

  14. (Photosynthesis in intact plants)

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    Progress in the two years since the last renewal application has been excellent. We have made substantial contributions on both main fronts of the projects, and are particularly happy with the progress of our research on intact plants. The approach of basing our field work on a sound foundation of laboratory studies has enabled is to use methods which provide unambiguous assays of well characterized reactions. We have also made excellent progress in several laboratory studies which will have direct applications in future field work, and have introduced to the laboratory a range of molecular genetics techniques which will allow us to explore new options in the attempt to understand function at the level of molecular structure.

  15. Do Plants Sweat? Core Content

    E-Print Network [OSTI]

    Kessler, Bruce

    in the bright sun and others are grouped together and are regularly sprinkled with water. You begin to wonder plant distribution where you see this principle in action? -Can you predict the effect of seasons data/graph] Three plants are grown in the same greenhouse with the same air temperature, amount

  16. Graduate Programs in Plant Biology and

    E-Print Network [OSTI]

    Wildermuth, Mary C

    not re- biochemistry, cell and molecular biology (B22). pmb.berkeley.edu Plant&Microbial Biology #12;The to the environment will continue to fuel the expansion of plant research well into the future. The plant biology program focuses on contemporary ba- sic plant research, design of biotechnologies, and plant-microbe

  17. Plant maintenance and plant life extension issue, 2007

    SciTech Connect (OSTI)

    Agnihotri, Newal (ed.)

    2007-03-15T23:59:59.000Z

    The focus of the March-April issue is on plant maintenance and plant life extension. Major articles/reports in this issue include: Three proposed COLs expected in 2007, by Dale E. Klein, U.S. Nuclear Regulatory Commission; Delivering behaviors that our customers value, by Jack Allen, Westinghouse Electric Company; Facilitating high-level and fuel waste disposal technologies, by Malcolm Gray, IAEA, Austria; Plant life management and long-term operation, by Pal Kovacs, OECD-NEA, France; Measuring control rod position, by R. Taymanov, K. Sapozhnikova, I. Druzhinin, D.I. Mendeleyev, Institue for Metrology, Russia; and, 'Modernization' means higher safety, by Svetlana Genova, Kozluduy NPP plc, Bulgaria.

  18. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect (OSTI)

    John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; David Mintner; Wendy Moore; Jimmy O. Ong; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Kalapi D. Sheth; Phil J. Shires; Rae Song

    2001-05-17T23:59:59.000Z

    The overall objective of this project is the three-phase development of an Early Entrance Coproduction Plant (EECP) that produces at least one product from at least two of the following three categories: Electric power (or heat); Fuels; and Chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or some other carbonaceous feedstock, such as petroleum coke. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing (RD and T) Plan for implementation in Phase II. This objective has now been accomplished. A specific site, Motiva Refinery in Port Arthur, Texas, has been selected as the location best suited for the EECP. The accomplishments of Phase I are discussed in detail in this Phase I Concept Report. A RD and T Plan and a preliminary project financing plan have been developed and are submitted separately from this report.

  19. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect (OSTI)

    John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; Jimmy O. Ong; Sarah J. Patel; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Phil J. Shires; Rae Song

    2001-02-15T23:59:59.000Z

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing Plan (RD and T) for implementation in Phase II. The objective of Phase II is to implement the RD and T as outlined in the Phase I RD and T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

  20. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect (OSTI)

    Mushtaq Ahmed; John H. Anderson; Earl R. Berry; Troy Raybold; Lalit S. Shah; Kenneth A. Yackly

    2003-12-16T23:59:59.000Z

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objectives of Phase I were to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The work performed under Phase II will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

  1. Early Entrance Coproduction Plant

    SciTech Connect (OSTI)

    Mushtaq Ahmed; John H. Anderson; Earl R. Berry; Troy Raybold; Lalit S. Shah; Kenneth A. Yackly

    2004-01-26T23:59:59.000Z

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstocks. The objectives of Phase I were to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan for implementation in Phase II; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The work performed under Phase II will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and/or other carbonaceous feedstocks. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation.

  2. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect (OSTI)

    John S. Abughazaleh; Mushtaq Ahmed; Ashok Anand; John H. Anderson; Charles Benham; Fred D. Brent; Thomas E. Chance; William K. Davis; Raymond F. Drnevich; Larry Hall; Ming He; Stephen A. Lang; Jimmy O. Ong; Sarah J. Patel; George Potoczniak; Adela G. Sanchez; Charles H. Schrader; Lalit S. Shah; Phil J. Shires; Rae Song

    2000-10-26T23:59:59.000Z

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or other carbonaceous feedstock. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing Plan (RD and T) for implementation in Phase II. The objective of Phase II is to implement the RD and T as outlined in the Phase I RD and T Plan to enhance the development and commercial acceptance of coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and other feedstocks. The objective of Phase III is to develop an engineering design package and a financing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

  3. Plant Energy Cost Optimization Program (PECOP)

    E-Print Network [OSTI]

    Robinson, A. M.

    1980-01-01T23:59:59.000Z

    The Plant Energy Cost Optimization Program (PECOP) is a Management System designed to reduce operating cost in a continuous operating multi product plant by reviewing all cost factors and selecting plant wide production schedules which are most...

  4. Regulatory status of transgrafted plants is unclear

    E-Print Network [OSTI]

    Haroldsen, Victor M; Paulino, Gabriel; Chi-ham, Cecilia; Bennett, Alan B

    2012-01-01T23:59:59.000Z

    publicatie/new-techniques-in- plant-biotechnology (accessedJuglans regia L. ). ).Plant Sci 163(3):591–7. Gonsalves D.improvement. Frontiers Plant Sci 3:39. Heselmans M. 2011.

  5. Review: Rare Plants of Washington State

    E-Print Network [OSTI]

    Miller, Ryder W.

    2013-01-01T23:59:59.000Z

    Field Guide to the Rare Plants of Washington Pamela Camp andField Guide to the Rare Plants of Washington. Seattle, WA:State’s 3600 vascular plants, 600 mosses, and 1000-1500

  6. Fate of Radionuclides in Wastewater Treatment Plants

    E-Print Network [OSTI]

    Shabani Samgh Abadi, Farzaneh

    2013-01-01T23:59:59.000Z

    due to the Fukushima nuclear plant accident. Journal of21 3. NUCLEAR POWER PLANTS……………………………………………….. 23 3.1-25 3.2- WASTES FROM NUCLEAR POWER PLANTS………………………… 28 4.

  7. Technology Data for Energy Plants June 2010

    E-Print Network [OSTI]

    ................................................................................................... 35 03 Rebuilding Coal Power Plants to Biomass.......................................................................................................................... 27 01 Advanced Pulverized Fuel Power PlantTechnology Data for Energy Plants June 2010 #12;ISBNwww: 978-87-7844-857-6 #12;2 Table of contents

  8. Geothermal Heat Flow and Existing Geothermal Plants | Department...

    Energy Savers [EERE]

    Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Plants With plants in development. Click...

  9. ASSESSING PLANTING STOCK QUALITY Comprehensive assessments of planting stock

    E-Print Network [OSTI]

    Standiford, Richard B.

    for cold storage, and to evaluate effects of traditional and proposed nursery cultural practices on field and Jenkinson 1970, 1971) just after lifting and after cold storage to spring planting time · Field survival

  10. Automating An Industrial Power Plant 

    E-Print Network [OSTI]

    Williams, D. R.; McCowen, R. R.

    1987-01-01T23:59:59.000Z

    and electricity requirements of the Component Works as well as all of the heat and a portion of the electricity needed by the adjacent John Deere Foundry. This paper describes the automation of an eXisting industrial power plant and tells how the project...AUTlliATING AN INDUSTRIAL POWER PLANT DAVID R. WILLIAMS, P.E. Energy Coordi?nator John Deere Component Works Waterloo, Iowa ABSTRACT The need for an upgrade of boiler and turbine controls in the 15 MW coal-fired cogeneration plant...

  11. Plant maintenance and plant life extension issue, 2009

    SciTech Connect (OSTI)

    Agnihotri, Newal (ed.)

    2009-03-15T23:59:59.000Z

    The focus of the March-April issue is on plant maintenance and plant life extension. Major articles include the following: Application of modeling and simulation to nuclear power plants, by Berry Gibson, IBM, and Rolf Gibbels, Dassault Systems; Steam generators with tight manufacturing procedures, by Ei Kadokami, Mitsubishi Heavy Industries; SG design based on operational experience and R and D, by Jun Tang, Babcock and Wilcox Canada; Confident to deliver reliable performance, by Bruce Bevilacqua, Westinghouse Nuclear; An evolutionary plant design, by Martin Parece, AREVA NP, Inc.; and, Designed for optimum production, by Danny Roderick, GE Hitachi Nuclear Energy. Industry Innovation articles include: Controlling alloy 600 degradation, by John Wilson, Exelon Nuclear Corporation; Condensate polishing innovation, by Lewis Crone, Dominion Millstone Power Station; Reducing deposits in steam generators, by the Electric Power Research Institute; and, Minimizing Radiological effluent releases, by the Electric Power Research Institute. The plant profile article is titled 2008 - a year of 'firsts' for AmerenUE's Callaway plant, by Rick Eastman, AmerenUE.

  12. HYDROCARBONS FROM PLANTS: ANALYTICAL METHODS AND OBSERVATIONS

    E-Print Network [OSTI]

    Calvin, Melvin

    2013-01-01T23:59:59.000Z

    molecular weights of various hydrocarbon materials for fuelof oil and alcohol from hydrocarbon-producing plants. Into Die Naturwissenschaften HYDROCARBONS FROM PLANTS: METHODS

  13. Natural Gas Processing Plant- Sulfur (New Mexico)

    Broader source: Energy.gov [DOE]

    This regulation establishes sulfur emission standards for natural gas processing plants. Standards are stated for both existing and new plants. There are also rules for stack height requirements,...

  14. North Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  15. New Jersey Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  16. South Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  17. New York Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  18. Pre-In-Plant Training Webinar (Steam)

    Broader source: Energy.gov [DOE]

    This pre-In-Plant training webinar for the Better Plants Program covers how to find energy savings in steam systems.

  19. The Politically Correct Nuclear Energy Plant

    E-Print Network [OSTI]

    Transportation ? · Fuel Cells ? · Electric Cars ? · Solar Electric Cars · Natural Gas ? · Combo-Cars · Hydrogen Nuclear Plants Operating Very Well · But, Generating Companies not Interested in New Nuclear Plants

  20. Independent Oversight Review, Portsmouth Gaseous Diffusion Plant...

    Office of Environmental Management (EM)

    Plant - November 2013 Independent Oversight Review, Portsmouth Gaseous Diffusion Plant - November 2013 November 5, 2013 Review of Preparedness for Severe Natural Phenomena Events...

  1. Independent Oversight Review, Portsmouth Gaseous Diffusion Plant...

    Office of Environmental Management (EM)

    January 2013 Independent Oversight Review, Portsmouth Gaseous Diffusion Plant - January 2013 January 2013 Review of the Portsmouth Gaseous Diffusion Plant Work Planning and Control...

  2. Independent Activity Report, Portsmouth Gaseous Diffusion Plant...

    Office of Environmental Management (EM)

    Portsmouth Gaseous Diffusion Plant - August 2011 Independent Activity Report, Portsmouth Gaseous Diffusion Plant - August 2011 August 2011 Orientation Visit to the Portsmouth...

  3. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect (OSTI)

    John H. Anderson; William K. Davis; Thomas W. Sloop

    2001-03-21T23:59:59.000Z

    As part of the Department of Energy's (DOE) Gasification Technologies and Transportation Fuels and Chemicals programs, DOE and Texaco are partners through Cooperative Agreement DE-FC26-99FT40658 to determine the feasibility of developing, constructing and operating an Early Entrance Coproduction Plant (EECP). The overall objective of the project is the three-phase development of an EECP that produces at least one product from at least two of the following three categories: Electric power (or heat); Fuels; and Chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal and/or some other carbonaceous feedstock, such as petroleum coke. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Testing (RD and T) Plan for implementation in Phase II. This objective has now been accomplished. A specific site, Motiva Refinery in Port Arthur, Texas, has been selected as the location best suited for the EECP. The specific work requirements of Phase I included: Prepare an EECP Preliminary Concept Report covering Tasks 2-8 specified in the Cooperative Agreement; Develop a Research, Development, and Testing (RD and T) Plan as specified in Task 9 of the Cooperative Agreement for implementation in Phase II; and Develop a Preliminary Project Financing Plan for the EECP Project as specified in Task 10 of the Cooperative Agreement. This document is the Preliminary Project Financing Plan for the design, construction, and operation of the EECP at the Motiva Port Arthur Refinery.

  4. Fiberglass plastics in power plants

    SciTech Connect (OSTI)

    Kelley, D. [Ashland Performance Materials (United States)

    2007-08-15T23:59:59.000Z

    Fiberglass reinforced plastics (FRPs) are replacing metal in FGDs, stacks, tanks, cooling towers, piping and other plant components. The article documents the use of FRP in power plants since the 1970s. The largest volume of FRP in North American power plants is for stack liners and ductwork. Absorber vessel shells and internal components comprise the third largest use. The most common FRP absorber vessels are known as jet bubbling reactors (JBRs). One of the largest JBRs at a plant on the Ohio River removes 99% of sulphur dioxide from high sulphur coal flue gas. FRPs last twice as long as wood structures when used for cooling towers and require less maintenance. 1 tab., 2 photos.

  5. Water Filtration Using Plant Xylem

    E-Print Network [OSTI]

    Boutilier, Michael Stephen Ha

    Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees – a readily available, ...

  6. A neighborhood alternative energy plant

    E-Print Network [OSTI]

    Brooks, Douglas James

    1982-01-01T23:59:59.000Z

    A design that proposes the redefinition of the role of a power plant facility within a community by creating a humane environment for recreation, education, community gathering, living, and energy production; rather than ...

  7. Plant salt-tolerance mechanisms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01T23:59:59.000Z

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore »and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less

  8. Plant salt-tolerance mechanisms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01T23:59:59.000Z

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

  9. Kansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear net generation (percent)","Owner" "Wolf Creek Generating Station Unit 1","1,160","9,556",100.0,"Wolf Creek Nuclear Optg Corp" "1 Plant 1 Reactor","1,160","9,556",100.0...

  10. Vermont Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    mwh)","Share of State nuclear net generation (percent)","Owner" "Vermont Yankee Unit 1",620,"4,782",100.0,"Entergy Nuclear Vermont Yankee" "1 Plant 1 Reactor",620,"4,782",100.0...

  11. Massachusetts Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    (percent)","Owner" "Pilgrim Nuclear Power Station Unit 1",685,"5,918",100.0,"Entergy Nuclear Generation Co" "1 Plant 1 Reactor",685,"5,918",100.0 "Note: Totals may not equal...

  12. Foote Hydroelectric Plant spillway rehabilitation

    SciTech Connect (OSTI)

    Sowers, D.L. [Consumers Power Co., Jackson, MI (United States); Hasan, N.; Gertler, L.R. [Raytheon Infrastructures Services, New York, NY (United States)

    1996-10-01T23:59:59.000Z

    In 1993 the spillway of the 9 MW Foote Hydroelectric Plant located on the AuSable River, near Oscoda, Michigan was rehabilitated. The Foote Plant, built in 1917, is owned and operated by Consumers Power Company. In the 76 years of continuous operation the spillway had deteriorated such that much of the concrete and associated structure needed to be replaced to assure safety of the structure. The hydro station includes an earth embankment with concrete corewall, a concrete spillway with three tainter gates and a log chute, a penstock structure and a steel and masonry powerhouse. The electric generation is by three vertical shaft units of 3,000 KW each. A plan of the plant with spillway and an elevation of the spillway section is shown. This paper describes the evaluation and repair of the plant spillway and associated structure.

  13. North City Water Reclamation Plant

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    -Site Cogeneration Methane Power Plant Methane piped in from: Miramar LandfillMiramar Landfill Metropolitan Biosolids Covered Subgrade basins Malfunction in Point Loma South Bay North City Metro Biosolids Center WW Pumping

  14. AQUATIC PLANT CONTROL RESEARCH PROGRAM

    E-Print Network [OSTI]

    US Army Corps of Engineers

    of these organisms to environmental factors (e .g. , temperature and solar radiation). Actual field data have been compared with simulation output with encouraging results. Starting biomass of the plants and numbers

  15. Belgrade Lot Steam Plant Lot

    E-Print Network [OSTI]

    Thomas, Andrew

    2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Gym Lot Corbett Lot Greenhouse Patch Oceanographic Operations 1 2 8 5 3 4 7 6 AMC Chadbourne Merrill Aubert Hannibal Hamlin Steam

  16. Common Aquatic Plants -- Identification, Control.

    E-Print Network [OSTI]

    Klussmann, Wallace G. (Wallace Glenn); Lowman, Fred G.

    1964-01-01T23:59:59.000Z

    . FLOATING PLANTS WATER STAR GRASS Heteranthera sp. (Mud plantain) Water star grass, a submersed or floating rooted plant, usually is found along muddy shores and in water up to 5 ft. deep. The leaves are approximately 2 inches long and 3/16 inch wide... PONDWEEDS Potamogeton sp. The genus Potamogeton J commonly called pond weeds, includes many species common to Texas waters. Group characteristics include alternate leaves with flowers and fruits in spikes or heads. Many have two kinds...

  17. Computer Control of Unattended Plants

    E-Print Network [OSTI]

    Vinson, D. R.; Chatterjee, N.

    1984-01-01T23:59:59.000Z

    COMPUTER CONTROL OF UNATTENDED PLANTS David R. Vinson, Nirma1 Chatterjee ? Ai r Products and Chemi ca 1s, Inc. Allentown, Pennsylvania Providing a cost-effective and reliable computer monitori ng, control, and optimization package is a greater... the last decade, energy costs in some air separation plants are now more than half the total product cost. Starting in 1975, Air Products and Chemicals, Inc. began implementing a program to retrofit existing major energy consuming facili ties...

  18. Valuable Plants Native to Texas.

    E-Print Network [OSTI]

    Parks, Harris Braley

    1937-01-01T23:59:59.000Z

    and makes a splendid plant for cover along mud flats where the seasona.1 change of water would leave bare places. Commercial. Arundo Donax L. This is the reed grass of southern Texas. It has been used for many years to aid in erosion control...LIBRARY, A b COttECE, CAMPUS. TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR COLLEGE STATION. BRAZOS COUNTY, TEXAS -- BULLETIN NO. 551 AUGUST, 1937 -- DIVISION OF APICULTVRE VALUABLE PLANTS NATIVE TO TEXAS i...

  19. COKEMASTER: Coke plant management system

    SciTech Connect (OSTI)

    Johanning, J.; Reinke, M. [Krupp Koppers GmbH, Essen (Germany)

    1996-12-31T23:59:59.000Z

    To keep coke utilization in ironmaking as competitive as possible, the potential to improve the economics of coke production has to be utilized. As one measure to meet this need of its customers, Krupp Koppers has expanded its existing ECOTROL computer system for battery heating control to a comprehensive Coke Plant Management System. Increased capacity utilization, lower energy consumption, stabilization of plant operation and ease of operation are the main targets.

  20. Researching power plant water recovery

    SciTech Connect (OSTI)

    NONE

    2008-04-01T23:59:59.000Z

    A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

  1. SYMPOSIUM ON PLANT PROTEIN PHOSPHORYLATION

    SciTech Connect (OSTI)

    JOHN C WALKER

    2011-11-01T23:59:59.000Z

    Protein phosphorylation and dephosphorylation play key roles in many aspects of plant biology, including control of cell division, pathways of carbon and nitrogen metabolism, pattern formation, hormonal responses, and abiotic and biotic responses to environmental signals. A Symposium on Plant Protein Phosphorylation was hosted on the Columbia campus of the University of Missouri from May 26-28, 2010. The symposium provided an interdisciplinary venue at which scholars studying protein modification, as it relates to a broad range of biological questions and using a variety of plant species, presented their research. It also provided a forum where current international challenges in studies related to protein phosphorylation could be examined. The symposium also stimulated research collaborations through interactions and networking among those in the research community and engaged students and early career investigators in studying issues in plant biology from an interdisciplinary perspective. The proposed symposium, which drew 165 researchers from 13 countries and 21 States, facilitated a rapid dissemination of acquired knowledge and technical expertise regarding protein phosphorylation in plants to a broad range of plant biologists worldwide.

  2. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect (OSTI)

    Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; Ming He; James F. Stevens; Centha A. Davis; Michael Henley; Jerome Mayer; Harry Tsang; Jimell Erwin; Jennifer Adams; Michael Tillman; Chris Taylor; Marjan J. Roos; Robert F. Earhart

    2004-01-27T23:59:59.000Z

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). The potential technical and economic risks to the EECP from Task 2.5 can be mitigated by demonstrating that the end-use products derived from the upgrading of the F-T synthesis total liquid product can meet or exceed current specifications for the manufacture of ethylene and propylene chemicals from F-T naphtha, for the generation of hydrogen from F-T naphtha to power fuel cells, for direct blending of F-T diesels into transportation fuels, for the conversion of F-T heavy product wax to transportation fuels, and the conversion of F-T Heavy product wax to a valuable high melting point food-grade specialty wax product. Product evaluations conducted under Task 2.5 of Phase II successfully mitigated the above technical and economic risks to the EECP with the development of product yields and product qualities for the production of chemicals, transportation fuels, and specialty food-grade waxes from the F-T synthesis products.

  3. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect (OSTI)

    David Storm; Govanon Nongbri; Steve Decanio; Ming He; Lalit Shah; Charles Schrader; Earl Berry; Peter Ricci; Belma Demirel; Charles Benham; Mark Bohn

    2004-01-12T23:59:59.000Z

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc., GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I, a design basis for the Fischer-Tropsch Synthesis section was developed based on limited experience with the specified feed gas and operating conditions. The objective of this Task in Phase II RD&T work was to confirm the performance of the F-T reactor at the set design conditions. Although much of the research, development, and testing work were done by TES outside of this project, several important issues were addressed in this phase of the project. They included Rejuvenation/Regeneration of the Fischer-Tropsch Catalyst, online Catalyst Withdrawal and Addition from the synthesis reactor, and the Fischer-Tropsch Design Basis Confirmation. In Phase III the results from these RD&T work will be incorporated in developing the engineering design package. This Topical Report documents the Phase II RD&T work that was completed for this task.

  4. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect (OSTI)

    John Anderson; Charles Schrader

    2004-01-26T23:59:59.000Z

    In 1999, the U. S. Department of Energy (DOE) awarded a Cooperative Agreement to Texaco Energy Systems Inc. to provide a preliminary engineering design of an Early Entrance Coproduction Plant (EECP). Since the award, continuous and diligent work has been undertaken to achieve the design of an economical facility that makes strides toward attaining the goal of DOE's Vision 21 Program. The objective of the EECP is to convert coal and/or petroleum coke to power while coproducing transportation fuels, chemicals, and useful utilities such as steam. This objective is being pursued in a three-phase effort through the partnership of the DOE with prime contractor Texaco Energy Systems, LLC. (TES), the successor to Texaco Energy Systems, Inc. The key subcontractors to TES include General Electric (GE), Praxair, and Kellogg Brown and Root. ChevronTexaco provided gasification technology and Rentech Inc.'s Fischer-Tropsch (F-T) technology that has been developed for non-natural gas sources. GE provided gas turbine technology for the combustion of low energy content gas. Praxair provided air separation technology and KBR provided engineering to integrate the facility. A conceptual design was completed in Phase I and the report was accepted by the DOE in May 2001. The Phase I work identified risks and critical research, development, and testing that would improve the probability of technical success of the EECP. The objective of Phase II was to mitigate the risks by executing research, development, and testing. Results from the Phase II work are the subject of this report. As the work of Phase II concluded, it became evident that sufficient, but not necessarily complete, technical information and data would be available to begin Phase III - Preliminary Engineering Design. Work in Phase II requires additional technical development work to correctly apply technology at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The decision to proceed with Phase III centers on locating a new site and favorable commercial and economic factors.

  5. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect (OSTI)

    Fred D. Brent; Lalit Shah; Earl Berry; Charles H. Schrader; John Anderson; J. Erwin; Matthew G. Banks; Terry L. Ullman

    2004-01-12T23:59:59.000Z

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). Phase II RD&T Task 2.6 identified as potential technical risks to the EECP the fuel/engine performance and emissions of the F-T diesel fuel products. Hydrotreating the neat F-T diesel product reduces potentially reactive olefins, oxygenates, and acids levels and alleviates corrosion and fuel stability concerns. Future coproduction plants can maximize valuable transportation diesel by hydrocracking the F-T Synthesis wax product to diesel and naphtha. The upgraded neat F-T diesel, hydrotreater F-T diesel, and hydrocracker F-T diesel products would be final blending components in transportation diesel fuel. Phase II RD&T Task 2.6 successfully carried out fuel lubricity property testing, fuel response to lubricity additives, and hot-start transient emission tests on a neat F-T diesel product, a hydrocracker F-T diesel product, a blend of hydrotreater and hydrocracker F-T diesel products, and a Tier II California Air Resources Board (CARB)-like diesel reference fuel. Only the neat F-T diesel passed lubricity inspection without additive while the remaining three fuel candidates passed with conventional additive treatment. Hot-start transient emission tests were conducted on the four fuels in accordance with the U.S. Environmental Protection Agency (EPA) Federal Test Procedure (FTP) specified in Code of Federal Regulations, Title 40, Part 86, and Subpart N on a rebuilt 1991 Detroit Diesel Corporation Series 60 heavy-duty diesel engine. Neat F-T diesel fuel reduced oxides of nitrogen (NO{sub x}), total particulate (PM), hydrocarbons (HC), carbon monoxide (CO), and the Soluble Organic Fraction (SOF) by 4.5%, 31%, 50%, 29%, and 35%, respectively, compared to the Tier II CARB-like diesel. The hydrocracker F-T diesel product and a blend of hydrocracker and hydrotreater F-T diesel products also reduced NO{sub x}, PM, HC, CO and SOF by 13%, 16% to 17%, 38% to 63%, 17% to 21% and 21% to 39% compared to the Tier II CARB-like diesel. The fuel/engine performance and emissions of the three F-T diesel fuels exceed the performance of a Tier II CARB-like diesel. Phase II RD&T Task 2.6 successfully met the lubricity property testing and F-T diesel fuel hot-start transient emissions test objectives. The results of the testing help mitigate potential economic risks on obtaining a premium price for the F-T diesel fuel

  6. Method of identifying plant pathogen tolerance

    DOE Patents [OSTI]

    Ecker, J.R.; Staskawicz, B.J.; Bent, A.F.; Innes, R.W.

    1997-10-07T23:59:59.000Z

    A process for identifying a plant having disease tolerance comprising administering to a plant an inhibitory amount of ethylene and screening for ethylene insensitivity, thereby identifying a disease tolerant plant, is described. Plants identified by the foregoing process are also described. 7 figs.

  7. PHYSICAL PLANT OPERATING POLICY AND PROCEDURE

    E-Print Network [OSTI]

    Gelfond, Michael

    in this technology. REVIEW This Physical Plant Operating Policy/Procedure (PP/OP) will be reviewed in March of each Plant. Physical Plant's intention is to provide each employee reasonable access to the technology Plant technology will be a prime consideration. Requests for non-standard products will not be approved

  8. Pilot Plant Options for the MFE Roadmap

    E-Print Network [OSTI]

    Pilot Plant Options for the MFE Roadmap Hutch Neilson Princeton Plasma Physics Laboratory International Workshop MFE Roadmapping for the ITER Era Princeton, NJ 10 September 2011 #12;Outline 2 · Pilot plant ­ mission, motivation, and description. · Role of pilot plants on the Roadmap to Demo. Pilot Plant

  9. Exploring the World of Plants and Soils

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Exploring the World of Plants and Soils 4-H Plant , Soils, and Entomology Curriculum 18 U.S.C. 707 Project Book 2 Publication 380-021 2014 #12;Exploring the World of Plants and Soil: Stems and Stamens ................................................................................................................. 3 Activity 1 The Stages of a Plant's Life

  10. Wood Burning Combined Cycle Power Plant 

    E-Print Network [OSTI]

    Culley, J. W.; Bourgeois, H. S.

    1984-01-01T23:59:59.000Z

    A combined cycle power plant utilizing wood waste products as a fuel has been designed. This plant will yield a 50% efficiency improvement compared to conventional wood-fueled steam power plants. The power plant features an externally-fired gas...

  11. Biochemical Conversion Pilot Plant (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01T23:59:59.000Z

    This fact sheet provides information about Biochemical Conversion Pilot Plant capabilities and resources at NREL.

  12. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect (OSTI)

    Abdalla H. Ali; Raj Kamarthi; John H. Anderson; Earl R. Berry; Charles H. Schrader; Lalit S. Shah

    2003-04-16T23:59:59.000Z

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I the team identified the integration of the water produced in the F-T synthesis section with the gasification section as an area of potential synergy. By utilizing the F-T water in the petroleum coke slurry for the gasifier, the EECP can eliminate a potential waste stream and reduce capital costs. There is a low technical risk for this synergy, however, the economic risk, particularly in regards to the water, can be high. The economic costs include the costs of treating the water to meet the locally applicable environmental standards. This option may require expensive chemicals and treatment facilities. EECP Phase II included tests conducted to confirm the viability of integrating F-T water in the slurry feed for the gasifier. Testing conducted at ChevronTexaco's Montebello Technology Center (MTC) included preparing slurries made using petroleum coke with F-T water collected at the LaPorte Alternative Fuels Development Unit (AFDU). The work included bench scale tests to determine the slurry ability of the petroleum coke and F-T water. The results of the tests show that F-T water does not adversely affect slurries for the gasifier. There are a few cases where in fact the addition of F-T water caused favorable changes in viscosity of the slurries. This RD&T task was executed in Phase II and results are reported herein.

  13. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect (OSTI)

    John Anderson; Mark Anselmo; Earl Berry; Mark Bohn; Ming He; Charles H. Schrader; Lalit Shah; Donald Todd; Robert Schavey

    2004-01-12T23:59:59.000Z

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to its detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC (TES) (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR). The work was under cooperative agreements with the U.S. Department of Energy (DOE). TES is providing the gasification technology and the Fischer-Tropsch (F-T) technology developed by Rentech Inc., GE is providing the combustion turbine technology, Praxair is providing the air separation technology, and KBR is providing overall engineering. Each of the EECP's subsystems was assessed for technical risks and barriers in Phase I. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified catalyst/wax separation as a potential technical and economic risk. To mitigate risks to the proposed EECP concept, Phase II RD&T included tests for secondary catalyst/wax separation systems as part of Task 2.3--Catalyst/Wax Separation. The LCI Scepter{reg_sign} Microfiltration system was determined to be best suited for producing a filtrate that met the EECP secondary catalyst/wax separation standards of producing F-T wax containing less than10 ppmw solids. As part of task 2.3, micro-filtration removal efficiencies and production rates for two FT feeds, Rentech Inc. bubble column reactor (BCR) product and LaPorte Alternative Fuels Development Unit (AFDU) product, were evaluated. Based on comparisons between the performances of these two materials, the more readily available LaPorte AFDU material was judged an acceptable analog to the BCR material that would be produced in a larger-scale F-T synthesis. The present test was initiated to obtain data in an extended range of concentration for use in the scale-up design of the secondary catalyst/wax separation system that would be operating at the EECP capacity.

  14. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect (OSTI)

    Charles Benham; Mark Bohn; John Anderson; Earl Berry; Fred Brent; Ming He; Randy Roberts; Lalit Shah; Marjan Roos

    2003-09-15T23:59:59.000Z

    The 1999 U. S. Department of Energy (DOE) award to Texaco Energy Systems Inc. (presently Texaco Energy Systems LLC, a subsidiary of ChevronTexaco) was made to provide a Preliminary Engineering Design of an Early Entrance Coproduction Plant (EECP). Since the award presentation, work has been undertaken to achieve an economical concept design that makes strides toward the DOE Vision 21 goal. The objective of the EECP is to convert coal and/or petroleum coke to electric power plus transportation fuels, chemicals and useful utilities such as steam. The use of petroleum coke was added as a fuel to reduce the cost of feedstock and also to increase the probability of commercial implementation of the EECP concept. This objective has been pursued in a three phase effort through the partnership of the DOE with prime contractor Texaco Energy Systems LLC and subcontractors General Electric (GE), Praxair, and Kellogg Brown and Root (KBR). ChevronTexaco is providing gasification technology and Rentech's Fischer-Tropsch technology that has been developed for non-natural gas feed sources. GE is providing gas turbine technology for the combustion of low energy content gas. Praxair is providing air separation technology, and KBR is providing engineering to integrate the facility. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. Phase I Preliminary Concept Report was completed in 2000. The Phase I Preliminary Concept Report was prepared based on making assumptions for the basis of design for various technologies that are part of the EECP concept. The Phase I Preliminary Concept Report was approved by the DOE in May 2001. The Phase I work identified technical and economic risks and critical research, development, and testing that would improve the probability of the technical and economic success of the EECP. The Project Management Plan (Task 1) for Phase II was approved by the DOE in 2001. The results of RD&T efforts for Phase II are expected to improve the quality of assumptions made in Phase I for basis of design for the EECP concept. The RD&T work plan (Task 2 and 3) for Phase II has been completed. As the RD&T work conducted during Phase II concluded, it became evident that sufficient, but not necessarily complete, technical information and data would be available to begin Phase III - Basic Engineering Design. Also due to the merger of Chevron and Texaco, the proposed refinery site for the EECP was not available. It became apparent that some additional technical development work would be needed to correctly apply the technology at a specific site. The objective of Task 4 of Phase II is to update the concept basis of design produced during Phase I. As part of this task, items that will require design basis changes and are not site dependent have been identified. The team has qualitatively identified the efforts to incorporate the impacts of changes on EECP concept. The design basis has been modified to incorporate those changes. The design basis changes for those components of EECP that are site and feedstock dependent will be done as part of Phase III, once the site has been selected.

  15. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect (OSTI)

    John Anderson; Mark Anselmo; Earl Berry; Mark Bohn; Roko Bujas; Ming He; Ken Kwik; Charles H. Schrader; Lalit Shah; Dennis Slater; Donald Todd; Don Wall

    2003-08-21T23:59:59.000Z

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC (TES), a subsidiary of ChevronTexaco, General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc. GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified catalyst/wax separation as a potential technical and economic risk. To mitigate risks to the proposed EECP, Phase II RD&T included tests of an alternative (to Rentech's Dynamic Settler) primary catalyst/wax separation device and secondary catalyst/wax separation systems. The team evaluated multiple technologies for both primary and secondary catalyst/wax separation. Based on successful testing at Rentech (outside of DOE funding) and difficulties in finalizing a contract to demonstrate alternative primary catalyst/wax separation technology (using magnetic separation technology), ChevronTexaco has selected the Rentech Dynamic Settler for primary catalyst/wax separation. Testing has shown the Dynamic Settler is capable of producing filtrate exceeding the proposed EECP primary catalyst/wax separation goal of less than 0.1 wt%. The LCI Scepter{reg_sign} Microfiltration system appeared to be best suited for producing a filtrate that met the EECP secondary catalyst/wax separation standards of 10 parts per million (weight) [ppmw]. The other technologies, magnetic separation and electrostatic separation, were promising and able to reduce the solids concentrations in the filtrate. Additional RD&T will be needed for magnetic separation and electrostatic separation technologies to obtain 10 ppmw filtrate required for the proposed EECP. The Phase II testing reduces the technical and economic risks and provides the information necessary to proceed with the development of an engineering design for the EECP Fischer-Tropsch catalyst/wax separation system.

  16. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect (OSTI)

    Randy Roberts

    2003-04-25T23:59:59.000Z

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using petroleum coke and ChevronTexaco's proprietary gasification technology. The objective of Phase I was to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC. (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). ChevronTexaco is providing gasification technology and Fischer-Tropsch technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified F-T reactor scale-up as a potential technical risk. The objective of Task 2.3 was to confirm engineering models that allow scale-up to commercial slurry phase bubble column (SPBC) reactors operating in the churn-turbulent flow regime. In developmental work outside the scope of this project, historical data, literature references, and a scale-up from a 1 1/2-in. (3.8 cm) to 6-ft (1.8 m) SPBC reactor have been reviewed. This review formed the background for developing scale-up models for a SPBC reactor operating in the churn-turbulent flow regime. The necessary fundamental physical parameters have been measured and incorporated into the mathematical catalyst/kinetic model developed from the SPBC and CSTR work outside the scope of this EECP project. The mathematical catalyst/kinetic model was used to compare to experimental data obtained at Rentech during the EECP Fischer-Tropsch Confirmation Run (Task 2.1; reported separately). The prediction of carbon monoxide (CO) conversion as a function of days on stream compares quite closely to the experimental data.

  17. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect (OSTI)

    John H. Anderson; Charles Benham; Earl R. Berry; Ming He; Charles H. Schrader; Lalit S. Shah; O.O. Omatete; T.D. Burchell

    2004-01-12T23:59:59.000Z

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I the team identified several potential methods to reduce or minimize the environmental impact of the proposed EECP. The EECP Project Team identified F-T catalyst disposal, beneficial gasifier slag usage (other than landfill), and carbon dioxide recovery for the gas turbine exhaust for study under this task. Successfully completing the Task 2.10 RD&T provides additional opportunities for the EECP to meet the goals of DOE's Vision 21 Program. The gasification section offers several opportunities to maximize the environmental benefits of an EECP. The spent F-T catalyst can be sent to landfills or to the gasification section. Testing in Phase II shows that the spent F-T catalyst with a small wax coating can safely meet federal landfill requirements. As an alternative to landfilling, it has been proposed to mix the spent F-T catalyst with the petroleum coke and feed this mixture to the gasification unit. Based on ChevronTexaco's experience with gasification and the characteristics of the spent F-T catalyst this appears to be an excellent opportunity to reduce one potential waste stream. The slag from the gasification unit can be commercially marketed for construction or fuel (such as cement kiln fuel) uses. The technical and economic benefits of these options must be reviewed for the final EECP before incorporating a specific alternative into the design basis. Reducing greenhouse gas emissions, particularly carbon dioxide, is an important goal of the EECP. The Texaco gasification process provides opportunities to capture high purity streams of carbon dioxide. For Phase II, a carbon fiber composite molecular sieve (CFCMS) was tested to determine its potential to remove high purity carbon dioxide from the exhaust of a gas turbine. Testing on with a simulated gas turbine exhaust shows that the CFCMS is able to remove high purity carbon dioxide from the exhaust. However, more development is required to optimize the system.

  18. Expression of multiple proteins in transgenic plants

    DOE Patents [OSTI]

    Vierstra, Richard D. (Madison, WI); Walker, Joseph M. (Madison, WI)

    2002-01-01T23:59:59.000Z

    A method is disclosed for the production of multiple proteins in transgenic plants. A DNA construct for introduction into plants includes a provision to express a fusion protein of two proteins of interest joined by a linking domain including plant ubiquitin. When the fusion protein is produced in the cells of a transgenic plant transformed with the DNA construction, native enzymes present in plant cells cleave the fusion protein to release both proteins of interest into the cells of the transgenic plant. Since the proteins are produced from the same fusion protein, the initial quantities of the proteins in the cells of the plant are approximately equal.

  19. The Water Circuit of the Plants - Do Plants have Hearts ?

    E-Print Network [OSTI]

    Wolfgang Kundt; Eva Gruber

    2006-03-17T23:59:59.000Z

    There is a correspondence between the circulation of blood in all higher animals and the circulation of sap in all higher plants - up to heights h of 140 m - through the xylem and phloem vessels. Plants suck in water from the soil, osmotically through the roothair zone, and subsequently lift it osmotically again, and by capillary suction (via their buds, leaves, and fruits) into their crowns. In between happens a reverse osmosis - the endodermis jump - realized by two layers of subcellular mechanical pumps in the endodermis walls which are powered by ATP, or in addition by two analogous layers of such pumps in the exodermis. The thus established root pressure helps forcing the absorbed ground water upward, through the whole plant, and often out again, in the form of guttation, or exudation.

  20. Primary plant performance evaluation and plant signals validation

    SciTech Connect (OSTI)

    Anikanov, S. S. [Westinghouse LLC, 4350 Northern Pike, Monroeville, PA 15146 (United States); Stolyetniy, I. V.; Semenovski, Y. P. [Westron, 1, Academic Proskura str., Kharkov (Ukraine)

    2006-07-01T23:59:59.000Z

    This paper discusses results of the implementation of NPP signal validation and data reconciliation algorithms applied to VVER-1000 reactor as part of the Core Monitoring System (CMS) project at South Ukrainian NPP. The proposed method is compared with the G2TM tool (Gensym) application of neural network algorithms to the same plant data. The proposed algorithms yield practically identical results for situations with a significant amount of erroneous data, even though it runs in on-line mode as oppose to the off-line mode of the G2TM tool. The method described in this paper includes preliminary signal processing, data fusion, and data reconciliation algorithms. All major primary and secondary sides measurements, used for plant thermal power evaluation based on different methods, were undergone the proposed processing algorithm. Some plant life data is presented to illustrate quality of input signals used to obtain calculation results. (authors)

  1. Plants having modified response to ethylene

    DOE Patents [OSTI]

    Meyerowitz, E.M.; Chang, C.; Bleecker, A.B.

    1997-11-18T23:59:59.000Z

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype. 31 figs.

  2. Plants having modified response to ethylene

    DOE Patents [OSTI]

    Meyerowitz, E.M.; Chang, C.; Bleecker, A.B.

    1998-10-20T23:59:59.000Z

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype. 67 figs.

  3. Plants having modified response to ethylene

    DOE Patents [OSTI]

    Meyerowitz, Elliott M. (Pasadena, CA); Chang, Caren (Pasadena, CA); Bleecker, Anthony B. (Madison, WI)

    1997-01-01T23:59:59.000Z

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

  4. Plants having modified response to ethylene

    DOE Patents [OSTI]

    Meyerowitz, Elliot M. (Pasadena, CA); Chang, Caren (Pasadena, CA); Bleecker, Anthony B. (Madison, WI)

    1998-01-01T23:59:59.000Z

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

  5. State power plant productivity programs

    SciTech Connect (OSTI)

    Not Available

    1981-02-01T23:59:59.000Z

    The findings of a working group formed to review the status of efforts by utilities and utility regulators to increase the availability and reliability of generating units are presented. Representatives from nine state regulatory agencies, NRRI, and DOE, participated on the Working Group. The Federal government has been working cooperatively with utilities, utility organizations, and with regulators to encourage and facilitate improvements in power plant productivity. Cooperative projects undertaken with regulatory and energy commissions in California, Illinois, New York, Ohio, Texas, North Carolina and Mighigan are described. Following initiation of these cooperative projects, DOE funded a survey to determine which states were explicitly addressing power plant productivity through the regulatory process. The Working Group was formed following completion of this survey. The Working Group emphasized the need for those power plant productivity improvements which are cost effective. The cost effectiveness of proposed availability improvement projects should be determined within the context of opportunities for operating and capital improvements available to an entire utility. The Working Group also identified the need for: allowing for plant designs that have a higher construction cost, but are also more reliable; allowing for recovery and reducing recovery lags for productivity-related capital expenditures; identifying and reducing disincentives in the regulatory process; ascertaining that utilities have sufficient money available to undertake timely maintenance; and support of EPRI and NERC to develop a relevant and accurate national data base. The DOE views these as extremely important aspects of any regulatory program to improve power plant productivity.

  6. Plant Science Graduates Spring 2011 Bachelor of Science in Plant Sciences

    E-Print Network [OSTI]

    Tennessee, University of

    Plant Science Graduates Spring 2011 Bachelor of Science in Plant Sciences Joshua Paul Baker, Old Dale Wallace, Centerville Master of Science Reginald Jason Millwood, Plant Sciences Kara Lee Warwick, Plant Sciences Undergraduate Degrees, Summer Term 2011 Henry Joseph Cope, III, Plant Sciences David

  7. Clemson University Plant Problem Clinic, Nematode Assay Lab and Molecular Plant Pathogen Detection Lab

    E-Print Network [OSTI]

    Stuart, Steven J.

    Clemson University Plant Problem Clinic, Nematode Assay Lab and Molecular Plant Pathogen Detection Lab Annual Report for 2012 The Plant Problem Clinic serves the people of South Carolina through the Clinic. Plant pathogens, insect pests and weeds can significantly reduce plant growth

  8. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect (OSTI)

    Abdalla H. Ali; John H. Anderson; Earl R. Berry; Charles H. Schrader; Lalit S. Shah

    2003-04-16T23:59:59.000Z

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase II is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems were assessed for technical risks and barriers. A plan was identified to mitigate the identified risks (Phase II RD&T Plan, October 2000). The RD&T Plan identified petroleum coke characteristics as a potential technical risk. The composition of petroleum coke varies from one refinery to another. Petroleum coke characteristics are a function of the crude oil slate available at the refinery and the coker operating parameters. The specific petroleum coke characteristics at a refinery affect the design of the Gasification and Acid Gas Removal (AGR) subsystems. Knowing the petroleum coke composition provides the necessary data to proceed to the EECP Phase III engineering design of the gasification process. Based on ChevronTexaco's experience, the EECP team ranked the technical, economic, and overall risks of the petroleum coke composition related to the gasification subsystem as low. In Phase I of the EECP Project, the Motiva Port Arthur Refinery had been identified as the potential EECP site. As a result of the merger between Texaco and Chevron in October 2001, Texaco was required to sell its interest in the Motiva Enterprises LLC joint venture to Shell Oil Company and Saudi Refining Inc. To assess the possible impact of moving the proposed EECP host site to a ChevronTexaco refinery, samples of petroleum coke from two ChevronTexaco refineries were sent to MTC for bench-scale testing. The results of the analysis of these samples were compared to the Phase I EECP Gasification Design Basis developed for Motiva's Port Arthur Refinery. The analysis confirms that if the proposed EECP is moved to a new refinery site, the Phase I EECP Gasification Design Basis would have to be updated. The lower sulfur content of the two samples from the ChevronTexaco refineries indicates that if one of these sites were selected, the Sulfur Recovery Unit (SRU) might be sized smaller than the current EECP design. This would reduce the capital expense of the SRU. Additionally, both ChevronTexaco samples have a higher hydrogen to carbon monoxide ratio than the Motiva Port Arthur petroleum coke. The higher hydrogen to carbon monoxide ratio could give a slightly higher F-T products yield from the F-T Synthesis Reactor. However, the EECP Gasification Design Basis can not be updated until the site for the proposed EECP site is finalized. Until the site is finalized, the feedstock (petroleum coke) characteristics are a low risk to the EECP project.

  9. Condensate polishing at Plant Bowen

    SciTech Connect (OSTI)

    Friedman, K.A.; Siegwarth, D.P.; Sawochka, S.G.; McNea, D.A.; Suhonen, C.H.

    1984-02-01T23:59:59.000Z

    Condensate polisher system design and operation were evaluated at the fosssil-fueled Plant Bowen of Georgia Power Company relative to the ability of the polishers to achieve an effluent chemical quality consistent with PWR Steam Generator Owners Group Chemistry Guidelines. Polishers regenerated employing the Seprex and Ammonex processes were evaluated during normal plant operation and during periods of simulated condenser inleakage. Although polisher effluent quality was acceptable relative to boiler corrosion control at Plant Bowen, it was inconsistent with that required for recirculating PWR steam generators. Polisher effluent quality was reasonably consistent with requirements for PWR once-through steam generator systems. High polisher cation to anion resin equivalence ratios (3.4 to 1), and insufficiently rapid anion resin kinetics were the major reasons for the observed non-optimum polisher performance.

  10. Automating An Industrial Power Plant

    E-Print Network [OSTI]

    Williams, D. R.; McCowen, R. R.

    AUTlliATING AN INDUSTRIAL POWER PLANT DAVID R. WILLIAMS, P.E. Energy Coordi?nator John Deere Component Works Waterloo, Iowa ABSTRACT The need for an upgrade of boiler and turbine controls in the 15 MW coal-fired cogeneration plant... for the project was estimated at $860,OOO/year. The upgrading process began with a search for a design/ build contractor that could provide complete turn key capability, beginning with a site survey and ending with operator acceptanoe. The contractor...

  11. The Propagation of Ornamental Plants.

    E-Print Network [OSTI]

    DeWerth, A. F.

    1970-01-01T23:59:59.000Z

    . Germinntior- to 10 days. I Cercis canadensis ( Redbud) Soak in full strength commercial sulphuric acid for When seed is removed from acid, 1ca4 - 20 minutes. Stratify in moist peat at 35" to 40" F. running water for 10 minutes. Soak in !rr for 60 days... to 30 days. ture, until ready for planting. Diospyros virginana Stratify freshly cleaned seed in moist peat 36" to These seed will not germinate at thc~ !c (Common Persimmon) 41" F. Seeds will be ready for planting in 30 days. peratures and can...

  12. Annual Report 2001 -Plant Research Departme Plant Research Department

    E-Print Network [OSTI]

    post-genomic tools to improve our understanding of plants. The aim is to develop crops with improved activities in the area of Functional Genomics integrate the department. Each programme contains special expertise in the fields of genome, transcriptome, proteome, and metabolome analyses, which are delivered

  13. Balance of Plant Requirements for a Nuclear Hydrogen Plant

    SciTech Connect (OSTI)

    Bradley Ward

    2006-04-01T23:59:59.000Z

    This document describes the requirements for the components and systems that support the hydrogen production portion of a 600 megawatt thermal (MWt) Next Generation Nuclear Plant (NGNP). These systems, defined as the "balance-of-plant" (BOP), are essential to operate an effective hydrogen production plant. Examples of BOP items are: heat recovery and heat rejection equipment, process material transport systems (pumps, valves, piping, etc.), control systems, safety systems, waste collection and disposal systems, maintenance and repair equipment, heating, ventilation, and air conditioning (HVAC), electrical supply and distribution, and others. The requirements in this document are applicable to the two hydrogen production processes currently under consideration in the DOE Nuclear Hydrogen Initiative. These processes are the sulfur iodide (S-I) process and the high temperature electrolysis (HTE) process. At present, the other two hydrogen production process - the hybrid sulfur-iodide electrolytic process (SE) and the calcium-bromide process (Ca-Br) -are under flow sheet development and not included in this report. While some features of the balance-of-plant requirements are common to all hydrogen production processes, some details will apply only to the specific needs of individual processes.

  14. Annual Colorado Rare Plant Symposium: G1 Plants of Colorado

    E-Print Network [OSTI]

    leaves San Juan NF revising Management Plan ­ make sure it is included, although it occurs on the Rio (Tamara Naumann) has no resources to survey for this species, focus is on weed management. CNE population. Can survey for this species almost any time of year. In Arches NP, sand blowing over the plants

  15. Sixth Annual Colorado Rare Plant Symposium Overview of G2 Plants of Northern Colorado

    E-Print Network [OSTI]

    Sixth Annual Colorado Rare Plant Symposium Overview of G2 Plants of Northern Colorado 9:00 am - 4 Anticlea (Zigadenus) vaginatus 3:15 Rare Plant Conservation Initiative ­ CNHP/TNC 4:00 Adjourn #12;

  16. Integrated Toxic Plant Management Handbook: Livestock Poisoning Plants of the Trans-Pecos Region of Texas

    E-Print Network [OSTI]

    Hart, Charles R.; McGinty, Allan; Carpenter, Bruce B.

    2001-01-11T23:59:59.000Z

    Photographs, plant descriptions, and symptoms of poisoning help ranchers identify toxic plants that may be harmful to their livestock in West Texas. There is also information on grazing, livestock management, and toxic plant control....

  17. Integrated Toxic Plant Management Handbook: Livestock Poisoning Plants of the Trans-Pecos Region of Texas 

    E-Print Network [OSTI]

    Hart, Charles R.; McGinty, Allan; Carpenter, Bruce B.

    2001-01-11T23:59:59.000Z

    Photographs, plant descriptions, and symptoms of poisoning help ranchers identify toxic plants that may be harmful to their livestock in West Texas. There is also information on grazing, livestock management, and toxic plant control....

  18. Methodology for Scaling Fusion Power Plant Availability

    SciTech Connect (OSTI)

    Lester M. Waganer

    2011-01-04T23:59:59.000Z

    Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

  19. Magnetic Fusion Pilot Plant Studies

    E-Print Network [OSTI]

    FNSF = Fusion Nuclear Science Facility CTF = Component Test Facility · Powerplantlike maintenance. · Targeted ultimate capabilities: ­ Fusion nuclear S&T development, component testing · Steady applicable to power plant · Demonstrate methods for fast replacement of in-vessel components ­ Net

  20. Systemic Signalling in Plant Development

    E-Print Network [OSTI]

    Jackson, David

    develop continuously throughout their life cycle, constantly initiating new or- gans. They doSystemic Signalling in Plant Development David Jackson, Cold Spring Harbor Laboratory, Cold Spring to the production of systemic signals that control the development of distant organs and tissues. Introduction

  1. Ram Village South Chiller Plant

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    Winston Ram Village South Chiller Plant Dental Craige Campus Alumni Swain Stacy Thermal Student Planetarium Ackland Art Museum Research Chiller D 114 Chase Ave. APCF- Grounds Medical Morehead Stalling- Evans Sports Medicine Center Cobb Hall Ernie School Old Hospital Chiller Hanes Art Coker Wilson Battle

  2. Advanced nuclear plant control complex

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1993-01-01T23:59:59.000Z

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  3. Successful restoration of plant communities

    E-Print Network [OSTI]

    Fant, Jeremie

    of restoration failure if seed source is incorrect #12;Unexpected results... Penstemon deustus (hot rock miles NEVADA UTAH IDAHOOREGON #12;Plant-focused restoration efforts Disturbed Site Cheatgrass (49%) Rock/Bare Ground (50%) Shrub (0.8%) Native Grass (0.7%) Cattle Dung (0.2%) Undisturbed Site Cheatgrass (0.7%) Rock

  4. Glutathione-S-conjugate transport in plants

    DOE Patents [OSTI]

    Rea, Philip A. (Ardmore, PA); Lu, Yu-Ping (Havertown, PA); Li, Ze-Sheng (Prospect Park, PA)

    2000-01-01T23:59:59.000Z

    The invention includes an isolated DNA encoding a plant GS-X pump polypeptide and an isolated preparation of a plant GS-X pump polypeptide. Also included is an isolated preparation of a nucleic acid which is antisense in orientation to a portion or all of a plant GS-X pump gene. The invention also includes a cells, vectors and transgenic plants having an isolated DNA encoding a plant GS-X pump and methods of use thereof. In addition, the invention relates to plant GS-X pump promoter sequences and the uses thereof.

  5. Plant Physiology: Manipulating Plant Growth with Solar Radiation Dennis Decoteau, Ph.D.

    E-Print Network [OSTI]

    Decoteau, Dennis R.

    Plant Physiology: Manipulating Plant Growth with Solar Radiation Dennis Decoteau, Ph.D. Department. Greenhouse Glazing & Solar Radiation Transmission Workshop, October 1998 © CCEA, Center for Controlled

  6. Integrated Coal Gasification Power Plant Credit (Kansas)

    Broader source: Energy.gov [DOE]

    Integrated Coal Gasification Power Plant Credit states that an income taxpayer that makes a qualified investment in a new integrated coal gasification power plant or in the expansion of an existing...

  7. Chemicals for Plant Disease Control at Home

    E-Print Network [OSTI]

    Ong, Kevin

    2007-10-30T23:59:59.000Z

    common chemical names and the corresponding chemical name for each active ingredient. Kevin Ong* ?Assistant Professor and Extension Plant Pathologist, The Texas A&M University System Table 1. Plant disease control chemicals. Common name Chemical name 1...

  8. Steam Conservation and Boiler Plant Efficiency Advancements

    E-Print Network [OSTI]

    Fiorino, D. P.

    This paper examines several cost-effective steam conservation and boiler plant efficiency advancements that were implemented during a recently completed central steam boiler plant replacement project at a very large semiconductor manufacturing...

  9. Power Plant Research and Siting Program (Maryland)

    Broader source: Energy.gov [DOE]

    The Power Plant Research and Siting Act of 1971 established the Power Plant Research Program (PPRP) to evaluate electric generation issues in the state and recommend responsible, long-term...

  10. Minnesota Power Plant Siting Act (Minnesota)

    Broader source: Energy.gov [DOE]

    This Act regulates the siting of large electric power generating plants, which are defined as plants designed for or capable of operating with a capacity of 50,000 kW or more. The policy of the...

  11. Florida Electrical Power Plant Siting Act (Florida)

    Broader source: Energy.gov [DOE]

    The Power Plant Siting Act (PPSA) is the state’s centralized process for licensing large power plants. One license—a certification— replaces local and state permits. Local governments and state...

  12. Plant Breeding Program COLLEGE OF AGRICULTURAL

    E-Print Network [OSTI]

    Bradford, Kent

    Plant Breeding Program COLLEGE OF AGRICULTURAL AND ENVIRONMENTAL SCIENCES Office of the Dean Cereal Breeding Program 51 Acknowlegements 51 COLLEGE OF AGRICULTURAL AND ENVIRONMENTAL SCIENCES Office in production agriculture, which included plant breeding, was necessary for California farmers to thrive

  13. Waste Management Trends in Texas Industrial Plants

    E-Print Network [OSTI]

    Smith, C. S.; Heffington, W. M.

    have become familiar with several plant waste management practices. This paper discusses waste management practices in industrial plants in Texas with particular attention to the requirements of the Texas Natural Resource Conservation Commission...

  14. Method to improve drought tolerance in plants

    DOE Patents [OSTI]

    Schroeder, Julian I.; Kwak, June Myoung

    2003-10-21T23:59:59.000Z

    A method to increase drought resistance in plants is provided. The method comprises inhibiting or disabling inward-rectifying K.sup.+ (K.sup.+.sub.in) channels in the stomatal guard cells of the plant.

  15. Descriptions of Range and Pasture Plants

    E-Print Network [OSTI]

    Ragsdale, Bobby; Welch, Tommy G.

    2000-05-03T23:59:59.000Z

    Characteristics of common range and pasture plants are listed in this publication. The common and scientific name of each species are given, along with the species' value as a grazing plant for wildlife and livestock....

  16. Plant Diagnostic Clinic Services Offered & Fees

    E-Print Network [OSTI]

    Plant Diagnostic Clinic Services Offered & Fees Make the Most of a Beneficial Facility Visual without notice. Location Jefferson County Plant Diagnostic Clinic 15200 West 6th Avenue, Unit C Golden, CO

  17. Modeling water use at thermoelectric power plants

    E-Print Network [OSTI]

    Rutberg, Michael J. (Michael Jacob)

    2012-01-01T23:59:59.000Z

    The withdrawal and consumption of water at thermoelectric power plants affects regional ecology and supply security of both water and electricity. The existing field data on US power plant water use, however, is of limited ...

  18. Sandia National Laboratories: Wind Plant Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy and ClimateRenewable SystemsRenewable EnergyWind EnergyWind Plant Optimization Wind Plant Optimization swift21 swift20 swift19 swift18 swift17 swift16 swift15 swift14...

  19. BORON MOBILITY IN CASTOR BEAN PLANT

    E-Print Network [OSTI]

    Silva, Denis Herisson da; Boaretto, Antonio Enedi; Muraoka, Takashi

    2009-01-01T23:59:59.000Z

    Oil extracted from castor bean (Ricinus communis L. ) seedsthe B distribution in castor bean, as a tropical plant, ismobility of the B in castor bean plant were evaluated in the

  20. alters plant development: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which plant communities Minnesota, University of 8 Signal compounds involved with plant perception and response to microbes alter plant physiological activities and growth of...

  1. Feeding on Phytoestrogens: Implications of Estrogenic Plants for Primate Ecology

    E-Print Network [OSTI]

    Wasserman, Michael David

    2011-01-01T23:59:59.000Z

    Johnson. 2009. The effects of plant defensive chemistry onT. Yokota. 2007. Progesterone: Its occurrence in plants andinvolvement in plant growth. Phytochemistry 68: 1664-1673.

  2. Treated wastewater discharged from municipal wastewater treatment plants (WWTPs) contains

    E-Print Network [OSTI]

    Fay, Noah

    Treated wastewater discharged from municipal wastewater treatment plants (WWTPs) contains plants radically improve the overall quality of the treated wastewa- ter compared to secondary plants

  3. Interdisciplinary Research and Training Program in the Plant Sciences

    SciTech Connect (OSTI)

    Wolk, C.P.

    1992-01-01T23:59:59.000Z

    Research on plants continued. Topics include: Molecular basis of symbiotic plant-microbe interations; enzymatic mechanisms and regulation of plant cell wall biosynthesis; molecular mechanisms that regulate the expression of genes in plants; resistance of plants to environmental stress; studies on hormone biosynthesis and action; plant cell wall proteins; interaction of nuclear and organelle genomes; sensor transduction in plants; molecular mechanisms of trafficking in the plant cell; regulation of lipid metabolism; molecular bases of plant disease resistance mechanisms; biochemical and molecular aspects of plant pathogenesis; developmental biology of nitrogen-fixing cyanobacteria; environmental control of plant development and its relation to plant hormones.

  4. A Continuous Solar Thermochemical Hydrogen Production Plant Design

    E-Print Network [OSTI]

    Luc, Wesley Wai

    be utilized in a steam power plant to produce electricitytemperature reactor. A steam power plant is a large scaleworking fluid. A simple steam power plant is illustrated in

  5. abortion plants: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at planting time in 2009. Aboveground biomass production, coarse and fine roots, SOC Norton, Jay B. 247 THE PLANT BIOLOGY SEMINAR Molecular Plant Biology, Department of...

  6. aposematic spiny plants: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at planting time in 2009. Aboveground biomass production, coarse and fine roots, SOC Norton, Jay B. 239 THE PLANT BIOLOGY SEMINAR Molecular Plant Biology, Department of...

  7. ammunition plant radford: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at planting time in 2009. Aboveground biomass production, coarse and fine roots, SOC Norton, Jay B. 233 THE PLANT BIOLOGY SEMINAR Molecular Plant Biology, Department of...

  8. ammunition plant baraboo: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at planting time in 2009. Aboveground biomass production, coarse and fine roots, SOC Norton, Jay B. 184 THE PLANT BIOLOGY SEMINAR Molecular Plant Biology, Department of...

  9. ammunition plant joliet: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at planting time in 2009. Aboveground biomass production, coarse and fine roots, SOC Norton, Jay B. 184 THE PLANT BIOLOGY SEMINAR Molecular Plant Biology, Department of...

  10. antidiabetic plants bauhinia: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at planting time in 2009. Aboveground biomass production, coarse and fine roots, SOC Norton, Jay B. 188 THE PLANT BIOLOGY SEMINAR Molecular Plant Biology, Department of...

  11. aube plant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at planting time in 2009. Aboveground biomass production, coarse and fine roots, SOC Norton, Jay B. 262 THE PLANT BIOLOGY SEMINAR Molecular Plant Biology, Department of...

  12. antifungal plant defensins: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at planting time in 2009. Aboveground biomass production, coarse and fine roots, SOC Norton, Jay B. 220 THE PLANT BIOLOGY SEMINAR Molecular Plant Biology, Department of...

  13. ammunition plant milan: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at planting time in 2009. Aboveground biomass production, coarse and fine roots, SOC Norton, Jay B. 248 THE PLANT BIOLOGY SEMINAR Molecular Plant Biology, Department of...

  14. Conservation Screening Curves to Compare Efficiency Investments to Power Plants

    E-Print Network [OSTI]

    Koomey, J.G.

    2008-01-01T23:59:59.000Z

    Efficiency Investments to Power Plants J. Koorney, A.H.Efficiency Investments to Power Plants Jonathan Koorney,Pollution, and Avoid Power Plant Construction. Testimony

  15. Goodyear Tire Plant Gains Traction on Energy Savings After Completing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tire Plant saved approximately 93,000 MMBtu and 875,000 annually after increasing steam system energy efficiency in their Union City, Tennessee, plant. Goodyear Tire Plant...

  16. Dirty kilowatts: America's most polluting power plants

    SciTech Connect (OSTI)

    NONE

    2007-07-15T23:59:59.000Z

    In 2006, the US EPA tracked more than 1,400 fossil-fired power plants of varying sizes through its Acid Rain Program. This report ranks each of the 378 largest plants (generating at least 2 million megawatt-hours in 2006) for which both the most recent EPA emissions data and Energy Information Administration (EIA) electric generation data are available. The report ranks each plant based on emission rates, or pounds of pollutant for each megawatt-hour (or million megawatt-hours, in the case of mercury) the plant produced. It ranks the top fifty power plants polluters for sulfur dioxide, nitrogen oxides, carbon dioxide, and mercury. A complete listing of all 378 plants is included as Appendix A. Appendix B contains overheads of an NETL presentation: Tracking new coal-fired power plants - coal's resurgence in electric power generation, 24 January 2007. The 12 states with the heaviest concentrations of the dirtiest power plants, in terms of total tons of carbon dioxide emitted, are: Texas (five, including two of the top 10 dirtiest plants); Pennsylvania (four); Indiana (four, including two of the top 10 dirtiest plants); Alabama (three); Georgia (three, including two of the top three dirtiest plants); North Carolina (three); Ohio (three); West Virginia (three); Wyoming (two); Florida (two); Kentucky (two); and New Mexico (two). Carbon dioxide emissions from power plants are now at roughly 2.5 billion tons per year. Power plants are responsible for about 30%-40% of all man-made CO{sub 2} emissions in the USA. Power plants, especially those that burn coal, are by far the largest single contributor of SO{sub 2} pollution in the United States. Power plant mercury emissions remain steady as compared to previous years. A searchable database ranking 378 U.S. power plants on carbon dioxide, sulfur dioxide, nitrogen oxide and mercury pollution is available online at http://www.dirtykilowatts.org. 22 refs., 8 tabs., 2 apps.

  17. What You Should Know About Plant Diseases.

    E-Print Network [OSTI]

    Horne, C. Wendell; Smith, Harlan E.

    1962-01-01T23:59:59.000Z

    . From 1845 to 1860, plant disease caused a disaster in Irelantl. Late blight struck the potato- yrowing region and turned the fields into a black- ened, rotting mass. A million people diet1 because I the potato crop failed; numerous families.... OTHER CONDITIONS WHICH MAY CAUSE PLANT IN JURY 1. Drying winds 2. Excessive light 3. Excessive lime in the soil 4. Over-use of commercial fertilizer 5. Gas injury PARASITIC OR SAPROPHYTIC PLANTS MISTLETOE-Mistletoe is a parasitic flowering plant...

  18. Independent Activity Report, Hanford Plutonium Finishing Plant...

    Broader source: Energy.gov (indexed) [DOE]

    National Laboratory - January 2014 Independent Activity Report, Richland Operations Office - April 2013 Independent Activity Report, Paducah Gaseous Diffusion Plant - July...

  19. ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM

    E-Print Network [OSTI]

    ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM ENTRAINMENT IMPACTS Prepared For: California be obvious that large studies like these require the coordinated work of many people. We would first like from the Duke Energy South Bay and Morro Bay power plants and the PG&E Diablo Canyon Power Plant

  20. Steam Plant Conversion Eliminating Campus Coal Use

    E-Print Network [OSTI]

    Dai, Pengcheng

    Steam Plant Conversion Eliminating Campus Coal Use at the Steam Plant #12;· Flagship campus region produce 14% of US coal (TN only 0.2%) Knoxville and the TN Valley #12;· UT is one of about 70 U.S. colleges and universities w/ steam plant that burns coal · Constructed in 1964, provides steam for

  1. Maintenance implementation plan for B Plant

    SciTech Connect (OSTI)

    Tritt, S.E.

    1992-06-01T23:59:59.000Z

    The B Plant facility, is located in the 200 East Area at the Hanford Site in south-central Washington State. It consists of two major operating areas: the B Plant Canyon Building, and the Waste Encapsulation and Storage Facility (WESF). The B Plant was originally designed to chemically process spent nuclear fuels. After this initial mission was completed, the plant was modified to provide for the separation of strontium and cesium, individually, from the fission productwaste stream following plutonium and uranium recovery from irradiated reactor fuels in the Plutonium-Uranium Extraction Plant (PUREX). The recovered, purified, and concentrated strontium and cesium solutions were then transferred to the WESF for conversion to solid compounds, encapsulation, and interim storage. After strontium and cesium removal, the remaining waste was transferred from B Plant to tank farms. B Plantis an operating facility that is required to ensure safe storage And management of the WESF cesium and strontium capsules, as well as a substantial radiological inventory remaining in the plant from previous campaigns. There are currently no production activities at B Plant, but several operating systems are required to accomplish the current B Plant mission.B Plant receives and stores various chemicals from commercial suppliers for treatment of low-level waste generated at WESF and B Plant, generation of demineralized water, and conditioning of water used in heating, ventilation, and air conditioning units. This report describes the maintenance of B Plant, including personnel training and schedules.

  2. Transgenic plants with altered senescence characteristics

    DOE Patents [OSTI]

    Amasino, Richard M. (Madison, WI); Gan, Susheng (Lexington, KY); Noh, Yoo-Sun (Madison, WI)

    2002-03-19T23:59:59.000Z

    The identification of senescence-specific promoters from plants is described. Using information from the first senescence-specific promoter, SAG12 from Arabidopsis, other homologous promoters from another plant have been identified. Such promoters may be used to delay senescence in commercially important plants.

  3. Author Proof Plants on red alert

    E-Print Network [OSTI]

    Schaefer, Martin

    Author Proof A Plants on red alert: do insects pay attention? H. Martin Schaefer* and Gregor Rolshausen Summary Two recent hypotheses have proposed that non-green plant colouration evolved as a defence against herbi- vores, either as protective colouration promoting handi- cap signals indicating plant

  4. Exploration of Compact Stellarators as Power Plants

    E-Print Network [OSTI]

    California at San Diego, University of

    Exploration of Compact Stellarators as Power Plants: Initial Results from ARIES-CS Study Farrokh, see: http://aries.ucsd.edu/ #12;Exploration and Optimization of Compact Stellarators as Power Plants in the context of power plant studies, e.g., particle loss Divertor (location, particle and energy distribution

  5. Ash Chemistry in MSW Incineration Plants

    E-Print Network [OSTI]

    Ash Chemistry in MSW Incineration Plants: Advanced Characterization and Thermodynamic Introduction to Municipal Solid Waste Incineration 2 Chapter 2 Plants Considered and Samples Collected 5 Chapter 3 Mapping of Ash Chemistry in MSWI Plants 8 Chapter 4 Advanced Characterization Methods 12 4

  6. FUSION POWER PLANTS GOALS AND TECHNOLOGICAL CHALLENGES

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    FUSION POWER PLANTS ­ GOALS AND TECHNOLOGICAL CHALLENGES Farrokh Najmabadi Dept. of Electrical for fusion power plants is given and their economic, safety, and environmental features are explored. Concep- tual design studies predict that fusion power plants will be capital intensive and will be used

  7. Plant nuclear bodies Peter J Shaw1

    E-Print Network [OSTI]

    Shaw, Peter

    Plant nuclear bodies Peter J Shaw1 and John WS Brown2 Knowledge of the organization bodies have been examined in plants, and recently, various other sub-nuclear domains that are involved. Until recently, the only plant nuclear bodies to be in any way characterized were the nucleolus [11

  8. Solar thermionic power plant (II)

    SciTech Connect (OSTI)

    Abou-Elfotouh, F.; Almassary, M.; Fatmi, H.

    1981-01-01T23:59:59.000Z

    It has been shown that the geometric configuration of a central receiver solar electric power plant (SEPP) can be optimized for the high power density and concentration required for the operation of a thermionic converter. The working period of a Thermionic Diode Converter constructed on the top of a SEPP in Riyadh area is found to be 5 to 6 hours per day in winter and 6 to 8 hours in summer. 17 refs.

  9. Energy Efficiency in Chilling Plants

    E-Print Network [OSTI]

    Wang, X.

    2006-01-01T23:59:59.000Z

    1 Energy Efficiency in Chilling Plants Xin Wang????PhD. CandidateBuilding Energy Research Centre, Tsinghua University2006.10.11 2 Index ? Improve COP of chillers ? Increase load ratio? Decrease cooling water temperature? Increase chilled water... temperature ? Reduce energy use of pumps ? Avoid unexpected bypass flow? Keep Working on higher efficiency point? Optimized VFD control Report of On-site Survey, 2005, 20063 1.1 Improve load ratio ? Characteristic of the centrifugal chillers Decrease...

  10. Nuclear plant irradiated steel handbook

    SciTech Connect (OSTI)

    Oldfield, W.; Oldfield, F.M.; Lombrozo, P.M.; McConnell, P.

    1986-09-01T23:59:59.000Z

    This reference handbook presents selected information extracted from the EPRI reactor surveillance program database, which contains the results from surveillance program reports on 57 plants and 116 capsules. Tabulated data includes radiation induced temperature shifts, capsule irradiation conditions and statistical features of the Charpy V-notch curves. General information on the surveillance materials is provided and the Charpy V-notch energy results are presented graphically.

  11. Plant Level Energy Performance Benchmarking

    E-Print Network [OSTI]

    Hicks, T. W.

    then be used to construct models that may act as the basis for assessing individual plant performance relative to a peer group. Database Manufacturing Energy Consumption Survey The Manufacturing Energy Consumption Survey (MECS), administered by the EIA....S. economy as defined by the Office of Management and Budget. With a sample size of 22,173 establishments, the MECS was undertaken to represent approximately 250,000 of the largest manufacturing establishments which translates to roughly 98 percent...

  12. Canaigre, The New Tanning Plant.

    E-Print Network [OSTI]

    Harrington, H. H.; Adriance, Duncan

    1896-01-01T23:59:59.000Z

    ........................................ Winkler County... 40 miles west of Houston. Florida.................... 12.0 70 71 Ten months old; grown on black, heavy soil........ Seven^months old; cultivated-................................... 16.5 22.5 72 Twelve months old; cultivated... important con? sideration; the first car load of the root having been shipped in 188? from Tucson, Arizona, by Mr. E. J. Kerr, who has, since that time; be? come largely interested in the commercial development of the cultivated plant. But the Mexicans...

  13. Morris Plant Energy Efficiency Program

    E-Print Network [OSTI]

    Betczynski, M. T.

    2004-01-01T23:59:59.000Z

    . These valves affected the steam balance by leaking steam to lower pressure systems or to the atmosphere. Repairs to these valves enabled improved control of the medium pressure steam systems facility-wide. Since the Morris plant is energy integrated across..., the steam demand of each turbine has decreased, while minimizing deposit formation in the turbines. A facility-wide steam trap testing program was established in 2001. Numerous steam traps were found to be leaking or plugged. Replacement of these traps...

  14. B PLANT DOCUMENTED SAFETY ANALYSIS

    SciTech Connect (OSTI)

    DODD, E.N.; KERR, N.R.

    2003-08-01T23:59:59.000Z

    This document provides the documented safety analysis (DSA) and Central Plateau Remediation Project (CP) requirements that apply to surveillance and maintenance (S&M) activities at the 221-B Canyon Building and ancillary support structures (B Plant). The document replaces BHI-010582, Documented Safety Analysis for the B-Plant Facility. The B Plant is non-operational, deactivated and undergoing long term S&M prior to decontamination and decommissioning (D&D). This DSA is compliant with 10 CFR 830, Nuclear Safety Management, Subpart B, ''Safety Basis Requirements.'' The DSA was developed in accordance with U.S. Department of Energy (DOE) standard DOE-STD-1120-98, Integration of Environment, Safety, and Health into Facility Disposition Activities (DOE 1998) per Table 2 of 10 CFR 830 Appendix A, DOE Richland Operation Office (RL) direction (02-ABD-0053, Fluor Hanford Nuclear Safety Basis Strategy and Criteria) for facilities in long term S&M, and RL Direction (02-ABD-0091, ''FHI Nuclear Safety Expectations for Nuclear Facilities in Surveillance and Maintenance''). A crosswalk was prepared to identify potential inconsistencies between the previous B Plant safety analysis and DOE-STD-1120-98 guidance. In general, the safety analysis met the criteria of DOE-STD-1120-98. Some format and content changes have been made, including incorporating recent facility modifications and updating the evaluation guidelines and control selection criteria in accordance with RL direction (02-ABD-0053). The facility fire hazard analysis (FHA) and Technical Safety Requirements (TSR) are appended to this DSA as an aid to the users, to minimize editorial redundancy, and to provide an efficient basis for update.

  15. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals (MillionperYear Jan FebSamenuclear power plants,

  16. The 6th Annual Colorado Rare Plant Symposium: G2 Plants of Colorado

    E-Print Network [OSTI]

    The 6th Annual Colorado Rare Plant Symposium: G2 Plants of Colorado September 11, 2009 8 am - 4 pm, endangered, candidate, and petitioned plant species. The second symposium, held in Pagosa Springs in 2005, covered the globally critically imperiled (G1) plant species of Colorado that are not federally listed

  17. Plant Characteristics Associated with Natural Enemy Abundance at Michigan Native Plants

    E-Print Network [OSTI]

    Landis, Doug

    BEHAVIOR Plant Characteristics Associated with Natural Enemy Abundance at Michigan Native Plants A. K. FIEDLER1 AND D. A. LANDIS Department of Entomology, 204 Center for Integrated Plant Systems populations by providing them with plant resources such as pollen and nectar. Insects are known to respond

  18. Engineered plant biomass feedstock particles

    DOE Patents [OSTI]

    Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

    2012-04-17T23:59:59.000Z

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  19. Methods of saccharification of polysaccharides in plants

    DOE Patents [OSTI]

    Howard, John; Fake, Gina

    2014-04-29T23:59:59.000Z

    Saccharification of polysaccharides of plants is provided, where release of fermentable sugars from cellulose is obtained by adding plant tissue composition. Production of glucose is obtained without the need to add additional .beta.-glucosidase. Adding plant tissue composition to a process using a cellulose degrading composition to degrade cellulose results in an increase in the production of fermentable sugars compared to a process in which plant tissue composition is not added. Using plant tissue composition in a process using a cellulose degrading enzyme composition to degrade cellulose results in decrease in the amount of cellulose degrading enzyme composition or exogenously applied cellulase required to produce fermentable sugars.

  20. Kansas City Plant Celebrates Safety Milestone

    ScienceCinema (OSTI)

    None

    2010-09-01T23:59:59.000Z

    A gang of motorcycle riders arrived at the NNSA's Kansas City Plant on July 1 to help celebrate a significant safety achievement - working nearly five million hours, covering a one-year period without a lost-time injury. The bikers -- some of whom are plant employees -- represent Bikers Against Child Abuse, the local nonprofit selected to receive a $5,000 donation as part of the plant's safety achievement celebration. The organization was selected because it aligns with the plant's community outreach focus on Family Safety & Security and partnership with the plant's union members.

  1. Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects

    SciTech Connect (OSTI)

    None

    1986-02-12T23:59:59.000Z

    These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

  2. PET Plants: Imaging Natural Processes for Renewable Energy

    E-Print Network [OSTI]

    Homes, Christopher C.

    PET Plants: Imaging Natural Processes for Renewable Energy from Plants Benjamin A. Babst Goldhaber Postdoctoral Fellow Medical Department Plant Imaging #12;PET imaging for medicine Tumor Diagnosis Biomedical research and plants #12;Brookhaven's Unique Capabilities Movement, distribution, and metabolism

  3. A Continuous Solar Thermochemical Hydrogen Production Plant Design

    E-Print Network [OSTI]

    Luc, Wesley Wai

    Plant Production 5000 kg/day Solar Plant Module Cost (with2, which was a solar thermal plant built by the Departmentfor a continuous solar thermochemical plant was modeled and

  4. Genomic Aspects of Research Involving Polyploid Plants

    SciTech Connect (OSTI)

    Yang, Xiaohan [ORNL; Ye, Chuyu [ORNL; Tschaplinski, Timothy J [ORNL; Wullschleger, Stan D [ORNL; Tuskan, Gerald A [ORNL

    2011-01-01T23:59:59.000Z

    Almost all extant plant species have spontaneously doubled their genomes at least once in their evolutionary histories, resulting in polyploidy which provided a rich genomic resource for evolutionary processes. Moreover, superior polyploid clones have been created during the process of crop domestication. Polyploid plants generated by evolutionary processes and/or crop domestication have been the intentional or serendipitous focus of research dealing with the dynamics and consequences of genome evolution. One of the new trends in genomics research is to create synthetic polyploid plants which provide materials for studying the initial genomic changes/responses immediately after polyploid formation. Polyploid plants are also used in functional genomics research to study gene expression in a complex genomic background. In this review, we summarize the recent progress in genomics research involving ancient, young, and synthetic polyploid plants, with a focus on genome size evolution, genomics diversity, genomic rearrangement, genetic and epigenetic changes in duplicated genes, gene discovery, and comparative genomics. Implications on plant sciences including evolution, functional genomics, and plant breeding are presented. It is anticipated that polyploids will be a regular subject of genomics research in the foreseeable future as the rapid advances in DNA sequencing technology create unprecedented opportunities for discovering and monitoring genomic and transcriptomic changes in polyploid plants. The fast accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.

  5. Small Power Plant Exemption (06-SPPE-1) Imperial County

    E-Print Network [OSTI]

    Small Power Plant Exemption (06-SPPE-1) Imperial County NILAND GAS TURBINE PLANT COMMISSIONDECISION ENERGY COMMISSION Small Power Plant Exemption (06-SPPE-1) Imperial County NILAND GAS TURBINE PLANT GAS TURBINE PLANT SMALL POWER PLANT EXEMPTION DOCKET NO. 06-SPPE-1 The California Energy Commission

  6. Scale Insects on Ornamental Plants

    E-Print Network [OSTI]

    Muegge, Mark A.; Merchant, Michael E.

    2000-08-21T23:59:59.000Z

    of all insect groups. Scale insects are generally small ( 1 /4 inch long or less) and often mimic various plant parts, such as bark and buds. Other species appear as small, white, waxy blotches or small bits of cotton on leaves and stems. The one... crawlers are pre- sent, they will fall onto the paper, where you can eas- ily see them moving about. Using natural enemies to control scales Many natural enemies?small parasitic wasps, lady- bird beetles and some fungi?can significantly reduce scale insect...

  7. PEATGAS pilot plant operating results

    SciTech Connect (OSTI)

    Biljetina, R.; Punwani, D.

    1982-08-01T23:59:59.000Z

    The Institute of Gas Technology has been developing the PEATGAS process for the conversion of peat to synthetic fuels. A program has recently been completed for the pilot-plant-scale testing of the process. In this scheme, peat is gasified in a two-stage reactor system, which operates at temperatures up to 1750/sup 0/F and pressures up to 500 psig. The process can be controlled to maximize the production of either substitute natural gas (SNG) or liquid hydrocarbons. The technical feasibility of the process was demonstrated in a series of five gasification tests. Highlights of this operating program are presented in this paper.

  8. PEATGAS pilot plant operating results

    SciTech Connect (OSTI)

    Biljetina, R.; Punwani, D.

    1982-01-01T23:59:59.000Z

    The Institute of Gas Technology has been developing the PEATGAS process for the conversion of peat to synthetic fuels. A program has recently been completed for the pilot-plant-scale testing of the process. In this scheme, peat is gasified in a two-stage reactor system, which operates at temperatures up to 1750/sup 0/F and pressures up to 500 psig. The process can be controlled to maximize the production of either substitute natural gas (SNG) or liquid hydrocarbons. The technical feasibility of the process was demonstrated in a series of five gasification tests. Highlights of this operating program are presented in this paper.

  9. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 UFeet)nuclear power plants,

  10. ARM - Lesson Plans: Planting Trees

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow, Alaska OutreachMakingPast Sea LevelPlanting

  11. Sabotage at Nuclear Power Plants

    SciTech Connect (OSTI)

    Purvis, James W.

    1999-07-21T23:59:59.000Z

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

  12. Dose reduction at nuclear power plants

    SciTech Connect (OSTI)

    Baum, J.W.; Dionne, B.J.

    1983-01-01T23:59:59.000Z

    The collective dose equivalent at nuclear power plants increased from 1250 rem in 1969 to nearly 54,000 rem in 1980. This rise is attributable primarily to an increase in nuclear generated power from 1289 MW-y to 29,155 MW-y; and secondly, to increased average plant age. However, considerable variation in exposure occurs from plant to plant depending on plant type, refueling, maintenance, etc. In order to understand the factors influencing these differences, an investigation was initiated to study dose-reduction techniques and effectiveness of as low as reasonably achievable (ALARA) planning at light water plants. Objectives are to: identify high-dose maintenance tasks and related dose-reduction techniques; investigate utilization of high-reliability, low-maintenance equipment; recommend improved radioactive waste handling equipment and procedures; examine incentives for dose reduction; and compile an ALARA handbook.

  13. Bryan Rubber Plant - International Shoe Company, Inc.

    E-Print Network [OSTI]

    Ponder, W. M.

    1985-01-01T23:59:59.000Z

    BRYAN RUBBER PLANT - INTERNATIONAL SHOE COhIPANY, INC. \\\\'illis hl. Ponder, P. E. President ACR Energy Engineering, Inc. Austin, Texas ABSTRACT This paper is an energy case study of a failing American manufacturing process suffering from... plant was envisioned alongside the main production building between the original production building and the administration building. The physical plant consists of: MANUFACTURING BUILDING . single story . concrcte floor on one level . walls...

  14. Plant nitrogen regulatory P-PII genes

    DOE Patents [OSTI]

    Coruzzi, Gloria M. (New York, NY); Lam, Hon-Ming (Hong Kong, HK); Hsieh, Ming-Hsiun (Woodside, NY)

    2001-01-01T23:59:59.000Z

    The present invention generally relates to plant nitrogen regulatory PII gene (hereinafter P-PII gene), a gene involved in regulating plant nitrogen metabolism. The invention provides P-PII nucleotide sequences, expression constructs comprising said nucleotide sequences, and host cells and plants having said constructs and, optionally expressing the P-PII gene from said constructs. The invention also provides substantially pure P-PII proteins. The P-PII nucleotide sequences and constructs of the

  15. Reducing Livestock Losses To Toxic Plants

    E-Print Network [OSTI]

    McGinty, Allan; Machen, Richard V.

    2000-04-25T23:59:59.000Z

    TexasAgriculturalExtensionService The Texas A&M University System Reducing Livestock Losses to Toxic Plants B-1499 Sand Shinnery L Perennial Broomweed Texas Agricultural Extension Service a71 Zerle L. Carpenter, Director a71 The Texas A&M University... ................... ...... ... 6 BehaviorModification.................................. 7 Management Techniques forReducingToxic Plant Losses... 8 LiteratureCited........................................ 9 Poisonous Plants ofTexas...............................10 Editor: Judy Winn...

  16. Reducing Livestock Losses To Toxic Plants 

    E-Print Network [OSTI]

    McGinty, Allan; Machen, Richard V.

    2000-04-25T23:59:59.000Z

    TexasAgriculturalExtensionService The Texas A&M University System Reducing Livestock Losses to Toxic Plants B-1499 Sand Shinnery L Perennial Broomweed Texas Agricultural Extension Service a71 Zerle L. Carpenter, Director a71 The Texas A&M University... ................... ...... ... 6 BehaviorModification.................................. 7 Management Techniques forReducingToxic Plant Losses... 8 LiteratureCited........................................ 9 Poisonous Plants ofTexas...............................10 Editor: Judy Winn...

  17. Molybdenum nutrition of the cotton plant

    E-Print Network [OSTI]

    Amin, Jagdish V.

    1957-01-01T23:59:59.000Z

    that plants receiving molybdenum exhibited a greater capacity to c?nvert accumulated inorganic phosphorus into ?rgani? phosphorus than those lacking the element. Spencer (?0) pointed out that malybdate is a powerful competitive inhibitor of the acid..., Molybdenum cycle in the soil..................... Representative 30-day-?ld c?tt?n plants ?f the plus and minus molybdenum series* Plants in the right hand beaker are in minus molybdenum s?luti?n. . . . Figure 3* Alcohol s?luble amino acids in leaves...

  18. Enterprise Assessments Review, Waste Isolation Pilot Plant -...

    Office of Environmental Management (EM)

    December, 2014 Review of the Waste Isolation Pilot Plant Conduct of Maintenance Recovery Plan The Office of Nuclear Safety and Environmental Assessments, within the U.S. Department...

  19. Sandia National Laboratories: manufacturing plant factory logic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plant factory logic model Sandia Participated in AMII to Support American-Made Wind-Turbine Blades On December 3, 2014, in Computational Modeling & Simulation, Energy, Materials...

  20. Molecular biology of signal transduction in plants

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This volume contains abstracts of oral presentations and poster sessions of the 1991 Cold Springs Harbor Meeting entitled Molecular Biology of Signal Transduction in Plants.

  1. Electromagnetic compatibility of nuclear power plants

    SciTech Connect (OSTI)

    Cabayan, H.S.

    1983-01-01T23:59:59.000Z

    Lately, there has been a mounting concern about the electromagnetic compatibility of nuclear-power-plant systems mainly because of the effects due to the nuclear electromagnetic pulse, and also because of the introduction of more-sophisticated and, therefore, more-susceptible solid-state devices into the plants. Questions have been raised about the adequacy of solid-state-device protection against plant electromagnetic-interference sources and transients due to the nuclear electromagnetic pulse. In this paper, the author briefly reviews the environment, and the coupling, susceptibility, and vulnerability assessment issues of commercial nuclear power plants.

  2. Wisconsin Nuclear Profile - Point Beach Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Point Beach Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  3. Tennessee Nuclear Profile - Watts Bar Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Watts Bar Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  4. Enterprise Assessments Review, Waste Isolation Pilot Plant -...

    Energy Savers [EERE]

    December 2014 Review of the Waste Isolation Pilot Plant Recovery Plan for Operating Diesel Equipment with Available Underground Airflows. The Office of Nuclear Safety and...

  5. Sandia National Laboratories: complex wind plant interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    complex wind plant interactions SWiFT Commissioned to Study Wind Farm Optimization On July 29, 2013, in Energy, Facilities, News, News & Events, Partnership, Renewable Energy,...

  6. Materials performance in coal gasification pilot plants

    SciTech Connect (OSTI)

    Judkins, R.R.; Bradley, R.A.

    1987-10-15T23:59:59.000Z

    This paper presents the results of several materials testing projects which were conducted in operating coal gasification pilot plants in the United States. These projects were designed to test potential materials of construction for commercial plants under actual operating conditions. Pilot plants included in the overall test program included the Hygas, Conoco Coal, Synthane, Bi-Gas, Peatgas (Hygas operating with peat), Battelle, U-Gas, Westinghouse (now KRW), General Electric (Gegas), and Mountain Fuel Resources plants. Test results for a large variety of alloys are discussed and conclusions regarding applicability of these materials in coal gasification environments are presented. 14 refs., 2 tabs.

  7. Sandia National Laboratories: photovoltaic plant reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photovoltaic plant reliability Sandia-Electric Power Research Institute Partnership Publishes Photovoltaic Reliability Report On January 21, 2014, in Energy, Facilities, Grid...

  8. Sandia National Laboratories: forecasting plant health outcomes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plant health outcomes Sandia-Electric Power Research Institute Partnership Publishes Photovoltaic Reliability Report On January 21, 2014, in Energy, Facilities, Grid...

  9. Thermoelectric Power Plant Water Needs and Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study of the Use of Saline Formations for Combined Thermoelectric Power Plant Water Needs and Carbon Sequestration at a Regional Scale: Phase III Report August 2010 DOE...

  10. Independent Oversight Review, Portsmouth Gaseous Diffusion Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 2013 Independent Oversight Review, Portsmouth Gaseous Diffusion Plant - April 2013 April 2013 Review of the Integrated Safety Management System Phase I Verification Review at...

  11. Oversight Reports - Portsmouth Gaseous Diffusion Plant | Department...

    Broader source: Energy.gov (indexed) [DOE]

    of the PortsmouthPaducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants August 25, 2011 Independent Activity...

  12. Hanford Waste Treatment Plant Construction Quality Review

    Broader source: Energy.gov (indexed) [DOE]

    Safety and Health Evaluations Activity Report for the Hanford Waste Treatment Plant Construction Quality Review Dates of Activity 02142011 - 02172011 Report Preparer Joseph...

  13. Use of NAP gene to manipulate leaf senescence in plants

    DOE Patents [OSTI]

    Gan, Susheng; Guo, Yongfeng

    2013-04-16T23:59:59.000Z

    The present invention discloses transgenic plants having an altered level of NAP protein compared to that of a non-transgenic plant, where the transgenic plants display an altered leaf senescence phenotype relative to a non-transgenic plant, as well as mutant plants comprising an inactivated NAP gene, where mutant plants display a delayed leaf senescence phenotype compared to that of a non-mutant plant. The present invention also discloses methods for delaying leaf senescence in a plant, as well as methods of making a mutant plant having a decreased level of NAP protein compared to that of a non-mutant plant, where the mutant plant displays a delayed leaf senescence phenotype relative to a non-mutant plant. Methods for causing precocious leaf senescence or promoting leaf senescence in a plant are also disclosed. Also disclosed are methods of identifying a candidate plant suitable for breeding that displays a delayed leaf senescence and/or enhanced yield phenotype.

  14. Nuclear power plant performance assessment pertaining to plant aging in France and the United States

    E-Print Network [OSTI]

    Guyer, Brittany (Brittany Leigh)

    2013-01-01T23:59:59.000Z

    The effect of aging on nuclear power plant performance has come under increased scrutiny in recent years. The approaches used to make an assessment of this effect strongly influence the economics of nuclear power plant ...

  15. Optimization of a Chilled Water Plant Using a Forward Plant Model

    E-Print Network [OSTI]

    Zhang, Z.; Turner, W. D.; Chen, Q.; Xu, C.; Deng, S.

    2010-01-01T23:59:59.000Z

    This paper introduces a forward chilled water plant model to optimize the setpoints of continuous controlled variables in a chiller plant without storage and controlled by supervisory control. It can also be used to estimate the savings potential...

  16. Structure of plant bile pigments

    SciTech Connect (OSTI)

    Schoenleber, R.W.

    1983-12-01T23:59:59.000Z

    Selective peptide cleavage has provided a general procedure for the study of the structure, including stereochemistry, of plant bile pigments. The information derived from the synthesis and spectral analysis of a series of 2,3-dihydrodioxobilins allows the determination of the trans relative stereochemistry for ring A of the ..beta../sub 1/-phycocyanobilin from C-phycocyanin as well as for ring A of phytochrome. A complete structure proof of the five phycoerythrobilins attached to the ..cap alpha.. and ..beta.. subunits of B-phycoerythrin is described. One of these tetrapyrroles is doubly-peptide linked to a single peptide chain through two thioethers at the C-3' and C-18' positions. The four remaining phycoerythrobilins are singly-linked to the protein through thioethers at the C-3' position and all possess the probable stereochemistry C-2(R), C-3(R), C-3'(R), and C-16(R).

  17. Trends in hydrogen plant design

    SciTech Connect (OSTI)

    Johansen, T.; Raghuraman, K.S.; Hackett, L.A. (KTI, Zoetermeer (NL))

    1992-08-01T23:59:59.000Z

    Understanding important design considerations for H{sub 2} production via steam reforming require detailed attention to the many elements that make up the process. This paper discusses design trends focus on improvements to the plant's three principal unit operations: Generation of H{sub 2}/CO syngas, Conversion of CO in the syngas and Separation/purification of H{sub 2} from syngas. Natural gas, LPG, oil, coal and coke are all potential raw materials for H{sub 2} production. For the first step in the process, generation of H{sub 2} syngas, the processes available are: Reforming the steam; Autothermal reforming with oxygen and steam; and Partial oxidation with oxygen (POX). Most syngas is presently produced by steam reforming of natural gas or light hydrocarbons up to naphtha.

  18. The Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Dr. David A. Petti

    2009-01-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) will be a demonstration of the technical, licensing, operational, and commercial viability of High Temperature Gas-Cooled Reactor (HTGR) technology for the production of process heat, electricity, and hydrogen. This nuclear- based technology can provide high-temperature process heat (up to 950°C) that can be used as a substitute for the burning of fossil fuels for a wide range of commercial applications (see Figure 1). The substitution of the HTGR for burning fossil fuels conserves these hydrocarbon resources for other uses, reduces uncertainty in the cost and supply of natural gas and oil, and eliminates the emissions of greenhouse gases attendant with the burning of these fuels. The HTGR is a passively safe nuclear reactor concept with an easily understood safety basis that permits substantially reduced emergency planning requirements and improved siting flexibility compared to other nuclear technologies.

  19. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume II. Plant specifications

    SciTech Connect (OSTI)

    Price, R. E.

    1983-12-31T23:59:59.000Z

    The specifications and design criteria for all plant systems and subsystems used in developing the preliminary design of Carrisa Plains 30-MWe Solar Plant are contained in this volume. The specifications have been organized according to plant systems and levels. The levels are arranged in tiers. Starting at the top tier and proceeding down, the specification levels are the plant, system, subsystem, components, and fabrication. A tab number, listed in the index, has been assigned each document to facilitate document location.

  20. Master Plant List for Texas Range and Pasture Plant Identification Contests

    E-Print Network [OSTI]

    Ragsdale, Bobby

    2000-05-03T23:59:59.000Z

    RS1.044 MASTER PLANT LIST FOR TEXAS RANGE AND PASTURE PLANT IDENTIFICATION CONTESTS PURPOSE 1. To promote knowledge of the widely distributed range and pasture plants growing on Texas soils, 2. To develop an understanding of the grazing value...

  1. A SOFTWARE ARCHITECTURE FOR DEVELOPMENTAL MODELING IN PLANTS: THE COMPUTABLE PLANT PROJECT

    E-Print Network [OSTI]

    Mjolsness, Eric

    dynamic objects and relationships; a C++ code generator to translate SBML into highly efficient simulationA SOFTWARE ARCHITECTURE FOR DEVELOPMENTAL MODELING IN PLANTS: THE COMPUTABLE PLANT PROJECT Victoria present the software architecture of the Computable Plant Project, a multidisciplinary computationally

  2. Nonpoisonous Plants The following is a list of 20 plants that are

    E-Print Network [OSTI]

    Arizona, University of

    . Candelabras Cactus (Euphorbia Lactea) Carolina Jessamine (Gelsemium Sempervirens) Castor Bean1 (Ricinus the mouth. Give a small amount of water to drink. SKIN: Wash any skin exposed to the plant with soap and water right away. Remove any clothing that has been in contact with the plant. Remember any plant can

  3. Light and Plants Plants use light to photosynthesize. Name two places that light can come from

    E-Print Network [OSTI]

    Koptur, Suzanne

    Light and Plants Plants use light to photosynthesize. Name two places that light can come from: 1 (CO2, a gas) from the air and turn it into SUGARS (food). This process is powered by energy from light plants) for energy. Photosynthetically Active Radiation (PAR) is a combination of red light and blue

  4. HARNESSING PLANT BIOMASS FOR BIOFUELS AND BIOMATERIALS Plant surface lipid biosynthetic pathways and their utility for

    E-Print Network [OSTI]

    Kunst, Ljerka

    HARNESSING PLANT BIOMASS FOR BIOFUELS AND BIOMATERIALS Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels Reinhard Jetter1,2,* and Ljerka Kunst1 biosynthetic pathways can be used in metabolic engineering of plants for the production of hydrocarbon biofuels

  5. OIKOS 103: 4558, 2003 Plant species diversity, plant biomass and responses of the soil

    E-Print Network [OSTI]

    Leps, Jan "Suspa"

    species diversity, plant biomass and responses of the soil community on abandoned land across EuropeOIKOS 103: 45­58, 2003 Plant species diversity, plant biomass and responses of the soil community on abandoned land across Europe: idiosyncracy or above-belowground time lags K. Hedlund, I. Santa Regina, W. H

  6. Phylogenetic Exploration of Medicinal Plant Diversity MedPlant PhD Fellowship

    E-Print Network [OSTI]

    Zürich, Universität

    MedPlant Phylogenetic Exploration of Medicinal Plant Diversity MedPlant PhD Fellowship Incense, is offering a 3-year PhD scholarship commencing spring 2014. The application deadline is November 15, 2013. The Institute of Systematic Botany, University of Zürich announces an opening for a fully funded PhD fellowship

  7. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    SciTech Connect (OSTI)

    Samuel S. Tam

    2002-05-01T23:59:59.000Z

    The goal of this series of design and estimating efforts was to start from the as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project and to develop optimized designs for several coal and petroleum coke IGCC power and coproduction projects. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This unoptimized plant has a thermal efficiency of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW. This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal and coke-fueled power plants. This side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, showed their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a multiple train coal-fueled IGCC powerplant, also based on the Subtaks 1.3 cases. The Subtask 1.6 four gasification train plant has a thermal efficiency of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency of 45.4% (HHV) and a plant cost of 1,096 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to coproduce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. As gasification technology matures, SCOHS and other improvements identified in this study will lead to further cost reductions and efficiency improvements.

  8. UNDERSTANDING ENTRAINMENT AT COASTAL POWER PLANTS

    E-Print Network [OSTI]

    UNDERSTANDING ENTRAINMENT AT COASTAL POWER PLANTS: INFORMING A PROGRAM TO STUDY Landing Power Plant (at center). Image from the U.S. Army Corps of Engineers Digital Visual Library. #12; #12;i Acknowledgments The authors would like to thank many people who assisted with locating

  9. SCHEDULING CEMENT PLANTS WITH ENERGY CONSTRAINTS

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    SCHEDULING CEMENT PLANTS WITH ENERGY CONSTRAINTS Pedro M. Castro Ignacio E. Grossmann Iiro K Meeting 4 #12;5 ABB PROJECT #12;INTRODUCTION Cement producers currently under pressure to produce Contracts agreed between electricity supplier and cement plants (planning level) Energy cost [$/k

  10. Proceedings: EPRI Manufactured Gas Plants 2003 Forum

    SciTech Connect (OSTI)

    None

    2004-02-01T23:59:59.000Z

    The EPRI Manufactured Gas Plants 2003 Forum covered a range of topics related to remediation and management of former manufactured gas plant (MGP) sites, with emphasis on technological advances and current issues associated with site cleanup. In specific, the forum covered MGP coal-tar delineation, soil and groundwater remediation technologies, improvements in air monitoring, and ecological risk characterization/risk management tools.

  11. Method for regulation of plant lignin composition

    DOE Patents [OSTI]

    Chapple, Clint (West Lafayette, IN)

    1999-01-01T23:59:59.000Z

    A method is disclosed for the regulation of lignin composition in plant tissue. Plants are transformed with a gene encoding an active F5H gene. The expression of the F5H gene results in increased levels of syringyl monomer providing a lignin composition more easily degraded with chemicals and enzymes.

  12. LIFE Power Plant Fusion Power Associates

    E-Print Network [OSTI]

    LIFE Power Plant Fusion Power Associates December 14, 2011 Mike Dunne LLNL #12;NIf-1111-23714.ppt LIFE power plant 2 #12;LIFE delivery timescale NIf-1111-23714.ppt 3 #12;Timely delivery is enabled dpa) § Removes ion threat and mitigates x-ray threat ­ allows simple steel piping § No need

  13. Power Transformer Application for Wind Plant Substations

    SciTech Connect (OSTI)

    Behnke, M. R. [IEEE PES Wind Plant Collector System Design Working Group; Bloethe, W.G. [IEEE PES Wind Plant Collector System Design Working Group; Bradt, M. [IEEE PES Wind Plant Collector System Design Working Group; Brooks, C. [IEEE PES Wind Plant Collector System Design Working Group; Camm, E H [IEEE PES Wind Plant Collector System Design Working Group; Dilling, W. [IEEE PES Wind Plant Collector System Design Working Group; Goltz, B. [IEEE PES Wind Plant Collector System Design Working Group; Li, J. [IEEE PES Wind Plant Collector System Design Working Group; Niemira, J. [IEEE PES Wind Plant Collector System Design Working Group; Nuckles, K. [IEEE PES Wind Plant Collector System Design Working Group; Patino, J. [IEEE PES Wind Plant Collector System Design Working Group; Reza, M [IEEE PES Wind Plant Collector System Design Working Group; Richardson, B. [IEEE PES Wind Plant Collector System Design Working Group; Samaan, N. [IEEE PES Wind Plant Collector System Design Working Group; Schoene, Jens [IEEE PES Wind Plant Collector System Design Working Group; Smith, Travis M [ORNL; Snyder, Isabelle B [ORNL; Starke, Michael R [ORNL; Walling, R. [IEEE PES Wind Plant Collector System Design Working Group; Zahalka, G. [IEEE PES Wind Plant Collector System Design Working Group

    2010-01-01T23:59:59.000Z

    Wind power plants use power transformers to step plant output from the medium voltage of the collector system to the HV or EHV transmission system voltage. This paper discusses the application of these transformers with regard to the selection of winding configuration, MVA rating, impedance, loss evaluation, on-load tapchanger requirements, and redundancy.

  14. A Survey of Power Plant Designs

    E-Print Network [OSTI]

    Ervin, Elizabeth K.

    University #12;Combustion Turbine Power Plant Open System The turbine burns either natural gas or oil. Fuel is mixed with compressed air in the combustion chamber and burned. High-pressure combustion gases spin. The Southaven Combined-Cycle Combustion Turbine Plant is located near Desoto County, Mississippi. Running

  15. Ninth International Workshop on Plant Membrane Biology

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This report is a compilation of abstracts from papers which were discussed at a workshop on plant membrane biology. Topics include: plasma membrane ATP-ases; plant-environment interactions, membrane receptors; signal transduction; ion channel physiology; biophysics and molecular biology; vaculor H+ pumps; sugar carriers; membrane transport; and cellular structure and function.

  16. Metal resistance sequences and transgenic plants

    DOE Patents [OSTI]

    Meagher, Richard Brian (Athens, GA); Summers, Anne O. (Athens, GA); Rugh, Clayton L. (Athens, GA)

    1999-10-12T23:59:59.000Z

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  17. University of Massachusetts Physical Plant Division

    E-Print Network [OSTI]

    Mountziaris, T. J.

    with all applicable rules and regulations. As of the date of this policy, the University of Massachusetts1 University of Massachusetts Amherst Physical Plant Division March 26, 2007 From: Pat Daly. To this end, the Property Office of the University of Massachusetts Amherst shall provide the Physical Plant

  18. Rangeland Risk Management for Texans: Toxic Plants

    E-Print Network [OSTI]

    Hart, Charles R.

    2000-11-01T23:59:59.000Z

    Toxic plants can cause serious losses to livestock, but with the information in this leaflet producers will know how to manage grazing to minimize the danger of toxic plants. It is important to recognize problems early and know how to deal with them....

  19. Rangeland Risk Management for Texans: Toxic Plants 

    E-Print Network [OSTI]

    Hart, Charles R.

    2000-11-01T23:59:59.000Z

    Toxic plants can cause serious losses to livestock, but with the information in this leaflet producers will know how to manage grazing to minimize the danger of toxic plants. It is important to recognize problems early and know how to deal with them....

  20. Lessons learned from existing biomass power plants

    SciTech Connect (OSTI)

    Wiltsee, G.

    2000-02-24T23:59:59.000Z

    This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

  1. Production of Therapeutic Proteins in Plants

    E-Print Network [OSTI]

    Bradford, Kent

    responses are often proteins. While short peptide chains (containing fewer than 30 amino acids) can be syn facilities will fall far short of demand, as aug- menting cell culture facilities requires large investments in buildings and equip- ment. Recently, transgenic (i.e., plants engineered to produce specific proteins) plant

  2. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2003-05-27T23:59:59.000Z

    The subMW hybrid DFC/T power plant facility was upgraded with a Capstone C60 microturbine and a state-of-the-art full size fuel cell stack. The integration of the larger microturbine extended the capability of the hybrid power plant to operate at high power ratings with a single gas turbine without the need for supplementary air. The objectives of this phase of subMW hybrid power plant tests are to support the development of process and control and to provide the insight for the design of the packaged subMW hybrid demonstration units. The development of the ultra high efficiency multi-MW power plants was focused on the design of 40 MW power plants with efficiencies approaching 75% (LHV of natural gas). The design efforts included thermodynamic cycle analysis of key gas turbine parameters such as compression ratio.

  3. Strategies in tower solar power plant optimization

    E-Print Network [OSTI]

    Ramos, A

    2012-01-01T23:59:59.000Z

    A method for optimizing a central receiver solar thermal electric power plant is studied. We parametrize the plant design as a function of eleven design variables and reduce the problem of finding optimal designs to the numerical problem of finding the minimum of a function of several variables. This minimization problem is attacked with different algorithms both local and global in nature. We find that all algorithms find the same minimum of the objective function. The performance of each of the algorithms and the resulting designs are studied for two typical cases. We describe a method to evaluate the impact of design variables in the plant performance. This method will tell us what variables are key to the optimal plant design and which ones are less important. This information can be used to further improve the plant design and to accelerate the optimization procedure.

  4. Coevolution Produces an Arms Race Among Virtual Plants

    E-Print Network [OSTI]

    Ebner, Marc

    Coevolution Produces an Arms Race Among Virtual Plants Marc Ebner, Adrian Grigore, Alexander He#11 create plants for a virtual environment. The plants are represented as context-free Lin- denmayer systems. OpenGL is used to visualize and evaluate the plants. Our plants have to collect virtual sunlight

  5. Creating Wildlife Habitat with Native Florida Freshwater Wetland Plants1

    E-Print Network [OSTI]

    Watson, Craig A.

    CIR 912 Creating Wildlife Habitat with Native Florida Freshwater Wetland Plants1 Martin B. Main by establishing and managing desirable native plants. Native wetland plants play important ecological roles many more species than non-native plants because native wildlife evolved with native plant communities

  6. Review article Aluminium toxicity in plants: a review

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Review article Aluminium toxicity in plants: a review G.R. ROUTa, S. SAMANTARAYb, P. DASb* a Plant Biotechnology Division, Regional Plant Resource Centre, Bhubaneswar- 751 015, Orissa, India b Plant Physiology and Biochemistry Laboratory, Regional Plant Resource Centre, Bhubaneswar- 751 015, Orissa, India (Received 31 May

  7. RESEARCH PAPER Composition of the plant nuclear envelope: theme and

    E-Print Network [OSTI]

    Meier, Iris

    RESEARCH PAPER Composition of the plant nuclear envelope: theme and variations Iris Meier* Plant plants is only just beginning, fundamental differences from the animal nuclear envelope have already been to known plant regulatory pathways. Plant nuclear envelope composition The inner nuclear envelope A number

  8. Simulation of the Visual Effects of Power Plant Plumes1

    E-Print Network [OSTI]

    Standiford, Richard B.

    -fired power plant with six 500 MW coal-fired power plants located at hypothetical sites in southeastern Utah coal-fired power plants are greater than those from oil or natural gas. If we must use more coal, how in a comparison of large and small coal-fired power plants in the West. Using hypothetical power plants

  9. Progress in estimation of power plant emissions from satellite retrievals

    E-Print Network [OSTI]

    Jacob, Daniel J.

    increase in SO2 emissions from Indian coal-fired power plants during 2005­2012 2 #12;Zifeng Lu, Progress doubled since 1996 ­ No SO2 emission control in Indian coal-fired power plants The latitude of India captive coal-fired power plants Improved Indian coal-fired power plant database ­ 165 plants, >720 units

  10. 7th Annual Colorado Rare Plant Symposium Conservation Efforts and Status Review of G1 Plants of Colorado

    E-Print Network [OSTI]

    7th Annual Colorado Rare Plant Symposium Conservation Efforts and Status Review of G1 Plants of the Colorado Rare Plant Technical Committee (RPTC) for the 7th Annual Colorado Rare Plant Symposium. The RPTC is an ad-hoc group of agency and NGO botanists that has been working for years to advance rare plant

  11. ISOLATION OF NUCLEAR DNA FROM PLANTS Based on Peterson et al. (1997), Plant Mol. Biol. Reptr. 15: 148-153.

    E-Print Network [OSTI]

    Ray, David

    1997-01-01T23:59:59.000Z

    ISOLATION OF NUCLEAR DNA FROM PLANTS Based on Peterson et al. (1997), Plant Mol. Biol. Reptr. 15 quantities of nuclear DNA from a wide variety of plants including pine, tomato, juniper, cypress, sorghum for plants in which polyphenols are a problem, although it has provided good results for every plant species

  12. Engineered plant biomass feedstock particles

    DOE Patents [OSTI]

    Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

    2011-10-18T23:59:59.000Z

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  13. Engineered plant biomass feedstock particles

    DOE Patents [OSTI]

    Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

    2011-10-11T23:59:59.000Z

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  14. Cycling operation of fossil plants

    SciTech Connect (OSTI)

    Devendorf, D.; Kulczycky, T.G. (Niagara Mohawk Power Corp., Syracuse, NY (USA))

    1991-05-01T23:59:59.000Z

    A necessity for many utilities today is the cycling of their fossil units. Fossil plants with their higher fuel costs are being converted to cycling operation to accommodate daily load swings and to decrease the overall system fuel costs. For a large oil-fired unit, such as Oswego Steam Station Unit 5, millions of dollars can be saved annually in fuel costs if the unit operates in a two-shift mode. However, there are also penalties attributable to cycling operation which are associated with availability and thermal performance. The objectives of Niagara Mohawk Power Corporation were to minimize the losses in availability and performance, and the degradation in the life of the equipment by incorporating certain cycling modifications into the unit. The objective of this project was to evaluate the effectiveness of three of these cycling modifications: (1) the superheater and turbine bypass (Hot Restart System), (2) the use of variable pressure operation, and (3) the full-flow condensate polishing system. To meet this objective, Unit 5 was tested using the cycling modifications, and a dynamic mathematical model of this unit was developed using the Modular Modeling System (MMS) Code from EPRI. This model was used to evaluate various operating modes and to assist in the assessment of operating procedures. 15 refs., 41 figs., 22 tabs.

  15. Improving pulverized coal plant performance

    SciTech Connect (OSTI)

    Regan, J.W.; Borio, R.W.; Palkes, M.; Mirolli, M. [ABB Combustion Engineering, Inc., Windsor, CT (United States); Wesnor, J.D. [ABB Environmental Systems, Birmingham, AL (United States); Bender, D.J. [Raytheon Engineers and Constructors, Inc., New York, NY (United States)

    1995-12-31T23:59:59.000Z

    A major deliverable of the U.S. Department of Energy (DOE) project ``Engineering Development of Advanced Coal-Fired Low-Emissions Boiler Systems`` (LEBS) is the design of a large, in this case 400 MWe, commercial generating unit (CGU) which will meet the Project objectives. The overall objective of the LEBS Project is to dramatically improve environmental performance of future pulverized coal fired power plants without adversely impacting efficiency or the cost of electricity. The DOE specified the use of near-term technologies, i.e., advanced technologies that partially developed, to reduce NO{sub x}, SO{sub 2} and particulate emissions to be substantially less than current NSPS limits. In addition, air toxics must be in compliance and waste must be reduced and made more disposable. The design being developed by the ABB Team is projected to meet all the contract objectives and to reduce emission of NO{sub x}, SO{sub 2} and particulates to one-fifth to one-tenth NSPS limits while increasing net station efficiency significantly and reducing the cost of electricity. This design and future work are described in the paper.

  16. Hybrid Wet/Dry Cooling for Power Plants (Presentation)

    SciTech Connect (OSTI)

    Kutscher, C.; Buys, A.; Gladden, C.

    2006-02-01T23:59:59.000Z

    This presentation includes an overview of cooling options, an analysis of evaporative enhancement of air-cooled geothermal power plants, field measurements at a geothermal plant, a preliminary analysis of trough plant, and improvements to air-cooled condensers.

  17. Controller Synthesis of Discrete Linear Plants Using MATTEO SLANINA

    E-Print Network [OSTI]

    Sankaranarayanan, Sriram

    Controller Synthesis of Discrete Linear Plants Using Polyhedra MATTEO SLANINA Stanford University controllers for linear discrete systems with disturbances. Given a plant description and a safety We study techniques for synthesizing synchronous controllers for affine plants with disturbances

  18. New Nissan Paint Plant Achieves 30% Energy Savings | Department...

    Broader source: Energy.gov (indexed) [DOE]

    New Nissan Paint Plant Achieves 30% Energy Savings New Nissan Paint Plant Achieves 30% Energy Savings May 6, 2013 - 5:55pm Addthis New Nissan Paint Plant Achieves 30% Energy...

  19. Future AI and Robotics Technology for Nuclear Plants Decommissioning

    E-Print Network [OSTI]

    Hu, Huosheng

    Future AI and Robotics Technology for Nuclear Plants Decommissioning Huosheng Hu and Liam Cragg to aid in decommissioning nuclear plants that have been used to process or store nuclear materials. Scope potential applications to nuclear plant decommissioning, namely Nanotechnology, Telepresence

  20. Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    years." The new low-temperature, binary cycle plant uses waste heat from the geothermal brine of an existing geothermal plant at the facility. The new plant will add approximately...

  1. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    Summary of the Proposed Solar Power Plant Design The ImpactGenerated by this Solar Power Plant The Impact of StorageVessel Design on the Solar Power Plant III I;l f> (I Q I)

  2. Grand Opening for Project LIBERTY: Nation's First Plant to Use...

    Energy Savers [EERE]

    of the plant-creating enough energy to power the facility, as well as a co-located bioethanol plant. Project LIBERTY is co-located with POET's existing corn ethanol plant to...

  3. Experience curves for power plant emission control technologies

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Hounshell, David A; Taylor, Margaret R

    2007-01-01T23:59:59.000Z

    Inc. Experience curves for power plant emission controlfor Coal-Fired Utility Power Plants, U.S. Environmental1/2, 2004 Experience curves for power plant emission control

  4. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    D. , The Central Reciever Power Plant: An Environmental,of the Proposed Solar Power Plant Design The Impact ofGenerated by this Solar Power Plant The Impact of Storage

  5. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    process configurations for solar power plants with sensible-heatsolar power plant with sensible-heat storage since the chemical~heat storage processsolar power plant with a sulfur-oxide storage process. chemical~heat

  6. The effects of variable operation on RO plant performance

    E-Print Network [OSTI]

    Williams, Christopher Michael, S.M. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    Optimizations of reverse osmosis (RO) plants typically consider steady state operation of the plant. RO plants are subject to transient factors that may make it beneficial to produce more water at one time than at another. ...

  7. Spatial Interactions among Fuels, Wildfire, and Invasive Plants Project title

    E-Print Network [OSTI]

    Spatial Interactions among Fuels, Wildfire, and Invasive Plants Project title: Spatial Interactions Among Fuels, Wildfire, and Invasive Plants Project location: Colorado State University, Western Forest, wildfire severity, exotic plant invasions, and post-fire fuel flammability in grasslands, shrub lands

  8. Induced Responses to Herbivory and Increased Plant Performance

    E-Print Network [OSTI]

    Agrawal, Anurag

    plant performance. Lifetime plant performance was evalu- ated for wild radish (Raphanus sativus L. Because mean seed mass significantly affected plant fitness in pre- vious experiments with Raphanus (12

  9. Reference genome sequence of the model plant Setaria

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    segregation of nuclear genes in plants. Bot. Gaz. 147, 26.in the nuclear genome of Fragaria vesca. Plant Genome 2, 93–Nuclear DNA isolation from Setaria. A single, highly inbred Yugu1 plant

  10. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    of sites suitable for a solar plant with sulfur oxide TableProcess for a Steam Solar Electric Plant Report No. LBL-Summary of the Proposed Solar Power Plant Design The Impact

  11. Rangeland Drought Management for Texans: Toxic Range Plants

    E-Print Network [OSTI]

    Hart, Charles R.; Carpenter, Bruce B.

    2001-05-03T23:59:59.000Z

    Toxic plants can pose a major threat to livestock during a drought. This publication explains the importance of knowing which plants are toxic, keeping the range healthy, and preventing toxic plant problems....

  12. Lectin cDNA and transgenic plants derived therefrom

    DOE Patents [OSTI]

    Raikhel, Natasha V. (Okemos, MI)

    2000-10-03T23:59:59.000Z

    Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties.

  13. Rangeland Drought Management for Texans: Toxic Range Plants 

    E-Print Network [OSTI]

    Hart, Charles R.; Carpenter, Bruce B.

    2001-05-03T23:59:59.000Z

    Toxic plants can pose a major threat to livestock during a drought. This publication explains the importance of knowing which plants are toxic, keeping the range healthy, and preventing toxic plant problems....

  14. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    Topping of the Steam-Cycle Power Plant . A COMPARISON OFTOPPING OF THE STEAM-CYCLE POWER PLANT The proposed solarreceiver and a steam-cycle power plant. To transport heat, a

  15. The hierarchical structure and mechanics of plant materials

    E-Print Network [OSTI]

    Gibson, Lorna

    The cell walls in plants are made up of just four basic building blocks: cellulose (the main structural fibre of the plant kingdom) hemicellulose, lignin and pectin. Although the microstructure of plant cell walls varies ...

  16. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    of the Proposed Solar Power Plant Design The Impact ofGenerated by this Solar Power Plant The Impact of StorageDesign on the Solar Power Plant III I;l f> (I Q I) II (I

  17. The Plant Cell, Vol. 11, 14451456, August 1999, www.plantcell.org 1999 American Society of Plant Physiologists Light QualityDependent Nuclear Import of the Plant

    E-Print Network [OSTI]

    Schäfer, Eberhard

    Physiologists Light Quality­Dependent Nuclear Import of the Plant Photoreceptors Phytochrome A and B StefanThe Plant Cell, Vol. 11, 1445­1456, August 1999, www.plantcell.org © 1999 American Society of Plant Institute of Plant Biology, Biological Research Center, P.O. Box 521, H-6701 Szeged, Hungary The phytochrome

  18. Carbide process picked for Chinese polyethylene plant

    SciTech Connect (OSTI)

    Alperowicz, N.

    1993-02-10T23:59:59.000Z

    Union Carbide (Danbury, CT) is set to sign up its eighth polyethylene (PE) license in China. The company has been selected to supply its Unipol technology to Jilin Chemical Industrial Corp. (JCIC) for a 100,000-m.t./year linear low-density PE (LLDPE) plant at Jilin. The plant will form part of a $2-billion petrochemical complex, based on a 300,000-m.t./year ethylene unit awarded to a consortium made up of Samsung Engineering (Seoul) and Linde. A 10,000-m.t./year butene-1 unit will also be built. Toyo Engineering, Snamprogetti, Mitsubishi Heavy Industries, and Linde are competing for the contract to supply the LLDPE plant. The signing is expected this spring. Two contenders are vying to supply an 80,000-m.t./year phenol plant for JCIC. They are Mitsui Engineering, offering the Mitsui Petrochemical process, and Chisso, with UOP technology. Four Unipol process PE plants are under construction in China and three are in operation. At Guangzhou, Toyo Engineering is building a 100,000-m.t./year plant, due onstream in 1995, while Snamprogetti is to finish construction of two plants in the same year at Zhonguyan (120,000 m.t./year) and at Maoming (140,000 m.t./year). The Daquing Design Institute is responsible for the engineering of a 60,000-m.t./year Unipol process PE plant, expected onstream early in 1995. Existing Unipol process PE plants are located in Qilu (60,000 m.t./year LLDPE and 120,000 m.t./year HDPE) and at Taching (60,000 m.t./year HDPE).

  19. LBB considerations for a new plant design

    SciTech Connect (OSTI)

    Swamy, S.A.; Mandava, P.R.; Bhowmick, D.C.; Prager, D.E. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1997-04-01T23:59:59.000Z

    The leak-before-break (LBB) methodology is accepted as a technically justifiable approach for eliminating postulation of Double-Ended Guillotine Breaks (DEGB) in high energy piping systems. This is the result of extensive research, development, and rigorous evaluations by the NRC and the commercial nuclear power industry since the early 1970s. The DEGB postulation is responsible for the many hundreds of pipe whip restraints and jet shields found in commercial nuclear plants. These restraints and jet shields not only cost many millions of dollars, but also cause plant congestion leading to reduced reliability in inservice inspection and increased man-rem exposure. While use of leak-before-break technology saved hundreds of millions of dollars in backfit costs to many operating Westinghouse plants, value-impacts resulting from the application of this technology for future plants are greater on a per plant basis. These benefits will be highlighted in this paper. The LBB technology has been applied extensively to high energy piping systems in operating plants. However, there are differences between the application of LBB technology to an operating plant and to a new plant design. In this paper an approach is proposed which is suitable for application of LBB to a new plant design such as the Westinghouse AP600. The approach is based on generating Bounding Analyses Curves (BAC) for the candidate piping systems. The general methodology and criteria used for developing the BACs are based on modified GDC-4 and Standard Review Plan (SRP) 3.6.3. The BAC allows advance evaluation of the piping system from the LBB standpoint thereby assuring LBB conformance for the piping system. The piping designer can use the results of the BACs to determine acceptability of design loads and make modifications (in terms of piping layout and support configurations) as necessary at the design stage to assure LBB for the, piping systems under consideration.

  20. TS Power Plant, Eureka County, Nevada

    SciTech Connect (OSTI)

    Peltier, R. [DTE Energy Services (United States)

    2008-10-15T23:59:59.000Z

    Not all coal-fired power plants are constructed by investor-owned utilities or independent power producers selling to wholesale markets. When Newmont Mining Corp. recognised that local power supplies were inadequate and too expensive to meet long-term electricity needs for its major gold- and copper-mining operations in northern Nevada, it built its own generation. What is more, Newmont's privately owned 200-MW net coal-fired plant features power plant technologies that will surely become industry standards. Newmont's investment in power and technology is also golden: the capital cost will be paid back in about eight years. 4 figs.

  1. The iron nutrition of tropical foliage plants

    E-Print Network [OSTI]

    Lang, Harvey Joe

    1986-01-01T23:59:59.000Z

    extraction of Fe from fresh leaves proved to be a good indicator of the Fe status of plants. It consistently gave higher correlations with chlorophyll concentration than other methods tested. Conversely, total Fe analysis on dried leaves did not always... resolve the correct Fe status of the plant. The studies also suggested that P and the ratio of P/0. 1 N HC1-Fe may be important parameters in the diagnosis of Fe status. In a screening of 11 tropical foliage plants, Ficus benj ami ha and Nephroiepi...

  2. Independent Oversight Focused Review, Kansas City Plant, Summary...

    Office of Environmental Management (EM)

    Review, Kansas City Plant, Summary Report - December 2001 Independent Oversight Focused Review, Kansas City Plant, Summary Report - December 2001 December 2001 Focused Review of...

  3. Waste Isolation Pilot Plant Typifies Optimizing Resources to...

    Office of Environmental Management (EM)

    Plant Typifies Optimizing Resources to Maximize Results Waste Isolation Pilot Plant Typifies Optimizing Resources to Maximize Results March 5, 2013 - 12:00pm Addthis EM Carlsbad...

  4. Selecting and Hiring Engineers at the ABC Plant

    E-Print Network [OSTI]

    Erickson, Andrew E.

    2012-05-11T23:59:59.000Z

    ......................................................................................................... 10 ABC Plant History ........................................................................................... 10 ABC Plant Mission .......................................................................................... 10 National Security... ............................................................ 47 Figure 9 – Resume Evaluation ........................................................................... 49 Figure 10 - Population Comparison (Resume Evaluation) .................................. 50 Figure 11 – Interview Evaluation...

  5. Avoiding a Train Wreck: Replacing Old Coal Plants with Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Avoiding a Train Wreck: Replacing Old Coal Plants with Energy Efficiency, August 2011 Avoiding a Train Wreck: Replacing Old Coal Plants with Energy Efficiency, August 2011 This...

  6. Measurement and Treatment of Nuisance Odors at Wastewater Treatment Plants

    E-Print Network [OSTI]

    Abraham, Samantha Margaret

    2014-01-01T23:59:59.000Z

    the ability of existing treatment technologies at Plant 1 toof existing treatment technologies at both OCSD plantsof existing treatment technologies at both OCSD plants

  7. aquatic plant management: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant Manage. 46: 1-7 Environmental Sciences and Ecology Websites Summary: % of the fish species listed in the Endangered Spe- cies Act (Lassuy 1994). Invasive aquatic plant...

  8. Optimization of Water Consumption in Second Generation Bioethanol Plants

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Optimization of Water Consumption in Second Generation Bioethanol Plants Mariano Martína optimization of second generation bioethanol production plants from lignocellulosic switchgrass when using

  9. Voluntary Protection Program Onsite Review, Pantex Plant - February...

    Energy Savers [EERE]

    Pantex Plant - February 2010 February 2010 Evaluation to determine whether the Amarillo, Texas Pantex Plant is continuing to perform at a level deserving DOE-VPP Star recognition....

  10. Analysis of Waste Isolation Pilot Plant (WIPP) Samples by the...

    Office of Environmental Management (EM)

    Analysis of Waste Isolation Pilot Plant (WIPP) Samples by the Savannah River National Laboratory (SRNL) Analysis of Waste Isolation Pilot Plant (WIPP) Samples by the Savannah River...

  11. CHP and Bioenergy for Landfills and Wastewater Treatment Plants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores...

  12. How plants beckon bacteria that do it harm | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plants beckon bacteria that do it harm How plants beckon bacteria that do it harm Released: April 28, 2014 Work on microbial signaling offers better biofuels, human health...

  13. annual plant populations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DEMOGRAPHY IN PLANTAGO:VARIATION AMONG COHORTS IN A NATURAL PLANT POPULATION DEBORAH A Roach,. Deborah 67 PLANT-ANIMAL INTERACTIONS -ORIGINAL PAPER Population density of North...

  14. atomic power plants: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Denmark December 1991 12;Abstract. A computer model of a simplified pressurized nuclear power plant a compute simulation of a simplified pressurized nuclear power plant model...

  15. accelerator power plants: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Denmark December 1991 12;Abstract. A computer model of a simplified pressurized nuclear power plant a compute simulation of a simplified pressurized nuclear power plant model...

  16. atomic power plant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Denmark December 1991 12;Abstract. A computer model of a simplified pressurized nuclear power plant a compute simulation of a simplified pressurized nuclear power plant model...

  17. analysis power plant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probabilistic Seismic Hazard Analysis by Fault consider the impacts produced on a nuclear power plant (the critical plant) embedded in the connected power simulation. As outcome of...

  18. auxiliary power plants: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Denmark December 1991 12;Abstract. A computer model of a simplified pressurized nuclear power plant a compute simulation of a simplified pressurized nuclear power plant model...

  19. aguirre nuclear plant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Denmark December 1991 12;Abstract. A computer model of a simplified pressurized nuclear power plant a compute simulation of a simplified pressurized nuclear power plant model...

  20. architectural plant model: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tools used for planning, design and supervision of power plants. Using the example of the power plant simulation system Ebsilon Professional, which is established in the market...

  1. Renewable Energy Plants in Your Gas Tank: From Photosynthesis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Plants in Your Gas Tank: From Photosynthesis to Ethanol (4 Activities) Renewable Energy Plants in Your Gas Tank: From Photosynthesis to Ethanol (4 Activities)...

  2. Purchase and Installation of a Geothermal Power Plant to Generate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchase and Installation of a Geothermal Power Plant to Generate Electricity Using Geothermal Water Resources Purchase and Installation of a Geothermal Power Plant to Generate...

  3. Fuel-Flexible Combustion System for Refinery and Chemical Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters - Fact Sheet 2014 Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters -...

  4. Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps...

    Energy Savers [EERE]

    Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps Advance America's Solar Leadership Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps Advance America's...

  5. Portsmouth Gaseous Diffusion Plant - Quadrant I Groundwater Investigat...

    Office of Environmental Management (EM)

    Portsmouth Gaseous Diffusion Plant - Quadrant I Groundwater Investigative (5-Unit) Area Plume Portsmouth Gaseous Diffusion Plant - Quadrant I Groundwater Investigative (5-Unit)...

  6. aquatic plant species: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Roger 243 Plant species richness, vegetation structure and soil resources of urban brownfield sites linked Environmental Sciences and Ecology Websites Summary: Plant species...

  7. accumulator plant species: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Roger 135 Plant species richness, vegetation structure and soil resources of urban brownfield sites linked Environmental Sciences and Ecology Websites Summary: Plant species...

  8. anthocyanic plant species: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Roger 109 Plant species richness, vegetation structure and soil resources of urban brownfield sites linked Environmental Sciences and Ecology Websites Summary: Plant species...

  9. altered plant species: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Roger 129 Plant species richness, vegetation structure and soil resources of urban brownfield sites linked Environmental Sciences and Ecology Websites Summary: Plant species...

  10. alien plant species: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Roger 224 Plant species richness, vegetation structure and soil resources of urban brownfield sites linked Environmental Sciences and Ecology Websites Summary: Plant species...

  11. Waste Isolation Pilot Plant, National Transuranic Program Have...

    Office of Environmental Management (EM)

    Isolation Pilot Plant, National Transuranic Program Have Banner Year in 2013 Waste Isolation Pilot Plant, National Transuranic Program Have Banner Year in 2013 December 24, 2013 -...

  12. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This...

  13. Source Term Analysis for the Waste Isolation Pilot Plant (WIPP...

    Office of Environmental Management (EM)

    Term Analysis for the Waste Isolation Pilot Plant (WIPP) Release Quantity Source Term Analysis for the Waste Isolation Pilot Plant (WIPP) Release Quantity This document was...

  14. ancient flowering plants: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PLANTS TO ATTRACT NATURAL ENEMIES IN Nurali Sh. Saidov and Douglas A. Landis Renewable Energy Websites Summary: crop plants for attracting pests. Future research should test a...

  15. affects plant growth: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Biology, Allegheny College, 520 North Wilmers, Chris 29 Microbial Endophytes of crop plants and their role in plant growth promotion;. Open Access Theses and...

  16. affecting plant growth: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Biology, Allegheny College, 520 North Wilmers, Chris 29 Microbial Endophytes of crop plants and their role in plant growth promotion;. Open Access Theses and...

  17. arsenic pilot plant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OF SOIL AND PLANT ON ARSENIC ACCUMULATION BY ARSENIC HYPERACCUMULATOR Pteris vittata L Environmental Management and Restoration Websites Summary: EFFECTS OF SOIL AND PLANT ON...

  18. amazonian plant species: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    species. In 1999, the National Key Protected Wild Plants identified about 1700 rare and endangered plant species (Chinese State Report on Biodiversity Editorial...

  19. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    SciTech Connect (OSTI)

    L.E. Demick

    2011-10-01T23:59:59.000Z

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  20. Nuclear Power Plant Concrete Structures

    SciTech Connect (OSTI)

    Basu, Prabir [International Atomic Energy Agency (IAEA)] [International Atomic Energy Agency (IAEA); Labbe, Pierre [Electricity of France (EDF)] [Electricity of France (EDF); Naus, Dan [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL)

    2013-01-01T23:59:59.000Z

    A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

  1. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    SciTech Connect (OSTI)

    Sheldon Kramer

    2003-09-01T23:59:59.000Z

    This project developed optimized designs and cost estimates for several coal and petroleum coke IGCC coproduction projects that produced hydrogen, industrial grade steam, and hydrocarbon liquid fuel precursors in addition to power. The as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project was the starting point for this study that was performed by Bechtel, Global Energy and Nexant under Department of Energy contract DE-AC26-99FT40342. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This non-optimized plant has a thermal efficiency to power of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW.1 This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal- and coke-fueled IGCC power plants. A side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, shows their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a four-train coal-fueled IGCC power plant, also based on the Subtask 1.3 cases. This plant has a thermal efficiency to power of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency to power of 44.5% (HHV) and a plant cost of 1,116 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to co-produce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. Subtask 2.1 developed a petroleum coke IGCC power plant with the coproduction of liquid fuel precursors from the Subtask 1.3 Next Plant by eliminating the export steam and hydrogen production and replacing it with a Fischer-Tropsch hydrocarbon synthesis facility that produced 4,125 bpd of liquid fuel precursors. By maximizing liquids production at the expense of power generation, Subtask 2.2 developed an optimized design that produces 10,450 bpd of liquid fuel precursors and 617 MW of export power from 5,417 tpd of dry petroleum coke. With 27 $/MW-hr power and 30 $/bbl liquids, the Subtask 2.2 plant can have a return on investment of 18%. Subtask 2.3 converted the Subtask 1.6 four-train coal fueled IGCC power plant

  2. Better Plants Look Ahead Webinar: Text Version

    Broader source: Energy.gov [DOE]

    The Better Plants Program hosted a webinar on January 22, 2015 to review accomplishments to date and detail new initiatives to save partners energy and water. Question and answer session is included. Download presentation slides.

  3. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2003-05-23T23:59:59.000Z

    In this reporting period, a milestone was achieved by commencement of testing and operation of the sub-scale hybrid direct fuel cell/turbine (DFC/T{reg_sign}) power plant. The operation was initiated subsequent to the completion of the construction of the balance-of-plant (BOP) and implementation of process and control tests of the BOP for the subscale DFC/T hybrid system. The construction efforts consisted of finishing the power plant insulation and completion of the plant instrumentation including the wiring and tubing required for process measurement and control. The preparation work also included the development of procedures for facility shake down, conditioning and load testing of the fuel cell, integration of the microturbine, and fuel cell/gas turbine load tests. At conclusion of the construction, the process and control (PAC) tests of BOP, including the microturbine, were initiated.

  4. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2003-05-22T23:59:59.000Z

    Project activities were focused on the design and construction the sub-scale hybrid Direct Fuel Cell/turbine (DFC/T{reg_sign}) power plant and modification of a Capstone Simple Cycle Model 330 microturbine. The power plant design work included preparation of system flow sheet and performing computer simulations based on conservation of mass and energy. The results of the simulation analyses were utilized to prepare data sheets and specifications for balance-of-plant equipment. Process flow diagram (PFD) and piping and instrumentation diagrams (P&ID) were also completed. The steady state simulation results were used to develop design information for modifying the control functions, and for sizing the heat exchangers required for recuperating the waste heat from the power plant. Line and valve sizes for the interconnecting pipes between the microturbine and the heat recuperators were also identified.

  5. Rare Plant Conservation Planning Workshop Results

    E-Print Network [OSTI]

    ............................................................................................................................. 12 Attachment 1. Additional key species and plant communities in the Pagosa Springs area 13's viability and threats by participants of a June 2008 workshop. The primary audience is intended

  6. Rare Plant Conservation Planning Workshop Results

    E-Print Network [OSTI]

    .................................................................................................................................... 10 Attachment 1. Additional key species and plant communities in the Piceance area........... 12 and threats by participants of a July 2008 workshop. The primary audience is intended to be the workshop

  7. Geothermal Power Plants — Meeting Clean Air Standards

    Broader source: Energy.gov [DOE]

    Geothermal power plants can meet the most stringent clean air standards. They emit little carbon dioxide, very low amounts of sulfur dioxide, and no nitrogen oxides. See Charts 1, 2, and 3 below.

  8. Electrical energy monitoring in an industrial plant

    E-Print Network [OSTI]

    Dorhofer, Frank Joseph

    1994-01-01T23:59:59.000Z

    This thesis presents an investigation into the actual electrical energy and demand use of a large metal fabrication facility located in Houston, Texas. Plant selection and the monitoring system are covered. The influence of a low power factor...

  9. Improving pumping system efficiency at coal plants

    SciTech Connect (OSTI)

    Livoti, W.C.; McCandless, S.; Poltorak, R. [Baldor Electric Co. (United States)

    2009-03-15T23:59:59.000Z

    The industry must employ ultramodern technologies when building or upgrading power plant pumping systems thereby using fuels more efficiently. The article discusses the uses and efficiencies of positive displacement pumps, centrifugal pumps and multiple screw pumps. 1 ref., 4 figs.

  10. Methods of producing compounds from plant materials

    DOE Patents [OSTI]

    Werpy, Todd A. (West Richland, WA); Schmidt, Andrew J. (Richland, WA); Frye, Jr., John G. (Richland, WA); Zacher, Alan H. (Kennewick, WA), Franz; James A. (Kennewick, WA), Alnajjar; Mikhail S. (Richland, WA), Neuenschwander; Gary G. (Burbank, WA), Alderson; Eric V. (Kennewick, WA), Orth; Rick J. (Kennewick, WA), Abbas; Charles A. (Champaign, IL), Beery; Kyle E. (Decatur, IL), Rammelsberg; Anne M. (Decatur, IL), Kim; Catherine J. (Decatur, IL)

    2010-01-26T23:59:59.000Z

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  11. Methods of producing compounds from plant material

    DOE Patents [OSTI]

    Werpy, Todd A.; Schmidt, Andrew J.; Frye, Jr., John G.; Zacher, Alan H.; Franz, James A.; Alnajjar, Mikhail S.; Neuenschwander, Gary G.; Alderson, Eric V.; Orth, Rick J.; Abbas, Charles A.; Beery, Kyle E.; Rammelsberg, Anne M.; Kim, Catherine J.

    2006-01-03T23:59:59.000Z

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  12. New Peruvian Plant to Produce "Marine Beef"

    E-Print Network [OSTI]

    prepared and can thus be used in a wide variety of foods. Construction of the plant was completed in 1984 the regulations went into effect. "Destruction of our coral reefs cannot be tolerated," said Brawner, adding

  13. Energy Productivity Improvement in Petrochemical Plants

    E-Print Network [OSTI]

    Robinson, A. M.

    1984-01-01T23:59:59.000Z

    Energy Management and Conservation have become mutually inclusive in operation of today's petrochemical plants. This presentation shows how the efficient conversion and distribution of energy and the efficient energy utilization by the various...

  14. Energy Efficiency of Phthalic Anhydride Plants

    E-Print Network [OSTI]

    Keunecke, G.; Mitchem, C.

    1982-01-01T23:59:59.000Z

    Developments in catalyst technology have played a major role implementing phthalic anhydride process improvements. Steam turbines yield large energy savings, and are flexible in achieving a process heat/energy balance. Modern plants are major...

  15. EIS-0098: Pantex Plant Site, Amarillo, Texas

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of continuing construction and operations at the Pantex Plant in order to perform nuclear weapons assembly, stockpile monitoring, maintenance and retirements.

  16. Concord Municipal Light Plant- Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Concord Municipal Light Plant (CMLP) offers rebates to customers who install solar photovoltaic (PV) systems that are designed to offset the customer's electrical needs. Systems must be owned by...

  17. EIS-0468: American Centrifuge Plant, Piketon, Ohio

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of construction, operation, and decommissioning of the American Centrifuge Plant (ACP), located on DOE reservation in Piketon, Ohio. (DOE adopted this EIS issued by the Nuclear Regulatory Commission on 02/16/2011.)

  18. AVLIS production plant waste management plan

    SciTech Connect (OSTI)

    Not Available

    1984-11-15T23:59:59.000Z

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

  19. Organizational learning at nuclear power plants

    E-Print Network [OSTI]

    Carroll, John S.

    1991-01-01T23:59:59.000Z

    The Nuclear Power Plant Advisory Panel on Organizational Learning provides channels of communications between the management and organization research projects of the MIT International Program for Enhanced Nuclear Power ...

  20. Electric Power Reliability in Chemical Plants 

    E-Print Network [OSTI]

    Cross, M. B.

    1989-01-01T23:59:59.000Z

    at plants across the country? Has the quality and reliability of utility-generated power deteriorated over the past five or ten years? Or, has the perception of what constitutes reliable power changed with the advent, installation, and increasing usage...

  1. A Pilot Plant: The Fastest Path to

    E-Print Network [OSTI]

    synergy with many IFE concepts. #12;7/14 Pilot Plant PMI Challenges Similar to PMI Challenges Projected collection and tritium clean-up CTF, PP or Demo: All Would Need New PMI Solutions. #12;8/14 · A strong

  2. Sauget Plant Flare Gas Reduction Project

    E-Print Network [OSTI]

    Ratkowski, D. P.

    2007-01-01T23:59:59.000Z

    Empirical analysis of stack gas heating value allowed the Afton Chemical Corporation Sauget Plant to reduce natural gas flow to its process flares by about 50% while maintaining the EPA-required minimum heating value of the gas streams....

  3. HIGH ENERGY LIQUID FUELS FROM PLANTS

    E-Print Network [OSTI]

    Nemethy, E.K.

    2013-01-01T23:59:59.000Z

    cellulosic plant residue (bagasse) is used to generate thea considerab-le quantity of bagasse ·is left over after80 TONS Sugars Steam from Bagasse 468 tons BAGASSE LEFT TO

  4. Alloy Design for a Fusion Power Plant

    E-Print Network [OSTI]

    Kemp, Richard

    Fusion power is generated when hot deuterium and tritium nuclei react, producing alpha particles and 14 MeV neutrons. These neutrons escape the reaction plasma and are absorbed by the surrounding material structure of the plant, transferring...

  5. Practical Procedures for Auditing Industrial Boiler Plants

    E-Print Network [OSTI]

    O'Neil, J. P.

    1980-01-01T23:59:59.000Z

    Industrial boiler plants are an area of opportunity in virtually every industry to save energy and reduce costs by using relatively simple, inexpensive auditing procedures. An energy audit consists of inspection, measurement, analysis...

  6. Conservation in a Gulf Coast Chemical Plant 

    E-Print Network [OSTI]

    Murray, F.

    1983-01-01T23:59:59.000Z

    implemented to achieve a 57% reduction by 1985. The route to this reduc tion will include additional insulation. induction generation driven by expanders, additional effic iency improvements in plant combustors. and fur ther process improvements. HO ESL...

  7. Alternate Cooling Methods for Industrial Plants

    E-Print Network [OSTI]

    Brown, M.; Moore, D.

    refrigerants has caused many plants to evaluate existing cooling methods. This paper presents case studies on alternate cooling methods used for space conditioning at several different industrial facilities. Methods discussed include direct and indirect...

  8. Indoor Landscaping with Living Foliage Plants.

    E-Print Network [OSTI]

    DeWerth, A. F.

    1972-01-01T23:59:59.000Z

    exotica Ficus eburnea Ficus elastica Ficus elas tica tlecora Ficus elasstica variegated Ficus nlacrophylla Ficus nititla (retusa) Ficus pandurata Ficus religiosa Ficus rubiginosa variegated (australis) Gyriura aurantiaca . Hedera canariensis... and nutrients. ,411 of these l'actors are interrelated, and all effect the height, strength ant1 health of the plant. Indoor Environmental Factors The selection of plants for indoor landscaping, therefore, is depenclent upon the environment. The problem...

  9. Chiller Plant Design Goals Low operating cost

    E-Print Network [OSTI]

    3/9/09 1 2 Chiller Plant Design Goals · Low operating cost ­Energy Efficiency ­No full time staffing · Reliability ­24/7 ­ 365 ­Maintainability · Future expansion capability #12;3/9/09 2 3 Chiller T 4 Chiller Plant Electrical · Electrical ­N+1 transformer capacity ­4160 volt Compressor Motors

  10. Reproductive phenomena of a sexual buffelgrass plant

    E-Print Network [OSTI]

    Taliaferro, Charles Millard

    1965-01-01T23:59:59.000Z

    REPRODUCTIVE PHENOMENA OF A SEXUAL EUFFELGRASS PLANT A Thesis 3y Charles Millard Taliaferro . Submitted to the Graduate School of the A & M University of Texas in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... January 1964 Major Sub?'ect Agronomy REPRODUCTIVE PHENOMENA OF A SEXUAL BUFFELGRASS PLANT A Thesis Charles Millard Taliaferro Approved as to style and content by: (Chairman of Committee) (Head of Department) / ember) (Member) Memb er) January...

  11. Tiger Team assessment of the Pinellas Plant

    SciTech Connect (OSTI)

    Not Available

    1990-05-01T23:59:59.000Z

    This Document contains findings identified during the Tiger Team Compliance Assessment of the Department of Energy's (DOE's) Pinellas Plant, Pinellas County, Florida. The assessment wa directed by the Department's Office of Environment, Safety, and Health (ES H) from January 15 to February 2, 1990. The Pinellas Tiger Team Compliance Assessment is comprehensive in scope. It covers the Environment Safety and Health, and Management areas and determines the plant's compliance with applicable Federal (including DOE), State, and local regulations and requirements.

  12. Floating nuclear power plant safety assurance principles

    SciTech Connect (OSTI)

    Zvonarev, B.M.; Kuchin, N.L.; Sergeev, I.V.

    1993-12-31T23:59:59.000Z

    In the north regions of the Russian federation and low density population areas, there is a real necessity for ecological clean energy small power sources. For this purpose, floating nuclear power plants, designed on the basis of atomic ship building engineering, are being conceptualized. It is possible to use the ship building plants for the reactor purposes. Issues such as radioactive waste management are described.

  13. Baytown Olefins Plant 2003 Energy Efficiency Projects

    E-Print Network [OSTI]

    Reimann, C.

    2005-01-01T23:59:59.000Z

    BAYTOWN OLEFINS PLANT 2003 ENERGY EFFICIENCY PROJECTS Chad Reimann, ExxonMobil Chemical Company Company: ExxonMobil Chemical Company Entity: Baytown, Texas Olefins Plant Category: Significant Improvement in Manufacturing - Project... - Exceptional Merit ExxonMobil?s Global Energy Mangagement System (G-EMS) was initiated at Baytown in 2000 with three core objectives: operate existing facilities more efficiently through improved work practices; identify investment opportunities to employ...

  14. Simulating plant motion with levels of detail

    E-Print Network [OSTI]

    Flannery, Rebecca Lynn

    2013-02-22T23:59:59.000Z

    SIMULATING PLANT MOTION WITH LEVELS OF DETAIL A Senior Honors Thesis by REBECCA LYNN FLANNERY Submitted to the Office of Honors Programs k. Academic Scholarships Texas AkM University in partial fulfillment of the requirements... of the UNIVERSITY UNDERGRADUATE RESEARCH FELLOWS April 2003 Group: Engineering & Physics I SIMULATING PLANT MOTION WITH LEVELS OF DETAIL A Senior Honors Thesis by REBECCA LYNN FLANNERY Submitted to the Office of Honors Programs & Academic Scholarships...

  15. Optimization of a Solvent Extraction Desalination Plant

    E-Print Network [OSTI]

    Beighle, Phillip Lew

    1969-01-01T23:59:59.000Z

    EX VR REX REX xfpf FPF + yvr VR + yvrsc VRSC ? xppe PPE 2 2 2 2 rex The raffinate waste may also be calculated 'by a total plant material balance PPF PLANT BRF = F ? PPF Determination of Interior Flow Bates With exterior flow rates known... and inspiration. TABLE OF CONTE Nl'S Chapter Page I. INTRODUCTION. II. SURVEY OF I. ITERATURE. III. MATERIAL BALANCES AND TEMPERATURES. Product Product Beat Exchanger Product Stripper Centrifugal Extractor. 17 23 Determination of the External Flow...

  16. The renewable electric plant information system

    SciTech Connect (OSTI)

    Sinclair, K.

    1995-12-01T23:59:59.000Z

    This report explains the procedures used for creating the Renewable Electric Plant Information System (REPiS) database, describes the database fields, and summarizes the data. The REPiS database contains comprehensive information on grid-connected renewable electric generation plants in the United States. Originally designed in 1987 and updated in 1990, the database includes information through 1994. The report also illustrates ways of using the data for analysis is and describes how researchers validated the data.

  17. Compositions and methods for improved plant feedstock

    DOE Patents [OSTI]

    Shen, Hui; Chen, Fang; Dixon, Richard A

    2014-12-02T23:59:59.000Z

    The invention provides methods for modifying lignin content and composition in plants and achieving associated benefits therefrom involving altered expression of newly discovered MYB4 transcription factors. Nucleic acid constructs for modifying MYB4 transcription factor expression are described. By over-expressing the identified MYB4 transcription factors, for example, an accompanying decrease in lignin content may be achieved. Plants are provided by the invention comprising such modifications, as are methods for their preparation and use.

  18. DIRECT FUEL/CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2004-05-01T23:59:59.000Z

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

  19. AVLIS Production Plant Project Management Plan

    SciTech Connect (OSTI)

    Not Available

    1984-11-15T23:59:59.000Z

    The AVLIS Production Plant is designated as a Major System Acquisition (in accordance with DOE Order 4240.IC) to deploy Atomic Vapor Laser Isotope Separation (AVLIS) technology at the Oak Ridge, Tennessee site, in support of the US Uranium Enrichment Program. The AVLIS Production Plant Project will deploy AVLIS technology by performing the design, construction, and startup of a production plant that will meet capacity production requirements of the Uranium Enrichment Program. The AVLIS Production Plant Project Management Plan has been developed to outline plans, baselines, and control systems to be employed in managing the AVLIS Production Plant Project and to define the roles and responsibilities of project participants. Participants will develop and maintain detailed procedures for implementing the management and control systems in agreement with this plan. This baseline document defines the system that measures work performed and costs incurred. This plan was developed by the AVLIS Production Plant Project staff of Martin Marietta Energy Systems, Inc. and Lawrence Livermore National Laboratory in accordance with applicable DOE directives, orders and notices. 38 figures, 19 tables.

  20. Third international congress of plant molecular biology: Molecular biology of plant growth and development

    SciTech Connect (OSTI)

    Hallick, R.B. [ed.

    1995-02-01T23:59:59.000Z

    The Congress was held October 6-11, 1991 in Tucson with approximately 3000 scientists attending and over 300 oral presentations and 1800 posters. Plant molecular biology is one of the most rapidly developing areas of the biological sciences. Recent advances in the ability to isolate genes, to study their expression, and to create transgenic plants have had a major impact on our understanding of the many fundamental plant processes. In addition, new approaches have been created to improve plants for agricultural purposes. This is a book of presentation and posters from the conference.

  1. Plant Sciences for a Sustainable Future An Interdepartmental Graduate Program in Plant Sciences

    E-Print Network [OSTI]

    an understanding of the biological processes that govern plant carbon sequestration, vegetation dynamics, and exchanges of carbon, water, and energy between the biosphere and atmosphere. Achieving a multilayered

  2. Virtual Simulation of Vision 21 Energy Plants

    SciTech Connect (OSTI)

    Syamlal, Madhava; Felix, Paul E.; Osawe, Maxwell O. (Fluent Inc.); Fiveland, Woodrow A.; Sloan, David G. (ALSTOM Power); Zitney, Stephen E. (Aspen Technology, Inc.); Joop, Frank (Intergraph Corporation); Cleetus, Joseph; Lapshin, Igor B. (Concurrent Engineering Research Center, West Virginia University)

    2001-11-06T23:59:59.000Z

    The Vision 21 Energy plants will be designed by combining several individual power, chemical, and fuel-conversion technologies. These independently developed technologies or technology modules can be interchanged and combined to form the complete Vision 21 plant that achieves the needed level of efficiency and environmental performance at affordable costs. The knowledge about each technology module must be captured in computer models so that the models can be linked together to simulate the entire Vision 21 power plant in a Virtual Simulation environment. Eventually the Virtual Simulation will find application in conceptual design, final design, plant operation and control, and operator training. In this project we take the first step towards developing such a Vision 21 Simulator. There are two main knowledge domains of a plant--the process domain (what is in the pipes), and the physical domain (the pipes and equipment that make up the plant). Over the past few decades, commercial software tools have been developed for each of these functions. However, there are three main problems that inhibit the design and operation of power plants: (1) Many of these tools, largely developed for chemicals and refining, have not been widely adopted in the power industry. (2) Tools are not integrated across functions. For example, the knowledge represented by computational fluid dynamics (CFD) models of equipment is not used in process-level simulations. (3) No tool exists for readily integrating the design and behavioral knowledge about components. These problems must be overcome to develop the Vision 21 Simulator. In this project our major objective is to achieve a seamless integration of equipment-level and process-level models and apply the integrated software to power plant simulations. Specifically we are developing user-friendly tools for linking process models (Aspen Plus) with detailed equipment models (FLUENT CFD and other proprietary models). Such integration will ensure that consistent and complete knowledge about the process is used for design and optimization. The technical objectives of the current project are the following: Develop a software integration tool called the V21-Controller to mediate the information exchange between FLUENT, other detailed equipment models, and Aspen Plus. Define and publish software interfaces so that software and equipment vendors may integrate their computer models into the software developed in this project. Demonstrate the application of the integrated software with two power plant simulations, one for a conventional steam plant and another for an advanced power cycle. The project was started in October 2000. Highlights of the accomplishments during the first year of the project are the following: Formed a multi-disciplinary project team consisting of chemical and mechanical engineers; computer scientists; CFD, process simulation, and plant design software developers; and power plant designers. Developed a prototype of CFD and process model integration: a stirred tank reactor model based on FLUENT was inserted into a flow sheet model based on Aspen Plus. The prototype was used to show the effect of shaft speed (a parameter in the CFD model) on the product yield and purity (results of process simulation). This demonstrated the optimization of an equipment item in the context of the entire plant rather than in isolation. Conducted a user survey and wrote the User Requirements, Software Requirements and Software Design documents for the V21-Controller. Adopted CAPE-OPEN standard interfaces for communications between equipment and process models. Developed a preliminary version of the V21-Controller based on CAPE-OPEN interfaces. Selected one unit of an existing conventional steam plant (Richmond Power & Light) as the first demonstration case and developed an Aspen Plus model of the steam-side of the unit. A model for the gas-side of the unit, based on ALSTOM's proprietary model INDVU, was integrated with the Aspen Plus model. An industrial Advisory Board was formed to guide the software deve

  3. Water Balance in Terrestrial PlantsWater Balance in Terrestrial Plants Water Regulation on LandWater Regulation on Land --PlantsPlants WWipip= W= Wrr + W+ Waa --WWtt --WWss

    E-Print Network [OSTI]

    Cochran-Stafira, D. Liane

    1 Water Balance in Terrestrial PlantsWater Balance in Terrestrial Plants Water Regulation on LandWater waters internal water WWrr =Roots=Roots WWaa = Air= Air WWtt = Transpiration= Transpiration WWss = Secretions= Secretions Water Regulation on Land - Plants Water Balance in Terrestrial PlantsWater Balance

  4. Multi-objective optimization of solar tower power plants

    E-Print Network [OSTI]

    Ábrahám, Erika

    Multi-objective optimization of solar tower power plants Pascal Richter Center for Computational · Optimization of solar tower power plants 1/20 #12;Introduction ­ Solar tower power plants Solar tower PS10 (11 of the solar tower Pascal Richter · Optimization of solar tower power plants 2/20 #12;Model of solar tower

  5. California Energy Commission Media Office POWER PLANT FACT SHEET

    E-Print Network [OSTI]

    California Energy Commission Media Office POWER PLANT FACT SHEET Updated: 12/4/2012 (Includes: Lodi has licensed or given small power plant exemptions to 78 power plants, totaling 29,156* megawatts (MW). Fifty-four licensed power plants are in operation, producing 17,737 MW. Since Governor Brown took office

  6. |Research Focus Plants talk, but are they deaf?

    E-Print Network [OSTI]

    Agrawal, Anurag

    |Research Focus Plants talk, but are they deaf? Marcel Dicke1 , Anurag A. Agrawal2 and Jan Bruin3 1 Population Biology, University of Amsterdam, Kruislaan 320, 1098 SM Amsterdam, The Netherlands Plants- tiles that attract the enemies of the enemies of the plant. Whether downwind neighbouring plants `eaves

  7. Questions about how plants die leads to climate change answers

    E-Print Network [OSTI]

    - 1 - Questions about how plants die leads to climate change answers March 12, 2012 How trees die in drought key to plant, climate change questions How plants die during drought is one of the largest uncertainties in determining how plants will succumb to changing climate. 3:01 Tree Death Study's Climate Change

  8. Presentation of Master's Project Estimating survival of dormant plants using

    E-Print Network [OSTI]

    Bardsley, John

    Presentation of Master's Project Estimating survival of dormant plants using mark-recapture methods By Martha Ellis Plant ecologists are interested in estimating survival and other demographic rates for dormant plants. When dormant, plants may be alive but unobservable for one or more years. When individuals

  9. Production of hydroxylated fatty acids in genetically modified plants

    DOE Patents [OSTI]

    Somerville, Chris (Portola Valley, CA); Broun, Pierre (Burlingame, CA); van de Loo, Frank (Lexington, KY)

    2001-01-01T23:59:59.000Z

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants.

  10. UrbanSolutionsCenter Breeding and Development of Ornamental Plants

    E-Print Network [OSTI]

    UrbanSolutionsCenter Breeding and Development of Ornamental Plants Background Ornamental plants and increases in human activity, ornamental plants sometimes lose their natural resistance to abiotic and biotic stresses. Although ornamental plants have adaptation mechanisms via natural selection, artificial selection

  11. Techniques in the Control of Interconnected Plants Morten Hovd \\Lambda

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Techniques in the Control of Interconnected Plants Morten Hovd \\Lambda Fantoft Prosess Teknostallen. This is caused by tighter integration of heat and mass in modern chemical plants, and the decreased volumes (or throughout a modern chemical plant than in older plants. This puts greater demands on the control system

  12. Strongly Stabilizing Controller Synthesis for a Class of MIMO Plants

    E-Print Network [OSTI]

    Gundes, A. N.

    Strongly Stabilizing Controller Synthesis for a Class of MIMO Plants H. ¨Ozbay A. N. G controller) is studied for unstable MIMO plants with arbitrary number of finitely many poles but no more than not exceeding that of the plant, are obtained for such plants satisfying the parity interlacing property

  13. Original article Effects of tropospheric ozone on white clover plants

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Effects of tropospheric ozone on white clover plants exposed in open-top chambers concentration in a large part of Europe is high enough to cause visible injury to sensitive plants and several site are evaluated using white clover plants. Plants were exposed to the air and sprayed with water

  14. Institute for Plant Genomics and Biotechnology GENOMICS AND BIOTECHNOLOGY

    E-Print Network [OSTI]

    Institute for Plant Genomics and Biotechnology GENOMICS AND BIOTECHNOLOGY A multidisciplinary organization, the Institute for Plant Genomics and Biotechnology is a composed of faculty members representing projects at the Institute for Plant Genomics and Biotechnology include the development of transgenic plants

  15. SELFMONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION)

    E-Print Network [OSTI]

    SELF­MONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION) Aldo and identification are extremely important activities for the safety of a nuclear power plant. In particular inside huge and complex production plants. 1 INTRODUCTION Safety in nuclear power plants requires

  16. Sun-Sentinel How Florida's nuclear plants compare to Japan's

    E-Print Network [OSTI]

    Belogay, Eugene A.

    Sun-Sentinel How Florida's nuclear plants compare to Japan's By Julie Patel March 17, 2011 01:35 PM What went wrong at the Fukushima nuclear plant in Japan and how are Florida's nuclear plants prepared to deal with similar problems? Nuclear operators in Florida say the biggest risk their plants face is from

  17. Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis

    E-Print Network [OSTI]

    Silver, Whendee

    working paper "CO2 Regulations and Electricity Prices: Cost Estimates for Coal-Fired Power Plants." We capabilities at new coal-fired power plants. The corresponding break-even values for natural gas plants source of CO2 emissions. For the U.S. alone, coal-fired and natural gas power plants contributed more

  18. Small Power Plant Exemption (06-SPPE-1) Imperial County

    E-Print Network [OSTI]

    Small Power Plant Exemption (06-SPPE-1) Imperial County NILAND GAS TURBINE PLANT PRESIDINGMEMBER Member STANLEY VALKOSKY Chief Hearing Adviser GARRET SHEAN Hearing Officer Small Power Plant Exemption to construct and operate large electric power plants, including the authority to exempt proposals under 100 MW

  19. Direct FuelCell/Turbine Power Plant

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2004-11-19T23:59:59.000Z

    This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

  20. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2004-11-01T23:59:59.000Z

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

  1. Hanford Waste Vitrification Plant technical manual

    SciTech Connect (OSTI)

    Larson, D.E. [ed.; Watrous, R.A.; Kruger, O.L. [and others

    1996-03-01T23:59:59.000Z

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. The immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.

  2. Plant Disease / October 2001 1113 Effect of Host Plant Resistance and Reduced Rates and Frequencies

    E-Print Network [OSTI]

    Douches, David S.

    Plant Disease / October 2001 1113 Effect of Host Plant Resistance and Reduced Rates and Frequencies. These include the use of fungicides with less active ingredient, re- duced application rates, longer application. The frequent fungicide spray intervals and rates currently used by growers to control late blight are expensive

  3. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOE Patents [OSTI]

    Somerville, Chris (Portola Valley, CA); van de Loo, Frank (Lexington, KY)

    2002-01-01T23:59:59.000Z

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  4. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOE Patents [OSTI]

    Somerville, Chris (Portola Valley, CA); van de Loo, Frank (Lexington, KY)

    1998-01-01T23:59:59.000Z

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  5. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOE Patents [OSTI]

    Somerville, Chris (Portola Valley, CA); van de Loo, Frank (Lexington, KY)

    1997-01-01T23:59:59.000Z

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  6. Vision Statement for Plant Physiology Comparative Plant Genomics. Frontiers and Prospects

    E-Print Network [OSTI]

    Purugganan, Michael D.

    Vision Statement for Plant Physiology Comparative Plant Genomics. Frontiers and Prospects Ana L function and evolution at various levels of biological organiza- tion. The availability of whole-genome sequences as well as other genomic resources (e.g. microarray meth- ods, expressed sequence tag [EST

  7. HOW DO INVASIVE EXOTIC PLANTS AFFECT NATIVE PLANTS, BIRDS AND MAMMALS IN GREENWAYS?

    E-Print Network [OSTI]

    Hess, George

    . Vidra What are exotic plant species? Perhaps you have noticed huge thickets of kudzu vine along, it grows _ inch per hour! Kudzu is one example of an exotic plant species. In North Carolina, exotics change the structure of the forest, as kudzu does when it covers every surface. Exotics may also

  8. Comparative Sequencing of Plant Genomes: Choices to Make The first sequenced genome of a plant,

    E-Print Network [OSTI]

    Purugganan, Michael D.

    COMMENTARY Comparative Sequencing of Plant Genomes: Choices to Make The first sequenced genome of a plant, Arabidopsis thaliana, was published ,6 years ago (Arabidopsis Genome Initiative, 2000). Since that time, the complete rice genome (Oryza sativa; Goff et al., 2002; Yu et al., 2002; International Rice

  9. Abstract Parasitic plants are common in natural com-munities, but are largely ignored in plant community the-

    E-Print Network [OSTI]

    Pennings, Steven C.

    Abstract Parasitic plants are common in natural com- munities, but are largely ignored in plant community the- ory. Interactions between parasitic plants and hosts often parallel those between herbivores and plants: both types of consumers display host preferences, reduce host bio- mass and alter host allocation

  10. Plant nitrogen regulatory P-PII polypeptides

    DOE Patents [OSTI]

    Coruzzi, Gloria M.; Lam, Hon-Ming; Hsieh, Ming-Hsiun

    2004-11-23T23:59:59.000Z

    The present invention generally relates to plant nitrogen regulatory PII gene (hereinafter P-PII gene), a gene involved in regulating plant nitrogen metabolism. The invention provides P-PII nucleotide sequences, expression constructs comprising said nucleotide sequences, and host cells and plants having said constructs and, optionally expressing the P-PII gene from said constructs. The invention also provides substantially pure P-PII proteins. The P-PII nucleotide sequences and constructs of the invention may be used to engineer organisms to overexpress wild-type or mutant P-PII regulatory protein. Engineered plants that overexpress or underexpress P-PII regulatory protein may have increased nitrogen assimilation capacity. Engineered organisms may be used to produce P-PII proteins which, in turn, can be used for a variety of purposes including in vitro screening of herbicides. P-PII nucleotide sequences have additional uses as probes for isolating additional genomic clones having the promoters of P-PII gene. P-PII promoters are light- and/or sucrose-inducible and may be advantageously used in genetic engineering of plants.

  11. Pinellas Plant facts. [Products, processes, laboratory facilities

    SciTech Connect (OSTI)

    Not Available

    1986-09-01T23:59:59.000Z

    This plant was built in 1956 in response to a need for the manufacture of neutron generators, a principal component in nuclear weapons. The neutron generators consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology: hermetic seals between glass, ceramic, glass-ceramic, and metal materials: plus high voltage generation and measurement technology. The existence of these capabilities at the Pinellas Plant has led directly to the assignment of the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Active and reserve batteries and the radioisotopically-powered thermoelectric generator draw on the materials measurement and controls technologies which are required to ensure neutron generator life. A product development and production capability in alumina ceramics, cermet (electrical) feedthroughs, and glass ceramics has become a specialty of the plant; the laboratories monitor the materials and processes used by the plant's commercial suppliers of ferroelectric ceramics. In addition to the manufacturing facility, a production development capability is maintained at the Pinellas Plant.

  12. Operating Experience of the 20-MW AFBC Pilot Plant

    E-Print Network [OSTI]

    Stephens, E. A. Jr.

    -scale demonstration of atmospheric fluidized bed combustion (AFBC) with the construction and operation of the 20-MW AFBC Pilot Plant. The pilot plant was built to bridge the gap between the small process development units and utility-scale demonstration plants... the operation of the pilot plant has encouraged TVA and others to move forward with utility-scale demonstration of fluidized bed combustion. TVA's operating experience at the 20-MW AFBC Pilot Plant is discussed. [NTRODUCT ION The Tennessee Valley Authority...

  13. Plants with modified lignin content and methods for production thereof

    DOE Patents [OSTI]

    Zhao, Qiao; Chen, Fang; Dixon, Richard A.

    2014-08-05T23:59:59.000Z

    The invention provides methods for decreasing lignin content and for increasing the level of fermentable carbohydrates in plants by down-regulation of the NST transcription factor. Nucleic acid constructs for down-regulation of NST are described. Transgenic plants are provided that comprise reduced lignin content. Plants described herein may be used, for example, as improved biofuel feedstock and as highly digestible forage crops. Methods for processing plant tissue and for producing ethanol by utilizing such plants are also provided.

  14. Production of hydroxylated fatty acids in genetically modified plants

    DOE Patents [OSTI]

    Somerville, Chris (Portola Valley, CA); Broun, Pierre (Burlingame, CA); van de Loo, Frank (Weston, AU); Boddupalli, Sekhar S. (Manchester, MI)

    2011-08-23T23:59:59.000Z

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  15. Production of hydroxylated fatty acids in genetically modified plants

    DOE Patents [OSTI]

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2005-08-30T23:59:59.000Z

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  16. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOE Patents [OSTI]

    Coruzzi, Gloria M.; Brears, Timothy

    2005-03-08T23:59:59.000Z

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  17. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOE Patents [OSTI]

    Coruzzi, Gloria M. (New York, NY); Brears, Timothy (Durham, NC)

    1999-01-01T23:59:59.000Z

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  18. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOE Patents [OSTI]

    Coruzzi, Gloria M. (New York, NY); Brears, Timothy (Durham, NC)

    2000-01-01T23:59:59.000Z

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  19. Nuclear Power Plant Containment Pressure Boundary Research

    SciTech Connect (OSTI)

    Cherry, J.L.; Chokshi, N.C.; Costello, J.F.; Ellingwood, B.R.; Naus, D.J.

    1999-09-15T23:59:59.000Z

    Research to address aging of the containment pressure boundary in light-water reactor plants is summarized. This research is aimed at understanding the significant factors relating occurrence of corrosion, efficacy of inspection, and structural capacity reduction of steel containment and liners of concrete containment. This understanding will lead to improvements in risk-informed regulatory decision making. Containment pressure boundary components are described and potential aging factors identified. Quantitative tools for condition assessments of aging structures to maintain an acceptable level of reliability over the service life of the plant are discussed. Finally, the impact of aging (i.e., loss of shell thickness due to corrosion) on steel containment fragility for a pressurized water reactor ice-condenser plant is presented.

  20. The waste water free coke plant

    SciTech Connect (OSTI)

    Schuepphaus, K.; Brink, N. [Thyssen Still Otto Anlagentechnik GmbH, Bochum (Germany)

    1995-12-01T23:59:59.000Z

    Apart from coke which is the actual valuable material a coke oven plant also produces a substantial volume of waste water. These effluent water streams are burdened with organic components (e.g. phenols) and inorganic salts (e.g. NH{sub 4}Cl); due to the concentration of the constituents contained therein these effluent waters must be subjected to a specific treatment before they can be introduced into public waters. For some years a lot of separation tasks have been solved successfully by applying the membrane technology. It was especially the growing number of membrane facilities for cleaning of landfill leakage water whose composition can in fact be compared with that of coking plant waste waters (organic constituents, high salt fright, ammonium compounds) which gave Thyssen Still Otto Anlagentechnik the idea for developing a process for coke plant effluent treatment which contains the membrane technology as an essential component.