Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hlw high-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF)  

Energy.gov (U.S. Department of Energy (DOE))

GC-52 provides legal advice to DOE regarding the long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF). SNF is nuclear fuel that has been used as fuel in a reactor...

2

Long-term management of high-level radioactive waste (HLW) and...  

NLE Websites -- All DOE Office Websites (Extended Search)

HLW is the highly radioactive material resulting from the reprocessing of SNF. Under the Nuclear Waste Policy Act of 1982, the federal government is responsible for the disposal...

3

Collaboration, Automation, and Information Management at Hanford High Level Radioactive Waste (HLW) Tank Farms - 14210  

Science Conference Proceedings (OSTI)

Washington River Protection Solutions (WRPS), operator of High Level Radioactive Waste (HLW) Tank Farms at the Hanford Site, is taking an over 20-year leap in technology, replacing systems that were monitored with clipboards and obsolete computer systems, as well as solving major operations and maintenance hurdles in the area of process automation and information management. While WRPS is fully compliant with procedures and regulations, the current systems are not integrated and do not share data efficiently, hampering how information is obtained and managed.

Aurah, Mirwaise Y.; Roberts, Mark A.

2013-12-12T23:59:59.000Z

4

PAIRWISE BLENDING OF HIGH LEVEL WASTE (HLW)  

Science Conference Proceedings (OSTI)

The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending.

CERTA, P.J.

2006-02-22T23:59:59.000Z

5

DEVELOPMENT OF GLASS MATRICES FOR HLW RADIOACTIVE WASTES  

Science Conference Proceedings (OSTI)

Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc{sup 99}, Cs{sup 137}, and I{sup 129}. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

Jantzen, C.

2010-03-18T23:59:59.000Z

6

High-level radioactive wastes. Supplement 1  

SciTech Connect

This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

McLaren, L.H. (ed.) [ed.

1984-09-01T23:59:59.000Z

7

High-level radioactive waste management alternatives  

SciTech Connect

A summary of a comprehensive overview study of potential alternatives for long-term management of high-level radioactive waste is presented. The concepts studied included disposal in geologic formations, disposal in seabeds, disposal in ice caps, disposal into space, and elimination by transmutation. (TFD)

1974-05-01T23:59:59.000Z

8

Control of high level radioactive waste-glass melters  

DOE Green Energy (OSTI)

A necessary step in Defense Waste Processing Facility (DWPF) melter feed preparation for the immobilization of High Level Radioactive Waste (HLW) is reduction of Hg(II) to Hg(0), permitting steam stripping of the Hg. Denitrition and associated NOx evolution is a secondary effect of the use of formic acid as the mercury-reducing agent. Under certain conditions the presence of transition or noble metals can result in significant formic acid decomposition, with associated CO{sub 2} and H{sub 2} evolution. These processes can result in varying redox properties of melter feed, and varying sequential gaseous evolution of oxidants and hydrogen. Electrochemical methods for monitoring the competing processes are discussed. Laboratory scale techniques have been developed for simulating the large-scale reactions, investigating the relative effectiveness of the catalysts, and the effectiveness of catalytic poisons. The reversible nitrite poisoning of formic acid catalysts is discussed.

Bickford, D.F.; Coleman, C.J.; Hsu, C.L.W.; Eibling, R.E.

1990-01-01T23:59:59.000Z

9

HIGH ALUMINUM HLW (HIGH LEVEL WASTE ) GLASSES FOR HANFORDS WTP (WASTE TREATMENT PROJECT)  

Science Conference Proceedings (OSTI)

This paper presents the results of glass formulation development and melter testing to identify high waste loading glasses to treat high-Al high level waste (HLW) at Hanford. Previous glass formulations developed for this HLW had high waste loadings but their processing rates were lower that desired. The present work was aimed at improving the glass processing rate while maintaining high waste loadings. Glass formulations were designed, prepared at crucible-scale and characterized to determine their properties relevant to processing and product quality. Glass formulations that met these requirements were screened for melt rates using small-scale tests. The small-scale melt rate screening included vertical gradient furnace (VGF) and direct feed consumption (DFC) melter tests. Based on the results of these tests, modified glass formulations were developed and selected for larger scale melter tests to determine their processing rate. Melter tests were conducted on the DuraMelter 100 (DMIOO) with a melt surface area of 0.11 m{sup 2} and the DuraMelter 1200 (DMI200) HLW Pilot Melter with a melt surface area of 1.2 m{sup 2}. The newly developed glass formulations had waste loadings as high as 50 wt%, with corresponding Al{sub 2}O{sub 3} concentration in the glass of 26.63 wt%. The new glass formulations showed glass production rates as high as 1900 kg/(m{sup 2}.day) under nominal melter operating conditions. The demonstrated glass production rates are much higher than the current requirement of 800 kg/(m{sup 2}.day) and anticipated future enhanced Hanford Tank Waste Treatment and Immobilization Plant (WTP) requirement of 1000 kg/(m{sup 2}.day).

KRUGER AA; BOWAN BW; JOSEPH I; GAN H; KOT WK; MATLACK KS; PEGG IL

2010-01-04T23:59:59.000Z

10

EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV - Lessons Learned  

Science Conference Proceedings (OSTI)

The effective termination of the Yucca Mountain program by the U.S. Administration in 2009 has further delayed the construction and operation of a permanent disposal facility for used fuel and high level radioactive waste (HLW) in the United States. In concert with this decision, the President directed the Energy Secretary to establish the Blue Ribbon Commission on America's Nuclear Future to review and provide recommendations on options for managing used fuel and HLW. EPRI is uniquely positioned to prov...

2010-09-29T23:59:59.000Z

11

MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION FINAL REPORT 08R1360-1  

Science Conference Proceedings (OSTI)

This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat transfer and glass melting rate. The WTP HLW melter has a glass surface area of 3.75 m{sup 2} and depth of {approx}1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HLW waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150 C and by increasing the waste loading in the glass product. Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage. The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet WTP Contract terms. The WTP's overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulfur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previous experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings. Results of this work have demonstrated the feasibility of increases in wasteloading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. It is expected that these higher waste loading glasses will reduce the HLW canister production requirement by about 25% or more.

KRUGER AA; MATLACK KS; KOT W; PEGG IL; JOSEPH I; BARDAKCI T; GAN H; GONG W; CHAUDHURI M

2010-01-04T23:59:59.000Z

12

Iron Phosphate Glass as Potential Waste Matrix for High-Level Radioactive Waste  

Science Conference Proceedings (OSTI)

Recently, Iron Phosphate Glass (IPG) is investigated as the alternative final waste form for High-Level Radioactive Waste (HLW) in U.S. This study is aimed to investigate feasibility of IPG to HLW arising from commercial reprocessing in Japan. In order to evaluate favorable preparation conditions, maximum waste loading and property of IPG, the melting tests were carried. From the results of melting tests, the favorable preparation conditions was with matrix of Fe/P 0.43 (mole ratio in products) and melting at 1200{sup o} for 4h. The products of 10-20mass% waste loading of simulated HLW were glassy and had no crystal peaks, however the product of 30mass% waste loading showed some crystal peaks by XRD analysis. IPG and Borosilicate glass (BG) had about the same thermal properties. As a result, IPG had enough potential for high waste loading and the extremely good chemical durability for consideration as a waste form for Japanese HLW.

Fukui, T.; Ishinomori, T.; Endo, Y.; Sazarashi, M.; Ono, S.; Suzuki, K.

2003-02-25T23:59:59.000Z

13

The High-Level Radioactive Waste Act (Manitoba, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

Manitoba bars the storage of high-level radioactive wastes from spent nuclear fuel, not intended for research purposes, that was produced at a nuclear facility or in a nuclear reactor outside the...

14

Handbook of high-level radioactive waste transportation  

Science Conference Proceedings (OSTI)

The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government`s system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government`s program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project.

Sattler, L.R.

1992-10-01T23:59:59.000Z

15

Separation of strontium-90 from Hanford high-level radioactive waste  

SciTech Connect

Current guidelines for disposing of high-level radioactive wastes stored in underground tanks at the US Department of Energy`s Hanford Site call for vitrifying high-level waste (HLW) in borosilicate glass and disposing the glass canisters in a deep geologic repository. Disposition of the low-level waste (LLW) is yet to be determined, but it will likely be immobilized in a glass matrix and disposed of on site. To lower the radiological risk associated with the LLW form, methods are being developed to separate {sup 90}Sr from the bulk waste material so this isotope can be routed to the HLW stream. A solvent extraction method is being investigated to separate {sup 90}Sr from acid-dissolved Hanford tank wastes. Results of experiments with actual tank waste indicate that this method can be used to achieve separation of {sup 90}Sr from the bulk waste components. Greater than 99% of the {sup 90}Sr was removed from an acidic dissolved sludge solution by extraction with di-tbutylcyclohexano-18-crown-6 in 1-octanol (the SREX process). The major sludge components were not extracted.

Lumetta, G.J.; Wagner, M.J.; Jones, E.O.

1993-10-01T23:59:59.000Z

16

Northeast High-Level Radioactive Waste Transportation Task Force Agenda  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast High-Level Radioactive Waste Transportation Task Force Northeast High-Level Radioactive Waste Transportation Task Force Spring Meeting - May 15, 2012 Hilton Knoxville 501 West Church Avenue, Knoxville, TN 37902-2591 Agenda (Draft #1 - 4/18/12) ______________________________________________________________________________ Tuesday, May 15 - 9:00 AM - 3:30 PM / (need meeting room name) 8:00 a.m. Continental Breakfast - served in meeting room 9:00 a.m. Task Force Business Meeting - John Giarrusso, MEMA and Rich Pinney, NJDEP Co-chairs presiding  Welcome: Introductions; Agenda Review; Announcements  2012 funding  Co-Chair Election  Rules of Procedure  Membership: members & alternates appointment status  Legislative Liaisons  Staff Regional Meeting Attendance

17

Caustic leaching of high-level radioactive tank sludge: A critical literature review  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) must treat and safely dispose of its radioactive tank contents, which can be separated into high-level waste (HLW) and low-level waste (LLW) fractions. Since the unit costs of treatment and disposal are much higher for HLW than for LLW, technologies to reduce the amount of HLW are being developed. A key process currently being studied to reduce the volume of HLW sludges is called enhanced sludge washing (ESW). This process removes, by water washes, soluble constituents such as sodium salts, and the washed sludge is then leached with 2--3 M NaOH at 60--100 C to remove nonradioactive metals such as aluminum. The remaining solids are considered to be HLW while the solutions are LLW after radionuclides such as {sup 137}Cs have been removed. Results of bench-scale tests have shown that the ESW will probably remove the required amounts of inert constituents. While both experimental and theoretical results have shown that leaching efficiency increases as the time and temperature of the leach are increased, increases in the caustic concentration above 2--3 M will only marginally improve the leach factors. However, these tests were not designed to validate the assumption that the caustic used in the ESW process will generate only a small increase (10 Mkg) in the amount of LLW; instead the test conditions were selected to maximize leaching in a short period and used more water and caustic than is planned during full-scale operations. Even though calculations indicate that the estimate for the amount of LLW generated by the ESW process appears to be reasonable, a detailed study of the amount of LLW from the ESW process is still required. If the LLW analysis indicates that sodium management is critical, then a more comprehensive evaluation of the clean salt process or caustic recycle would be needed. Finally, experimental and theoretical studies have clearly demonstrated the need for the control of solids formation during and after leaching.

McGinnis, C.P.; Welch, T.D.; Hunt, R.D.

1998-08-01T23:59:59.000Z

18

End of Year 2010 SNF & HLW Inventories  

Energy.gov (U.S. Department of Energy (DOE))

Map of the United States of America that shows the location of approximately 64,000 MTHM of Spent Nuclear Fuel (SNF)& 275 High-Level Radioactive Waste (HLW) Canisters.

19

Risk-informing decisions about high-level nuclear waste repositories  

E-Print Network (OSTI)

Performance assessments (PAs) are important sources of information for societal decisions in high-level radioactive waste (HLW) management, particularly in evaluating safety cases for proposed HLW repository development. ...

Ghosh, Suchandra Tina, 1973-

2004-01-01T23:59:59.000Z

20

RETENTION OF SULFATE IN HIGH LEVEL RADIOACTIVE WASTE GLASS  

SciTech Connect

High level radioactive wastes are being vitrified at the Savannah River Site for long term disposal. Many of the wastes contain sulfate at concentrations that can be difficult to retain in borosilicate glass. This study involves efforts to optimize the composition of a glass frit for combination with the waste to improve sulfate retention while meeting other process and product performance constraints. The fabrication and characterization of several series of simulated waste glasses are described. The experiments are detailed chronologically, to provide insight into part of the engineering studies used in developing frit compositions for an operating high level waste vitrification facility. The results lead to the recommendation of a specific frit composition and a concentration limit for sulfate in the glass for the next batch of sludge to be processed at Savannah River.

Fox, K.

2010-09-07T23:59:59.000Z

Note: This page contains sample records for the topic "hlw high-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Spent fuel and high-level radioactive waste transportation report  

SciTech Connect

This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

1989-11-01T23:59:59.000Z

22

Spent fuel and high-level radioactive waste transportation report  

SciTech Connect

This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

1990-11-01T23:59:59.000Z

23

Spent Fuel and High-Level Radioactive Waste Transportation Report  

SciTech Connect

This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by SSEB in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste Issues. In addition. this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

1992-03-01T23:59:59.000Z

24

Locations of Spent Nuclear Fuel and High-Level Radioactive Waste  

Energy.gov (U.S. Department of Energy (DOE))

Map of the United States of America showing the locations of spent nuclear fuel and high-level radioactive waste.

25

Immobilized High Level Waste (HLW) Interim Storage Alternative Generation and analysis and Decision Report 2nd Generation Implementing Architecture  

SciTech Connect

Two alternative approaches were previously identified to provide second-generation interim storage of Immobilized High-Level Waste (IHLW). One approach was retrofit modification of the Fuel and Materials Examination Facility (FMEF) to accommodate IHLW. The results of the evaluation of the FMEF as the second-generation IHLW interim storage facility and subsequent decision process are provided in this document.

CALMUS, R.B.

2000-09-14T23:59:59.000Z

26

High level radioactive waste vitrification process equipment component testing  

Science Conference Proceedings (OSTI)

Remote operability and maintainability of vitrification equipment were assessed under shielded-cell conditions. The equipment tested will be applied to immobilize high-level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conducted to evaluate liquid metals for use in a liquid metal sealing system.

Siemens, D.H.; Heath, W.O.; Larson, D.E.; Craig, S.N.; Berger, D.N.; Goles, R.W.

1985-04-01T23:59:59.000Z

27

EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume II--U.S. Regulations for Geologic Disposal  

Science Conference Proceedings (OSTI)

U.S. efforts to site and construct a deep geologic repository for used fuel and high level radioactive waste (HLW) proceeded sporadically over a three-decade period from the late 1950s until 1982, when the U.S. Congress enacted the Nuclear Waste Policy Act (NWPA) codifying a national approach for developing a deep geologic repository. Amendment of the NWPA in 1987 resulted in a number of dramatic changes in direction for the U.S. program, most notably the selection of Yucca Mountain as the only site of t...

2010-06-29T23:59:59.000Z

28

EPRI Review of Geologic Disposal for Used Fuel and High-Level Radioactive Waste: Volume III - Review of National Repository Programs  

Science Conference Proceedings (OSTI)

The effective termination of the Yucca Mountain program by the U.S. Administration in 2009 has left the U.S. program for management of used fuel and high level radioactive waste (HLW) in a state of uncertainty. In concert with this major policy reset and in response to the resulting policy vacuum, the President directed the Energy Secretary to establish the Blue Ribbon Commission on America's Nuclear Future (BRC) "...to conduct a comprehensive review of policies for managing the back end of the nuclear f...

2010-12-21T23:59:59.000Z

29

EIS-0023: Long-Term Management of Defense High-Level Radioactive Wastes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

023: Long-Term Management of Defense High-Level Radioactive 023: Long-Term Management of Defense High-Level Radioactive Wastes (Research and Development Program for Immobilization) Savannah River Plant, Aiken, South Carolina EIS-0023: Long-Term Management of Defense High-Level Radioactive Wastes (Research and Development Program for Immobilization) Savannah River Plant, Aiken, South Carolina SUMMARY This EIS analyzes the potential environmental implications of the proposed continuation of a large Federal research and development (R&D) program directed toward the immobilization of the high-level radioactive wastes resulting from chemical separations operations for defense radionuclides production at the DOE Savannah River Plant (SRP) near Aiken, South Carolina. PUBLIC COMMENT OPPORTUNITIES None available at this time.

30

What are Spent Nuclear Fuel and High-Level Radioactive Waste ?  

Science Conference Proceedings (OSTI)

Spent nuclear fuel and high-level radioactive waste are materials from nuclear power plants and government defense programs. These materials contain highly radioactive elements, such as cesium, strontium, technetium, and neptunium. Some of these elements will remain radioactive for a few years, while others will be radioactive for millions of years. Exposure to such radioactive materials can cause human health problems. Scientists worldwide agree that the safest way to manage these materials is to dispose of them deep underground in what is called a geologic repository.

DOE

2002-12-01T23:59:59.000Z

31

Evaluation of the Candidate High-Level Radioactive Waste Repository at Yucca Mountain Using Total System Performance Assessment: Phase 5  

Science Conference Proceedings (OSTI)

A successful license application for the candidate spent-fuel and high level waste (HLW) repository at Yucca Mountain depends on a robust demonstration of long-term safety. This report presents EPRI's independent review to identify any conservatisms in the U.S. Depawrtment of Energy's (DOE's) Phase 5 Yucca Mountain Total System Performance Assessment (TSPA). The review specifically identifies key facility components, makes recommendations regarding technical development work priorities, and evaluates ove...

2000-11-21T23:59:59.000Z

32

Control of high level radioactive waste-glass melters. Part 6, Noble metal catalyzed formic acid decomposition, and formic acid/denitration  

DOE Green Energy (OSTI)

A necessary step in Defense Waste Processing Facility (DWPF) melter feed preparation for the immobilization of High Level Radioactive Waste (HLW) is reduction of Hg(II) to Hg(0), permitting steam stripping of the Hg. Denitrition and associated NOx evolution is a secondary effect of the use of formic acid as the mercury-reducing agent. Under certain conditions the presence of transition or noble metals can result in significant formic acid decomposition, with associated CO{sub 2} and H{sub 2} evolution. These processes can result in varying redox properties of melter feed, and varying sequential gaseous evolution of oxidants and hydrogen. Electrochemical methods for monitoring the competing processes are discussed. Laboratory scale techniques have been developed for simulating the large-scale reactions, investigating the relative effectiveness of the catalysts, and the effectiveness of catalytic poisons. The reversible nitrite poisoning of formic acid catalysts is discussed.

Bickford, D.F.; Coleman, C.J.; Hsu, C.L.W.; Eibling, R.E.

1990-12-31T23:59:59.000Z

33

Reference design and operations for deep borehole disposal of high-level radioactive waste.  

SciTech Connect

A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall, the results of the reference design development and the cost analysis support the technical feasibility of the deep borehole disposal concept for high-level radioactive waste.

Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

2011-10-01T23:59:59.000Z

34

Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction  

Science Conference Proceedings (OSTI)

Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation.

R.A. Levich; J.S. Stuckless

2006-09-25T23:59:59.000Z

35

SPONTANEOUS CATALYTIC WET AIR OXIDATION DURING PRE-TREATMENT OF HIGH-LEVEL RADIOACTIVE WASTE SLUDGE  

DOE Green Energy (OSTI)

Savannah River Remediation, LLC (SRR) operates the Defense Waste Processing Facility for the U.S. Department of Energy at the Savannah River Site. This facility immobilizes high-level radioactive waste through vitrification following chemical pretreatment. Catalytic destruction of formate and oxalate ions to carbon dioxide has been observed during qualification testing of non-radioactive analog systems. Carbon dioxide production greatly exceeded hydrogen production, indicating the occurrence of a process other than the catalytic decomposition of formic acid. Statistical modeling was used to relate the new reaction chemistry to partial catalytic wet air oxidation of both formate and oxalate ions driven by the low concentrations of palladium, rhodium, and/or ruthenium in the waste. Variations in process conditions led to increases or decreases in the total oxidative destruction, as well as partially shifting the preferred species undergoing destruction from oxalate ion to formate ion.

Koopman, D.; Herman, C.; Pareizs, J.; Bannochie, C.; Best, D.; Bibler, N.; Fellinger, T.

2009-10-01T23:59:59.000Z

36

EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume I--The U.S. Site Selection Process Prior to the Nuclear Waste Policy Amendments Act  

Science Conference Proceedings (OSTI)

U.S. efforts to site and construct a deep geologic repository for used fuel and high level radioactive waste (HLW) proceeded in fits and starts over a three decade period from the late 1950s until 1982, when the U.S. Congress enacted the Nuclear Waste Policy Act (NWPA). This legislation codified a national approach for developing a deep geologic repository. Amendment of the NWPA in 1987 resulted in a number of dramatic changes in direction for the U.S. program, most notably the selection of Yucca Mountai...

2010-05-27T23:59:59.000Z

37

Hydro-mechanical behaviour of bentonite-based materials used for high-level radioactive waste disposal.  

E-Print Network (OSTI)

??This study deals with the hydro-mechanical behaviour of compacted bentonite-based materials used as sealing materials in high-level radioactive waste repositories. The pure MX80 bentontie, mixtures (more)

Wang, Qiong

2012-01-01T23:59:59.000Z

38

INCONEL 690 CORROSION IN WTP (WASTE TREATMENT PLANT) HLW (HIGH LEVEL WASTE) GLASS MELTS RICH IN ALUMINUM & BISMUTH & CHROMIUM OR ALUMINUM/SODIUM  

SciTech Connect

Metal corrosion tests were conducted with four high waste loading non-Fe-limited HLW glass compositions. The results at 1150 C (the WTP nominal melter operating temperature) show corrosion performance for all four glasses that is comparable to that of other typical borosilicate waste glasses, including HLW glass compositions that have been developed for iron-limited WTP streams. Of the four glasses tested, the Bi-limited composition shows the greatest extent of corrosion, which may be related to its higher phosphorus content. Tests at higher suggest that a moderate elevation of the melter operating temperature (up to 1200 C) should not result in any significant increase in Inconel corrosion. However, corrosion rates did increase significantly at yet higher temperatures (1230 C). Very little difference was observed with and without the presence of an electric current density of 6 A/inch{sup 2}, which is the typical upper design limit for Inconel electrodes. The data show a roughly linear relationship between the thickness of the oxide scale on the coupon and the Cr-depletion depth, which is consistent with the chromium depletion providing the material source for scale growth. Analysis of the time dependence of the Cr depletion profiles measured at 1200 C suggests that diffusion of Cr in the Ni-based Inconel alloy controls the depletion depth of Cr inside the alloy. The diffusion coefficient derived from the experimental data agrees within one order of magnitude with the published diffusion coefficient data for Cr in Ni matrices; the difference is likely due to the contribution from faster grain boundary diffusion in the tested Inconel alloy. A simple diffusion model based on these data predicts that Inconel 690 alloy will suffer Cr depletion damage to a depth of about 1 cm over a five year service life at 1200 C in these glasses.

KRUGER AA; FENG Z; GAN H; PEGG IL

2009-11-05T23:59:59.000Z

39

Test methods for selection of materials of construction for high-level radioactive waste vitrification. Revision  

Science Conference Proceedings (OSTI)

Candidate materials of construction were evaluated for a facility at the Department of Energy's Savannah River Plant to vitrify high-level radioactive waste. Limited operating experience was available under the corrosive conditions of the complex vitrification process. The objective of the testing program was to provide a high degree of assurance that equipment will meet or exceed design lifetimes. To meet this objective in reasonable time and minimum cost, a program was designed consisting of a combination of coupon immersion and electrochemical laboratory tests and pilot-scale tests. Stainless steels and nickel-based alloys were tested. Alloys that were most resistant to general and local attack contained nickel, molybdenum (>9%), and chromium (where Cr + Mo > 30%). Alloy C-276 was selected as the reference material for process equipment. Stellite 6 was selected for abrasive service in the presence of formic acid. Alloy 690 and ALLCORR were selected for specific applications.

Bickford, D F; Corbett, R A; Morrison, W S

1986-01-01T23:59:59.000Z

40

Separating and Stabilizing Phosphate from High-Level Radioactive Waste: Process Development and Spectroscopic Monitoring  

SciTech Connect

Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.

Lumetta, Gregg J.; Braley, Jenifer C.; Peterson, James M.; Bryan, Samuel A.; Levitskaia, Tatiana G.

2012-05-09T23:59:59.000Z

Note: This page contains sample records for the topic "hlw high-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers  

Science Conference Proceedings (OSTI)

Three copper-based alloys and three iron- to nickel-based austenitic alloys are being considered as possible materials for fabrication of containers for disposal of high-level radioactive waste. This waste will include spent fuel assemblies from reactors as well as high-level waste in borosilicate glass and will be sent to the prospective site at Yucca Mountain, Nevada, for disposal. The containers must maintain substantially complete containment for at least 300 yr and perhaps as long as 1000 yr. During the first 50 yr after emplacement, they must be retrievable from the disposal site. Shortly after the containers are emplaced in the repository, they will be exposed to high temperatures and high gamma radiation fields from the decay of the high-level waste. This volume surveys the available data on oxidation and corrosion of the iron- to nickel-based austenitic materials (Types 304L and 316L stainless steels and Alloy 825) and the copper-based alloy materials (CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni)), which are the present candidates for fabrication of the containers. Studies that provided a large amount of data are highlighted, and those areas in which little data exists are identified. Examples of successful applications of these materials are given. On the basis of resistance to oxidation and general corrosion, the austenitic materials are ranked as follows: Alloy 825 (best), Type 316L stainless steel, and then Type 304L stainless steel (worst). For the copper-based materials, the ranking is as follows: CDA 715 and CDA 613 (both best), and CDA 102 (worst). 110 refs., 30 figs., 13 tabs.

Gdowski, G.E.; Bullen, D.B. (Science and Engineering Associates, Inc., Pleasanton, CA (USA))

1988-08-01T23:59:59.000Z

42

Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers  

Science Conference Proceedings (OSTI)

Three copper-based alloys and three iron- to nickel-based austenitic alloys are being considered as possible materials for fabrication of high-level radioactive-waste disposal containers. The waste will include spent fuel assemblies from reactors as well as high-level waste in borosilicate glass and will be sent to the prospective site at Yucca Mountain, Nevada, for disposal. The copper-based alloy materials are CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni). The austenitic materials are Types 304L and 316L stainless steels and Alloy 825. The waste-package containers must maintain substantially complete containment for at least 300 yr and perhaps as long as 1000 yr, and they must be retrievable from the disposal site during the first 50 yr after emplacement. The containers will be exposed to high temperatures and high gamma radiation fields from the decay of high-level waste. This volume surveys the available data on the phase stability of both groups of candidate alloys. The austenitic alloys are reviewed in terms of the physical metallurgy of the iron-chromium-nickel system, martensite transformations, carbide formation, and intermetallic-phase precipitation. The copper-based alloys are reviewed in terms of their phase equilibria and the possibility of precipitation of the minor alloying constituents. For the austenitic materials, the ranking based on phase stability is: Alloy 825 (best), Type 316L stainless steel, and then Type 304L stainless steel (worst). For the copper-based materials, the ranking is: CDA 102 (oxygen-free copper) (best), and then both CDA 715 and CDA 613. 75 refs., 24 figs., 6 tabs.

Bullen, D.B.; Gdowski, G.E. (Science and Engineering Associates, Inc., Pleasanton, CA (USA))

1988-08-01T23:59:59.000Z

43

PERFORMANCE OF A BURIED RADIOACTIVE HIGH LEVEL WASTE GLASS AFTER 24 YEARS  

SciTech Connect

A radioactive high level waste glass was made in 1980 with Savannah River Site (SRS) Tank 15 waste. This glass was buried in the SRS burial ground for 24 years but lysimeter data was only available for the first 8 years. The glass was exhumed and analyzed in 2004. The glass was predicted to be very durable and laboratory tests confirmed the durability response. The laboratory results indicated that the glass was very durable as did analysis of the lysimeter data. Scanning electron microscopy of the glass burial surface showed no significant glass alteration consistent with the results of the laboratory and field tests. No detectable Pu, Am, Cm, Np, or Ru leached from the glass into the surrounding sediment. Leaching of {beta}/{delta} from {sup 90}Sr and {sup 137}Cs in the glass was diffusion controlled. Less than 0.5% of the Cs and Sr in the glass leached into the surrounding sediment, with >99% of the leached radionuclides remaining within 8 centimeters of the glass pellet.

Jantzen, C; Daniel Kaplan, D; Ned Bibler, N; David Peeler, D; John Plodinec, J

2008-05-05T23:59:59.000Z

44

Shale disposal of U.S. high-level radioactive waste.  

SciTech Connect

This report evaluates the feasibility of high-level radioactive waste disposal in shale within the United States. The U.S. has many possible clay/shale/argillite basins with positive attributes for permanent disposal. Similar geologic formations have been extensively studied by international programs with largely positive results, over significant ranges of the most important material characteristics including permeability, rheology, and sorptive potential. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in shale media. We develop scoping performance analyses, based on the applicable features, events, and processes identified by international investigators, to support a generic conclusion regarding post-closure safety. Requisite assumptions for these analyses include waste characteristics, disposal concepts, and important properties of the geologic formation. We then apply lessons learned from Sandia experience on the Waste Isolation Pilot Project and the Yucca Mountain Project to develop a disposal strategy should a shale repository be considered as an alternative disposal pathway in the U.S. Disposal of high-level radioactive waste in suitable shale formations is attractive because the material is essentially impermeable and self-sealing, conditions are chemically reducing, and sorption tends to prevent radionuclide transport. Vertically and laterally extensive shale and clay formations exist in multiple locations in the contiguous 48 states. Thermal-hydrologic-mechanical calculations indicate that temperatures near emplaced waste packages can be maintained below boiling and will decay to within a few degrees of the ambient temperature within a few decades (or longer depending on the waste form). Construction effects, ventilation, and the thermal pulse will lead to clay dehydration and deformation, confined to an excavation disturbed zone within a few meters of the repository, that can be reasonably characterized. Within a few centuries after waste emplacement, overburden pressures will seal fractures, resaturate the dehydrated zones, and provide a repository setting that strongly limits radionuclide movement to diffusive transport. Coupled hydrogeochemical transport calculations indicate maximum extents of radionuclide transport on the order of tens to hundreds of meters, or less, in a million years. Under the conditions modeled, a shale repository could achieve total containment, with no releases to the environment in undisturbed scenarios. The performance analyses described here are based on the assumption that long-term standards for disposal in clay/shale would be identical in the key aspects, to those prescribed for existing repository programs such as Yucca Mountain. This generic repository evaluation for shale is the first developed in the United States. Previous repository considerations have emphasized salt formations and volcanic rock formations. Much of the experience gained from U.S. repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, is applied here to scoping analyses for a shale repository. A contemporary understanding of clay mineralogy and attendant chemical environments has allowed identification of the appropriate features, events, and processes to be incorporated into the analysis. Advanced multi-physics modeling provides key support for understanding the effects from coupled processes. The results of the assessment show that shale formations provide a technically advanced, scientifically sound disposal option for the U.S.

Sassani, David Carl; Stone, Charles Michael; Hansen, Francis D.; Hardin, Ernest L.; Dewers, Thomas A.; Martinez, Mario J.; Rechard, Robert Paul; Sobolik, Steven Ronald; Freeze, Geoffrey A.; Cygan, Randall Timothy; Gaither, Katherine N.; Holland, John Francis; Brady, Patrick Vane

2010-05-01T23:59:59.000Z

45

High-Level Waste Melter Review  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) is faced with a massive cleanup task in resolving the legacy of environmental problems from years of manufacturing nuclear weapons. One of the major activities within this task is the treatment and disposal of the extremely large amount of high-level radioactive (HLW) waste stored at the Hanford Site in Richland, Washington. The current planning for the method of choice for accomplishing this task is to vitrify (glassify) this waste for disposal in a geologic repository. This paper describes the results of the DOE-chartered independent review of alternatives for solidification of Hanford HLW that could achieve major cost reductions with reasonable long-term risks, including recommendations on a path forward for advanced melter and waste form material research and development. The potential for improved cost performance was considered to depend largely on increased waste loading (fewer high-level waste canisters for disposal), higher throughput, or decreased vitrification facility size.

Ahearne, J.; Gentilucci, J.; Pye, L. D.; Weber, T.; Woolley, F.; Machara, N. P.; Gerdes, K.; Cooley, C.

2002-02-26T23:59:59.000Z

46

Granite disposal of U.S. high-level radioactive waste.  

SciTech Connect

This report evaluates the feasibility of disposing U.S. high-level radioactive waste in granite several hundred meters below the surface of the earth. The U.S. has many granite formations with positive attributes for permanent disposal. Similar crystalline formations have been extensively studied by international programs, two of which, in Sweden and Finland, are the host rocks of submitted or imminent repository license applications. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in granite media. In this report we develop scoping performance analyses, based on the applicable features, events, and processes (FEPs) identified by international investigators, to support generic conclusions regarding post-closure safety. Unlike the safety analyses for disposal in salt, shale/clay, or deep boreholes, the safety analysis for a mined granite repository depends largely on waste package preservation. In crystalline rock, waste packages are preserved by the high mechanical stability of the excavations, the diffusive barrier of the buffer, and favorable chemical conditions. The buffer is preserved by low groundwater fluxes, favorable chemical conditions, backfill, and the rigid confines of the host rock. An added advantage of a mined granite repository is that waste packages would be fairly easy to retrieve, should retrievability be an important objective. The results of the safety analyses performed in this study are consistent with the results of comprehensive safety assessments performed for sites in Sweden, Finland, and Canada. They indicate that a granite repository would satisfy established safety criteria and suggest that a small number of FEPs would largely control the release and transport of radionuclides. In the event the U.S. decides to pursue a potential repository in granite, a detailed evaluation of these FEPs would be needed to inform site selection and safety assessment.

Freeze, Geoffrey A.; Mariner, Paul E.; Lee, Joon H.; Hardin, Ernest L.; Goldstein, Barry; Hansen, Francis D.; Price, Ronald H.; Lord, Anna Snider

2011-08-01T23:59:59.000Z

47

Comparison of borosilicate glass and synthetic minerals as media for the immobilization of high-level radioactive waste  

Science Conference Proceedings (OSTI)

In this paper, the structure and properties of the different solid forms currently being developed for high-level radioactive waste disposal are compared. Good capacity to accept all the elements in the waste and flexibility of composition range to accommodate variations in the waste, are primarily discussed. 13 refs.

Tempest, P.A.

1981-03-01T23:59:59.000Z

48

Petroleum Engineering Techniques for HLW Disposal  

Science Conference Proceedings (OSTI)

This paper describes why petroleum engineering techniques are of importance and can be used for underground disposal of HLW (high-level radioactive waste). It is focused on rock salt as a geological host medium in combination with disposal of the HLW canisters in boreholes drilled from the surface. Both permanent disposal and disposal with the option to retrieve the waste are considered. The paper starts with a description of the disposal procedure. Next disposal in deep boreholes is treated. Then the possible use of deviated boreholes and of multiple boreholes is discussed. Also waste isolation aspects and the implications of the HLW heat generation are treated. It appears that the use of deep boreholes can be beneficial, and also that--to a certain extent--borehole deviation offers possibilities. The benefits of using multiple boreholes are questionable for permanent disposal, while this technique cannot be applied for retrievable disposal. For the use of casing material, the additional temperature rise due to the HLW heat generation must be taken into account.

van den Broek, W. M. G. T.

2002-02-25T23:59:59.000Z

49

High-level waste melter alternatives assessment report  

SciTech Connect

This document describes the Tank Waste Remediation System (TWRS) High-Level Waste (HLW) Program`s (hereafter referred to as HLW Program) Melter Candidate Assessment Activity performed in fiscal year (FY) 1994. The mission of the TWRS Program is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and encapsulated strontium and cesium isotopic sources) in an environmentally sound, safe, and cost-effective manner. The goal of the HLW Program is to immobilize the HLW fraction of pretreated tank waste into a vitrified product suitable for interim onsite storage and eventual offsite disposal at a geologic repository. Preparation of the encapsulated strontium and cesium isotopic sources for final disposal is also included in the HLW Program. As a result of trade studies performed in 1992 and 1993, processes planned for pretreatment of tank wastes were modified substantially because of increasing estimates of the quantity of high-level and transuranic tank waste remaining after pretreatment. This resulted in substantial increases in needed vitrification plant capacity compared to the capacity of original Hanford Waste Vitrification Plant (HWVP). The required capacity has not been finalized, but is expected to be four to eight times that of the HWVP design. The increased capacity requirements for the HLW vitrification plant`s melter prompted the assessment of candidate high-capacity HLW melter technologies to determine the most viable candidates and the required development and testing (D and T) focus required to select the Hanford Site HLW vitrification plant melter system. An assessment process was developed in early 1994. This document describes the assessment team, roles of team members, the phased assessment process and results, resulting recommendations, and the implementation strategy.

Calmus, R.B.

1995-02-01T23:59:59.000Z

50

Numerical simulation of high-level radioactive nuclear waste glass production  

SciTech Connect

Vitrification of radioactive waste has become an international approach for converting highly radioactive wastes into a durable solid prior to placing them in a permanent disposal repository. The technology for the process is not new. The conversion melter is a direct descendant of all electric melters used for manufacturing of some commercial glass types. Therefore, the vitrification process of radioactive wastes inherits typical problems of all electric furnaces and creates some other specific problems such as noble metal sedimentation. The noble metals and nickel sulfides in the melter are heavier than molten glass and have a low solubility. In a reducing condition, these metals amalgamate and tend to settle on the melter floor. The metal deposit resulting from this settling has a potential to short circuit the melter. The objective of this paper is to identify the typical problems that have been encountered in the waste melter operations and to address how these problems can be tackled using state-of-the-art numerical simulation techniques. It is believed that the large amount of pilot-scale melter experience throughout the world, combined with the knowledge gained from state-of-the-art computer modeling techniques would give assurance that the existing and future radioactive wastes can be effectively converted into a durable glass material and safely placed in a permanent repository.

Choi, I.G. (Westinghouse Savannah River Co., Aiken, SC (United States)); Ungan, A. (Purdue Univ., Indianapolis, IN (United States). Dept. of Mechanical Engineering)

1991-01-01T23:59:59.000Z

51

Numerical simulation of high-level radioactive nuclear waste glass production  

SciTech Connect

Vitrification of radioactive waste has become an international approach for converting highly radioactive wastes into a durable solid prior to placing them in a permanent disposal repository. The technology for the process is not new. The conversion melter is a direct descendant of all electric melters used for manufacturing of some commercial glass types. Therefore, the vitrification process of radioactive wastes inherits typical problems of all electric furnaces and creates some other specific problems such as noble metal sedimentation. The noble metals and nickel sulfides in the melter are heavier than molten glass and have a low solubility. In a reducing condition, these metals amalgamate and tend to settle on the melter floor. The metal deposit resulting from this settling has a potential to short circuit the melter. The objective of this paper is to identify the typical problems that have been encountered in the waste melter operations and to address how these problems can be tackled using state-of-the-art numerical simulation techniques. It is believed that the large amount of pilot-scale melter experience throughout the world, combined with the knowledge gained from state-of-the-art computer modeling techniques would give assurance that the existing and future radioactive wastes can be effectively converted into a durable glass material and safely placed in a permanent repository.

Choi, I.G. [Westinghouse Savannah River Co., Aiken, SC (United States); Ungan, A. [Purdue Univ., Indianapolis, IN (United States). Dept. of Mechanical Engineering

1991-12-31T23:59:59.000Z

52

RADIOACTIVE HIGH LEVEL WASTE TANK PITTING PREDICTIONS: AN INVESTIGATION INTO CRITICAL SOLUTION CONCENTRATIONS  

Science Conference Proceedings (OSTI)

A series of cyclic potentiodynamic polarization tests was performed on samples of ASTM A537 carbon steel in support of a probability-based approach to evaluate the effect of chloride and sulfate on corrosion the steel?s susceptibility to pitting corrosion. Testing solutions were chosen to systemically evaluate the influence of the secondary aggressive species, chloride, and sulfate, in the nitrate based, high-level wastes. The results suggest that evaluating the combined effect of all aggressive species, nitrate, chloride, and sulfate, provides a consistent response for determining corrosion susceptibility. The results of this work emphasize the importance for not only nitrate concentration limits, but also chloride and sulfate concentration limits.

Hoffman, E.

2012-11-08T23:59:59.000Z

53

Evaluation of alternatives for high-level and transuranic radioactive- waste disposal standards  

Science Conference Proceedings (OSTI)

The remand of the US Environmental Protection Agency`s long-term performance standards for radioactive-waste disposal provides an opportunity to suggest modifications that would make the regulation more defensible and remove inconsistencies yet retain the basic structure of the original rule. Proposed modifications are in three specific areas: release and dose limits, probabilistic containment requirements, and transuranic-waste disposal criteria. Examination of the modifications includes discussion of the alternatives, demonstration of methods of development and implementation, comparison of the characteristics, attributes, and deficiencies of possible options within each area, and analysis of the implications for performance assessments. An additional consideration is the impact on the entire regulation when developing or modifying the individual components of the radiological standards.

Klett, R.D. [Sandia National Labs., Albuquerque, NM (United States); Gruebel, M.M. [Tech. Reps., Inc., Albuquerque, NM (United States)

1992-12-01T23:59:59.000Z

54

Characterization, propagation and analysis of aleatory and epistemic uncertainty in the 2008 performance assessment for the proposed repository for high-level radioactive waste at Yucca Mountain, Nevada  

Science Conference Proceedings (OSTI)

The 2008 performance assessment (PA) for the proposed repository for high-level radioactive waste at Yucca Mountain (YM), Nevada, illustrates the conceptual structure of risk assessments for complex systems. The 2008 YM PA is based on the following three ...

Clifford W. Hansen; Jon C. Helton; Cdric J. Sallaberry

2010-09-01T23:59:59.000Z

55

EM Waste Acceptance Product Specification (WAPS) for Vitrified High-Level Waste Forms  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Waste Acceptance Product EM Waste Acceptance Product Specification (WAPS) for Vitrified High-Level Waste Forms Presentation to the HLW Corporate Board July 24, 2008 By Tony Kluk/Ken Picha 2 Background * Originally Waste Acceptance Preliminary Specifications were Office of Civilian Radioactive Waste Management (RW) documents and project specific: - Defense Waste Processing Facility (PE-03, July 1989) - West Valley Demonstration Project (PE-04, January 1990) * Included many of same specifications as current version of WAPS * First version of RW Waste Acceptance System Requirements Document in January 1993 (included requirements for both SNF and HLW) * EM decided to extract requirements for HLW and put into the WAPS document 3 Background (Cont'd) * Lists technical specifications for acceptance of borosilicate HLW

56

Technical Exchange on Improved Design and Performance of High Level Waste Melters - Final Report  

Science Conference Proceedings (OSTI)

SIA Radon is responsible for management of low- and intermediate-level radioactive waste (LILW) produced in Central Russia. In cooperation with Minatom organizations Radon carries out R and D programs on treatment of simulated high level waste (HLW) as well. Radon scientists deal with a study of materials for LILW, HLW, and Nuclear Power Plants (NPP) wastes immobilization, and development and testing of processes and technologies for waste treatment and disposal. Radon is mostly experienced in LILW vitrification. This experience can be carried over to HLW vitrification especially in field of melting systems. The melter chosen as a basic unit for the vitrification plant is a cold crucible. Later on Radon experience in LILW vitrification as well as our results on simulated HLW vitrification are briefly described.

SK Sundaram; ML Elliott; D Bickford

1999-11-19T23:59:59.000Z

57

A guide for the ASME code for austenitic stainless steel containment vessels for high-level radioactive materials  

Science Conference Proceedings (OSTI)

The design and fabrication criteria recommended by the US Department of Energy (DOE) for high-level radioactive materials containment vessels used in packaging is found in Section III, Division 1, Subsection NB of the ASME Boiler and Pressure Vessel Code. This Code provides material, design, fabrication, examination, and testing specifications for nuclear power plant components. However, many of the requirements listed in the Code are not applicable to containment vessels made from austenitic stainless steel with austenitic or ferritic steel bolting. Most packaging designers, engineers, and fabricators are intimidated by the sheer volume of requirements contained in the Code; consequently, the Code is not always followed and many requirements that do apply are often overlooked during preparation of the Safety Analysis Report for Packaging (SARP) that constitutes the basis to evaluate the packaging for certification.

Raske, D.T.

1995-06-01T23:59:59.000Z

58

High-Level Liquid Waste Tank Integrity Workshop - 2008  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquid Waste Tank Integrity Liquid Waste Tank Integrity Workshop - 2008 Karthik Subramanian Bruce Wiersma November 2008 High Level Waste Corporate Board Meeting karthik.subramanian@srnl.doe.gov bruce.wiersma@srnl.doe.gov 2 Acknowledgements * Bruce Wiersma (SRNL) * Kayle Boomer (Hanford) * Michael T. Terry (Facilitator) * SRS - Liquid Waste Organization * Hanford Tank Farms * DOE-EM 3 Background * High level radioactive waste (HLW) tanks provide critical interim confinement for waste prior to processing and permanent disposal * Maintaining structural integrity (SI) of the tanks is a critical component of operations 4 Tank Integrity Workshop - 2008 * Discuss the HLW tank integrity technology needs based upon the evolving waste processing and tank closure requirements along with its continued storage mission

59

A COMPLETE HISTORY OF THE HIGH-LEVEL WASTE PLANT AT THE WEST VALLEY DEMONSTRATION PROJECT  

SciTech Connect

The West Valley Demonstration Project (WVDP) vitrification melter was shut down in September 2002 after being used to vitrify High Level Waste (HLW) and process system residuals for six years. Processing of the HLW occurred from June 1996 through November 2001, followed by a program to flush the remaining HLW through to the melter. Glass removal and shutdown followed. The facility and process equipment is currently in a standby mode awaiting deactivation. During HLW processing operations, nearly 24 million curies of radioactive material were vitrified into 275 canisters of HLW glass. At least 99.7% of the curies in the HLW tanks at the WVDP were vitrified using the melter. Each canister of HLW holds approximately 2000 kilograms of glass with an average contact dose rate of over 2600 rem per hour. After vitrification processing ended, two more cans were filled using the Evacuated Canister Process to empty the melter at shutdown. This history briefly summarizes the initial stages of process development and earlier WVDP experience in the design and operation of the vitrification systems, followed by a more detailed discussion of equipment availability and failure rates during six years of operation. Lessons learned operating a system that continued to function beyond design expectations also are highlighted.

Petkus, Lawrence L.; Paul, James; Valenti, Paul J.; Houston, Helene; May, Joseph

2003-02-27T23:59:59.000Z

60

DEMONSTRATION DISPOSAL OF HIGH-LEVEL RADIOACTIVE SOLIDS IN LYONS, KANSAS, SALT MINE: BACKGROUND AND PRELIMINARY DESIGN OF EXPERIMENTAL ASPECTS  

SciTech Connect

A demonstration of the disposal of high-level radioactive waste solids to be carried out in a salt mine at Lyons, Kansas, will have as its objectives: (1) the demonstration of required waste-handling equipment and techniques, (2) the determination of the stability of salt under the influence of heat and radiation, and (3) the collection of information on creep and plastic flow of salt which is needed for the design of an actual disposal facility. As presently conceived, 14 irradiated fuel assemblies from the Engineering Test Reactor will serve as a source of radiation in lieu of actual solidified wastes. The assemblies will be placed in a circular array of holes in the floor with one can in the center and other six cans located peripherally, spaced 5 ft on centers. During the course of the 2-year test, four sets of assemblies will be used to achieve a peak dose to the salt of about 8 x 10/sup 8/ rad and the temperature of the adjacent salt will be maintained at 200 deg C with electrical heaters. A second array, consisting only of heaters, will be operated as a control to determine those effects due solely to heat. In addition to the radioactive and control arrays, a ribpillar located between the two arrays will be heated electrically around its base to produce significant information on salt flow characteristics at elevated temperatures. (auth)

Bradshaw, R.L.; Perona, J.J.; Blomeke, J.O.

1964-01-10T23:59:59.000Z

Note: This page contains sample records for the topic "hlw high-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Development and application of a conceptual approach for defining high-level waste  

SciTech Connect

This paper presents a conceptual approach to defining high-level radioactive waste (HLW) and a preliminary quantitative definition obtained from an example implementation of the conceptual approach. On the basis of the description of HLW in the Nuclear Waste Policy Act of 1982, we have developed a conceptual model in which HLW has two attributes: HLW is (1) highly radioactive and (2) requires permanent isolation via deep geologic disposal. This conceptual model results in a two-dimensional waste categorization system in which one axis, related to ''requires permanent isolation,'' is associated with long-term risks from waste disposal and the other axis, related to ''highly radioactive,'' is associated with short-term risks from waste management and operations; this system also leads to the specification of categories of wastes that are not HLW. Implementation of the conceptual model for defining HLW was based primarily on health and safety considerations. Wastes requiring permanent isolation via deep geologic disposal were defined by estimating the maximum concentrations of radionuclides that would be acceptable for disposal using the next-best technology, i.e., greater confinement disposal (GCD) via intermediate-depth burial or engineered surface structures. Wastes that are highly radioactive were defined by adopting heat generation rate as the appropriate measure and examining levels of decay heat that necessitate special methods to control risks from operations in a variety of nuclear fuel-cycle situations. We determined that wastes having a power density >200 W/m/sup 3/ should be considered highly radioactive. Thus, in the example implementation, the combination of maximum concentrations of long-lived radionuclides that are acceptable for GCD and a power density of 200 W/m/sup 3/ provides boundaries for defining wastes that are HLW.

Croff, A.G.; Forsberg, C.W.; Kocher, D.C.; Cohen, J.J.; Smith, C.F.; Miller, D.E.

1986-01-01T23:59:59.000Z

62

HIGH ALUMINUM HLW GLASSES FOR HANFORDS WTP  

Science Conference Proceedings (OSTI)

The world's largest radioactive waste vitrification facility is now under construction at the United State Department of Energy's (DOE's) Hanford site. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is designed to treat nearly 53 million gallons of mixed hazardous and radioactive waste now residing in 177 underground storage tanks. This multi-decade processing campaign will be one of the most complex ever undertaken because of the wide chemical and physical variability of the waste compositions generated during the cold war era that are stored at Hanford. The DOE Office of River Protection (ORP) has initiated a program to improve the long-term operating efficiency of the WTP vitrification plants with the objective of reducing the overall cost of tank waste treatment and disposal and shortening the duration of plant operations. Due to the size, complexity and duration of the WTP mission, the lifecycle operating and waste disposal costs are substantial. As a result, gains in High Level Waste (HLW) and Low Activity Waste (LAW) waste loadings, as well as increases in glass production rate, which can reduce mission duration and glass volumes for disposal, can yield substantial overall cost savings. EnergySolutions and its long-term research partner, the Vitreous State Laboratory (VSL) of the Catholic University of America, have been involved in a multi-year ORP program directed at optimizing various aspects of the HLW and LAW vitrification flow sheets. A number of Hanford HLW streams contain high concentrations of aluminum, which is challenging with respect to both waste loading and processing rate. Therefore, a key focus area of the ORP vitrification process optimization program at EnergySolutions and VSL has been development of HLW glass compositions that can accommodate high Al{sub 2}O{sub 3} concentrations while maintaining high processing rates in the Joule Heated Ceramic Melters (JHCMs) used for waste vitrification at the WTP. This paper, reviews the achievements of this program with emphasis on the recent enhancements in Al{sub 2}O{sub 3} loadings in HLW glass and its processing characteristics. Glass formulation development included crucible-scale preparation and characterization of glass samples to assess compliance with all melt processing and product quality requirements, followed by small-scale screening tests to estimate processing rates. These results were used to down-select formulations for subsequent engineering-scale melter testing. Finally, further testing was performed on the DM1200 vitrification system installed at VSL, which is a one-third scale (1.20 m{sup 2}) pilot melter for the WTP HLW melters and which is fitted with a fully prototypical off-gas treatment system. These tests employed glass formulations with high waste loadings and Al{sub 2}O{sub 3} contents of {approx}25 wt%, which represents a near-doubling of the present WTP baseline maximum Al{sub 2}O{sub 3} loading. In addition, these formulations were processed successfully at glass production rates that exceeded the present requirements for WTP HLW vitrification by up to 88%. The higher aluminum loading in the HLW glass has an added benefit in that the aluminum leaching requirements in pretreatment are reduced, thus allowing less sodium addition in pretreatment, which in turn reduces the amount of LAW glass to be produced at the WTP. The impact of the results from this ORP program in reducing the overall cost and schedule for the Hanford waste treatment mission will be discussed.

KRUGER AA; JOSEPH I; BOWMAN BW; GAN H; KOT W; MATLACK KS; PEGG IL

2009-08-19T23:59:59.000Z

63

Final Environmental Impact Statement (Supplement to ERDA-1537, September 1977) Waste Management Operations Double-Shell Tanks for Defense High-Level Radioactive Waste Storage Savannah River Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do Do E/EIS-0062 FINAL ENVIRONMENTAL IMPACT mATEIUIENT (Supplement to ERDA-1537, September 1977) Waste ~ Management Operations Savannah River Plant ! Aiken, South Carolina Double-Shell Tanks for Defense High-Level Radioactive Waste Storage April 1980 U.S. DEPARTMENT OF ENERGY WASHINGTON. D.C.20545 1980 WL 94273 (F.R.) NOTICES DEPARTMENT OF ENERGY Office of Deputy Assistant Secretary for Nuclear Waste Management Double-Shell Tanks for Defense High-Level Radioactive Waste Storage, Savannah River Plant, Aiken, S.C. Wednesday, July 9, 1980 *46154 Record of Decision Decision. The decision has been made to complete the construction of the 14 double-shell tanks and use them to store defense high-level radioactive waste at the Savannah River Plant (SRP). Background. The SRP, located near Aiken, South Carolina, is a major installation of the

64

Evaluation of the post-emplacement environment of high level radioactive waste packages at Yucca Mountain, Nevada  

SciTech Connect

Evaluation of the post-emplacement environment around high level radioactive waste containers is required by federal regulations. The information derived from this evaluation will be used to determine the service performance of the waste containers, the chemical and hydrological conditions that may influence radionuclide release and transport if containers are breached, and retrievability of the waste containers prior to closure of the repository. Laboratory studies, numerical simulations, and field experiments and tests are used to provide data necessary for this evaluation. Results obtained to date demonstrate that the post-emplacement environment in the welded tuff at Yucca Mountain, Nevada maintains relatively benign chemical features (i.e., near neutral pH, low concentrations of dissolved species) for most scenarios. The hydrological environment appears to be one of low flow volume and rates for the expected condition of an unsaturated medium. Emplacement borehole stability will be a function of fracture density and orientation, which may be influenced by microcrack development. Field studies and numerical simulations are in progress that will extend the results of laboratory studies to long time periods. The extent to which chemical, hydrological and mechanical processes can be adequately coupled through numerical simulations remains a matter of concern. 18 refs., 4 figs., 1 tab.

Glassley, W.

1989-03-01T23:59:59.000Z

65

Radioactive waste from transmutation of technetium: a model for anticipating characteristics of high level waste from transmutation  

SciTech Connect

At this early stage in the conceptualization of fuel treatment and radioisotope transmutation for the disposition of nuclear wastes, it is possible to anticipate some characteristics of the waste stream resulting from the deployment of advanced technologies. Fission products and actinides cannot be completely destroyed by transmutation even with continuous purification and recycle. This is demonstrated for technetium in this analysis, but is true for all radioisotopes. Also, some of the reaction products are themselves long-lived radioactive isotopes. The purification and recycle steps produce nuclear wastes that must be planned for geologic disposal. Five radioisotopes have been identified to be produced in abundance by transmutation of technetium using fast neutrons. Four of these isotopes may be more benign than the original technetium-99 because of their longer half lives. However, one isotope, molybdenum-93 with a half life of four thousand years, may be troublesome. All of the isotopes arising from the transmutation process that end up in high level waste must be examined in terms of their behavior in geologic disposal. In selecting goals for chemical separations, the technologists must consider the entire cycle of separation and transmutation before applying the performance expected in a single separation to implications concerning a repository. A separation efficiency of 0.95 can translate into the disposal of as much as 30 to 60 percent of the technetium in the repository if down stream losses are not controlled. In this case, the treatment may have little impact on anticipated off site radiation from technetium. The destruction of technetium through continuous recycle requires the cost of increased neutron dose and increased space in reactors that must be considered in design of fuel treatment systems. (authors)

Seitz, M.G. [Booz Allen Hamilton, Washington DC (United States)

2007-07-01T23:59:59.000Z

66

IMPACT OF ELIMINATING MERCURY REMOVAL PRETREATMENT ON THE PERFORMANCE OF A HIGH LEVEL RADIOACTIVE WASTE MELTER OFFGAS SYSTEM  

DOE Green Energy (OSTI)

The Defense Waste Processing Facility at the Savannah River Site processes high-level radioactive waste from the processing of nuclear materials that contains dissolved and precipitated metals and radionuclides. Vitrification of this waste into borosilicate glass for ultimate disposal at a geologic repository involves chemically modifying the waste to make it compatible with the glass melter system. Pretreatment steps include removal of excess aluminum by dissolution and washing, and processing with formic and nitric acids to: (1) adjust the reduction-oxidation (redox) potential in the glass melter to reduce radionuclide volatility and improve melt rate; (2) adjust feed rheology; and (3) reduce by steam stripping the amount of mercury that must be processed in the melter. Elimination of formic acid pretreatment has been proposed to eliminate the production of hydrogen in the pretreatment systems; alternative reductants would be used to control redox. However, elimination of formic acid would result in significantly more mercury in the melter feed; the current specification is no more than 0.45 wt%, while the maximum expected prior to pretreatment is about 2.5 wt%. An engineering study has been undertaken to estimate the effects of eliminating mercury removal on the melter offgas system performance. A homogeneous gas-phase oxidation model and an aqueous phase model were developed to study the speciation of mercury in the DWPF melter offgas system. The model was calibrated against available experimental data and then applied to DWPF conditions. The gas-phase model predicted the Hg{sub 2}{sup 2-}/Hg{sup 2+} ratio accurately, but some un-oxidized Hg{sup 0} remained. The aqueous model, with the addition of less than 1 mM Cl{sub 2} showed that this remaining Hg{sup 0} would be oxidized such that the final Hg{sub 2}{sup 2+}/Hg{sup 2+} ratios matched the experimental data. The results of applying the model to DWPF show that due to excessive shortage of chloride, only 6% of the mercury fed is expected to be chlorinated, mostly as Hg{sub 2}Cl{sub 2}, while the remaining mercury would exist either as elemental mercury (90%) or HgO (4%).

Zamecnik, J; Alexander Choi, A

2009-03-17T23:59:59.000Z

67

High-level waste management technology program plan  

Science Conference Proceedings (OSTI)

The purpose of this plan is to document the integrated technology program plan for the Savannah River Site (SRS) High-Level Waste (HLW) Management System. The mission of the SRS HLW System is to receive and store SRS high-level wastes in a see and environmentally sound, and to convert these wastes into forms suitable for final disposal. These final disposal forms are borosilicate glass to be sent to the Federal Repository, Saltstone grout to be disposed of on site, and treated waste water to be released to the environment via a permitted outfall. Thus, the technology development activities described herein are those activities required to enable successful accomplishment of this mission. The technology program is based on specific needs of the SRS HLW System and organized following the systems engineering level 3 functions. Technology needs for each level 3 function are listed as reference, enhancements, and alternatives. Finally, FY-95 funding, deliverables, and schedules are s in Chapter IV with details on the specific tasks that are funded in FY-95 provided in Appendix A. The information in this report represents the vision of activities as defined at the beginning of the fiscal year. Depending on emergent issues, funding changes, and other factors, programs and milestones may be adjusted during the fiscal year. The FY-95 SRS HLW technology program strongly emphasizes startup support for the Defense Waste Processing Facility and In-Tank Precipitation. Closure of technical issues associated with these operations has been given highest priority. Consequently, efforts on longer term enhancements and alternatives are receiving minimal funding. However, High-Level Waste Management is committed to participation in the national Radioactive Waste Tank Remediation Technology Focus Area. 4 refs., 5 figs., 9 tabs.

Harmon, H.D.

1995-01-01T23:59:59.000Z

68

Operating experience during high-level waste vitrification at the West Valley Demonstration Project  

SciTech Connect

This report provides a summary of operational experiences, component and system performance, and lessons learned associated with the operation of the Vitrification Facility (VF) at the West Valley Demonstration Project (WVDP). The VF was designed to convert stored high-level radioactive waste (HLW) into a stable waste form (borosilicate glass) suitable for disposal in a federal repository. Following successful completion on nonradioactive test, HLW processing began in July 1995. Completion of Phase 1 of HLW processing was reached on 10 June 1998 and represented the processing of 9.32 million curies of cesium-137 (Cs-137) and strontium-90 (Sr-90) to fill 211 canisters with over 436,000 kilograms of glass. With approximately 85% of the total estimated curie content removed from underground waste storage tanks during Phase 1, subsequent operations will focus on removal of tank heel wastes.

Valenti, P.J.; Elliott, D.I.

1999-01-01T23:59:59.000Z

69

Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contents Contents CR-iii TABLE OF CONTENTS Section Page 8. Transportation Modes, Routes, Affected Environment, and Impacts............................................ CR8-1 8.1 General Opposition to Transporting Spent Nuclear Fuel and High-Level Radioactive Waste ............................................................................................................ CR8-6 8.2 Number of Shipments ..................................................................................................... CR8-37 8.3 Transportation Modes and Routes .................................................................................. CR8-41 8.3.1 State Highway 127, Hoover Dam, Nevada Department of Transportation Alternatives ..............................................................................................................

70

Disposal of defense spent fuel and HLW from the Idaho Chemical Processing Plant  

SciTech Connect

Acid high-level radioactive waste (HLW) resulting from fuel reprocessing at the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy (DOE) has been solidified to a calcine since 1963 and stored in stainless steel bins enclosed by concrete vaults. Several different types of unprocessed irradiated DOE-owned fuels are also in storage ate the ICPP. In April, 1992, DOE announced that spent fuel would no longer be reprocessed to recover enriched uranium and called for a shutdown of the reprocessing facilities at the ICPP. A new Spent Fuel and HLW Technology Development program was subsequently initiated to develop technologies for immobilizing ICPP spent fuels and HLW for disposal, in accordance with the Nuclear Waste Policy Act. The Program elements include Systems Analysis, Graphite Fuel Disposal, Other Spent Fuel Disposal, Sodium-Bearing Liquid Waste Processing, Calcine Immobilization, and Metal Recycle/Waste Minimization. This paper presents an overview of the ICPP radioactive wastes and current spent fuels, with an emphasis on the description of HLW and spent fuels requiring repository disposal.

Ermold, L.F.; Loo, H.H.; Klingler, R.D.; Herzog, J.D.; Knecht, D.A.

1992-12-01T23:59:59.000Z

71

High Level Waste Corporate Board Charter  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

on 24 July 2008 1 on 24 July 2008 1 Office of Environmental Management High-Level Waste Corporate Board Charter Purpose This Charter establishes the High- Level Waste (HLW) Corporate Board, (hereinafter referred to as the 'Board') within the Office of Environmental Management (EM). The Board will serve as a consensus building body to integrate the Department of Energy (DOE) HLW management and disposition activities across the EM program and, with the coordination and cooperation of other program offices, across the DOE complex. The Board will identify the need for and develop policies, planning, standards and guidance and provide the integration necessary to implement an effective and efficient national HLW program. The Board will also evaluate the implications of HLW issues and their

72

Evaluation of the Proposed High-Level Radioactive Waste Repository at Yucca Mountain Using Total System Performance Assessment: Phase 6  

Science Conference Proceedings (OSTI)

A successful license application for the candidate spent-fuel and high-level waste repository at Yucca Mountain depends on a robust demonstration of long-term safety. This report presents EPRI's evaluation of, and makes a case for, the suitability of the Yucca Mountain repository using a Total System Performance Assessment (TSPA). The report discusses factors that make the Yucca Mountain repository system suitable for continued development and initiation of the licensing process. Information in this Phas...

2002-02-28T23:59:59.000Z

73

Pyrochemical treatment of Idaho Chemical Processing Plant high-level waste calcine  

SciTech Connect

The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Engineering Laboratory (INEL), has reprocessed irradiated nuclear fuels for the US Department of Energy (DOE) since 1951 to recover uranium, krypton-85, and isolated fission products for interim treatment and immobilization. The acidic radioactive high-level liquid waste (HLLW) is routinely stored in stainless steel tanks and then, since 1963, calcined to form a dry granular solid. The resulting high-level waste (HLW) calcine is stored in seismically hardened stainless steel bins that are housed in underground concrete vaults. A research and development program has been established to determine the feasibility of treating ICPP HLW calcine using pyrochemical technology.This technology is described.

Todd, T.A.; DelDebbio, J.A.; Nelson, L.O.; Sharpsten, M.R.

1993-06-01T23:59:59.000Z

74

Defense High Level Waste Disposal Container System Description Document  

Science Conference Proceedings (OSTI)

The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms [IPWF]) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. US Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as co-disposal. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister inserted in the center and/or one or more DOE SNF canisters displacing a HLW canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents.

N. E. Pettit

2001-07-13T23:59:59.000Z

75

Draft Supplemental Environmental Impact Statement for a Geologice Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mounta  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

v v COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada - Nevada Rail Transportation Corridor (DOE/EIS-0250F-S2D; the Nevada Rail Corridor SEIS), and Draft Environmental Impact Statement for a Rail Alignment for the Construction and Operation of a Railroad in Nevada to a Geologic Repository at Yucca Mountain, Nye County, Nevada (DOE/EIS-0369D; the Rail Alignment EIS) CONTACTS: For more information about this document, write or call: For general information on the DOE NEPA process, write or call: U.S. Department of Energy Office of Civilian Radioactive Waste Management

76

Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada DOE/EIS-0250 Errata Sheet Since release of the Final EIS for Yucca Mountain on February 14, 2002 as part of the Site Recommendation documentation required under the Nuclear Waste Policy Act, as amended, the Department of Energy (DOE) has identified a variety of errors in the document. These errors were found to include: editing errors - errors in editorial style, rounding, and unit conversions data entry errors, errors in typing a number transcription errors - errors in transcribing information from one part of the document to another, failures to update the text from the most current analyses at the time of the

77

Final Report - Crystal Settling, Redox, and High Temperature Properties of ORP HLW and LAW Glasses, VSL-09R1510-1, Rev. 0, dated 6/18/09  

Science Conference Proceedings (OSTI)

The radioactive tank waste treatment programs at the U. S. Department of Energy (DOE) have featured joule heated ceramic melter technology for the vitrification of high level waste (HLW). The Hanford Tank Waste Treatment and Immobilization Plant (WTP) employs this same basic technology not only for the vitrification of HLW streams but also for the vitrification of Low Activity Waste (LAW) streams. Because of the much greater throughput rates required of the WTP as compared to the vitrification facilities at the West Valley Demonstration Project (WVDP) or the Defense Waste Processing Facility (DWPF), the WTP employs advanced joule heated melters with forced mixing of the glass pool (bubblers) to improve heat and mass transport and increase melting rates. However, for both HLW and LAW treatment, the ability to increase waste loadings offers the potential to significantly reduce the amount of glass that must be produced and disposed and, therefore, the overall project costs. This report presents the results from a study to investigate several glass property issues related to WTP HLW and LAW vitrification: crystal formation and settling in selected HLW glasses; redox behavior of vanadium and chromium in selected LAW glasses; and key high temperature thermal properties of representative HLW and LAW glasses. The work was conducted according to Test Plans that were prepared for the HLW and LAW scope, respectively. One part of this work thus addresses some of the possible detrimental effects due to considerably higher crystal content in waste glass melts and, in particular, the impact of high crystal contents on the flow property of the glass melt and the settling rate of representative crystalline phases in an environment similar to that of an idling glass melter. Characterization of vanadium redox shifts in representative WTP LAW glasses is the second focal point of this work. The third part of this work focused on key high temperature thermal properties of representative WTP HLW and LAW glasses over a wide range of temperatures, from the melter operating temperature to the glass transition.

Kruger, Albert A.; Wang, C.; Gan, H.; Pegg, I. L.; Chaudhuri, M.; Kot, W.; Feng, Z.; Viragh, C.; McKeown, D. A.; Joseph, I.; Muller, I. S.; Cecil, R.; Zhao, W.

2013-11-13T23:59:59.000Z

78

Action plan for response to abnormal conditions in Hanford high level radioactive liquid waste storage tanks containing flammable gases. Revision 1  

DOE Green Energy (OSTI)

Radioactive liquid waste tends to produce hydrogen as a result of the interaction of gamma radiation and water. In tanks containing organic chelating agents, additional hydrogen gas as well as nitrous oxide and ammonia can be produced by thermal and radiolytic decomposition of these organics. Several high-level radioactive liquid waste storage tanks, located underground at the Hanford Site, contain waste that retains the gases produced in them until large quantities are released rapidly to the tank vapor space. Tanks filled to near capacity have relatively little vapor space; therefore, if the waste suddenly releases a large amount of hydrogen and nitrous oxide, a flammable gas mixture may result. The most notable waste tank with a flammable gas problem is tank 241-SY-101. Waste in this tank has occasionally released enough flammable gas to burn if an ignition source had been present inside of the tank. Several other waste tanks exhibit similar behavior to a lesser magnitude. Administrative controls have been developed to assure that these Flammable Gas Watch List tanks are safely maintained. Responses have also been developed for off-normal conditions which might develop in these tanks. In addition, scientific and engineering studies are underway to further understand and mitigate the behavior of the Flammable Gas Watch List tanks.

Sherwood, D.J.

1994-03-01T23:59:59.000Z

79

HLW Glass Waste Loadings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HLW HLW Glass Waste Loadings Ian L. Pegg Vitreous State Laboratory The Catholic University of America Washington, DC Overview Overview  Vitrification - general background  Joule heated ceramic melter (JHCM) technology  Factors affecting waste loadings  Waste loading requirements and projections  WTP DWPF  DWPF  Yucca Mountain License Application requirements on waste loading  Summary Vitrification  Immobilization of waste by conversion into a glass  Internationally accepted treatment for HLW  Why glass?  Amorphous material - able to incorporate a wide spectrum of elements over wide ranges of composition; resistant to radiation damage  Long-term durability - natural analogs Relatively simple process - amenable to nuclearization at large  Relatively simple process - amenable to nuclearization at large scale  There

80

Risk perception on management of nuclear high-level and transuranic waste storage  

SciTech Connect

The Department of Energy`s program for disposing of nuclear High-Level Waste (HLW) and transuranic (TRU) waste has been impeded by overwhelming political opposition fueled by public perceptions of actual risk. Analysis of these perceptions shows them to be deeply rooted in images of fear and dread that have been present since the discovery of radioactivity. The development and use of nuclear weapons linked these images to reality and the mishandling of radioactive waste from the nations military weapons facilities has contributed toward creating a state of distrust that cannot be erased quickly or easily. In addition, the analysis indicates that even the highly educated technical community is not well informed on the latest technology involved with nuclear HLW and TRU waste disposal. It is not surprising then, that the general public feels uncomfortable with DOE`s management plans for with nuclear HLW and TRU waste disposal. Postponing the permanent geologic repository and use of Monitored Retrievable Storage (MRS) would provide the time necessary for difficult social and political issues to be resolved. It would also allow time for the public to become better educated if DOE chooses to become proactive.

Dees, L.A.

1994-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "hlw high-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Production of Advanced Glass Ceramic HLW Forms using Cold Crucible Induction Melter  

SciTech Connect

Cold Crucible Induction Melters (CCIMs) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in the 21st century. Unlike the existing Joule-Heated Melters (JHMs) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIMs offer unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. This paper discusses advantageous features of the CCIM, with emphasis on features that overcome the historical issues with the JHMs presently utilized, as well as the benefits of glass ceramic waste forms over borosilicate glass waste forms. These advantages are then validated based on recent INL testing to demonstrate a first-of-a-kind formulation of a non-radioactive ceramic-based waste form utilizing a CCIM.

Veronica J Rutledge; Vince Maio

2013-10-01T23:59:59.000Z

82

Decontamination of high-level waste canisters  

SciTech Connect

This report presents evaluations of several methods for the in-process decontamination of metallic canisters containing any one of a number of solidified high-level waste (HLW) forms. The use of steam-water, steam, abrasive blasting, electropolishing, liquid honing, vibratory finishing and soaking have been tested or evaluated as potential techniques to decontaminate the outer surfaces of HLW canisters. Either these techniques have been tested or available literature has been examined to assess their applicability to the decontamination of HLW canisters. Electropolishing has been found to be the most thorough method to remove radionuclides and other foreign material that may be deposited on or in the outer surface of a canister during any of the HLW processes. Steam or steam-water spraying techniques may be adequate for some applications but fail to remove all contaminated forms that could be present in some of the HLW processes. Liquid honing and abrasive blasting remove contamination and foreign material very quickly and effectively from small areas and components although these blasting techniques tend to disperse the material removed from the cleaned surfaces. Vibratory finishing is very capable of removing the bulk of contamination and foreign matter from a variety of materials. However, special vibratory finishing equipment would have to be designed and adapted for a remote process. Soaking techniques take long periods of time and may not remove all of the smearable contamination. If soaking involves pickling baths that use corrosive agents, these agents may cause erosion of grain boundaries that results in rough surfaces.

Nesbitt, J.F.; Slate, S.C.; Fetrow, L.K.

1980-12-01T23:59:59.000Z

83

Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste  

SciTech Connect

Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

J.S. Stuckless; D. O'Leary

2006-09-25T23:59:59.000Z

84

Application of the Evacuated Canister System for Removing Residual Molten Glass From the West Valley Demonstration Project High-Level Waste Melter  

SciTech Connect

The principal mission of the West Valley Demonstration Project (WVDP) is to meet a series of objectives defined in the West Valley Demonstration Project Act (Public Law 96-368). Chief among these is the objective to solidify liquid high-level waste (HLW) at the WVDP site into a form suitable for disposal in a federal geologic repository. In 1982, the Secretary of Energy formally selected vitrification as the technology to be used to solidify HLW at the WVDP. One of the first steps in meeting the HLW solidification objective involved designing, constructing and operating the Vitrification (Vit) Facility, the WVDP facility that houses the systems and subsystems used to process HLW into stainless steel canisters of borosilicate waste-glass that satisfy waste acceptance criteria (WAC) for disposal in a federal geologic repository. HLW processing and canister production began in 1996. The final step in meeting the HLW solidification objective involved ending Vit system operations and shut ting down the Vit Facility. This was accomplished by conducting a discrete series of activities to remove as much residual material as practical from the primary process vessels, components, and associated piping used in HLW canister production before declaring a formal end to Vit system operations. Flushing was the primary method used to remove residual radioactive material from the vitrification system. The inventory of radioactivity contained within the entire primary processing system diminished by conducting the flushing activities. At the completion of flushing activities, the composition of residual molten material remaining in the melter (the primary system component used in glass production) consisted of a small quantity of radioactive material and large quantities of glass former materials needed to produce borosilicate waste-glass. A special system developed during the pre-operational and testing phase of Vit Facility operation, the Evacuated Canister System (ECS), was deployed at the West Valley Demonstration Project to remove this radioactively dilute, residual molten material from the melter before Vit system operations were brought to a formal end. The ECS consists of a stainless steel canister of the same size and dimensions as a standard HLW canister that is equipped with a special L-shaped snorkel assembly made of 304L stainless steel. Both the canister and snorkel assembly fit into a stainless steel cage that allows the entire canister assembly to be positioned over the melter as molten glass is drawn out by a vacuum applied to the canister. This paper describes the process used to prepare and apply the ECS to complete molten glass removal before declaring a formal end to Vit system operations and placing the Vit Facility into a safe standby mode awaiting potential deactivation.

May, Joseph J.; Dombrowski, David J.; Valenti, Paul J.; Houston, Helene M.

2003-02-27T23:59:59.000Z

85

Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)  

SciTech Connect

The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

Burgard, K.C.

1998-04-09T23:59:59.000Z

86

Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)  

SciTech Connect

The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

Burgard, K.C.

1998-06-02T23:59:59.000Z

87

Database and Interim Glass Property Models for Hanford HLW Glasses  

SciTech Connect

The purpose of this report is to provide a methodology for an increase in the efficiency and a decrease in the cost of vitrifying high-level waste (HLW) by optimizing HLW glass formulation. This methodology consists in collecting and generating a database of glass properties that determine HLW glass processability and acceptability and relating these properties to glass composition. The report explains how the property-composition models are developed, fitted to data, used for glass formulation optimization, and continuously updated in response to changes in HLW composition estimates and changes in glass processing technology. Further, the report reviews the glass property-composition literature data and presents their preliminary critical evaluation and screening. Finally the report provides interim property-composition models for melt viscosity, for liquidus temperature (with spinel and zircon primary crystalline phases), and for the product consistency test normalized releases of B, Na, and Li. Models were fitted to a subset of the screened database deemed most relevant for the current HLW composition region.

Hrma, Pavel R.; Piepel, Gregory F.; Vienna, John D.; Cooley, Scott K.; Kim, Dong-Sang; Russell, Renee L.

2001-07-24T23:59:59.000Z

88

Permitting plan for the high-level waste interim storage  

SciTech Connect

This document addresses the environmental permitting requirements for the transportation and interim storage of solidified high-level waste (HLW) produced during Phase 1 of the Hanford Site privatization effort. Solidified HLW consists of canisters containing vitrified HLW (glass) and containers that hold cesium separated during low-level waste pretreatment. The glass canisters and cesium containers will be transported to the Canister Storage Building (CSB) in a U.S. Department of Energy (DOE)-provided transportation cask via diesel-powered tractor trailer. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage of Tank Waste Remediation Systems (TWRS) immobilized HLW (IHLW) and other canistered high-level waste forms; and (2) interim storage and disposal of TWRS immobilized low-activity tank waste (ILAW). An environmental requirements checklist and narrative was developed to identify the permitting path forward for the HLW interim storage (HLWIS) project (See Appendix B). This permitting plan will follow the permitting logic developed in that checklist.

Deffenbaugh, M.L.

1997-04-23T23:59:59.000Z

89

Idaho National Engineering Laboratory High-Level Waste Roadmap. Revision 2  

SciTech Connect

The Idaho National Engineering Laboratory (INEL) High-Level Waste (HLW) Roadmap takes a strategic look at the entire HLW life-cycle starting with generation, through interim storage, treatment and processing, transportation, and on to final disposal. The roadmap is an issue-based planning approach that compares ``where we are now`` to ``where we want and need to be.`` The INEL has been effectively managing HLW for the last 30 years. Calcining operations are continuing to turn liquid HLW into a more manageable form. Although this document recognizes problems concerning HLW at the INEL, there is no imminent risk to the public or environment. By analyzing the INEL current business operations, pertinent laws and regulations, and committed milestones, the INEL HLW Roadmap has identified eight key issues existing at the INEL that must be resolved in order to reach long-term objectives. These issues are as follows: A. The US Department of Energy (DOE) needs a consistent policy for HLW generation, handling, treatment, storage, and disposal. B. The capability for final disposal of HLW does not exist. C. Adequate processes have not been developed or implemented for immobilization and disposal of INEL HLW. D. HLW storage at the INEL is not adequate in terms of capacity and regulatory requirements. E. Waste streams are generated with limited consideration for waste minimization. F. HLW is not adequately characterized for disposal nor, in some cases, for storage. G. Research and development of all process options for INEL HLW treatment and disposal are not being adequately pursued due to resource limitations. H. HLW transportation methods are not selected or implemented. A root-cause analysis uncovered the underlying causes of each of these issues.

1993-08-01T23:59:59.000Z

90

DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER  

SciTech Connect

The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this analysis is to support Site Recommendation reports and to assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the Development Plan ''Design Analysis for the Defense High-Level Waste Disposal Container'' (CRWMS M&O 2000c) with no deviations from the plan.

G. Radulesscu; J.S. Tang

2000-06-07T23:59:59.000Z

91

DOE/EIS-0250D; Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy (DOE) U.S. Department of Energy (DOE) TITLE: Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada CONTACT: For more information on this Environmental Impact Statement (EIS), write or call: Wendy R. Dixon, EIS Project Manager Yucca Mountain Site Characterization Office Office of Civilian Radioactive Waste Management U.S. Department of Energy P.O. Box 30307, Mail Stop 010 North Las Vegas, Nevada 89036-0307 Telephone: (800) 967-3477 The EIS is also available on the Internet at the Yucca Mountain Project website at http://www.ymp.gov and on the DOE National Environmental Policy Act (NEPA) website at http://tis.eh.doe.gov/nepa/. For general information on the DOE NEPA process, write or call:

92

Summary - WTP HLW Waste Vitrification Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

W W HLW W DOE is Immob site's t facilitie Facility to iden the HL to be i norma The as along w Level ( * H * H * H Sy * Pu D The Ele Site: H roject: W Report Date: M ited States Waste T Why DOE Waste Vitrificatio s constructing bilization Plant tank wastes. T es including a H y (HLW). The ntify the critical LW and determ ncorporated in ally requires a T What th ssessment team with each elem (TRL) for the H LW Melter Fee LW Melter Pro LW Melter Offg ystem/Process ulse Jet Mixer isposal System To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin Hanford/ORP Waste Treatme March 2007 Departmen Treatmen W E-EM Did This n Facility a Waste Treat (WTP) at Hanf The WTP is com High-Level Wa purpose of this technology ele mine if these are to the final WT Technology Re he TRA Team m identified the

93

Defense High Level Waste Disposal Container System Description  

Science Conference Proceedings (OSTI)

The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms (IPWF)) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as 'co-disposal'. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents. Different materials will be selected for the disposal container inner and outer cylinders. The two metal cylinders, in combination with the Emplacement Drift System, drip shield, and natural barrier, will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel and the outer cylinder and outer cylinder lids will be a barrier made of high-nickel alloy. The defense HLW disposal container interfaces with the emplacement drift environment and the internal waste by transferring heat from the canisters to the external environment and by protecting the canisters and their contents from damage/degradation by the external environment. The disposal container also interfaces with the canisters by limiting access of moderator and oxidizing agents to the waste. A loaded and sealed disposal container (waste package) interfaces with the Emplacement Drift System's emplacement drift waste package supports upon which the waste packages are placed. The disposal container interfaces with the Canister Transfer System, Waste Emplacement /Retrieval System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement, and retrieval for the disposal container/waste package.

NONE

2000-10-12T23:59:59.000Z

94

High-Level Waste Corporate Board Performance Assessment Subcommittee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Level Level Waste Corporate Board Performance Assessment Subcommittee John E. Marra, Ph.D. Associate Laboratory Director November 6, 2008 Richland, WA DOE-EM HLW Corporate Board Meeting Background - Performance Assessment Process Performance assessments are the fundamental risk assessment tool used by the DOE to evaluate and communicate the effectiveness and long-term impact of waste management and cleanup decisions. This includes demonstrations of compliance, NEPA analyses, and decisions about technologies and 2 analyses, and decisions about technologies and waste forms. Background - Process Perception EM-2 'Precepts' for Improved High-Level Waste Management (HLW Corporate Board Meeting - April 2008) Improved Performance Assessments (PA) The PA process is not consistently applied amongst the 3 The PA process is not consistently applied amongst the major HLW sites PA

95

High-level waste borosilicate glass a compendium of corrosion characteristics. Volume 1  

Science Conference Proceedings (OSTI)

Current plans call for the United States Department of Energy (DOE) to start up facilities for vitrification of high-level radioactive waste (HLW) stored in tanks at the Savannah River Site, Aiken, South Carolina, in 1995; West Valley Demonstration Project, West Valley, New York, in 1996; and at the Hanford Site, Richland, Washington, after the year 2000. The product from these facilities will be canistered HLW borosilicate glass, which will be stored, transported, and eventually disposed of in a geologic repository. The behavior of this glass waste product, under the range of likely service conditions, is the subject of considerable scientific and public interest. Over the past few decades, a large body of scientific information on borosilicate waste glass has been generated worldwide. The intent of this document is to consolidate information pertaining to our current understanding of waste glass corrosion behavior and radionuclide release. The objective, scope, and organization of the document are discussed in Section 1.1, and an overview of borosilicate glass corrosion is provided in Section 1.2. The history of glass as a waste form and the international experience with waste glass are summarized in Sections 1.3 and 1.4, respectively.

Cunnane, J.C. [comp.; Bates, J.K.; Bradley, C.R. [Argonne National Lab., IL (United States)

1994-03-01T23:59:59.000Z

96

Development and Deployment of Advanced Corrosion Monitoring Systems for High-Level Waste Tanks  

SciTech Connect

This paper describes the results of a collaborative technology development program, sponsored by the Tanks Focus Area, to use electrochemical noise (EN) for corrosion monitoring in underground storage tanks. These tanks, made of carbon or stainless steels, contain high-level radioactive liquid waste (HLW) generated by weapons production or radioactive liquid waste from nuclear fuel reprocessing activities at several Department of Energy (DOE) sites. The term EN is used to describe low frequency fluctuations in current and voltage measurements associated with corrosion. In their most basic form, EN-based corrosion monitoring systems measure and record these fluctuations over time from electrodes immersed in the environment of interest--in this case, radioactive tank waste. The resulting EN signals have characteristic patterns for different corrosion mechanisms. In recent years, engineers and scientists from several DOE sites, in collaboration with several private companies, have conducted laboratory studies and field applications to correlate the EN signals with corrosion mechanisms active in the radioactive waste tanks. The participating DOE sites are Hanford, Savannah River, Oak Ridge Reservation and the Idaho National Engineering and Environmental Laboratory. The commercial vendors have included HiLine Engineering and Fabrication, Inc., EIC Laboratories, Inc., and AEA Technologies. Successful deployment of the EN technology will yield improved information of waste tank corrosion conditions, better tank management, and lower overall cost.

Terry, M. T.; Edgemon, G. L.; Mickalonis, J. I.; Mizia, R. E.

2002-02-26T23:59:59.000Z

97

Development and deployment of advanced corrosion monitoring systems for high-level waste tanks.  

Science Conference Proceedings (OSTI)

This paper describes the results of a collaborative technology development program, sponsored by the Tanks Focus Area, to use electrochemical noise (EN) for corrosion monitoring in underground storage tanks. These tanks, made of carbon or stainless steels, contain high-level radioactive liquid waste (HLW) generated by weapons production or radioactive liquid waste from nuclear fuel reprocessing activities at several Department of Energy (DOE) sites. The term EN is used to describe low frequency fluctuations in current and voltage measurements associated with corrosion. In their most basic form, EN-based corrosion monitoring systems measure and record these fluctuations over time from electrodes immersed in the environment of interest - in this case, radioactive tank waste. The resulting EN signals have characteristic patterns for different corrosion mechanisms. In recent years, engineers and scientists from several DOE sites, in collaboration with several private companies, have conducted laboratory studies and field applications to correlate the EN signals with corrosion mechanisms active in the radioactive waste tanks. The participating DOE sites are Hanford, Savannah River, Oak Ridge Reservation and the Idaho National Engineering and Environmental Laboratory. The commercial vendors have included HiLine Engineering and Fabrication, Inc., EIC Laboratories, Inc., and M A Technologies. Successful deployment of the EN technology will yield improved information of waste tank corrosion conditions, better tank management, and lower overall cost.

Terry, M. T. (Michael T.); Edgemon, G. L. (Glenn L.); Mickalonis, J. I. (John I.); Mizia, R. E. (Ronald E.)

2002-01-01T23:59:59.000Z

98

High-Level Waste Systems Plan. Revision 7  

Science Conference Proceedings (OSTI)

This revision of the High-Level Waste (HLW) System Plan aligns SRS HLW program planning with the DOE Savannah River (DOE-SR) Ten Year Plan (QC-96-0005, Draft 8/6), which was issued in July 1996. The objective of the Ten Year Plan is to complete cleanup at most nuclear sites within the next ten years. The two key principles of the Ten Year Plan are to accelerate the reduction of the most urgent risks to human health and the environment and to reduce mortgage costs. Accordingly, this System Plan describes the HLW program that will remove HLW from all 24 old-style tanks, and close 20 of those tanks, by 2006 with vitrification of all HLW by 2018. To achieve these goals, the DWPF canister production rate is projected to climb to 300 canisters per year starting in FY06, and remain at that rate through the end of the program in FY18, (Compare that to past System Plans, in which DWPF production peaked at 200 canisters per year, and the program did not complete until 2026.) An additional $247M (FY98 dollars) must be made available as requested over the ten year planning period, including a one-time $10M to enhance Late Wash attainment. If appropriate resources are made available, facility attainment issues are resolved and regulatory support is sufficient, then completion of the HLW program in 2018 would achieve a $3.3 billion cost savings to DOE, versus the cost of completing the program in 2026. Facility status information is current as of October 31, 1996.

Brooke, J.N.; Gregory, M.V.; Paul, P.; Taylor, G.; Wise, F.E.; Davis, N.R.; Wells, M.N.

1996-10-01T23:59:59.000Z

99

Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August 2007 Prepared by the U.S. Department of Energy Office of River Protection Richland, Washington, 99352 07-DESIGN-046 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August 2007 Prepared by the U.S. Department of Energy Office of River Protection under Contract DE-AC05-76RL01830 07-DESIGN-046 iii Summary The U.S. Department of Energy (DOE), Office of River Protection (ORP) and the DOE Office of Environmental and Radioactive Waste Management (EM), Office of Project Recovery have completed a

100

HLW Glass Studies: Development of Crystal-Tolerant HLW Glasses  

Science Conference Proceedings (OSTI)

In our study, a series of lab-scale crucible tests were performed on designed glasses of different compositions to further investigate and simulate the effect of Cr, Ni, Fe, Al, Li, and RuO2 on the accumulation rate of spinel crystals in the glass discharge riser of the HLW melter. The experimental data were used to expand the compositional region covered by an empirical model developed previously (Maty et al. 2010b), improving its predictive performance. We also investigated the mechanism for agglomeration of particles and impact of agglomerates on accumulation rate. In addition, the TL was measured as a function of temperature and composition.

Matyas, Josef; Huckleberry, Adam R.; Rodriguez, Carmen P.; Lang, Jesse B.; Owen, Antionette T.; Kruger, Albert A.

2012-04-02T23:59:59.000Z

Note: This page contains sample records for the topic "hlw high-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

High Level Waste Feed Certification in Hanford Double Shell Tanks  

SciTech Connect

The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOEs River Protection Project (RPP) mission modeling and WTP facility modeling assume that individual 3785 cubic meter (1 million gallon) HLW feed tanks are homogenously mixed, representatively sampled, and consistently delivered to the WTP. It has been demonstrated that homogenous mixing of HLW sludge in Hanford DSTs is not likely achievable with the baseline design thereby causing representative sampling and consistent feed delivery to be more difficult. Inconsistent feed to the WTP could cause additional batch to batch operational adjustments that reduces operating efficiency and has the potential to increase the overall mission length. The Hanford mixing and sampling demonstration program will identify DST mixing performance capability, will evaluate representative sampling techniques, and will estimate feed batch consistency. An evaluation of demonstration program results will identify potential mission improvement considerations that will help ensure successful mission completion. This paper will discuss the history, progress, and future activities that will define and mitigate the mission risk.

Thien, Micheal G.; Wells, Beric E.; Adamson, Duane J.

2010-03-01T23:59:59.000Z

102

Melter Testing with High Aluminum HLW Streams  

Hanford Tank Waste is High in Aluminum Estimated Al inventory is 8750 MT Problem: Large fraction of Al is in the HLW solids Greatly increases the ...

103

HLW System Integrated Project Team  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

l l W S Hi h l W S High Level Waste System High Level Waste System Integrated Project Team Integrated Project Team Integrated Project Team Integrated Project Team Steve Schneider Steve Schneider Office of Engineering and Technology High Level Waste Corporate Board March 5, 2009 This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary to protect human health, the environment and national security are maintained. 1 Introduction Introduction Introduction Introduction Challenges and Priorities High Level Waste Strategic Initiative Results High Level Waste System Integrated

104

Review of scenario selection approaches for performance assessment of high-level waste repositories and related issues.  

SciTech Connect

The selection of scenarios representing plausible realizations of the future conditions-with associated probabilities of occurrence-that can affect the long-term performance of a high-level radioactive waste (HLW) repository is the commonly used method for treating the uncertainty in the prediction of the future states of the system. This method, conventionally referred to as the ``scenario approach,`` while common is not the only method to deal with this uncertainty; other method ``ch as the environmental simulation approach (ESA), have also been proposed. Two of the difficulties with the scenario approach are the lack of uniqueness in the definition of the term ``scenario`` and the lack of uniqueness in the approach to formulate scenarios, which relies considerably on subjective judgments. Consequently, it is difficult to assure that a complete and unique set of scenarios can be defined for use in a performance assessment. Because scenarios are key to the determination of the long-term performance of the repository system, this lack of uniqueness can present a considerable challenge when attempting to reconcile the set of scenarios, and their level of detail, obtained using different approaches, particularly among proponents and regulators of a HLW repository.

Banano, E.J. [Beta Corporation International, Albuquerque, NM (United States); Baca, R.G. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

1995-08-01T23:59:59.000Z

105

EIS-0287: Idaho High-Level Waste & Facilities Disposition | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Idaho High-Level Waste & Facilities Disposition 7: Idaho High-Level Waste & Facilities Disposition EIS-0287: Idaho High-Level Waste & Facilities Disposition SUMMARY This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD January 12, 2010 EIS-0287: Amended Record of Decision Idaho High-Level Waste and Facilities Disposition January 4, 2010

106

EIS-0287: Idaho High-Level Waste and Facilities Disposition Final  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho High-Level Waste and Facilities Disposition Final Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) EIS-0287: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, DOE/EIS-0287 (September 2002)

107

IMPACT OF PARTICLE AGGLOMERATION ON ACCUMULATION RATES IN THE GLASS DISCHARGE RISER OF HLW MELTER  

SciTech Connect

The major factor limiting waste loading in continuous high-level radioactive waste (HLW) melters is an accumulation of particles in the glass discharge riser during a frequent and periodic idling of more than 20 days. An excessive accumulation can produce robust layers a few centimeters thick, which may clog the riser, preventing molten glass from being poured into canisters. Since the accumulation rate is driven by the size of particles we investigated with x-ray microtomography, scanning electron microscopy, and image analysis the impact of spinel forming components, noble metals, and alumina on the size, concentration, and spatial distribution of particles, and on the accumulation rate. Increased concentrations of Fe and Ni in the baseline glass resulted in the formation of large agglomerates that grew over the time to an average size of ~185155 {micro}m, and produced >3 mm thick layer after 120 h at 850C. The noble metals decreased the particle size, and therefore significantly slowed down the accumulation rate. Addition of alumina resulted in the formation of a network of spinel dendrites which prevented accumulation of particles into compact layers.

Kruger AA; Rodriguez CA: Matyas J; Owen AT; Jansik DP; Lang JB

2012-11-12T23:59:59.000Z

108

West Valley Demonstration Project High-Level Waste Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT_19507_1 DRAFT_19507_1 High-Level Waste Management Bryan Bower, DOE Director - WVDP DOE High-Level Waste Corporate Board Meeting Savannah River Site April 1, 2008 West Valley Demonstration Project West Valley Demonstration Project DRAFT_19507_2 West Valley High-Level Waste To solidify the radioactive material from approximately 600,000 gallons of high-level radioactive waste into a durable, high-quality glass, both a pretreatment system to remove salts and sulfates from the waste and a vitrification system/process were designed. To solidify the radioactive material from approximately 600,000 gallons of high-level radioactive waste into a durable, high-quality glass, both a pretreatment system to remove salts and sulfates from the waste and a vitrification system/process were designed.

109

MEASUREMENT AND CALCULATION OF RADIONUCLIDE ACTIVITIES IN SAVANNAH RIVER SITE HIGH LEVEL WASTE SLUDGE FOR ACCEPTANCE OF DEFENSE WASTE PROCESSING FACILITY GLASS IN A FEDERAL REPOSITORY  

SciTech Connect

This paper describes the results of the analyses of High Level Waste (HLW) sludge slurry samples and of the calculations necessary to decay the radionuclides to meet the reporting requirement in the Waste Acceptance Product Specifications (WAPS) [1]. The concentrations of 45 radionuclides were measured. The results of these analyses provide input for radioactive decay calculations used to project the radionuclide inventory at the specified index years, 2015 and 3115. This information is necessary to complete the Production Records at Savannah River Site's Defense Waste Processing Facility (DWPF) so that the final glass product resulting from Macrobatch 5 (MB5) can eventually be submitted to a Federal Repository. Five of the necessary input radionuclides for the decay calculations could not be measured directly due to their low concentrations and/or analytical interferences. These isotopes are Nb-93m, Pd-107, Cd-113m, Cs-135, and Cm-248. Methods for calculating these species from concentrations of appropriate other radionuclides will be discussed. Also the average age of the MB5 HLW had to be calculated from decay of Sr-90 in order to predict the initial concentration of Nb-93m. As a result of the measurements and calculations, thirty-one WAPS reportable radioactive isotopes were identified for MB5. The total activity of MB5 sludge solids will decrease from 1.6E+04 {micro}Ci (1 {micro}Ci = 3.7E+04 Bq) per gram of total solids in 2008 to 2.3E+01 {micro}Ci per gram of total solids in 3115, a decrease of approximately 700 fold. Finally, evidence will be given for the low observed concentrations of the radionuclides Tc-99, I-129, and Sm-151 in the HLW sludges. These radionuclides were reduced in the MB5 sludge slurry to a fraction of their expected production levels due to SRS processing conditions.

Bannochie, C; David Diprete, D; Ned Bibler, N

2008-12-31T23:59:59.000Z

110

Hanford high level waste (HLW) tank mixer pump safe operating envelope reliability assessment  

DOE Green Energy (OSTI)

The US Department of Energy and its contractor, Westinghouse Corp., are responsible for the management and safe storage of waste accumulated from processing defense reactor irradiated fuels for plutonium recovery at the Hanford Site. These wastes, which consist of liquids and precipitated solids, are stored in underground storage tanks pending final disposition. Currently, 23 waste tanks have been placed on a safety watch list because of their potential for generating, storing, and periodically releasing various quantities of hydrogen and other gases. Tank 101-SY in the Hanford SY Tank Farm has been found to release hydrogen concentrations greater than the lower flammable limit (LFL) during periodic gas release events. In the unlikely event that an ignition source is present during a hydrogen release, a hydrogen burn could occur with a potential to release nuclear waste materials. To mitigate the periodic gas releases occurring from Tank 101-SY, a large mixer pump currently is being installed in the tank to promote a sustained release of hydrogen gas to the tank dome space. An extensive safety analysis (SA) effort was undertaken and documented to ensure the safe operation of the mixer pump after it is installed in Tank 101-SY.1 The SA identified a need for detailed operating, alarm, and abort limits to ensure that analyzed safety limits were not exceeded during pump operations.

Fischer, S.R. [Los Alamos National Lab., NM (United States); Clark, J. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)

1993-10-01T23:59:59.000Z

111

Evolved Gas Analysis for High-alumina HLW (High Level Waste) Feed  

Science Conference Proceedings (OSTI)

Using the thermogravimetry coupled with gas chromatography-mass spectrometer, ... Tungstic Acid for Sorption of Uranium from Natural and Waste Waters and...

112

River Protection Project (RPP) Immobilized High Level Waste (HLW) Interim Storage Plan  

SciTech Connect

This document replaces HNF-1751, Revision 1. It incorporates updates to reflect changes in programmatic direction associated with the vitrification plant contract and associated DOE-ORP guidance. In addition it includes planning associated with failed/used melter and sample handling and disposition work scope. The document also includes format modifications and section numbering update consistent with CH2M HILL Hanford Group, Inc. procedures.

BRIGGS, M.G.

2000-09-22T23:59:59.000Z

113

Pyrochemical processing of Idaho Chemical Processing Plant (ICPP) High Level Waste (HLW) calcine  

SciTech Connect

Inertial force damping control by micromanipulator modulation is proposed to suppress the vibrations of a micro/macro-manipulator system. The proposed controller, developed using classical control theory, is added to the existing control system. The proposed controller uses real-time measurements of macro-manipulator flexibility to adjust the motion of the micro manipulator to counteract structural vibrations. Experimental studies using an existing micro/macro flexible link manipulator testbed demonstrate the effectiveness of the proposed approach to suppression of vibrations in the macro/micro-manipulator system using micromanipulator-based inertial active damping control.

Bronson, M.C.; Ebbinghaus, B.B.; Riley, D.C. [Lawrence Livermore National Lab., CA (United States); Nelson, L.; Del Debbio, J. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States)

1994-11-15T23:59:59.000Z

114

High Level Waste System at SRS  

Tank Under Construction Tanks are built at grade and then backfilled with dirt to provide ... Hanford discussion. 2005-01-19 2005-01-19 HLW Overview ...

115

Process Design Concepts for Stabilization of High Level Waste Calcine  

Science Conference Proceedings (OSTI)

The current baseline assumption is that packaging as is and direct disposal of high level waste (HLW) calcine in a Monitored Geologic Repository will be allowed. The fall back position is to develop a stabilized waste form for the HLW calcine, that will meet repository waste acceptance criteria currently in place, in case regulatory initiatives are unsuccessful. A decision between direct disposal or a stabilization alternative is anticipated by June 2006. The purposes of this Engineering Design File (EDF) are to provide a pre-conceptual design on three low temperature processes under development for stabilization of high level waste calcine (i.e., the grout, hydroceramic grout, and iron phosphate ceramic processes) and to support a down selection among the three candidates. The key assumptions for the pre-conceptual design assessment are that a) a waste treatment plant would operate over eight years for 200 days a year, b) a design processing rate of 3.67 m3/day or 4670 kg/day of HLW calcine would be needed, and c) the performance of waste form would remove the HLW calcine from the hazardous waste category, and d) the waste form loadings would range from about 21-25 wt% calcine. The conclusions of this EDF study are that: (a) To date, the grout formulation appears to be the best candidate stabilizer among the three being tested for HLW calcine and appears to be the easiest to mix, pour, and cure. (b) Only minor differences would exist between the process steps of the grout and hydroceramic grout stabilization processes. If temperature control of the mixer at about 80aC is required, it would add a major level of complexity to the iron phosphate stabilization process. (c) It is too early in the development program to determine which stabilizer will produce the minimum amount of stabilized waste form for the entire HLW inventory, but the volume is assumed to be within the range of 12,250 to 14,470 m3. (d) The stacked vessel height of the hot process vessels in the hydroceramic grout process (i.e., 21 m) appears to be about the same as that estimated by the Direct Cementitious Waste Process in 1998, for which a conceptual design was developed. Some of the conceptual design efforts in the 1998 study may be applicable to the stabilizer processes addressed in this EDF. (e) The gamma radiation fields near the process vessels handling HLW calcine would vary from a range of about 300-350 R/hr at a distance of 2.5 cm from the side of the vessels to a range of about 50-170 R/hr at a distance of 100 cm from the side of the vessels. The calculations were made for combined calcine, which was defined as the total HLW calcine inventory uniformly mixed. (f) The gamma radiation fields near the stabilized waste in canisters would range from about 25-170 R/hr at 2.5 cm from the side of the canister and 5-35 R/hr at 100 cm from the side of the canister, depending on the which bin set was the source of calcine.

T. R. Thomas; A. K. Herbst

2005-06-01T23:59:59.000Z

116

Radioactive Waste Management (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

This section regulates the transportation and disposal of high-level radioactive waste in Minnesota, and establishes a Nuclear Waste Council to monitor the federal high-level radioactive waste...

117

Comments of the Western Interstate Energy Board's High-Level...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Counsel's Notice of Inquiry concerning the preparation of a report to Congress on the Price-Anderson Act. Comments of the Western Interstate Energy Board's High-Level Radioactive...

118

Evaluation of solid-based separation materials for the pretreatment of radioactive wastes  

SciTech Connect

Separation science will play an important role in pretreating nuclear wastes stored at various US Department of Energy Sites. The application of separation processes offers potential economic and environmental benefits with regards to remediating these sites. For example, at the Hanford Site, the sizeable volume of radioactive wastes stored in underground tanks could be partitioned into a small volume of high-level waste (HLW) and a relatively large volume of low-level waste (LLW). After waste separation, only the smaller volume of HLW would require costly vitrification and geologic disposal. Furthermore, the quality of the remaining LLW form (e.g., grout) would be improved due to the lower inventory of radionuclides present in the LLW stream. This report investigates extraction chromatography as a possible separation process for Hanford wastes.

Lumetta, G.J.; Wagner, M.J.; Wester, D.W.; Morrey, J.R.

1993-05-01T23:59:59.000Z

119

Alternatives Generation and Analysis for Phase 1 High Level Waste Feed Tanks Selection  

Science Conference Proceedings (OSTI)

A recent revision of the US. Department of Energy privatization contract for the immobilization of high-level waste (HLW) at Hanford necessitates the investigation of alternative waste feed sources to meet contractual feed requirements. This analysis identifies wastes to be considered as HLW feeds and develops and conducts alternative analyses to comply with established criteria. A total of 12,426 cases involving 72 waste streams are evaluated and ranked in three cost-based alternative models. Additional programmatic criteria are assessed against leading alternative options to yield an optimum blended waste feed stream.

CRAWFORD, T.W.

1999-08-16T23:59:59.000Z

120

Geologyy of the Yucca Mountain Site Area, Southwestern Nevada, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1)  

Science Conference Proceedings (OSTI)

Yucca Mountain in southwestern Nevada is a prominent, irregularly shaped upland formed by a thick apron of Miocene pyroclastic-flow and fallout tephra deposits, with minor lava flows, that was segmented by through-going, large-displacement normal faults into a series of north-trending, eastwardly tilted structural blocks. The principal volcanic-rock units are the Tiva Canyon and Topopah Spring Tuffs of the Paintbrush Group, which consist of volumetrically large eruptive sequences derived from compositionally distinct magma bodies in the nearby southwestern Nevada volcanic field, and are classic examples of a magmatic zonation characterized by an upper crystal-rich (> 10% crystal fragments) member, a more voluminous lower crystal-poor (< 5% crystal fragments) member, and an intervening thin transition zone. Rocks within the crystal-poor member of the Topopah Spring Tuff, lying some 280 m below the crest of Yucca Mountain, constitute the proposed host rock to be excavated for the storage of high-level radioactive wastes. Separation of the tuffaceous rock formations into subunits that allow for detailed mapping and structural interpretations is based on macroscopic features, most importantly the relative abundance of lithophysae and the degree of welding. The latter feature, varying from nonwelded through partly and moderately welded to densely welded, exerts a strong control on matrix porosities and other rock properties that provide essential criteria for distinguishing hydrogeologic and thermal-mechanical units, which are of major interest in evaluating the suitability of Yucca Mountain to host a safe and permanent geologic repository for waste storage. A thick and varied sequence of surficial deposits mantle large parts of the Yucca Mountain site area. Mapping of these deposits and associated soils in exposures and in the walls of trenches excavated across buried faults provides evidence for multiple surface-rupturing events along all of the major faults during Pleistocene and Holocene times; these paleoseismic studies form the basis for evaluating the potential for future earthquakes and fault displacements. Thermoluminescence and U-series analyses were used to date the surficial materials involved in the Quaternary faulting events. The rate of erosional downcutting of bedrock on the ridge crests and hillslopes of Yucca Mountain, being of particular concern with respect to the potential for breaching of the proposed underground storage facility, was studied by using rock varnish cation-ratio and {sup 10}Be and {sup 36}Cl cosmogenic dating methods to determine the length of time bedrock outcrops and hillslope boulder deposits were exposed to cosmic rays, which then served as a basis for calculating long-term erosion rates. The results indicate rates ranging from 0.04 to 0.27 cm/k.y., which represent the maximum downcutting along the summit of Yucca Mountain under all climatic conditions that existed there during most of Quaternary time. Associated studies include the stratigraphy of surficial deposits in Fortymile Wash, the major drainage course in the area, which record a complex history of four to five cut-and-fill cycles within the channel during middle to late Quaternary time. The last 2 to 4 m of incision probably occurred during the last pluvial climatic period, 22 to 18 ka, followed by aggradation to the present time.

W.R. Keefer; J.W. Whitney; D.C. Buesch

2006-09-25T23:59:59.000Z

Note: This page contains sample records for the topic "hlw high-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

High-Level Waste Corporate Board Meeting Agenda  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Level Waste Corporate Board High-Level Waste Corporate Board Meeting Agenda Loews Hotel 1065 West Peachtree St, Atlanta, Georgia November 18, 2010 Time Topic Speaker 7:30 AM Closed Session - ratify Charter Board members 8:30 AM Welcome, Introduction, 2011 focus for HLW Corp Board Shirley Olinger 8:50 AM Introduction to Tc/I in Hanford Flowsheet  Show flowsheet w/ split locations  Describe recycle of LAW concept  Discuss baseline assumptions  Describe subsequent talks using flowsheet figure Gary Smith 9:15 AM Waste Treatment & Immobilization Plant (WTP)  Tc/I split factors (w/ and w/o recycle)  Water management (w/ and w/o recycle) Albert Kruger 9:45 AM WTP Melter/Offgas Systems Decontamination Factors  Re as a stimulant for Tc  Issues that limit Tc incorporation in LAW glass

122

Nondestructive examination of DOE high-level waste storage tanks  

SciTech Connect

A number of DOE sites have buried tanks containing high-level waste. Tanks of particular interest am double-shell inside concrete cylinders. A program has been developed for the inservice inspection of the primary tank containing high-level waste (HLW), for testing of transfer lines and for the inspection of the concrete containment where possible. Emphasis is placed on the ultrasonic examination of selected areas of the primary tank, coupled with a leak-detection system capable of detecting small leaks through the wall of the primary tank. The NDE program is modelled after ASME Section XI in many respects, particularly with respects to the sampling protocol. Selected testing of concrete is planned to determine if there has been any significant degradation. The most probable failure mechanisms are corrosion-related so that the examination program gives major emphasis to possible locations for corrosion attack.

Bush, S.; Bandyopadhyay, K.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; van Rooyen, D.; Weeks, J.

1995-05-01T23:59:59.000Z

123

HLW Feed Delivery AZ101 Batch Transfer to the Private Contractor Transfer and Mixing Process Improvements [Initial Release at Rev 2  

SciTech Connect

The primary purpose of this business case is to provide Operations and Maintenance with a detailed transfer process review for the first High Level Waste (HLW) feed delivery to the Privatization Contractor (PC), AZ-101 batch transfer to PC. The Team was chartered to identify improvements that could be implemented in the field. A significant penalty can be invoked for not providing the quality, quantity, or timely delivery of HLW feed to the PC.

DUNCAN, G.P.

2000-02-28T23:59:59.000Z

124

EMPIRICAL MODEL FOR FORMULATION OF CRYSTAL-TOLERANT HLW GLASSES  

Science Conference Proceedings (OSTI)

Historically, high-level waste (HLW) glasses have been formulated with a low liquideus temperature (T{sub L}), or temperature at which the equilibrium fraction of spinel crystals in the melt is below 1 vol % (T{sub 0.01}), nominally below 1050 C. These constraints cannot prevent the accumulation of large spinel crystals in considerably cooler regions ({approx} 850 C) of the glass discharge riser during melter idling and significantly limit the waste loading, which is reflected in a high volume of waste glass, and would result in high capital, production, and disposal costs. A developed empirical model predicts crystal accumulation in the riser of the melter as a function of concentration of spinel-forming components in glass, and thereby provides guidance in formulating crystal-tolerant glasses that would allow high waste loadings by keeping the spinel crystals small and therefore suspended in the glass.

KRUGER AA; MATYAS J; HUCKLEBERRY AR; VIENNA JD; RODRIGUEZ CA

2012-03-07T23:59:59.000Z

125

Direct conversion of surplus fissile materials, spent nuclear fuel, and other materials to high-level-waste glass  

SciTech Connect

With the end of the cold war the United States, Russia, and other countries have excess plutonium and other materials from the reductions in inventories of nuclear weapons. The United States Academy of Sciences (NAS) has recommended that these surplus fissile materials (SFMs) be processed so they are no more accessible than plutonium in spent nuclear fuel (SNF). This spent fuel standard, if adopted worldwide, would prevent rapid recovery of SFMs for the manufacture of nuclear weapons. The NAS recommended investigation of three sets of options for disposition of SFMs while meeting the spent fuel standard: (1) incorporate SFMs with highly radioactive materials and dispose of as waste, (2) partly burn the SFMs in reactors with conversion of the SFMs to SNF for disposal, and (3) dispose of the SFMs in deep boreholes. The US Government is investigating these options for SFM disposition. A new method for the disposition of SFMs is described herein: the simultaneous conversion of SFMs, SNF, and other highly radioactive materials into high-level-waste (HLW) glass. The SFMs include plutonium, neptinium, americium, and {sup 233}U. The primary SFM is plutonium. The preferred SNF is degraded SNF, which may require processing before it can be accepted by a geological repository for disposal.

Forsberg, C.W.; Elam, K.R.

1995-01-31T23:59:59.000Z

126

Evaluation of high-level waste vitrification feed preparation chemistry for an NCAW simulant, FY 1994: Alternate flowsheets (DRAFT)  

SciTech Connect

High-level radioactive waste stored in tanks at the U.S. Department of Energy`s (DOE`s) Hanford Site will be pretreated to concentrate radioactive constituents and fed to the vitrification plant A flowsheet for feed preparation within the vitrification plant (based on the Hanford Waste Vitrification Plant (HWVP) design) called for HCOOH addition during the feed preparation step to adjust rheology and glass redox conditions. However, the potential for generating H{sub 2} and NH{sub 3} during treatment of high-level waste (HLW) with HCOOH was identified at Pacific Northwest Laboratory (PNL). Studies at the University of Georgia, under contract with Savannah River Technology Center (SRTC) and PNL, have verified the catalytic role of noble metals (Pd, Rh, Ru), present in the waste, in the generation of H{sub 2} and NH{sub 3}. Both laboratory-scale and pilot-scale studies at SRTC have documented the H{sub 2} and NH{sub 3} generation phenomenal Because H{sub 2} and NH{sub 3} may create hazardous conditions in the vessel vapor space and offgas system of a vitrification plant, reducing the H{sub 2} generation rate and the NH{sub 3} generation to the lowest possible levels consistent with desired melter feed characteristics is important. The Fiscal Year 1993 and 1994 studies were conducted with simulated (non-radioactive), pre-treated neutralized current acid waste (NCAW). Neutralized current acid waste is a high-level waste originating from the plutonium/uranium extraction (PUREX) plant that has been partially denitrated with sugar, neutralized with NaOH, and is presently stored in double-shell tanks. The non-radioactive simulant used for the present study includes all of the trace components found in the waste, or substitutes a chemically similar element for radioactive or very toxic species. The composition and simulant preparation steps were chosen to best simulate the chemical processing characteristics of the actual waste.

Smith, H.D.; Merz, M.D.; Wiemers, K.D.; Smith, G.L.

1996-02-01T23:59:59.000Z

127

Systems study of the feasibility of high-level nuclear waste fractionation for thermal stress control in a geologic repository: appendices  

Science Conference Proceedings (OSTI)

This study assesses the benefits and costs of fractionating the cesium and strontium (Cs/Sr) components in commercial high-level waste (HLW) to a separate waste stream for the purpose of reducing geologic-repository thermal stresses in the region of the HLW. The major conclusion is that the Cs/Sr fractionation concept offers the prospect of a substantial total system cost advantage for HLW disposal if reduced HLW package temperatures in a basalt repository are desired. However there is no cost advantage if currently designated maximum design temperatures are acceptable. Aging the HLW for 50 to 100 years can accomplish similar results at equivalent or lower costs. Volume II contains appendices for: (1) thermal analysis supplement; (2) fractionation process experimental results supplement; (3) cost analysis supplement; and (4) radiological risk analysis supplement.

McKee, R.W.; Elder, H.K.; McCallum, R.F.; Silviera, D.J.; Swanson, J.L.; Wiles, L.E.

1983-06-01T23:59:59.000Z

128

Some Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository Study (The Yucca Mountain Project)  

Science Conference Proceedings (OSTI)

The safe disposal of radioactive waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels for plants, animals, and humans. All of the countries currently studying the options for disposing of high-level nuclear waste (HLW) have selected deep geologic formations to be the primary barrier for accomplishing this isolation. In U.S.A., the Nuclear Waste Policy Act of 1982 (as amended in 1987) designated Yucca Mountain in Nevada as the potential site to be characterized for high-level nuclear waste (HLW) disposal. Long-term containment of waste and subsequent slow release of radionuclides into the geosphere will rely on a system of natural and engineered barriers including a robust waste containment design. The waste package design consists of a highly corrosion resistant Ni-based Alloy 22 cylindrical barrier surrounding a Type 316 stainless steel inner structural vessel. The waste package is covered by a mailbox-shaped drip shield composed primarily of Ti Grade 7 with Ti Grade 24 structural support members. The U.S. Yucca Mountain Project has been studying and modeling the degradation issues of the relevant materials for some 20 years. This paper reviews the state-of-the-art understanding of the degradation processes based on the past 20 years studies on Yucca Mountain Project (YMP) materials degradation issues with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the 10,000 years regulatory period. This paper provides an overview of the current understanding of the likely degradation behavior of the waste package and drip shield in the repository after the permanent closure of the facility. The degradation scenario discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking of Alloy 22 and titanium alloys. The effects of microbial activity and radiation on degradation of Alloy 22 and titanium alloys are also discussed. Further, for titanium alloys, the effects of fluorides, bromides, calcium ions, and galvanic coupling to less noble metals are further considered. It is concluded that, as far as materials degradation is concerned, the materials and design adopted in the U.S. Yucca Mountain Project will provide sufficient safety margins within the 10,000-years regulatory period.

F. Hua; P. Pasupathi; N. Brown; K. Mon

2005-09-19T23:59:59.000Z

129

Dissolution of ORNL HLW sludge and partitioning of the actinides using the TRUEX process  

SciTech Connect

Experiments were conducted to evaluate the transuranium extraction (TRUEX) process for partitioning actinides from actual dissolved high-level radioactive waste (HLW) sludge. Samples of sludge from melton Valley Storage Tank W-25 were rinsed with mild caustic (0.2 M NaOH) to reduce the concentrations of nitrates and fission products associated with the interstitial liquid. In one campaign the rinsed sludge was leached in nitric acid, and about 50% of the dry mass of the sludge was dissolved. The resulting solution contained total metal concentrations of {approximately} 1.8 M with a nitric acid concentration of 2.9 M. In the other campaign the sludge was neutralized with nitric acid to destroy the carbonates, then leached with 2.6 M NaOH for {approximately} 6 h before rinsing with the mild caustic. The sludge was then leached in nitric acid, and about 80% of the sludge dissolved. The resulting solution contained total metal concentrations of {approximately} 0.6 M with a nitric acid concentration of 1.7 M. Chemical analyses of both phases were used to evaluate the process. Evaluation was based on two metrics: the fraction of TRU elements removed from the dissolved sludge and comparison of the results with predictions made with the Generic TRUEX Model (GTM). The fractions of Eu, Pu, Cm, Th and U species removed from aqueous solution in only one extraction stage were > 95% and were close to the values predicted by the GTM. Mercury was also found to be strongly extracted, with a one-stage removal of > 92%. In one test, vanadium appeared to be moderately extracted.

Spencer, B.B.; Egan, B.Z.; Beahm, E.C.; Chase, C.W.; Dillow, T.A.

1997-12-01T23:59:59.000Z

130

Accident analysis for high-level waste management alternatives in the US Department of Energy Environmental Restoration and Waste Management Programmatic Environmental Impact Statement  

SciTech Connect

A comparative generic accident analysis was performed for the programmatic alternatives for high-level waste (HLW) management in the US Department of Energy Environmental Restoration and Waste Management Programmatic Environmental Impact Statement (EM PEIS). The key facilities and operations of the five major HLW management phases were considered: current storage, retrieval, pretreatment, treatment, and interim canister storage. A spectrum of accidents covering the risk-dominant accidents was analyzed. Preliminary results are presented for HLW management at the Hanford site. A comparison of these results with those previously advanced shows fair agreement.

Folga, S.; Mueller, C.; Roglans-Ribas, J.

1994-02-01T23:59:59.000Z

131

High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant  

SciTech Connect

Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification. Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance functional and timing studies throughout the design process. Since no humans can go in or out of the cell, there are several recovery options that have been designed into the system including jack-down wheels for the bridge and trolley, recovery drums for the manipulator hoist, and a wire rope cable cutter for the slewer jib hoist. If the entire crane fails in cell, the large diameter cable reel that provides power, signal, and control to the crane can be used to retrieve the crane from the cell into the crane maintenance area. (authors)

Bardal, M.A. [PaR Systems, Inc., Shoreview, MN (United States); Darwen, N.J. [Bechtel National, Inc., Richland, WA (United States)

2008-07-01T23:59:59.000Z

132

Composition of simulants used in the evaluation of electrochemical processes for the treatment of high-level wastes  

SciTech Connect

Four simulants are being used in the evaluation of electrochemical processes for the treatment of high-level wastes (HLW). These simulants represent waste presently stored at the Hanford, Idaho Falls, Oak Ridge, and Savannah River sites. Three of the simulants are highly alkaline salt solutions (Hanford, Oak Ridge, and Savannah River), and one is highly acidic (Idaho Falls).

Hobbs, D.T.

1994-06-27T23:59:59.000Z

133

Outlooks of HLW Partitioning Technologies Usage for Recovering of Platinum Metals from Spent Fuel  

Science Conference Proceedings (OSTI)

The existing practice of management of high level waste (HLW) generated by NPPs, call for a task of selective separation of the most dangerous long-lived radionuclides with the purpose of their subsequent immobilization and disposal. HLW partitioning allows to reduce substantially the cost of vitrified product storage owing to isolation of the most dangerous radionuclides, such as transplutonium elements (TPE) into separate fractions of small volumes, intended for ultimate storage. By now numerous investigations on partitioning of HLW of various composition have been carried out in many countries and a lot of processes permitting to recover cesium, strontium, TPE and rare earth elements (REE) have been already tested. Apart from enumerated radionuclides, a fair quantity of palladium and rhodium presents in spent fuel, but the problem of these elements recovery has not yet been decided at the operating radiochemical plants. A negative effect of platinum group metals (PGM) occurrence is determined by the formation of separate metal phase, which not only worsens the conditions of glass-melting but also shortens considerably the service life of the equipment. At the same time, the exhaustion of PGMs natural resources may finally lead to such a growth of their costs that the spent nuclear fuel would became a substituting source of these elements industrial production. Allowing above mentioned, it is of interest to develop the technique for ''reactor'' palladium and rhodium recovery process which would be compatible with HLW partitioning and could be realized using the same facilities. In the report the data on platinum metals distribution in spent fuel reprocessing products and the several flowsheets for palladium separation from HLW are presented.

Pokhitonov, Y. A.; Estimantovskiy, V.; Romanovski, v.; Zatsev, B.; Todd, T.

2003-02-24T23:59:59.000Z

134

SEISMIC DESIGN EVALUATION GUIDELINES FOR BURIED PIPING FOR THE DOE HLW FACILITIES'  

Office of Scientific and Technical Information (OSTI)

6 1 6 1 7 1 1 SEISMIC DESIGN EVALUATION GUIDELINES FOR BURIED PIPING FOR THE DOE HLW FACILITIES' Chi-Wen Lin Consultant, Martinez, CA George Antaki Westinghouse Savannah River Co., Aiken, SC Kamal Bandyopadhyay Brookhaven National Lab., Upton, NY ABSTRACT This paper presents the seismic design and evaluation guidelines for underground piping for the Department of Energy (DOE) High-Level-Waste (HLW) Facilities. The underground piping includes both single and double containment steel pipes and concrete pipes with steel lining, with particular emphasis on the double containment piping. The design and evaluation guidelines presented in this paper follow the generally accepted beam-on-elastic- foundation analysis principle and the inertial response calculation method, respectively, for piping directly

135

Shielding analysis of the TRUPACT-series casks for transportation of Hanford HLW  

SciTech Connect

In this paper, the authors propose the possibility of utilizing the TRUPACT-series casks for the transportation of high-level waste (HLW) from the Hanford reservation. The configurations of the TRUPACT series are a rectangular parallelepiped and a right circular cylinder, which are the TRUPACT-1 and -11, respectively. The TRUPACT series was designed as a type B contact-handled transuranic (CH-TRU) waste transportation system for use in Waste Isolation Pilot Plant-related operations and was subjected to type B container accident tests, which it successfully passed. Thus from a safety standpoint, the TRUPACT series is provided with double containment, impact limitation, and fire-retardant capabilities. However, the shielding analysis has shown the major modifications are required to allow for the transport of even a reasonable fraction of Hanford HLW.

Banjac, V.; Sanchez, P.E.; Hills, C.R.; Heger, A.S. (Univ. of New Mexico, Albuquerque, NM (United States))

1993-01-01T23:59:59.000Z

136

Preliminary Waste Form Compliance Plan for the Idaho National Engineering and Environmental Laboratory High-Level Waste  

SciTech Connect

The Department of Energy (DOE) has specific technical and documentation requirements for high-level waste (HLW) that is to be placed in a federal repository. This document describes in general terms the strategy to be used at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that vitrified HLW, if produced at the INEEL, meets these requirements. Waste form, canister, quality assurance, and documentation specifications are discussed. Compliance strategy is given, followed by an overview of how this strategy would be implemented for each specification.

B. A. Staples; T. P. O' Holleran

1999-05-01T23:59:59.000Z

137

HIGH-LEVEL WASTE FEED CERTIFICATION IN HANFORD DOUBLE-SHELL TANKS  

SciTech Connect

The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOE's River Protection Project (RPP) mission modeling and WTP facility modeling assume that individual 3785 cubic meter (l million gallon) HLW feed tanks are homogenously mixed, representatively sampled, and consistently delivered to the WTP. It has been demonstrated that homogenous mixing ofHLW sludge in Hanford DSTs is not likely achievable with the baseline design thereby causing representative sampling and consistent feed delivery to be more difficult. Inconsistent feed to the WTP could cause additional batch-to-batch operational adjustments that reduce operating efficiency and have the potential to increase the overall mission length. The Hanford mixing and sampling demonstration program will identify DST mixing performance capability, will evaluate representative sampling techniques, and will estimate feed batch consistency. An evaluation of demonstration program results will identify potential mission improvement considerations that will help ensure successful mission completion. This paper will discuss the history, progress, and future activities that will define and mitigate the mission risk.

THIEN MG; WELLS BE; ADAMSON DJ

2010-01-14T23:59:59.000Z

138

US Department of Energy Storage of Spent Fuel and High Level Waste  

DOE Green Energy (OSTI)

ABSTRACT This paper provides an overview of the Department of Energy's (DOE) spent nuclear fuel (SNF) and high level waste (HLW) storage management. Like commercial reactor fuel, DOE's SNF and HLW were destined for the Yucca Mountain repository. In March 2010, the DOE filed a motion with the Nuclear Regulatory Commission (NRC) to withdraw the license application for the repository at Yucca Mountain. A new repository is now decades away. The default for the commercial and DOE research reactor fuel and HLW is on-site storage for the foreseeable future. Though the motion to withdraw the license application and delay opening of a repository signals extended storage, DOE's immediate plans for management of its SNF and HLW remain the same as before Yucca Mountain was designated as the repository, though it has expanded its research and development efforts to ensure safe extended storage. This paper outlines some of the proposed research that DOE is conducting and will use to enhance its storage systems and facilities.

Sandra M Birk

2010-10-01T23:59:59.000Z

139

THE RETRIEVAL KNOWLEDGE CENTER EVALUATION OF LOW TANK LEVEL MIXING TECHNOLOGIES FOR DOE HIGH LEVEL WASTE TANK RETRIEVAL 10516  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) Complex has over two-hundred underground storage tanks containing over 80-million gallons of legacy waste from the production of nuclear weapons. The majority of the waste is located at four major sites across the nation and is planned for treatment over a period of almost forty years. The DOE Office of Technology Innovation & Development within the Office of Environmental Management (DOE-EM) sponsors technology research and development programs to support processing advancements and technology maturation designed to improve the costs and schedule for disposal of the waste and closure of the tanks. Within the waste processing focus area are numerous technical initiatives which included the development of a suite of waste removal technologies to address the need for proven equipment and techniques to remove high level radioactive wastes from the waste tanks that are now over fifty years old. In an effort to enhance the efficiency of waste retrieval operations, the DOE-EM Office of Technology Innovation & Development funded an effort to improve communications and information sharing between the DOE's major waste tank locations as it relates to retrieval. The task, dubbed the Retrieval Knowledge Center (RKC) was co-lead by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) with core team members representing the Oak Ridge and Idaho sites, as well as, site contractors responsible for waste tank operations. One of the greatest challenges to the processing and closure of many of the tanks is complete removal of all tank contents. Sizeable challenges exist for retrieving waste from High Level Waste (HLW) tanks; with complications that are not normally found with tank retrieval in commercial applications. Technologies currently in use for waste retrieval are generally adequate for bulk removal; however, removal of tank heels, the materials settled in the bottom of the tank, using the same technology have proven to be difficult. Through the RKC, DOE-EM funded an evaluation of adaptable commercial technologies that could assist with the removal of the tank heels. This paper will discuss the efforts and results of developing the RKC to improve communications and discussion of tank waste retrieval through a series of meetings designed to identify technical gaps in retrieval technologies at the DOE Hanford and Savannah River Sites. This paper will also describe the results of an evaluation of commercially available technologies for low level mixing as they might apply to HLW tank heel retrievals.

Fellinger, A.

2009-12-08T23:59:59.000Z

140

Geological problems in radioactive waste isolation  

SciTech Connect

The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

Witherspoon, P.A. (ed.)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hlw high-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Geological problems in radioactive waste isolation  

SciTech Connect

The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

Witherspoon, P.A. (ed.)

1991-01-01T23:59:59.000Z

142

Thermal Diffusivity and Thermal Conductivity of HLW and LAW ...  

Science Conference Proceedings (OSTI)

In the present work, such data were collected for four waste glasses representative of those currently projected for treatment of Hanford HLW and LAW streams.

143

Advances in JHCM HLW Vitrification Technology through Scaled ...  

Science Conference Proceedings (OSTI)

... at Savannah River, WTP HLW and LAW at Hanford, as well Rokkasho in Japan . ... Waste at the Defense Waste Processing Facility through Sludge Batch 7b.

144

Coupled Model for Heat and Water Transport in a High Level Waste Repository  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coupled Model for Heat and Water Transport in a High Level Waste Coupled Model for Heat and Water Transport in a High Level Waste Repository in Salt Coupled Model for Heat and Water Transport in a High Level Waste Repository in Salt This report summarizes efforts to simulate coupled thermal-hydrological-chemical (THC) processes occurring within a generic hypothetical high-level waste (HLW) repository in bedded salt; chemical processes of the system allow precipitation and dissolution of salt with elevated temperatures that drive water and water vapor flow around hot waste packages. Characterizing salt backfill processes is an important objective of the exercise. An evidence-based algorithm for mineral dehydration is also applied in the modeling. The Finite Element Heat and Mass transfer code (FEHM) is used to simulate coupled thermal,

145

H:\cindy_pratt\hlw rod.tif  

NLE Websites -- All DOE Office Websites (Extended Search)

RECORD OF DECISION RECORD OF DECISION For The Idaho High- Level Waste and Facilities Disposition Final Environmental Impact Statement December 2005 United States Department of Energy 1 U.S. DEPARTMENT OF ENERGY Office of Environmental Management Record of Decision for the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement SUMMARY: DOE is making decisions pursuant to the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (Final EIS) (DOEÆIS-287), issued in October 2002. The Final EIS presents the analysis of a proposed action containing two sets of alternatives: (1) waste processing alternatives for treating, storing and disposing of liquid mixed (radioactive and hazardous) transuranic (TRU) waste/sodium-bearing

146

HLW MELTER CONTROL STRATEGY WITHOUT VISUAL FEEDBACK VSL-12R2500-1 REV 0  

Science Conference Proceedings (OSTI)

Plans for the treatment of high level waste (HL W) at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) are based upon the inventory of the tank wastes, the anticipated performance of the pretreatment processes, and current understanding of the capability of the borosilicate glass waste form [I]. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat and mass transfer and increase glass melting rates. The WTP HLW melter has a glass surface area of 3.75 m{sup 2} and depth of ~ 1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HL W waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150C and by increasing the waste loading in the glass product. Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage.

KRUGER AA; JOSPEH I; MATLACK KS; CALLOW RA; ABRAMOWITZ H; PEGG IL; BRANDYS M; KOT WK

2012-11-13T23:59:59.000Z

147

HLW Melter Control Strategy Without Visual Feedback VSL-12R2500-1 Rev 0  

SciTech Connect

Plans for the treatment of high level waste (HL W) at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) are based upon the inventory of the tank wastes, the anticipated performance of the pretreatment processes, and current understanding of the capability of the borosilicate glass waste form [I]. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat and mass transfer and increase glass melting rates. The WTP HLW melter has a glass surface area of 3.75 m{sup 2} and depth of ~ 1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HL W waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150?C and by increasing the waste loading in the glass product. Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage.

Kruger, A A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Joseph, Innocent [The Catholic University of America, Washington, DC (United States); Matlack, Keith S. [The Catholic University of America, Washington, DC (United States); Callow, Richard A. [The Catholic University of America, Washington, DC (United States); Abramowitz, Howard [The Catholic University of America, Washington, DC (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Brandys, Marek [The Catholic University of America, Washington, DC (United States); Kot, Wing K. [The Catholic University of America, Washington, DC (United States)

2012-11-13T23:59:59.000Z

148

Glass Property Data and Models for Estimating High-Level Waste Glass Volume  

SciTech Connect

This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition models were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.

Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang; Hrma, Pavel R.

2009-10-05T23:59:59.000Z

149

DOCUMENTATION OF NATIONAL WEATHER CONDITIONS AFFECTING LONG-TERM DEGRADATION OF COMMERCIAL SPENT NUCLEAR FUEL AND DOE SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTE  

SciTech Connect

The U.S. Department of Energy (DOE) is preparing a proposal to construct, operate 2nd monitor, and eventually close a repository at Yucca Mountain in Nye County, Nevada, for the geologic disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). As part of this effort, DOE has prepared a viability assessment and an assessment of potential consequences that may exist if the repository is not constructed. The assessment of potential consequences if the repository is not constructed assumes that all SNF and HLW would be left at the generator sites. These include 72 commercial generator sites (three commercial facility pairs--Salem and Hope Creek, Fitzpatrick and Nine Mile Point, and Dresden and Morris--would share common storage due to their close proximity to each other) and five DOE sites across the country. DOE analyzed the environmental consequences of the effects of the continued storage of these materials at these sites in a report titled Continued Storage Analysis Report (CSAR; Reference 1 ) . The CSAR analysis includes a discussion of the degradation of these materials when exposed to the environment. This document describes the environmental parameters that influence the degradation analyzed in the CSAR. These include temperature, relative humidity, precipitation chemistry (pH and chemical composition), annual precipitation rates, annual number of rain-days, and annual freeze/thaw cycles. The document also tabulates weather conditions for each storage site, evaluates the degradation of concrete storage modules and vaults in different regions of the country, and provides a thermal analysis of commercial SNF in storage.

W. L. Poe, Jr.; P.F. Wise

1998-11-01T23:59:59.000Z

150

BENEFITS OF VIBRATION ANALYSIS FOR DEVELOPMENT OF EQUIPMENT IN HLW TANKS - 12341  

Science Conference Proceedings (OSTI)

Vibration analyses of equipment intended for use in the Savannah River Site (SRS) radioactive liquid waste storage tanks are performed during pre-deployment testing and has been demonstrated to be effective in reducing the life-cycle costs of the equipment. Benefits of using vibration analysis to identify rotating machinery problems prior to deployment in radioactive service will be presented in this paper. Problems encountered at SRS and actions to correct or lessen the severity of the problem are discussed. In short, multi-million dollar cost saving have been realized at SRS as a direct result of vibration analysis on existing equipment. Vibration analysis of equipment prior to installation can potentially reduce inservice failures, and increases reliability. High-level radioactive waste is currently stored in underground carbon steel waste tanks at the United States Department of Energy (DOE) Savannah River Site and at the Hanford Site, WA. Various types of rotating machinery (pumps and separations equipment) are used to manage and retrieve the tank contents. Installation, maintenance, and repair of these pumps and other equipment are expensive. In fact, costs to remove and replace a single pump can be as high as a half million dollars due to requirements for radioactive containment. Problems that lead to in-service maintenance and/or equipment replacement can quickly exceed the initial investment, increase radiological exposure, generate additional waste, and risk contamination of personnel and the work environment. Several different types of equipment are considered in this paper, but pumps provide an initial example for the use of vibration analysis. Long-shaft (45 foot long) and short-shaft (5-10 feet long) equipment arrangements are used for 25-350 horsepower slurry mixing and transfer pumps in the SRS HLW tanks. Each pump has a unique design, operating characteristics and associated costs, sometimes exceeding a million dollars. Vibration data are routinely collected during pre-installation tests and screened for: Critical speeds or resonance, Imbalance of rotating parts, Shaft misalignment, Fluid whirl or lubrication break down, Bearing damages, and Other component abnormalities. Examples of previous changes in operating parameters and fabrication tolerances and extension of equipment life resulting from the SRS vibration analysis program include: (1) Limiting operational speeds for some pumps to extend service life without design or part changes; (2) Modifying manufacturing methods (tightening tolerances) for impellers on slurry mixing pumps based on vibration data that indicated hydraulic imbalance; (3) Identifying rolling element mounting defects and replacing those components in pump seals before installation; and (4) Identifying the need for bearing design modification for SRS long-shaft mixing pump designs to eliminate fluid whirl and critical speeds which significantly increased the equipment service life. In addition, vibration analyses and related analyses have been used during new equipment scale-up tests to identify the need for design improvements for full-scale operation / deployment of the equipment in the full size tanks. For example, vibration analyses were recently included in the rotary micro-filtration scale-up test program at SRNL.

Stefanko, D.; Herbert, J.

2012-01-10T23:59:59.000Z

151

Radioactive Material Transportation Requirements for the Department of Energy  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) created the National Transportation Program (NTP) whose goal is to ensure the availability of safe, efficient, and timely transportation of DOE materials. The Integration and Planning Group of the NTP, assisted by Global Technologies Incorporated (GTI), was tasked to identify requirements associated with the transport of DOE Environmental Management (EM) radiological waste/material. A systems engineering approach was used to identify source documents, extract requirements, perform a functional analysis, and set up a transportation requirements management database in RDD-100. Functions and requirements for transporting the following DOE radioactive waste/material are contained in the database: high level radioactive waste (HLW), low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW), nuclear materials (NM), spent nuclear fuel (SNF), and transuranic waste (TRU waste). The requirements will be used in the development of standard transportation protocols for DOE shipping. The protocols will then be combined into a DOE Transportation Program Management Guide, which will be used to standardize DOE transportation processes.

John, Mark Earl; Fawcett, Ricky Lee; Bolander, Thane Weston

2000-07-01T23:59:59.000Z

152

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.

West, B.; Waltz, R.

2012-06-21T23:59:59.000Z

153

High Level Radioactive Waste- Doing Something about It  

Science Conference Proceedings (OSTI)

Symposium, Materials Issues in Nuclear Waste Management in the 21st Century. Presentation Title ... Metal Organic Frameworks for Clean Energy Applications.

154

Survey of National Programs for Managing High-Level Radioactive  

E-Print Network (OSTI)

, in particular through the Non-Proliferation Treaty review conference in May 2010 and the International has taken a leading role in national, regional and international non-proliferation and disarmament Commission on Nuclear Non-Proliferation and Disarmament (ICNND). This seminar addresses three key themes

155

STATUS OF THE DEVELOPMENT OF IN-TANK/AT-TANK SEPARATIONS TECHNOLOGIES FOR FOR HIGH-LEVEL WASTE PROCESSING FOR THE U.S. DEPARTMENT OF ENERGY  

SciTech Connect

Within the U.S. Department of Energy's (DOE) Office of Technology Innovation and Development, the Office of Waste Processing manages a research and development program related to the treatment and disposition of radioactive waste. At the Savannah River (South Carolina) and Hanford (Washington) Sites, approximately 90 million gallons of waste are distributed among 226 storage tanks (grouped or collocated in 'tank farms'). This waste may be considered to contain mixed and stratified high activity and low activity constituent waste liquids, salts and sludges that are collectively managed as high level waste (HLW). A large majority of these wastes and associated facilities are unique to the DOE, meaning many of the programs to treat these materials are 'first-of-a-kind' and unprecedented in scope and complexity. As a result, the technologies required to disposition these wastes must be developed from basic principles, or require significant re-engineering to adapt to DOE's specific applications. Of particular interest recently, the development of In-tank or At-Tank separation processes have the potential to treat waste with high returns on financial investment. The primary objective associated with In-Tank or At-Tank separation processes is to accelerate waste processing. Insertion of the technologies will (1) maximize available tank space to efficiently support permanent waste disposition including vitrification; (2) treat problematic waste prior to transfer to the primary processing facilities at either site (i.e., Hanford's Waste Treatment and Immobilization Plant (WTP) or Savannah River's Salt Waste Processing Facility (SWPF)); and (3) create a parallel treatment process to shorten the overall treatment duration. This paper will review the status of several of the R&D projects being developed by the U.S. DOE including insertion of the ion exchange (IX) technologies, such as Small Column Ion Exchange (SCIX) at Savannah River. This has the potential to align the salt and sludge processing life cycle, thereby reducing the Defense Waste Processing Facility (DWPF) mission by 7 years. Additionally at the Hanford site, problematic waste streams, such as high boehmite and phosphate wastes, could be treated prior to receipt by WTP and thus dramatically improve the capacity of the facility to process HLW. Treatment of boehmite by continuous sludge leaching (CSL) before receipt by WTP will dramatically reduce the process cycle time for the WTP pretreatment facility, while treatment of phosphate will significantly reduce the number of HLW borosilicate glass canisters produced at the WTP. These and other promising technologies will be discussed.

Aaron, G.; Wilmarth, B.

2011-09-19T23:59:59.000Z

156

IMPACT OF NOBLE METALS AND MERCURY ON HYDROGEN GENERATION DURING HIGH LEVEL WASTE PRETREATMENT AT THE SAVANNAH RIVER SITE  

DOE Green Energy (OSTI)

The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies radioactive High Level Waste (HLW) for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. HLW consists of insoluble metal hydroxides (primarily iron, aluminum, calcium, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, and sulfate). The pretreatment process in the Chemical Processing Cell (CPC) consists of two process tanks, the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) as well as a melter feed tank. During SRAT processing, nitric and formic acids are added to the sludge to lower pH, destroy nitrite and carbonate ions, and reduce mercury and manganese. During the SME cycle, glass formers are added, and the batch is concentrated to the final solids target prior to vitrification. During these processes, hydrogen can be produced by catalytic decomposition of excess formic acid. The waste contains silver, palladium, rhodium, ruthenium, and mercury, but silver and palladium have been shown to be insignificant factors in catalytic hydrogen generation during the DWPF process. A full factorial experimental design was developed to ensure that the existence of statistically significant two-way interactions could be determined without confounding of the main effects with the two-way interaction effects. Rh ranged from 0.0026-0.013% and Ru ranged from 0.010-0.050% in the dried sludge solids, while initial Hg ranged from 0.5-2.5 wt%, as shown in Table 1. The nominal matrix design consisted of twelve SRAT cycles. Testing included: a three factor (Rh, Ru, and Hg) study at two levels per factor (eight runs), three duplicate midpoint runs, and one additional replicate run to assess reproducibility away from the midpoint. Midpoint testing was used to identify potential quadratic effects from the three factors. A single sludge simulant was used for all tests and was spiked with the required amount of noble metals immediately prior to performing the test. Acid addition was kept effectively constant except to compensate for variations in the starting mercury concentration. SME cycles were also performed during six of the tests.

Stone, M; Tommy Edwards, T; David Koopman, D

2009-03-03T23:59:59.000Z

157

Automated Sampling and Sample Pneumatic Transport of High Level Tank Wastes at the Hanford Waste Treatment Plant  

Science Conference Proceedings (OSTI)

This paper describes the development work, and design and engineering tasks performed, to provide a fully automated sampling system for the Waste Treatment Plant (WTP) project at the Hanford Site in southeastern Washington State, USA. WTP is being built to enable the emptying and immobilization of highly active waste resulting from processing of irradiated nuclear fuel since the 1940's. The Hanford Tank Wastes are separated into Highly Level Waste (HLW), and Low Active Waste (LAW) fractions, which are separately immobilized by vitrification into borosilicate glass. Liquid samples must be taken of the waste and Glass Forming Chemicals (GFCs) before vitrification, and analyzed to insure the glass products will comply with specifications established in the WTP contract. This paper describes the non-radioactive testing of the sampling of the HLW and LAW melter feed simulants that was performed ahead of final equipment design. These trials were essential to demonstrate the effectiveness and repeatability of the integrated sampling system to collect representative samples, free of cross-contamination. Based on existing tried and proven equipment, the system design is tailored to meet the WTP project's specific needs. The design provides sampling capabilities from 47 separate sampling points and includes a pneumatic transport system to move the samples from the 3 separate facilities to the centralized analytical laboratory. The physical and rheological compositions of the waste simulants provided additional challenges in terms of the sample delivery, homogenization, and sample capture equipment design requirements. The activity levels of the actual waste forms, specified as 486 E9 Bq/liter (Cs-137), 1.92 E9 Bq/liter (Co-60), and 9.67 E9 Bq/liter (Eu-154), influenced the degree of automation provided, and justified the minimization of manual intervention needed to obtain and deliver samples from the process facilities to the analytical laboratories. Maintaining high integrity primary and secondary confinement, including during the cross-site transportation of the samples, is a key requirement that is achieved and assured at all times. (authors)

Phillips, C.; Richardson, J. E. [BNG America, 2345 Stevens Drive, Richland, WA, 99354 (United States)

2006-07-01T23:59:59.000Z

158

Development of Crystal-Tolerant High-Level Waste Glasses  

SciTech Connect

Twenty five glasses were formulated. They were batched from HLW AZ-101 simulant or raw chemicals and melted and tested with a series of tests to elucidate the effect of spinel-forming components (Ni, Fe, Cr, Mn, and Zn), Al, and noble metals (Rh2O3 and RuO2) on the accumulation rate of spinel crystals in the glass discharge riser of the high-level waste (HLW) melter. In addition, the processing properties of glasses, such as the viscosity and TL, were measured as a function of temperature and composition. Furthermore, the settling of spinel crystals in transparent low-viscosity fluids was studied at room temperature to access the shape factor and hindered settling coefficient of spinel crystals in the Stokes equation. The experimental results suggest that Ni is the most troublesome component of all the studied spinel-forming components producing settling layers of up to 10.5 mm in just 20 days in Ni-rich glasses if noble metals or a higher concentration of Fe was not introduced in the glass. The layer of this thickness can potentially plug the bottom of the riser, preventing glass from being discharged from the melter. The noble metals, Fe, and Al were the components that significantly slowed down or stopped the accumulation of spinel at the bottom. Particles of Rh2O3 and RuO2, hematite and nepheline, acted as nucleation sites significantly increasing the number of crystals and therefore decreasing the average crystal size. The settling rate of ?10-?m crystal size around the settling velocity of crystals was too low to produce thick layers. The experimental data for the thickness of settled layers in the glasses prepared from AZ-101 simulant were used to build a linear empirical model that can predict crystal accumulation in the riser of the melter as a function of concentration of spinel-forming components in glass. The developed model predicts the thicknesses of accumulated layers quite well, R2 = 0.985, and can be become an efficient tool for the formulation of the crystal-tolerant HLW glasses for higher waste loading. A physical modeling effort revealed that the Stokes and Richardson-Zaki equations can be used to adequately predict the accumulation rate of spinel crystals of different sizes and concentrations in the glass discharge riser of HLW melters. The determined shape factor for the glass beads was only 0.73% lower than the theoretical shape factor for a perfect sphere. The shape factor for the spinel crystals matched the theoretically predicted value to within 10% and was smaller than that of the beads, given the larger drag force caused by the larger surface area-to-volume ratio of the octahedral crystals. In the hindered settling experiments, both the glass bead and spinel suspensions were found to follow the predictions of the Richardson-Zaki equation with the exponent n = 3.6 and 2.9 for glass beads and spinel crystals, respectively.

Matyas, Josef; Vienna, John D.; Schaible, Micah J.; Rodriguez, Carmen P.; Crum, Jarrod V.; Arrigoni, Alyssa L.; Tate, Rachel M.

2010-12-17T23:59:59.000Z

159

RADIOACTIVE WASTE CONDITIONING, IMMOBILISATION, AND ENCAPSULATION PROCESSES AND TECHNOLOGIES: OVERVIEW AND ADVANCES (CHAPTER 7)  

SciTech Connect

The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of low level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCMs), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate wastes are also discussed. The various processing technologies are cross-referenced to the various types of wasteforms since often a particular type of wasteform can be made by a variety of different processing technologies.

Jantzen, C.

2012-10-19T23:59:59.000Z

160

WTP: Challenges and Major Breakthroughs in High Level Waste ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The US DOE has developed glass property-composition models to control glass compositions for HLW vitrification at Hanford Waste Treatment...

Note: This page contains sample records for the topic "hlw high-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DOE G 435.1-1 Chapter 2, High-Level Waste Requirements  

Directives, Delegations, and Requirements

The guide provides the criteria for determining which DOE radioactive wastes are to be managed as high-level waste in accordance with DOE M 435.1-1.

1999-07-09T23:59:59.000Z

162

ATW system impact on high-level waste  

SciTech Connect

This report discusses the Accelerator Transmutation of Waste (ATW) concept which aims at destruction of key long-lived radionuclides in high-level nuclear waste (HLW), both fission products and actinides. This focus makes it different from most other transmutation concepts which concentrate primarily on actinide burning. The ATW system uses an accelerator-driven, sub-critical assembly to create an intense thermal neutron environment for radionuclide transmutation. This feature allows rapid transmutation under low-inventory system conditions, which in turn, has a direct impact on the size of chemical separations and materials handling components of the system. Inventories in ATW are factors of eight to thirty times smaller than reactor systems of equivalent thermal power. Chemical separations systems are relatively small in scale and can be optimized to achieve high decontamination factors and minimized waste streams. The low-inventory feature also directly impacts material amounts remaining in the system at its end of life. In addition to its low-inventory operation, the accelerator-driven neutron source features of ATW are key to providing a sufficient level of neutrons to allow transmutation of long-lived fission products.

Arthur, E.D.

1992-01-01T23:59:59.000Z

163

ATW system impact on high-level waste  

Science Conference Proceedings (OSTI)

This report discusses the Accelerator Transmutation of Waste (ATW) concept which aims at destruction of key long-lived radionuclides in high-level nuclear waste (HLW), both fission products and actinides. This focus makes it different from most other transmutation concepts which concentrate primarily on actinide burning. The ATW system uses an accelerator-driven, sub-critical assembly to create an intense thermal neutron environment for radionuclide transmutation. This feature allows rapid transmutation under low-inventory system conditions, which in turn, has a direct impact on the size of chemical separations and materials handling components of the system. Inventories in ATW are factors of eight to thirty times smaller than reactor systems of equivalent thermal power. Chemical separations systems are relatively small in scale and can be optimized to achieve high decontamination factors and minimized waste streams. The low-inventory feature also directly impacts material amounts remaining in the system at its end of life. In addition to its low-inventory operation, the accelerator-driven neutron source features of ATW are key to providing a sufficient level of neutrons to allow transmutation of long-lived fission products.

Arthur, E.D.

1992-12-01T23:59:59.000Z

164

Enhanced sludge processing of HLW: Hydrothermal oxidation of chromium, technetium, and complexants by nitrate. 1997 mid-year progress report  

SciTech Connect

'Treatment of High Level Waste (HLW) is the second most costly problem identified by OEM. In order to minimize costs of disposal, the volume of HLW requiring vitrification and long term storage must be reduced. Methods for efficient separation of chromium from waste sludges, such as the Hanford Tank Wastes (HTW), are key to achieving this goal since the allowed level of chromium in high level glass controls waste loading. At concentrations above 0.5 to 1.0 wt.% chromium prevents proper vitrification of the waste. Chromium in sludges most likely exists as extremely insoluble oxides and minerals, with chromium in the plus III oxidation state [1]. In order to solubilize and separate it from other sludge components, Cr(III) must be oxidized to the more soluble Cr(VI) state. Efficient separation of chromium from HLW could produce an estimated savings of $3.4B[2]. Additionally, the efficient separation of technetium [3], TRU, and other metals may require the reformulation of solids to free trapped species as well as the destruction of organic complexants. New chemical processes are needed to separate chromium and other metals from tank wastes. Ideally they should not utilize additional reagents which would increase waste volume or require subsequent removal. The goal of this project is to apply hydrothermal processing for enhanced chromium separation from HLW sludges. Initially, the authors seek to develop a fundamental understanding of chromium speciation, oxidation/reduction and dissolution kinetics, reaction mechanisms, and transport properties under hydrothermal conditions in both simple and complex salt solutions. The authors also wish to evaluate the potential of hydrothermal processing for enhanced separations of technetium and TRU by examining technetium and TRU speciation at hydrothermal conditions optimal for chromium dissolution.'

Buelow, S.

1997-06-01T23:59:59.000Z

165

CRYSTALLIZATION IN HIGH-LEVEL WASTE GLASSES U.S. DEPARTMENT OF ENERGY OFFICE OF RIVER PROTECTION WTP ENGINEERING DIVISION  

SciTech Connect

Various circumstances influence crystallization in glassmaking, for example: (1) crystals nucleate and grow before the glass-forming melt occurs; (2) crystals grow or dissolve in flowing melt and during changing temperature; (3) crystals move under the influence of gravity; (4) crystals agglomerate and interact with gas bubbles; (5) high-level wastes (HLW) are mixtures of a large number of components in unusual proportions; (6) melter processing of HLW and the slow cooling of HLW glass in canisters provides an opportunity for a variety of crystalline forms to precipitate; (7) settling of crystals in a HLW glass melter may produce undesirable sludge at the melter bottom; and (8) crystallization of the glass product may increase, but also ruin chemical durability. The conclusions are: (1) crystal growth and dissolution typically proceed in a convective medium at changing temperature; (2) to represent crystallization or dissolution the kinetics must be expressed in the form of rate equations, such as dC/dt = f(C,T) and the temperature dependence of kinetic coefficients and equilibrium concentrations must be accounted for; and (3) non-equilibrium phenomena commonly occur - metastable crystallization, periodic distribution of crystals; and dendritic crystal growth.

KRUGER AA; HRMA PR

2009-08-19T23:59:59.000Z

166

Geological problems in radioactive waste isolation - second worldwide review  

Science Conference Proceedings (OSTI)

The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996.

Witherspoon, P.A. [ed.

1996-09-01T23:59:59.000Z

167

DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING GLASS FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS  

SciTech Connect

This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat transfer and glass melting rate. The WTP HLW melter has a glass surface area of 3.75 m{sup 2} and depth of {approx}1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HLW waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150 C and by increasing the waste loading in the glass product Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage. The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet WTP contract requirements. The WTP's overall mission will require the immobilization oftank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulfur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previous experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings. Results of this work have demonstrated the feasibility of increases in waste-loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. It is expected that these higher waste loading glasses will reduce the HLW canister production requirement by about 25% or more.

KRUGER AA; MATLACK KS; KOT WK; PEGG IL; JOSEPH I

2009-12-30T23:59:59.000Z

168

Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes  

DOE Patents (OSTI)

Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

Boatner, L.A.; Sales, B.C.

1984-04-11T23:59:59.000Z

169

Vitrification of high level nuclear waste inside ambient temperature disposal containers using inductive heating: The SMILE system  

Science Conference Proceedings (OSTI)

A new approach, termed SMILE (Small Module Inductively Loaded Energy), for the vitrification of high level nuclear wastes (HLW) is described. Present vitrification systems liquefy the HLW solids and associated frit material in large high temperature melters. The molten mix is then poured into small ({approximately}1 m{sup 3}) disposal canisters, where it solidifies and cools. SMILE eliminates the separate, large high temperature melter. Instead, the BLW solids and frit melt inside the final disposal containers, using inductive heating. The contents then solidify and cool in place. The SMILE modules and the inductive heating process are designed so that the outer stainless can of the module remains at near ambient temperature during the process cycle. Module dimensions are similar to those of present disposal containers. The can is thermally insulated from the high temperature inner container by a thin layer of refractory alumina firebricks. The inner container is a graphite crucible lined with a dense alumina refractory that holds the HLW and fiit materials. After the SMILE module is loaded with a slurry of HLW and frit solids, an external multi-turn coil is energized with 30-cycle AC current. The enclosing external coil is the primary of a power transformer, with the graphite crucible acting as a single turn ``secondary.`` The induced current in the ``secondary`` heats the graphite, which in turn heats the HLW and frit materials. The first stage of the heating process is carried out at an intermediate temperature to drive off remnant liquid water and water of hydration, which takes about 1 day. The small fill/vent tube to the module is then sealed off and the interior temperature raised to the vitrification range, i.e., {approximately}1200C. Liquefaction is complete after approximately 1 day. The inductive heating then ceases and the module slowly loses heat to the environment, allowing the molten material to solidify and cool down to ambient temperature.

Powell, J.; Reich, M.; Barletta, R.

1996-03-01T23:59:59.000Z

170

Dose Calculations for the Co-Disposal WP-of HLW-Glass and the Triga SNF  

SciTech Connect

This calculation is prepared by the Monitored Geologic Repository (MGR) Waste Package Operations (WPO). The purpose of this calculation is to determine the surface dose rates of a codisposal waste package (WP) containing a centrally located Department of Energy (DOE) standardized 18-in. spent nuclear fuel (SNF) canister, loaded with the TRIGA (Training, Research, Isotopes, General Atomics) SNF. This canister is surrounded by five 3-m long canisters, loaded with Savannah River Site (SRS) high-level waste (HLW) glass. The results are to support the WP design and radiological analyses.

G. Radulescu

1999-08-02T23:59:59.000Z

171

Environmental geochemistry of radioactive contamination.  

Science Conference Proceedings (OSTI)

This report attempts to describe the geochemical foundations of the behavior of radionuclides in the environment. The information is obtained and applied in three interacting spheres of inquiry and analysis: (1) experimental studies and theoretical calculations, (2) field studies of contaminated and natural analog sites and (3) model predictions of radionuclide behavior in remediation and waste disposal. Analyses of the risks from radioactive contamination require estimation of the rates of release and dispersion of the radionuclides through potential exposure pathways. These processes are controlled by solubility, speciation, sorption, and colloidal transport, which are strong functions of the compositions of the groundwater and geomedia as well as the atomic structure of the radionuclides. The chemistry of the fission products is relatively simple compared to the actinides. Because of their relatively short half-lives, fission products account for a large fraction of the radioactivity in nuclear waste for the first several hundred years but do not represent a long-term hazard in the environment. The chemistry of the longer-lived actinides is complex; however, some trends in their behavior can be described. Actinide elements of a given oxidation state have either similar or systematically varying chemical properties due to similarities in ionic size, coordination number, valence, and electron structure. In dilute aqueous systems at neutral to basic pH, the dominant actinide species are hydroxy- and carbonato-complexes, and the solubility-limiting solid phases are commonly oxides, hydroxides or carbonates. In general, actinide sorption will decrease in the presence of ligands that complex with the radionuclide; sorption of the (IV) species of actinides (Np, Pu, U) is generally greater than of the (V) species. The geochemistry of key radionuclides in three different environments is described in this report. These include: (1) low ionic strength reducing waters from crystalline rocks at nuclear waste research sites in Sweden; (2) oxic water from the J-13 well at Yucca Mountain, Nevada, the site of a proposed repository for high level nuclear waste (HLW) in tuffaceous rocks; and (3) reference brines associated with the Waste Isolation Pilot Plant (WIPP). The transport behaviors of radionuclides associated with the Chernobyl reactor accident and the Oklo Natural Reactor are described. These examples span wide temporal and spatial scales and include the rapid geochemical and physical processes important to nuclear reactor accidents or industrial discharges as well as the slower processes important to the geologic disposal of nuclear waste. Application of geochemical information to remediating or assessing the risk posed by radioactive contamination is the final subject of this report. After radioactive source terms have been removed, large volumes of soil and water with low but potentially hazardous levels of contamination may remain. For poorly-sorbing radionuclides, capture of contaminated water and removal of radionuclides may be possible using permeable reactive barriers and bioremediation. For strongly sorbing radionuclides, contaminant plumes will move very slowly. Through a combination of monitoring, regulations and modeling, it may be possible to have confidence that they will not be a hazard to current or future populations. Abstraction of the hydrogeochemical properties of real systems into simple models is required for probabilistic risk assessment. Simplifications in solubility and sorption models used in performance assessment calculations for the WIPP and the proposed HLW repository at Yucca Mountain are briefly described.

Bryan, Charles R.; Siegel, Malcolm Dean

2003-09-01T23:59:59.000Z

172

High Level Waste Corporate Board Newsletter - 09/11/08  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UPCOMING UPCOMING EVENTS: The Low-Level Waste Federal Review Group (LFRG) in Washington, DC on 16-18 September 2008. Contact Maureen O'Dell for details (MAUREEN.O'DELL@hq.doe.gov) Next High-Level Waste Corporate Board meeting will be held at DOE- RL on 6 November 2008. Meeting details will be presented here and e- mailed to those persons with an interest to participate. Topics for discussion include but are not limited to:  Results of the Tank Integrity Workshop  Strategic Initiative Briefing  Performance Assessment Guide Proposal NEWS ITEMS 3 June 2008: WASHINGTON, DC - The U.S. Department of Energy today announced submittal of a License Application to the U.S. Nuclear Regulatory Commission seeking authorization to construct America's first repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. (http://www.ocrwm.doe.gov) 8

173

Corrosion and failure processes in high-level waste tanks  

Science Conference Proceedings (OSTI)

A large amount of radioactive waste has been stored safely at the Savannah River and Hanford sites over the past 46 years. The aim of this report is to review the experimental corrosion studies at Savannah River and Hanford with the intention of identifying the types and rates of corrosion encountered and indicate how these data contribute to tank failure predictions. The compositions of the High-Level Wastes, mild steels used in the construction of the waste tanks and degradation-modes particularly stress corrosion cracking and pitting are discussed. Current concerns at the Hanford Site are highlighted.

Mahidhara, R.K.; Elleman, T.S.; Murty, K.L. [North Carolina State Univ., Raleigh, NC (United States)

1992-11-01T23:59:59.000Z

174

High-level waste tank farm set point document  

Science Conference Proceedings (OSTI)

Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Farms. The setpoint document will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DPSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREAS listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope.

Anthony, J.A. III

1995-01-15T23:59:59.000Z

175

HIGH LEVEL WASTE SLUDGE BATCH 4 VARIABILITY STUDY  

Science Conference Proceedings (OSTI)

The Defense Waste Processing Facility (DWPF) is preparing for vitrification of High Level Waste (HLW) Sludge Batch 4 (SB4) in early FY2007. To support this process, the Savannah River National Laboratory (SRNL) has provided a recommendation to utilize Frit 503 for vitrifying this sludge batch, based on the composition projection provided by the Liquid Waste Organization on June 22, 2006. Frit 418 was also recommended for possible use during the transition from SB3 to SB4. A critical step in the SB4 qualification process is to demonstrate the applicability of the durability models, which are used as part of the DWPF's process control strategy, to the glass system of interest via a variability study. A variability study is an experimentally-driven assessment of the predictability and acceptability of the quality of the vitrified waste product that is anticipated from the processing of a sludge batch. At the DWPF, the durability of the vitrified waste product is not directly measured. Instead, the durability is predicted using a set of models that relate the Product Consistency Test (PCT) response of a glass to the chemical composition of that glass. In addition, a glass sample is taken during the processing of that sludge batch, the sample is transmitted to SRNL, and the durability is measured to confirm acceptance. The objective of a variability study is to demonstrate that these models are applicable to the glass composition region anticipated during the processing of the sludge batch - in this case the Frit 503 - SB4 compositional region. The success of this demonstration allows the DWPF to confidently rely on the predictions of the durability/composition models as they are used in the control of the DWPF process.

Fox, K; Tommy Edwards, T; David Peeler, D; David Best, D; Irene Reamer, I; Phyllis Workman, P

2006-10-02T23:59:59.000Z

176

Integrated data base for 1993: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 9  

Science Conference Proceedings (OSTI)

The Integrated Data Base (IDB) Program has compiled historic data on inventories and characteristics of both commercial and DOE spent fuel; also, commercial and U.S. government-owned radioactive wastes through December 31, 1992. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest U.S. Department of Energy/Energy Information Administration (DOE/EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste (HLW), transuranic (TRU), waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) LLW. For most of these categories, current and projected inventories are given through the calendar-year (CY) 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

Klein, J.A.; Storch, S.N.; Ashline, R.C. [and others

1994-03-01T23:59:59.000Z

177

A variation aware high level synthesis framework  

Science Conference Proceedings (OSTI)

The worst-case delay/power of function units has been used in traditional high level synthesis to facilitate design space exploration. As technology scales to nanometer regime, the impact of process variations increases. The degree of variability encountered ...

Feng Wang; Guangyu Sun; Yuan Xie

2008-03-01T23:59:59.000Z

178

EIS-0303: Savannah River Site High-Level Waste Tank Closure | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

03: Savannah River Site High-Level Waste Tank Closure 03: Savannah River Site High-Level Waste Tank Closure EIS-0303: Savannah River Site High-Level Waste Tank Closure SUMMARY This EIS evaluates alternatives for closing 49 high-level radioactive waste tanks and associated equipment such as evaporator systems, transfer pipelines, diversion boxes, and pump pits. DOE selected the preferred alternative identified in the Final EIS, Stabilize Tanks-Fill with Grout, to guide development and implementation of closure of the high-level waste tanks and associated equipment at the Savannah River Site. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 5, 2012 EIS-0303: Supplement Analysis Savannah River Site High-Level Waste Tank Closure, SC July 8, 2011 EIS-0303: Notice of Intent to Prepare an Environmental Impact Statement

179

Investigation of Cold Cap Behavior in HLW Melter through an Array ...  

Science Conference Proceedings (OSTI)

Symposium, Materials Issues in Nuclear Waste Management in the 21st Century ... the batch-to-glass conversion as it occurs in high-level-waste glass processing melters. ... The Properties of Spent Nuclear Fuel under Waste Disposal Conditions ... UK Radioactive Waste: Classification, Sources and Management Strategies.

180

ESTIMATING HIGH LEVEL WASTE MIXING PERFORMANCE IN HANFORD DOUBLE SHELL TANKS  

SciTech Connect

The ability to effectively mix, sample, certify, and deliver consistent batches of high level waste (HLW) feed from the Hanford double shell tanks (DSTs) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. The Department of Energy's (DOE's) Tank Operations Contractor (TOC), Washington River Protection Solutions (WRPS) is currently demonstrating mixing, sampling, and batch transfer performance in two different sizes of small-scale DSTs. The results of these demonstrations will be used to estimate full-scale DST mixing performance and provide the key input to a programmatic decision on the need to build a dedicated feed certification facility. This paper discusses the results from initial mixing demonstration activities and presents data evaluation techniques that allow insight into the performance relationships of the two small tanks. The next steps, sampling and batch transfers, of the small scale demonstration activities are introduced. A discussion of the integration of results from the mixing, sampling, and batch transfer tests to allow estimating full-scale DST performance is presented.

THIEN MG; GREER DA; TOWNSON P

2011-01-13T23:59:59.000Z

Note: This page contains sample records for the topic "hlw high-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

West, B.; Waltz, R.

2011-06-23T23:59:59.000Z

182

A Software Architecture for High Level Applications  

SciTech Connect

A modular software platform for high level applications is under development at the National Synchrotron Light Source II project. This platform is based on client-server architecture, and the components of high level applications on this platform will be modular and distributed, and therefore reusable. An online model server is indispensable for model based control. Different accelerator facilities have different requirements for the online simulation. To supply various accelerator simulators, a set of narrow and general application programming interfaces is developed based on Tracy-3 and Elegant. This paper describes the system architecture for the modular high level applications, the design of narrow and general application programming interface for an online model server, and the prototype of online model server.

Shen,G.

2009-05-04T23:59:59.000Z

183

DOUBLE SHELL TANK (DST) INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION  

SciTech Connect

The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLW until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control strategies to a nitrite-based control, where there is no constant depletion mechanism as with hydroxide, should greatly enhance tank lifetime, tank space availability, and reduce downstream reprocessing costs by reducing chemical addition to the tanks.

WASHENFELDER DJ

2008-01-22T23:59:59.000Z

184

Hydrogen generation rates in Savannah River Site high-level nuclear waste  

DOE Green Energy (OSTI)

High-level nuclear waste (HLW) is stored at the Savannah River Site (SRS) as alkaline, high-nitrate slurries in underground carbon steel tanks. Hydrogen is continuously generated in the waste tanks as a result of the radiolysis of water. Hydrogen generation rates have recently been measured in several waste tanks containing different types of waste. The measured rates ranged from 1.1 to 6.7 cubic feet per million Btu of decay heat. The measured rates are consistent with laboratory data which show that the hydrogen generation rate depends on the nitrate concentration and the decay heat content of the waste. Sampling at different locations indicated that the hydrogen is uniformly distributed radially within the tank.

Hobbs, D.T.; Norris, P.W.; Pucko, S.A.; Bibler, N.E.; Walker, D.D.; d'Entremont, P.D.

1992-01-01T23:59:59.000Z

185

High-Level Waste Melter Study Report  

SciTech Connect

At the Hanford Site in Richland, Washington, the path to site cleanup involves vitrification of the majority of the wastes that currently reside in large underground tanks. A Joule-heated glass melter is the equipment of choice for vitrifying the high-level fraction of these wastes. Even though this technology has general national and international acceptance, opportunities may exist to improve or change the technology to reduce the enormous cost of accomplishing the mission of site cleanup. Consequently, the U.S. Department of Energy requested the staff of the Tanks Focus Area to review immobilization technologies, waste forms, and modifications to requirements for solidification of the high-level waste fraction at Hanford to determine what aspects could affect cost reductions with reasonable long-term risk. The results of this study are summarized in this report.

Perez, Joseph M.; Bickford, Dennis F.; Day, Delbert E.; Kim, Dong-Sang; Lambert, Steven L.; Marra, Sharon L.; Peeler, David K.; Strachan, Denis M.; Triplett, Mark B.; Vienna, John D.; Wittman, Richard S.

2001-07-13T23:59:59.000Z

186

Summary of national and international fuel cycle and radioactive waste management programs, 1984  

SciTech Connect

Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treat and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

1984-07-01T23:59:59.000Z

187

A One System Integrated Approach to Simulant Selection for Hanford High Level Waste Mixing and Sampling Tests  

SciTech Connect

The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broad spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described.

Thien, Mike G. [Washington River Protection Solutions, LLC, Richland, WA (United States); Barnes, Steve M. [URS, Richland, WA (United States)

2013-01-17T23:59:59.000Z

188

Design of equipment used for high-level waste vitrification at the West Valley Demonstration Project  

SciTech Connect

The equipment as designed, started, and operated for high-level radioactive waste vitrification at the West Valley Demonstration Project in western New York State is described. Equipment for the processes of melter feed make-up, vitrification, canister handling, and off-gas treatment are included. For each item of equipment the functional requirements, process description, and hardware descriptions are presented.

Vance, R.F.; Brill, B.A.; Carl, D.E. [and others

1997-06-01T23:59:59.000Z

189

High-Level Real-Time Concurrency  

E-Print Network (OSTI)

The primary goal of all real-time systems is predictability. Achieving this goal requires all levels of the system to be well de ned and have a xed worst-case execution time. These needs have resulted in the creation of overly restrictive commercial real-time systems providing only ad-hoc scheduling facilities and basic concurrent functionality. Ad-hoc scheduling makes developing, verifying, and maintaining a real-time system extremely dicult and time consuming. Basic concurrent functionality forces programmers to develop complex concurrent programs without the aid of high-level concurrency features.

Ashif S. Harji; C Ashif S. Harji

2000-01-01T23:59:59.000Z

190

Service Oriented Architecture for High Level Applications  

Science Conference Proceedings (OSTI)

Standalone high level applications often suffer from poor performance and reliability due to lengthy initialization, heavy computation and rapid graphical update. Service-oriented architecture (SOA) is trying to separate the initialization and computation from applications and to distribute such work to various service providers. Heavy computation such as beam tracking will be done periodically on a dedicated server and data will be available to client applications at all time. Industrial standard service architecture can help to improve the performance, reliability and maintainability of the service. Robustness will also be improved by reducing the complexity of individual client applications.

Chu, Chungming; Chevtsov, Sergei; Wu, Juhao; /SLAC; Shen, Guobao; /Brookhaven

2012-06-28T23:59:59.000Z

191

The CMS High-Level Trigger  

Science Conference Proceedings (OSTI)

At the startup of the LHC, the CMS data acquisition is expected to be able to sustain an event readout rate of up to 100 kHz from the Level-1 trigger. These events will be read into a large processor farm which will run the 'High-Level Trigger'(HLT) selection algorithms and will output a rate of about 150 Hz for permanent data storage. In this report HLT performances are shown for selections based on muons, electrons, photons, jets, missing transverse energy, {tau} leptons and b quarks: expected efficiencies, background rates and CPU time consumption are reported as well as relaxation criteria foreseen for a LHC startup instantaneous luminosity.

Covarelli, R. [CERN, Geneva 1211 (Switzerland)

2009-12-17T23:59:59.000Z

192

Commissioning of the CMS High Level Trigger  

Science Conference Proceedings (OSTI)

The CMS experiment will collect data from the proton-proton collisions delivered by the Large Hadron Collider (LHC) at a centre-of-mass energy up to 14 TeV. The CMS trigger system is designed to cope with unprecedented luminosities and LHC bunch-crossing rates up to 40 MHz. The unique CMS trigger architecture only employs two trigger levels. The Level-1 trigger is implemented using custom electronics, while the High Level Trigger (HLT) is based on software algorithms running on a large cluster of commercial processors, the Event Filter Farm. We present the major functionalities of the CMS High Level Trigger system as of the starting of LHC beams operations in September 2008. The validation of the HLT system in the online environment with Monte Carlo simulated data and its commissioning during cosmic rays data taking campaigns are discussed in detail. We conclude with the description of the HLT operations with the first circulating LHC beams before the incident occurred the 19th September 2008.

Agostino, L.; /Cornell U., Phys. Dept.; Bauer, G.; /MIT, LNS; Beccati, B.; /CERN; Behrens, U.; /DESY; Berryhil, J.; Biery, K.; /Fermilab; Bose, T.; /Boston U.; Brett, A.; /Fermilab; Branson, J.; /UC, San Diego; Cano, E.; /CERN; Cheung, H.; /Fermilab /CERN /LLNL, Livermore /Minnesota U.

2009-08-01T23:59:59.000Z

193

Risk assessment for the off-site transportation of high-level waste for the U.S. Department of Energy waste management programmatic environmental impact statement  

Science Conference Proceedings (OSTI)

This report describes the human health risk assessment conducted for the transportation of high-level waste (HLW) in support of the US Department of Energy Waste Management Programmatic Environmental Impact Statement (WM PEIS). The assessment considers risks to collective populations and individuals under both routine and accident transportation conditions for truck and rail shipment modes. The report discusses the scope of the HLW transportation assessment, describes the analytical methods used for the assessment, defines the alternatives considered in the WM PEIS, and details important assessment assumptions. Results are reported for five alternatives. In addition, to aid in the understanding and interpretation of the results, specific areas of uncertainty are described, with an emphasis on how the uncertainties may affect comparisons of the alternatives.

Monette, F.A.; Biwer, B.M.; LePoire, D.J.; Chen, S.Y. [Argonne National Lab., IL (United States). Environmental Assessment Div.

1996-12-01T23:59:59.000Z

194

Issue 5: Optimizing High Levels of Insulation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issue 5: Optimizing High Levels of Insulation NREL, Ren Anderson Building America Technical Update Meeting July 25 th , 2012 Issue 5 - How Much Insulation is Too Much? How do we define the cost-effective limit for improvements in enclosure efficiency? Key Factors to Consider: -Cost of savings vs. cost of grid-supplied energy -Cost of efficiency savings vs. cost of savings from renewable generation. -Savings from envelope improvements vs. other efficiency options Context * It is widely believed that code-specified insulation levels also represent cost-effective limits. * However, the cost-effective insulation levels exceed IECC values in many climates. * The homeowner-driven value of modest increases in enclosure performance can create economies of scale that will reduce

195

Umbra's High Level Architecture (HLA) Interface  

Science Conference Proceedings (OSTI)

This report describes Umbra's High Level Architecture HLA library. This library serves as an interface to the Defense Simulation and Modeling Office's (DMSO) Run Time Infrastructure Next Generation Version 1.3 (RTI NG1.3) software library and enables Umbra-based models to be federated into HLA environments. The Umbra library was built to enable the modeling of robots for military and security system concept evaluation. A first application provides component technologies that ideally fit the US Army JPSD's Joint Virtual Battlespace (JVB) simulation framework for Objective Force concept analysis. In addition to describing the Umbra HLA library, the report describes general issues of integrating Umbra with RTI code and outlines ways of building models to support particular HLA simulation frameworks like the JVB.

GOTTLIEB, ERIC JOSEPH; MCDONALD, MICHAEL J.; OPPEL III, FRED J.

2002-04-01T23:59:59.000Z

196

Infrared Thermography in High Level Waste  

Science Conference Proceedings (OSTI)

The Savannah River Site is a Department of Energy, government-owned, company-operated industrial complex built in the 1950s to produce materials used in nuclear weapons. Five reactors were built to support the production of nuclear weapons material. Irradiated materials were moved from the reactors to one of the two chemical separation plants. In these facilities, known as ''canyons,'' the irradiated fuel and target assemblies were chemically processed to separate useful products from waste. Unfortunately, the by-product waste of nuclear material production was a highly radioactive liquid that had to be stored and maintained. In 1993 a strategy was developed to implement predictive maintenance technologies in the Liquid Waste Disposition Project Division responsible for processing the liquid waste. Responsibilities include the processing and treatment of 51 underground tanks designed to hold 750,000 to1,300,000 gallons of liquid waste and operation of a facility that vitrifies highly radioactive liquid waste into glass logs. Electrical and mechanical equipment monitored at these facilities is very similar to that found in non-nuclear industrial plants. Annual inspections are performed on electrical components, roof systems, and mechanical equipment. Troubleshooting and post installation and post-maintenance infrared inspections are performed as needed. In conclusion, regardless of the industry, the use of infrared thermography has proven to be an efficient and effective method of inspection to help improve plant safety and reliability through early detection of equipment problems.

GLEATON, DAVIDT.

2004-08-24T23:59:59.000Z

197

Expected environments in high-level nuclear waste and spent fuel repositories in salt  

SciTech Connect

The purpose of this report is to describe the expected environments associated with high-level waste (HLW) and spent fuel (SF) repositories in salt formations. These environments include the thermal, fluid, pressure, brine chemistry, and radiation fields predicted for the repository conceptual designs. In this study, it is assumed that the repository will be a room and pillar mine in a rock-salt formation, with the disposal horizon located approx. 2000 ft (610 m) below the surface of the earth. Canistered waste packages containing HLW in a solid matrix or SF elements are emplaced in vertical holes in the floor of the rooms. The emplacement holes are backfilled with crushed salt or other material and sealed at some later time. Sensitivity studies are presented to show the effect of changing the areal heat load, the canister heat load, the barrier material and thickness, ventilation of the storage room, and adding a second row to the emplacement configuration. The calculated thermal environment is used as input for brine migration calculations. The vapor and gas pressure will gradually attain the lithostatic pressure in a sealed repository. In the unlikely event that an emplacement hole will become sealed in relatively early years, the vapor space pressure was calculated for three scenarios (i.e., no hole closure - no backfill, no hole closure - backfill, and hole closure - no backfill). It was assumed that the gas in the system consisted of air and water vapor in equilibrium with brine. A computer code (REPRESS) was developed assuming that these changes occur slowly (equilibrium conditions). The brine chemical environment is outlined in terms of brine chemistry, corrosion, and compositions. The nuclear radiation environment emphasized in this report is the stored energy that can be released as a result of radiation damage or crystal dislocations within crystal lattices.

Claiborne, H.C.; Rickertsen, L.D., Graham, R.F.

1980-08-01T23:59:59.000Z

198

Seismic design evaluation guidelines for buried piping for the DOE HLW Facilities  

SciTech Connect

This paper presents the seismic design and evaluation guidelines for underground piping for the Department of Energy (DOE) High-Level-Waste (HLW) Facilities. The underground piping includes both single and double containment steel pipes and concrete pipes with steel lining, with particular emphasis on the double containment piping. The design and evaluation guidelines presented in this paper follow the generally accepted beam-on-elastic-foundation analysis principle and the inertial response calculation method, respectively, for piping directly in contact with the soil or contained in a jacket. A standard analysis procedure is described along with the discussion of factors deemed to be significant for the design of the underground piping. The following key considerations are addressed: the design feature and safety requirements for the inner (core) pipe and the outer pipe; the effect of soil strain and wave passage; assimilation of the necessary seismic and soil data; inertial response calculation for the inner pipe; determination of support anchor movement loads; combination of design loads; and code comparison. Specifications and justifications of the key parameters used, stress components to be calculated and the allowable stress and strain limits for code evaluation are presented.

Lin, Chi-Wen [Consultant, Martinez, CA (United States); Antaki, G. [Westinghouse Savannah River Co., Aiken, SC (United States); Bandyopadhyay, K. [Brookhaven National Lab., Upton, NY (United States); Bush, S.H. [Review & Synthesis Association, Richland, WA (United States); Costantino, C. [City Univ. of New York, New York, NY (United States); Kennedy, R. [RPK Structural Mechanics, Yorba Linda, CA (United States). Consultant

1995-05-01T23:59:59.000Z

199

RPP-PLAN-47325 Revision 0 Radioactive Waste Determination Process Plan for Waste Management Area C Tank  

E-Print Network (OSTI)

This plan describes the radioactive waste determination process that the U.S. Department of Energy (DOE) will use for Hanford Site Waste Management Area C (WMA C) tank waste residuals subject to DOE authority under DOE Order 435.1, Radioactive Waste Management. Preparation of this plan is a required component of actions the DOE-Office of River Protection (ORP) must take to fulfill proposed Hanford Federal Facility Agreement and Consent Order Milestone M-045-80. Waste Management Area C is comprised of various single-shell tanks, encased and direct-buried pipes, diversion boxes, pump pits, and unplanned release sites (sites contaminated as a result of spills of tank waste to the environment). Since operations began in the late 1940s, the tanks in WMA C have continuously stored waste managed as high-level waste (HLW) that was derived from defense-related nuclear research, development, and weapons production activities. Planning for the final closure of WMA C is underway. This radioactive waste determination process plan assumes that tank closure will follow retrieval of as much tank waste as technically and economically practical. It is also assumed for the purposes of this plan that after completion

Waste Residuals; J. R. Robertson

2010-01-01T23:59:59.000Z

200

Melter Throughput Enhancements for High-Iron HLW  

Science Conference Proceedings (OSTI)

This report describes work performed to develop and test new glass and feed formulations in order to increase glass melting rates in high waste loading glass formulations for HLW with high concentrations of iron. Testing was designed to identify glass and melter feed formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts to assess melt rate using a vertical gradient furnace system and to develop new formulations with enhanced melt rate. Testing evaluated the effects of waste loading on glass properties and the maximum waste loading that can be achieved. The results from crucible-scale testing supported subsequent DuraMelter 100 (DM100) tests designed to examine the effects of enhanced glass and feed formulations on waste processing rate and product quality. The DM100 was selected as the platform for these tests due to its extensive previous use in processing rate determination for various HLW streams and glass compositions.

Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Gan, Hoa [The Catholic University of America, Washington, DC (United States); Joseph, Innocent [The Catholic University of America, Washington, DC (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Matlack, Keith S. [The Catholic University of America, Washington, DC (United States); Chaudhuri, Malabika [The Catholic University of America, Washington, DC (United States); Kot, Wing [The Catholic University of America, Washington, DC (United States)

2012-12-26T23:59:59.000Z

Note: This page contains sample records for the topic "hlw high-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT  

SciTech Connect

The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

2012-01-12T23:59:59.000Z

202

The ALICE electromagnetic calorimeter high level triggers  

E-Print Network (OSTI)

The ALICE (A Large Ion Collider Experiment) detector yields a huge sample of data from different sub-detectors. On-line data processing is applied to select and reduce the volume of the stored data. ALICE applies a multi-level hardware trigger scheme where fast detectors are used to feed a three-level (L0, L1, and L2) deep chain. The High-Level Trigger (HLT) is a fourth filtering stage sitting logically between the L2 trigger and the data acquisition event building. The EMCal detector comprises a large area electromagnetic calorimeter that extends the momentum measurement of photons and neutral mesons up to $p_T=250$ GeV/c, which improves the ALICE capability to perform jet reconstruction with measurement of the neutral energy component of jets. An online reconstruction and trigger chain has been developed within the HLT framework to sharpen the EMCal hardware triggers, by combining the central barrel tracking information with the shower reconstruction (clusters) in the calorimeter. In the present report the status and the functionality of the software components developed for the EMCal HLT online reconstruction and trigger chain will be discussed, as well as preliminary results from their commissioning performed during the 2011 LHC running period.

F. Ronchetti; F. Blanco; M. Figueredo; A. G. Knospe; L. Xaplanteris for the ALICE HLT Collaboration

2012-09-17T23:59:59.000Z

203

Supplement Analysis for the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement  

Science Conference Proceedings (OSTI)

In October 2002, DOE issued the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (Final EIS) (DOE 2002) that provided an analysis of the potential environmental consequences of alternatives/options for the management and disposition of Sodium Bearing Waste (SBW), High-Level Waste (HL W) calcine, and HLW facilities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL), now known as the Idaho National Laboratory (INL) and referred to hereafter as the Idaho Site. Subsequent to the issuance of the Final EIS, DOE included the requirement for treatment of SBW in the Request for Proposals for Environmental Management activities on the Idaho Site. The new Idaho Cleanup Project (ICP) Contractor identified Steam Reforming as their proposed method to treat SBW; a method analyzed in the Final EIS as an option to treat SBW. The proposed Steam Reforming process for SBW is the same as in the Final EIS for retrieval, treatment process, waste form and transportation for disposal. In addition, DOE has updated the characterization data for both the HLW Calcine (BBWI 2005a) and SBW (BBWI 2004 and BBWI 2005b) and identified two areas where new calculation methods are being used to determine health and safety impacts. Because of those changes, DOE has prepared this supplement analysis to determine whether there are ''substantial changes in the proposed action that are relevant to environmental concerns'' or ''significant new circumstances or information'' within the meaning of the Council of Environmental Quality and DOE National Environmental Policy Act (NEPA) Regulations (40 CFR 1502.9 (c) and 10 CFR 1021.314) that would require preparation of a Supplemental EIS. Specifically, this analysis is intended to determine if: (1) the Steam Reforming Option identified in the Final EIS adequately bounds impacts from the Steam Reforming Process proposed by the new ICP Contractor using the new characterization data, (2) the new characterization data is significantly different than the data presented in the Final EIS, (3) the new calculation methods present a significant change to the impacts described in the Final EIS, and (4) would the updated characterization data cause significant changes in the environmental impacts for the action alternatives/options presented in the Final EIS. There are no other aspects of the Final EIS that require additional review because DOE has not identified any additional new significant circumstances or information that would warrant such a review.

N /A

2005-06-30T23:59:59.000Z

204

Potential for erosion corrosion of SRS high level waste tanks  

Science Conference Proceedings (OSTI)

SRS high-level radioactive waste tanks will not experience erosion corrosion to any significant degree during slurry pump operations. Erosion corrosion in carbon steel structures at reported pump discharge velocities is dominated by electrochemical (corrosion) processes. Interruption of those processes, as by the addition of corrosion inhibitors, sharply reduces the rate of metal loss from erosion corrosion. The well-inhibited SRS waste tanks have a near-zero general corrosion rate, and therefore will be essentially immune to erosion corrosion. The experimental data on carbon steel erosion corrosion most relevant to SRS operations was obtained at the Hanford Site on simulated Purex waste. A metal loss rate of 2.4 mils per year was measured at a temperature of 102 C and a slurry velocity comparable to calculated SRS slurry velocities on ground specimens of the same carbon steel used in SRS waste tanks. Based on these data and the much lower expected temperatures, the metal loss rate of SRS tanks under waste removal and processing conditions should be insignificant, i.e. less than 1 mil per year.

Zapp, P.E.

1994-01-01T23:59:59.000Z

205

Technologies for destruction of long-lived radionuclides in high-level nuclear waste: Overview and requirements  

SciTech Connect

This paper, and this topical session on Nuclear Waste Minimization, Management and Remediation, focuses on two nuclear systems, and their associated technologies, that have the potential to address concerns surrounding long-lived radionuclides in high-level waste. Both systems offer technology applicable to HLW from present light-water reactors (LWR). Additionally these systems represent advanced nuclear power concepts that have important features associated with integrated management of wastes, long-term fuel supplies, and enhanced safety. The first system is the Integral Fast Reactor (IFR) concept. This system incorporates a metal-fueled fast reactor coupled with chemical separations based on pyroprocessing to produce power while simultaneously burning long-lived actinide waste. IFR applications include burning of actinides from current LWR spent fuel and energy production in a breeder environment. The second concept, Accelerator Transmutation of Waste (ATW), is based upon an accelerator-induced intense source of thermal neutrons and is aimed at destruction of long-lived actinides and fission products. This concept can be applied to long-lived radionuclides in spent fuel HLW as well as a future fission power source built around use of natural thorium or uranium as fuels coupled with concurrent waste destruction.

Arthur, E.D.

1993-10-01T23:59:59.000Z

206

DOE-EA-0179; Waste Form Selection for Savannah River Plant High-Level Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

48326 (F.R.) 48326 (F.R.) NOTICES DEPARTMENT OF ENERGY Compliance With the National Environmental Policy Act Proposed Finding of No Significant Impact, Selection of Borosilicate Glass as the Defense Waste Processing Facility Waste Form for High -Level Radioactive Wastes Savanah River Plant, Aiken, South Carolina Thursday, July 29, 1982 *32778 AGENCY: Energy Department. ACTION: Notice. SUMMARY: The Department of Energy (DOE) has prepared an environmental assessment (DOE/EA- 0179) on the proposed selection of borosilicate glass as the Defense Waste Processing Facility (DWPF) waste form for the immobilization of the high -level radioactive wastes generated and stored at the DOE Savannah River Plant (SRP), Aiken, South Carolina. DOE recently decided to immobilize

207

TESTS WITH HIGH-BISMUTH HLW GLASSES FINAL REPORT VSL-10R1780-1 REV 0 12/13/10  

Science Conference Proceedings (OSTI)

This Final Report describes the testing of glass formulations developed for Hanford High Level Waste (HLW) containing high concentrations of bismuth. In previous work on high-bismuth HLW streams specified by the Office of River Protection (ORP), fully compliant, high waste loading compositions were developed and subjected to melter testing on the DM100 vitrification system. However, during heat treatment according to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW canister centerline cooling (CCC) curves, crucible melts of the high-bismuth glasses were observed to foam. Clearly, such an occurrence during cooling of actual HLW canisters would be highly undesirable. Accordingly, the present work involves larger-scale testing to determine whether this effect occurs under more prototypical conditions, as well as crucible-scale tests to determine the causes and potentially remediate the observed foaming behavior. The work included preparation and characterization of crucible melts designed to determine the underlying causes of the foaming behavior as well as to assess potential mitigation strategies. Testing was also conducted on the DM1200 HLW Pilot melter with a composition previously tested on the DM100 and shown to foam during crucible-scale CCC heat treatment. The DM1200 tests evaluated foaming of glasses over a range of bismuth concentrations poured into temperature-controlled, 55-gallon drums which have a diameter that is close to that of the full-scale WTP HLW canisters. In addition, the DM1200 tests provided the first large-scale melter test data on high-bismuth WTP HLW compositions, including information on processing rates, cold cap behavior and off-gas characteristics, and data from this waste composition on the prototypical DM1200 off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for ORP on the same waste composition. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. The present glass formulation and melter testing work was aimed at one of the four waste streams previously specified by the Office of River Protection (ORP). Such testing supports the ORP basis for projection of the amount of Immobilized High Level Waste (IHLW) to be produced at Hanford and evaluation of the likely potential for future enhancements of the WTP over and above the present well-developed baseline. It should be noted that the compositions of the four ORP-specified waste streams differ significantly from those of the feed tanks (AZ-101, AZ-102, C-16/AY-102, and C-104/AY-101) that have been the focus of the extensive technology development and design work performed for the WTP baseline. In this regard, the work on the ORP-specified compositions is complementary to and necessarily of a more exploratory nature than the work in support of the current WTP baseline.

MATLACK KS; KRUGER AA; JOSEPH I; GAN H; KOT WK; CHAUDHURI M; MOHR RK; MCKEOWN DA; BARDAKEI T; GONG W; BUECCHELE AC; PEGG IL

2011-01-05T23:59:59.000Z

208

Secretary Bodman and Pakistan Officials Hold High-Level Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Bodman and Pakistan Officials Hold High-Level Energy Meeting Secretary Bodman and Pakistan Officials Hold High-Level Energy Meeting March 13, 2006 - 11:48am Addthis...

209

A VERY HIGH LEVEL NEUTRAL BEAM CONTROL SYSTEM  

E-Print Network (OSTI)

Level Neutial Beam Control System we have elucidated theseHigh Level Neutral Beam Control System 8!. References 1. V.High-Level Neutral-Beam Control System Victor Elischer Van

Elischer, V.

2010-01-01T23:59:59.000Z

210

Idaho High-Level Waste & Facilities Disposition, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix A Appendix A Site Evaluation Process A-iii DOE/EIS-0287 Idaho HLW & FD EIS TABLE OF CONTENTS Section Page Appendix A Site Evaluation Process A-1 A.1 Introduction A-1 A.2 Methodology A-1 A.3 High-Level Waste Treatment and Interim Storage Site Selection A-3 A.3.1 Identification of "Must" Criteria A-3 A.3.2 Identification of "Want" Criteria A-3 A.3.3 Identification of Candidate Sites A-3 A.3.4 Evaluation Process A-4 A.3.5 Results of Evaluation Process A-6 A.4 Low-Activity Waste Disposal Site Selection A-6 A.4.1 Identification of "Must" Criteria A-7 A.4.2 Identification of "Want" Criteria A-8 A.4.3 Identification of Candidate Sites A-8 A.4.4 Evaluation Process A-8 A.4.5 Results of Evaluation Process A-9 A.4.6 Final Selection of a Low-Activity Waste Disposal Facility

211

PLUTONIUM/HIGH-LEVEL VITRIFIED WASTE BDBE DOSE CALCULATION  

Science Conference Proceedings (OSTI)

In accordance with the Nuclear Waste Policy Amendments Act of 1987, Yucca Mountain was designated as the site to be investigated as a potential repository for the disposal of high-level radioactive waste. The Yucca Mountain site is an undeveloped area located on the southwestern edge of the Nevada Test Site (NTS), about 100 miles northwest of Las Vegas. The site currently lacks rail service or an existing right-of-way. If the Yucca Mountain site is found suitable for the repository, rail service is desirable to the Office of Civilian Waste Management (OCRWM) Program because of the potential of rail transportation to reduce costs and to reduce the number of shipments relative to highway transportation. A Preliminary Rail Access Study evaluated 13 potential rail spur options. Alternative routes within the major options were also developed. Each of these options was then evaluated for potential land use conflicts and access to regional rail carriers. Three potential routes having few land use conflicts and having access to regional carriers were recommended for further investigation. Figure 1-1 shows these three routes. The Jean route is estimated to be about 120 miles long, the Carlin route to be about 365 miles long, and Caliente route to be about 365 miles long. The remaining ten routes continue to be monitored and should any of the present conflicts change, a re-evaluation of that route will be made. Complete details of the evaluation of the 13 routes can be found in the previous study. The DOE has not identified any preferred route and recognizes that the transportation issues need a full and open treatment under the National Environmental Policy Act. The issue of transportation will be included in public hearings to support development of the Environmental Impact Statement (EIS) proceedings for either the Monitored Retrievable Storage Facility or the Yucca Mountain Project or both.

D.C. Richardson

2003-03-19T23:59:59.000Z

212

Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Inspections  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Inspections Tasked for the Transportation of Spent Nuclear Fuel Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Inspections Tasked for the Transportation of Spent Nuclear Fuel Task: Identify Shortline Railroads Serving Nuclear Power Plants Establish Contact Information with Railroads Officials Field Review of each Railroad's Physical and Operational Infrastructure Facilitate Upgrades to Meet Safe Acceptable Standards Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Inspections Tasked for the Transportation of Spent Nuclear Fuel More Documents & Publications TEC Meeting Summaries - February 2008 Presentations TEC Meeting Summaries - July 2007 Presentations TEC Meeting Summaries - September 2006

213

Redox Control For Hanford HLW Feeds VSL-12R2530-1, REV 0  

SciTech Connect

The principal objectives of this work were to investigate the effects of processing simulated Hanford HLW at the estimated maximum concentrations of nitrates and oxalates and to identify strategies to mitigate any processing issues resulting from high concentrations of nitrates and oxalates. This report provides results for a series of tests that were performed on the DM10 melter system with simulated C-106/AY-102 HLW. The tests employed simulated HLW feeds containing variable amounts of nitrates and waste organic compounds corresponding to maximum concentrations proj ected for Hanford HLW streams in order to determine their effects on glass production rate, processing characteristics, glass redox conditions, melt pool foaming, and the tendency to form secondary phases. Such melter tests provide information on key process factors such as feed processing behavior, dynamic effects during processing, processing rates, off-gas amounts and compositions, foaming control, etc., that cannot be reliably obtained from crucible melts.

Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Matlack, Keith S. [The Catholic University of America, Washington, DC (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Kot, Wing K. [The Catholic University of America, Washington, DC (United States); Joseph, Innocent [The Catholic University of America, Washington, DC (United States)

2012-12-13T23:59:59.000Z

214

An Investigation into the Oxidation State of Molybdenum in Simplified High Level Nuclear Waste Glass Compositions  

E-Print Network (OSTI)

a full simulated HLW stream based upon 4:1 ratio of high burn up UO2/mixed oxide (HBU/MOX) fuel. EXPERIMENTAL A series of simplified simulated HLW glasses (based on the 4:1 HBU/MOX composition) were melted

Sheffield, University of

215

Evaluation of Flygt Propeller Xixers for Double Shell Tank (DST) High Level Waste Auxiliary Solids Mobilization  

Science Conference Proceedings (OSTI)

The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineering case study is to evaluate the Flygt{trademark} submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt{trademark} mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described.

PACQUET, E.A.

2000-07-20T23:59:59.000Z

216

Status of Sandia HLW canister/overpack program studies  

DOE Green Energy (OSTI)

The focus of the Sandia program has been to identify an extended life alloy suitable as an overpack surrounding an HLW canister. The function of the overpack, which may be only millimeters thick, is corrosion resistance, not support strength. Laboratory and hot-cell tests are being used to measure the corrosion rates and assess the metallurgical behavior of selected engineered barrier materials. Field and in situ tests and demonstrations are in the planning stage. Recent experimental results are reviewed, and the status of the various phases of this program are described. Several candidate alloys have been examined for corrosion behavior under environmental conditions typical of a salt repository. The prime candidate for long-lived overpacks, TiCode-12, has not been disqualified by any of the tests and overtests conducted in our investigations. However further testing of potential failure mechanisms are being evaluated before final material selection is made. Nickel-based and lower-cost alloys will also be examined. This program will culminate with large-scale overpack fabrication demonstrations and field testing in salt.

Molecke, M.A.; Abrego, L.

1980-01-01T23:59:59.000Z

217

Understanding radioactive waste  

SciTech Connect

This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

Murray, R.L.

1981-12-01T23:59:59.000Z

218

Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes  

SciTech Connect

The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage.

Harmon, K.M.; Johnson, A.B. Jr.

1984-04-01T23:59:59.000Z

219

Measuring and Predicting Fission Product Noble Metals in SRS HLW Sludges  

DOE Green Energy (OSTI)

The noble metals Ru, Rh, Pd, and Ag were produced in the Savannah River Site (SRS) reactors as products of the fission of U-235. Consequently they are in the High Level Waste (HLW) sludges that are currently being immobilized into a borosilicate glass in the Defense Waste Processing Facility (DWPF). The noble metals are a concern in the DWPF because they catalyze the decomposition of formic acid used in the process to produce the flammable gas hydrogen. As the concentration of these noble metals in the sludge increases, more hydrogen will be produced when this sludge is processed. In the SRS Tank Farm it takes approximately two years to prepare a sludge batch for processing in the DWPF. This length of time is necessary to mix the appropriate sludges, blend them to form a sludge batch and then wash it to enable processing in the DWPF. This means that the exact composition of a sludge batch is not known for {approx}two years. During this time, studies with simulated nonradioactive sludges must be performed to determine the desired DWPF processing parameters for the new sludge batch. Consequently, prediction of the noble metal concentrations is desirable to prepare appropriate simulated sludges for studies of the DWPF process for that sludge batch. These studies give a measure of the amount of hydrogen that will be produced when that sludge batch is processed. This report describes in detail the measurement of these noble metal concentrations in sludges and a way to predict their concentrations from an estimate of the lanthanum concentration in the sludge. Results for two sludges are presented in this report. These are Sludge Batch 3 (SB3) currently being processed by the DWPF and a sample of unwashed sludge from Tank 11 that will be part of Sludge Batch 4. The concentrations of the noble metals in HLW sludges are measured by using mass spectroscopy to determine concentrations of the isotopes that comprise each noble metal. For example, the noble metal Ru is comprised of isotopes with masses 101, 102, and 104. The element Rh has a single isotope with mass 103. The element Pd is comprised of five isotopes. These are at masses 105-108 and mass 110. As does Rh, Ag has only one isotope. This is at mass 109. However, results in this report show that the Ag concentration in the two samples was due to natural Ag being in the samples. Natural Ag has masses at 107 and 109. The Ag-107 interferes with the measurement of Pd-107. This Ag was used in one of the processes at SRS. The results also show that natural Cd is in the two samples. Cadmium has isotopes at masses 106, 108 and 110, thus it interferes with the analysis of the Pd isotopes at these masses. Cadmium was also used in one of the processes at SRS. However, the concentrations of the Pd isotopes at masses 106, 107, 108 and 110 could be calculated using the fission yields for the Pd isotopes, and the measured concentration of Pd at mass 105 where there is no Ag or Cd interference. Based on the measurements of the concentrations of the isotopes of each noble metal, the total concentration of that noble metal can be determined by summing the concentrations of the individual isotopes. The results in this report show that the relative concentrations of the isotopes of Ru and Rh are in proportion to their yields from the fission of U-235 in the reactors. These results were expected since these elements are very insoluble in caustic and thus are primarily in the sludge tanks rather then the salt tanks of the SRS Tank Farm. The relative concentration of Pd is somewhat lower than that based on the relative fission yields of its five isotopes. This indicates that some of the Pd is in the salt tanks rather than the sludge tanks of the Tank Farm. The concentrations of the noble metals were predicted using the High Level Waste Characterization System (WCS) at SRS. This system keeps record of the inventory of the major compounds and select radionuclides that are in each of the SRS HLW tanks. Using this system, the Closure Business Unit (CBU) can predict the major composition of a sludge ba

Bibler, N

2005-04-05T23:59:59.000Z

220

NERC Presentation: Accommodating High Levels of Variable Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

high levels of variable electricity eneration. Variable resources are types of electric power generation that rely on an uncontrolled, "variable" fuel (e.g. wind, sunlight,...

Note: This page contains sample records for the topic "hlw high-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

SIGWX Charts - High Level Significant Weather | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Ocean Research Safety States Supply Chain SIGWX Charts - High Level Significant Weather Safety DataTools Apps Challenges Resources Blogs Let's Talk Safety You are here...

222

Progress in resolving Savannah River Site high-level waste tank safety issues  

SciTech Connect

At the Savannah River Site (SRS), near Aiken, South Carolina, approximately 35 million gallons of high-level radioactive waste are stored in 51 underground, carbon steel waste tanks. These tanks and associated facilities are distributed between the F and H areas, two processing areas at SRS, and are called the F- and H-area high-level waste tank farms. Within the last few years, issues have been raised about the safety of high-level waste tank farms throughout the DOE complex, including those at SRS. Plans for resolution of these issues were reported at the Waste Management 192 conference. This paper addresses progress made at SRS since 1992. Most of the efforts for resolving the six safety issues identified at SRS have concentrated on (1) preparing the tanks for waste removal and (2) completing construction, testing, and starting up three key facilities. These facilities will transform the waste into forms suitable for final disposal, specifically borosilicate glass and saltstone (grout). Removing the waste from the tanks and processing it is needed to resolve three of the safety issues. Two facilities -- In-Tank Precipitation and the Defense Waste Processing Facility -- are undergoing non-radioactive simulant testing (``cold runs``) at this time. The third facility -- Sludge Processing -- began testing with actual waste in October 1993. In Tank Precipitation is scheduled to be operating by the end of 1994.

d`Entremont, P.D.

1993-12-31T23:59:59.000Z

223

Generalized Test Plan for the Vitrification of Simulated High-Level -Waste Calcine in the Idaho National Laboratorys Bench -Scale Cold Crucible Induction Melter  

SciTech Connect

This Preliminary Idaho National Laboratory (INL) Test Plan outlines the chronological steps required to initially evaluate the validity of vitrifying INL surrogate (cold) High-Level-Waste (HLW) solid particulate calcine in INL's Cold Crucible Induction Melter (CCIM). Its documentation and publication satisfies interim milestone WP-413-INL-01 of the DOE-EM (via the Office of River Protection) sponsored work package, WP 4.1.3, entitled 'Improved Vitrification' The primary goal of the proposed CCIM testing is to initiate efforts to identify an efficient and effective back-up and risk adverse technology for treating the actual HLW calcine stored at the INL. The calcine's treatment must be completed by 2035 as dictated by a State of Idaho Consent Order. A final report on this surrogate/calcine test in the CCIM will be issued in May 2012-pending next fiscal year funding In particular the plan provides; (1) distinct test objectives, (2) a description of the purpose and scope of planned university contracted pre-screening tests required to optimize the CCIM glass/surrogate calcine formulation, (3) a listing of necessary CCIM equipment modifications and corresponding work control document changes necessary to feed a solid particulate to the CCIM, (4) a description of the class of calcine that will be represented by the surrogate, and (5) a tentative tabulation of the anticipated CCIM testing conditions, testing parameters, sampling requirements and analytical tests. Key FY -11 milestones associated with this CCIM testing effort are also provided. The CCIM test run is scheduled to be conducted in February of 2012 and will involve testing with a surrogate HLW calcine representative of only 13% of the 4,000 m3 of 'hot' calcine residing in 6 INL Bin Sets. The remaining classes of calcine will have to be eventually tested in the CCIM if an operational scale CCIM is to be a feasible option for the actual INL HLW calcine. This remaining calcine's make-up is HLW containing relatively high concentrations of zirconium and aluminum, representative of the cladding material of the reprocessed fuel that generated the calcine. A separate study to define the CCIM testing needs of these other calcine classifications in currently being prepared under a separate work package (WP-0) and will be provided as a milestone report at the end of this fiscal year.

Vince Maio

2011-08-01T23:59:59.000Z

224

USE OF AN EQUILIBRIUM MODEL TO FORECAST DISSOLUTION EFFECTIVENESS, SAFETY IMPACTS, AND DOWNSTREAM PROCESSABILITY FROM OXALIC ACID AIDED SLUDGE REMOVAL IN SAVANNAH RIVER SITE HIGH LEVEL WASTE TANKS 1-15  

DOE Green Energy (OSTI)

This thesis details a graduate research effort written to fulfill the Magister of Technologiae in Chemical Engineering requirements at the University of South Africa. The research evaluates the ability of equilibrium based software to forecast dissolution, evaluate safety impacts, and determine downstream processability changes associated with using oxalic acid solutions to dissolve sludge heels in Savannah River Site High Level Waste (HLW) Tanks 1-15. First, a dissolution model is constructed and validated. Coupled with a model, a material balance determines the fate of hypothetical worst-case sludge in the treatment and neutralization tanks during each chemical adjustment. Although sludge is dissolved, after neutralization more is created within HLW. An energy balance determines overpressurization and overheating to be unlikely. Corrosion induced hydrogen may overwhelm the purge ventilation. Limiting the heel volume treated/acid added and processing the solids through vitrification is preferred and should not significantly increase the number of glass canisters.

KETUSKY, EDWARD

2005-10-31T23:59:59.000Z

225

Improving polyhedral code generation for high-level synthesis  

Science Conference Proceedings (OSTI)

High-level synthesis (HLS) tools are now capable of generating high-quality RTL codes for a number of programs. Nevertheless, for best performance aggressive program transformations are still required to exploit data reuse and enable communication/computation ... Keywords: high-level synthesis, loop tiling, polyhedral compilation

Wei Zuo; Peng Li; Deming Chen; Louis-Nol Pouchet; Shunan Zhong; Jason Cong

2013-09-01T23:59:59.000Z

226

A Heuristic for Clock Selection in High-Level Synthesis  

Science Conference Proceedings (OSTI)

Clock selection has a significant impact on the performance and quality of designs in high-level synthesis. In most synthesis systems, a convenient value of the clock is chosen or exact (and expensive) methods have been used for clock selection. This ... Keywords: high-level synthesis, clock selection, graph structure, design space exploration, heuristics

J. Ramanujam; Sandeep Deshpande; Jinpyo Hong; Mahmut Kandemir

2002-01-01T23:59:59.000Z

227

High-Level Power Minimization of Analog Sensor Interface Architectures  

Science Conference Proceedings (OSTI)

A high-level analog design and optimization tool was developed for the architectural synthesis of complex analog systems towards minimal power consumption. In this paper we will illustrate the use of this tool with the high-level design of an analog ...

Stphane Donnay; Georges Gielen; Willy Sansen

1998-12-01T23:59:59.000Z

228

National high-level waste systems analysis report  

SciTech Connect

This report documents the assessment of budgetary impacts, constraints, and repository availability on the storage and treatment of high-level waste and on both existing and pending negotiated milestones. The impacts of the availabilities of various treatment systems on schedule and throughput at four Department of Energy sites are compared to repository readiness in order to determine the prudent application of resources. The information modeled for each of these sites is integrated with a single national model. The report suggests a high-level-waste model that offers a national perspective on all high-level waste treatment and storage systems managed by the Department of Energy.

Kristofferson, K.; Oholleran, T.P.; Powell, R.H.

1995-09-01T23:59:59.000Z

229

Locations of spent nuclear fuel and high-level radioactive waste ultimately destined for geologic disposal  

Science Conference Proceedings (OSTI)

Since the late 1950s, Americans have come to rely more and more on energy generated from nuclear reactors. Today, 109 commercial nuclear reactors supply over one-fifth of the electricity used to run our homes, schools, factories, and farms. When the nuclear fuel can no longer sustain a fission reaction in these reactors it becomes `spent` or `used` and is removed from the reactors and stored onsite. Most of our Nation`s spent nuclear fuel is currently being stored in specially designed deep pools of water at reactor sites; some is being stored aboveground in heavy thick-walled metal or concrete structures. Sites currently using aboveground dry storage systems include Virginia Power`s Surry Plant, Carolina Power and Light`s H.B. Robinson Plant, Duke Power`s Oconee Nuclear Station, Colorado Public Service Company`s shutdown reactor at Fort St. Vrain, Baltimore Gas and Electric`s Calvert Cliffs Plant, and Michigan`s Consumer Power Palisades Plant.

Not Available

1994-09-01T23:59:59.000Z

230

Transmutation of high-level radioactive waste by a charged particle accelerator  

SciTech Connect

Transmutation of minor actinides and fission products using proton accelerators has many advantages over a transmutor operated in a critical condition. The energy required for this transmutation can be reduced by multiplying the spallation neutrons in a subcritical assembly surrounding the spallation target. The authors have studied the relation between the energy requirements and the multiplication factor, k, of the subcritical assembly, while varying the range of several parameters in the spallation target. A slightly subcritical reactor is superior to a reactor with large subcriticality in the context of the energy requirement of a small proton accelerator, the extent of radiation damage, and other safety problems. To transmute the fission products, the transmutor reactor must have a good neutron economy, which can be provided by a transmutor operated by a proton accelerator. The paper discusses the use of minor actinides to improve neutronics characteristics, such as a long fuel burn-up rather than simply transmuting this valuable material.

Takahashi, Hiroshi

1993-12-31T23:59:59.000Z

231

Shale Disposal of U.S. High-Level Radioactive Waste  

E-Print Network (OSTI)

Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy.

Frank D. Hansen; Ernest L. Hardin; Robert P. Rechard; Geoffrey A. Freeze; David C; Patrick V. Brady; C. Michael Stone; Mario J. Martinez; John F. Holl; Thomas Dewers; Katherine N. Gaither; Steven R. Sobolik; All T. Cygan

2010-01-01T23:59:59.000Z

232

Used Fuel and High-Level Radioactive Waste Extended Storage Collaboration Program  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) convened a workshop of over 40 representatives of the nuclear industry, federal government, national laboratories, and suppliers of used-fuel dry-storage systems to discuss the potential issues associated with extended dry storage of used fuel, that is, storage considerably beyond the term of current and recently proposed U.S. Nuclear Regulatory Commission (NRC) regulations. The workshop was held November 18-19, 2009, at EPRI's offices in Washington, DC.

2010-03-02T23:59:59.000Z

233

A TWP-ICE High-Level Cloud Case Study  

NLE Websites -- All DOE Office Websites (Extended Search)

A TWP-ICE High-Level Cloud Case Study Mace, Gerald University of Utah Category: Field Campaigns The Tropical Warm Pool International Cloud Experiment (TWP ICE) was conducted near...

234

NERC Presentation: Accommodating High Levels of Variable Generation,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NERC Presentation: Accommodating High Levels of Variable NERC Presentation: Accommodating High Levels of Variable Generation, October 29, 2010 NERC Presentation: Accommodating High Levels of Variable Generation, October 29, 2010 North American Electric Reliability Corporation (NERC) presentation to the Electricity Advisory Committee, October 29, 2010, on accommodating high levels of variable electricity eneration. Variable resources are types of electric power generation that rely on an uncontrolled, "variable" fuel (e.g. wind, sunlight, waves, tidal forces, and some types of rivers) to generate electricity. Most renewablesfall into this category. Reliably integrating these resources into the bulk power system will require significant changes to traditional methods used for system planning and operation. Ongoing efforts brought together by NERC and its stakeholders

235

High-level test synthesis for delay fault testability  

Science Conference Proceedings (OSTI)

A high-level test synthesis (HLTS) method targeted for delay fault testability is presented. The proposed method, when combined with hierarchical test pattern generation for embedded modules, guarantees 100% delay test coverage for detectable faults ...

Sying-Jyan Wang; Tung-Hua Yeh

2007-04-01T23:59:59.000Z

236

Spray Calciner/In-Can Melter high-level waste solidification technical manual  

Science Conference Proceedings (OSTI)

This technical manual summarizes process and equipment technology developed at Pacific Northwest Laboratory over the last 20 years for vitrification of high-level liquid waste by the Spray Calciner/In-Can Melter process. Pacific Northwest Laboratory experience includes process development and demonstration in laboratory-, pilot-, and full-scale equipment using nonradioactive synthetic wastes. Also, laboratory- and pilot-scale process demonstrations have been conducted using actual high-level radioactive wastes. In the course of process development, more than 26 tonnes of borosilicate glass have been produced in 75 canisters. Four of these canisters contained radioactive waste glass. The associated process and glass chemistry is discussed. Technology areas described include calciner feed treatment and techniques, calcination, vitrification, off-gas treatment, glass containment (the canister), and waste glass chemistry. Areas of optimization and site-specific development that would be needed to adapt this base technology for specific plant application are indicated. A conceptual Spray Calciner/In-Can Melter system design and analyses are provided in the manual to assist prospective users in evaluating the process for plant application, to provide equipment design information, and to supply information for safety analyses and environmental reports. The base (generic) technology for the Spray Calciner/In-Can Melter process has been developed to a point at which it is ready for plant application.

Larson, D.E. (ed.)

1980-09-01T23:59:59.000Z

237

Progress in resolving Hanford Site high-level waste tank safety issues  

DOE Green Energy (OSTI)

Interim storage of alkaline, high-level radioactive waste, from two generations of spent fuel reprocessing and waste management activities, has resulted in the accumulation of 238 million liters of waste in Hanford Site single and double-shell tanks. Before the 1990`s, the stored waste was believed to be: (1) chemically unreactive under its existing storage conditions and plausible accident scenarios; and (2) chemically stable. This paradigm was proven incorrect when detailed evaluation of tank contents and behavior revealed a number of safety issues and that the waste was generating flammable and noxious gases. In 1990, the Waste Tank Safety Program was formed to focus on identifying safety issues and resolving the ferrocyanide, flammable gas, organic, high heat, noxious vapor, and criticality issues. The tanks of concern were placed on Watch Lists by safety issue. This paper summarizes recent progress toward resolving Hanford Site high-level radioactive waste tank safety issues, including modeling, and analyses, laboratory experiments, monitoring upgrades, mitigation equipment, and developing a strategy to screen tanks for safety issues.

Babad, H.; Eberlein, S.J.; Johnson, G.D.; Meacham, J.E.; Osborne, J.W.; Payne, M.A.; Turner, D.A.

1995-02-01T23:59:59.000Z

238

Water borne transport of high level nuclear waste in very deep borehole disposal of high level nuclear waste  

E-Print Network (OSTI)

The purpose of this report is to examine the feasibility of the very deep borehole experiment and to determine if it is a reasonable method of storing high level nuclear waste for an extended period of time. The objective ...

Cabeche, Dion Tunick

2011-01-01T23:59:59.000Z

239

Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste  

DOE Patents (OSTI)

Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

Boatner, Lynn A. (Oak Ridge, TN); Sales, Brian C. (Oak Ridge, TN)

1989-01-01T23:59:59.000Z

240

Comparison of selected foreign plans and practices for spent fuel and high-level waste management  

Science Conference Proceedings (OSTI)

This report describes the major parameters for management of spent nuclear fuel and high-level radioactive wastes in selected foreign countries as of December 1989 and compares them with those in the United States. The foreign countries included in this study are Belgium, Canada, France, the Federal Republic of Germany, Japan, Sweden, Switzerland, and the United Kingdom. All the countries are planning for disposal of spent fuel and/or high-level wastes in deep geologic repositories. Most countries (except Canada and Sweden) plan to reprocess their spent fuel and vitrify the resultant high-level liquid wastes; in comparison, the US plans direct disposal of spent fuel. The US is planning to use a container for spent fuel as the primary engineered barrier. The US has the most developed repository concept and has one of the earliest scheduled repository startup dates. The repository environment presently being considered in the US is unique, being located in tuff above the water table. The US also has the most prescriptive regulations and performance requirements for the repository system and its components. 135 refs., 8 tabs.

Schneider, K.J.; Mitchell, S.J.; Lakey, L.T.; Johnson, A.B. Jr.; Hazelton, R.F.; Bradley, D.J.

1990-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "hlw high-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

FINAL REPORT TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-02R0100-2 REV 1 2/17/03  

Science Conference Proceedings (OSTI)

This document provides the final report on data and results obtained from a series of nine tests performed on the one-third scale DuraMelter{trademark} 1200 (DM1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part B1 [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plans. The nine tests reported here were preceded by an initial series of short-duration tests conducted to support the start-up and commissioning of this system. This report is a followup to the previously issued Preliminary Data Summary Reports. The DM1200 system was deployed for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. These tests include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The primary objective of the present series of tests was to determine the effects of a variety of parameters on the glass production rate in comparison to the RPP-WTP HL W design basis of 400 kg/m{sup 2}/d. Previous testing on the DMIOOO system [1] concluded that achievement of that rate with simulants of projected WTP melter feeds (AZ-101 and C-106/AY-102) was unlikely without the use of bubblers. As part of those tests, the same feed that was used during the cold-commissioning of the West Valley Demonstration Project (WVDP) HLW vitrification system was run on the DM1000 system. The DM1000 tests reproduced the rates that were obtained at the larger WVDP facility, lending confidence to the tests results [1]. Since the inclusion or exclusion of a bubbler has significant design implications, the Project commissioned further tests to address this issue. In an effort to identify factors that might increase the glass production rate for projected WTP melter feeds, a subsequent series of tests was performed on the DM100 system. Several tests variables led to glass production rate increases to values significantly above the 400 kg/m2/d requirement. However, while small-scale melter tests are useful for screening relative effects, they tend to overestimate absolute glass production rates, particularly for un-bubbled tests. Consequently, when scale-up effects were taken into account, it was not clear that any of the variables investigated would conclusively meet the 400 kg/m{sup 2}/d requirement without bubbling. The present series of tests was therefore performed on the DM1200 one-third scale HLW pilot melter system to provide the required basis for a final decision on whether bubblers would be included in the HLW melter. The present tests employed the same AZ-101 waste simulant and glass composition that was used for previous testing for consistency and comparability with the results from the earlier tests.

KRUGER AA; MATLACK KS; KOT WK; BARDAKCI T; GONG W; D'ANGELO NA; SCHATZ TR; PEGG IL

2011-12-29T23:59:59.000Z

242

HLW Salt Disposition Alternatives Identification Preconceptual Phase I Summary Report (Including Attachments)  

SciTech Connect

The purpose of this report is to summarize the process used by the Team to systematically develop alternative methods or technologies for final disposition of HLW salt. Additionally, this report summarizes the process utilized to reduce the total list of identified alternatives to an ''initial list'' for further evaluation. This report constitutes completion of the team charter major milestone Phase I Deliverable.

Piccolo, S.F.

1999-07-09T23:59:59.000Z

243

Final Report - High Level Waste Vitrification System Improvements, VSL-07R1010-1, Rev 0, dated 04/16/07  

SciTech Connect

This report describes work conducted to support the development and testing of new glass formulations that extend beyond those that have been previously investigated for the Hanford Waste Treatment and Immobilization Plant (WTP). The principal objective was to investigate maximization of the incorporation of several waste components that are expected to limit waste loading and, consequently, high level waste (HLW) processing rates and canister count. The work was performed with four waste compositions specified by the Office of River Protection (ORP); these wastes contain high concentrations of bismuth, chromium, aluminum, and aluminum plus sodium. The tests were designed to identify glass formulations that maximize waste loading while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM100) tests designed to examine the effects of enhanced glass formulations, increased glass processing temperature, increased crystallinity, and feed solids content on waste processing rate and product quality.

Kruger, Albert A.; Gan, H.; Pegg, I. L.; Gong, W.; Champman, C. C.; Joseph, I.; Matlack, K. S.

2013-11-13T23:59:59.000Z

244

Array recovery and high-level transformations for DSP applications  

Science Conference Proceedings (OSTI)

Efficient implementation of DSP applications is critical for many embedded systems. Optimizing compilers for application programs, written in C, largely focus on code generation and scheduling, which, with their growing maturity, are providing diminishing ... Keywords: Pointer conversion, dataflow graphs, embedded processors, high-level transformations

Bjrn Franke; Michael O'boyle

2003-05-01T23:59:59.000Z

245

Climate Fluctuations and Record-High Levels of Lake Michigan  

Science Conference Proceedings (OSTI)

Lake Michigan reached record-high levels during 1985 and 1986 just 10 years after attaining its previous record highs of this century. The climate of the basin has become cloudier and cooler over the past 40 years, loading to decreased ...

Stanley A. Changnon Jr.

1987-11-01T23:59:59.000Z

246

Exploring high-level features for detecting cyberpedophilia  

Science Conference Proceedings (OSTI)

In this paper, we suggest a list of high-level features and study their applicability in detection of cyberpedophiles. We used a corpus of chats downloaded from http://www.perverted-justice.com and two negative datasets of different nature: cybersex ... Keywords: Cyberpedophilia, Emotion detection, Sentiment analysis

Dasha Bogdanova, Paolo Rosso, Thamar Solorio

2014-01-01T23:59:59.000Z

247

A high-level abstraction of shared accesses  

Science Conference Proceedings (OSTI)

We describe the design and use of the tape mechanism, a new high-level abstraction of accesses to shared data for software DSMs. Tapes consolidate and generalize a number of recent protocol optimizations, including update-based locks ... Keywords: DSM, programming libraries, shared memory, update protocols

Peter J. Keleher

2000-02-01T23:59:59.000Z

248

THE XAL INFRASTRUCTURE FOR HIGH LEVEL CONTROL ROOM APPLICATIONS  

Science Conference Proceedings (OSTI)

XAL is a Java programming framework for building high-level control applications related to accelerator physics. The structure, details of implementation, and interaction between components, auxiliary XAL packages, and the latest modifications are discussed. A general overview of XAL applications created for the SNS project is presented.

Shishlo, Andrei P [ORNL; Allen, Christopher K [ORNL; Chu, Paul [Stanford University; Galambos, John D [ORNL; Pelaia II, Tom [ORNL

2009-01-01T23:59:59.000Z

249

High-level synthesis of digital microfluidic biochips  

Science Conference Proceedings (OSTI)

Microfluidic biochips offer a promising platform for massively parallel DNA analysis, automated drug discovery, and real-time biomolecular recognition. Current techniques for full-custom design of droplet-based digital biochips do not scale ... Keywords: High-level synthesis, biochips, microfluidics, scheduling, system-on-chip

Fei Su; Krishnendu Chakrabarty

2008-01-01T23:59:59.000Z

250

NATURE OF RADIOACTIVE WASTES  

SciTech Connect

The integrated processes of nuclear industry are considered to define the nature of wastes. Processes for recovery and preparation of U and Th fuels produce wastes containing concentrated radioactive materials which present problems of confinement and dispersal. Fundamentals of waste treatment are considered from the standpoint of processes in which radioactive materials become a factor such as naturally occurring feed materials, fission products, and elements produced by parasitic neutron capture. In addition, the origin of concentrated fission product wastes is examined, as well as characteristics of present wastes and the level of fission products in wastes. Also, comments are included on high-level wastes from processes other than solvent extraction, active gaseous wastes, and low- to intermediate-level liquid wastes. (J.R.D.)

Culler, F.L. Jr.

1959-01-26T23:59:59.000Z

251

Life Extension of Aging High-Level Waste Tanks  

Science Conference Proceedings (OSTI)

The Double Shell Tanks (DSTs) play a critical role in the Hanford High-Level Waste Treatment Complex, and therefore activities are underway to protect and better understand these tanks. The DST Life Extension Program is focused on both tank life extension and on evaluation of tank integrity. Tank life extension activities focus on understanding tank failure modes and have produced key chemistry and operations controls to minimize tank corrosion and extend useful tank life. Tank integrity program activities have developed and applied key technologies to evaluate the condition of the tank structure and predict useful tank life. Program results to date indicate that DST useful life can be extended well beyond the original design life and allow the existing tanks to fill a critical function within the Hanford High-Level Waste Treatment Complex. In addition the tank life may now be more reliably predicted, facilitating improved planning for the use and possible future replacement of these tanks.

Bryson, D.; Callahan, V.; Ostrom, M.; Bryan, W.; Berman, H.

2002-02-26T23:59:59.000Z

252

Project Rio Blanco radioactivity and the environment  

SciTech Connect

Data are presented on radiological measurements of the environment and on documenting the transfer to a subsurface disposal well of radioactive water separated from the produced gas stream. Analysis of gas and water through the drilling well control unit revealed the presence of $sup 3$H and $sup 85$Kr in the gas and $sup 3$H, $sup 137$Cs, and $sup 90$Sr in the water. The production test, disposal system, and radiological monitoring system are described. Data on effluents are presented under the headings: gas and water production, radioactivity concentrations in gas, radioactivity concentrations in separator water samples, radioactivity concentrations in injected water volumes, and disposition of radioactivity. Tritium, $sup 39$Ar, $sup 14$C, $sup 85$Kr, and $sup 222$Rn were present in gas. Tritium, $sup 134$CCs, $sup 137$Cs, $sup 90$Sr, $sup 75$Se, and $sup 106$Ru were present in separator water samples. Data on environmental monitoring and RB-AR-2 drilling and testing are presented under the headings air sampling, air moisture and precipitation sampling, soil sampling, water sampling, Fawn Creek sediments and algae/moss samples, bioassays, aerial surveillance, and potential environmental radiation doses. (HLW)

1975-10-01T23:59:59.000Z

253

Grid Reliability Considerations for High Levels of Demand Response  

Science Conference Proceedings (OSTI)

The objectives of this white paper are to: (1) consider the unique characteristics of demand response relative to bulk electric system reliability needs and present contributions to system reliability, (2) identify potential bulk electric system reliability impacts of high levels of demand response without appropriate characterization of the resource over time and at increasing penetration levels, and (3) identify research needs to address these impacts so that the potential benefits of DR as system ...

2013-11-07T23:59:59.000Z

254

RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES  

SciTech Connect

The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the Savannah River National Laboratory (SRNL) to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125/129 and Tc-99 to chemically resemble WTP-SW. Ninety six grams of radioactive product were made for testing. The second campaign commenced using SRS LAW chemically trimmed to look like Hanford's LAW. Six hundred grams of radioactive product were made for extensive testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

2011-02-24T23:59:59.000Z

255

Microsoft PowerPoint - 2-05 PEGG-2 - Melter Tests with High Al HLW - Nov 2010 emb.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Melter Melter Testing with High Aluminum HLW Streams Ian L. Pegg, Hao Gan, Wing K. Kot, Keith S. Matlack, and Innocent Joseph * Vitreous State Laboratory The Catholic University of America Washington, DC * EnergySolutions, Inc. DOE EM Waste Processing Technical Exchange 2010 Print Close Melter Testing with High Aluminum HLW Streams 2 LAW Vitrification (90+% of waste mass) HLW Vitrification (90+% of waste activity) Pretreatment (solid/liquid separation, Cs-IX, Al, Cr, leaching) SLUDGE SUPERNATE Maximize Mass Maximize Activity Hanford WTP - Key Process Flows LAW glass disposed on site HLW glass disposed of in National Geologic Repository - TBD * Supernate: Solution of Na, Al, P, K, S, Cl, Cs, Tc, nitrates, hydroxides... * Sludge: Solids high in Fe, Al, Zr, Cr, Bi, Sr, TRU, oxides, hydroxides....

256

[Study of institutional issues relating to transportation of high level waste]. Final technical report  

SciTech Connect

This is the ``seventh`` and final Quarterly Report under the scope of work for cooperative agreement between the Western Interstate Energy Board and the US Department of Energy. The report covers the period January--March 1993. The cooperative agreement was to expire in June 1992, but DOE granted an extension through March 24, 1993. Since this is the last Quarterly Report under the expired cooperative agreement, most tasks are noted as being completed. Two final items, however, will soon be sent to DOE -- final minutes from the March 9--11 High- Level Radioactive Waste Committee meeting, and the Year-End Technical Report. Some highlights from the quarter: The Committee decided on a preferred format for the revised Spent Fuel and High-Level Radioactive Waste Transportation Primer. The document would be 100- 200 pages, accompanied by a series of white papers on key transportation elements. A 25--30 page handbook for educating western state elected officials would also be prepared. On March 24, the Committee sent a letter to DOE commenting on the Near-Site Transportation Infrastructure report findings. The Committee is concerned that infrastructure limitations may limit the rail shipping option in many instances, even after upgrades have been implemented. The NSTI findings may also have significant relevance to the decision to develop multi-purpose canisters. On April 1, the Committee sent DOE the white paper, Transportation Implications of Various NWPA Program Options, which determined that DOE cannot develop a national transportation system by 1998 for shipments to an MRS or other federal storage facility.

Not Available

1993-06-25T23:59:59.000Z

257

Methods of calculating the post-closure performance of high-level waste repositories  

Science Conference Proceedings (OSTI)

This report is intended as an overview of post-closure performance assessment methods for high-level radioactive waste repositories and is designed to give the reader a broad sense of the state of the art of this technology. As described here, ''the state of the art'' includes only what has been reported in report, journal, and conference proceedings literature through August 1987. There is a very large literature on the performance of high-level waste repositories. In order to make a review of this breadth manageable, its scope must be carefully defined. The essential principle followed is that only methods of calculating the long-term performance of waste repositories are described. The report is organized to reflect, in a generalized way, the logical order to steps that would be taken in a typical performance assessment. Chapter 2 describes ways of identifying scenarios and estimating their probabilities. Chapter 3 presents models used to determine the physical and chemical environment of a repository, including models of heat transfer, radiation, geochemistry, rock mechanics, brine migration, radiation effects on chemistry, and coupled processes. The next two chapters address the performance of specific barriers to release of radioactivity. Chapter 4 treats engineered barriers, including containers, waste forms, backfills around waste packages, shaft and borehole seals, and repository design features. Chapter 5 discusses natural barriers, including ground water systems and stability of salt formations. The final chapters address optics of general applicability to performance assessment models. Methods of sensitivity and uncertainty analysis are described in Chapter 6, and natural analogues of repositories are treated in Chapter 7. 473 refs., 19 figs., 2 tabs.

Ross, B. (ed.)

1989-02-01T23:59:59.000Z

258

Polysiloxane Encapsulation of High Level Calcine Waste for Transportation or Disposal  

SciTech Connect

This report presents the results of an experimental study investigating the potential uses for silicon-polymer encapsulation of High Level Calcine Waste currently stored within the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory (INEEL). The study investigated two different applications of silicon polymer encapsulation. One application uses silicon polymer to produce a waste form suitable for disposal at a High Level Radioactive Waste Disposal Facility directly, and the other application encapsulates the calcine material for transportation to an offsite melter for further processing. A simulated waste material from INTEC, called pilot scale calcine, which contained hazardous materials but no radioactive isotopes was used for the study, which was performed at the University of Akron under special arrangement with Orbit Technologies, the originators of the silicon polymer process called Polymer Encapsulation Technology (PET). This document first discusses the PET process, followed by a presentation of past studies involving PET applications to waste problems. Next, the results of an experimental study are presented on encapsulation of the INTEC calcine waste as it applies to transportation or disposal of calcine waste. Results relating to long-term disposal include: 1) a characterization of the pilot calcine waste; 2) Toxicity Characteristic Leaching Procedure (TCLP) testing of an optimum mixture of pilot calcine, polysiloxane and special additives; and, 3) Material Characterization Center testing MCC-1P evaluation of the optimum waste form. Results relating to transportation of the calcine material for a mixture of maximum waste loading include: compressive strength testing, 10-m drop test, melt testing, and a Department of Transportation (DOT) oxidizer test.

Loomis, Guy George

2000-03-01T23:59:59.000Z

259

Silicon-Polymer Encapsulation of High-Level Calcine Waste for Transportation or Disposal  

SciTech Connect

This report presents the results of an experimental study investigating the potential uses for silicon-polymer encapsulation of High Level Calcine Waste currently stored within the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory (INEEL). The study investigated two different applications of silicon polymer encapsulation. One application uses silicon polymer to produce a waste form suitable for disposal at a High Level Radioactive Waste Disposal Facility directly, and the other application encapsulates the calcine material for transportation to an offsite melter for further processing. A simulated waste material from INTEC, called pilot scale calcine, which contained hazardous materials but no radioactive isotopes was used for the study, which was performed at the University of Akron under special arrangement with Orbit Technologies, the originators of the silicon polymer process called Polymer Encapsulation Technology (PET). This document first discusses the PET process, followed by a presentation of past studies involving PET applications to waste problems. Next, the results of an experimental study are presented on encapsulation of the INTEC calcine waste as it applies to transportation or disposal of calcine waste. Results relating to long-term disposal include: (1) a characterization of the pilot calcine waste; (2) Toxicity Characteristic Leaching Procedure (TCLP) testing of an optimum mixture of pilot calcine, polysiloxane and special additives; and, (3) Material Characterization Center testing MCC-1P evaluation of the optimum waste form. Results relating to transportation of the calcine material for a mixture of maximum waste loading include: compressive strength testing, 10-m drop test, melt testing, and a Department of Transportation (DOT) oxidizer test.

G. G. Loomis; C. M. Miller; J. A. Giansiracusa; R. Kimmel; S. V. Prewett

2000-01-01T23:59:59.000Z

260

RADIOLYTIC HYDROGEN GENERATION INSAVANNAH RIVER SITE (SRS) HIGH LEVEL WASTETANKS COMPARISON OF SRS AND HANFORDMODELING PREDICTIONS  

DOE Green Energy (OSTI)

In the high level waste tanks at the Savannah River Site (SRS), hydrogen is produced continuously by interaction of the radiation in the tank with water in the waste. Consequently, the vapor spaces of the tanks are purged to prevent the accumulation of H{sub 2} and possible formation of a flammable mixture in a tank. Personnel at SRS have developed an empirical model to predict the rate of H{sub 2} formation in a tank. The basis of this model is the prediction of the G value for H{sub 2} production. This G value is the number of H{sub 2} molecules produced per 100 eV of radiolytic energy absorbed by the waste. Based on experimental studies it was found that the G value for H{sub 2} production from beta radiation and from gamma radiation were essentially equal. The G value for H{sub 2} production from alpha radiation was somewhat higher. Thus, the model has two equations, one for beta/gamma radiation and one for alpha radiation. Experimental studies have also indicated that both G values are decreased by the presence of nitrate and nitrite ions in the waste. These are the main scavengers for the precursors of H{sub 2} in the waste; thus the equations that were developed predict G values for hydrogen production as a function of the concentrations of these two ions in waste. Knowing the beta/gamma and alpha heat loads in the waste allows one to predict the total generation rate for hydrogen in a tank. With this prediction a ventilation rate can be established for each tank to ensure that a flammable mixture is not formed in the vapor space in a tank. Recently personnel at Hanford have developed a slightly different model for predicting hydrogen G values. Their model includes the same precursor for H{sub 2} as the SRS model but also includes an additional precursor not in the SRS model. Including the second precursor for H{sub 2} leads to different empirical equations for predicting the G values for H{sub 2} as a function of the nitrate and nitrite concentrations in the waste. The difference in the two models has led to the questions of how different are the results predicted by the two models and which model predicts the more conservative (larger) G values. More conservative G values would predict higher H{sub 2} generation rates that would require higher ventilation rates in the SRS tanks. This report compares predictions based on the two models at various nitrate and nitrite concentrations in the SRS HLW tanks for both beta/gamma and for alpha radiation. It also compares predicted G values with those determined by actually measuring the H{sub 2} production from four SRS HLW tanks (Tanks 32H, 35H, 39H, and 42H). Lastly, the H{sub 2} generation rates predicted by the two models are compared for the 47 active SRS high level waste tanks using the most recent tank nitrate and nitrite concentrations and the beta/gamma and alpha heat loads for each tank. The predictions of the models for total H{sub 2} generation rates from the 47 active SRS waste were, for the most part, similar. For example, the predictions for both models applied to 25 tanks agreed within {+-}10% of each other. For the remaining 22 tanks, the SRS prediction was more conservative for 9 tanks (maximum 29% higher) and the Hanford prediction was more conservative for 13 tanks (maximum 19% higher). When comparing G values predicted by the equations presuming only alpha radiation or only beta/gamma was present the results were somewhat different. The results of predictions for alpha radiation, at the 47 current nitrate and nitrite concentrations in the SRS tanks indicated that all the SRS predictions were higher (up to 30%) than the Hanford predictions and thus more conservative. For beta/gamma radiation the predictions for both models agreed to {+-}10% for 18 of the combinations, the Hanford model predicted higher values (11 up to 17%) for 25 of the concentrations considered, and the SRS model predicted higher G values for the remaining two combinations (12 and 17%). For the four SRS tanks, where we compared measured G values to those predicted by the two differen

Crawford, C; Ned Bibler, N

2009-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "hlw high-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Development of a High Level Waste Tank Inspection System  

SciTech Connect

The Westinghouse Savannah River Technology Center was requested by it`s sister site, West Valley Nuclear Service (WVNS), to develop a remote inspection system to gather wall thickness readings of their High Level Waste Tanks. WVNS management chose to take a proactive approach to gain current information on two tanks t hat had been in service since the early 70`s. The tanks contain high level waste, are buried underground, and have only two access ports to an annular space between the tank and the secondary concrete vault. A specialized remote system was proposed to provide both a visual surveillance and ultrasonic thickness measurements of the tank walls. A magnetic wheeled crawler was the basis for the remote delivery system integrated with an off-the-shelf Ultrasonic Data Acquisition System. A development program was initiated for Savannah River Technology Center (SRTC) to design, fabricate, and test a remote system based on the Crawler. The system was completed and involved three crawlers to perform the needed tasks, an Ultrasonic Crawler, a Camera Crawler, and a Surface Prep Crawler. The crawlers were computer controlled so that their operation could be done remotely and their position on the wall could be tracked. The Ultrasonic Crawler controls were interfaced with ABB Amdata`s I-PC, Ultrasonic Data Acquisition System so that thickness mapping of the wall could be obtained. A second system was requested by Westinghouse Savannah River Company (WSRC), to perform just ultrasonic mapping on their similar Waste Storage Tanks; however, the system needed to be interfaced with the P-scan Ultrasonic Data Acquisition System. Both remote inspection systems were completed 9/94. Qualifications tests were conducted by WVNS prior to implementation on the actual tank and tank development was achieved 10/94. The second inspection system was deployed at WSRC 11/94 with success, and the system is now in continuous service inspecting the remaining high level waste tanks at WSRC.

Appel, D.K.; Loibl, M.W. [Westinghouse Savannah River Company, SC (United States); Meese, D.C. [Westinghouse West Valley Nuclear Services, West Valley, NY (United States)

1995-03-21T23:59:59.000Z

262

High-level neutron coincidence counter maintenance manual  

Science Conference Proceedings (OSTI)

High-level neutron coincidence counter operational (field) calibration and usage is well known. This manual makes explicit basic (shop) check-out, calibration, and testing of new units and is a guide for repair of failed in-service units. Operational criteria for the major electronic functions are detailed, as are adjustments and calibration procedures, and recurrent mechanical/electromechanical problems are addressed. Some system tests are included for quality assurance. Data on nonstandard large-scale integrated (circuit) components and a schematic set are also included.

Swansen, J.; Collinsworth, P.

1983-05-01T23:59:59.000Z

263

Preconceptual design study for solidifying high-level waste: Appendices A, B and C West Valley Demonstration Project  

SciTech Connect

This report presents a preconceptual design study for processing radioactive high-level liquid waste presently stored in underground tanks at Western New York Nuclear Service Center (WNYNSC) near West Valley, New York, and for incorporating the radionculides in that waste into a solid. The high-level liquid waste accumulated from the operation of a chemical reprocessing plant by the Nuclear Fuel Services, Inc. from 1966 to 1972. The high-level liquid waste consists of approximately 560,000 gallons of alkaline waste from Purex process operations and 12,000 gallons of acidic (nitric acid) waste from one campaign of processing thoria fuels by a modified Thorex process (during this campaign thorium was left in the waste). The alkaline waste contains approximately 30 million curies and the acidic waste contains approximately 2.5 million curies. The reference process described in this report is concerned only with chemically processing the high-level liquid waste to remove radionuclides from the alkaline supernate and converting the radionuclide-containing nonsalt components in the waste into a borosilicate glass.

Hill, O.F. (comp.)

1981-04-01T23:59:59.000Z

264

Vitrification of hazardous and radioactive wastes  

SciTech Connect

Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

Bickford, D.F.; Schumacher, R.

1995-12-31T23:59:59.000Z

265

RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

2012-02-02T23:59:59.000Z

266

EIS-0287: Idaho High-Level Waste and Facilities Disposition Final...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) EIS-0287: Idaho High-Level Waste and Facilities Disposition Final...

267

High Level Waste Corporate Board Newsletter - 06/03/08  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 June 2008 3 June 2008 UPCOMING EVENTS: Next High-Level Waste Corporate Board meeting will be held at DOE-ID on 24 July 2008. Meeting details will be presented here and e-mailed to those persons with an interest to participate. Topics for discussion include: * Strategic Planning Initiative * Technology Development / Needs Collection / Prioritization * Waste Acceptance Product Specification This meeting will include a members-only executive session OTHER NEWS DOE SELECTS WASHINGTON RIVER PROTECTION SOLUTIONS, LLC FOR TANK OPERATIONS CONTRACT AT HANFORD SITE WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that Washington River Protection Solutions (WRPS), LLC has been selected as the tank operations contractor to store, retrieve and treat Hanford tank

268

High Level Waste System Impacts from Acid Dissolution of Sludge  

DOE Green Energy (OSTI)

This research evaluates the ability of OLI{copyright} equilibrium based software to forecast Savannah River Site High Level Waste system impacts from oxalic acid dissolution of Tank 1-15 sludge heels. Without further laboratory and field testing, only the use of oxalic acid can be considered plausible to support sludge heel dissolution on multiple tanks. Using OLI{copyright} and available test results, a dissolution model is constructed and validated. Material and energy balances, coupled with the model, identify potential safety concerns. Overpressurization and overheating are shown to be unlikely. Corrosion induced hydrogen could, however, overwhelm the tank ventilation. While pH adjustment can restore the minimal hydrogen generation, resultant precipitates will notably increase the sludge volume. OLI{copyright} is used to develop a flowsheet such that additional sludge vitrification canisters and other negative system impacts are minimized. Sensitivity analyses are used to assess the processability impacts from variations in the sludge/quantities of acids.

KETUSKY, EDWARD

2006-04-20T23:59:59.000Z

269

4.5 Meter high level waste canister study  

SciTech Connect

The Tank Waste Remediation System (TWRS) Storage and Disposal Project has established the Immobilized High-Level Waste (IBLW) Storage Sub-Project to provide the capability to store Phase I and II BLW products generated by private vendors. A design/construction project, Project W-464, was established under the Sub-Project to provide the Phase I capability. Project W-464 will retrofit the Hanford Site Canister Storage Building (CSB) to accommodate the Phase I I-ILW products. Project W-464 conceptual design is currently being performed to interim store 3.0 m-long BLW stainless steel canisters with a 0.61 in diameter, DOE is considering using a 4.5 in canister of the same diameter to reduce permanent disposal costs. This study was performed to assess the impact of replacing the 3.0 in canister with the 4.5 in canister. The summary cost and schedule impacts are described.

Calmus, R.B., Westinghouse Hanford, Richland, WA

1997-10-01T23:59:59.000Z

270

Review of High Level Waste Tanks Ultrasonic Inspection Data  

SciTech Connect

A review of the data collected during ultrasonic inspection of the Type I high level waste tanks has been completed. The data was analyzed for relevance to the possibility of vapor space corrosion and liquid/air interface corrosion. The review of the Type I tank UT inspection data has confirmed that the vapor space general corrosion is not an unusually aggressive phenomena and correlates well with predicted corrosion rates for steel exposed to bulk solution. The corrosion rates are seen to decrease with time as expected. The review of the temperature data did not reveal any obvious correlations between high temperatures and the occurrences of leaks. The complex nature of temperature-humidity interaction, particularly with respect to vapor corrosion requires further understanding to infer any correlation. The review of the waste level data also did not reveal any obvious correlations.

Wiersma, B

2006-03-09T23:59:59.000Z

271

PSA results for Hanford high level waste Tank 101-SY  

DOE Green Energy (OSTI)

Los Alamos National Laboratory has performed a comprehensive probabilistic safety assessment (PSA) that includes consideration of external events for the weapons-production wastes stored in tank number 241-SY-101, commonly known as Tank 101-SY, as configured in December 1992. This tank, which periodically releases (``burps``) a gaseous mixture of hydrogen, nitrous oxide, ammonia, and nitrogen, was analyzed because of public safety concerns associated with the potential for release of radioactive tank contents should this gas mixture be ignited during one of the burps. In an effort to mitigate the burping phenomenon, an experiment is underway in which a large pump has been inserted into the tank to determine if pump-induced circulation of the tank contents will promote a slow, controlled release of the gases. This PSA for Tank 101-SY, which did not consider the pump experiment or future tank-remediation activities, involved three distinct tasks. First, the accident sequence analysis identified and quantified those potential accidents whose consequences result in tank material release. Second, characteristics and release paths for the airborne and liquid radioactive source terms were determined. Finally, the consequences, primarily onsite and offsite potential health effects resulting from radionuclide release, were estimated, and overall risk curves were constructed. An overview of each of these tasks and a summary of the overall results of the analysis are presented in the following sections.

MacFarlane, D.R.; Bott, T.F.; Brown, L.F.; Stack, D.W. [Los Alamos National Lab., NM (United States); Kindinger, J.; Deremer, R.K.; Medhekar, S.R.; Mikschl, T.J. [PLG, Inc., Newport Beach, CA (United States)

1993-10-01T23:59:59.000Z

272

Topical report on release scenario analysis of long-term management of high-level defense waste at the Hanford Site  

SciTech Connect

Potential release scenarios for the defense high-level waste (HLW) on the Hanford Site are presented. Presented in this report are the three components necessary for evaluating the various alternatives under consideration for long-term management of Hanford defense HLW: identification of scenarios and events which might directly or indirectly disrupt radionuclide containment barriers; geotransport calculations of waste migration through the site media; and consequence (dose) analyses based on groundwater and air pathways calculations. The scenarios described in this report provide the necessary parameters for radionuclide transport and consequence analysis. Scenarios are categorized as either bounding or nonbounding. Bounding scenarios consider worst case or what if situations where an actual and significant release of waste material to the environment would happen if the scenario were to occur. Bounding scenarios include both near-term and long-term scenarios. Near-term scenarios are events which occur at 100 years from 1990. Long term scenarios are potential events considered to occur at 1000 and 10,000 years from 1990. Nonbounding scenarios consider events which result in insignificant releases or no release at all to the environment. Three release mechanisms are described in this report: (1) direct exposure of waste to the biosphere by a defined sequence of events (scenario) such as human intrusion by drilling; (2) radionuclides contacting an unconfined aquifer through downward percolation of groundwater or a rising water table; and (3) cataclysmic or explosive release of radionuclides by such mechanisms as meteorite impact, fire and explosion, criticality, or seismic events. Scenarios in this report present ways in which these release mechanisms could occur at a waste management facility. The scenarios are applied to the two in-tank waste management alternatives: in-situ disposal and continued present action.

Wallace, R.W.; Landstrom, D.K.; Blair, S.C.; Howes, B.W.; Robkin, M.A.; Benson, G.L.; Reisenauer, A.E.; Walters, W.H.; Zimmerman, M.G.

1980-11-01T23:59:59.000Z

273

High level waste facilities -- Continuing operation or orderly shutdown  

SciTech Connect

Two options for Environmental Impact Statement No action alternatives describe operation of the radioactive liquid waste facilities at the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory. The first alternative describes continued operation of all facilities as planned and budgeted through 2020. Institutional control for 100 years would follow shutdown of operational facilities. Alternatively, the facilities would be shut down in an orderly fashion without completing planned activities. The facilities and associated operations are described. Remaining sodium bearing liquid waste will be converted to solid calcine in the New Waste Calcining Facility (NWCF) or will be left in the waste tanks. The calcine solids will be stored in the existing Calcine Solids Storage Facilities (CSSF). Regulatory and cost impacts are discussed.

Decker, L.A.

1998-04-01T23:59:59.000Z

274

CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315  

SciTech Connect

In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by closure operations. Subsequent down selection was based on compressive strength and saturated hydraulic conductivity results. Fresh slurry property results were used as the first level of screening. A high range water reducing admixture and a viscosity modifying admixture were used to adjust slurry properties to achieve flowable grouts. Adiabatic calorimeter results were used as the second level screening. The third level of screening was used to design mixes that were consistent with the fill material parameters used in the F-Tank Farm Performance Assessment which was developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closures.

Langton, C.; Burns, H.; Stefanko, D.

2012-01-10T23:59:59.000Z

275

Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass Ceramics  

Science Conference Proceedings (OSTI)

A technology maturation plan (TMP) was developed for immobilization of high-level waste (HLW) raffinate in a glass ceramics waste form using a cold-crucible induction melter (CCIM). The TMP was prepared by the following process: 1) define the reference process and boundaries of the technology being matured, 2) evaluate the technology elements and identify the critical technology elements (CTE), 3) identify the technology readiness level (TRL) of each of the CTEs using the DOE G 413.3-4, 4) describe the development and demonstration activities required to advance the TRLs to 4 and 6 in order, and 5) prepare a preliminary plan to conduct the development and demonstration. Results of the technology readiness assessment identified five CTEs and found relatively low TRLs for each of them: Mixing, sampling, and analysis of waste slurry and melter feed: TRL-1 Feeding, melting, and pouring: TRL-1 Glass ceramic formulation: TRL-1 Canister cooling and crystallization: TRL-1 Canister decontamination: TRL-4 Although the TRLs are low for most of these CTEs (TRL-1), the effort required to advance them to higher values. The activities required to advance the TRLs are listed below: Complete this TMP Perform a preliminary engineering study Characterize, estimate, and simulate waste to be treated Laboratory scale glass ceramic testing Melter and off-gas testing with simulants Test the mixing, sampling, and analyses Canister testing Decontamination system testing Issue a requirements document Issue a risk management document Complete preliminary design Integrated pilot testing Issue a waste compliance plan A preliminary schedule and budget were developed to complete these activities as summarized in the following table (assuming 2012 dollars). TRL Budget Year MSA FMP GCF CCC CD Overall $M 2012 1 1 1 1 4 1 0.3 2013 2 2 1 1 4 1 1.3 2014 2 3 1 1 4 1 1.8 2015 2 3 2 2 4 2 2.6 2016 2 3 2 2 4 2 4.9 2017 2 3 3 2 4 2 9.8 2018 3 3 3 3 4 3 7.9 2019 3 3 3 3 4 3 5.1 2020 3 3 3 3 4 3 14.6 2021 3 3 3 3 4 3 7.3 2022 3 3 3 3 4 3 8.8 2023 4 4 4 4 4 4 9.1 2024 5 5 5 5 5 5 6.9 2025 6 6 6 6 6 6 6.9 CCC = canister cooling and crystallization; FMP = feeding, melting, and pouring; GCF = glass ceramic formulation; MSA = mixing, sampling, and analyses. This TMP is intended to guide the development of the glass ceramics waste form and process to the point where it is ready for industrialization.

Vienna, John D.; Crum, Jarrod V.; Sevigny, Gary J.; Smith, G L.

2012-09-30T23:59:59.000Z

276

Commissioning of the ALICE High-Level Trigger  

E-Print Network (OSTI)

A new era in experimental nuclear physics has begun with the start-up of the Large Hadron Collider at CERN and its dedicated heavy-ion detector system ALICE. Measuring the highest energy density ever produced in nucleus-nucleus collisions, the detector has been designed to study the properties of the created hot and dense medium, assumed to be a Quark-Gluon Plasma. Comprised of 18 high granularity sub-detectors, ALICE delivers data from a few million electronic channels of proton-proton and heavy-ion collisions. The produced data volume can reach up to 26 GByte/s for central PbPb collisions at design luminosity of L = $10^{27} cm^{?2} s^{?1}$ , challenging not only the data storage, but also the physics analysis. A High-Level Trigger (HLT) has been built and commissioned to reduce that amount of data to a storable value prior to archiving with the means of data filtering and compression without the loss of physics information. Implemented as a large high performance compute cluster, the HLT is able to ...

Thder, Jochen; Lindenstruth, V

2012-11-05T23:59:59.000Z

277

Hanford high-level waste melter system evaluation data packages  

SciTech Connect

The Tank Waste Remediation System is selecting a reference melter system for the Hanford High-Level Waste vitrification plant. A melter evaluation was conducted in FY 1994 to narrow down the long list of potential melter technologies to a few for testing. A formal evaluation was performed by a Melter Selection Working Group (MSWG), which met in June and August 1994. At the June meeting, MSWG evaluated 15 technologies and selected six for more thorough evaluation at the Aug. meeting. All 6 were variations of joule-heated or induction-heated melters. Between the June and August meetings, Hanford site staff and consultants compiled data packages for each of the six melter technologies as well as variants of the baseline technologies. Information was solicited from melter candidate vendors to supplement existing information. This document contains the data packages compiled to provide background information to MSWG in support of the evaluation of the six technologies. (A separate evaluation was performed by Fluor Daniel, Inc. to identify balance of plant impacts if a given melter system was selected.)

Elliott, M.L.; Shafer, P.J.; Lamar, D.A.; Merrill, R.A.; Grunewald, W.; Roth, G.; Tobie, W.

1996-03-01T23:59:59.000Z

278

Defense High-Level Waste Leaching Mechanisms Program. Final report  

SciTech Connect

The Defense High-Level Waste Leaching Mechanisms Program brought six major US laboratories together for three years of cooperative research. The participants reached a consensus that solubility of the leached glass species, particularly solubility in the altered surface layer, is the dominant factor controlling the leaching behavior of defense waste glass in a system in which the flow of leachant is constrained, as it will be in a deep geologic repository. Also, once the surface of waste glass is contacted by ground water, the kinetics of establishing solubility control are relatively rapid. The concentrations of leached species reach saturation, or steady-state concentrations, within a few months to a year at 70 to 90/sup 0/C. Thus, reaction kinetics, which were the main subject of earlier leaching mechanisms studies, are now shown to assume much less importance. The dominance of solubility means that the leach rate is, in fact, directly proportional to ground water flow rate. Doubling the flow rate doubles the effective leach rate. This relationship is expected to obtain in most, if not all, repository situations.

Mendel, J.E. (compiler)

1984-08-01T23:59:59.000Z

279

The ATLAS High Level Trigger Configuration and Steering  

E-Print Network (OSTI)

In March 2010 the four LHC experiments saw the first proton-proton collisions at 7 TeV. Still within the year a collision rate of nearly 10 MHz is expected. At ATLAS, events of potential interest for ATLAS physics are selected by a three level trigger system, with a final recording rate of about 200 Hz. The first level (L1) is implemented in customized hardware, the two levels of the high level trigger (HLT) are software triggers. Within the ATLAS physics program more than 500 trigger signatures are defined. The HLT tests each signature on each L1-accepted event, the test outcome is recorded for later analysis. The HLT-Steering is responsible for this. It foremost ensures the independent test of each signature, guarantying unbiased trigger decisions. Yet, to minimize data readout and execution time, cached detector data and once-calculated trigger objects are reused to form the decision. Some signature tests are performed only on a scaled-down fraction of candidate events, in order to reduce the output rate a...

Stelzer, J; The ATLAS collaboration

2010-01-01T23:59:59.000Z

280

Canister arrangement for storing radioactive waste  

DOE Patents (OSTI)

The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

Lorenzo, Donald K. (Knoxville, TN); Van Cleve, Jr., John E. (Kingston, TN)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hlw high-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Canister arrangement for storing radioactive waste  

DOE Patents (OSTI)

The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

Lorenzo, D.K.; Van Cleve, J.E. Jr.

1980-04-23T23:59:59.000Z

282

Studies of Mercury in High Level Waste Systems  

Science Conference Proceedings (OSTI)

During nuclear weapons production, nuclear reactor target and fuel rods were processed in F- and H-Canyons. For the target rods, a caustic dissolution of the aluminum cladding was performed prior to nitric acid dissolution of the uranium metal targets in the large canyon dissolvers. To dissolve the aluminum cladding and the U-Al fuel, mercury in the form of soluble mercury (II) nitrate was added as a catalyst to accelerate the dissolution of the aluminum. F-Canyon began to process plutonium-containing residues that were packaged in aluminum cans and thus required the use of mercury as a dissolution catalyst. Following processing to remove uranium and plutonium using the solvent extraction process termed the Plutonium-Uranium Recovery by Extraction (PUREX) process, the acidic waste solutions containing fission products and other radionuclides were neutralized with sodium hydroxide. The mercury used in canyon processing is fractionated between the sludge and supernate that is transferred from the canyons to the tank farm. The sludge component of the waste is currently vitrified in the Defense Waste Processing Facility (DWPF). The vitrified waste canisters are to be sent to the federal repository for High Level Waste. The mercury in the sludge, presumably in an oxide or hydroxide form is reduced to elemental mercury by the chemical additions and high temperatures, steam stripped and collected in the Mercury Collection Tank. The mercury in the dilute supernate is in the form of mercuric ion and is soluble. During evaporation, the mercuric ion is reduced to elemental mercury, vaporizes into the overheads system and is collected as a metallic liquid in the Mercury Removal Tank.

Wilmarth, W.R.

2003-09-03T23:59:59.000Z

283

Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Inspections Tasked for the Transportation of Spent Nuclear Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Transportation Stakeholders National Transportation Stakeholders National Transportation Stakeholders National Transportation Stakeholders Forum Forum 2011 Annual Meeting 2011 Annual Meeting 2011 Annual Meeting 2011 Annual Meeting May 11, 2011 May 11, 2011 Evaluation of Shortline Railroads Evaluation of Shortline Railroads & & & & SNF/HLW Rail Shipment Inspections SNF/HLW Rail Shipment Inspections Tasked for the Transportation of Spent Nuclear Fuel Tasked for the Transportation of Spent Nuclear Fuel Evaluation of Shortline Railroads Evaluation of Shortline Railroads Evaluation of Shortline Railroads Evaluation of Shortline Railroads Task: Task: Task: Task: Identify Shortline Railroads Serving Nuclear Power Plants Identify Shortline Railroads Serving Nuclear Power Plants

284

Savannah River Site High-Level Waste Tank Closure, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TANK FARM DESCRIPTION AND CLOSURE PROCESS TANK FARM DESCRIPTION AND CLOSURE PROCESS DOE/EIS-0303 Tank Farm Description FINAL May 2002 and Closure Process A-iii TABLE OF CONTENTS Section Page A.1 Introduction........................................................................................................................... A-1 A.2 Overview of SRS HLW Management .................................................................................. A-1 A.3 Description of the Tank Farms ............................................................................................. A-4 A.3.1 Tanks........................................................................................................................ A-4 A.3.2 Evaporator Systems .................................................................................................

285

Alternative concepts for treatment and disposal of Hanford site high-level waste in tanks  

SciTech Connect

Some innovative approaches have recently been proposed that may have significant schedule, cost, or environmental advantages which could improve the current HLW program strategy. Three general categories of alternative concepts are now under consideration: (1) process/product alternatives, (2) facility layout options, and (3) contracting strategies. This report compares the alternate approaches to the current program baseline to illustrate their potential significance and to identify the risks associated with each approach.

Claghorn, R.D.; Powell, W.J.

1994-12-01T23:59:59.000Z

286

Technical considerations for evaluating substantially complete containment of high-level waste within the waste package  

SciTech Connect

This report deals with technical information that is considered essential for demonstrating the ability of the high-level radioactive waste package to provide substantially complete containment'' of its contents (vitrified waste form or spent light-water reactor fuel) for a period of 300 to 1000 years in a geological repository environment. The discussion is centered around technical considerations of the repository environment, materials and fabrication processes for the waste package components, various degradation modes of the materials of construction of the waste packages, and inspection and monitoring of the waste package during the preclosure and retrievability period, which could begin up to 50 years after initiation of waste emplacement. The emphasis in this report is on metallic materials. However, brief references have been made to other materials such as ceramics, graphite, bonded ceramic-metal systems, and other types of composites. The content of this report was presented to an external peer review panel of nine members at a workshop held at the Center for Nuclear Waste Regulatory Analyses (CNWRA), Southwest Research Institute, San Antonio, Texas, April 2--4, 1990. The recommendations of the peer review panel have been incorporated in this report. There are two companion reports; the second report in the series provides state-of-the-art techniques for uncertainty evaluations. 97 refs., 1 fig.

Manaktala, H.K. (Southwest Research Inst., San Antonio, TX (USA). Center for Nuclear Waste Regulatory Analyses); Interrante, C.G. (Nuclear Regulatory Commission, Washington, DC (USA). Div. of High-Level Waste Management)

1990-12-01T23:59:59.000Z

287

RADIOACTIVE BATTERY  

DOE Patents (OSTI)

A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.

Birden, J.H.; Jordan, K.C.

1959-11-17T23:59:59.000Z

288

JET MIXING ANALYSIS FOR SRS HIGH-LEVEL WASTE RECOVERY  

Science Conference Proceedings (OSTI)

The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four slurry pumps located within the tank liquid. The slurry pump may be fixed in position or they may rotate depending on the specific mixing requirements. The high-level waste in Tank 48 contains insoluble solids in the form of potassium tetraphenyl borate compounds (KTPB), monosodium titanate (MST), and sludge. Tank 48 is equipped with 4 slurry pumps, which are intended to suspend the insoluble solids prior to transfer of the waste to the Fluidized Bed Steam Reformer (FBSR) process. The FBSR process is being designed for a normal feed of 3.05 wt% insoluble solids. A chemical characterization study has shown the insoluble solids concentration is approximately 3.05 wt% when well-mixed. The project is requesting a Computational Fluid Dynamics (CFD) mixing study from SRNL to determine the solids behavior with 2, 3, and 4 slurry pumps in operation and an estimate of the insoluble solids concentration at the suction of the transfer pump to the FBSR process. The impact of cooling coils is not considered in the current work. The work consists of two principal objectives by taking a CFD approach: (1) To estimate insoluble solids concentration transferred from Tank 48 to the Waste Feed Tank in the FBSR process and (2) To assess the impact of different combinations of four slurry pumps on insoluble solids suspension and mixing in Tank 48. For this work, several different combinations of a maximum of four pumps are considered to determine the resulting flow patterns and local flow velocities which are thought to be associated with sludge particle mixing. Two different elevations of pump nozzles are used for an assessment of the flow patterns on the tank mixing. Pump design and operating parameters used for the analysis are summarized in Table 1. The baseline pump orientations are chosen by the previous work [Lee et. al, 2008] and the initial engineering judgement for the conservative flow estimate since the modeling results for the other pump orientations are compared with the baseline results. As shown in Table 1, the present study assumes that each slurry pump has 900 gpm flowrate for the tank mixing analysis, although the Standard Operating Procedure for Tank 48 currently limits the actual pump speed and flowrate to a value less than 900 gpm for a 29 inch liquid level. Table 2 shows material properties and weight distributions for the solids to be modeled for the mixing analysis in Tank 48.

Lee, S.

2011-07-05T23:59:59.000Z

289

High level waste interim storge architecture selection - decision report  

SciTech Connect

The U.S. Department of Energy (DOE) has embarked upon a course to acquire Hanford Site tank waste treatment and immobilization services using privatized facilities (RL 1996a). This plan contains a two-phased approach. Phase I is a proof-of-principle/connnercial demonstration- scale effort and Phase II is a fiill-scale production effort. In accordance with the planned approach, interim storage and disposal of various products from privatized facilities are to be DOE fumished. The high-level waste (BLW) interim storage options, or alternative architectures, were identified and evaluated to provide the framework from which to select the most viable method of Phase I BLW interim storage (Calmus 1996). This evaluation, hereafter referred to as the Alternative Architecture Evaluation, was performed to established performance and risk criteria (technical merit, cost, schedule, etc.). Based on evaluation results, preliminary architectures and path forward reconunendations were provided for consideration in the architecture decision- maldng process. The decision-making process used for selection of a Phase I solidified BLW interim storage architecture was conducted in accordance with an approved Decision Plan (see the attachment). This decision process was based on TSEP-07,Decision Management Procedure (WHC 1995). The established decision process entailed a Decision Board, consisting of Westinghouse Hanford Company (VY`HC) management staff, and included appointment of a VTHC Decision Maker. The Alternative Architecture Evaluation results and preliminary recommendations were presented to the Decision Board members for their consideration in the decision-making process. The Alternative Architecture Evaluation was prepared and issued before issuance of @C-IP- 123 1, Alternatives Generation and Analysis Procedure (WI-IC 1996a), but was deemed by the Board to fully meet the intent of WHC-IP-1231. The Decision Board members concurred with the bulk of the Alternative Architecture Evaluation results and recommendations. However, the Board required changes to some criteria definitions and weightings in establishing its own recommendation basis. This report documents information presented to the Decision Board, and the Decision Board`s recommendations and basis for these recommendations. The Board`s recommendations were fully adopted by the WHC Decision Maker, R. J. Murkowski, Manager, TWRS Storage and Disposal. The Decision Board`s recommendation is as follows. The Phase I BLW Interim storage concept architecture will use Vaults 2 and 3 of the Hanford Site Spent Nuclear Fuel Canister Storage Building, being located in the Hanford Site 200 East Area, and include features to faciliate addition of one or more vaults at a later date.

Calmus, R.B.

1996-09-27T23:59:59.000Z

290

Event:World Bank-High-Level Dialogue on International Architecture...  

Open Energy Info (EERE)

Bank-High-Level Dialogue on International Architecture to Scale-up Low-Emissions Development Jump to: navigation, search Calendar.png World Bank-High-Level Dialogue on...

291

Radioactivity and Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactivity and Radiation Radioactivity and Radiation Uranium and Its Compounds line line What is Uranium? Chemical Forms of Uranium Properties of Uranium Compounds Radioactivity and Radiation Uranium Health Effects Radioactivity and Radiation Discussion of radioactivity and radiation, uranium and radioactivity, radiological health risks of uranium isotopes and decay products. Radioactivity Radioactivity is the term used to describe the natural process by which some atoms spontaneously disintegrate, emitting both particles and energy as they transform into different, more stable atoms. This process, also called radioactive decay, occurs because unstable isotopes tend to transform into a more stable state. Radioactivity is measured in terms of disintegrations, or decays, per unit time. Common units of radioactivity

292

A Scalable Methodology for Cost Estimation in a Transformational High-Level Design Space Exploration Environment  

E-Print Network (OSTI)

Objective of the methodology presented in this paper is to perform design space exploration on a high level of abstraction by applying high-level transformations. To realize a design loop which is close and settled on upper design levels, a high-level estimation step is integrated. In this paper, several estimation methodologies fixed on different states of the high-level synthesis process are examined with respect to their aptitude on controlling the transformational design space exploration process.

Gerlach

1998-01-01T23:59:59.000Z

293

A literature review of coupled thermal-hydrologic-mechanical-chemical processes pertinent to the proposed high-level nuclear waste repository at Yucca Mountain  

SciTech Connect

A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is useful in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit``. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes.

Manteufel, R.D.; Ahola, M.P.; Turner, D.R.; Chowdhury, A.H. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

1993-07-01T23:59:59.000Z

294

PRESENT STATUS OF THE OMEGA PROGRAM IN JAPAN PREPARED FOR SECOND GENEWIL MEETING FOR INFORiVIATION EXCANGE MEETING ON ACTINIDE AND FISSION PRODUCT SEPARATION AND TRANSMUTATION  

E-Print Network (OSTI)

The management of high. level radioactive waste ( HLW) generated from the reprocessing of spent fuel is very important as well as the safety assurance, to further develop nuclear electricity generation.

Hiroyuki Yoshiiia; Satoshi Tani; Tadashi Inoue

1992-01-01T23:59:59.000Z

295

Some logistical considerations in designing a system of deep boreholes for disposal of high-level radioactive waste.  

Science Conference Proceedings (OSTI)

Deep boreholes could be a relatively inexpensive, safe, and rapidly deployable strategy for disposing Americas nuclear waste. To study this approach, Sandia invested in a three year LDRD project entitled %E2%80%9CRadionuclide Transport from Deep Boreholes.%E2%80%9D In the first two years, the borehole reference design and backfill analysis were completed and the supporting modeling of borehole temperature and fluid transport profiles were done. In the third year, some of the logistics of implementing a deep borehole waste disposal system were considered. This report describes what was learned in the third year of the study and draws some conclusions about the potential bottlenecks of system implementation.

Gray, Genetha Anne; Brady, Patrick Vane [Sandia National Laboratories, Albuquerque, NM; Arnold, Bill Walter [Sandia National Laboratories, Albuquerque, NM

2012-09-01T23:59:59.000Z

296

Some logistical considerations in designing a system of deep boreholes for disposal of high-level radioactive waste.  

SciTech Connect

Deep boreholes could be a relatively inexpensive, safe, and rapidly deployable strategy for disposing Americas nuclear waste. To study this approach, Sandia invested in a three year LDRD project entitled %E2%80%9CRadionuclide Transport from Deep Boreholes.%E2%80%9D In the first two years, the borehole reference design and backfill analysis were completed and the supporting modeling of borehole temperature and fluid transport profiles were done. In the third year, some of the logistics of implementing a deep borehole waste disposal system were considered. This report describes what was learned in the third year of the study and draws some conclusions about the potential bottlenecks of system implementation.

Gray, Genetha Anne; Brady, Patrick Vane [Sandia National Laboratories, Albuquerque, NM; Arnold, Bill Walter [Sandia National Laboratories, Albuquerque, NM

2012-09-01T23:59:59.000Z

297

Evaluation of concepts for monitored retrievable storage of spent nuclear fuel and high-level radioactive waste  

SciTech Connect

The primary mission selected by DOE for the monitored retrieval storage (MRS) system is to provide an alternative means of storage in the event that the repository program is delayed. The MRS concepts considered were the eight concepts included in the MRS Research and Development Report to Congress (DOE 1983). These concepts are: metal cask (stationary and transportable); concrete cask (sealed storage cask); concrete cask-in-trench; field drywell; tunnel drywell; open cycle vault; closed cycle vault; and tunnel rack vault. Conceptual design analyses were performed for the candidate concepts using a common set of design requirements specified in consideration of the MRS mission.

Triplett, M.B.; Smith, R.I.

1984-04-01T23:59:59.000Z

298

West Valley Demonstration Project Prepares to Relocate High-Level Waste |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project Prepares to Relocate High-Level West Valley Demonstration Project Prepares to Relocate High-Level Waste West Valley Demonstration Project Prepares to Relocate High-Level Waste December 24, 2013 - 12:00pm Addthis The West Valley Demonstration Project’s high-level waste canisters will be relocated to interim onsite storage. The West Valley Demonstration Project's high-level waste canisters will be relocated to interim onsite storage. The first group of eight concrete storage casks for the West Valley Demonstration Project’s high-level waste. The first group of eight concrete storage casks for the West Valley Demonstration Project's high-level waste. Site subcontractor American DND completed demolition of the contaminated 01-14 Building in 2013. Site subcontractor American DND completed demolition of the contaminated

299

West Valley Demonstration Project Prepares to Relocate High-Level Waste |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project Prepares to Relocate High-Level West Valley Demonstration Project Prepares to Relocate High-Level Waste West Valley Demonstration Project Prepares to Relocate High-Level Waste December 24, 2013 - 12:00pm Addthis The West Valley Demonstration Project’s high-level waste canisters will be relocated to interim onsite storage. The West Valley Demonstration Project's high-level waste canisters will be relocated to interim onsite storage. The first group of eight concrete storage casks for the West Valley Demonstration Project’s high-level waste. The first group of eight concrete storage casks for the West Valley Demonstration Project's high-level waste. Site subcontractor American DND completed demolition of the contaminated 01-14 Building in 2013. Site subcontractor American DND completed demolition of the contaminated

300

INTEGRATED DM 1200 MELTER TESTING OF HLW C-106/AY-102 COMPOSITION USING BUBBLERS VSL-03R3800-1 REV 0 9/15/03  

SciTech Connect

This report documents melter and off-gas performance results obtained on the DM1200 HLW Pilot Melter during processing of simulated HLW C-106/AY-102 feed. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW C-106/AY-102 feed; determine the effect of bubbling rate on production rate; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and to perform pre- and post test inspections of system components.

KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D'ANGELO NA; KOT WK; PEGG IL

2011-12-29T23:59:59.000Z

Note: This page contains sample records for the topic "hlw high-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

DOE management of high-level waste at the Hanford Site  

SciTech Connect

Approximately 60 million gallons of high-level radioactive waste--caustic liquids, slurries, saltcakes, and sludges--are stored in underground tanks at the Department of Energy`s Hanford Site. At least one-third of the tanks are known to have leaked waste into the enviroranent, and there are many unresolved tank safety issues. In order to resolve the environmental and safety concerns, the Department plans to retrieve the waste, immobilize it, and dispose of it in a permanent geologic repository. Processing all of the tank waste in this manner could cost $40 billion, including $1.2 billion to construct the Hanford Waste Vitrification Plant. The purpose of our audit was to examine the reasons for cost estimate increases and schedule delays on the Hanford vitrification program. We also wanted to report on outstanding technical, safety, and environmental issues that could make the project even more costly and further delay its completion. We found that the Department managed the Hanford remediation system as a number of separate projects not fully integrated into one major system acquisition. Total costs have, therefore, been obscured, and the Department has not yet clearly defined system requirements or developed overall cost and schedule baselines. This lack of visibility could result in additional cost growth and schedule delays. We also noted a vast array of technical uncertainties, including tank safety and inadequate information about the makeup of tank waste, that could significantly affect the program`s cost and ultimate success. To increase visibility of program cost and schedule, we are recommending that all separate projects relating to tank waste be included in a single major system acquisition, and that the Department complete its ongoing baselining effort to the extent practical before making major funding commitments. Management concurred with our finding and recommendations.

Not Available

1993-04-14T23:59:59.000Z

302

Characterization and reaction behavior of ferrocyanide simulants and Hanford Site high-level ferrocyanide waste  

Science Conference Proceedings (OSTI)

Nonradioactive waste simulants and initial ferrocyanide tank waste samples were characterized to assess potential safety concerns associated with ferrocyanide high-level radioactive waste stored at the Hanford Site in underground single-shell tanks (SSTs). Chemical, physical, thermodynamic, and reaction properties of the waste simulants were determined and compared to properties of initial samples of actual ferrocyanide wastes presently in the tanks. The simulants were shown to not support propagating reactions when subjected to a strong ignition source. The simulant with the greatest ferrocyanide concentration was shown to not support a propagating reaction that would involve surrounding waste because of its high water content. Evaluation of dried simulants indicated a concentration limit of about 14 wt% disodium mononickel ferrocyanide, below which propagating reactions could not occur in the ambient temperature bulk tank waste. For postulated localized hot spots where dried waste is postulated to be at an initial temperature of 130 C, a concentration limit of about 13 wt% disodium mononickel ferrocyanide was determined, below which propagating reactions could not occur. Analyses of initial samples of the presently stored ferrocyanide waste indicate that the waste tank ferrocyanide concentrations are considerably lower than the limit for propagation for dry waste and that the water content is near that of the as-prepared simulants. If the initial trend continues, it will be possible to show that runaway ferrocyanide reactions are not possible under present tank conditions. The lower ferrocyanide concentrations in actual tank waste may be due to tank waste mixing and/or degradation from radiolysis and/or hydrolysis, which may have occurred over approximately 35 years of storage.

Jeppson, D.W.; Simpson, B.C.

1994-02-01T23:59:59.000Z

303

Preliminary estimates of the total-system cost for the restructured program: An addendum to the May 1989 analysis of the total-system life cycle cost for the Civilian Radioactive Waste Management Program  

SciTech Connect

The total-system life-cycle cost (TSLCC) analysis for the Department of Energy`s (DOE) Civilian Radioactive Waste Management Program is an ongoing activity that helps determine whether the revenue-producing mechanism established by the Nuclear Waste Policy Act of 1982 - a fee levied on electricity generated and sold by commercial nuclear power plants - is sufficient to cover the cost of the program. This report provides cost estimates for the sixth annual evaluation of the adequacy of the fee. The costs contained in this report represent a preliminary analysis of the cost impacts associated with the Secretary of Energy`s Report to Congress on Reassessment of the Civilian Radioactive Waste Management Program issued in November 1989. The major elements of the restructured program announced in this report which pertain to the program`s life-cycle costs are: a prioritization of the scientific investigations program at the Yucca Mountain candidate site to focus on identification of potentially adverse conditions, a delay in the start of repository operations until 2010, the start of limited waste acceptance at the monitored retrievable storage (MRS) facility in 1998, and the start of waste acceptance at the full-capability MRS facility in 2,000. Based on the restructured program, the total-system cost for the system with a repository at the candidate site at Yucca Mountain in Nevada, a facility for monitored retrievable storage (MRS), and a transportation system is estimated at $26 billion (expressed in constant 1988 dollars). In the event that a second repository is required and is authorized by the Congress, the total-system cost is estimated at $34 to $35 billion, depending on the quantity of spent fuel and high-level waste (HLW) requiring disposal. 17 figs., 17 tabs.

NONE

1990-12-01T23:59:59.000Z

304

Mathematical analysis of hydrogen mixing and diffusion in the vapor space of a high-level nuclear waste tank  

DOE Green Energy (OSTI)

This paper presents mathematical analyses of the possible accumulation of radiolytically produced hydrogen in the vapor space in a tank storing liquid high-level radioactive waste. Under normal operating conditions, these tanks are continuously ventilated with air to ensure that the concentration of hydrogen never reaches its lower flammability limit (4%). These scenarios are considered in which it is postulated that hydrogen may accumulate and present a flammability hazard. These scenarios are stratification due to gravity, slow mixing when the ventilation system is operating, and slow mixing when the ventilation system is not operating. In all three cases, the analyses indicate that the accumulation of hydrogen is not likely and thus does not present a flammability problem so long as controls are in place to dilute its concentration to less than 4%.

Bibler, N.E. (ed.); Wallace, R.M.

1991-01-01T23:59:59.000Z

305

High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 6  

SciTech Connect

The scope of the Environmental Restoration and Waste Management (EM) Functional Area includes the programmatic controls associated with the management and operation of the Hanford Tank Farm Facility. The driving management organization implementing the programmatic controls is the Tank Farms Waste Management (WM)organization whose responsibilities are to ensure that performance objectives are established; and that measurable criteria for attaining objectives are defined and reflected in programs, policies and procedures. Objectives for the WM Program include waste minimization, establishment of effective waste segregation methods, waste treatment technology development, radioactive (low-level, high-level) hazardous and mixed waste transfer, treatment, and storage, applicability of a corrective action program, and management and applicability of a decontamination and decommissioning (D&D) program in future years.

Not Available

1994-04-01T23:59:59.000Z

306

Unsaturated flow and transport through fractured rock related to high-level waste repositories; Final report, Phase 3  

SciTech Connect

Research results are summarized for a US Nuclear Regulatory Commission contract with the University of Arizona focusing on field and laboratory methods for characterizing unsaturated fluid flow and solute transport related to high-level radioactive waste repositories. Characterization activities are presented for the Apache Leap Tuff field site. The field site is located in unsaturated, fractured tuff in central Arizona. Hydraulic, pneumatic, and thermal characteristics of the tuff are summarized, along with methodologies employed to monitor and sample hydrologic and geochemical processes at the field site. Thermohydrologic experiments are reported which provide laboratory and field data related to the effects conditions and flow and transport in unsaturated, fractured rock. 29 refs., 17 figs., 21 tabs.

Evans, D.D.; Rasmussen, T.C. [Arizona Univ., Tucson, AZ (USA). Dept. of Hydrology and Water Resources

1991-01-01T23:59:59.000Z

307

INTERNATIONAL STUDY OF ALUMINUM IMPACTS ON CRYSTALLIZATION IN U.S. HIGH LEVEL WASTE GLASS  

SciTech Connect

The objective of this task was to develop glass formulations for (Department of Energy) DOE waste streams with high aluminum concentrations to avoid nepheline formation while maintaining or meeting waste loading and/or waste throughput expectations as well as satisfying critical process and product performance related constraints. Liquidus temperatures and crystallization behavior were carefully characterized to support model development for higher waste loading glasses. The experimental work, characterization, and data interpretation necessary to meet these objectives were performed among three partnering laboratories: the V.G. Khlopin Radium Institute (KRI), Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL). Projected glass compositional regions that bound anticipated Defense Waste Processing Facility (DWPF) and Hanford high level waste (HLW) glass regions of interest were developed and used to generate glass compositions of interest for meeting the objectives of this study. A thorough statistical analysis was employed to allow for a wide range of waste glass compositions to be examined while minimizing the number of glasses that had to be fabricated and characterized in the laboratory. The glass compositions were divided into two sets, with 45 in the test matrix investigated by the U.S. laboratories and 30 in the test matrix investigated by KRI. Fabrication and characterization of the US and KRI-series glasses were generally handled separately. This report focuses mainly on the US-series glasses. Glasses were fabricated and characterized by SRNL and PNNL. Crystalline phases were identified by X-ray diffraction (XRD) in the quenched and canister centerline cooled (CCC) glasses and were generally iron oxides and spinels, which are not expected to impact durability of the glass. Nepheline was detected in five of the glasses after the CCC heat treatment. Chemical composition measurements for each of the glasses were conducted following an analytical plan. A review of the individual oxides for each glass revealed that there were no errors in batching significant enough to impact the outcome of the study. A comparison of the measured compositions of the replicates indicated an acceptable degree of repeatability as the percent differences for most of the oxides were less than 5% and percent differences for all of the oxides were less than 10 wt%. Chemical durability was measured using the Product Consistency Test (PCT). All but two of the study glasses had normalized leachate for boron (NL [B]) values that were well below that of the Environmental Assessment (EA) reference glass. The two highest NL [B] values were for the CCC versions of glasses US-18 and US-27 (10.498 g/L and 15.962 g/L, respectively). Nepheline crystallization was identified by qualitative XRD in five of the US-series glasses. Each of these five glasses (US-18, US-26, US-27, US-37 and US-43) showed a significant increase in NL [B] values after the CCC heat treatment. This reduction in durability can be attributed to the formation of nepheline during the slow cooling cycle and the removal of glass formers from the residual glass network. The liquidus temperature (T{sub L}) of each glass in the study was determined by both optical microscopy and XRD methods. The correlation coefficient of the measured XRD TL data versus the measured optical TL data was very good (R{sup 2} = 0.9469). Aside from a few outliers, the two datasets aligned very well across the entire temperature range (829 C to 1312 C for optical data and 813 C to 1310 C for XRD crystal fraction data). The data also correlated well with the predictions of a PNNL T{sub L} model. The correlation between the measured and calculated data had a higher degree of merit for the XRD crystal fraction data than for the optical data (higher R{sup 2} value of 0.9089 versus 0.8970 for the optical data). The SEM-EDS analysis of select samples revealed the presence of undissolved RuO{sub 2} in all glasses due to the low solubility of RuO{sub 2} in borosilicate glass. These

Fox, K; David Peeler, D; Tommy Edwards, T; David Best, D; Irene Reamer, I; Phyllis Workman, P; James Marra, J

2008-09-23T23:59:59.000Z

308

FINAL REPORT START-UP AND COMMISSIONING TESTS ON THE DURAMELTER 1200 HLW PILOT MELTER SYSTEM USING AZ-101 HLW SIMULANTS VSL-01R0100-2 REV 0 1/20/03  

Science Conference Proceedings (OSTI)

This document provides the final report on data and results obtained from commissioning tests performed on the one-third scale DuraMelter{trademark} 1200 (DM 1200) HLW Pilot Melter system that has been installed at VSL with an integrated prototypical off-gas treatment system. That system has replaced the DM1000 system that was used for HLW throughput testing during Part BI [1]. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. These tests were performed under a corresponding RPP-WTP Test Specification and associated Test Plan. This report is a followup to the previously issued Preliminary Data Summary Report. The DM1200 system will be used for testing and confirmation of basic design, operability, flow sheet, and process control assumptions as well as for support of waste form qualification and permitting. This will include data on processing rates, off-gas treatment system performance, recycle stream compositions, as well as process operability and reliability. Consequently, this system is a key component of the overall HLW vitrification development strategy. The results presented in this report are from the initial series of short-duration tests that were conducted to support the start-up and commissioning of this system prior to conducting the main body of development tests that have been planned for this system. These tests were directed primarily at system 'debugging,' operator training, and procedure refinement. The AZ-101 waste simulant and glass composition that was used for previous testing was selected for these tests.

KRUGER AA; MATLACK KS; KOT WK; BRANDYS M; WILSON CN; SCHATZ TR; GONG W; PEGG IL

2011-12-29T23:59:59.000Z

309

Final Report - Sulfate Solubility in RPP-WTP HLW Glasses, VSL-06R6780-1, Rev. 0  

SciTech Connect

This report describes the results of work and testing specified by Test Specifications 24590-HLW-TSP-RT-01-006 Rev 1, Test Plans VSL-02T7800-1 Rev 1 and Test Exceptions 24590-HLW-TEF-RT-05-00007. The work and any associated testing followed established quality assurance requirements and were conducted as authorized. The descriptions provided in this report are an accurate account of both the conduct of the work and the data collected. Results required by the Test Plans are reported. Also reported are any unusual or anomalous occurrences that are different from the starting hypotheses. The test results and this report have been reviewed and verified.

Kruger, Albert A.; Pegg, I. L.; Feng, A.; Gan, H.; Kot, W. K.

2013-12-03T23:59:59.000Z

310

Final Report - Testing of Optimized Bubbler Configuration for HLW Melter VSL-13R2950-1, Rev. 0, dated 6/12/2013  

Science Conference Proceedings (OSTI)

The principal objective of this work was to determine the glass production rate increase and ancillary effects of adding more bubbler outlets to the current WTP HLW melter baseline. This was accomplished through testing on the HLW Pilot Melter (DM1200) at VSL. The DM1200 unit was selected for these tests since it was used previously with several HLW waste streams including the four tank wastes proposed for initial processing at Hanford. This melter system was also used for the development and optimization of the present baseline WTP HLW bubbler configuration for the WTP HLW melter, as well as for MACT testing for both HLW and LAW. Specific objectives of these tests were to: Conduct DM1200 melter testing with the baseline WTP bubbling configuration and as augmented with additional bubblers. Conduct DM1200 melter testing to differentiate the effects of total bubbler air flow and bubbler distribution on glass production rate and cold cap formation. Collect melter operating data including processing rate, temperatures at a variety of locations within the melter plenum space, melt pool temperature, glass melt density, and melter pressure with the baseline WTP bubbling configuration and as augmented with additional bubblers. Collect melter exhaust samples to compare particulate carryover for different bubbler configurations. Analyze all collected data to determine the effects of adding more bubblers to the WTP HLW melter to inform decisions regarding future lid re-designs. The work used a high aluminum HLW stream composition defined by ORP, for which an appropriate simulant and high waste loading glass formulation were developed and have been previously processed on the DM1200.

Kruger, Albert A.; Pegg, I. L.; Callow, R. A.; Joseph, I.; Matlack, K. S.; Kot, W. K.

2013-11-13T23:59:59.000Z

311

Closure development for high-level nuclear waste containers for the tuff repository; Phase 1, Final report  

SciTech Connect

This report summarizes Phase 1 activities for closure development of the high-level nuclear waste package task for the tuff repository. Work was conducted under U.S. Department of Energy (DOE) Contract 9172105, administered through the Lawrence Livermore National Laboratory (LLNL), as part of the Yucca Mountain Project (YMP), funded through the DOE Office of Civilian Radioactive Waste Management (OCRWM). The goal of this phase was to select five closure processes for further evaluation in later phases of the program. A decision tree methodology was utilized to perform an objective evaluation of 15 potential closure processes. Information was gathered via a literature survey, industrial contacts, and discussions with project team members, other experts in the field, and the LLNL waste package task staff. The five processes selected were friction welding, electron beam welding, laser beam welding, gas tungsten arc welding, and plasma arc welding. These are felt to represent the best combination of weldment material properties and process performance in a remote, radioactive environment. Conceptual designs have been generated for these processes to illustrate how they would be implemented in practice. Homopolar resistance welding was included in the Phase 1 analysis, and developments in this process will be monitored via literature in Phases 2 and 3. Work was conducted in accordance with the YMP Quality Assurance Program. 223 refs., 20 figs., 9 tabs.

Robitz, E.S. Jr.; McAninch, M.D. Jr.; Edmonds, D.P. [Babcock and Wilcox Co., Lynchburg, VA (USA). Nuclear Power Div.]|[Babcock and Wilcox Co., Alliance, OH (USA). Research and Development Div.

1990-09-01T23:59:59.000Z

312

Break Throughs in High-Level Waste Vitrification for the Hanford ...  

Science Conference Proceedings (OSTI)

... Throughs in High-Level Waste Vitrification for the Hanford Waste Vitrification Plant ... Waste at the Defense Waste Processing Facility through Sludge Batch 7b .

313

Life Estimation of High Level Waste Tank Steel for H-Tank Farm ...  

the tanks is not considered in the analysis. Life Estimation of High Level Waste Tank ... conservative scenario in which the concrete vault has completely

314

Final Report - Management of High Sulfur HLW, VSL-13R2920-1, Rev. 0, dated 10/31/2013  

Science Conference Proceedings (OSTI)

The present report describes results from a series of small-scale crucible tests to determine the extent of corrosion associated with sulfur containing HLW glasses and to develop a glass composition for a sulfur-rich HLW waste stream, which was then subjected to small-scale melter testing to determine the maximum acceptable sulfate loadings. In the present work, a new glass formulation was developed and tested for a projected Hanford HLW composition with sulfate concentrations high enough to limit waste loading. Testing was then performed on the DM10 melter system at successively higher waste loadings to determine the maximum waste loading without the formation of a separate sulfate salt phase. Small scale corrosion testing was also conducted using the glass developed in the present work, the glass developed in the initial phase of this work [26], and a high iron composition, all at maximum sulfur concentrations determined from melter testing, in order to assess the extent of Inconel 690 and MA758 corrosion at elevated sulfate contents.

Kruger, Albert A.; Gan, H.; Pegg, I. L.; Feng, Z.; Gan, H,; Joseph, I.; Matlack, K. S.

2013-11-13T23:59:59.000Z

315

Development Of High Waste-Loading HLW Glasses For High Bismuth Phosphate Wastes, VSL-12R2550-1, Rev 0  

SciTech Connect

This report presents results from tests with new glass formulations that have been developed for several high Bi-P HLW compositions that are expected to be processed at the WTP that have not been tested previously. WTP HLW feed compositions were reviewed to select waste batches that are high in Bi-P and that are reasonably distinct from the Bi-limited waste that has been tested previously. Three such high Bi-P HLW compositions were selected for this work. The focus of the present work was to determine whether the same type of issues as seen in previous work with high-Bi HLW will be seen in HLW with different concentrations of Bi, P and Cr and also whether similar glass formulation development approaches would be successful in mitigating these issues. New glass compositions were developed for each of the three representative Bi-P HLW wastes and characterized with respect to key processing and product quality properties and, in particular, those relating to crystallization and foaming tendency.

Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Gan, Hao [The Catholic University of America, Washington, DC (United States); Kot, Wing K. [The Catholic University of America, Washington, DC (United States)

2012-12-13T23:59:59.000Z

316

FINAL REPORT INTEGRATED DM1200 MELTER TESTING USING AZ 102 AND C 106/AY-102 HLW SIMULANTS: HLW SIMULANT VERIFICATION VSL-05R5800-1 REV 0 6/27/05  

Science Conference Proceedings (OSTI)

The principal objectives of the DM1200 melter tests were to determine the effects of feed rheology, feed solid content, and bubbler configuration on glass production rate and off-gas system performance while processing the HLW AZ-101 and C-106/AY-102 feed compositions; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components, as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and post test inspections of system components. The specific objectives (including test success criteria) of this testing, along with how each objective was met, are outlined in a table. The data provided in this Final Report address the impacts of HLW melter feed rheology on melter throughput and validation of the simulated HLW melter feeds. The primary purpose of this testing is to further validate/verify the HLW melter simulants that have been used for previous melter testing and to support their continued use in developing melter and off-gas related processing information for the Project. The primary simulant property in question is rheology. Simulants and melter feeds used in all previous melter tests were produced by direct addition of chemicals; these feed tend to be less viscous than rheological the upper-bound feeds made from actual wastes. Data provided here compare melter processing for the melter feed used in all previous DM100 and DM1200 tests (nominal melter feed) with feed adjusted by the feed vendor (NOAH Technologies) to be more viscous, thereby simulating more closely the upperbounding feed produced from actual waste. This report provides results of tests that are described in the Test Plan for this work. The Test Plan is responsive to one of several test objectives covered in the WTP Test Specification for this work; consequently, only part of the scope described in the Test Specification was addressed in this particular Test Plan. For the purpose of comparison, the tests reported here were performed with AZ-102 and C-106/AY-102 HLW simulants and glass compositions that are essentially the same as those used for recent DM1200 tests. One exception was the use of an alternate, higher-waste-loading C-106/AY-102 glass composition that was used in previous DM100 tests to further evaluate the performance of the optimized bubbler configuration.

KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D'ANGELO NA; BRANDYS M; KOT WK; PEGG IL

2011-12-29T23:59:59.000Z

317

Radioactive waste systems and radioactive effluents  

SciTech Connect

Radioactive waste systems for handling gaseous, liquid, and solid wastes generated at light and pressurized water reactors are described. (TFD)

Row, T.H.

1973-01-01T23:59:59.000Z

318

Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks  

Science Conference Proceedings (OSTI)

This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

WILLIS, W.L.

2000-06-15T23:59:59.000Z

319

User interface prototyping based on UML scenarios and high-level Petri nets  

Science Conference Proceedings (OSTI)

In this paper, we suggest a requirement engineering process that generates a user interface prototype from scenarios and yields a formal specification of the system in form of a high-level Petri net. Scenarios are acquired in the form of sequence diagrams ... Keywords: high-level petri net, scenario specification, unified modeling language, user interface prototyping

Mohammed Elkoutbi; Rudolf K. Keller

2000-06-01T23:59:59.000Z

320

A thread partitioning algorithm in low power high-level synthesis  

Science Conference Proceedings (OSTI)

This paper proposes a thread partitioning algorithm in low power high-level synthesis. The algorithm is applied to high-level synthesis systems. In the systems, we can describe parallel behaving circuit blocks(threads) explicitly. First it focuses on ...

Jumpei Uchida; Nozomu Togawa; Masao Yanagisawa; Tatsuo Ohtsuki

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hlw high-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Characteristics Data Base: Programmer's guide to the High-Level Waste Data Base  

SciTech Connect

The High-Level Waste Data Base is a menu-driven PC data base developed as part of OCRWM's technical data base on the characteristics of potential repository wastes, which also includes spent fuel and other materials. This programmer's guide completes the documentation for the High-Level Waste Data Base, the user's guide having been published previously. 3 figs.

Jones, K.E. (DataPhile, Inc., Knoxville, TN (USA)); Salmon, R. (Oak Ridge National Lab., TN (USA))

1990-08-01T23:59:59.000Z

322

High-level synthesis of asynchronous systems by data-driven decomposition  

Science Conference Proceedings (OSTI)

We present a method for decomposing a high-level program description of a circuit into a system of concurrent modules that can each be implemented as asynchronous pre-charge half-buffer pipeline stages (the circuits used in the asynchronous R3000 MIPS ... Keywords: asynchronous VLSI, high-level synthesis

Catherine G. Wong; Alain J. Martin

2003-06-01T23:59:59.000Z

323

FINAL REPORT REGULATORY OFF GAS EMISSIONS TESTING ON THE DM1200 MELTER SYSTEM USING HLW AND LAW SIMULANTS VSL-05R5830-1 REV 0 10/31/05  

Science Conference Proceedings (OSTI)

The operational requirements for the River Protection Project - Waste Treatment Plant (RPP-WTP) Low Activity Waste (LAW) and High Level Waste (HLW) melter systems, together with the feed constituents, impose a number of challenges to the off-gas treatment system. The system must be robust from the standpoints of operational reliability and minimization of maintenance. The system must effectively control and remove a wide range of solid particulate matter, acid mists and gases, and organic constituents (including those arising from products of incomplete combustion of sugar and organics in the feed) to concentration levels below those imposed by regulatory requirements. The baseline design for the RPP-WTP LAW primary off-gas system includes a submerged bed scrubber (SBS), a wet electrostatic precipitator (WESP), and a high efficiency particulate air (HEPA) filter. The secondary off-gas system includes a sulfur-impregnated activated carbon bed (AC-S), a thermal catalytic oxidizer (TCO), a single-stage selective catalytic reduction NOx treatment system (SCR), and a packed-bed caustic scrubber (PBS). The baseline design for the RPP-WTP HLW primary off-gas system includes an SBS, a WESP, a high efficiency mist eliminator (HEME), and a HEPA filter. The HLW secondary off-gas system includes a sulfur-impregnated activated carbon bed, a silver mordenite bed, a TCO, and a single-stage SCR. The one-third scale HLW DM1200 Pilot Melter installed at the Vitreous State Laboratory (VSL) was equipped with a prototypical off-gas train to meet the needs for testing and confirmation of the performance of the baseline off-gas system design. Various modifications have been made to the DM1200 system as the details of the WTP design have evolved, including the installation of a silver mordenite column and an AC-S column for testing on a slipstream of the off-gas flow; the installation of a full-flow AC-S bed for the present tests was completed prior to initiation of testing. The DM1200 system was reconfigured to enable testing of the baseline HLW or LAW off-gas trains to perform off-gas emissions testing with both LAW and HLW simulants in the present work. During 2002 and 2003, many of these off-gas components were tested individually and in an integrated manner with the DM1200 Pilot Melter. Data from these tests are being used to support engineering design confirmation and to provide data to support air permitting activities. In fiscal year 2004, the WTP Project was directed by the Office of River Protection (ORP) to comply with Environmental Protection Agency (EPA) Maximum Achievable Control Technology (MACT) requirements for organics. This requires that the combined melter and off-gas system have destruction and removal efficiency (DRE) of >99.99% for principal organic dangerous constituents (PODCs). In order to provide confidence that the melter and off-gas system are able to achieve the required DRE, testing has been directed with both LAW and HLW feeds. The tests included both 'normal' and 'challenge' WTP melter conditions in order to obtain data for the potential range of operating conditions for the WTP melters and off-gas components. The WTP Project, Washington State Department of Ecology, and ORP have agreed that naphthalene will be used for testing to represent semi-volatile organics and allyl alcohol will be used to represent volatile organics. Testing was also performed to determine emissions of halides, metals, products of incomplete combustion (PICs), dioxins, furans, coplanar PCBs, total hydrocarbons, and COX and NOX, as well as the particle size distribution (PSD) of particulate matter discharged at the end of the off-gas train. A description of the melter test requirements and analytical methods used is provided in the Test Plan for this work. Test Exceptions were subsequently issued which changed the TCO catalyst, added total organic emissions (TOE) to exhaust sampling schedule, and allowing modification of the test conditions in response to attainable plenum temperatures as well as temperature increases in the sulfur impr

KRUGER AA; MATLACK KS; GONG W; BARDAKCI T; D'ANGELO NA; BRANDYS M; KOT WK; PEGG IL

2011-12-29T23:59:59.000Z

324

Impact of Alkali Source on Vitrification of SRS High Level Waste  

SciTech Connect

The Defense Waste Processing Facility (DWPF) Savannah River Site is currently immobilizing high level nuclear waste sludge by vitrification in borosilicate glass. The processing strategy involves blending a large batch of sludge into a feed tank, washing the sludge to reduce the amount of soluble species, then processing the large ''sludge batch'' through the DWPF. Each sludge batch is tested by the Savannah River National Laboratory (SRNL) using simulants and tests with samples of the radioactive waste to ''qualify'' the batch prior to processing in the DWPF. The DWPF pretreats the sludge by first acidifying the sludge with nitric and formic acid. The ratio of nitric to formic acid is adjusted as required to target a final glass composition that is slightly reducing (the target is for {approx}20% of the iron to have a valence of two in the glass). The formic acid reduces the mercury in the feed to elemental mercury which is steam stripped from the feed. After a concentration step, the glass former (glass frit) is added as a 50 wt% slurry and the batch is concentrated to approximately 50 wt% solids. The feed slurry is then fed to a joule heated melter maintained at 1150 C. The glass must meet both processing (e.g., viscosity and liquidus temperature) and product performance (e.g., durability) constraints The alkali content of the final waste glass is a critical parameter that affects key glass properties (such as durability) as well as the processing characteristics of the waste sludge during the pretreatment and vitrification processes. Increasing the alkali content of the glass has been shown to improve the production rate of the DWPF, but the total alkali in the final glass is limited by constraints on glass durability and viscosity. Two sources of alkali contribute to the final alkali content of the glass: sodium salts in the waste supernate and sodium and lithium oxides in the glass frit added during pretreatment processes. Sodium salts in the waste supernate can be reduced significantly by washing the solids to remove soluble species. The ''washing strategy'' for future sludge batches can be controlled to limit the soluble sodium remaining in the waste stream while balancing the alkali content of the frit to maintain acceptable glass properties as well as improve melter processing characteristics.

LAMBERT, D. P.; MILLER, D. H.; PEELER, D. K.; SMITH, M. E.; STONE, M. E.

2005-09-08T23:59:59.000Z

325

Final Report - Melt Rate Enhancement for High Aluminum HLW Glass Formulation, VSL-08R1360-1, Rev. 0, dated 12/19/08  

SciTech Connect

The principal objective of the work reported here was to develop and identify HLW glass compositions that maximize waste processing rates for the aluminum limted waste composition specified by ORP while maintaining high waste loadings and acceptable glass properties. This was accomplished through a combination of crucible-scale tests, confirmation tests on the DM100 melter system, and demonstration at pilot scale (DM1200). The DM100-BL unit was selected for these tests since it was used previously with the HLW waste streams evaluated in this study, was used for tests on HLW glass compositions to support subsequent tests on the HLW Pilot Melter, conduct tests to determine the effect of various glass properties (viscosity and conductivity) and oxide concentrations on glass production rates with HLW feed streams, and to assess the volatility of cesium and technetium during the vitrification of an HLW AZ-102 composition. The same melter was selected for the present tests in order to maintain comparisons between the previously collected data. These tests provide information on melter processing characteristics and off-gas data, including formation of secondary phases and partitioning. Once DM100 tests were completed, one of the compositions was selected for further testing on the DM1200; the DM1200 system has been used for processing a variety of simulated Hanford waste streams. Tests on the larger melter provide processing data at one third of the scale of the actual WTP HLW melter and, therefore, provide a more accurate and reliable assessment of production rates and potential processing issues. The work focused on maximizing waste processing rates for high aluminum HLW compositions. In view of the diversity of forms of aluminum in the Hanford tanks, tests were also conducted on the DM100 to determine the effect of changes in the form of aluminum on feed properties and production rate. In addition, the work evaluated the effect on production rate of modest increases in melter operating temperature. Glass composition development was based on one of the HLW waste compositions specified by ORP that has a high concentration of aluminum. Small-scale tests were used to provide an initial screening of various glass formulations with respect to melt rates; more definitive screening was provided by the subsequent DM100 tests. Glass properties evaluated included: viscosity, electrical conductivity, crystallinity, gross glass phase separation and the 7- day Product Consistency Test (ASTM-1285). Glass property limits were based upon the reference properties for the WTP HLW melter. However, the WTP crystallinity limit (< 1 vol% at 950oC) was relaxed slightly as a waste loading constraint for the crucible melts.

Kruger, Albert A.; Pegg, I. L.; Chaudhuri, M.; Gong, W.; Gan, H.; Matlack, K. S.; Bardakci, T.; Kot, W.

2013-11-13T23:59:59.000Z

326

Performance assessment of the direct disposal in unsaturated tuff or spent nuclear fuel and high-level waste owned by USDOE: Volume 2, Methodology and results  

SciTech Connect

This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservations. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM.

Rechard, R.P. [ed.

1995-03-01T23:59:59.000Z

327

Comments of Santiago Grijalva: High-Level Response to DOE RFI on Smart Grid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Santiago Grijalva: High-Level Response to DOE RFI on Santiago Grijalva: High-Level Response to DOE RFI on Smart Grid Policy Comments of Santiago Grijalva: High-Level Response to DOE RFI on Smart Grid Policy High-Level Response to DOE RFI on Smart Grid Policy: This document responds to DOE questions regarding smart grid policy. The approach followed herein is to write concise comments addressing the overall RFI document at a higher level. High-Level Response to DOE RFI on Smart Grid Policy More Documents & Publications Initial Comments of Honeywell, Inc. on Policy and Logistical Challenges in Implementing Smart Grid Solutions Comments of DRSG to DOE Smart Grid RFI: Addressing Policy and Logistical Challenges Re: NBP RFI-Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart

328

A report on high-level nuclear waste transportation: Prepared pursuant to assembly concurrent resolution No. 8 of the 1987 Nevada Legislature  

SciTech Connect

This report has been prepared by the staff of the State of Nevada Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) in response to Assembly Concurrent Resolution No. 8 (ACR 8), passed by the Nevada State Legislature in 1987. ACR 8 directed the NWPO, in cooperation with affected local governments and the Legislative committee on High-Level Radioactive Waste, to prepare this report which scrutinizes the US Department of Energy`s (DOE) plans for transportation of high-level radioactive waste to the proposed yucca Mountain repository, which reviews the regulatory structure under which shipments to a repository would be made and which presents NWPO`s plans for addressing high-level radioactive waste transportation issues. The report is divided into three major sections. Section 1.0 provides a review of DOE`s statutory requirements, its repository transportation program and plans, the major policy, programmatic, technical and institutional issues and specific areas of concern for the State of Nevada. Section 2.0 contains a description of the current federal, state and tribal transportation regulatory environment within which nuclear waste is shipped and a discussion of regulatory issues which must be resolved in order for the State to minimize risks and adverse impacts to its citizens. Section 3.0 contains the NWPO plan for the study and management of repository-related transportation. The plan addresses four areas, including policy and program management, regulatory studies, technical reviews and studies and institutional relationships. A fourth section provides recommendations for consideration by State and local officials which would assist the State in meeting the objectives of the plan.

1988-12-01T23:59:59.000Z

329

Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices  

SciTech Connect

This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

Rechard, R.P. [ed.

1993-12-01T23:59:59.000Z

330

Radioactive tank waste remediation focus area  

SciTech Connect

EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

1996-08-01T23:59:59.000Z

331

Graphical and tabular summaries of decay characteristics for once-through PWR, LMFBR, and FFTF fuel cycle materials. [Spent fuel, high-level waste fuel can scrap  

SciTech Connect

Based on the results of ORIGEN2 and a newly developed code called ORMANG, graphical and summary tabular characteristics of spent fuel, high-level waste, and fuel assembly structural material (cladding) waste are presented for a generic pressurized-water reactor (PWR), a liquid-metal fast breeder reactor (LMFBR), and the Fast Flux Test Facility (FFTF). The characteristics include radioactivity, thermal power, and toxicity (water dilution volume). Given are graphs and summary tables containing characteristic totals and the principal nuclide contributors as well as graphs comparing the three reactors for a single material and the three materials for a single reactor.

Croff, A.G.; Liberman, M.S.; Morrison, G.W.

1982-01-01T23:59:59.000Z

332

MATRIX 2 RESULTS OF THE FY07 ENHANCED DOE HIGH-LEVEL WASTE MELTER THROUGHPUT STUDIES AT SRNL  

SciTech Connect

High-level waste (HLW) throughput (i.e., the amount of waste processed per unit time) is a function of two critical parameters: waste loading (WL) and melt rate. For the Waste Treatment and Immobilization Plant (WTP) at the Hanford Site and the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), increasing HLW throughput would significantly reduce the overall mission life cycle costs for the Department of Energy (DOE). The objective of this study was to generate supplemental validation data that could be used to determine the applicability of the current liquidus temperature (TL) model to expanded DWPF glass composition regions of interest based on higher WLs. Two specific flowsheets were used in this study to provide such insight: (1) Higher WL glasses (45 and 50%) based on future sludge batches that have (and have not) undergone the Al-dissolution process. (2) Coupled operations supported by the Salt Waste Processing Facility (SWPF), which increase the TiO{sub 2} concentration in glass to greater than 2 wt%. Glasses were also selected to address technical issues associated with Al{sub 2}O{sub 3} solubility, nepheline formation, and homogeneity issues for coupled operations. A test matrix of 28 glass compositions was developed to provide insight into these issues. The glasses were fabricated and characterized using chemical composition analysis, X-ray Diffraction (XRD), TL measurement and the Product Consistency Test (PCT). The results of this study are summarized below: (1) TiO{sub 2} concentrations up to {approx} 3.5 wt% were retained in DWPF type glasses, where retention is defined as the absence of crystalline TiO{sub 2} (i.e., unreacted or undissolved) in the as-fabricated glasses. Although this TiO{sub 2} content does not bound the projected SWPF high output flowsheet (up to 6 wt% TiO{sub 2} may be required in glass), these data demonstrate the potential for increasing the TiO{sub 2} limit in glass above the current limit of 2 wt% (based strictly on retention or solubility). (2) For those study glasses that had very close compositional overlap with the model development and/or model validation ranges of the current DWPF TL model (except TiO{sub 2} and MgO concentrations), there was very little difference in the predicted and measured TL values. Even though the TiO{sub 2} concentrations were above the 2 wt% upper limit, the results indicate that the current T{sub L} model is applicable in this compositional region with TiO{sub 2} contents up to approximately 3.5 wt%. (3) As the target glass compositions diverge from the model development and validation ranges, the T{sub L} data suggest that the model under-predicted the measured values. These discrepancies imply that there are individual oxides or oxide combinations that need to be accounted for in the model. These oxides include B{sub 2}O{sub 3}, SiO{sub 2}, MnO, TiO{sub 2} and/or their combinations. More data would be required to fill in these anticipated DWPF compositional regions for higher WL glasses so that the model coefficients could be refit to account for these differences. (4) Based on PCT response of HWL-21 and HWL-22 (two glasses that were prone to nepheline formation) it appears that increasing the B{sub 2}O{sub 3} concentration in glass does not consistently suppress the formation of nepheline in glasses with higher Al{sub 2}O{sub 3} and/or Na{sub 2}O content. Although the chemical durabilities of the quenched versions of these glasses were very acceptable, the canister centerline cooled (ccc) glasses exhibited a considerable decrease in durability and were found to contain nepheline via XRD. In fact, one of the glasses had a release that was 5 times greater than that of the Environmental Assessment (EA) benchmark glass. These results suggest a need for a more fundamental understanding of the compositional and kinetic effects of nepheline formation in high WL glasses. (5) Data have been generated in support of the replacement of the homogeneity constraint with the Al{sub 2}O{sub 3} and/or sum of alkali constraints for coupled o

Raszewski, F; Tommy Edwards, T; David Peeler, D

2008-10-23T23:59:59.000Z

333

Preliminary estimates of cost savings for defense high level waste vitrification options  

SciTech Connect

The potential for realizing cost savings in the disposal of defense high-level waste through process and design modificatins has been considered. Proposed modifications range from simple changes in the canister design to development of an advanced melter capable of processing glass with a higher waste loading. Preliminary calculations estimate the total disposal cost (not including capital or operating costs) for defense high-level waste to be about $7.9 billion dollars for the reference conditions described in this paper, while projected savings resulting from the proposed process and design changes could reduce the disposal cost of defense high-level waste by up to $5.2 billion.

Merrill, R.A.; Chapman, C.C.

1993-09-01T23:59:59.000Z

334

Storage and disposal of radioactive waste as glass in canisters  

SciTech Connect

A review of the use of waste glass for the immobilization of high-level radioactive waste glass is presented. Typical properties of the canisters used to contain the glass, and the waste glass, are described. Those properties are used to project the stability of canisterized waste glass through interim storage, transportation, and geologic disposal.

Mendel, J.E.

1978-12-01T23:59:59.000Z

335

Midwestern Radioactive Materials Transportation Committee Agenda...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation...

336

Secretary Bodman and Pakistan Officials Hold High-Level Energy Meeting |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Bodman and Pakistan Officials Hold High-Level Energy Secretary Bodman and Pakistan Officials Hold High-Level Energy Meeting Secretary Bodman and Pakistan Officials Hold High-Level Energy Meeting March 13, 2006 - 11:48am Addthis Discuss Pakistan's energy opportunities; Follows United States-Pakistan Strategic Partnership launched by President Bush earlier this month WASHINGTON, DC - Energy Secretary Samuel W. Bodman today visited Pakistan, the first stop in his four-nation swing where he will discuss ways that the U.S. and Pakistan can increase cooperation on energy-related issues. The Secretary's visit follows President Bush's pledge earlier this month to hold a high-level meeting between U.S. and Pakistani officials to collaborate on solutions to Pakistan's energy sources. "The U.S. and Pakistan are strong allies and America supports the people of

337

Event:ECOWAS High-Level Forum: Paving the Way for Sustainable...  

Open Energy Info (EERE)

Paving the Way for Sustainable Energy for All in West Africa through Renewable Energy and Energy Efficiency Jump to: navigation, search Calendar.png ECOWAS High-Level Forum: Paving...

338

Comparison of high level design methodologies for algorithmic IPs : Bluespec and C-based synthesis  

E-Print Network (OSTI)

High level hardware design of Digital Signal Processing algorithms is an important design problem for decreasing design time and allowing more algorithmic exploration. Bluespec is a Hardware Design Language (HDL) that ...

Agarwal, Abhinav

2009-01-01T23:59:59.000Z

339

Floorplan Driven High Level Synthesis for Crosstalk Noise Minimization in Macro-cell Based Designs  

Science Conference Proceedings (OSTI)

In DSM regime, due to higher interconnect densities, the coupling noise between adjacent signals is aggravated and can lead to many timing violations. In traditional high-level synthesis (HLS), due to lack detailed physical details, it is difficult to ...

Hariharan Sankaran; Srinivas Katkoori

2009-05-01T23:59:59.000Z

340

On lower bounds for scheduling problems in high-level synthesis  

Science Conference Proceedings (OSTI)

This paper presents new results on lower bounds for the scheduling problem in high-level synthesis. While several techniques exist for lower bound estimation, comparisons among the techniques have been experimental with few guarantees on the quality ...

M. Narasimhan; J. Ramanujam

2000-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "hlw high-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Reading Between the Lines: Learning to Map High-level Instructions to Commands  

E-Print Network (OSTI)

In this paper, we address the task of mapping high-level instructions to commands in an external environment. Processing these instructions is challengingthey posit goals to be achieved without specifying the steps required ...

Branavan, Satchuthanan R.

342

Feasibility of lateral emplacement in very deep borehole disposal of high level nuclear waste  

E-Print Network (OSTI)

The U.S. Department of Energy recently filed a motion to withdraw the Nuclear Regulatory Commission license application for the High Level Waste Repository at Yucca Mountain in Nevada. As the U.S. has focused exclusively ...

Gibbs, Jonathan Sutton

2010-01-01T23:59:59.000Z

343

Comparison of the Climatologies of High-Level Clouds from HIRS and ISCCP  

Science Conference Proceedings (OSTI)

Comparison of individually matched analyses of high-level cloudiness from the High-Resolution Infrared Sounder (HIRS) CO2-slicing analysis and the International Satellite Cloud Climatology Project (ISCCP) analysis of satellite data for 4 months ...

Yao Jin; William B. Rossow; Don P. Wylie

1996-11-01T23:59:59.000Z

344

9.71 Functional MRI of High-Level Vision, Fall 2004  

E-Print Network (OSTI)

Covers the basics of fMRI, the strengths and limitations of fMRI compared to other techniques, and the design and analysis of fMRI experiments, focusing primarily on experiments on high-level vision. Upon completion, ...

Kanwisher, Nancy

345

Auto-tuning on the macro scale : high level algorithmic auto-tuning for scientific applications  

E-Print Network (OSTI)

In this thesis, we describe a new classification of auto-tuning methodologies spanning from low-level optimizations to high-level algorithmic tuning. This classification spectrum of auto-tuning methods encompasses the space ...

Chan, Cy P

2012-01-01T23:59:59.000Z

346

Multiple implementations of a microprocessor from a single high-level design  

Science Conference Proceedings (OSTI)

The authors discuss the use of the interactive design language (IDL) for the design of three distinctly different physical implementations of a control microprocessor. The high-level, implementation-independent design and the simulation were done once in IDL. This one high-level design was transformed (more or less routinely) into an IBM NMOS custom version, and into a TTL lab version driven by IBM masterslice PLAS. 3 references.

Brown, M.W.; Kimmel, M.J.

1983-01-01T23:59:59.000Z

347

High-Level Synthesis of Analog Sensor Interface Front-Ends  

Science Conference Proceedings (OSTI)

In this paper we compare three different methodologies for analog high-level synthesis. Two optimization-based methods-one with simulations in the loop, the other with equations-and a library-based approach are discussed and illustrated with experimental ... Keywords: sensors, analog high-level synthesis, analog sensor interface front-ends, optimization-based methods, library-based approach, radiation detector interface ASIC

S. Donnay; G. Gielen; W. Sansen; W. Kruiskamp; D. Leenaerts; W. Van Bokhoven

1997-03-01T23:59:59.000Z

348

Event:World Bank-High-Level Dialogue on International Architecture to  

Open Energy Info (EERE)

Bank-High-Level Dialogue on International Architecture to Bank-High-Level Dialogue on International Architecture to Scale-up Low-Emissions Development Jump to: navigation, search Calendar.png World Bank-High-Level Dialogue on International Architecture to Scale-up Low-Emissions Development: 9:00am Eastern Time on 2011/07/13 High-Level Dialogue on International Architecture to Scale-up Low-Emissions Development Event Details Name World Bank-High-Level Dialogue on International Architecture to Scale-up Low-Emissions Development Date 2011/07/13 Time 9:00am Eastern Time Location Washington, District of Columbia Organizer World Bank Tags LEDS, CLEAN Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Event:World_Bank-High-Level_Dialogue_on_International_Architecture_to_Scale-up_Low-Emissions_Development&oldid=3681

349

Mission Plan for the Civilian Radioactive Waste Management Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Plan for the Civilian Radioactive Waste Management Program Mission Plan for the Civilian Radioactive Waste Management Program Mission Plan for the Civilian Radioactive Waste Management Program Summary In response to the the requirement of the Nuclear Waste Policy Act of 1982, the Office of Civilian Radioactive Waste Management in the Department of Energy (DOE) has prepared this Mission Plan for the Civilian Radioactive Waste Management Program. The Mission Plan is divided into two parts. Part I describes the overall goals, objectives, and strategy for the disposal of spent nuclear fuel and high-level waste. It explains that, to meet the directives of the Nuclear Waste Policy Act, the DOE intends to site, design, construct., and start operating a mined geologic repository by January 31, 1998. The Act specifies that the costs of these

350

Statement of work for conceptual design of solidified high-level waste interim storage system project (phase I)  

SciTech Connect

The U.S. Department of Energy (DOE) has embarked upon a course to acquire Hanford Site tank waste treatment and immobilization services using privatized facilities. This plan contains a two phased approach. Phase I is a ``proof-of-principle/commercial demonstration- scale`` effort and Phase II is a full-scale production effort. In accordance with the planned approach, interim storage (IS) and disposal of various products from privatized facilities are to be DOE furnished. The path forward adopted for Phase I solidification HLW IS entails use of Vaults 2 and 3 in the Spent Nuclear Fuel Canister Storage Building, to be located in the Hanford Site 200 East Area. This Statement of Work describes the work scope to be performed by the Architect-Engineer to prepare a conceptual design for the solidified HLW IS System.

Calmus, R.B., Westinghouse Hanford

1996-12-17T23:59:59.000Z

351

RADIO-ACTIVE TRANSDUCER  

DOE Patents (OSTI)

ABS>ure the change in velocity of a moving object. The transducer includes a radioactive source having a collimated beam of radioactive particles, a shield which can block the passage of the radioactive beam, and a scintillation detector to measure the number of radioactive particles in the beam which are not blocked by the shield. The shield is operatively placed across the radioactive beam so that any motion normal to the beam will cause the shield to move in the opposite direction thereby allowing more radioactive particles to reach the detector. The number of particles detected indicates the acceleration. (AEC)

Wanetick, S.

1962-03-01T23:59:59.000Z

352

FINAL REPORT DM1200 TESTS WITH AZ 101 HLW SIMULANTS VSL-03R3800-4 REV 0 2/17/04  

SciTech Connect

This report documents melter and off-gas performance results obtained on the DM 1200 HLW Pilot Melter during processing of simulated HLW AZ-101 feed. The principal objectives of the DM1200 melter testing were to determine the achievable glass production rates for simulated HLW AZ-101 feed; determine the effect of bubbling rate and feed solids content on production rate; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and to perform pre- and post-test inspections of system components. The test objectives (including test success criteria), along with how they were met, are outlined in a table.

KRUGER AA; MATLACK KS; BARDAKCI T; D'ANGELO NA; GONG W; KOT WK; PEGG IL

2011-12-29T23:59:59.000Z

353

2-D Electrophoresis Principles and Methods  

E-Print Network (OSTI)

..................................................................................20 Exhibit 2-1: Typical Cap for Radioactive Waste............................................................... A-1 Exhibit B-1: Statutory and Regulatory Categories of Radioactive Waste B-2 Exhibit B-2: Principal High Efficiency Particulate Air HLW High Level Radioactive Waste IAEA International Atomic Energy

Heinke, Dietmar

354

Transportation of Spent Nuclear Fuel and High Level Waste to Yucca Mountain: The Next Step in Nevada  

Science Conference Proceedings (OSTI)

In the U.S. Department of Energy's ''Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada,'' the Department states that certain broad transportation-related decisions can be made. These include the choice of a mode of transportation nationally (mostly legal-weight truck or mostly rail) and in Nevada (mostly rail, mostly legal-weight truck, or mostly heavy-haul truck with use of an associated intermodal transfer station), as well as the choice among alternative rail corridors or heavy-haul truck routes with use of an associated intermodal transfer station in Nevada. Although a rail line does not service the Yucca Mountain site, the Department has identified mostly rail as its preferred mode of transportation, both nationally and in the State of Nevada. If mostly rail is selected for Nevada, the Department would then identify a preference for one of the rail corridors in consultation with affected stakeholders, particularly the State of Nevada. DOE would then select the rail corridor and initiate a process to select a specific rail alignment within the corridor for the construction of a rail line. Five proposed rail corridors were analyzed in the Final Environmental Impact Statement. The assessment considered the impacts of constructing a branch rail line in the five 400-meter (0.25mile) wide corridors. Each corridor connects the Yucca Mountain site with an existing mainline railroad in Nevada.

Sweeney, Robin L,; Lechel, David J.

2003-02-25T23:59:59.000Z

355

Radioactivity in consumer products  

SciTech Connect

Papers presented at the conference dealt with regulations and standards; general and biological risks; radioluminous materials; mining, agricultural, and construction materials containing radioactivity; and various products containing radioactive sources.

Moghissi, A.A.; Paras, P.; Carter, M.W.; Barker, R.F. (eds.)

1978-08-01T23:59:59.000Z

356

FRIT DEVELOPMENT FOR HIGH LEVEL WASTE SLUDGE BATCH 5: COMPOSITIONAL TRENDS FOR VARYING ALUMINUM CONCENTRATIONS  

Science Conference Proceedings (OSTI)

The objective of this study was to experimentally measure the properties and performance of a series of glasses with compositions that could represent Sludge Batch 5 (SB5) as processed at the Defense Waste Processing Facility (DWPF). The data was used to provide recommendations to the Liquid Waste Organization (LWO) regarding blending and washing strategies in preparing SB5 based on acceptability of the glass compositions. These data were also used to guide frit optimization efforts as the SB5 composition was finalized. Glass compositions for this study were developed by combining a series of SB5 composition projections with a group of frits. Three composition projections for SB5 were developed using a model-based approach at Savannah River National Laboratory (SRNL). These compositions, referred to as SB5 Cases B, C and D, projected removal of 25, 50 and 75% (respectively) of the aluminum in Tank 51 through the low temperature aluminum dissolution process. The frits for this study (Frits 530 through 537) were selected based on their predicted operating windows (i.e., ranges of waste loadings over which the predicted properties of the glasses were acceptable) and their potential (based on historical trends) to provide acceptable melt rates for SB5. Six additional glasses were designed to evaluate alternatives for uranium in DWPF-type glasses used for variability studies and some scoping studies. Since special measures are necessary when working with uranium-containing glasses in the laboratory, it is desirable as a cost and time saving measure to find an alternative for uranium to support frit optimization efforts. Hafnium and neodymium were investigated as potential surrogates for uranium, and other glasses were made by simply excluding the radioactive components and renormalizing the glass composition. The study glasses were fabricated and characterized at SRNL. Chemical composition analyses suggested only minor difficulties in meeting the targeted compositions for some of the oxides for some of the glasses. Although minor differences were observed, they did not have a significant impact on the conclusions made in this study. Several of the study compositions showed retention of more than 0.5 wt% SO{sub 4}{sup 2-} in glass. Trevorite (a spinel) was the only crystalline phase that was positively identified in a few of the study glasses after the canister centerline cooled (CCC) heat treatment. Spinels are not of concern as they have been shown to have little impact on the durability of high level waste glasses. The crystallization behavior of the surrogate glasses was generally the same as that of their U{sub 3}O{sub 8}-containing counterparts. There are two pairs that were exceptions: SB5-04 (amorphous) and SB5-24 (possible trevorite), along with SB5-07 (amorphous) and SB5-25 (trevorite). In these cases, the surrogate glasses (SB5-24 and SB5-25) appear to be more conservative (more prone to crystallization) than their U{sub 3}O{sub 8}-containing counterparts. Chemical durability was quantified using the Product Consistency Test (PCT). The normalized leachate (NL) values for B, Li, Na and Si for all of the study glasses were well below those of the Environmental Assessment (EA) benchmark glass, regardless of heat treatment or compositional view. This indicates that all of the glasses had very acceptable durability performance. The highest NL [B] for the study glasses was 0.914 g/L (the quenched version of glass SB5-13), normalized using the measured, bias-correct composition. There was little practical impact of the CCC heat treatment on the PCT responses of the study glasses. The measured PCT responses were predictable by the current {Delta}G{sub p} models. In general, the PCT responses for the surrogate glasses or the glasses without U{sub 3}O{sub 8} were quite similar to their U{sub 3}O{sub 8}-containing counterparts. The average percent error in NL [B] normalized by the measured, bias-corrected compositions for the surrogate glasses compared with their radioactive counterparts was 8.8%. The largest difference in NL

Fox, K; Tommy Edwards; David Best; Irene Reamer; Phyllis Workman

2008-08-28T23:59:59.000Z

357

Memo, "Incorporation of HLW Glass Shell V2.0 into the Flowsheets," to ED Lee, CCN: 184905, October 20, 2009  

Science Conference Proceedings (OSTI)

Efforts are being made to increase the efficiency and decrease the cost of vitrifying radioactive waste stored in tanks at the U.S. Department of Energy Hanford Site. The compositions of acceptable and processable high-level waste (HL W) glasses need to be optimized to minimize the waste-form volume and, hence, to reduce cost. A database of glass properties of waste glass and associated simulated waste glasses was collected and documented in PNNL 18501, Glass Property Data and Models for Estimating High-Level Waste Glass Volume and glass property models were curve-fitted to the glass compositions. A routine was developed that estimates HL W glass volumes using the following glass property models: II Nepheline, II One-Percent Crystal Temperature (T1%), II Viscosity (11) II Product Consistency Tests (PCT) for boron, sodium, and lithium, and II Liquidus Temperature (TL). The routine, commonly called the HL W Glass Shell, is presented in this document. In addition to the use of the glass property models, glass composition constraints and rules, as recommend in PNNL 18501 and in other documents (as referenced in this report) were incorporated. This new version of the HL W Glass Shell should generally estimate higher waste loading in the HL W glass than previous versions.

Gimpel, Rodney F.; Kruger, Albert A.

2013-12-18T23:59:59.000Z

358

Preliminary waste form characteristics report Version 1.0. Revision 1  

SciTech Connect

This report focuses on radioactive waste form characteristics that will be used to design a waste package and an engineered barrier system (EBS) for a suitable repository as part of the Yucca Mountain Project. The term waste form refers to irradiated reactor fuel, other high-level waste (HLW) in various physical forms, and other radioactive materials (other than HLW) which are received for emplacement in a geologic repository. Any encapsulating of stabilizing matrix is also referred to as a waste form.

Stout, R.B.; Leider, H.R. [eds.

1991-10-11T23:59:59.000Z

359

Spent Fuel and High-Level Waste Requirements (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spent Fuel and High-Level Waste Requirements (Maine) Spent Fuel and High-Level Waste Requirements (Maine) Spent Fuel and High-Level Waste Requirements (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Provider Public Utilities Commission All proposed nuclear power generation facilities must be certified by the Public Utilities Commission under this statute prior to construction and

360

DEPARTMENT OF ENERGY Disposal of Hanford Defense High-Level, Transuranic, and Tank Wastes, Hanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal of Hanford Defense High-Level, Transuranic, and Tank Wastes, Hanford Disposal of Hanford Defense High-Level, Transuranic, and Tank Wastes, Hanford Site, Richland, Washington; Record of Decision (ROO). This Record of Decision has been prepared pursuant to the Council on Environme~tal Quality ~egulations for Implementing the Procedural Provisions of the National Environmental Pol icy Act (NEPAl (40 CFR Parts 1500-1508) and the Department of Energy NEPA Guidelines (52 FR 47662, December 15, 1987). It is based on DOE's "Environmental Impact Statement for the Oi sposal of Hanford Defense High-Level, Transuranic, and Tank Wastes'' (OOE/EIS-0113) and consideration of ~11 public and agency comments received on the Environmental Impact Statement (EIS). fJECISION The decision is to implement the ''Preferred Alternative'' as discussed in

Note: This page contains sample records for the topic "hlw high-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

SystemC-AMS high-level modeling of linear analog blocks with power consumption information  

Science Conference Proceedings (OSTI)

SystemC-AMS allows the modeling of complex heterogeneous systems at different levels of abstraction using different modeling styles, called Models of Computation (MoC). This work presents an approach for including energy consumption information in high-level ... Keywords: passive fourth-order low pass filter, systemC-AMS high-level modeling, linear analog blocks, power consumption information, energy consumption information, linear electrical circuits, systemC-AMS linear signal flow MoC, SPICE netlist, state space representation extraction, LSF description level

L. Bousquet; F. Cenni; E. Simeu

2011-03-01T23:59:59.000Z

362

Solvent extraction in the treatment of acidic high-level liquid waste : where do we stand?  

SciTech Connect

During the last 15 years, a number of solvent extraction/recovery processes have been developed for the removal of the transuranic elements, {sup 90}Sr and {sup 137}Cs from acidic high-level liquid waste. These processes are based on the use of a variety of both acidic and neutral extractants. This chapter will present an overview and analysis of the various extractants and flowsheets developed to treat acidic high-level liquid waste streams. The advantages and disadvantages of each extractant along with comparisons of the individual systems are discussed.

Horwitz, E. P.; Schulz, W. W.

1998-06-18T23:59:59.000Z

363

Corrosion resistant storage container for radioactive material  

DOE Patents (OSTI)

A corrosion resistant long-term storage container for isolating high-level radioactive waste material in a repository is claimed. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between juxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

Schweitzer, D.G.; Davis, M.S.

1984-08-30T23:59:59.000Z

364

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

How are they moved? What's their construction? Who uses them? Who makes rules? What are the requirements? Safety Record Packagings are used to safely transport radioactive materials across the United States in over 1.6 million shipments per year. [Weiner et. al., 1991, Risk Analysis, Vol. 11, No. 4, p. 663] Most shipments are destined for hospitals and medical facilities. Other destinations include industrial, research and manufacturing plants, nuclear power plants and national defense facilities. The last comprehensive survey showed that less than 1 percent of these shipments involve high-level radioactive material. [Javitz et. al., 1985, SAND84-7174, Tables 4 and 8] The types of materials transported include: Surface Contaminated Object (SCO) Low Specific Activity (LSA) materials, Low-Level Waste (LLW),

365

Photoconductivity and luminescence in GaSe crystals at high levels of optical excitation  

Science Conference Proceedings (OSTI)

The photoconductivity and luminescence of GaSe layered crystals at high levels of optical excitation are studied experimentally. The specific features observed in the photoconductivity and photoluminescence spectra are controlled by the nonlinear optical absorption in the region of excitonic resonance.

Kyazym-zade, A. G.; Salmanov, V. M., E-mail: vagif_salmanov@yahoo.com; Salmanova, A. A. [Baku State University (Azerbaijan); Alieva, A. M.; Ibaeva, R. Z. [National Academy of Sciences, Institute of Physics (Azerbaijan)

2010-03-15T23:59:59.000Z

366

Exploiting off-chip memory access modes in high-level synthesis  

Science Conference Proceedings (OSTI)

Memory-intensive behaviors often contain large arrays that are synthesized into off-chip memories. With the increasing gap between on-chip and off-chip memory access delays, it is imperative to exploit the efficient access mode features of modern-day ... Keywords: Memory Synthesis, DRAM, High Level Synthesis

Preeti Ranjan Panda; Nikil D. Dutt; Alexandru Nicolau

1997-11-01T23:59:59.000Z

367

Chemical evolution of a high-level magma system: the Black Mountain volcanic center, southern Nevada  

DOE Green Energy (OSTI)

A comprehensive study of stratigraphically controlled samples of both lavas and ash-flow tuffs from the Black Mountain volcanic center enables us to evaluate magmatic processes. The results of this study are used to: (1) determine how this high-level magma system developed; (2) compare this system with other similar systems; and (3) correlate ash-flow sheets using their chemical characteristics.

Vogel, T.A.; Noble, D.C.; Younker, L.W.

1983-09-01T23:59:59.000Z

368

Structural integrity and potential failure modes of hanford high-level waste tanks  

Science Conference Proceedings (OSTI)

Structural Integrity of the Hanford High-Level Waste Tanks were evaluated based on the existing Design and Analysis Documents. All tank structures were found adequate for the normal operating and seismic loads. Potential failure modes of the tanks were assessed by engineering interpretation and extrapolation of the existing engineering documents.

Han, F.C.

1996-09-30T23:59:59.000Z

369

A Formal Verification Method of Scheduling in High-level Synthesis  

Science Conference Proceedings (OSTI)

This paper describes a formal method for checking the equivalence between the finite state machine with data path (FSMD) model of the high-level behavioural specification and the FSMD model of the behaviour transformed by the scheduler. The method consists ...

C Karfa; C Mandal; D Sarkar; S R. Pentakota; Chris Reade

2006-03-01T23:59:59.000Z

370

A scheduling algorithm for optimization and early planning in high-level synthesis  

Science Conference Proceedings (OSTI)

Complexities of applications implemented on embedded and programmable systems grow with the advances in capacities and capabilities of these systems. Mapping applications onto them manually is becoming a very tedious task. This draws attention to using ... Keywords: Scheduling, bipartite matching, data flow graph, high-level synthesis

Seda Ogrenci Memik; Ryan Kastner; Elaheh Bozorgzadeh; Majid Sarrafzadeh

2005-01-01T23:59:59.000Z

371

A humidity temperature test on the HLNC (high-level neutron coincidence counter) instrument  

SciTech Connect

This paper presents the findings of a laboratory study made to determine the effects of unusual climatic conditions on high-level neutron coincidence counters (HLNCs). The capability of the instrument, when undesirable temperatures and/or humidities are present, the change in count rate as temperature and humidity increase, and the extent of humidity/temperature interaction are examined.

Goldman, A.; Augustson, R.; Karlin, E.W.

1987-07-01T23:59:59.000Z

372

Consequence assessment for the high-level waste tanks probabilistic risk assessment  

SciTech Connect

At the US DOE Hanford Site, there are 177 underground tanks in 18 separate tank farms containing accumulated liquid radioactive wastes from 50 yr of weapons materials production activities. The total volume is about 60 million gallons containing approximately 120 Curies of radioactivity. The radioactive material consists primarily of {sup 137}Cs, {sup 90}Sr, and transuranics. Risk concerns with the tanks are associated with possible energy releases because of the presence of flammable gases, organic liquids, reactive chemical compounds, and radioactive decay heat. Because of the high concentration of radioactivity in the wastes and because a large number of the older single-shell tanks have some history or evidence of leaking, there is a public perception that they pose a serious risk to the onsite workers and the offsite public. The tank farm probabilistic safety assessment (PSA) was performed for two reasons: (1) to develop a baseline estimate of the risks these wastes pose to the workers and the public for the present tank contents and configurations and (2) to provide a relative ranking of the risks associated with individual groups of tanks. The latter information would be helpful in planning the order of the tank remediation work by indicating which tanks pose the greatest risk; the former could help allay concerns.

MacFarlane, D.R. [Los Alamos National Lab., NM (United States); Kindinger, J.; Deremer, R.K. [PLG, Inc., Newport Beach, CA (United States)

1995-12-31T23:59:59.000Z

373

Advances in Glass Formulations for Hanford High-Alumimum, High-Iron and Enhanced Sulphate Management in HLW Streams - 13000  

SciTech Connect

The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP?s overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previous experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or sulphur. Waste processing rate increases for high-iron streams as a combined effect of higher waste loadings and higher melt rates resulting from new formulations have been achieved.

Kruger, Albert A.

2013-01-16T23:59:59.000Z

374

An International Initiative on Long-Term Behavior of High-Level Nuclear Waste Glass  

Science Conference Proceedings (OSTI)

Nations using borosilicate glass as an immobilization material for radioactive waste have reinforced the importance of scientific collaboration to obtain a consensus on the mechanisms controlling the longterm dissolution rate of glass. This goal is deemed to be crucial for the development of reliable performance assessment models for geological disposal. The collaborating laboratories all conduct fundamental and/or applied research using modern materials science techniques. This paper briefly reviews the radioactive waste vitrification programs of the six participant nations and summarizes the current state of glass corrosion science, emphasizing the common scientific needs and justifications for on-going initiatives.

Gin, Stephane [French Atomic Energy Commission (CEA); Abdelouas, Abdesselam [SUBATECH Laboratory (France); Criscenti, Louise J [Sandia National Laboratory (SNL); Ebert, William L [Argonne National Laboratory (ANL); Ferrand, K [Belgian Nuclear Research Centre, SCK-CEN; Geisler, T [Rheinische Friedrich-Wilhelms-Universitt Bonn, Bonn, Germany; Harrison, Michael T [National Nuclear Laboratory (NNL); Inagaki, Y [Kyushu University, Japan; Mitsui, S [Japan Atomic Energy Agency (JAEA); Mueller, K T [Pacific Northwest National Laboratory (PNNL); Marra, James C [Savannah River National Laboratory (SRNL), Aiken, S.C.; Pantano, Carlo G [Pennsylvania State University, State College, PA; Pierce, Eric M [ORNL; Ryan, Joseph V [Pacific Northwest National Laboratory (PNNL); Schofield, J M [AMEC, Harwell Oxford Didcot Oxfordshire, United Kingdom; Steefel, Carl I [Lawrence Berkeley National Laboratory (LBNL); Vienna, John D. [Pacific Northwest National Laboratory (PNNL)

2013-01-01T23:59:59.000Z

375

ORNL radioactive waste operations  

SciTech Connect

Since its beginning in 1943, ORNL has generated large amounts of solid, liquid, and gaseous radioactive waste material as a by-product of the basic research and development work carried out at the laboratory. The waste system at ORNL has been continually modified and updated to keep pace with the changing release requirements for radioactive wastes. Major upgrading projects are currently in progress. The operating record of ORNL waste operation has been excellent over many years. Recent surveillance of radioactivity in the Oak Ridge environs indicates that atmospheric concentrations of radioactivity were not significantly different from other areas in East Tennesseee. Concentrations of radioactivity in the Clinch River and in fish collected from the river were less than 4% of the permissible concentration and intake guides for individuals in the offsite environment. While some radioactivity was released to the environment from plant operations, the concentrations in all of the media sampled were well below established standards.

Sease, J.D.; King, E.M.; Coobs, J.H.; Row, T.H.

1982-01-01T23:59:59.000Z

376

Radioactive Waste Management Basis  

SciTech Connect

The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Perkins, B K

2009-06-03T23:59:59.000Z

377

WEB RESOURCE: Radioactive Waste  

Science Conference Proceedings (OSTI)

May 8, 2007 ... This resource offers a a very broad explanation of how the Belgian Agency for Management of Radioactive Waste and Enriched Fissile Material...

378

SCAVENGING OF RADIOACTIVE AEROSOLS  

DOE Patents (OSTI)

A process of decontaminatinig an atmosphere from suspended radioactive particles by introducing silicon tetrafluoride whereby the particles precipitate and are removed, is described. (AEC)

Rosinski, J.; Werle, D.K.

1963-12-01T23:59:59.000Z

379

Title: An Advanced Solution for the Storage, Transportation and Disposal of Vitrified High Level Waste  

NLE Websites -- All DOE Office Websites (Extended Search)

Presented at Global 99, Jackson, Wyoming, August 29 - September 2, 1999 Presented at Global 99, Jackson, Wyoming, August 29 - September 2, 1999 1 AN ADVANCED SOLUTION FOR THE STORAGE, TRANSPORTATION AND DISPOSAL OF SPENT FUEL AND VITRIFIED HIGH LEVEL WASTE William J. Quapp Teton Technologies, Inc. 860 W. Riverview Dr. Idaho Falls, ID 83401 208-535-9001 ABSTRACT For future nuclear power deployment in the US, certain changes in the back end of the fuel cycle, i.e., disposal of high level waste and spent fuel, must become a real options. However, there exists another problem from the front end of the fuel cycle which has until recently, received less attention. Depleted uranium hexafluoride is a by-product of the enrichment process and has accumulated for over 50 years. It now represents a potential environmental problem. This paper describes a

380

An Istrument for Measuring the TRU Concentration in High-Level Liquid Waste  

Science Conference Proceedings (OSTI)

An online monitor has been designed, built, and tested, which is capable of measuring the residual transuranic concentrations in processed high-level wastes with a detection limit of 370 Bq/ml (10 nCi/ml) in less than six hours. The monitor measures the neutrons produced by the transuranics, primarily via (?,n) reactions, in the presence of gamma-ray fields up to 1 Sv/h (100 R/h). The optimum design was determined by Monte Carlo modeling and then tempered with practical engineering and cost considerations. Correct operation of the monitor was demonstrated in a hot cell utilizing an actual sample of high-level waste. Results of that demonstration are given, and suggestions for improvements in the next generation system are discussed.

Brodzinski, Ronald L.; Craig, R. A.; Fink, Samuel D.; Hensley, Walter K.; Holt, Noah O.; Knopf, Michael A.; Lepel, Elwood A.; Mullen, O Dennis; Salaymeh, Saleem R.; Samuel, Todd J.; Smart, John E.; Tinker, Michael R.; Walker, Darrell D.

2005-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "hlw high-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Event:ECOWAS High-Level Forum: Paving the Way for Sustainable Energy for  

Open Energy Info (EERE)

Level Forum: Paving the Way for Sustainable Energy for Level Forum: Paving the Way for Sustainable Energy for All in West Africa through Renewable Energy and Energy Efficiency Jump to: navigation, search Calendar.png ECOWAS High-Level Forum: Paving the Way for Sustainable Energy for All in West Africa through Renewable Energy and Energy Efficiency: on 2012/10/29 "ECREEE in cooperation with the Global Forum for Sustainable Energy (GSFE), and the United Nations Industrial Development Organization (UNIDO), are organizing a three-day High Level Forum on the theme: "Paving the Way for Sustainable Energy for All in West Africa through Renewable Energy and Energy Efficiency". Hosted by the Government of Ghana, the forum will contribute to the UN Sustainable Energy For All Initiative and will follow-up on the key decisions of the Rio+20 Summit". Participants will

382

West Valley demonstration project: alternative processes for solidifying the high-level wastes  

SciTech Connect

In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied.

Holton, L.K.; Larson, D.E.; Partain, W.L.; Treat, R.L.

1981-10-01T23:59:59.000Z

383

High-level directives to drive the allocation of parallel object-oriented applications  

Science Conference Proceedings (OSTI)

The paper presents the Abstract Configuration Language (ACL) implemented within the Parallel Objects object oriented parallel programming environment. ACL defines a set of directives that allow users to specify the allocation needs of his/her application ... Keywords: ACL, ACL directives, Abstract Configuration Language, Parallel Objects object oriented parallel programming environment, allocation decisions, allocation needs, application components, high level directives, parallel languages, parallel object oriented application allocation, run time support, testbed application

A. Corradi; L. Leenardi; F. Zambonelli

1997-04-01T23:59:59.000Z

384

A high level power model for Network-on-Chip (NoC) router  

Science Conference Proceedings (OSTI)

This paper presents a high level power estimation methodology for a Network-on-Chip (NoC) router, that is capable of providing cycle accurate power profile to enable power exploration at system level. Our power macro model is based on the number of flits ... Keywords: Interconnection network, Multi-processor System-on-Chip (MPSoC), Network-on-Chip (NoC), Power model

Seung Eun Lee; Nader Bagherzadeh

2009-11-01T23:59:59.000Z

385

Remote Handling Equipment for a High-Level Waste Waste Package Closure System  

SciTech Connect

High-level waste will be placed in sealed waste packages inside a shielded closure cell. The Idaho National Laboratory (INL) has designed a system for closing the waste packages including all cell interior equipment and support systems. This paper discusses the material handling aspects of the equipment used and operations that will take place as part of the waste package closure operations. Prior to construction, the cell and support system will be assembled in a full-scale mockup at INL.

Kevin M. Croft; Scott M. Allen; Mark W. Borland

2006-04-01T23:59:59.000Z

386

Alternatives generation and analysis for the phase 1 high-level waste pretreatment process selection  

Science Conference Proceedings (OSTI)

This report evaluates the effects of enhanced sludge washing and sludge washing without caustic leaching during the preparation of the Phase 1 high-level waste feeds. The pretreatment processing alternatives are evaluated against their ability to satisfy contractual, cost minimization, and other criteria. The information contained in this report is consistent with, and supplemental to, the Tank Waste Remediation System Operation and Utilization Plan (Kirkbride et al. 1997).

Manuel, A.F.

1997-10-02T23:59:59.000Z

387

Thermal analysis of Yucca Mountain commercial high-level waste packages  

Science Conference Proceedings (OSTI)

The thermal performance of commercial high-level waste packages was evaluated on a preliminary basis for the candidate Yucca Mountain repository site. The purpose of this study is to provide an estimate for waste package component temperatures as a function of isolation time in tuff. Several recommendations are made concerning the additional information and modeling needed to evaluate the thermal performance of the Yucca Mountain repository system.

Altenhofen, M.K. [Altenhofen (M.K.), Richland, WA (United States); Eslinger, P.W. [Pacific Northwest Lab., Richland, WA (United States)

1992-10-01T23:59:59.000Z

388

Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks  

Science Conference Proceedings (OSTI)

This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

ROGERS, C.A.

2000-02-17T23:59:59.000Z

389

Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results  

Science Conference Proceedings (OSTI)

This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

Rechard, R.P. [ed.

1993-12-01T23:59:59.000Z

390

Safety analysis report vitrified high level waste type B shipping cask  

Science Conference Proceedings (OSTI)

This Safety Analysis Report describes the design, analyses, and principle features of the Vitrified High Level Waste (VHLW) Cask. In preparing this report a detailed evaluation of the design has been performed to ensure that all safety, licensing, and operational goals for the cask and its associated Department of Energy program can be met. The functions of this report are: (1) to fully document that all functional and regulatory requirements of 10CFR71 can be met by the package; and (2) to document the design and analyses of the cask for review by the Nuclear Regulatory Commission. The VHLW Cask is the reusable shipping package designed by GNSI under Department of Energy contract DE-AC04-89AL53-689 for transportation of Vitrified High Level Waste, and to meet the requirements for certification under 10CFR71 for a Type B(U) package. The VHLW cask has been designed as packaging for transport of canisters of Vitrified High Level Waste solidified at Department of Energy facilities.

NONE

1995-03-01T23:59:59.000Z

391

Modeling of Boehmite Leaching from Actual Hanford High-Level Waste Samples  

SciTech Connect

The Department of Energy plans to vitrify approximately 60,000 metric tons of high level waste sludge from underground storage tanks at the Hanford Nuclear Reservation. To reduce the volume of high level waste requiring treatment, a goal has been set to remove about 90 percent of the aluminum, which comprises nearly 70 percent of the sludge. Aluminum in the form of gibbsite and sodium aluminate can be easily dissolved by washing the waste stream with caustic, but boehmite, which comprises nearly half of the total aluminum, is more resistant to caustic dissolution and requires higher treatment temperatures and hydroxide concentrations. In this work, the dissolution kinetics of aluminum species during caustic leaching of actual Hanford high level waste samples is examined. The experimental results are used to develop a shrinking core model that provides a basis for prediction of dissolution dynamics from known process temperature and hydroxide concentration. This model is further developed to include the effects of particle size polydispersity, which is found to strongly influence the rate of dissolution.

Peterson, Reid A.; Lumetta, Gregg J.; Rapko, Brian M.; Poloski, Adam P.

2007-06-27T23:59:59.000Z

392

Demonstrating Reliable High Level Waste Slurry Sampling Techniques to Support Hanford Waste Processing - 14194  

SciTech Connect

The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HL W) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOC must demonstrate the ability to adequately mix and sample high-level waste feed to meet the WTP Waste Acceptance Criteria and Data Quality Objectives. The sampling method employed must support both TOC and WTP requirements. To facilitate information transfer between the two facilities the mixing and sampling demonstrations are led by the One System Integrated Project Team. The One System team, Waste Feed Delivery Mixing and Sampling Program, has developed a full scale sampling loop to demonstrate sampler capability. This paper discusses the full scale sampling loops ability to meet precision and accuracy requirements, including lessons learned during testing. Results of the testing showed that the Isolok(R) sampler chosen for implementation provides precise, repeatable results. The Isolok(R) sampler accuracy as tested did not meet test success criteria. Review of test data and the test platform following testing by a sampling expert identified several issues regarding the sampler used to provide reference material used to judge the Isolok?'s accuracy. Recommendations were made to obtain new data to evaluate the sampler's accuracy utilizing a reference sampler that follows good sampling protocol.

Kelly, Steven E.

2013-11-11T23:59:59.000Z

393

2012 Annual Workforce Analysis and Staffing Plan Report - West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ATTACHMENT ATTACHMENT 1 Annual Workforce Analysis and Staffing Plan Report As ofDecember 31, 2012 Reporting Office: West Valley Demonstration Project Section 1: Current Mission(s) of the Organization and Potential Changes The mission of the WVDP as defined by the West Valley Demonstration Project Act (Public Law 96-368) is to accomplish five activities: 1) solidify high-level radioactive waste (HLW), 2) develop containers suitable for permanent disposal of the HLW, 3) transport the HLW to a Federal repository for permanent disposal, 4) dispose of low-level and transuranic waste produced by the solidification of the HLW, and 5) decontaminate and decommission the HLW tanks and facilities, materials and hardware used to solidify the HLW. DOE expects to accomplish these WVDP activities through proactive leadership, management, and implementation of safe and environmentally sound operations.

394

Extended Development Work to Validate a HLW Calcine Waste Form via INL's Cold Crucible Induction Melter  

Science Conference Proceedings (OSTI)

To accomplish calcine treatment objectives, the Idaho Clean-up Project contractor, CWI, has chosen to immobilize the calcine in a glass-ceramic via the use of a Hot-Isostatic-Press (HIP); a treatment selection formally documented in a 2010 Record of Decision (ROD). Even though the HIP process may prove suitable for the calcine as specified in the ROD and validated in a number of past value engineering sessions, DOE is evaluating back-up treatment methods for the calcine as a result of the technical, schedule, and cost risk associated with the HIPing process. Consequently DOE HQ has requested DOE ID to make INL's bench-scale cold-crucible induction melter (CCIM) available for investigating its viability as a process alternate to calcine treatment. The waste form is the key component of immobilization of radioactive waste. Providing a solid, stable, and durable material that can be easily be stored is the rationale for immobilization of radioactive waste material in glass, ceramic, or glass-ceramics. Ceramic waste forms offer an alternative to traditional borosilicate glass waste forms. Ceramics can usually accommodate higher waste loadings than borosilicate glass, leading to smaller intermediate and long-term storage facilities. Many ceramic phases are known to possess superior chemical durability as compared to borosilicate glass. However, ceramics are generally multiphase systems containing many minor phase that make characterization and prediction of performance within a repository challenging. Additionally, the technologies employed in ceramic manufacture are typically more complex and expensive. Thus, many have proposed using glass-ceramics as compromise between in the more inexpensive, easier to characterize glass waste forms and the more durable ceramic waste forms. Glass-ceramics have several advantages over traditional borosilicate glasses as a waste form. Borosilicate glasses can inadvertently devitrify, leading to a less durable product that could crack during cooling and crystals may be prone to dissolution. By designing a glass-ceramics, the risks of deleterious effects from devitrification are removed. Furthermore, glass-ceramics have higher mechanical strength and impact strengths and possess greater chemical durability as noted above. Glass-ceramics should provide a waste form with the advantages of glass - ease of manufacture - with improved mechanical properties, thermal stability, and chemical durability. This report will cover aspects relevant for the validation of the CCIM use in the production of glass-ceramic waste forms.

James A. King; Vince Maio

2011-09-01T23:59:59.000Z

395

Low-level radioactive waste regulation: Science, politics and fear  

SciTech Connect

An inevitable consequence of the use of radioactive materials is the generation of radioactive wastes and the public policy debate over how they will be managed. In 1980, Congress shifted responsibility for the disposal of low-level radioactive wastes from the federal government to the states. This act represented a sharp departure from more than 30 years of virtually absolute federal control over radioactive materials. Though this plan had the enthusiastic support of the states in 1980, it now appears to have been at best a chimera. Radioactive waste management has become an increasingly complicated and controversial issue for society in recent years. This book discusses only low-level wastes, however, because Congress decided for political reasons to treat them differently than high-level wastes. The book is based in part on three symposia sponsored by the division of Chemistry and the Law of the American Chemical Society. Each chapter is derived in full or in part from presentations made at these meetings, and includes: (1) Low-level radioactive wastes in the nuclear power industry; (2) Low-level radiation cancer risk assessment and government regulation to protect public health; and (3) Low-level radioactive waste: can new disposal sites be found.

Burns, M.E. (ed.)

1988-01-01T23:59:59.000Z

396

Radioactive waste disposal package  

DOE Patents (OSTI)

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to for