Sample records for hill plateau remediation

  1. Independent Activity Report, CH2M Hill Plateau Remediation Company- January 2011

    Broader source: Energy.gov [DOE]

    Review of the CH2M Hill Plateau Remediation Company Unreviewed Safety Question Procedure [ARPT-RL-2011-003

  2. HILL Plateau Remediation Company are using American

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal HeatonHEP/NERSC/ASCRJune 2012Wind EnergyCH2M HILL

  3. CENTRAL PLATEAU REMEDIATION

    SciTech Connect (OSTI)

    ROMINE, L.D.

    2006-02-01T23:59:59.000Z

    A systematic approach to closure planning is being implemented at the Hanford Site's Central Plateau to help achieve the goal of closure by the year 2035. The overall objective of Central Plateau remediation is to protect human health and the environment from the significant quantity of contaminated material that resulted from decades of plutonium production in support of the nation's defense. This goal will be achieved either by removing contaminants or placing the residual contaminated materials in a secure configuration that minimizes further migration to the groundwater and reduces the potential for inadvertent intrusion into contaminated sites. The approach to Central Plateau cleanup used three key concepts--closure zones, closure elements, and closure process steps--to create an organized picture of actions required to complete remediation. These actions were merged with logic ties, constraints, and required resources to produce an integrated time-phased schedule and cost profile for Central Plateau closure. Programmatic risks associated with implementation of Central Plateau closure were identified and analyzed. Actions to mitigate the most significant risks are underway while high priority remediation projects continue to make progress.

  4. CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY

    SciTech Connect (OSTI)

    BERGMAN, T. B.; STEFANSKI, L. D.; SEELEY, P. N.; ZINSLI, L. C.; CUSACK, L. J.

    2012-09-19T23:59:59.000Z

    THE CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY WAS CONDUCTED TO DEVELOP AN OPTIMAL SEQUENCE OF REMEDIATION ACTIVITIES IMPLEMENTING THE CERCLA DECISION ON THE CENTRAL PLATEAU. THE STUDY DEFINES A SEQUENCE OF ACTIVITIES THAT RESULT IN AN EFFECTIVE USE OF RESOURCES FROM A STRATEGIC PERSPECTIVE WHEN CONSIDERING EQUIPMENT PROCUREMENT AND STAGING, WORKFORCE MOBILIZATION/DEMOBILIZATION, WORKFORCE LEVELING, WORKFORCE SKILL-MIX, AND OTHER REMEDIATION/DISPOSITION PROJECT EXECUTION PARAMETERS.

  5. HILL Plateau Remediation Company completed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal HeatonHEP/NERSC/ASCRJune 2012Wind EnergyCH2M

  6. HILL Plateau Remediation Company are using American

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to remove contaminants and protect the Columbia River. Construction of a pump-and-treat system near the D Reactors on the Hanford Site began in July 2009. The 20 million...

  7. DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »DepartmentLaboratory | Department of Energy

  8. CH2M HILL Plateau Remediation Company | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6 (2-91)A2015EnergyCESP ToolThis

  9. CH2M HILL Plateau Remediation Company are

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r k C o'IUHopper3 Environmental

  10. CH2M HILL Plateau Remediation Company have

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r k C o'IUHopper3 Environmental CH2M

  11. CH2M HILL Plateau Remediation Company - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0LinkA LookHanford Contractors

  12. MANAGING ENGINEERING ACTIVITIES FOR THE PLATEAU REMEDIATION CONTRACT - HANFORD

    SciTech Connect (OSTI)

    KRONVALL CM

    2011-01-14T23:59:59.000Z

    In 2008, the primary Hanford clean-up contract transitioned to the CH2MHill Plateau Remediation Company (CHPRC). Prior to transition, Engineering resources assigned to remediation/Decontamination and Decommissioning (D&D) activities were a part of a centralized engineering organization and matrixed to the performing projects. Following transition, these resources were reassigned directly to the performing project, with a loose matrix through a smaller Central Engineering (CE) organization. The smaller (10 FTE) central organization has retained responsibility for the overall technical quality of engineering for the CHPRC, but no longer performs staffing and personnel functions. As the organization has matured, there are lessons learned that can be shared with other organizations going through or contemplating performing a similar change. Benefits that have been seen from the CHPRC CE organization structure include the following: (1) Staff are closely aligned with the 'Project/facility' that they are assigned to support; (2) Engineering priorities are managed to be consistent with the 'Project/facility' priorities; (3) Individual Engineering managers are accountable for identifying staffing needs and the filling of staffing positions; (4) Budget priorities are managed within the local organization structure; (5) Rather than being considered a 'functional' organization, engineering is considered a part of a line, direct funded organization; (6) The central engineering organization is able to provide 'overview' activities and maintain independence from the engineering organizations in the field; and (7) The central engineering organization is able to maintain a stable of specialized experts that are able to provide independent reviews of field projects and day-to-day activities.

  13. THE POSITIVE IMPACTS OF AMERICAN REINVESTMENT AND RECOVERY ACT (ARRA) FUNDING TO THE WASTE MANAGEMENT PROGRAM ON HANFORD'S PLATEAU REMEDIATION PROJECT

    SciTech Connect (OSTI)

    BLACKFORD LT

    2010-01-19T23:59:59.000Z

    In April 2009, the Department of Energy (DOE) Richland Operations Office (RL) was allocated $1.6 billion (B) in ARRA funding to be applied to cleanup projects at the Hanford Site. DOE-RL selected projects to receive ARRA funding based on 3-criteria: creating/saving jobs, reducing the footprint of the Hanford Site, and reducing life-cycle costs for cleanup. They further selected projects that were currently covered under regulatory documents and existing prime contracts, which allowed work to proceed quickly. CH2M HILL Plateau Remediation Company (CHPRC) is a prime contractor to the DOE focused on the environmental cleanup of the DOE Hanford Site Central Plateau. CHPRC was slated to receive $1.36B in ARRA funding. As of January, 2010, CHPRC has awarded over $200 million (M) in subcontracts (64% to small businesses), created more that 1,100 jobs, and touched more than 2,300 lives - all in support of long-term objectives for remediation of the Central Plateau, on or ahead of schedule. ARRA funding is being used to accelerate and augment cleanup activities already underway under the baseline Plateau Remediation Contract (PRC). This paper details challenges and accomplishments using ARRA funding to meet DOE-RL objectives of creating/saving jobs, expediting cleanup, and reducing lifecycle costs for cleanup during the first months of implementation.

  14. DOE Selects CH2M Hill Plateau Remediation Company for Plateau...

    Energy Savers [EERE]

    contractor for DOE's Hanford Site in southeastern Washington State. The contract is a cost-plus award-fee contract valued at approximately 4.5 billion over ten years (a...

  15. Maximizing Operational Efficiencies in Waste Management on the Hanford Plateau Remediation Contract in a Down-turned Market - 13484

    SciTech Connect (OSTI)

    Simiele, Connie J.; Blackford, L. Ty [CH2M HILL Plateau Remediation Contract - CHPRC (United States)] [CH2M HILL Plateau Remediation Contract - CHPRC (United States); West, Lori D. [East Tennessee Materials and Energy Corporation - M and EC (United States)] [East Tennessee Materials and Energy Corporation - M and EC (United States)

    2013-07-01T23:59:59.000Z

    Recent changes in DOE priorities and funding have pressed DOE and its contractors to look for innovative methods to sustain critical operations at sites across the Complex. At the Hanford Site, DOE Richland Operations and its prime contractor, CH2M Hill Plateau Remediation Company (CHPRC), have completed in-depth assessments of the Plateau Remediation Contract (PRC) operations that compared available funding to mission and operational objectives in an effort to maintain requisite safety and compliance margins while realizing cost savings that meet funding profiles. These assessments included confirmation of current baseline activities, identification of potential efficiencies, barriers to implementation, and potential increased risks associated with implementation. Six operating PRC waste management facilities were evaluated against three possible end-states: complete facility closure, maintaining base operations, and performing minimum safe surveillance and maintenance activities. The costs to completely close evaluated facilities were determined to be prohibitively high and this end-state was quickly dropped from consideration. A summary of the analysis of remaining options by facility, efficiencies identified, impact to risk profiles, and expected cost savings is provided in Table I. The expected cost savings are a result of: - right-sizing and cross-training work crews to address maintenance activities across facilities; - combining and sequencing 'like-moded' operational processes; - cross-cutting emergency planning and preparedness staffing; - resource redistribution and optimization; - reducing areas requiring routine surveillance and inspection. For the efficiencies identified, there are corresponding increases in risk, including a loss of breadth and depth of available resources; lengthened response time to emergent issues; inability to invest in opportunities for improvement (OFIs); potential single-point failures or non-compliancies due to resource scarcity; limited cross-training capability; and reduced capability to respond to changes in DOE priorities. Finally, there are many challenges to achieving these cost savings. With a workforce nearing retirement effective succession planning becomes critical to success and requires establishing a balance between the cost of hiring and training and cost-saving activities. With six active waste management facilities spread across nearly 15 square miles, scheduling and deploying cross-trained surveillance and maintenance teams is a logistical challenge, particularly as the loss of funding has not diminished emphasis by regulatory agencies placed on the safe and compliant performance of DOE and its contractors. As reflected in Table I, efficiencies are currently being implemented on the Hanford Plateau Remediation Contract (PRC) that deliver cost savings that align with the current site budget while maintaining critical capabilities. It is currently estimated that these efficiencies will result in a cost savings of approximately $9 million for FY13 in base and minimum safe operations on the PRC - a cost reduction of more than 13 percent over FY12 and nearly 30 percent over FY09 levels. (authors)

  16. Evaluation of In Situ Grouting as a Potential Remediation Method for the Hanford Central Plateau Deep Vadose Zone

    SciTech Connect (OSTI)

    Truex, Michael J.; Pierce, Eric M.; Nimmons, Michael J.; Mattigod, Shas V.

    2011-01-11T23:59:59.000Z

    The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau report identifies in situ grouting as a potential remediation technology for the deep vadose zone and includes a planned effort to evaluate in situ grouting to provide information for future feasibility studies. This report represents the first step in this evaluation effort.

  17. Voluntary Protection Program Onsite Review, CH2M HILL Plateau Remediation

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment(GATE)Action Plan forArticles,

  18. CH2M HILL Plateau Remediation Company, NEL-2014-01

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergy Bush HydrogenEmissions and the Effects of

  19. Independent Oversight Review, Hanford Site CH2M Hill Plateau Remediation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement ofDecember 2001 |ofand Performance,-Facility

  20. Superfund Record of Decision (EPA Region 10): Bunker Hill Mining and Metallurgical Complex, Shoshone County, ID. (First remedial action), August 1991

    SciTech Connect (OSTI)

    Not Available

    1991-08-30T23:59:59.000Z

    The Bunker Hill Mining and Metallurgical Complex site is a 21 square-mile area centered around an inactive industrial mining and smelting site, and includes the cities of Kellogg, Smelterville, Wardner, Pinehurst, and Page, in Shoshone County, Idaho. The inactive industrial complex includes the Bunker Hill mine and mill, a lead smelter, a zinc smelter and a phosphoric acid fertilizer plant, all totalling several hundred acres. Initially, most of the solid and liquid residue from the complex was discharged into the river. When the river flooded, these materials were deposited onto the valley floor, and have leached into onsite soil and ground water. The selected remedial action for the site includes soil sampling; excavating contaminated soil and sod exceeding 1,000 mg/kg lead on approximately 1,800 residential properties, and replacing it with clean soil and sod; disposing of the contaminated soil and sod at an onsite repository; and capping the repository.

  1. REAL TIME DATA FOR REMEDIATION ACTIVITIES [11505

    SciTech Connect (OSTI)

    BROCK CT

    2011-01-13T23:59:59.000Z

    Health physicists from the CH2M HILL Plateau Remediation Company collaborated with Berkeley Nucleonics Corporation to modify the SAM 940 isotope identifier instrument to be used for nuclear waste remediation. These modifications coupled with existing capabilities of the SAM 940 have proven to be invaluable during remediation activities, reducing disposal costs by allowing swift remediation of targeted areas that have been identified as having isotopes of concern (IOC), and eliminating multiple visits to sites by declaring an excavation site clear of IOCs before demobilizing from the site. These advantages are enabled by accumulating spectral data for specific isotopes that is nearly 100 percent free of false positives, which are filtered out in 'real time.'

  2. Environmental Assessment and Finding of No Significant Impact: Waste Remediation Activities at Elk Hills (Former Naval petroleum Reserve No. 1), Kern County, California

    SciTech Connect (OSTI)

    N /A

    1999-12-17T23:59:59.000Z

    DOE proposes to conduct a variety of post-sale site remediation activities, such as characterization, assessment, clean-up, and formal closure, at a number of inactive waste sites located at Elk Hills. The proposed post-sale site remediation activities, which would be conducted primarily in developed portions of the oil field, currently are expected to include clean-up of three basic categories of waste sites: (1) nonhazardous solid waste surface trash scatters, (2) produced wastewater sumps, and (3) small solid waste landfills. Additionally, a limited number of other inactive waste sites, which cannot be typified under any of these three categories, have been identified as requiring remediation. Table 2.1-1 presents a summary, organized by waste site category, of the inactive waste sites that require remediation per the PSA, the ASA, and/or the UPCTA. The majority of these sites are known to contain no hazardous waste. However, one of the surface scatter sites (2G) contains an area of burn ash with hazardous levels of lead and zinc, another surface scatter site (25S) contains an area with hazardous levels of lead, a produced wastewater sump site (23S) and a landfill (42-36S) are known to contain hazardous levels of arsenic, and some sites have not yet been characterized. Furthermore, additional types of sites could be discovered. For example, given the nature of oil field operations, sites resulting from either spills or leaks of hazardous materials could be discovered. Given the nature of the agreements entered into by DOE regarding the required post-sale clean-up of the inactive waste sites at Elk Hills, the Proposed Action is the primary course of action considered in this EA. The obligatory remediation activities included in the Proposed Action are standard procedures such that possible variations of the Proposed Action would not vary substantially enough to require designation as a separate, reasonable alternative. Thus, the No Action Alternative is the only other option considered in this EA.

  3. Hydrogeology of the Hanford Site Central Plateau – A Status Report for the 200 West Area

    SciTech Connect (OSTI)

    Last, George V.; Thorne, Paul D.; Horner, Jacob A.; Parker, Kyle R.; Bjornstad, Bruce N.; Mackley, Rob D.; Lanigan, David C.; Williams, Bruce A.

    2009-08-27T23:59:59.000Z

    The Remediation Decisions Support (RDS) function of the Soil and Groundwater Remediation Project (managed by CH2M HILL Plateau Remediation Company [CHPRC]) is responsible for facilitating the development of consistent data, parameters, and conceptual models to resolve technical issues and support efforts to estimate contaminant migration and impacts (i.e., the assessment process). In particular, the RDS function is working to update electronic data sources and conceptual models of the geologic framework and associated hydraulic and geochemical parameters to facilitate traceability, transparency, defensibility, and consistency in support of environmental assessments. This report summarizes the efforts conducted by Pacific Northwest National Laboratory (PNNL) scientists in fiscal year 2008 (FY08) that focused primarily on the 200 West Area, as well as a secondary effort initiated on the 200 East Area.

  4. U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau Remediation Company Partnering Charter For Partnering Performance Agreement

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation& ForumVersion:3 Annual Report Management

  5. Carbon and Water Cycling in a Texas Hill Country Woodland 

    E-Print Network [OSTI]

    Kamps, Ray Herbert

    2014-12-11T23:59:59.000Z

    Two tree species, Plateau live oak (Quercus fusiformis) and Ashe juniper (Juniperus ashei) survive and thrive in a dense woodland on thin soil overlying massive limestone formations in the Texas Hill Country with recurrent annual summer drought...

  6. GROUDWATER REMEDIATION AT THE 100-HR-3 OPERABLE UNIT HANFORD SITE WASHINGTON USA - 11507

    SciTech Connect (OSTI)

    SMOOT JL; BIEBESHEIMER FH; ELUSKIE JA; SPILIOTOPOULOS A; TONKIN MJ; SIMPKIN T

    2011-01-12T23:59:59.000Z

    The 100-HR-3 Groundwater Operable Unit (OU) at the Hanford Site underlies three former plutonium production reactors and the associated infrastructure at the 100-D and 100-H Areas. The primary contaminant of concern at the site is hexavalent chromium; the secondary contaminants are strontium-90, technetium-99, tritium, uranium, and nitrate. The hexavalent chromium plume is the largest plume of its type in the state of Washington, covering an area of approximately 7 km{sup 2} (2.7 mi{sup 2}) with concentrations greater than 20 {micro}g/L. Concentrations range from 60,000 {micro}g/L near the former dichromate transfer station in the 100-D Area to large areas of 20 to 100 {micro}g/L across much of the plume area. Pump-and-treat operations began in 1997 and continued into 2010 at a limited scale of approximately 200 gal/min. Remediation of groundwater has been fairly successful in reaching remedial action objectives (RAOs) of 20 {micro}g/L over a limited region at the 100-H, but less effective at 100-D. In 2000, an in situ, permeable reactive barrier was installed downgradient of the hotspot in 100-D as a second remedy. The RAOs are still being exceeded over a large portion of the area. The CH2M HILL Plateau Remediation Company was awarded the remediation contract for groundwater in 2008 and initiated a remedial process optimization study consisting of modeling and technical studies intended to enhance the remediation. As a result of the study, 1,400 gal/min of expanded treatment capacity are being implemented. These new systems are designed to meet 2012 and 2020 target milestones for protection of the Columbia River and cleanup of the groundwater plumes.

  7. Voluntary Protection Program Onsite Review, CHPlateau Remediation Contract Hanford Site- March 2011

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Plateau Remediation Contract Hanford Site is continuing to perform at a level deserving DOE-VPP Star recognition.

  8. Cardwell Hills, Lupine Meadows, Bald Hill and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Benton County, including Cardwell Hills, Lupine Meadows, Bald Hill and Fitton Green Natural Area. This area has been identi- fied as a key site in the U.S. Fish and Wildlife...

  9. Mechanical Demolition of Buildings with Concrete Asbestos Board Siding: Methodology, Precautions, and Results at the Hanford Central Plateau - 12417

    SciTech Connect (OSTI)

    Kehler, Kurt [Decommissioning and Demolition, CH2M HILL Plateau Remediation Company, Richland, Washington (United States)

    2012-07-01T23:59:59.000Z

    Since the start of its contract in 2008, the CH2M Hill Plateau Remediation Company (CH2M HILL) has demolished 25 buildings with concrete asbestos board (CAB) siding using mechanical means. While the asbestos contained in CAB siding is not friable in its manufactured form, concerns persist that mechanical methods of demolition have the potential to render the asbestos friable and airborne, therefore posing a health risk to demolition workers and the public. CH2M HILL's experience demonstrates that when carefully managed, mechanical demolition of CAB siding can be undertaken safely, successfully, and in compliance with regulatory requirements for the disposal of Class II Asbestos-Containing Material (ACM). While the number of buildings demolished at Hanford and the number of samples collected does not make a conclusive argument that CAB cannot be made friable with normal demolition techniques, it certainly provides a significant body of evidence for the success of the approach. Of course, there are many factors that affect how to demolish a structure and dispose of the waste. These factors will impact the success depending on each site. The most obvious factors which contribute to this success at Hanford are: 1. The availability of onsite waste disposal where the handling and cost of asbestos-containing waste is not much different than other potentially contaminated waste. Therefore, segregation of demolition debris from the potential asbestos contamination is not necessary from a debris handling or asbestos disposal aspect. 2. The space between structures is typically significant enough to allow for large exclusion zones. There are not many restrictions due to cohabitation issues or potential contamination of adjacent facilities. 3. The willingness of the regulators and client to understand the industrial safety issues associated with manual CAB removal. (authors)

  10. Voluntary Protection Program Onsite Review, CH2M HILL Plateau...

    Office of Environmental Management (EM)

    and improve working conditions within the highly contaminated room. CHPRC uses powered air purifying respirators (PAPR) to control radiological exposures to workers in areas...

  11. Toxic remediation

    DOE Patents [OSTI]

    Matthews, Stephen M. (Alamed County, CA); Schonberg, Russell G. (Santa Clara County, CA); Fadness, David R. (Santa Clara County, CA)

    1994-01-01T23:59:59.000Z

    What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.

  12. Central Plateau Cleanup at DOE's Hanford Site - 12504

    SciTech Connect (OSTI)

    Dowell, Jonathan [US DOE (United States)

    2012-07-01T23:59:59.000Z

    The discussion of Hanford's Central Plateau includes significant work in and around the center of the Hanford Site - located about 7 miles from the Columbia River. The Central Plateau is the area to which operations will be shrunk in 2015 when River Corridor cleanup is complete. This work includes retrieval and disposal of buried waste from miles of trenches; the cleanup and closure of massive processing canyons; the clean-out and demolition to 'slab on grade' of the high-hazard Plutonium Finishing Plant; installation of key groundwater treatment facilities to contain and shrink plumes of contaminated groundwater; demolition of all other unneeded facilities; and the completion of decisions about remaining Central Plateau waste sites. A stated goal of EM has been to shrink the footprint of active cleanup to less than 10 square miles by 2020. By the end of FY2011, Hanford will have reduced the active footprint of cleanup by 64 percent exceeding the goal of 49 percent. By 2015, Hanford will reduce the active footprint of cleanup by more than 90 percent. The remaining footprint reduction will occur between 2015 and 2020. The Central Plateau is a 75-square-mile region near the center of the Hanford Site including the area designated in the Hanford Comprehensive Land Use Plan Environmental Impact Statement (DOE 1999) and Record of Decision (64 FR 61615) as the Industrial-Exclusive Area, a rectangular area of about 20 square miles in the center of the Central Plateau. The Industrial-Exclusive Area contains the 200 East and 200 West Areas that have been used primarily for Hanford's nuclear fuel processing and waste management and disposal activities. The Central Plateau also encompasses the 200 Area CERCLA National Priorities List site. The Central Plateau has a large physical inventory of chemical processing and support facilities, tank systems, liquid and solid waste disposal and storage facilities, utility systems, administrative facilities, and groundwater monitoring wells. As a companion to the Hanford Site Cleanup Completion Framework document, DOE issued its draft Central Plateau Cleanup Completion Strategy in September 2009 to provide an outline of DOE's vision for completion of cleanup activities across the Central Plateau. As major elements of the Hanford cleanup along the Columbia River Corridor near completion, DOE believed it appropriate to articulate the agency vision for the remainder of the cleanup mission. The Central Plateau Cleanup Completion Strategy and the Hanford Site Cleanup Completion Framework were provided to the regulatory community, the Tribal Nations, political leaders, the public, and Hanford stakeholders to promote dialogue on Hanford's future. The Central Plateau Cleanup Completion Strategy describes DOE's vision for completion of Central Plateau cleanup and outlines the decisions needed to achieve the vision. The Central Plateau strategy involves steps to: (1) contain and remediate contaminated groundwater, (2) implement a geographic cleanup approach that guides remedy selection from a plateau-wide perspective, (3) evaluate and deploy viable treatment methods for deep vadose contamination to provide long-term protection of the groundwater, and (4) conduct essential waste management operations in coordination with cleanup actions. The strategy will also help optimize Central Plateau readiness to use funding when it is available upon completion of River Corridor cleanup projects. One aspect of the Central Plateau strategy is to put in place the process to identify the final footprint for permanent waste management and containment of residual contamination within the 20-square-mile Industrial-Exclusive Area. The final footprint identified for permanent waste management and containment of residual contamination should be as small as practical and remain under federal ownership and control for as long as a potential hazard exists. Outside the final footprint, the remainder of the Central Plateau will be available for other uses consistent with the Hanford Comprehensive Land-Use Plan (DOE 1999), while

  13. A Hydraulic Capture Application for Optimal Remediation Design K. R. Fowlera

    E-Print Network [OSTI]

    1 A Hydraulic Capture Application for Optimal Remediation Design K. R. Fowlera , C. T. Kelley b , C Carolina Chapel Hill, NC 27599-7400, USA The goal of a hydraulic capture model for remediation purposes is desirable and often influences the choice of solution method. In this paper we present two hydraulic capture

  14. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J.6, Mod 332 J.6-2 SMALL BUSINESS SUBCONTRACTING PLAN for United States Department of Energy Plateau Remediation Contract Submitted by: CH2M HILL PLATEAU REMEDIATION COMPANY Prime...

  15. Selecting Mold Remediation Contractors

    E-Print Network [OSTI]

    Renchie, Don L.

    2005-10-05T23:59:59.000Z

    Texas has strict regulations that govern mold remediation companies. Before contracting for mold remediation work, consumers should know what the law requires of remediation companies and what such contracts should contain....

  16. Lesson Learned by CHPRC at Hanford Activity-level Work Planning and Control Using EFCOG Work Planning and Control Guideline Document

    Broader source: Energy.gov [DOE]

    Slide Presentation by Jim Hoffman, CH2M HILL Plateau Remediation Company. Major Process Revision of WP&C – Lessons Learned.

  17. Beverly Hills High Emily Bloom

    E-Print Network [OSTI]

    Hwang, Kai

    Students Ali Abadi Beverly Hills High Emily Bloom Bakersfield High Camila Castro Rodriguez Mills E. Godwin High Nafiz'Ammar Fatani Da Vinci Science High Diana Felix San Marino High Karen Girdner

  18. Inflation over the hill

    E-Print Network [OSTI]

    Konstantinos Tzirakis; William H. Kinney

    2007-06-13T23:59:59.000Z

    We calculate the power spectrum of curvature perturbations when the inflaton field is rolling over the top of a local maximum of a potential. We show that the evolution of the field can be decomposed into a late-time attractor, which is identified as the slow roll solution, plus a rapidly decaying non-slow roll solution, corresponding to the field rolling ``up the hill'' to the maximum of the potential. The exponentially decaying transient solution can map to an observationally relevant range of scales because the universe is also expanding exponentially. We consider the two branches separately and we find that they are related through a simple transformation of the slow roll parameter $\\eta$ and they predict identical power spectra. We generalize this approach to the case where the inflaton field is described by both branches simultaneously and find that the mode equation can be solved exactly at all times. Even though the slow roll parameter $\\eta$ is evolving rapidly during the transition from the transient solution to the late-time attractor solution, the resultant power spectrum is an exact power-law spectrum. Such solutions may be useful for model-building on the string landscape.

  19. Tectonic development of Columbia Plateau

    SciTech Connect (OSTI)

    Reidel, S.B.; Chamness, M.A.; Fecht, K.R.; Hagood, M.C.; Nolan, T.L.

    1987-08-01T23:59:59.000Z

    The Columbia Plateau can be subdivided into two structural subprovinces: the Palouse, characterized by the Blue Mountain anticlinorium, and the Yakima foldbelt, characterized by generally narrow, asymmetric (faulted) anticlinal ridges separated by broad basins. The tectonic features of the Columbia Plateau result from (1) north-south compression during and following the emplacement of the Columbia River Basalt (CRB); (2) the subsidence of the Yakima foldbelt subprovince relative to a stable Palouse subprovince; (3) the growth of the Yakima folds superimposed on a subsiding basin; (4) the growth of major northwest-trending strike-slip faults on the western side of the plateau; and (5) the influence of regional structures that trend into the Columbia Plateau. Subsidence of the Yakima foldbelt subprovince began prior to the eruption of the CRB and has continued from the Miocene to the present. The rate of subsidence kept pace with CRB emplacement, decreasing as eruption rates waned. Simultaneously, anticlinal fold growth within the Yakima foldbelt occurred under north-south compression, and decreased as the rate of subsidence and CRB eruptions declined. Paleomagnetic data indicate fold growth was accompanied by a component of clockwise rotation that occurred on a local scale and only in anticlines. The development of these tectonic features is consistent with oblique subduction along a converging plate margin.

  20. U.S. strategic petroleum reserve Big Hill 114 leak analysis 2012.

    SciTech Connect (OSTI)

    Lord, David L.; Roberts, Barry L.; Lord, Anna C. Snider; Sobolik, Steven Ronald; Park, Byoung Yoon; Rudeen, David Keith [GRAM, Inc., Albuquerque, NM

    2013-06-01T23:59:59.000Z

    This report addresses recent well integrity issues related to cavern 114 at the Big Hill Strategic Petroleum Reserve site. DM Petroleum Operations, M&O contractor for the U.S. Strategic Petroleum Reserve, recognized an apparent leak in Big Hill cavern well 114A in late summer, 2012, and provided written notice to the State of Texas as required by law. DM has since isolated the leak in well A with a temporary plug, and is planning on remediating both 114 A- and B-wells with liners. In this report Sandia provides an analysis of the apparent leak that includes: (i) estimated leak volume, (ii) recommendation for operating pressure to maintain in the cavern between temporary and permanent fixes for the well integrity issues, and (iii) identification of other caverns or wells at Big Hill that should be monitored closely in light of the sequence of failures there in the last several years.

  1. GEORGE WATTS HILL ALUMNI CENTER

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    BR IN KH O U S- BU LLITT CHILLER BUILDING F KENAN STADIUM GEORGE WATTS HILL ALUMNI CENTER EHRINGHAUS FIELD DEPARTMENT OF PUBLIC SAFETY C AR PEN TRY SH O P CHILLER BUILDING NEURO SCIENCES WATER TOWER ITS MANNING CHILLER BUILDING PUBLIC SAFETY BLDG. MORRISON RIDGEROAD EHRINGHAUS BOSHAMER BASEBALL STADIUM

  2. FINAL FRONTIER AT HANFORD TACKLING THE CENTRAL PLATEAU

    SciTech Connect (OSTI)

    GERBER MS

    2008-03-04T23:59:59.000Z

    The large land area in the center of the vast Department of Energy (DOE) Hanford Site in southeast Washington State is known as 'the plateau'--aptly named because its surface elevations are 250-300 feet above the groundwater table. By contrast, areas on the 585-square mile Site that border the Columbia River sit just 30-80 feet above the water table. The Central Plateau, which covers an ellipse of approximately 70 square miles, contains Hanford's radiochemical reprocessing areas--the 200 East and 200 West Areas--and includes the most highly radioactive waste and contaminated facilities on the Site. Five 'canyons' where chemical processes were used to separate out plutonium (Pu), 884 identified soil waste sites (including approximately 50 miles of solid waste burial trenches), more than 900 structures, and all of Hanford's liquid waste storage tanks reside in the Central Plateau. (Notes: Canyons is a nickname given by Hanford workers to the chemical reprocessing facilities. The 177, underground waste tanks at Hanford comprise a separate work scope and are not under Fluor's management). Fluor Hanford, a DOE prime cleanup contractor at the Site for the past 12 years, has moved aggressively to investigate Central Plateau waste sites in the last few years, digging more than 500 boreholes, test pits, direct soil 'pushes' or drive points; logging geophysical data sets; and performing electrical-resistivity scans (a non-intrusive technique that maps patterns of sub-surface soil conductivity). The goal is to identify areas of contamination areas in soil and solid waste sites, so that cost-effective and appropriate decisions on remediation can be made. In 2007, Fluor developed a new work plan for DOE that added 238 soil waste-site characterization activities in the Central Plateau during fiscal years (FYs) 2007-2010. This number represents a 50 percent increase over similar work previously done in central Hanford. Work Plans are among the required steps in the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) cleanup process. The CERCLA process is used to oversee the investigation, decision-making and remediation of 'past practices' (historical) sites, as opposed to sites in active use. For the first several years of Hanford's cleanup work, everyone concerned--the Department, contractors, regulatory agencies, stakeholders and Indian nations and tribes--focused efforts on the rivershore. The magnificent Columbia River--eighth largest in the world--flows through and by the Hanford Site for 52 miles. Two million people live downstream from Hanford along the Columbia before it empties into the Pacific Ocean. Further, the part of the river known as the 'Hanford Reach' is a prime habitat for salmon, steelhead, sturgeon and other species of fish. In fact, it provides a spawning ground to more salmon than any other stretch of river in the United States outside of Alaska. For these reasons, protecting the Columbia by cleaning up waste directly along its shoreline was an early priority in Hanford's Federal Facility Agreement and Consent Order (or Tri-Party Agreement) signed in 1989 among the DOE, U.S. Environmental Protection Agency (EPA) and Washington State to govern cleanup. However, Tri-Party Agreement signatories and others concerned with Hanford and the Columbia River, knew that the waste located in, and beneath, the Central Plateau could also pose dangers to the waterway. While the waste in central Hanford might move more slowly, and pose fewer immediate threats, it would have to be dealt with as cleanup progressed.

  3. Magnetic anomalies northeast of Shatsky Plateau

    E-Print Network [OSTI]

    Risch, David Lawrence

    1982-01-01T23:59:59.000Z

    MAGNETIC ANOMALIES NORTHEAST OF SHATSKY PLATEAU A Thesis by DAVID LAWRENCE RISCH Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1982 Major Subject...: Oceanography MAGNETIC ANOMALIES NORTHEAST OF SHATSKY PLATEAU A Thesis by DAVID LAWRENCE RISCH Approved as to style and content by: C rman Committee Member Member Head of Department May 198Z ABSTRACT Magnetic Anomalies Northeast of Shatsky Plateau...

  4. Interstate Technology & Regulatory Council (ITRC) Remediation...

    Office of Environmental Management (EM)

    Technology & Regulatory Council (ITRC) Remediation Management of Complex Sites: Case Studies and Guidance Interstate Technology & Regulatory Council (ITRC) Remediation...

  5. CLOSEOUT REPORT REMEDIAL ACTION

    E-Print Network [OSTI]

    FINAL CLOSEOUT REPORT REMEDIAL ACTION AREA OF CONCERN 6 BUILDING 650 RECLAMATION FACILITY SUMP York 11973 REGISTERED TO ISO 14001 #12;AOC 6 BUILDING 650 RECLAMATION FACILITY SUMP AND SUMP OUTFALL .................................................................................9 2.6.1 Final Radiological Status Survey Design

  6. Black Hills Power- Commercial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Black Hills Power provides rebates for its commercial customers who install energy efficient heat pumps, motors, variable frequency drives, lighting, and water heaters. Custom rebates for approved...

  7. Black Hills Power- Residential Customer Rebate Program

    Broader source: Energy.gov [DOE]

    Black Hills Power offers cash rebates to residential customers who purchase and install energy efficient equipment in their homes. Incentives exist for water heaters, demand control units, air...

  8. WIND DATA REPORT Quincy, Quarry Hills

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Quincy, Quarry Hills 9/1/2006 ­ 11/30/2006 Prepared for Massachusetts Technology.......................................................................................................................... 7 Tower Effects on Measured Wind Speed

  9. WIND DATA REPORT Quincy Quarry Hills

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Quincy Quarry Hills December 2006 to February 2007 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  10. WIND DATA REPORT Quincy Quarry Hills

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Quincy Quarry Hills March 2007 to May 2007 Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  11. Microsoft Word - ThurstonHills_CX.docx

    Broader source: Energy.gov (indexed) [DOE]

    Dorie Welch Project Manager - KEWM-4 Proposed Action: Thurston Hills property funding Fish and Wildlife Project No.: 2011-003-00, BPA-007071 Categorical Exclusion Applied (from...

  12. U.S. Department of Energy, Richland Operations Office And CH2M HILL Plateau

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon theTedRegionClean Energy Technologies(UCOR) East

  13. Graham Hill | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal TechnologiesGeothermalGo for theEnergyandGraham Hill About

  14. Bull Hill | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility Jump to:Brunei:Hill Jump to: navigation,

  15. Laurel Hill | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,Lakefront Tow Tank JumpLatvia: Energy Resources JumpHill

  16. Trinity Hills | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place: Dallas, Texas Zip:Hills Jump to: navigation,

  17. Cedro Hill | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGoCaterpillar JumpCedro Hill Jump to:

  18. Remediating MGP brownfields

    SciTech Connect (OSTI)

    Larsen, B.R.

    1997-05-01T23:59:59.000Z

    Before natural gas pipelines became widespread in this country, gas fuel was produced locally in more than 5,000 manufactured gas plants (MGPs). The toxic wastes from these processes often were disposed onsite and have since seeped into the surrounding soil and groundwater. Although the MGPs--commonly called gas plants, gas-works or town gas plants--have closed and most have been demolished, they have left a legacy of environmental contamination. At many MGP sites, underground storage tanks were constructed of wood or brick, with process piping and equipment which frequently leaked. Waste materials often were disposed onsite. Releases of coal tars, oils and condensates produced within the plants contributed to a wide range of contamination from polycyclic aromatic hydrocarbons, phenols, benzene and cyanide. Remediation of selected MGP sites has been sporadic. Unless the site has been identified as a Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) Superfund site, the regulatory initiative to remediate often remains with the state in which the MGP is located. A number of factors are working to change that picture and to create a renewed interest in MGP site remediation. The recent Brownfield Initiative by the US Environmental Protection Agency (EPA) is such an example.

  19. Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area...

    Open Energy Info (EERE)

    Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area (Goff & Decker, 1983) Exploration Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique...

  20. Loess Hills and Southern Iowa Development and Conservation (Iowa)

    Broader source: Energy.gov [DOE]

    The Loess Hills Development and Conservation Authority, the Loess Hills Alliance, and the Southern Iowa Development and Conservation Authority are regional organizations with representatives from...

  1. Independent Oversight Review, Richland Operations Office and CH2M Hill

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement ofDecemberPlateau Remediation Company and

  2. Brownfield landfill remediation under the Illinois EPA site remediation program

    SciTech Connect (OSTI)

    Beck, J.; Bruce, B.; Miller, J.; Wey, T.

    1999-07-01T23:59:59.000Z

    Brownfield type landfill remediation was completed at the Ft. Sheridan Historic Landmark District, a former Army Base Realignment and Closure Facility, in conjunction with the future development of 551 historic and new homes at this site. The project was completed during 1998 under the Illinois Environmental Protection Agency (Illinois EPA) Site Remediation Program. This paper highlights the Illinois EPA's Site Remediation Program and the remediation of Landfills 3 and 4 at Fort Sheridan. The project involved removal of about 200,000 cubic yards of landfill waste, comprised of industrial and domestic refuse and demolition debris, and post-removal confirmation sampling of soils, sediment, surface water, and groundwater. The sample results were compared to the Illinois Risk-Based Cleanup levels for residential scenarios. The goal of the removal project was to obtain a No Further Remediation letter from the Illinois EPA to allow residential development of the landfill areas.

  3. Soil Remediation Test

    SciTech Connect (OSTI)

    Manlapig, D. M.; Williamsws

    2002-04-01T23:59:59.000Z

    Soils contaminated with petroleum by-products can now be effectively remediated using a variety of technologies. Among these are in-situ bioremediation, land farming, and landfill/replacing of soil. The range of efficiencies and cost effectiveness of these technologies has been well documented. Exsorbet Plus is showing promise as an in-situ bioremediation agent. It is made of naturally grown Spaghnum Peat Moss which has been activated for encapsulation and blended with nitrogen-rich fertilizer. In its initial field test in Caracas, Venezuela, it was able to remediate crude oil-contaminated soil in 90 days at less than half of the cost of competing technologies. Waste Solutions, Corp and the US Department of Energy signed a Cooperative Research and Development Agreement to test Exsorbet Plus at the Rocky Mountain Oilfield Testing Center near Casper, Wyoming. As part of the test, soil contaminated with crude oil was treated with Exsorbet Plus to aid the in-situ bioremediation process. Quantitative total petroleum hydrocarbon (TPH) measurements were acquired comparing the performance of Exsorbet Plus with an adjacent plot undergoing unaided in-situ bioremediation.

  4. REMEDIAL ACTION PLAN

    E-Print Network [OSTI]

    Inactive Uranium; Mill Tailings Site; Uranium Mill Tremedial

    1990-01-01T23:59:59.000Z

    designated site consists of the 111-acre tailings pile, the mill yard, and piles of demolition rubble awaiting burial. The site contains 2.659 million cubic yards of tailings including 277,000 cubic yards of contaminated material in the mill yard, ore storage area, and Ann Lee Mine area; 151,000 cubic yards in the protore storage and leach pad areas; and 664,000 cubic yards of windblown contaminated soil, including excess soil that would result from excavation. Remedial action The remedial action will start with the excavation of windblown contaminated material and placement around the west, south, and east sides of the pile to buttress the slopes for increased stability. Most of the demolition rubble will be placed in the southern part of the pile and be covered with tailings. The northern part of the tailings pile (one million cubic yards) will then be excavated and placed on the south part of the pile to reduce the size of the disposal cell footprint. Demolition rubble that

  5. Transfer of Physical and Hydraulic Properties Databases to the Hanford Environmental Information System - PNNL Remediation Decision Support Project, Task 1, Activity 6

    SciTech Connect (OSTI)

    Rockhold, Mark L.; Middleton, Lisa A.

    2009-03-31T23:59:59.000Z

    This report documents the requirements for transferring physical and hydraulic property data compiled by PNNL into the Hanford Environmental Information System (HEIS). The Remediation Decision Support (RDS) Project is managed by Pacific Northwest National Laboratory (PNNL) to support Hanford Site waste management and remedial action decisions by the U.S. Department of Energy and one of their current site contractors - CH2M-Hill Plateau Remediation Company (CHPRC). The objective of Task 1, Activity 6 of the RDS project is to compile all available physical and hydraulic property data for sediments from the Hanford Site, to port these data into the Hanford Environmental Information System (HEIS), and to make the data web-accessible to anyone on the Hanford Local Area Network via the so-called Virtual Library.1 These physical and hydraulic property data are used to estimate parameters for analytical and numerical flow and transport models that are used for site risk assessments and evaluation of remedial action alternatives. In past years efforts were made by RDS project staff to compile all available physical and hydraulic property data for Hanford sediments and to transfer these data into SoilVision{reg_sign}, a commercial geotechnical software package designed for storing, analyzing, and manipulating soils data. Although SoilVision{reg_sign} has proven to be useful, its access and use restrictions have been recognized as a limitation to the effective use of the physical and hydraulic property databases by the broader group of potential users involved in Hanford waste site issues. In order to make these data more widely available and useable, a decision was made to port them to HEIS and to make them web-accessible via a Virtual Library module. In FY08 the original objectives of this activity on the RDS project were to: (1) ensure traceability and defensibility of all physical and hydraulic property data currently residing in the SoilVision{reg_sign} database maintained by PNNL, (2) transfer the physical and hydraulic property data from the Microsoft Access database files used by SoilVision{reg_sign} into HEIS, which is currently being maintained by CHRPC, (3) develop a Virtual Library module for accessing these data from HEIS, and (4) write a User's Manual for the Virtual Library module. The intent of these activities is to make the available physical and hydraulic property data more readily accessible and useable by technical staff and operable unit managers involved in waste site assessments and remedial action decisions for Hanford. In FY08 communications were established between PNNL and staff from Fluor-Hanford Co. (who formerly managed HEIS) to outline the design of a Virtual Library module that could be used to access the physical and hydraulic property data that are to be transferred into HEIS. Data dictionaries used by SoilVision{reg_sign} were also provided to Fluor-Hanford personnel (who are now with CHPRC). During ongoing work to ensure traceability and defensibility of all physical and hydraulic property data that currently reside in the SoilVision{reg_sign} database, it was recognized that further work would be required in this effort before the data were actually ported into HEIS. Therefore work on the Virtual Library module development and an accompanying User's Guide was deferred until an unspecified later date. In FY09 efforts have continued to verify the traceability and defensibility of the physical and hydraulic property datasets that are currently being maintained by PNNL. Although this is a work in progress, several of these datasets should be ready for transfer to HEIS in the very near future. This document outlines a plan for the migration of these datasets into HEIS.

  6. Black Hills Energy- Solar Power Program

    Broader source: Energy.gov [DOE]

    All incentive payments are subject to the availability of funds and a pre-installation site inspection. Black Hills Energy has established participation caps for each tier. The status of funding ...

  7. HANFORD SITE CENTRAL PLATEAU CLEANUP COMPLETION STRATEGY

    SciTech Connect (OSTI)

    BERGMAN TB

    2011-01-14T23:59:59.000Z

    Cleanup of the Hanford Site is a complex and challenging undertaking. The U.S. Department of Energy (DOE) has developed a comprehensive vision for completing Hanford's cleanup mission including transition to post-cleanup activities. This vision includes 3 principle components of cleanup: the {approx}200 square miles ofland adjacent to the Columbia River, known as the River Corridor; the 75 square miles of land in the center of the Hanford Site, where the majority of the reprocessing and waste management activities have occurred, known as the Central Plateau; and the stored reprocessing wastes in the Central Plateau, the Tank Wastes. Cleanup of the River Corridor is well underway and is progressing towards completion of most cleanup actions by 2015. Tank waste cleanup is progressing on a longer schedule due to the complexity of the mission, with construction of the largest nuclear construction project in the United States, the Waste Treatment Plant, over 50% complete. With the progress on the River Corridor and Tank Waste, it is time to place increased emphasis on moving forward with cleanup of the Central Plateau. Cleanup of the Hanford Site has been proceeding under a framework defmed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In early 2009, the DOE, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency signed an Agreement in Principle in which the parties recognized the need to develop a more comprehensive strategy for cleanup of the Central Plateau. DOE agreed to develop a Central Plateau Cleanup Completion Strategy as a starting point for discussions. This DOE Strategy was the basis for negotiations between the Parties, discussions with the State of Oregon, the Hanford Advisory Board, and other Stakeholder groups (including open public meetings), and consultation with the Tribal Nations. The change packages to incorporate the Central Plateau Cleanup Completion Strategy were signed by the Parties on October 26,2010, and are now in the process of being implemented.

  8. Radon in Soil Gas Above Bedrock Fracture Sets at the Shepley’s Hill Superfund Site

    SciTech Connect (OSTI)

    J.R. Giles; T.L. McLing; M.V. Carpenter; C.J. Smith; W. Brandon

    2012-12-01T23:59:59.000Z

    The Idaho National Laboratory (INL) recently provided technical support for ongoing environmental remediation activities at the Shepley’s Hill remediation site near Devens, MA (Figure 1). The technical support was requested as follow-on work to an initial screening level radiation survey conducted in 2008. The purpose of the original study was to assess the efficacy of the INL-developed Backpack Sodium Iodide System (BaSIS) for detecting elevated areas of natural radioactivity due to the decay of radon-222 gases emanating from the underlying fracture sets. Although the results from the initial study were mixed, the BaSIS radiation surveys did confirm that exposed bedrock outcrops have higher natural radioactivity than the surficial soils, thus a high potential for detecting elevated levels of radon and/or radon daughter products. (INL 2009) The short count times associated with the BaSIS measurements limited the ability of the system to respond to elevated levels of radioactivity from a subsurface source, in this instance radon gas emanating from fracture sets. Thus, it was postulated that a different methodology be employed to directly detect the radon in the soil gases. The CR-39 particle track detectors were investigated through an extensive literature and technology search. The relatively long deployment or “detection” time of several days, as well as the sensitivity of the measurement and robustness of the detectors made the CR-39 technology promising for deployment at the Shepley’s Hill site.

  9. Plateau Remediation Contract Section J Contract No. DE-AC06...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Milestones established in the Operations Activity Fiscal Year Work Plan for this Project Baseline Summary Operations Activity. PERFORMANCE MEASURE PM-41-1 Allocated Available...

  10. Plateau Remediation Contract Contract No. DE-AC06-08RL14788

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manage and Dispose of PFP Solid Waste 011.05 Disposition PFP 6 C.2.3 Solid and Liquid Waste Treatment and Disposal 013.90 Usage Based Services Distributions -PBS RL-13 (Only UBS)...

  11. The Management of the Plateau Remediation Contract, OAS-L-13-03

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy Solar Decathlon2001Competitiveness |The Making ofThe

  12. ICDF Complex Remedial Action Report

    SciTech Connect (OSTI)

    W. M. Heileson

    2007-09-26T23:59:59.000Z

    This Idaho CERCLA Disposal Facility (ICDF) Remedial Action Report has been prepared in accordance with the requirements of Section 6.2 of the INEEL CERCLA Disposal Facility Remedial Action Work Plan. The agency prefinal inspection of the ICDF Staging, Storage, Sizing, and Treatment Facility (SSSTF) was completed in June of 2005. Accordingly, this report has been developed to describe the construction activities completed at the ICDF along with a description of any modifications to the design originally approved for the facility. In addition, this report provides a summary of the major documents prepared for the design and construction of the ICDF, a discussion of relevant requirements and remedial action objectives, the total costs associated with the development and operation of the facility to date, and identification of necessary changes to the Agency-approved INEEL CERCLA Disposal Facility Remedial Action Work Plan and the ICDF Complex Operations and Maintenance Plan.

  13. Analytical Data Report for Sediment Samples Collected From 200 BP 5 OU, C7515 (299-E24-25) M-Well

    SciTech Connect (OSTI)

    Lindberg, Michael J.

    2010-06-18T23:59:59.000Z

    This is an analytical data report for sediments received from BP 5 M Well for geochemical studies. Data will be reported to CH2M HILL Plateau Remediation Company (CHPRC).

  14. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Numbers: 105-KE Area: 100 K Description: CH2M HILL Plateau Remediation Company completed placement of concrete to close more than 50 openings in the K East Reactor building...

  15. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    44.jpg Gallery: 200 West Pump and Treat Title: Keywords: 200 West, pump and treat, groundwater Description: A team of CH2M HILL Plateau Remediation Company and subcontractor...

  16. Workers Complete Demolition of Hanford’s Historic Plutonium Vaults

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – The Richland Operations Office and contractor CH2M HILL Plateau Remediation Company this month completed demolition of a large plutonium vault complex, formerly one of the highest security facilities at the Hanford site.

  17. Elk Hills: still out in front

    SciTech Connect (OSTI)

    Rintoul, B.

    1982-07-01T23:59:59.000Z

    The producing history and capacity of the Elk Hills Oil and Gas Fields in California are described. Developments in the field are discussed, including waterflooding. The field presently produces ca. 160,000 bpd of oil and 350 mmcfd of natural gas. Gas liquids production totals ca. 683,000 gal/day. Waterflooding is expected to pay an increasingly important role in the production of crude oil. Steaming techniques also are viewed with favor after analysis of results of pilot projects. Exploratory develoment in Elk Hills also continues.

  18. Town of Chapel Hill- Energy Conservation Requirements for Town Buildings

    Broader source: Energy.gov [DOE]

    The Town of Chapel Hill’s energy-conservation ordinance requires that all town-owned buildings be designed to achieve a goal of achieving a Silver level certification as defined by the Green...

  19. Black Hills Energy (Gas)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Black Hills Energy offers its residential Iowa customers incentives to encourage energy efficiency in their homes. Black Hills Energy offers a free home energy evaluation to customers (both owners...

  20. Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area...

    Open Energy Info (EERE)

    of the Fenton Hill HDR Reservoir Donald W. Brown (1994) How to Achieve a Four-Fold Productivity Increase at Fenton Hill Additional References Retrieved from "http:en.openei.org...

  1. Vehicle route to Stag Hill Campus

    E-Print Network [OSTI]

    Stevenson, Paul

    HILL COURT (1­44) UNIVERSITY COURT (45­66) SCS HC Yorkie's Bridge Rising Barrier Path to Ridgemount MILLENNIUMHOUSE SE AQA Car Park AQA Car Park PM Barrier Entrance Exit IAC LC Senate Car Park Guildford Railway 18 16 21 19 14 23 22 20 R Chancellors SU Mole 23 W Bourne 22 Black Water 21 Wey 27 Thames 24 Wandle

  2. Ecology, Silviculture, and Management of Black Hills

    E-Print Network [OSTI]

    Fried, Jeremy S.

    . Battaglia United States Department of Agriculture Forest Service Rocky Mountain Research Station General Technical Report RMRS-GTR-97 September 2002 #12;Shepperd, Wayne D.; Battaglia, Michael A. 2002. Ecology in Arizona, and the Black Hills of South Dakota. Michael A. Battaglia is a research associate with METI

  3. Gas-Phase Treatment of Technetium in the Vadose Zone at the Hanford Site Central Plateau

    SciTech Connect (OSTI)

    Truex, Michael J.; Szecsody, James E.; Zhong, Lirong; Qafoku, Nikolla

    2014-09-01T23:59:59.000Z

    Technetium-99 (Tc-99) is present in the vadose zone of the Hanford Central Plateau and is a concern with respect to the protection of groundwater. The persistence, limited natural attenuation mechanisms, and geochemical behavior of Tc-99 in oxic vadose zone environments must be considered in developing effective alternatives for remediation. This report describes a new in situ geochemical manipulation technique for decreasing Tc-99 mobility using a combination of geochemical Tc-99 reduction with hydrogen sulfide gas and induced sediment mineral dissolution with ammonia vapor, which create conditions for deposition of stable precipitates that decrease the mobility of Tc-99. Laboratory experiments were conducted to examine changes in Tc-99 mobility in vadose zone sediment samples to evaluate the effectiveness of the treatment under a variety of operational and sediment conditions.

  4. Remedial Action Contacts Directory - 1997

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    This document, which was prepared for the US Department of Energy (DOE) Office of Environmental Restoration (ER), is a directory of 2628 individuals interested or involved in environmental restoration and/or remedial actions at radioactively contaminated sites. This directory contains a list of mailing addresses and phone numbers of DOE operations, area, site, project, and contractor offices; an index of DOE operations, area, site, project, and contractor office sorted by state; a list of individuals, presented by last name, facsimile number, and e-mail address; an index of affiliations presented alphabetically, with individual contacts appearing below each affiliation name; and an index of foreign contacta sorted by country and affiliation. This document was generated from the Remedial Action Contacts Database, which is maintained by the Remedial Action Program Information Center (RAPIC).

  5. Streamline simulation of Surfactant Enhanced Aquifer Remediation 

    E-Print Network [OSTI]

    Tunison, Douglas Irvin

    1996-01-01T23:59:59.000Z

    Nonaqueous Phase Liquids (NAPLS) are a recognized source of groundwater contamination. Surfactant Enhanced Aquifer Remediation (SEAR) shows promise in increasing the efficiency and effectiveness over traditional "pump and treat" NAPL remediation...

  6. Toxic Remediation System And Method

    DOE Patents [OSTI]

    Matthews, Stephen M. (Alameda County, CA); Schonberg, Russell G. (Santa Clara County, CA); Fadness, David R. (Santa Clara County, CA)

    1996-07-23T23:59:59.000Z

    What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.

  7. GROUNDWATER REMEDIATION DESIGN USING SIMULATED

    E-Print Network [OSTI]

    Mays, Larry W.

    CHAPTER 8 GROUNDWATER REMEDIATION DESIGN USING SIMULATED ANNEALING Richard L. Skaggs Pacific? There has been an emergence in the use of combinatorial methods such as simulated annealing in groundwater for groundwater management applications. The algorithm incor- porates "directional search" and "memory

  8. Plateau Electric Cooperative | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergy InternationalInformationPlacer CountyPlateau Electric

  9. EA-1581: Sand Hills Wind Project, Wyoming

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management, with DOE’s Western Area Power Administration as a cooperating agency, was preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action had been implemented, Western would have interconnected the proposed facility to an existing transmission line. This project has been canceled.

  10. Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau

    E-Print Network [OSTI]

    Xiao, Jingfeng

    RESEARCH PAPER Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th tundra to evergreen tropics. Its soils are dominated by permafrost and are rich in organic carbon. Its, the carbon dynamics of the Tibetan Plateau have not been well quantified under changes of climate and per

  11. Remediation of oil field wastes

    SciTech Connect (OSTI)

    Peters, R.W.; Wentz, C.A.

    1990-01-01T23:59:59.000Z

    Treatment and disposal of drilling muds and hazardous wastes has become a growing concern in the oil and gas industry. Further, past practices involving improper disposal require considerable research and cost to effectively remediate contaminated soils. This paper investigates two case histories describing the treatments employed to handle the liquid wastes involved. Both case histories describe the environmentally safe cleanup operations that were employed. 1 ref., 1 fig., 3 tabs.

  12. WIND DATA REPORT Camden Hills Regional High School, ME

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Camden Hills Regional High School, ME December 1, 2006 ­ February 28, 2007...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

  13. WIND DATA REPORT Camden Hills Regional High School, ME

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Camden Hills Regional High School, ME March 1st 2006 to May 31th 2006 Prepared.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  14. WIND DATA REPORT Camden Hills Regional High School, ME

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Camden Hills Regional High School, ME September 1st 2006 to November 30th 2006.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  15. WIND DATA REPORT Camden Hills Regional High School, ME

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Camden Hills Regional High School, ME December 1st 2005 to February 28th 2006.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  16. WIND DATA REPORT Camden Hills Regional High School, ME

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Camden Hills Regional High School, ME June 1st 2006 to August 31th 2006 Prepared.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  17. Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff & Janik, 2002) Exploration Activity...

  18. Cuttings Analysis At Fenton Hill HDR Geothermal Area (Laughlin...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Fenton Hill HDR Geothermal Area (Laughlin, Et Al., 1983) Exploration Activity...

  19. Core Analysis At Fenton Hill HDR Geothermal Area (Brookins &...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Fenton Hill HDR Geothermal Area (Brookins & Laughlin, 1983) Exploration Activity...

  20. Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Grigsby...

    Open Energy Info (EERE)

    Area (Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill HDR Geothermal Area...

  1. Conceptual Model At Fenton Hill HDR Geothermal Area (Grigsby...

    Open Energy Info (EERE)

    Grigsby & Tester, 1989) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Fenton Hill HDR Geothermal Area (Grigsby & Tester,...

  2. Black Hills Energy (Gas)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy offers multiple programs for Colorado commercial and industrial customers to save natural gas in eligible facilities. The commercial prescriptive rebate program provides...

  3. Black Hills Energy (Gas)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy (BHE) offers a variety of rebates for residential Colorado customers who purchase and install energy efficient natural gas appliances, heating equipment and insulation materials....

  4. Black Hills Energy (Electric)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy also offers the custom rebate program to commercial and industrial customers for projects that reduce energy usage. Eligible projects include chillers, unitary HVAC equipment,...

  5. Black Hills Energy (Gas)- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Black Hills Energy offers commercial and industrial customers incentives to encourage energy efficiency in eligible businesses. Prescriptive rebates are available for furnace and boiler...

  6. Arbor Hills Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,Anza ElectricIncAboutAquila IncHills

  7. Blue Hill Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyonsBirchBlockVI JumpBlue Hill Partners

  8. Campbell Hill Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformation 8thCalwind II CEC WindCamelot1Q08)Campbell Hill

  9. Crofton Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands2007)Criterion JumpHills Wind Farm

  10. Barren Hills Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard, Vermont:Carolina: EnergyBarren County,Hills

  11. Black Hills Power Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 | OpenEIBixby, Oklahoma: EnergyBlackHawkBlack Hills

  12. Rolling Hills Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio:RockwallRolling Hills Electric Coop Jump

  13. Summary - Mitigation and Remediation of Mercury Contamination...

    Office of Environmental Management (EM)

    and surface water Hg remediation strategy for adequacy in reducing Hg levels in the fish and to indentify opportunities to achieve cost and technical improvements andor to...

  14. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01T23:59:59.000Z

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  15. Tank waste remediation system (TWRS) mission analysis

    SciTech Connect (OSTI)

    Rieck, R.H.

    1996-10-03T23:59:59.000Z

    The Tank Waste Remediation System Mission Analysis provides program level requirements and identifies system boundaries and interfaces. Measures of success appropriate to program level accomplishments are also identified.

  16. Recommendation 192: Comments on Remediation Effectiveness Report

    Broader source: Energy.gov [DOE]

    The ORSSAB Recommendations and Comments on the Draft 2010 Remediation Effectiveness Report for the U.S. Department of Energy Oak Ridge Reservation.

  17. Hill crossing during preheating after hilltop inflation

    E-Print Network [OSTI]

    Antusch, Stefan; Orani, Stefano

    2015-01-01T23:59:59.000Z

    In 'hilltop inflation', inflation takes place when the inflaton field slowly rolls from close to a maximum of its potential (i.e. the 'hilltop') towards its minimum. When the inflaton potential is associated with a phase transition, possible topological defects produced during this phase transition, such as domain walls, are efficiently diluted during inflation. It is typically assumed that they also do not reform after inflation, i.e. that the inflaton field stays on its side of the 'hill', finally performing damped oscillations around the minimum of the potential. In this paper we study the linear and the non-linear phases of preheating after hilltop inflation. We find that the fluctuations of the inflaton field during the tachyonic oscillation phase grow strong enough to allow the inflaton field to form regions in position space where it crosses 'over the top of the hill' towards the 'wrong vacuum'. We investigate the formation and behaviour of these overshooting regions using lattice simulations: Rather t...

  18. Hill crossing during preheating after hilltop inflation

    E-Print Network [OSTI]

    Stefan Antusch; David Nolde; Stefano Orani

    2015-03-20T23:59:59.000Z

    In 'hilltop inflation', inflation takes place when the inflaton field slowly rolls from close to a maximum of its potential (i.e. the 'hilltop') towards its minimum. When the inflaton potential is associated with a phase transition, possible topological defects produced during this phase transition, such as domain walls, are efficiently diluted during inflation. It is typically assumed that they also do not reform after inflation, i.e. that the inflaton field stays on its side of the 'hill', finally performing damped oscillations around the minimum of the potential. In this paper we study the linear and the non-linear phases of preheating after hilltop inflation. We find that the fluctuations of the inflaton field during the tachyonic oscillation phase grow strong enough to allow the inflaton field to form regions in position space where it crosses 'over the top of the hill' towards the 'wrong vacuum'. We investigate the formation and behaviour of these overshooting regions using lattice simulations: Rather than durable domain walls, these regions form oscillon-like structures (i.e. localized bubbles that oscillate between the two vacua) which should be included in a careful study of preheating in hilltop inflation.

  19. CITY Of MORGAN HILL DEVELOPMENT SERVIC ES CENTER

    E-Print Network [OSTI]

    Energy Efficiency Standards as part of the implementation of our local energy ordinance. As the BuildingCITY Of MORGAN HILL DEVELOPMENT SERVIC ES CENTER 1757 5 PEAKAVENUE MORGAN HILL, CA 95037-41 28 (408 Commissioner Arthur H . Rosenfeld Ph.D. Commissioner Julia Levin, J.D. California Energy Commission 1516 Ninth

  20. Hill SyStem PlaStic mulcHed

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    a Hill SyStem PlaStic mulcHed Strawberry Production Guide for colder areaS #12;#12;i Trade names do they intend or imply discrimination against those not mentioned. Hill SyStem PlaStic mulcHed ..................................................................27 Consider Fall Laying of Extra Plastic Mulch

  1. Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik...

    Open Energy Info (EERE)

    Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik & Goff, 2002) Exploration Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique Water-Gas...

  2. Tank Waste Remediation System Guide

    SciTech Connect (OSTI)

    Robershotte, M.A.; Dirks, L.L.; Seaver, D.A.; Bothers, A.J.; Madden, M.S.

    1995-06-01T23:59:59.000Z

    The scope, number and complexity of Tank Waste Remediation System (TWRS) decisions require an integrated, consistent, and logical approach to decision making. TWRS has adopted a seven-step decision process applicable to all decisions. Not all decisions, however, require the same degree of rigor/detail. The decision impact will dictate the appropriate required detail. In the entire process, values, both from the public as well as from the decision makers, play a key role. This document concludes with a general discussion of the implementation process that includes the roles of concerned parties.

  3. POST-REMEDIAL ACTION REPORT

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona,Site Operations Guide Doc. No.GS05:orPOST-REMEDIAL ACTION

  4. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results, Fiscal Year 2014

    SciTech Connect (OSTI)

    Truex, Michael J.; Strickland, Christopher E.; Johnson, Christian D.; Johnson, Timothy C.; Clayton, Ray E.; Chronister, Glen B.

    2014-09-01T23:59:59.000Z

    Over decades of operation, the U.S. Department of Energy (DOE) and its predecessors have released nearly 2 trillion L (450 billion gal.) of liquid into the vadose zone at the Hanford Site. Much of this discharge of liquid waste into the vadose zone occurred in the Central Plateau, a 200 km2 (75 mi2) area that includes approximately 800 waste sites. Some of the inorganic and radionuclide contaminants in the deep vadose zone at the Hanford Site are at depths below the limit of direct exposure pathways, but may need to be remediated to protect groundwater. The Tri-Party Agencies (DOE, U.S. Environmental Protection Agency, and Washington State Department of Ecology) established Milestone M 015 50, which directed DOE to submit a treatability test plan for remediation of technetium-99 (Tc-99) and uranium in the deep vadose zone. These contaminants are mobile in the subsurface environment and have been detected at high concentrations deep in the vadose zone, and at some locations have reached groundwater. Testing technologies for remediating Tc-99 and uranium will also provide information relevant for remediating other contaminants in the vadose zone. A field test of desiccation is being conducted as an element of the DOE test plan published in March 2008 to meet Milestone M 015 50. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 3 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.

  5. New Hires, Building Demolition

    ScienceCinema (OSTI)

    None

    2010-09-01T23:59:59.000Z

    Using Recovery Act funding, Department of Energy contractor CH2M HILL Plateau Remediation Company has hired hundreds of new employees to do cleanup work at the Hanford Site, including demolition of dozens of excess facilities.This video was produced by CH2M HILL on Jan. 8, 2010.

  6. Groundwater Remediation Strategy Using Global Optimization Algorithms

    E-Print Network [OSTI]

    Neumaier, Arnold

    Groundwater Remediation Strategy Using Global Optimization Algorithms Shreedhar Maskey1 ; Andreja Jonoski2 ; and Dimitri P. Solomatine3 Abstract: The remediation of groundwater contamination by pumping as decision variables. Groundwater flow and particle-tracking models MODFLOW and MODPATH and a GO tool GLOBE

  7. Strategic planning for mixed class grazing in the Edwards Plateau

    E-Print Network [OSTI]

    Field, Eduardo Howard

    1988-01-01T23:59:59.000Z

    STRATEGIC PLANNING FOR MIXED CLASS GRAZING IN THE EDWARDS PLATEAU A Thesis by EDUARDO HOWARD FIELD Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1988 Major Subject: Range Science STRATEGIC PLANNING FOR MIXED CLASS GRAZING IN THE EDWARDS PLATEAU A Thesis by Eduardo Howard Field Approved as to style and content by: CcA J W. Stu (Co ittee Chairman) J. R. Conner (Member) C...

  8. Predicting soil erosion from Cap Rouge Plateau, Haiti

    E-Print Network [OSTI]

    Marcelin, Fritz Sauveur

    1985-01-01T23:59:59.000Z

    PREDICTING SOIL EROSION FROM CAP ROUGE PLATEAU, HAITI A Thesis by FRITZ SAUVEUR MARCELIN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1985... Major Subject: Range Science PREDICTING SOIL EROSION FROM CAP ROUGE PLATEAU, HAITI A Thesis by FRITZ SAUVEUR MARCELIN Approved as to style and content by: W. H. Biackburn (Chairman) C. T. Hallmark (Member) . G. Calh u (Member) J. L. Schuster...

  9. Savannah River Remediation Donates $10,000 to South Carolina...

    Broader source: Energy.gov (indexed) [DOE]

    Savannah River Remediation Donates 10,000 to South Carolina State Nuclear Engineering Program Savannah River Remediation Donates 10,000 to South Carolina State Nuclear...

  10. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Terminal Waste Disposal and Remedial Action, Division of Remedial Action Projects (andor...

  11. Summary - Remedial System Performance Improvement for the 200...

    Office of Environmental Management (EM)

    primary remedial technology for groundwater. The remedial strategy should emphasize hydraulic containment for the most impacted portion of the groundwater plume, with compliance...

  12. acoustically enhanced remediation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    detailed procedures for site assessment, remedial system design, and optimization of the remedial action operation (RAO) for the petroleum-hydrocarbons contaminated sites. In...

  13. Recovery Act Workers Remediate and Restore Former Waste Sites...

    Office of Environmental Management (EM)

    Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War...

  14. Preliminary Notice of Violation, Rocky Mountain Remediation Services...

    Broader source: Energy.gov (indexed) [DOE]

    June 6, 1997 Issued to Rocky Mountain Remediation Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site,...

  15. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hart, J.G.

    1995-12-01T23:59:59.000Z

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project. During Phase 2, the basic nitrification process design was modified to meet the specific needs of the new waste streams available at Paducah. The system design developed for Paducah has significantly enhanced the processing capabilities of the Vortec vitrification process. The overall system design now includes the capability to shred entire drums and drum packs containing mud, concrete, plastics and PCB`s as well as bulk waste materials. This enhanced processing capability will substantially expand the total DOE waste remediation applications of the technology.

  16. Remediation of inactive mining and milling sites

    SciTech Connect (OSTI)

    Mao, H.; Pan, Y.; Li, R.

    1993-12-31T23:59:59.000Z

    The presentation introduces relevant environment remediation standards and describes some measures of engineering remedied for inactive mines and mills. Since 1990, the remediation of decommissioned nuclear facilities has obtained fixed financial aid from state government, part of which is offered to inactive mines and mills. Considering the environmental characteristics of Chinese uranium mines and mills, the major task of decommissioning is to prevent radon release, and keep surface water and underground water from contamination. In order to control the rate of radon release effectively, the authors` research institutes conducted a series of experiments on the covers of tailings with two kinds of different material, clay and concrete.

  17. Observation Wells At Fenton Hill HDR Geothermal Area (Shevenell...

    Open Energy Info (EERE)

    Basis Geophone emplacement holes PC-1 and PC-2 were drilled at Fenton Hill by Maness Drilling Company of Farmington, NM for Los Alamos National Laboratory in 1984. These wells...

  18. Town of Kill Devil Hills- Wind Energy Systems Ordinance

    Broader source: Energy.gov [DOE]

    In October 2007, the town of Kill Devil Hills adopted an ordinance to regulate the use of wind-energy systems. The ordinance directs any individual or organization wishing to install a wind-energy...

  19. Black Hills Energy (Gas)- Residential New Construction Rebate Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy offers new construction rebates for home builders in the eligible service area. Rebates between $800 and $5,000 are available for a range of efficiency measures incorporated into...

  20. Town of Chapel Hill- Land-Use Management Ordinance

    Broader source: Energy.gov [DOE]

    In 2003, the Town of Chapel Hill adopted a land-use management ordinance that includes prohibitions against neighborhood or homeowners association covenants or other conditions of sale that...

  1. Farmington Hills Partners With Michigan Saves With Eyes on the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hills is one of 50 communities competing to reduce energy over the next two years to win GUEP's 5 million prize. "We don't want financing to be a barrier," Michigan Saves...

  2. Rock Hill Utilities- Water Heater and Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed...

  3. Status Report on Transfer of Physical and Hydraulic Properties Databases to the Hanford Environmental Information System - PNNL Remediation Decision Support Project, Task 1, Activity 6

    SciTech Connect (OSTI)

    Rockhold, Mark L.; Middleton, Lisa A.; Cantrell, Kirk J.

    2009-06-30T23:59:59.000Z

    This document provides a status report on efforts to transfer physical and hydraulic property data from PNNL to CHPRC for incorporation into HEIS. The Remediation Decision Support (RDS) Project is managed by Pacific Northwest National Laboratory (PNNL) to support Hanford Site waste management and remedial action decisions by the U.S. Department of Energy and their contractors. The objective of Task 1, Activity 6 of the RDS project is to compile all available physical and hydraulic property data for sediments from the Hanford Site, to port these data into the Hanford Environmental Information System (HEIS), and to make the data web-accessible to anyone on the Hanford Local Area Network via the so-called Virtual Library. These physical and hydraulic property data are used to estimate parameters for analytical and numerical flow and transport models that are used for site risk assessments and evaluation of remedial action alternatives. In past years efforts were made by RDS project staff to compile all available physical and hydraulic property data for Hanford sediments and to transfer these data into SoilVision{reg_sign}, a commercial geotechnical software package designed for storing, analyzing, and manipulating soils data. Although SoilVision{reg_sign} has proven to be useful, its access and use restrictions have been recognized as a limitation to the effective use of the physical and hydraulic property databases by the broader group of potential users involved in Hanford waste site issues. In order to make these data more widely available and useable, a decision was made to port them to HEIS and to make them web-accessible via a Virtual Library module. In FY08 the original objectives of this activity on the RDS project were to: (1) ensure traceability and defensibility of all physical and hydraulic property data currently residing in the SoilVision{reg_sign} database maintained by PNNL, (2) transfer the physical and hydraulic property data from the Microsoft Access database files used by SoilVision{reg_sign} into HEIS, which is currently being maintained by CH2M-Hill Plateau Remediation Company (CHRPC), (3) develop a Virtual Library module for accessing these data from HEIS, and (4) write a User's Manual for the Virtual Library module. The intent of these activities is to make the available physical and hydraulic property data more readily accessible and useable by technical staff and operable unit managers involved in waste site assessments and remedial action decisions for Hanford. In FY08 communications were established between PNNL and staff from Fluor-Hanford Co. (who formerly managed HEIS) to outline the design of a Virtual Library module that could be used to access the physical and hydraulic property data that are to be transferred into HEIS. Data dictionaries used by SoilVision{reg_sign} were also provided to Fluor-Hanford personnel who are now with CHPRC. During ongoing work to ensure traceability and defensibility of all physical and hydraulic property data that currently reside in the SoilVision{reg_sign} database, it was recognized that further work would be required in this effort before the data were actually ported into HEIS. Therefore work on the Virtual Library module development and an accompanying User's Guide was deferred until an unspecified later date. In FY09 efforts have continued to verify the traceability and defensibility of the physical and hydraulic property datasets that are currently being maintained by PNNL. Although this is a work in progress, several of these datasets are now ready for transfer to CHRPC for inclusion in HEIS. The actual loading of data into HEIS is performed by CHPRC staff, so after the data are transferred from PNNL to CHPRC, it will be the responsibility of CHPRC to ensure that these data are loaded and made accessible. This document provides a status report on efforts to transfer physical and hydraulic property data from PNNL to CHPRC for incorporation into HEIS.

  4. Scale-Up Information for Gas-Phase Ammonia Treatment of Uranium in the Vadose Zone at the Hanford Site Central Plateau

    SciTech Connect (OSTI)

    Truex, Michael J.; Szecsody, James E.; Zhong, Lirong; Thomle, Jonathan N.; Johnson, Timothy C.

    2014-09-01T23:59:59.000Z

    Uranium is present in the vadose zone at the Hanford Central Plateau and is of concern for protection of groundwater. The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau identified gas-phase treatment and geochemical manipulation as potentially effective treatment approaches for uranium and technetium in the Hanford Central Plateau vadose zone. Based on laboratory evaluation, use of ammonia vapor was selected as the most promising uranium treatment candidate for further development and field testing. While laboratory tests have shown that ammonia treatment effectively reduces the mobility of uranium, additional information is needed to enable deployment of this technology for remediation. Of importance for field applications are aspects of the technology associated with effective distribution of ammonia to a targeted treatment zone, understanding the fate of injected ammonia and its impact on subsurface conditions, and identifying effective monitoring approaches. In addition, information is needed to select equipment and operational parameters for a field design. As part of development efforts for the ammonia technology for remediation of vadose zone uranium contamination, field scale-up issues were identified and have been addressed through a series of laboratory and modeling efforts. This report presents a conceptual description for field application of the ammonia treatment process, engineering calculations to support treatment design, ammonia transport information, field application monitoring approaches, and a discussion of processes affecting the fate of ammonia in the subsurface. The report compiles this information from previous publications and from recent research and development activities. The intent of this report is to provide technical information about these scale-up elements to support the design and operation of a field test for the ammonia treatment technology.

  5. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Remedial Design/Remedial Action Work Plan

    SciTech Connect (OSTI)

    D. E. Shanklin

    2006-06-01T23:59:59.000Z

    This Remedial Design/Remedial Action Work Plan provides the framework for defining the remedial design requirements, preparing the design documentation, and defining the remedial actions for Waste Area Group 3, Operable Unit 3-13, Group 3, Other Surface Soils, Remediation Sets 4-6 (Phase II) located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory. This plan details the design developed to support the remediation and disposal activities selected in the Final Operable Unit 3-13, Record of Decision.

  6. Electrolytic remediation of chromated copper arsenate wastes

    E-Print Network [OSTI]

    Stern, Heather A. G. (Heather Ann Ganung)

    2006-01-01T23:59:59.000Z

    While chromated copper arsenate (CCA) has proven to be exceptionally effective in protecting wood from rot and infestation, its toxic nature has led to the problem of disposal of CCA-treated lumber and remediation of waters ...

  7. List of Contractors to Support Anthrax Remediation

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Lesperance, Ann M.

    2010-05-14T23:59:59.000Z

    This document responds to a need identified by private sector businesses for information on contractors that may be qualified to support building remediation efforts following a wide-area anthrax release.

  8. Water as a Reagent for Soil Remediation

    SciTech Connect (OSTI)

    Jayaweera, Indira S.; Marti-Perez, Montserrat; Diaz-Ferrero, Jordi; Sanjurjo, Angel

    2003-03-06T23:59:59.000Z

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, for remediating petroleum-contaminated soils. The bench-scale demonstration of the process has shown great promise, and the implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and provide a standalone technology for removal of both volatile and heavy components from contaminated soil.

  9. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hnat, J.G. [Vortec Corp., Collegeville, PA (United States)

    1995-10-01T23:59:59.000Z

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase I consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  10. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01T23:59:59.000Z

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  11. Overview of Green and Sustainable Remediation for Soil and Groundwater Remediation - 12545

    SciTech Connect (OSTI)

    Simpkin, Thomas J. [CH2M HILL, Denver, Colorado (United States); Favara, Paul [CH2M HILL, Gainesville, Florida (United States)

    2012-07-01T23:59:59.000Z

    Making remediation efforts more 'sustainable' or 'green' is a topic of great interest in the remediation community. It has been spurred on by Executive Orders from the White House, as well as Department of Energy (DOE) sustainability plans. In private industry, it is motivated by corporate sustainability goals and corporate social responsibility. It has spawned new organizations, areas of discussion, tools and practices, and guidance documents around sustainable remediation or green remediation. Green remediation can be thought of as a subset of sustainable remediation and is mostly focused on reducing the environmental footprint of cleanup efforts. Sustainable remediation includes both social and economic considerations, in addition to environmental. Application of both green and sustainable remediation (GSR) may involve two primary activities. The first is to develop technologies and alternatives that are greener or more sustainable. This can also include making existing remediation approaches greener or more sustainable. The second is to include GSR criteria in the evaluation of remediation alternatives and strategies. In other words, to include these GSR criteria in the evaluation of alternatives in a feasibility study. In some cases, regulatory frameworks allow the flexibility to include GSR criteria into the evaluation process (e.g., state cleanup programs). In other cases, regulations allow less flexibility to include the evaluation of GSR criteria (e.g., Comprehensive Environmental Response Compensation, and Liability Act (CERCLA)). New regulatory guidance and tools will be required to include these criteria in typical feasibility studies. GSR provides a number of challenges for remediation professionals performing soil and groundwater remediation projects. Probably the most significant is just trying to stay on top of the ever changing landscape of products, tools, and guidance documents coming out of various groups, the US EPA, and states. However, this process also provides new opportunities to think differently and look at the bigger picture of the overall benefit we are providing with our remediation projects. The opportunities from the move towards GSR are very real. They will help us make remedial actions truly more beneficial to the environment and to society. They will also allow (or force) remediation practitioners to think outside of the usual realm of approaches to find newer and more beneficial technologies. (authors)

  12. Enterprise Assessments Targeted Review of Work Planning and Control at the Hanford Central Plateau Environmental Remediation Projects

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergySession0-02 -Railroad Review of theDecember

  13. Plateau Remediation Contract Section J Contract No. DE-AC06-07RL14788 Modification No. 403

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum38 (1996) A213-A225. Printed ingun

  14. Plateau Remediation Contract Section J Contract No. DE-AC06-08RL14788 Attachment J.11, Revision 0

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum38 (1996) A213-A225. Printed ingunCONTRACT LINE

  15. Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research

    E-Print Network [OSTI]

    Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent Tibetan Plateau Permafrost Climate warming Permafrost degradation A significant portion of the Tibetan recent Chinese investigations on permafrost degradation and its environmental effects in the Tibetan

  16. Sheetflow fluvial processes in a rapidly subsiding basin, Altiplano plateau, Bolivia

    E-Print Network [OSTI]

    Horton, Brian K.

    Sheetflow fluvial processes in a rapidly subsiding basin, Altiplano plateau, Bolivia BRIAN A continuously for >100 km along the eastern limb of the Corque syncline in the high Altiplano plateau of Bolivia

  17. SUSTAINABLE REMEDIATION SOFTWARE TOOL EXERCISE AND EVALUATION

    SciTech Connect (OSTI)

    Kohn, J.; Nichols, R.; Looney, B.

    2011-05-12T23:59:59.000Z

    The goal of this study was to examine two different software tools designed to account for the environmental impacts of remediation projects. Three case studies from the Savannah River Site (SRS) near Aiken, SC were used to exercise SiteWise (SW) and Sustainable Remediation Tool (SRT) by including both traditional and novel remediation techniques, contaminants, and contaminated media. This study combined retrospective analysis of implemented projects with prospective analysis of options that were not implemented. Input data were derived from engineering plans, project reports, and planning documents with a few factors supplied from calculations based on Life Cycle Assessment (LCA). Conclusions drawn from software output were generally consistent within a tool; both tools identified the same remediation options as the 'best' for a given site. Magnitudes of impacts varied between the two tools, and it was not always possible to identify the source of the disagreement. The tools differed in their quantitative approaches: SRT based impacts on specific contaminants, media, and site geometry and modeled contaminant removal. SW based impacts on processes and equipment instead of chemical modeling. While SW was able to handle greater variety in remediation scenarios, it did not include a measure of the effectiveness of the scenario.

  18. ICDF Complex Remedial Action Work Plan

    SciTech Connect (OSTI)

    W. M. Heileson

    2006-12-01T23:59:59.000Z

    This Remedial Action Work Plan provides the framework for operation of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility Complex (ICDF). This facility includes (a) an engineered landfill that meets the substantial requirements of DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, Idaho Hazardous Waste Management Act, and Toxic Substances Control Act polychlorinated biphenyl landfill requirements; (b) centralized receiving, inspections, administration, storage/staging, and treatment facilities necessary for CERCLA investigation-derived, remedial, and removal waste at the Idaho National Laboratory (INL) prior to final disposition in the disposal facility or shipment off-Site; and (c) an evaporation pond that has been designated as a corrective action management unit. The ICDF Complex, including a buffer zone, will cover approximately 40 acres, with a landfill disposal capacity of approximately 510,000 yd3. The ICDF Complex is designed and authorized to accept INL CERCLA-generated wastes, and includes the necessary subsystems and support facilities to provide a complete waste management system. This Remedial Action Work Plan presents the operational approach and requirements for the various components that are part of the ICDF Complex. Summaries of the remedial action work elements are presented herein, with supporting information and documents provided as appendixes to this work plan that contain specific detail about the operation of the ICDF Complex. This document presents the planned operational process based upon an evaluation of the remedial action requirements set forth in the Operable Unit 3-13 Final Record of Decision.

  19. Surface uplift, fluvial incision, and geodynamics of plateau evolution, from the western margin of the Central Andean plateau

    E-Print Network [OSTI]

    Schildgen, Taylor F. (Taylor Frances)

    2008-01-01T23:59:59.000Z

    The Colca-Majes and Cotahuasi-Ocona rivers in southwest Peru that cut through the western margin of the Andean plateau en route to the Pacific Ocean incised canyons over 3 km deep in response to late Cenozoic surface uplift. ...

  20. Tank waste remediation system operational scenario

    SciTech Connect (OSTI)

    Johnson, M.E.

    1995-05-01T23:59:59.000Z

    The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize highly radioactive Hanford waste (current and future tank waste and the strontium and cesium capsules) in an environmentally sound, safe, and cost-effective manner (DOE 1993). This operational scenario is a description of the facilities that are necessary to remediate the Hanford Site tank wastes. The TWRS Program is developing technologies, conducting engineering analyses, and preparing for design and construction of facilities necessary to remediate the Hanford Site tank wastes. An Environmental Impact Statement (EIS) is being prepared to evaluate proposed actions of the TWRS. This operational scenario is only one of many plausible scenarios that would result from the completion of TWRS technology development, engineering analyses, design and construction activities and the TWRS EIS. This operational scenario will be updated as the development of the TWRS proceeds and will be used as a benchmark by which to evaluate alternative scenarios.

  1. Analysis of Subsidence Data for the Big Hill Site, Texas

    SciTech Connect (OSTI)

    Bauer, Stephen J.

    1999-06-01T23:59:59.000Z

    The elevation change data measured at the Big Hill SPR site over the last 10 years has been studied and a model utilized to project elevation changes into the future. The subsidence rate at Big Hill is low in comparison with other Strategic Petroleum Reserve sites and has decreased with time due to the maintenance of higher operating pressures and the normal decrease in creep closure rate of caverns with time. However, the subsidence at the site is projected to continue. A model was developed to project subsidence values 20 years into the future; no subsidence related issues are apparent from these projections.

  2. West Lake Hills, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills, New York: Energy Resources JumpNorthLake Hills,

  3. Seven Hills, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma: EnergySeoulSettlers Hill GasHills, Ohio:

  4. Seven Mile Hill Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma: EnergySeoulSettlers Hill GasHills,Carbon

  5. Hidden Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation, search Name: Hi-GtelTennessee:Hills,Texas:Hills,

  6. Rolling Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio:RockwallRolling Hills Electric CoopHills,

  7. Town of Chapel Hill- Worthwhile Investments Save Energy (WISE) Homes and Buildings Program

    Broader source: Energy.gov [DOE]

    Chapel Hill is using money made available to it from the American Recovery and Reinvestment Act of 2009 to help subsidize energy efficiency improvements in Chapel Hill homes. Qualified homeowners...

  8. Piecewise Linear Hypersurfaces using the Marching Cubes Jonathan C. Roberts a and Steve Hill b

    E-Print Network [OSTI]

    Kent, University of

    Hill b a University of Kent at Canterbury, Computing Laboratory, Canterbury, England, UK. b Radan steve.hill@uk.radan.com #12; A two dimensional contour on a map, representing a particular height above

  9. How to accelerate the Fernald remediation

    SciTech Connect (OSTI)

    Yates, M.K. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States). Fernald Environmental Management Project; Reising, J. [USDOE Cincinnati, OH (United States)

    1996-01-10T23:59:59.000Z

    The Fernald Environmental Management Project is unique among Department of Energy (DOE) sites by virtue of successful efforts by the Fernald Environmental Restoration Management Corporation (FERMCO) and DOE-Fernald Area Office (FN) in securing a stak-eholder-assisted final site closure vision and all Record of Decisions (ROD) or Interim RODs required to set the stage for final remediation. DOE and FERMCO have agreed in principle on a Ten Year Plan which accelerates all activities to remediate the site in approximately half the target schedule. This paper presents the path that led to the current Ten Year Plan, the key elements of the plan and the implementation strategies.

  10. Audit of Selected Hazardous Waste Remedial Actions Program Costs...

    Office of Environmental Management (EM)

    of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous...

  11. MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI SITE REMEDIATION

    E-Print Network [OSTI]

    MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI SITE REMEDIATION April 13, 2004 Prepared for. Wright Street Littleton, CO 80127 #12;MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI Site Remediation By: Date: Robert Krumberger Project Manager New Horizons Environmental Consultants, Inc. Approved By

  12. Groundwater remediation at a former oil service site

    E-Print Network [OSTI]

    Han, Liping

    2005-08-29T23:59:59.000Z

    for computer modeling and remediation strategy evaluation. Computer models were used to simulate site conditions and assist in remedy design for the site. Current pump-and-treat systems were evaluated by the model under various scenarios. Recommendations were...

  13. Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust Takayuki Ushikubo a,

    E-Print Network [OSTI]

    Mcdonough, William F.

    Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust Takayuki Hills lithium weathering continental crust Hadean In situ Li analyses of 4348 to 3362 Ma detrital of REEs. The Jack Hills zircons also have fractionated lithium isotope ratios (7 Li=-19 to+13) about five

  14. IMPROVING THE EFFICIENCY OF AN EXISTING GROUNDWATER REMEDIATION SYSTEM

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    , Environmental Remediation Aimee Zack ­ Manager, Environmental Remediation #12;CORPORATE SUSTAINABILITY CREATES and sustainability of environmental remedies 2 #12;SITE BACKGROUND The Shoreham Facility 230 acres Northeast Took advantage of available rebates to install solar panels ­ Southern Solar Array: 60 panel system (11

  15. COLORADO SCHOOL OF MINES RESEARCH INSTITUTE SITE REMEDIATION PROJECT SUMMARY

    E-Print Network [OSTI]

    COLORADO SCHOOL OF MINES RESEARCH INSTITUTE SITE REMEDIATION PROJECT SUMMARY May 15, 2007 · The Colorado School of Mines Research Institute Site (the "Site) has been undergoing additional investigation RESEARCH INSTITUTE REMEDIATION PROJECT SUMMARY Page Two May 15, 2007 · The revised Remedial Investigation

  16. Tank waste remediation system program plan

    SciTech Connect (OSTI)

    Powell, R.W.

    1998-01-05T23:59:59.000Z

    This program plan establishes the framework for conduct of the Tank Waste Remediation System (TWRS) Project. The plan focuses on the TWRS Retrieval and Disposal Mission and is specifically intended to support the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing firm contracts for waste immobilization.

  17. BUILDING 96 RECOMMENDATION FOR SOURCE AREA REMEDIATION

    E-Print Network [OSTI]

    OU III BUILDING 96 RECOMMENDATION FOR SOURCE AREA REMEDIATION FINAL Prepared by: Brookhaven FOR U.S. Department of Energy March 2009 #12;i OU III BUILDING 96 RECOMMENDATION FOR SOURCE AREA..................................................................................................................4 4.0 Building 96 ­ Operational Background

  18. Procurement under Superfund remedial cooperative agreements

    SciTech Connect (OSTI)

    Not Available

    1988-06-01T23:59:59.000Z

    This document provides guidance on procuring services during remedial-response activities under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), or Superfund, as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA). The topics covered in the guidance include procurement requirements; procurement of engineering services, including types of services provided; procurement of construction contractors; and subagreement administration.

  19. groundwater nitrogen source identification and remediation

    E-Print Network [OSTI]

    groundwater nitrogen source identification and remediation The Seymour Aquifer is a shallow aquifer, the Seymour Aquifer has the highest groundwater pollution potential of all the major aqui- fers in Texas drinking water standards. Potential sources of nitrate in groundwater include atmospheric deposi- tion

  20. ORIGINAL ARTICLE Christopher E. Hill S. Elizabeth Campbell

    E-Print Network [OSTI]

    Hill, Christopher E.

    ORIGINAL ARTICLE Christopher E. Hill á S. Elizabeth Campbell J. Cully Nordby á John M. Burt á: +1-206-6853157 S.E. Campbell á J.C. Nordby á J.M. Burt á M.D. Beecher Department of Psychology sharing is correlated with mating success in brown-headed c

  1. Linda Hill, Ph.D.1 Olha Buchel, MLS.1

    E-Print Network [OSTI]

    Janée, Greg

    . The agendas for digital library and classification research in relating to KOS are also proposed. [Keywords ( ) [] [] Integration of Knowledge Organization Systems into Digital Library Architectures Linda Hill, Ph.D.1 Olha Buchel, MLS.1 Greg Janée, MS.1 Marcia Lei Zeng, Ph.D.2 1 (Alexandria Digital Library Project, University

  2. AT&T Bell Laboratories Murray Hill, New Jersey 07974

    E-Print Network [OSTI]

    Perry, Dewayne E.

    AT&T Bell Laboratories Murray Hill, New Jersey 07974 Software and Systems Research Center Technical Report Object-Oriented programs and Testing Dewayne E. Perry Gail E. Kaiser* appears in The Journal Of Object Oriented Programming January/February 1990 __________________ * Columbia University, Department

  3. Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase III

    SciTech Connect (OSTI)

    R. P. Wells

    2006-09-19T23:59:59.000Z

    The remedial design/remedial action for Operable Unit 6-05 (Waste Area Group 6) and Operable Unit 10-04 (Waste Area Group 10) - collectively called Operable Unit 10-04 has been divided into four phases. Phase I consists of developing and implementing institutional controls at Operable Unit 10-04 sites and developing and implementing Idaho National Laboratory-wide plans for both institutional controls and ecological monitoring. Phase II will remediate sites contaminated with trinitrotoluene and Royal Demolition Explosive. Phase III will remediate lead contamination at a gun range, and Phase IV will remediate hazards from unexploded ordnance. This Phase III remedial Design/Remedial Action Work Plan addresses the remediation of lead-contaminated soils found at the Security Training Facility (STF)-02 Gun Range located at the Idaho National Laboratory. Remediation of the STF-02 Gun Range will include excavating contaminated soils; physically separating copper and lead for recycling; returning separated soils below the remediation goal to the site; stabilizing contaminated soils, as required, and disposing of the separated soils that exceed the remediation goal; encapsulating and disposing of creosote-contaminated railroad ties and power poles; removing and disposing of the wooden building and asphalt pads found at the STF-02 Gun Range; sampling and analyzing soil to determine the excavation requirements; and when the remediation goals have been met, backfilling and contouring excavated areas and revegetating the affected area.

  4. Radioactive tank waste remediation focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  5. In situ remediation of uranium contaminated groundwater

    SciTech Connect (OSTI)

    Dwyer, B.P.; Marozas, D.C. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31T23:59:59.000Z

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment - various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field preliminary results are discussed with regard to other potential contaminated groundwater treatment applications.

  6. In situ remediation of uranium contaminated groundwater

    SciTech Connect (OSTI)

    Dwyer, B.P.; Marozas, D.C.

    1997-02-01T23:59:59.000Z

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications.

  7. SRS Burial Ground Complex: Remediation in Progress

    SciTech Connect (OSTI)

    Griffin, M. [Westinghouse Savannah River Company, AIKEN, SC (United States); Crapse, B.; Cowan, S.

    1998-01-21T23:59:59.000Z

    Closure of the various areas in the Burial Ground Complex (BGC) represents a major step in the reduction of risk at the Savannah River Site (SRS) and a significant investment of resources. The Burial Ground Complex occupies approximately 195 acres in the central section of the SRS. Approximately 160 acres of the BGC consists of hazardous and radioactive waste disposal sites that require remediation. Of these source acres, one-third have been remediated while two-thirds are undergoing interim or final action. These restoration activities have been carried out in a safe and cost effective manner while minimizing impact to operating facilities. Successful completion of these activities is in large part due to the teamwork demonstrated by the Department of Energy, contractor/subcontractor personnel, and the regulatory agencies. The experience and knowledge gained from the closure of these large disposal facilities can be used to expedite closure of similar facilities.

  8. Thixotropic gel for vadose zone remediation

    DOE Patents [OSTI]

    Rhia, Brian D. (Augusta, GA)

    2011-03-01T23:59:59.000Z

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  9. Thixotropic gel for vadose zone remediation

    DOE Patents [OSTI]

    Riha, Brian D.

    2012-07-03T23:59:59.000Z

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  10. Remediation and Recycling of Linde FUSRAP Materials

    SciTech Connect (OSTI)

    Coutts, P. W.; Franz, J. P.; Rehmann, M. R.

    2002-02-27T23:59:59.000Z

    During World War II, the Manhattan Engineering District (MED) utilized facilities in the Buffalo, New York area to extract natural uranium from uranium-bearing ores. The Linde property is one of several properties within the Tonawanda, New York Formerly Utilized Sites Remedial Action Program (FUSRAP) site, which includes Linde, Ashland 1, Ashland 2, and Seaway. Union Carbide Corporation's Linde Division was placed under contract with the Manhattan Engineering District (MED) from 1942 to 1946 to extract uranium from seven different ore sources: four African pitchblende ores and three domestic ores. Over the years, erosion and weathering have spread contamination from the residuals handled and disposed of at Linde to adjacent soils. The U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) negotiated a Federal Facilities Agreement (FFA) governing remediation of the Linde property. In Fiscal Year (FY) 1998, Congress transferred cleanup management responsibility for the sites in the FUSRAP program, including the Linde Site, from the DOE to the U.S. Army Corps of Engineers (USACE), with the charge to commence cleanup promptly. All actions by the USACE at the Linde Site are being conducted subject to the administrative, procedural, and regulatory provisions of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) and the existing FFA. USACE issued a Proposed Plan for the Linde Property in 1999 and a Final Record of Decision (ROD) in 2000. USACE worked with the local community near the Tonawanda site, and after considering public comment, selected the remedy calling for removing soils that exceed the site-specific cleanup standard, and transporting the contaminated material to off-site locations. The selected remedy is protective of human health and the environment, complies with Federal and State requirements, and meets commitments to the community.

  11. Initial Site-wide Groundwater remediation Strategy of the Hanford Site, WA: Its Application, Lessons Learned and Future Path forward

    SciTech Connect (OSTI)

    Goswami, D.; Hedges, J.; Whalen, C. [Nuclear Waste Program, Washington State Department of Ecology, WA (United States)

    2007-07-01T23:59:59.000Z

    In 1989, the Washington State Department of Ecology (Ecology), the U.S. Environmental Protection Agency (EPA), and the U.S. Department of Energy (DOE) formed an agreement to clean up the Hanford Site, located in the state of Washington. By 1995, the three parties developed an initial comprehensive site wide groundwater remediation strategy with a vision to address contaminated plumes of hazardous and radioactive waste. The Hanford Site has more than 170 square miles of contaminated groundwater. Almost half exceeds the state and federal drinking water standards. The plumes are often commingled. The remediation is challenged by limited technologies, poor understanding of conceptual models, and subsurface contaminant behavior. This paper briefly describes the basic principles of the initial strategy, its application, the results of the decade-long operation, and the future path forward. The initial strategy was based on a qualitative assessment to reduce immediate risk to human health and the environment; to support commonly held values of stakeholders, including tribal nations and the public; and to deploy available remediation technologies. Two different approaches were used for two distinct geographic, the river shore reactor areas and the central plateau few miles away. The strategy was to cleanup the major groundwater plumes in the reactor areas next to the Columbia River where chromium, strontium-90, and uranium already entering the river and to contain the plumes of chlorinated solvents and radionuclides in the central plateau. The strategy acknowledges the lack of cost-effective technologies to address the contaminants, and asked DOE to develop, test, and deploy cost-effective alternative technologies wherever applicable. After more than a decade, the results are mixed. While the pump and treat provided a meaningful approach to address certain contaminants, it was too small in scale. Efforts to scale up these operations enhance characterization, and to deployment innovative technologies are progressing; albeit slowly due to budget constraints. A number of innovative technologies were identified to address source control and groundwater remediation across the Hanford Site. In the 10 years since the initial strategy was developed, additional severe groundwater and vadose zone contaminations were discovered under the waste storage tanks on the central plateau and river corridor areas. These problems required changes to the strategy. Changes include complete integration of vadose zone and groundwater characterization and remediation activities and immediate needs for technologies to address the deep vadose zone source areas, as well as thick aquifer contamination - especially for chlorinated solvents and technetium-99. The successes of the initial strategy show that even a strategy based on incomplete information can make progress on difficult issues. The regulatory agencies identified these issues early and provided the needed direction to DOE to move forward with the overall mission of clean up. The cleanup of the Hanford site is a big challenge, not only for DOE, but also for the regulators, to ensure the tri-party agencies achieve the desired goals. (authors)

  12. Remedial design through effective electronic associations

    SciTech Connect (OSTI)

    Deis, J.L.; Wankum, R.D.

    1999-07-01T23:59:59.000Z

    Black and Veatch Special Projects Corp. (BVSPC) used an environmental data management system (EDMS) to consolidate x-ray fluorescence (XRF), global positioning system (GPS), and laboratory analytical data into a unique and flexible electronic database. Cost savings were acknowledged in all phases of the remedial design due to the development and use of the EDMS and its distinct associations with various electronic software packages. The EDMS allowed effective and efficient completion of the remedial design investigation of the Oronogo-Duenweg Mining Belt Site. The Site is a 125-year old mining community in Jasper County, Missouri. Approximately 6,500 residences are now located within the 60 square-mile Superfund Site where lead and zinc were mined. Smelting and mining activities were conducted in several areas throughout the community. These operations left approximately 9 million tons of mine wastes at the Site upon completion of the mining activities. The purpose of the remedial design investigation was to quantify and identify the residential yards that were adversely affected by these activities.

  13. Laboratory/industry partnerships for environmental remediation

    SciTech Connect (OSTI)

    Beskid, N.J.; Zussman, S.K.

    1994-09-01T23:59:59.000Z

    There are two measures of ``successful`` technology transfer in DOE`s environmental restoration and waste management program. The first is remediation of DOE sites, and the second is commercialization of an environmental remediation process or product. The ideal case merges these two in laboratory/industry partnerships for environmental remediation. The elements to be discussed in terms of their effectiveness in aiding technology transfer include: a decision-making champion; timely and sufficient funding; well organized technology transfer function; well defined DOE and commercial markets; and industry/commercial partnering. Several case studies are presented, including the successful commercialization of a process for vitrification of low-level radioactive waste, the commercial marketing of software for hazardous waste characterization, and the application of a monitoring technique that has won a prestigious technical award. Case studies will include: vitrification of low-level radioactive waste (GTS Duratek, Columbia, MD); borehole liner for emplacing instrumentation and sampling groundwater (Science and Engineering Associates, Inc., Santa Fe, NM); electronic cone penetrometer (Applied Research Associates, Inc., South Royalton, VT); and software for hazardous waste monitoring ConSolve, Inc. (Lexington, MA). The roles of the Department of Energy and Argonne National Laboratory in these successes will be characterized.

  14. Environmental protection and regulatory compliance at the Elk Hills Field

    SciTech Connect (OSTI)

    Chappelle, H.H. (BCM Engineers, Inc., Plymouth Meeting, PA (United States)); Donahoe, R.L. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); Kato, T.T. (EG and G Energy Measurements, Inc., Las Vegas, NV (United States)); Ordway, H.E. (Chevron U.S.A., Inc., San Francisco, CA (United States))

    1991-01-01T23:59:59.000Z

    Environmental protection has played an integral role in the development and operation of the Elk Hills field since production at the maximum efficient rate was authorized in 1976. The field is located in a non-attainment area for California and National Ambient Air Quality Standards for two criteria pollutants and their associated precursors, is home to four endangered species, and operates within the California regulatory framework. Environmental protection and regulatory compliance is a multi-faceted program carried out through a substantial commitment of resources and workforce involvement. This paper describes the actions taken and resources employed to protect the environment, specific technologies and projects implement, and the ongoing nature of these efforts at Elk Hills.

  15. Environmental protection and regulatory compliance at the Elk Hills Field

    SciTech Connect (OSTI)

    Chappelle, H.H. [BCM Engineers, Inc., Plymouth Meeting, PA (United States); Donahoe, R.L. [Bechtel Petroleum Operations, Inc., Tupman, CA (United States); Kato, T.T. [EG and G Energy Measurements, Inc., Las Vegas, NV (United States); Ordway, H.E. [Chevron U.S.A., Inc., San Francisco, CA (United States)

    1991-12-31T23:59:59.000Z

    Environmental protection has played an integral role in the development and operation of the Elk Hills field since production at the maximum efficient rate was authorized in 1976. The field is located in a non-attainment area for California and National Ambient Air Quality Standards for two criteria pollutants and their associated precursors, is home to four endangered species, and operates within the California regulatory framework. Environmental protection and regulatory compliance is a multi-faceted program carried out through a substantial commitment of resources and workforce involvement. This paper describes the actions taken and resources employed to protect the environment, specific technologies and projects implement, and the ongoing nature of these efforts at Elk Hills.

  16. DOE to accept bids for Elk Hills crude

    SciTech Connect (OSTI)

    Not Available

    1992-05-04T23:59:59.000Z

    This paper reports that the Department of Energy will accept bids in a reoffering sale covering 53,400 b/d of Elk Hills field oil but later may exercise an option to cut sales volumes and ship 20,000 b/d to Strategic Petroleum Reserve sites in Texas. DOE rejected all 19 bids submitted in an earlier semiannual sale of crude oil from the California naval petroleum reserve, saying they were too low. DOE the, The unique combination of federal and state government policies affecting the movement of oil into and out of the California market has contributed to a situation in which it apparently is very difficult for the government to receive a price for Elk Hills oil that satisfies the minimum price tests that govern the sale of Elk Hills oil. The 12 winning bids in the reoffering sale averaged $13.58/bbl, with bids for the higher quality Stevens zone crude averaging $13.92/bbl, about 67 cents/bbl higher than bids rejected last month. DOE the 20,000 b/d is all local pipelines can ship to the interstate All-American pipeline for transfer to Texas beginning in June.

  17. Three dimensional simulation for Big Hill Strategic Petroleum Reserve (SPR).

    SciTech Connect (OSTI)

    Ehgartner, Brian L. (Sandia National Laboratories, Albuquerque, NM); Park, Byoung Yoon; Sobolik, Steven Ronald (Sandia National Laboratories, Albuquerque, NM); Lee, Moo Yul (Sandia National Laboratories, Albuquerque, NM)

    2005-07-01T23:59:59.000Z

    3-D finite element analyses were performed to evaluate the structural integrity of caverns located at the Strategic Petroleum Reserve's Big Hill site. State-of-art analyses simulated the current site configuration and considered additional caverns. The addition of 5 caverns to account for a full site and a full dome containing 31 caverns were modeled. Operations including both normal and cavern workover pressures and cavern enlargement due to leaching were modeled to account for as many as 5 future oil drawdowns. Under the modeled conditions, caverns were placed very close to the edge of the salt dome. The web of salt separating the caverns and the web of salt between the caverns and edge of the salt dome were reduced due to leaching. The impacts on cavern stability, underground creep closure, surface subsidence and infrastructure, and well integrity were quantified. The analyses included recently derived damage criterion obtained from testing of Big Hill salt cores. The results show that from a structural view point, many additional caverns can be safely added to Big Hill.

  18. Salmon Site Remedial Investigation Report, Appendix C

    SciTech Connect (OSTI)

    US DOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  19. Salmon Site Remediation Investigation Report, Appendix A

    SciTech Connect (OSTI)

    US DOE /Nevada Operations Office

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  20. Salmon Site Remedial Investigation Report, Appendix D

    SciTech Connect (OSTI)

    US DOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  1. Salmon Site Remedial Investigation Report, Exhibit 5

    SciTech Connect (OSTI)

    USDOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  2. Salmon Site Remedial Investigation Report, Exhibit 4

    SciTech Connect (OSTI)

    USDOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  3. Salmon Site Remedial Investigation Report, Exhibit 3

    SciTech Connect (OSTI)

    USDOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  4. Salmon Site Remedial Investigation Report, Exhibit 2

    SciTech Connect (OSTI)

    USDOE NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  5. Salmon Site Remedial Investigation Report, Exhibit 1

    SciTech Connect (OSTI)

    USDOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  6. Salmon Site Remedial Investigation Report, Main Body

    SciTech Connect (OSTI)

    US DOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  7. A two-frame sampling survey: the Edwards Plateau study

    E-Print Network [OSTI]

    Burcham, George William

    1970-01-01T23:59:59.000Z

    A TI!O-I RARE Si' IPLIIIS SUR'JEY: I I'E EDI I'RDS PLATEAU STUDY Thesis CEORBE k&II I 1AIi BURCIIAk" Suh, sitted !. o the qraduete Co11eqe of Texas, ""I L'! Iversity in Prn tia1 fu1fi11ment o+ Lhe renui& e sent for the deqree of , 'IAS... frame is a 'list ;"rame, " a frame containing a list of ~ames of individuals who are members of the larget population. In the list frame the mail- ing of questionnaires v!ith a follow"up of non-response is low in cos , but may produce biased...

  8. Seismic stratigraphy and the evolutionary history of Shatsky Plateau

    E-Print Network [OSTI]

    Chen, Yu-Hsin

    1984-01-01T23:59:59.000Z

    structures of likely continental fragments, on the other hand, have been found to correlate remarkably well with continental shields. There are very few gravity studies of the plateaus. What data does exist suggests that they are isostatically..., circular peak, much greater in size than usual seamounts, is located at 35 N, 158 30'E and is separated from the main body of Shatsky Plateau by a narrow ENE trending trough with depths between 2500 and 2900 fathoms. It rises to a depth of less than...

  9. FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederal ColumbiaASCR2 FINALRIVER AND PLATEAU

  10. FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederal ColumbiaASCR2 FINALRIVER AND PLATEAU9, 2011

  11. FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederal ColumbiaASCR2 FINALRIVER AND PLATEAU9,

  12. FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederal ColumbiaASCR2 FINALRIVER AND PLATEAU9,8,

  13. FINAL MEETING SUMMARY HANFORD ADVISORY BOARD RIVER AND PLATEAU COMMITTEE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederal ColumbiaASCR2 FINALRIVER AND PLATEAU9,8,11,

  14. DOE - Office of Legacy Management -- Plateau Shootaring Canyon Site - 034

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp - CTOregonPetrolite Corp -FL029Plateau

  15. Uranium Mill Tailings Remedial Action Project 1993 Environmental Report

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  16. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    OF ARIZONA (U.S. BUREAU OF MINES) TUCSON, ARIZONA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and...

  17. Utah Division of Environmental Response and Remediation Underground...

    Open Energy Info (EERE)

    Environmental Response and Remediation Underground Storage Tank Branch Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Division of...

  18. Mitigation and Remediation of Mercury Contamination at the Y...

    Office of Environmental Management (EM)

    and surface water Hg remediation strategy for adequacy in reducing Hg levels in the fish and to indentify opportunities to achieve cost and technical improvements andor to...

  19. Economical Remediation of Plastic Waste into Advanced Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economical Remediation of Plastic Waste into Advanced Materials with Coatings Technology available for licensing: An autogenic pyrolysis process to convert plastic waste into...

  20. Recovery Act Workers Remediate and Restore Former Waste Sites...

    Office of Environmental Management (EM)

    Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint RICHLAND, Wash. - The Hanford Site is looking greener these days after American...

  1. Attenuation-Based Remedies in the Subsurface Applied Field Research...

    Office of Environmental Management (EM)

    to support research activities and remedial decision making. Led by the Savannah River National Laboratory (SRNL), the initiative is a collaborative effort that leverages...

  2. Environmental Remediation program to perform slope-side cleanup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Perform slope-side cleanup Environmental Remediation program to perform slope-side cleanup near Smith's Marketplace Los Alamos National Laboratory is performing a high-angle...

  3. Iowa Land Recycling and Environmental Remediation Standards Act (Iowa)

    Broader source: Energy.gov [DOE]

    This chapter establishes remediation standards for land, other than standards for water quality, hazardous conditions, underground storage tanks, and groundwater protection, which are discussed in...

  4. Different Strategies for Biological Remediation of Perchlorate Contaminated Groundwater

    E-Print Network [OSTI]

    Wang, Yue

    2012-01-01T23:59:59.000Z

    Respiring Microorganisms. Bioremediation 1998. 2(2): p. 69-Analysis and Remediation. Bioremediation Journal, 1998. 2(of in situ perchlorate bioremediation at the Indian Head

  5. area remedial investigation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 104 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  6. act cercla remedial: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 86 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  7. accelerated remedial strategy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 151 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  8. area remediation case: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 112 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  9. antimalarial herbal remedies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 105 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  10. aquifer remediation design: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 207 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  11. active chemical remediation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 142 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  12. antimalarial phytotherapy remedies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 65 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  13. area including remediation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 117 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  14. Final Environmental Impact Statement for the Tank Waste Remediation...

    Broader source: Energy.gov (indexed) [DOE]

    to radioactive sources. They would occur while managing the tank farms and performing remedial activities. Exposures are closely monitored, and the radiation dose a worker may...

  15. assess remediation performance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    object of this project was to investigate the long time effectiveness of different radon remedial methods. The ten years project started 1991. From start the investigation...

  16. advanced remediation technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 374 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  17. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers: Hydrogen embrittlement of pipelines and remediation (mixing with water vapor?) hpwgwembrittlementsteelssofronis.pdf More Documents & Publications Webinar: I2CNER: An...

  18. A construction of bent functions from plateaued Ayca Cesmelioglu and Wilfried Meidl

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A construction of bent functions from plateaued functions Ay¸ca C¸e¸smelioglu and Wilfried Meidl@sabanciuniv.edu Abstract. In this presentation a technique for constructing bent func- tions from plateaued functions is introduced. This generalizes earlier techniques for constructing bent from near-bent functions. Analysing

  19. Holocene climate variability archived in the Puruogangri ice cap on the central Tibetan Plateau

    E-Print Network [OSTI]

    Howat, Ian M.

    ) climate changes and providing evidence that the high plateau may be quite sensitive to the 20thHolocene climate variability archived in the Puruogangri ice cap on the central Tibetan Plateau, 109017 Moscow, Russia ABSTRACT. Two ice cores (118.4 and 214.7 m in length) were collected in 2000 from

  20. PLATO Power--a robust, low environmental impact power generation system for the Antarctic plateau

    E-Print Network [OSTI]

    Ashley, Michael C. B.

    PLATO Power--a robust, low environmental impact power generation system for the Antarctic plateau the power generation and management system of PLATO. Two redundant arrays of solar panels and a multiply astronomical facilities on the Antarctic plateau, offering minimum environmental impact and requiring minimal

  1. Historical hydronuclear testing: Characterization and remediation technologies

    SciTech Connect (OSTI)

    Shaulis, L.; Wilson, G.; Jacobson, R.

    1997-09-01T23:59:59.000Z

    This report examines the most current literature and information available on characterization and remediation technologies that could be used on the Nevada Test Site (NTS) historical hydronuclear test areas. Historical hydronuclear tests use high explosives and a small amount of plutonium. The explosion scatters plutonium within a contained subsurface environment. There is currently a need to characterize these test areas to determine the spatial extent of plutonium in the subsurface and whether geohydrologic processes are transporting the plutonium away from the event site. Three technologies were identified to assist in the characterization of the sites. These technologies are the Pipe Explorer{trademark}, cone penetrometer, and drilling. If the characterization results indicate that remediation is needed, three remediation technologies were identified that should be appropriate, namely: capping or sealing the surface, in situ grouting, and in situ vitrification. Capping the surface would prevent vertical infiltration of water into the soil column, but would not restrict lateral movement of vadose zone water. Both the in situ grouting and vitrification techniques would attempt to immobilize the radioactive contaminants to restrict or prevent leaching of the radioactive contaminants into the groundwater. In situ grouting uses penetrometers or boreholes to inject the soil below the contaminant zone with low permeability grout. In situ vitrification melts the soil containing contaminants into a solid block. This technique would provide a significantly longer contaminant immobilization, but some research and development would be required to re-engineer existing systems for use at deep soil depths. Currently, equipment can only handle shallow depth vitrification. After existing documentation on the historical hydronuclear tests have been reviewed and the sites have been visited, more specific recommendations will be made.

  2. PUBLISHED ONLINE: 15 JANUARY 2012 | DOI: 10.1038/NGEO1373 Stickslip advance of the Kohat Plateau in Pakistan

    E-Print Network [OSTI]

    Bilham, Roger

    Plateau in Pakistan S. P. Satyabala1 , Zhaohui Yang2 and Roger Bilham2 * Throughout most of the Himalaya of rock to slide aseismically on a décollement, as has clearly occurred in the Potwar Plateau of Pakistan

  3. GIS-based multiple scale study of Rio Grande wild turkey habitat in the Edwards Plateau of Texas 

    E-Print Network [OSTI]

    Perotto Baldiviezo, Humberto Lauro

    2006-10-30T23:59:59.000Z

    Rio Grande wild turkey (RGWT) abundance in portions of the Edwards Plateau has declined steadily since the late 1970s as compared to other areas of the Edwards Plateau where populations have exhibited no trend. The reasons ...

  4. Portsmouth Remedial Actions Documents | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T enAmount forDecontamination and DecommissioningRemedial

  5. Portsmouth Remediation Scope | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth Site » Portsmouth Community Outreach » PortsmouthRemediation Scope

  6. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 3. Appendix E

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This document contains Appendix E: Toxicity Information and Uncertainty Analysis, description of methods, from the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include {sup 137}Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and {sup 137}Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River.

  7. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 1. Main text

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This is the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include {sup 137}Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and {sup 137}Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River.

  8. New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect (OSTI)

    D. Vandel

    2003-09-01T23:59:59.000Z

    This remedial action work plan identifies the approach and requirements for implementing the medical zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Engineering and Environmental Laboratory (INEEL). This plan details management approach for the construction and operation of the New Pump and Treat Facility. As identified in the remedial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action. This work plan was originally prepared as an early implementation of the final Phase C remediation. At that time, The Phase C implementation strategy was to use this document as the overall Phase C Work Plan and was to be revised to include the remedial actions for the other remedial zones (hotspot and distal zones). After the completion of Record of Decision Amendment: Technical Support Facility Injection Well (TSF-05) and Surrounding Groundwater Contamination (TSF-23) and Miscellaneous No Action Sites, Final Remedial Action, it was determined that each remedial zone would have it own stand-alone remedial action work plan. Revision 1 of this document converts this document to a stand-alone remedial action plan specific to the implementation of the New Pump and Treat Facility used for plume remediation within the medical zone of the OU 1-07B contaminated plume.

  9. Pajarito Plateau Groundwater Flow and Transport Modeling Process-Level and Systems Models of Groundwater Flow and

    E-Print Network [OSTI]

    Lu, Zhiming

    Pajarito Plateau Groundwater Flow and Transport Modeling 1 Process-Level and Systems Models of Groundwater Flow and Transport Beneath the Pajarito Plateau: Migration of High Explosives from Technical Area Groundwater Modeling Project Systems Model Vadose Zone Model Regional Aquifer Model #12;Pajarito Plateau

  10. New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect (OSTI)

    Nelson, L. O.

    2007-06-12T23:59:59.000Z

    This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

  11. Installation of an innovative remedial technology

    SciTech Connect (OSTI)

    Hines, B. [CDM Federal Programs Corp., Kevil, KY (United States)

    1995-12-31T23:59:59.000Z

    The major goal of the Lasagna{trademark} project was to design, construct, install, and operate an in situ remediation system in low-permeability soil. A new technology--the Lasagna process--uses electro-osmosis to move contaminated groundwater through treatment zones. The treatment zones are installed in contaminated soils, thereby forming an integrated in situ remedial process. Electro-osmosis, well known for its effectiveness and extremely low power consumption, uses a direct current to cause Groundwater to travel through low-permeability soil. When a bench-scale version of the technology was 98 percent effective in removing contamination, an actual field test was the next step. The site chosen for this first field effort was the DOE-owned Paducah Gaseous Diffusion Plant located in Paducah, Kentucky. The target contaminant for this project was trichloroethylene (TCE) because it is found at many sites across the country and is present at approximately 60 percent of DOE`s sites.

  12. Western Shallow Oil Zone, Elk Hills Field, Kern County, California:

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01T23:59:59.000Z

    This study, Appendix V, addresses the Gusher Sands and their sub units and pools. Basic pressure, production and assorted technical dta were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt made by Evans, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off points for exploitation engineers to develop specific programs towards these ends. 16 refs., 9 tabs.

  13. From the hills to the mountain. [Oil recovery in California

    SciTech Connect (OSTI)

    McDonald, J.

    1980-05-01T23:59:59.000Z

    The oil reserves at Elk Hills field, California, are listed as amounting to 835 million bbl. There is 12 times that amount lying in shallow sands in the San Joaquin Valley, although the oil is much heavier and requires more refining before use. Improved recovery techniques have enabled higher rates of recovery for heavy oil than in the past. Some of these techniques are described, including bottom-hole heating, steam injection, and oil mining. Bottom-hole heating alone raised recovery rates for heavy oil to 25%, and steam injection raised rates to 50%. It is predicted that oil mining may be able to accomplish 100% recovery of the heavy oil.

  14. Laguna Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups <LackawannaLago Vista, Texas:Hills, California:

  15. Laguna Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups <LackawannaLago Vista, Texas:Hills,

  16. Lea Hill, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana: Energy Resources JumpPrataHill, Washington:

  17. Lexington Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:NewJump to: navigation, searchCounty,Hills,

  18. Liberty Hill, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:NewJumpLiberia: EnergyTexas:Hill, Texas:

  19. EA-118 Hill County Electric Cooperative, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIX D9 STAT. 1117Hill County Electric Cooperative

  20. Brewster Hill, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBostonBrattleboro,Hampshire: EnergyBretHill, New York:

  1. Bunker Hill Village, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda, Washington: Energy(B2G)Bunker Hill Village, Texas:

  2. Waite Hill, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii: EnergyWaipio,Waite Hill, Ohio:

  3. West Hills, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills, New York: Energy Resources Jump to: navigation,

  4. Westwood Hills, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills,2732°, -76.7798172°Westside

  5. Campton Hills, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits Manual JumpEnergy InformationCampton Hills,

  6. Cedar Hill, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey asWest, New Jersey: Energy Resources JumpWestHill,

  7. Cherry Hills Village, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelan County,ChenangoHills Village, Colorado: Energy

  8. Cimarron Hills, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower InternationalChuichu,Cima NanoTech Jump to:Hills,

  9. City of Blue Hill, Nebraska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCity of Aplington, IowaCity of Blackwell,Blue Hill,

  10. Settlers Hill Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma: EnergySeoulSettlers Hill Gas Recovery

  11. Sewickley Hills, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma:Sevin Rosen FundsSewaren, NewHills,

  12. PP-118 Hill County Electric Cooperative Inc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse(Expired) | Department ofINCREASES |POlicy Flash8 Hill

  13. Jefferson Hills, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJane Capital4.1672949°,Information DavisHills,

  14. Heritage Hills, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|InformationInformationHensley, Arkansas: EnergyHills, New

  15. Hickory Hills, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation, search Name: Hi-GtelTennessee:Hills, Illinois:

  16. Humboldt Hill, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County,Ohio:Hughson,Hill, California: Energy

  17. Pine Hill, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermal Project JumpBeach,Hill, New York:

  18. Pine Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermal Project JumpBeach,Hill, New

  19. Pine Hills, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermal Project JumpBeach,Hill,

  20. Lost Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07) Wind Farm Jump1 JumpBeachVientosHills,

  1. City of Auburn Hills (Text Version) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag" | Department ofAddressing PolicyAuburn Hills

  2. Indian Hills, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7 Varnish cacheTransport and BuildingCreek,Hills,

  3. Mars Hill (2006) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconvertersourcesourceCharacterizationMark2015:Mars Hill

  4. Moulton Chandler Hills Wind Farm Phase II | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinutemanVistaZephyr) JumpMorroMoulton Chandler Hills

  5. Oak Hills Place, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,and Fees for GeothermalOTiltHills Place,

  6. Oak Hills, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,and Fees for GeothermalOTiltHills

  7. Orland Hills, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:Energy InformationOregon: Energy ResourcesOrion EnergyHills,

  8. Black Hills Power Inc (Montana) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyonsBirch Creek VillageForestBlack Hills

  9. Marshfield Hills, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,JemezMissouri:Marshfield Hills, Massachusetts: Energy

  10. McGinness Hills Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy ResourcesMaviMcCulloch County,McDowellMcGinness Hills

  11. Southern Minnesota Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity Corp Jumpsource HistoryCommunitySunbelt WindHills

  12. Crest Hill, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCp Holdings LlcCrenshaw County,Crest Hill, Illinois:

  13. Cumberland Hill, Rhode Island: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCpWing County,Electric Coop,Cumberland ElecHill,

  14. Dix Hills, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan:Emerling Farm <SiteLtd Di SDivideDix Hills,

  15. McGuinness Hills Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNewMassachusettsMayo Power JumpMcGuinness Hills

  16. Morgan Hill, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill, California: Energy Resources Jump to:

  17. Bay Hill, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County, Florida: Energy Resources JumpHill, Florida:

  18. Ben Hill County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmont County, Ohio: EnergyBelvedere,Hill County,

  19. Beverly Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina:Energy LLC Place:Beverly Hills, California: Energy

  20. Beverly Hills, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina:Energy LLC Place:Beverly Hills, California:

  1. Blue Hills, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |Bleckley County,Minnesota:OpenFlint EthanolHills,

  2. Puente Hills Energy Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublic Power &EnergyOpenPuente Hills Energy

  3. Quartz Hill, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublicPutnamQuail Valley,QuantumQuartz Hill,

  4. Raleigh Hills, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, search Name: Raghuraji AgroRajaram MaizeHills, Oregon:

  5. Rolling Hills Estates, California: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio:RockwallRolling Hills Electric Coop

  6. Fruit Hill, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° ShowCounty, California:Frontier, NorthFruit Hill,

  7. Valley Hill, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies andVacant Jump669°,Hill, North Carolina:

  8. City of Hill City, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCity ofInformationHarmony,City ofCity ofHill City,

  9. Cockrell Hill, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York: Energy ResourcesCoastalCobbCockrell Hill, Texas:

  10. Hill County Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformation Hess Retail NaturalHifluxHighlineHill

  11. Agoura Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgoura Hills, California: Energy Resources Jump

  12. El Dorado Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open JumpEcologyEl Dorado Hills, California: Energy

  13. FIA-12-0023- In the Matter of Thomas R. Thielen

    Broader source: Energy.gov [DOE]

    The Department of Energy’s (DOE) Office of Hearings and Appeals (OHA) Director granted in part and denied in all other respects a Privacy Act Appeal filed by Thomas R. Thielen. Mr. Thielen filed a request with the DOE’s Richland Operations Office for documents regarding a safety concern he raised to CH2M Hill Plateau Remediation Company (CHPRC).

  14. Explosive demolition of K East Reactor Stack

    ScienceCinema (OSTI)

    None

    2010-09-02T23:59:59.000Z

    Using $420,000 in Recovery Act funds, the Department of Energy and contractor CH2M HILL Plateau Remediation Company topped off four months of preparations when they safely demolished the exhaust stack at the K East Reactor and equipment inside the reactor building on July 23, 2010.

  15. SIMULATION OF REMEDIATION ALTERNATIVES FOR A 137Cs CONTAMINATED SOIL.

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    SIMULATION OF REMEDIATION ALTERNATIVES FOR A 137Cs CONTAMINATED SOIL. THE NUMERICAL MODELING analyze remediation alternatives for a soil contaminated with 137Cs, which sorbs strongly onto the clayey. The mobile portion of the soil (macropores) retains little water and cesium. The natural attenuation option

  16. Chapter 2. Assessment and Remediation of Residential Lead Exposure

    E-Print Network [OSTI]

    Chapter 2. Assessment and Remediation of Residential Lead Exposure Prepared by Thomas D. Matte, MD of Residential Lead Exposure Table 2.1. Summary of Recommendations for Assessment and Remediation of Residential Lead Exposure Make prompt and effective environmental management for children with EBLLs the highest

  17. Uranium Mill Tailings Remedial Action Project 1994 environmental report

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.` different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  18. Optimal Groundwater Remediation Network Design using Selective Membranes

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Optimal Groundwater Remediation Network Design using Selective Membranes Eugenio Bringasa with the optimal synthesis of groundwater remediation networks for the valorization of anionic pollutants by means possible design alternatives are proposed. The aim of this work is to obtain a minimum cost groundwater

  19. Plateau structures in potential scattering in a strong laser field

    SciTech Connect (OSTI)

    Cerkic, A. [Federal Meteorological Institute, Bardakcije 12, 71000 Sarajevo (Bosnia and Herzegowina); Milosevic, D.B. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegowina); Max-Born-Institut, Max-Born-Strasse 2a, 12489 Berlin (Germany)

    2004-11-01T23:59:59.000Z

    Electron-atom scattering in a strong laser field is analyzed using the strong-field approximation and modeling elastic scattering of electrons by atoms with a realistic analytical potential derived from an independent-particle model. The results that include both direct scattering and scattering with a repeated scattering (rescattering) are presented. In the latter case, in the intermediate step of the process, the electron can absorb the energy from the laser field and additional plateau structures appear. The features of these plateaus and their cutoffs are analyzed for various incident electron energies and scattering angles, for different laser intensities, and for various atomic gases. The boundaries of these plateaus are compared with classical estimates.

  20. DEMONSTRATION OF ELECTROCHEMICAL REMEDIATION TECHNOLOGIES-INDUCED COMPLEXATION

    SciTech Connect (OSTI)

    Barry L. Burks

    2002-12-01T23:59:59.000Z

    The Project Team is submitting this Topical Report on the results of its bench-scale demonstration of ElectroChemical Remediation Technologies (ECRTs) and in particular the Induced Complexation (ECRTs-IC) process for remediation of mercury contaminated soils at DOE Complex sites. ECRTs is an innovative, in-situ, geophysically based soil remediation technology with over 50 successful commercial site applications involving remediation of over two million metric tons of contaminated soils. ECRTs-IC has been successfully used to remediate 220 cu m of mercury-contaminated sediments in the Union Canal, Scotland. In that operation, ECRTs-IC reduced sediment total mercury levels from an average of 243 mg/kg to 6 mg/kg in 26 days of operation. The clean up objective was to achieve an average total mercury level in the sediment of 20 mg/kg.

  1. Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota

    E-Print Network [OSTI]

    Rudnick, Roberta L.

    Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota Fang pegmatite and possible metasedimentary source rocks in the Black Hills, South Dakota, USA. The Harney Peak.5 and overlap with post- Archean shales and the Harney Peak Granite. For the granite suite

  2. HEPATIC MINERALS OF WHITE-TAILED AND MULE DEER IN THE SOUTHERN BLACK HILLS, SOUTH DAKOTA

    E-Print Network [OSTI]

    HEPATIC MINERALS OF WHITE-TAILED AND MULE DEER IN THE SOUTHERN BLACK HILLS, SOUTH DAKOTA Teresa J status, and species. Key words: Black Hills, elements, fire, liver, mule deer, Odocoileus hemionus and laboratory animals (Robbins, 1983). Liver concentrations of some trace elements have been measured in elk

  3. Connaught Hill Park 37.0 acres (Connaught Drive & Queensway St.)

    E-Print Network [OSTI]

    Northern British Columbia, University of

    CITY PARKS · Connaught Hill Park 37.0 acres (Connaught Drive & Queensway St.) Picnic Site 346.0 acres (Cranbrook Hill Rd.) Hiking Trails (15.0 km), Picnic Shelter and Sites, Viewpoint, Public (Heather Rd. & Austin Rd. West) Ball Diamonds, Soccer Pitch, Washrooms, Elks Centre · Recreation Place 33

  4. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section.

  5. Regulatory strategies for remediation of contaminated sediments

    SciTech Connect (OSTI)

    Zar, H. [Environmental Protection Agency, Chicago, IL (United States)

    1995-12-31T23:59:59.000Z

    A number of federal and state laws may be used to obtain remediation of contaminated sediments in the US. Until recently, the most prominent approaches at the federal level were the use of Superfund authorities for sites on the National priority List and navigational dredging activity by the Corps of Engineers. However, with the increasing concern about contaminated sediments, regional offices of the US Environmental Protection Agency (EPA) and state agencies have begun to use a greater variety of regulatory approaches, both individually and in combination. These efforts have been particularly evident in the Great Lakes and are now being extended nationwide, as embodied in the EPA`s Contaminated Sediment Management Strategy. This paper will describe some of the regulatory approaches being applied, case examples in the Great Lakes area, and the expected directions of these efforts, as embodied in the national strategy.

  6. Environmental remediation and waste management information systems

    SciTech Connect (OSTI)

    Harrington, M.W.; Harlan, C.P.

    1993-12-31T23:59:59.000Z

    The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency`s (EPA`s) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA`s CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information.

  7. DWPF SMECT PVV SAMPLE CHARACTERIZATION AND REMEDIATION

    SciTech Connect (OSTI)

    Bannochie, C.; Crawford, C.

    2013-06-18T23:59:59.000Z

    On April 2, 2013, a solid sample of material collected from the Defense Waste Processing Facility’s Process Vessel Vent (PVV) jumper for the Slurry Mix Evaporator Condensate Tank (SMECT) was received at the Savannah River National Laboratory (SRNL). DWPF has experienced pressure spikes within the SMECT and other process vessels which have resulted in processing delays while a vacuum was re-established. Work on this sample was requested in a Technical Assistance Request (TAR). This document reports the results of chemical and physical property measurements made on the sample, as well as insights into the possible impact to the material using DWPF’s proposed remediation methods. DWPF was interested in what the facility could expect when the material was exposed to either 8M nitric acid or 90% formic acid, the two materials they have the ability to flush through the PVV line in addition to process water once the line is capped off during a facility outage.

  8. Uranium Mill Tailings Remedial Action 1993 Roadmap

    SciTech Connect (OSTI)

    Not Available

    1993-10-18T23:59:59.000Z

    The 1993 Roadmap for the Uranium Mill Tailings Remedial Action (UMTRA) Project office is a tool to assess and resolve issues. The US Department of Energy (DOE) UMTRA Project Office uses the nine-step roadmapping process as a basis for Surface and Groundwater Project planning. This is the second year the Roadmap document has been used to identify key issues and assumptions, develop logic diagrams, and outline milestones. This document is a key element of the DOE planning process. A multi-interest group used the nine-step process to focus on issues, root cause analysis and resolutions. This core group updated and incorporated comments on the basic assumptions, then used these assumptions to identify issues. The list of assumptions was categorized into the following areas: institutional, regulatory compliance, project management, human resource requirements, and other site-specific assumptions. The group identified 10 issues in the analysis phase. All of the issues are ranked according to importance. The number one issue from the 1992 Roadmap, ``Lack of sufficient human resources,`` remained the number one issue in 1993. The issues and their ranking are as follows: Lack of sufficient human resources; increasing regulatory requirements; unresolved groundwater issues; extension of UMTRCA through September 30, 1998; lack of post-UMTRA and post-cell closure policies; unpredictable amounts and timing of Federal funding; lack of regulatory compliance agreements; problem with states providing their share of remedial action costs; different interests and priorities among participants; and technology development/transfer. The issues are outlined and analyzed in detail in Section 8.0, with a schedule for resolution of these issues in Section 9.0.

  9. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results

    SciTech Connect (OSTI)

    Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

    2000-03-14T23:59:59.000Z

    This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field.

  10. New Approach to Assess Volatile Contamination in Vadose Zone Provides Path Forward for Site Closure

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. and LOS ALAMOS, N.M. – Through the Deep Vadose Zone-Applied Field Research Initiative (DVZ-AFRI), scientists and engineers from Pacific Northwest National Laboratory, CH2M HILL Plateau Remediation Company, federal agencies, and the scientific community are collaborating to develop effective, science-based solutions for remediating, characterizing, monitoring, and predicting the behavior and fate of deep vadose zone contamination.

  11. Effects of remediation amendments on vadose zone microorganisms

    SciTech Connect (OSTI)

    Miller, Hannah M.; Tilton, Fred A.

    2012-08-10T23:59:59.000Z

    Surfactant-based foam delivery technology has been studied to remediate Hanford 200 area deep vadose zone sediment. However, the surfactants and remediation amendments have an unknown effect on indigenous subsurface microorganisms. Microbial populations are important factors to consider in remediation efforts due to their potential to alter soil geochemistry. This project focuses on measuring microbial metabolic responses to remediation amendments in batch and column studies using Deep Vadose Zone Sediments. Initial studies of the microbes from Hanford 200 area deep vadose zone sediment showed surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CAPB) and remediation amendment calcium polysulfide (CPS) had no affect on microbial growth using BiologTM Ecoplates. To move towards a more realistic field analog, soil columns were packed with Hanford 200 Area sediment. Once microbial growth in the column was verified by observing growth of the effluent solution on tryptic soy agar plates, remedial surfactants were injected into the columns, and the resulting metabolic diversity was measured. Results suggest surfactant sodium dodecyl sulfate (SDS) stimulates microbial growth. The soil columns were also visualized using X-ray microtomography to inspect soil packing and possibly probe for evidence of biofilms. Overall, BiologTM Ecoplates provide a rapid assay to predict effects of remediation amendments on Hanford 200 area deep vadose zone microorganisms.

  12. Almost remediation of saltwater spills at E and P sites

    SciTech Connect (OSTI)

    Carty, D.J. [K. W. Brown Environmental Services, College Station, TX (United States)

    1995-12-31T23:59:59.000Z

    At exploration and production (E and P) sites crude spills restricted to topsoil are often self-remediating, but salt spills rarely are. Most soils naturally biodegrade crude. Without appropriate human intervention, brine spills can result in decades of barren land and seriously degrade surface water and aquifers. Servicing the E and P industry are remediation practitioners with a limited array of often expensive remediation concepts and materials which they hope will work, and sometimes do. Unfortunately, many remediation practitioners are unfamiliar with, or disregard, the natural physical, chemical, and biotic complexity of the soil and aquatic media. All too often this results in exacerbating injury to an already damaged ecosystem. Likewise, important cultural factors such as public relations, environmental regulations, property rights, and water rights are also overlooked until after implementation of an ill-advised or illegal remediation design has been initiated. A major issue is determining what constitutes ``successful`` remediation of a brine spill. Environmental managers have long sought one or two universally applicable fast and cheap amendment/treatment protocols for all their diverse multi-state salt affected spill scenarios. This presentation describes aspects of common spill-affected ecosystems which must be considered to achieve ``successful`` remediation.

  13. Environmental remediation of contamination sites at the Hanford Site

    SciTech Connect (OSTI)

    Wittreich, C.D.; Johnson, W.L. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-12-31T23:59:59.000Z

    Efforts currently are under way to remediate the 200 Areas of the US Department of Energy`s (DOE) Hanford Site in Washington State. Because of the complexity and extent of environmental contamination that has resulted from decades of hazardous and radioactive waste disposal practices, an innovative approach to remediating the site was required. A comprehensive study of waste disposal and environmental monitoring data with field investigations, referred to as the 200 Aggregate Area Management Study (AAMS) program, was conducted in 1992 to assess the scope of the remediation effort and to develop a plan to expedite the cleanup progress.

  14. The archive of place : environment and the contested past of a North American plateau

    E-Print Network [OSTI]

    Turkel, William Joseph, 1967-

    2004-01-01T23:59:59.000Z

    This is a study of the role that the interpretation of material evidence plays in historical consciousness and social memory. It consists of three case studies from the Chilcotin Plateau in the west-central part of present-day ...

  15. Influences of vegetation characteristics and invertebrate abundance of Rio Grande wild turkey populations, Edwards Plateau, Texas

    E-Print Network [OSTI]

    Randel, Charles Jack

    2005-02-17T23:59:59.000Z

    Since 1970, Rio Grande wild turkey (Meleagris gallapavo intermedia) numbers in the southern region of the Edwards Plateau of Texas have been declining. Nest-site characteristics and invertebrate abundance were hypothesized as limiting wild turkey...

  16. Running Footline: INSULIN RELEASE AND PLATEAU FRACTIONS CORRELATIONS OF RATES OF INSULIN

    E-Print Network [OSTI]

    Pernarowski, Mark

    by rapid membrane voltage oscillations and the silent phase by slow voltage changes. The plateau fraction) in excitable cells is associated with rapid action potential­like oscillations of the membrane potential

  17. Pastoral Livelihoods and the Epidemiology of Emergent Trypanosomiasis on the Jos Plateau, Nigeria 

    E-Print Network [OSTI]

    Majekodunmi, Ayodele

    2012-01-01T23:59:59.000Z

    African trypanosomiasis is a widespread disease of livestock which is a major constraint to livestock production, mixed farming and the rural economy. The Jos Plateau in Nigeria was historically free of tsetse flies and ...

  18. Pastoral livelihoods and the epidemiology of emergent trypanosomiasis on the Jos Plateau, Nigeria 

    E-Print Network [OSTI]

    Majekodunmi, Ayodele Oluwakemi

    2012-06-22T23:59:59.000Z

    African trypanosomiasis is a widespread disease of livestock which is a major constraint to livestock production, mixed farming and the rural economy. The Jos Plateau in Nigeria was historically free of tsetse flies and ...

  19. Western Shallow Oil Zone, Elk Hills Field, Kern County, California:

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01T23:59:59.000Z

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 with the United States Department of Energy. This study, Appendix II addresses the first Wilhelm Sands and its sub unites and pools. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off point for exploitation engineers to develop specific programs toward the end.

  20. DOE turns down all bids for Elk Hills crude

    SciTech Connect (OSTI)

    Not Available

    1992-03-30T23:59:59.000Z

    This paper reports that the U.S. Department of Energy has rejected all bids submitted in the Mar. 5 semiannual sale of crude oil from Elk Hills Naval Petroleum Reserve (NPR-1) in California. DOE the all 19 bids for the 53,740 b/d of crude were too low. The bids ranged from $11.71 to $14.06/bbl, with the top bids for the highest quality Stevens zone crude averaging $13.25/bbl. California oil companies the they bid what the market would bear, explaining a surplus of Alaskan crude on the West Coast has driven down the price of local crudes, notably heavy crudes. DOE will extend the current oil purchase contracts through April while it issues a new request for bids. It planned to issue the solicitation Mar. 23 and receive bids Apr. 15.

  1. Woody Plants for Wildlife: Brush Sculpting in South Texas and the Edwards Plateau

    E-Print Network [OSTI]

    Lyons, Robert K.; Ginnett, Tim F.; Taylor, Richard B.

    1999-10-01T23:59:59.000Z

    : b - Butterflies, bees and other insects STP - South Texas Plains i - White-tailed deer EP - Edwards Plateau o - Small mammals (e.g. squirrels, rabbits) B - Songbirds F - Game birds (quail, turkey, doves) Table 1. Classes of wildlife...Woody Plants and Wildlife Brush Sculpting in South Texas and the Edwards Plateau Robert K. Lyons, Tim F. Ginnett and Richard B. Taylor* O ur perspective is changing on the value of brush or woody plants. When Texas rangeland was used primarily...

  2. Nesting ecology of Rio Grande wild turkeys in the Edwards Plateau of Texas

    E-Print Network [OSTI]

    Dreibelbis, Justin Zachary

    2009-05-15T23:59:59.000Z

    NESTING ECOLOGY OF RIO GRANDE WILD TURKEYS IN THE EDWARDS PLATEAU OF TEXAS A Thesis by JUSTIN ZACHARY DREIBELBIS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2008 Major Subject: Wildlife and Fisheries Sciences NESTING ECOLOGY OF RIO GRANDE WILD TURKEYS IN THE EDWARDS PLATEAU OF TEXAS A Thesis by JUSTIN ZACHARY DREIBELBIS Submitted to the Office...

  3. Hydrologic aspects of midgrass dominated and shortgrass dominated sites on the Edwards Plateau of Texas

    E-Print Network [OSTI]

    Caesar, Blake Lee

    1991-01-01T23:59:59.000Z

    (CM), Edwards Plateau, TX. Moisture values are expressed in mm hr . Time is in military hours. Negative values indicate increase in soil moisture 47 Stepwise multiple regression equations for weekly evapotranspiration estimates for sideoats grama... are significantly different (P&0. 05) 30 Mean root length for sideoats grama and curly mesquite, Edwards Plateau, TX. Means with a different letter are significantly different (P&0. 05) 31 Mean root hairs per mm for sideoats grama and curly mesquite, Edwards...

  4. Properties of soils in a toposequence on Cap Rouge Plateau, Haiti

    E-Print Network [OSTI]

    Louis, Pierre Antoine

    1985-01-01T23:59:59.000Z

    PROPERTIES OF SOILS IH A TOPOSEQUENCE OH CAP ROUGE PLATEAU, HAITI A Thesis by PIERRE ANTOINE LOUIS Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE MAY... 1985 Major Subject: Soil Science PROPERTIES OF SOILS IN A TOPOSEQUENCE ON CAP ROUGE PLATEAU, HAITI A Thesis by PIERRE ANTOINE LOUIS Approved as to style and content by: C. T. Hallmark (Chairman) Frank G. Calhoun (Member ) Wrlbert H...

  5. Final audit report of remedial action construction at the UMTRA project site Rifle, Colorado. Rev. 1

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    This final audit report summarizes the assessments performed by the U.S. Department of Energy (DOE) Environmental Restoration Division (ERD) and its Technical Assistance Contractor (TAC) of remedial action compliance with approved plans, specifications, standards, and 40 CFR Part 192 at the Rifle, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. Remedial action construction was directed by the Remedial Action Contractor (RAC).

  6. Deep tectonic influence on shallow structures of Allegheny plateau

    SciTech Connect (OSTI)

    Reeves, T.K. Jr.; Morris, J.

    1988-08-01T23:59:59.000Z

    The lower plateau area of western Pennsylvania and western West Virginia is underlain by numerous salt-cored anticlinal structures. The locations of these anticlines have been controlled by disturbances in the salt and discontinuities on detachment horizons. These discontinuities were produced by deep-seated faults with ongoing movements that persisted into or through the time of Salina deposition. Tilting of the basin during post-Salina sedimentation caused the salts to mobilize. These highly ductile units began to sag into the deep basin at a very early stage and moved by sliding until they reached the zones where faulting had disrupted the glide surfaces. Seismic examples show how the pileup of salts along these fault-disturbed zones has produced the cores of the modern anticlines. Characteristic movements within these salt pillows have led to such familiar Appalachian features as anticlines that are steeper on the southeastern flank, fracturing and faulting with apparent thrusting in the Onondaga-Oriskany-Helderberg section, and zones of fracture porosity and enhanced producibility in the Devonian shales and shallow reservoirs. An understanding of deep structures and salt deformation features in a shallow prospect area can lead to the discovery of zones of fracture porosity and can improve production in tight formations or permit the avoidance of areas where fracturing is so intense that no effective cap rock remains. Deep structure and salt tectonics can be relevant to shallow development work.

  7. In Situ Iron Oxide Emplacement for Groundwater Arsenic Remediation 

    E-Print Network [OSTI]

    Abia, Thomas Sunday

    2012-02-14T23:59:59.000Z

    Iron oxide-bearing minerals have long been recognized as an effective reactive media for arsenic-contaminated groundwater remediation. This research aimed to develop a technique that could facilitate in situ oxidative precipitation of Fe3+ in a soil...

  8. army environmental remediation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: ER 200-1-4 29 August 2014 ENVIRONMENTAL QUALITY FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM.C. 20314-1000 CECC-E Regulation No. 200-1-4 29 August 2014...

  9. Containment remedies: Minimizing hazard, not just exposure, cuts liabilities

    SciTech Connect (OSTI)

    Hirschhorn, J.S. [Hirschhorn and Associates, Wheaton, MD (United States)

    1996-12-31T23:59:59.000Z

    An important consequence of the trend to reduce Superfund cleanup costs has been a definite shift away from treatment to pure containment remedies. The issue that merits more attention, however, is whether reductions in short term costs may be offset by longer term liabilities. Containment remedies that focus entirely on reducing exposures and hence risk are vulnerable to various failures of key components that may not necessarily be prevented by operation and maintenance programs. A sensible alternative is to also include some hazard reduction, especially by in situ technology. By doing so, longer term liabilities associated with various failure modes of containment remedies can be greatly reduced. Corporate accounting systems ignore such liabilities. The insurance industry, large companies, brownfield developers, and the government are currently ignoring liabilities that inevitably will become all too real, because pure containment remedies are not permanently effective.

  10. Environmental Remediation Strategic Planning of Fukushima Nuclear Accident

    SciTech Connect (OSTI)

    Onishi, Yasuo

    2011-12-01T23:59:59.000Z

    Environmntal Remediation Assessment and other respons decision making on Environmental monitoring, experiments and assessment. Preliminary assessment to grasp the overall picture and determine critical locations, phenomena, people, etc. Using simple methods and models.

  11. The Naming, Identification, and Protection of Place in the Loess Hills of the Middle Missouri Valley

    E-Print Network [OSTI]

    McDermott, David Thomas

    2009-11-09T23:59:59.000Z

    tool for field work in physical geography. The only time I have carried a gun with lethal intent was in the Loess Hills of northern Missouri. A coworker and I drove into the hills just south of St. Joseph and walked, on a crisp fall morning, up.... 5 One part of the perceptual story about the Hills is their location. This study will approach that question from two perspectives. It first will offer a traditional analysis using physical data on soil, bedrock, elevation, and slope...

  12. K basins interim remedial action health and safety plan

    SciTech Connect (OSTI)

    DAY, P.T.

    1999-09-14T23:59:59.000Z

    The K Basins Interim Remedial Action Health and Safety Plan addresses the requirements of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as they apply to the CERCLA work that will take place at the K East and K West Basins. The provisions of this plan become effective on the date the US Environmental Protection Agency issues the Record of Decision for the K Basins Interim Remedial Action, currently planned in late August 1999.

  13. Remedial Action and Waste Disposal Conduct of OperationsMatrix

    SciTech Connect (OSTI)

    M. A. Casbon.

    1999-05-24T23:59:59.000Z

    This Conduct of Operations (CONOPS) matrix incorporates the Environmental Restoration Disposal Facility (ERDF) CONOPS matrix (BHI-00746, Rev. 0). The ERDF CONOPS matrix has been expanded to cover all aspects of the RAWD project. All remedial action and waste disposal (RAWD) operations, including waste remediation, transportation, and disposal at the ERDF consist of construction-type activities as opposed to nuclear power plant-like operations. In keeping with this distinction, the graded approach has been applied to the developmentof this matrix.

  14. The 100-C-7 Remediation Project. An Overview of One of DOE's Largest Remediation Projects - 13260

    SciTech Connect (OSTI)

    Post, Thomas C. [U.S. Department of Energy Richland Operations Office, Richland, WA 99352 (United States)] [U.S. Department of Energy Richland Operations Office, Richland, WA 99352 (United States); Strom, Dean [Washington Closure Hanford LLC, 2620 Fermi Avenue, Richland, WA 99354 (United States)] [Washington Closure Hanford LLC, 2620 Fermi Avenue, Richland, WA 99354 (United States); Beulow, Laura [U.S. Environmental Protection Agency, 309 Bradley Boulevard, Suite 115, Richland, WA 99352 (United States)] [U.S. Environmental Protection Agency, 309 Bradley Boulevard, Suite 115, Richland, WA 99352 (United States)

    2013-07-01T23:59:59.000Z

    The U.S. Department of Energy Richland Operations Office (RL), U.S. Environmental Protection Agency (EPA) and Washington Closure Hanford LLC (WCH) completed remediation of one of the largest waste sites in the U.S. Department of Energy complex. The waste site, 100-C-7, covers approximately 15 football fields and was excavated to a depth of 85 feet (groundwater). The project team removed a total of 2.3 million tons of clean and contaminated soil, concrete debris, and scrap metal. 100-C-7 lies in Hanford's 100 B/C Area, home to historic B and C Reactors. The waste site was excavated in two parts as 100-C-7 and 100-C-7:1. The pair of excavations appear like pit mines. Mining engineers were hired to design their tiered sides, with safety benches every 17 feet and service ramps which allowed equipment access to the bottom of the excavations. The overall cleanup project was conducted over a span of almost 10 years. A variety of site characterization, excavation, load-out and sampling methodologies were employed at various stages of remediation. Alternative technologies were screened and evaluated during the project. A new method for cost effectively treating soils was implemented - resulting in significant cost savings. Additional opportunities for minimizing waste streams and recycling were identified and effectively implemented by the project team. During the final phase of cleanup the project team applied lessons learned throughout the entire project to address the final, remaining source of chromium contamination. The C-7 cleanup now serves as a model for remediating extensive deep zone contamination sites at Hanford. (authors)

  15. WATER AS A REAGENT FOR SOIL REMEDIATION

    SciTech Connect (OSTI)

    Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

    2001-11-12T23:59:59.000Z

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, to separate petroleum-related contaminants and other hazardous pollutants from soil and sediments. In this process, water with added electrolytes (inexpensive and environmentally friendly) is used as the extracting solvent under subcritical conditions (150-300 C). The use of electrolytes allows us to operate reactors under mild conditions and to obtain high separation efficiencies that were hitherto impossible. Unlike common organic solvents, water under subcritical conditions dissolves both organics and inorganics, thus allowing opportunities for separation of both organic and inorganic material from soil. In developing this technology, our systematic approach was to (1) establish fundamental solubility data, (2) conduct treatability studies with industrial soils, and (3) perform a bench-scale demonstration using a highly contaminated soil. The bench-scale demonstration of the process has shown great promise. The next step of the development process is the successful pilot demonstration of this technology. Once pilot tested, this technology can be implemented quite easily, since most of the basic components are readily available from mature technologies (e.g., steam stripping, soil washing, thermal desorption). The implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and will provide a stand-alone technology for removal of both volatile and heavy components from contaminated soil.

  16. STRATEGIES FOR IMMOBILIZATION OF DEEP VADOSE ZONE CONTAMINANTS AT THE HANFORD CENTRAL PLATEAU

    SciTech Connect (OSTI)

    CHRONISTER GB

    2011-01-14T23:59:59.000Z

    Deep vadose zone contamination poses some of the most difficult remediation challenges for the protection of groundwater at the Hanford Site in Richland, Washington. This paper describes processes and technologies being developed to use in the ongoing effort to remediate the contamination in the deep vadose zone at the Hanford Site.

  17. EIS-0266: Glass Mountain/Four Mile Hill Geothermal Project, California

    Broader source: Energy.gov [DOE]

    The EIS analyzes BPA's proposed action to approve the Transmission Services Agreements (TSAs) and Power Purchase Agreements (PPAs) with Calpine Siskiyou Geothermal Partners, L.P. (Calpine) to acquire output from the Fourmile Hill Geothermal Development Project (Project).

  18. Kevin Wood Landscape: a study in Texas Hill Country landscape design

    E-Print Network [OSTI]

    Secker, William Walker

    2002-01-01T23:59:59.000Z

    Kevin Wood Landscape resides in Austin, Texas as the premier residential landscape design firm. The firm, although small in stature, tackles a variety of projects throughout Austin and the immediate Hill Country. Close inspection within...

  19. Constraints on the Age of Heating at the Fenton Hill Site, Valles...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Journal Article: Constraints on the Age of Heating at the Fenton Hill Site, Valles Caldera, New Mexico Abstract Subsurface samples and...

  20. Case Study Walnut Hill United Methodist Church - Dallas, Texas, Chiller Replacement Analysis

    E-Print Network [OSTI]

    Phillips, J.

    1998-01-01T23:59:59.000Z

    In March of 1992 Walnut Hill United Methodist Church in Dallas, Tx. decided that their existing thermal storage and electric reciprocating chiller system were both in need of replacement. After analyzing several options, they chose to install 150...

  1. ICFT- An Initial Closed-Loop Flow Test of the Fenton Hill Phase...

    Open Energy Info (EERE)

    ICFT- An Initial Closed-Loop Flow Test of the Fenton Hill Phase II HDR Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: ICFT- An Initial...

  2. Intern experience at CH?M Hill, Inc.: an internship report

    E-Print Network [OSTI]

    Winter, William John, 1949-

    2013-03-13T23:59:59.000Z

    A review of the author's internship experience with CH?M HILL, Inc. during the period September 1975 through May 1976 is presented. During this nine month internship the author worked as an Engineer II in the Industrial Processes...

  3. Restructuring the urban neighborhood : the dialogue between image and ideology in Phoenix Hill, Louisville, Kentucky

    E-Print Network [OSTI]

    Isaacs, Mark Andrew

    1980-01-01T23:59:59.000Z

    This thesis addresses the problems of restructuring the urban neighborhood as specifically applied to the Phoenix Hill community in Louisville, Kentucky. Theory and concepts are briefly presented as a basis for design ...

  4. Los Alamos National Laboratory Investigates Fenton Hill to Support Future Land Use

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. – Supporting future land use for the U.S. Forest Service, Los Alamos National Laboratory’s Corrective Actions Program (CAP) completed sampling soil at Fenton Hill in the Jemez Mountains this month.

  5. A Cache of Mesquite Beans from the Mecca Hills, Salton Basin

    E-Print Network [OSTI]

    Swenson, James D

    1984-01-01T23:59:59.000Z

    University of Chicago Press. Bean, L. J. 1972 Mukat'sSmithsonian Institution. Bean, L. J. , and K. S. Saubel 1963Riverside. A Cache of Mesquite Beans from the Mecca Hills,

  6. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems I. Fluid...

  7. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems II....

  8. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1987-05-01T23:59:59.000Z

    This appendix assesses the present conditions and data for the inactive uranium mill site near Tuba City, Arizona. It consolidates available engineering, radiological, geotechnical, hydrological, meterological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill and tailings site so that the Remedial Action Contractor (RAC) may complete final designs of the remedial actions.

  9. NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT

    SciTech Connect (OSTI)

    Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

    2004-05-06T23:59:59.000Z

    Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas and natural gas liquids production on a remote part of the Uintah & Ouray Reservation. Much of the natural gas and natural gas liquids are being produced from the Wingate Formation, which to our knowledge has never produced commercially anywhere. Another large percentage of the natural gas is being produced from the Entrada Formation which has not previously produced in this part of the Uinta Basin. In all, at least nine geologic formations are contributing hydrocarbons to these wells. This survey has clearly established the fact that high-quality data can be obtained in this area, despite the known obstacles.

  10. Peer Review of the Hot Dry Rock Project at Fenton Hill, New Mexico

    SciTech Connect (OSTI)

    None

    1998-12-01T23:59:59.000Z

    This report briefly describes the history of the hot dry rock experiment project conducted by the U.S. Department of Energy and Los Alamos National Laboratory at Fenton Hill, New Mexico, from about 1971 through 1995. The authors identify the primary lessons learned and techniques developed during the course of the Fenton Hill project, and summarize the extent to which these technologies have been transferred to the U.S. geothermal industry.

  11. Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation, and carbon sequestration

    E-Print Network [OSTI]

    Bernard, S.

    2009-01-01T23:59:59.000Z

    Remediation, and Carbon Sequestration References Anderson,Remediation, and Carbon Sequestration rhizosphere byRemediation, and Carbon Sequestration Figure 1. Examples of

  12. Improved oil recovery using horizontal wells at Elk Hills, California

    SciTech Connect (OSTI)

    Gangle, F.J.; Schultz, K.L.; McJannet, G.S.; Ezekwe, N.

    1995-03-01T23:59:59.000Z

    Eight horizontal wells have been drilled and completed in a steeply dipping Stevens sand reservoir in the Elk Hills field, Kern County, California. The subject reservoir, called the Stevens 26R, is a turbidite channel sand deposit one mile wide, three miles long, and one mile deep. Formation beds have a gross thickness up to 1,500 feet and dips as high as 60 degrees on the flanks. The original oil column of 1,810 feet has been pulled down to 200 feet by continual production since 1976. The reservoir management operating strategy has been full pressure maintenance by crestal gas injection since 1976. The steep dip of the formation makes gravity drainage the dominant drive mechanism. Additionally, improved recovery is coming from cycling dry gas through the large secondary gas cap region. The prudent placement of the horizontal wells above the oil/water contact promises to improve oil recovery and extend the operating life of the reservoir. Field results are given to compare the performance of the horizontal wells with the conventional wells. The horizontal wells produce at higher rates, lower draw downs, and lower gas/oil ratio which will extend the life of the project and result in higher recovery.

  13. Horizontal wells improve recovery at the Elk Hills Petroleum Reserve

    SciTech Connect (OSTI)

    Rintoul, B.

    1995-11-01T23:59:59.000Z

    In 1988 the US Department of Energy and Bechtel implemented a program to slow production declines in the Elk Hills 26R pool sand of the Naval Petroleum Reserve No. 1. It was also hoped horizontal wells would increase the production rate, decrease gas production and extend economic life of the reservoir. The Stevens sand pool targeted for the project is a high-quality, sand-rich turbidite channel system encapsulated within Miocene Monterey siliceous shales, mudstones and associated sediments. The pool is about 3-miles long by 3/4-mile wide. The paper describes the specifications and drilling of the first four out of the 14 horizontal wells drilled at this facility. Horizontal drilling technology has completely altered the future of the 26R pool. In 1980 estimated ultimate recovery (EUR) from the sand was 211 million bbl. With the latest horizontal well drilling campaign, the pool is expected to pass that estimate in 1997 when oil production is forecasted to be at least 13,000 b/d. EUR form the 26R sand now is more than 250 million bbl, and even that estimate is being revised upward.

  14. West Short Pine Hills field, Harding County, South Dakota

    SciTech Connect (OSTI)

    Strothman, B.

    1988-07-01T23:59:59.000Z

    The West Short Pine Hills field is a shallow gas field that produces from the Shannon Sandstone Member, on the Camp Crook anticline in southwestern Harding County, South Dakota. The Alma McCutchin 1-17 Heikkila discovery was drilled in the NW1/4, Sec. 17, T16N, R2E, to a depth of 1600 ft and completed in October 1977 for 600 MCFGD from perforations at 1405-1411 ft. To date, 40 gas wells have been completed with total estimated reserves of more than 20 bcf. The field encompasses 12,000 ac, with a current drill-site spacing unit of 160 ac. The field boundaries are fairly well defined, except on the south edge of the field. The wells range in depth from 1250 to 2200 ft, and cost $60,000-$85,000 to drill and complete. Core and log analyses indicate that the field has 70 ft of net pay, with average porosity of 30% and average permeability of 114 md. Most wells have been completed with nitrogen-sand frac. Williston Basin Interstate Pipeline Company of Bismarck, North Dakota, operates a compressor station and 2.5 mi of 4-in. line that connects the field to their 160 in. north-south transmission line to the Rapid City area. Currently, producers are netting $1.10-$1.25/million Btu. The late Mathew T. Biggs of Casper, Wyoming, was the geologist responsible for mapping and finding this gas deposit.

  15. Research Plan: Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation

    SciTech Connect (OSTI)

    Zhong, Lirong; Hart, Andrea T.; Szecsody, James E.; Zhang, Z. F.; Freedman, Vicky L.; Ankeny, Mark; Hull, Laurence; Oostrom, Martinus; Freshley, Mark D.; Wellman, Dawn M.

    2009-01-16T23:59:59.000Z

    Research proposals were submitted to the Scientific and Technical Basis for In Situ Treatment of Metals and Radionuclides Technical Working Group under the US Department of Energy (DOE) Environmental Management Office (specifically, EM-22). After a peer review and selection process, the proposal, “Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation,” submitted by Pacific Northwest National Laboratory (PNNL) was selected for support by the program. A research plan was requested for this EM funded project. The overall objective of this project is to develop foam delivery technology for the distribution of remedial amendments to deep vadose zone sediments for in situ immobilization of metal and radionuclide contaminants. The focus of this research in FY 2009 is on the physical aspects of the foam delivery approach. Specific objectives are to 1) study the foam quality (i.e. the gas volume fraction in foam) influence on injection pressure, 2) study the sediment air permeability influence on injection pressure, 3) investigate liquid uptake in sediment and determine whether a water front will be formed during foam delivery, 4) test amendment distance (and mass) delivery by foam from the injection point, 5) study the enhanced sweeping over heterogeneous systems (i.e., low K zones) by foam delivery relative to water-based delivery under vadose zone conditions, and 6) numerically simulate foam delivery processes in the vadose zone. Laboratory scale experiments will be conducted at PNNL to study a range of basic physical aspects of the foam propagation in sediments, including foam quality and sediment permeability influence on injection pressure, liquid uptake, and foam sweeping across heterogeneous systems. This study will be augmented with separate studies to be conducted at MSE Technology Applications, Inc. (MSE) to evaluate foam transport and amendment delivery at the intermediate-scale. The results of intermediate-scale tests will be used to bridge the gap between the small-scale foam transport studies and the field-scale demonstration. Numerical simulation studies on foam delivery under vadose conditions will be performed to simulate observed foam transport behavior under vadose zone conditions and predict the foam delivery performance at field-scale.

  16. Radioactive Tank Waste Remediation Focus Area. Technology summary

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

  17. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

    1982-09-01T23:59:59.000Z

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

  18. Phosphate-Mediated Remediation of Metals and Radionuclides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martinez, Robert J.; Beazley, Melanie J.; Sobecky, Patricia A.

    2014-01-01T23:59:59.000Z

    Worldwide industrialization activities create vast amounts of organic and inorganic waste streams that frequently result in significant soil and groundwater contamination. Metals and radionuclides are of particular concern due to their mobility and long-term persistence in aquatic and terrestrial environments. As the global population increases, the demand for safe, contaminant-free soil and groundwater will increase as will the need for effective and inexpensive remediation strategies. Remediation strategies that include physical and chemical methods (i.e., abiotic) or biological activities have been shown to impede the migration of radionuclide and metal contaminants within soil and groundwater. However, abiotic remediation methods are oftenmore »too costly owing to the quantities and volumes of soils and/or groundwater requiring treatment. Thein situsequestration of metals and radionuclides mediated by biological activities associated with microbial phosphorus metabolism is a promising and less costly addition to our existing remediation methods. This review highlights the current strategies for abiotic and microbial phosphate-mediated techniques for uranium and metal remediation.« less

  19. Electrochemical arsenic remediation for rural Bangladesh

    SciTech Connect (OSTI)

    Addy, Susan Amrose

    2009-01-01T23:59:59.000Z

    Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 mu g=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 mu g=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100 - 500 mu g=L) in real Bangladesh tube well water collected from three regions to below the WHO limit of 10 mu g=L. Prototype fabrication and field testing are currently underway.

  20. Application of a World Wide Web technology to environmental remediation

    SciTech Connect (OSTI)

    Johnson, R.; Durham, L. A.

    2000-03-09T23:59:59.000Z

    As part of the Formerly Utilized Site Remedial Action Program (FUSRAP), the United States Army Corps of Engineers (USACE), Buffalo District, is responsible for overseeing the remediation of several sites within its jurisdiction. FUSRAP sites are largely privately held facilities that were contaminated by activities associated with the nuclear weapons program in the 1940s, 50s, and 60s. The presence of soils and structures contaminated with low levels of radionuclides is a common problem at these sites. Typically, contaminated materials must be disposed of off-site at considerable expense (up to several hundred dollars per cubic yard of waste material). FUSRAP is on an aggressive schedule, with most sites scheduled for close-out in the next couple of years. Among the multitude of tasks involved in a typical remediation project is the need to inform and coordinate with active stakeholder communities, including local, state, and federal regulators.

  1. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    SciTech Connect (OSTI)

    Beres, Christopher M.; Fort, E. Joseph [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States)] [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States); Boyle, James D. [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)] [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)

    2013-07-01T23:59:59.000Z

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

  2. Ecology, control, and management of shin oak on the Edwards Plateau

    E-Print Network [OSTI]

    Harris, Venoia M.

    1958-01-01T23:59:59.000Z

    L IB R A R Y A & M COLLEGE OF TEXAS ECOLOGY, CONTROL, AND MAHAGiLL-IENT OF SI3IN OAK ON THE EDWARDS PLATEAU by VENOIA M. HARRIS A Dissertation Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial... fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY January, 1958 MAJOR SUBJECT: RANGE MANAGEMENT ECOLOGY, CONTROL, AND MNAGEI-MJT OF SHIN OAK ON THE EEWARDS PLATEAU A Dissertation by VENOIA M. HARRIS Approved as to style and content...

  3. Ecology, control, and management of shin oak on the Edwards Plateau 

    E-Print Network [OSTI]

    Harris, Venoia M.

    1958-01-01T23:59:59.000Z

    L IB R A R Y A & M COLLEGE OF TEXAS ECOLOGY, CONTROL, AND MAHAGiLL-IENT OF SI3IN OAK ON THE EDWARDS PLATEAU by VENOIA M. HARRIS A Dissertation Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial... fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY January, 1958 MAJOR SUBJECT: RANGE MANAGEMENT ECOLOGY, CONTROL, AND MNAGEI-MJT OF SHIN OAK ON THE EEWARDS PLATEAU A Dissertation by VENOIA M. HARRIS Approved as to style and content...

  4. Science mentor program at Mission Hill Junior High School

    SciTech Connect (OSTI)

    Dahlquist, K. [Univ. of California, Santa Cruz, CA (United States)

    1994-12-31T23:59:59.000Z

    Science graduate students from the University of California at Santa Cruz mentor a class of 7th graders from the Mission Hill Junior High School. The program`s purpose is: (1) to create a scientific learning community where scientists interact at different levels of the educational hierarchy; (2) to have fun in order to spark interest in science; and (3) to support girls and minority students in science. A total of seven mentors met with the students at least once a week after school for one quarter to tutor and assist with science fair projects. Other activities included a field trip to a university earth science lab, judging the science fair, and assisting during laboratory exercises. Graduate students run the program with minimal organization and funding, communicating by electronic mail. An informal evaluation of the program by the mentors has concluded that the most valuable and effective activities have been the field trip and assisting with labs. The actual {open_quotes}mentor meetings{close_quotes} after school did not work effectively because they had a vaguely defined purpose and the kids did not show up regularly to participate. Future directions include redefining ourselves as mentors for the entire school instead of just one class and better coordinating our activities with the teachers` curriculum. We will continue to assist with the labs and organize formal tutoring for students having problems with math and science. Finally, we will arrange more activities and field trips such as an amateur astronomy night. We will especially target girls who attended the {open_quotes}Expanding Your Horizons{trademark} in Science, Mathematics, and Engineering{close_quotes} career day for those activities.

  5. Tank SY-102 remediation project summary report: ASPEN modeling

    SciTech Connect (OSTI)

    Punjak, W.A.; Schreiber, S.B.; Yarbro, S.L.

    1995-05-01T23:59:59.000Z

    The U.S. Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of radioactive waste stored in underground tanks on the Hanford Site. As a part of this program, personnel at Los Alamos National Laboratory (LANL) have developed and demonstrated a flow sheet to remediate tank SY-102, which is located in the 200 West Area and contains high-level radioactive waste. In the conceptual design report issued earlier, an ASPEN plus{trademark} computer model of the flow sheet was presented. This report documents improvements in the flow sheet model after additional thermodynamic data for the actinide species were incorporated.

  6. Origin and evolution of magmas on the Ontong Java Plateau J. GODFREY FITTON 1 & MARGUERITE GODARD 2

    E-Print Network [OSTI]

    Demouchy, Sylvie

    DrillingProject (DSDP) and Ocean DrillingProgram (ODP) drill sites on the plateau and in the adjacent on the plateau (Deep Sea Drilling Project (DSDP) Site 289 and Ocean Drilling Program (ODP) Sites 803 and 807) had penetrated basaltic basement. Five more basement sites were drilled during ODP Leg 192; basaltic lava flows

  7. Dry gas zone, Elk Hills Field, Kern County, California: General reservoir study: Engineering data, effective August 1, 1988

    SciTech Connect (OSTI)

    Not Available

    1989-01-10T23:59:59.000Z

    This reservoir study of the dry gas zone of Elk Hills Field is a data compilation with information relating to well: completion; production; pressure; and back pressure. (JF)

  8. Public resource allocation for programs aimed at managing woody plants on the Edwards Plateau: water yield, wildlife habitat, and carbon sequestration 

    E-Print Network [OSTI]

    Davis, Amber Marie

    2006-08-16T23:59:59.000Z

    The Edwards Plateau is the drainage area for the Edwards Aquifer, which provides water to over 2.2 million people. The plateau also provides other ecosystem services, such as wildlife habitat and the sequestration of atmospheric carbon dioxide...

  9. Public resource allocation for programs aimed at managing woody plants on the Edwards Plateau: water yield, wildlife habitat, and carbon sequestration

    E-Print Network [OSTI]

    Davis, Amber Marie

    2006-08-16T23:59:59.000Z

    The Edwards Plateau is the drainage area for the Edwards Aquifer, which provides water to over 2.2 million people. The plateau also provides other ecosystem services, such as wildlife habitat and the sequestration of atmospheric carbon dioxide...

  10. Regional Impact of an Elevated Heat Source: The Zagros Plateau of Iran BENJAMIN F. ZAITCHIK, JASON P. EVANS, AND RONALD B. SMITH

    E-Print Network [OSTI]

    Evans, Jason

    Regional Impact of an Elevated Heat Source: The Zagros Plateau of Iran BENJAMIN F. ZAITCHIK, JASON in the north, the Taurus Moun- tains of Turkey, and the Zagros Plateau in Iran. Inter- secting atmospheric

  11. Evaluation of the effectiveness of using alfalfa and buffalo grass for remediation of trichloroethylene from groundwater

    E-Print Network [OSTI]

    Caravello, Victor

    1998-01-01T23:59:59.000Z

    if buffalo grass would enhance the remediation of groundwater contaminated with trichloroethylene (TCE). A mass-balance experiment was designed and executed to determine the extent of TCE remediation/degradation occurring through buffalo grass. Measurements...

  12. The Effects of Behaviorist and Constructivist Instruction on Student Performance in College-level Remedial Mathematics

    E-Print Network [OSTI]

    Cox, Murray William

    2011-10-21T23:59:59.000Z

    for quality remedial mathematics classes is also growing. Institutions that place learners into remedial classes must also fund these same programs and are increasingly faced with disgruntled students, the appearance of having lower standards, and a...

  13. DOE to ship 20,000 b/d of Elk Hills oil to SPR

    SciTech Connect (OSTI)

    Not Available

    1992-05-11T23:59:59.000Z

    This paper reports that the U.S. department of Energy has decided to ship 20,000 b/d of its Elk Hills field production in California to the Strategic Petroleum Reserve on the Gulf Coast. DOE says prices are too low to sell the high quality Elk Hills Stevens zone oil on the California market. It had warned local buyers it might divert the oil to the Gulf Coast. It says shipping the Elk Hills crude to the SPR site at Big Hill, Tex., will save $2/bbl under the price of comparable crude delivered there for storage in the SPR. Pipeline shipments are to begin June 1 and continue for 4 months, totaling about 2.4 million bbl. DOE may or may not continue the shipments, depending on results of the semiannual Elk Hills crude oil sale in September. Reductions in the existing 12 sales contracts will be prorated among buyers. The 20,000 b/d volume is the most that can be shipped from the West Coast to the Gulf Coast through available pipelines.

  14. Interface control document between the Tank Waste Remediation System and the Solid Waste Disposal Division

    SciTech Connect (OSTI)

    Duncan, D.R.

    1995-04-01T23:59:59.000Z

    This document discusses the interface between the Tank Waste Remediation System (TWRS) and the Solid Waste Division (SWD).

  15. Recommendation 170: Remedial Investigation/Feasibility Study for East Tennessee Technology Park

    Broader source: Energy.gov [DOE]

    The ORSSAB Recommendation to DOE on a Remedial Investigation/Feasibility Study for East Tennessee Technology Park.

  16. Voluntary Protection Program Onsite Review, Soil and Groundwater Remediation Project- March 2007

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Soil and Groundwater Remediation Project is performing at a level deserving DOE-VPP recognition.

  17. Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks

    SciTech Connect (OSTI)

    T. M. Blakley; W. D. Schofield

    2007-09-10T23:59:59.000Z

    This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

  18. Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont

    E-Print Network [OSTI]

    Fleskes, Joe

    Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Reconnaissance soil geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont County.....................................................................................................................................................link Figures Figure 1. Location of 19 soil samples collected from the Riverton Uranium Mill Tailings Remedial

  19. Managing site remediation using pathway analysis, application to a semi-arid site

    SciTech Connect (OSTI)

    Rutz, E.E.; Ijaz, T.; Wood, R.P.; Eckart, R.E. [Univ. of Cincinnati, OH (United States). Dept. of Mechanical, Industrial and Nuclear Engineering

    1993-12-31T23:59:59.000Z

    This paper discusses the application of pathway analysis methodology to evaluate alternatives associated with remediation of a semi-arid site. Significant aspects of remediation include potential land uses, soil cleaning techniques and restoration alternatives. Important environmental transport pathways and dominant radionuclides are identified using pathway analysis. The remediation strategy is optimized based on results of the analysis.

  20. Remediation of arsenic-contaminated soils and groundwaters

    DOE Patents [OSTI]

    Peters, R.W.; Frank, J.R.; Feng, X.

    1998-06-23T23:59:59.000Z

    An in situ method is described for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal. 8 figs.

  1. In-situ remediation system for groundwater and soils

    DOE Patents [OSTI]

    Corey, J.C.; Kaback, D.S.; Looney, B.B.

    1991-01-01T23:59:59.000Z

    The present invention relates to a system for in-situ remediation of contaminated groundwater and soil. In particular the present invention relates to stabilizing toxic metals in groundwater and soil. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  2. National conference on environmental remediation science and technology: Abstracts

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    This conference was held September 8--10, 1998 in Greensboro, North Carolina. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on methods and site characterization technologies for environmental monitoring and remedial action planning of hazardous materials. This report contains the abstracts of sixty-one papers presented at the conference.

  3. Biogeochemical Considerations Related To The Remediation Of I-129 Plumes

    SciTech Connect (OSTI)

    Kaplan, D. I. [Savannah River Site (SRS), Aiken, SC (United States); Yeager, C. [Los Alamos National Laboratory , Los Alamos, NM (United States); Denham, M. E. [Savannah River Site (SRS), Aiken, SC (United States); Zhang, S. [Texas A& amp; M University, Galveston, TX (United States); Xu, C. [Texas A& amp; M University, Galveston, TX (United States); Schwehr, K. A. [Texas A& amp; M University, Galveston, TX (United States); Li, H. P. [Texas A& amp; M University, Galveston, TX (United States); Brinkmeyer, R. [Texas A& amp; M University, Galveston, TX (United States); Santschi, P. H. [Texas A& amp; M University, Galveston, TX (United States)

    2012-09-24T23:59:59.000Z

    The objectives of this report were to: provide a current state of the science of radioiodine biogeochemistry relevant to its fate and transport at the Hanford Site; conduct a review of Hanford Site data dealing with groundwater {sup 129}I; and identify critical knowledge gaps necessary for successful selection, implementation, and technical defensibility in support of remediation decisions.

  4. Managing Complex Environmental Remediation amidst Aggressive Facility Revitalization Milestones

    SciTech Connect (OSTI)

    Richter Pack, S. [PMP Science Applications International Corporation, Oak Ridge, TN (United States)

    2008-07-01T23:59:59.000Z

    Unlike the final closure projects at Rocky Flats and Fernald, many of the Department of Energy's future CERCLA and RCRA closure challenges will take place at active facilities, such as the Oak Ridge National Laboratory (ORNL) central campus. ORNL has aggressive growth plans for a Research Technology Park and cleanup must address and integrate D and D, soil and groundwater remediation, and on-going and future business plans for the Park. Different planning and tracking tools are needed to support closures at active facilities. To support some large Airport redevelopment efforts, we created tools that allowed the Airline lease-holder to perform environmental remediation on the same schedule as building D and D and new building construction, which in turn allowed them to migrate real estate from unusable to usable within an aggressive schedule. In summary: The FIM and OpenGate{sup TM} spatial analysis system were two primary tools developed to support simultaneous environmental remediation, D and D, and construction efforts at an operating facility. These tools helped redevelopers to deal with environmental remediation on the same schedule as building D and D and construction, thereby meeting their goals of opening gates, restarting their revenue streams, at the same time complying with all environmental regulations. (authors)

  5. REMEDIATION Autumn 2007 A Deterministic Approach to Evaluate

    E-Print Network [OSTI]

    Clement, Prabhakar

    Corrective Action, and Underground Storage Tank Sites." This OSWER directive identifies three lines by an existing remediation technology (e.g., pump-and-treat) make evaluation of MNA using only field data of a hydraulic containment system operated at the site for six years, direct field measurements could not be used

  6. Activated Peroxygens for Remediation of Contaminated Soil and Groundwater

    E-Print Network [OSTI]

    Hansen, René Rydhof

    of Doctor of Philosophy Department of Chemistry, Biotechnology and Environmental Engineering Section, Biotechnology and Environmental Engineering Section of Chemical Engineering CIChem Research Group Aalborg May 2011 #12;ii Activated Peroxygens for Remediation of Contaminated Soil and Groundwater Ph.D. thesis

  7. FY-95 technology catalog. Technology development for buried waste remediation

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

  8. In-Situ Thermal Remediation of Contaminated Soil1

    E-Print Network [OSTI]

    Lapin, Sergey

    Chapter 1 In-Situ Thermal Remediation of Contaminated Soil1 Written by Huaxiong Huang,2 Serguei Lapin and Rex Westbrook 1.1 Background Recently, a method for removing contaminants from soil (several as follows. Over a period of several weeks, electrical energy is introduced to the contaminated soil using

  9. Remediation of arsenic-contaminated soils and groundwaters

    DOE Patents [OSTI]

    Peters, Robert W. (Naperville, IL); Frank, James R. (Glen Ellyn, IL); Feng, Xiandong (West Richland, WA)

    1998-01-01T23:59:59.000Z

    An in situ method for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal.

  10. Uranium Mill Tailings Remedial Action Project surface project management plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials.

  11. IH Report # 04-011 April 2004 Mold Remediation

    E-Print Network [OSTI]

    during remediation. 5. Non-porous (metals, glass, hard plastics) and semi-porous (wood and concrete and Semi-Porous Materials (e.g., wood/concrete) 1. Remove and discard. Attempts should be made to minimize) materials can be cleaned and re-used. 6. Contaminated porous materials such as wallboards and ceiling tiles

  12. Remediation of Abandoned Mines Using Coal Combustion By-Products

    E-Print Network [OSTI]

    Aydilek, Ahmet

    . Maryland has about 450 coal mines out of which only 50 are active and about 150 mines produce AMD RafalkoRemediation of Abandoned Mines Using Coal Combustion By-Products Sowmya Bulusu1 ; Ahmet H. Aydilek that occurs when pyrite that is present in abandoned coal mines comes in contact with oxygen and water, which

  13. Description of the Formerly Utilized Sites Remedial Action Program

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    The background and the results to date of the Department of Energy program to identify and evaluate the radiological conditions at sites formerly utilized by the Corps of Engineers' Manhattan Engineer District (MED) and the US Atomic Energy Commission (AEC) are summarized. The sites of concern were federally, privately, and institutionally owned and were used primarily for research, processing, and storage of uranium and thorium ores, concentrates, or residues. Some sites were subsequently released for other purposes without radiological restriction. Surveys have been conducted since 1974 to document radiological conditions at such sites. Based on radiological surveys, sites are identified in this document that require, or are projected to require, remedial action to remove potential restrictions on the use of the property due to the presence of residual low-level radioactive contamination. Specific recommendations for each site will result from more detailed environmental and engineering surveys to be conducted at those sites and, if necessary, an environmental impact assessment or environmental impact statement will be prepared. Section 3.0 describes the current standards and guidelines now being used to conduct remedial actions. Current authority of the US Department of Energy (DOE) to proceed with remedial actions and the new authority required are summarized. A plan to implement the Formerly Utilized Sites Remedial Action Program (FUSRAP) in accordance with the new authority is presented, including the objectives, scope, general approach, and a summary schedule. Key issues affecting schedule and cost are discussed.

  14. Energetics of internal tides around the Kerguelen Plateau from modeling and altimetry

    E-Print Network [OSTI]

    data, we estimate the M2 barotropic tidal power converted through the internal tide generation process, with a parameterization term to account for the internal wave drag energy dissipation, is used to examine areas of possible M2 internal tide generation in the Kerguelen Plateau region. Barotropic energy flux

  15. Available online at www.sciencedirect.com Future world oil production: growth, plateau, or peak?

    E-Print Network [OSTI]

    Ito, Garrett

    Available online at www.sciencedirect.com Future world oil production: growth, plateau, or peak? Larry Hughes and Jacinda Rudolph With the exception of two oil shocks in the 1970s, world oil production that production will increase to about 96 million barrels a day. If this target is met, world oil production

  16. Energy balance and water use in a subtropical karst woodland on the Edwards Plateau, Texas

    E-Print Network [OSTI]

    Schwinning, Susan - Department of Biology, Texas State University

    Energy balance and water use in a subtropical karst woodland on the Edwards Plateau, Texas J and Crop Sciences, Texas A&M University, 2474 TAMU, College Station, TX 77843-2474, United States b Natural Resources Conservation Service, 625 Miramontes St., Suite 103, Half Moon Bay, CA 94019-1925, United States c

  17. Luminosity--time and luminosity--luminosity correlations for GRB prompt and afterglow plateau emissions

    E-Print Network [OSTI]

    Dainotti, M G; Willingale, R; Brien, P O'; Ostrowski, M; Nagataki, S

    2015-01-01T23:59:59.000Z

    We present an analysis of 123 Gamma-ray bursts (GRBs) with known redshifts possessing an afterglow plateau phase. We reveal that $L_a-T^{*}_a$ correlation between the X-ray luminosity $L_a$ at the end of the plateau phase and the plateau duration, $T^*_a$, in the GRB rest frame has a power law slope different, within more than 2 $\\sigma$, from the slope of the prompt $L_{f}-T^{*}_{f}$ correlation between the isotropic pulse peak luminosity, $L_{f}$, and the pulse duration, $T^{*}_{f}$, from the time since the GRB ejection. Analogously, we show differences between the prompt and plateau phases in the energy-duration distributions with the afterglow emitted energy being on average $10\\%$ of the prompt emission. Moreover, the distribution of prompt pulse versus afterglow spectral indexes do not show any correlation. In the further analysis we demonstrate that the $L_{peak}-L_a$ distribution, where $L_{peak}$ is the peak luminosity from the start of the burst, is characterized with a considerably higher Spearman ...

  18. Complete linear Weingarten surfaces of Bryant type. A Plateau problem at infinity.

    E-Print Network [OSTI]

    Gálvez, José Antonio

    Complete linear Weingarten surfaces of Bryant type. A Plateau problem at infinity. Jos´e Antonio G in H3 , also called Bryant surfaces, it was crucial the paper of R. Bryant [2], who showed how to parametrize these surfaces by meromorphic data and began the study of their geometry. Since Bryant's work many

  19. Abundant C4 plants on the Tibetan Plateau during the Lateglacial and early Holocene

    E-Print Network [OSTI]

    Covino, Tim

    Abundant C4 plants on the Tibetan Plateau during the Lateglacial and early Holocene Elizabeth K t Plants using the C4 (Hatch-Slack) photosynthetic pathway are key for global food production and account of modern naturally-occurring C4 plant species at elevations up to 4500 m in Tibet and 3000 m in Africa

  20. Evidence for the silicate source of relict soils on the Edwards Plateau, central Texas

    E-Print Network [OSTI]

    Banner, Jay L.

    Evidence for the silicate source of relict soils on the Edwards Plateau, central Texas M. Jennifer to middle Holocene. The relict, thick soils are silicate-rich and most commonly overlie the relatively silicate-poor Cretaceous Edwards Limestone, which supports the idea that the thick soils did not form from

  1. A plateau in the sensitivity of a compact optically pumped atomic magnetometer

    SciTech Connect (OSTI)

    Mizutani, Natsuhiko, E-mail: mizutani.natsuhiko@canon.co.jp; Okano, Kazuhisa; Ban, Kazuhiro; Ichihara, Sunao; Terao, Akira [Frontier Research Center, Canon Inc., Ohta-ku, Tokyo, 146-8501 (Japan); Kobayashi, Tetsuo [Department of Electrical Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510 (Japan)

    2014-05-15T23:59:59.000Z

    In a compact optically pumped atomic magnetometer (OPAM), there is a plateau in the sensitivity where the dependence of the sensitivity on pumping power is small compared with that predicted by the uniform polarization model. The mechanism that generates this plateau was explained by numerical analysis. The distribution of spin polarization in the alkali metal cell of an OPAM was modeled using the Bloch equation incorporating a diffusion term and an equation for the attenuation of the pump beam. The model was well-fitted to the experimental results for a module with a cubic cell with 20 mm sides and pump and probe beams with 8 mm diameter. On the plateau, strong magnetic response was generated at the regions that were not illuminated directly by the intense pump beam, while at the same time spin polarization as large as 0.5 was maintained due to diffusion of the spin-polarized atoms. Thus, the sensitivity of the magnetometer monitored with a probe beam decreases only slightly with increasing pump beam intensity because the spin polarization under an intense pump beam is saturated. This plateau, which is characteristic of this type of magnetometer using a narrow pump and probe beams, can be used in arrays of magnetometers because it enables stable operation with little sensitivity fluctuation from changes in pump beam power.

  2. Landowners' perceptions on coordinated wildlife and groundwater management in the Edwards Plateau 

    E-Print Network [OSTI]

    Limesand, Craig Milton

    2006-10-30T23:59:59.000Z

    Land, Water, and Wildlife Habitat Dynamics in Texas............................. 7 Aquifers of the Edwards Plateau.............................................................. .9 Groundwater Conservation Districts... from the Edwards-Trinity and Trinity aquifers in three central Texas counties. ??????????????????............... 11 2. Appraisal list statistics of counties in sample population, grouped by region...

  3. Holocene-Late Pleistocene Climatic Ice Core Records from Qinghai-Tibetan Plateau

    E-Print Network [OSTI]

    Howat, Ian M.

    for affecting large-scale climate. In 1987, three ice cores were recovered to bedrock from the Dunde ice cap. XIE Three ice cores to bedrock from the Dunde ice cap on the north-central Qinghai- Tibetan Plateau of ago. T HE DUNDE ICE CAP (38°06'N, 96°24'E) is located in a desert envi- ronment between the highest

  4. Strategic Petroleum Reserve (SPR) geological site characterization report, Big Hill Salt Dome

    SciTech Connect (OSTI)

    Hart, R.J.; Ortiz, T.S.; Magorian, T.R.

    1981-09-01T23:59:59.000Z

    Geological and geophysical analyses of the Big Hill Salt Dome were performed to determine the suitability of this site for use in the Strategic Petroleum Reserve (SPR). Development of 140 million barrels (MMB) of storage capacity in the Big Hill Salt Dome is planned as part of the SPR expansion to achieve 750 MMB of storage capacity. Objectives of the study were to: (1) Acquire, evaluate, and interpret existing data pertinent to geological characterization of the Big Hill Dome; (2) Characterize the surface and near-surface geology and hydrology; (3) Characterize the geology and hydrology of the overlying cap rock; (4) Define the geometry and geology of the dome; (5) Determine the feasibility of locating and constructing 14 10-MMB storage caverns in the south portion of the dome; and (6) Assess the effects of natural hazards on the SPR site. Recommendations are included. (DMC)

  5. Elk Hills endangered and threatened species program: Phase 1 progress summary

    SciTech Connect (OSTI)

    O'Farrell, T.P.

    1980-03-01T23:59:59.000Z

    The endangered San Joaquin kit fox, Vulpes macrotis mutica, and bluntnosed leopard lizard, Crotaphytus silus, are known to occur on the Elk Hills Naval Petroleum Reserve, NPR-1. An integrated, multiphased field program was designed to gather, synthesize, and interpret ecological information necessary for Biological Assessments required by the Secretary of Interior. These assessments will be used as the basis for a formal consultation with the Department of Interior to determine whether DOE activities on Elk Hills are compatible with the continued existence of the two species. Transects totalling 840 km were walked through all sections of Elk Hills to determine: (1) the presence and relative densities of endangered or threatened species; (2) past and potential impacts of NPR-1 activities on endangered and threatened species; and (3) the potential application of remote sensing for gathering necessary data.

  6. Conversion of the Big Hill geological site characterization report to a three-dimensional model.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Rautman, Christopher Arthur

    2003-02-01T23:59:59.000Z

    The Big Hill salt dome, located in southeastern Texas, is home to one of four underground oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Big Hill site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 14 oil storage caverns at the site. This work provides a realistic and internally consistent geologic model of the Big Hill site that can be used in support of future work.

  7. IMPROVED NATURAL GAS STORAGE WELL REMEDIATION

    SciTech Connect (OSTI)

    James C. Furness; Donald O. Johnson; Michael L. Wilkey; Lynn Furness; Keith Vanderlee; P. David Paulsen

    2001-12-01T23:59:59.000Z

    This report summarizes the research conducted during Budget Period One on the project ''Improved Natural Gas Storage Well Remediation''. The project team consisted of Furness-Newburge, Inc., the technology developer; TechSavants, Inc., the technology validator; and Nicor Technologies, Inc., the technology user. The overall objectives for the project were: (1) To develop, fabricate and test prototype laboratory devices using sonication and underwater plasma to remove scale from natural gas storage well piping and perforations; (2) To modify the laboratory devices into units capable of being used downhole; (3) To test the capability of the downhole units to remove scale in an observation well at a natural gas storage field; (4) To modify (if necessary) and field harden the units and then test the units in two pressurized injection/withdrawal gas storage wells; and (5) To prepare the project's final report. This report covers activities addressing objectives 1-3. Prototype laboratory units were developed, fabricated, and tested. Laboratory testing of the sonication technology indicated that low-frequency sonication was more effective than high-frequency (ultrasonication) at removing scale and rust from pipe sections and tubing. Use of a finned horn instead of a smooth horn improves energy dispersal and increases the efficiency of removal. The chemical data confirmed that rust and scale were removed from the pipe. The sonication technology showed significant potential and technical maturity to warrant a field test. The underwater plasma technology showed a potential for more effective scale and rust removal than the sonication technology. Chemical data from these tests also confirmed the removal of rust and scale from pipe sections and tubing. Focusing of the underwater plasma's energy field through the design and fabrication of a parabolic shield will increase the technology's efficiency. Power delivered to the underwater plasma unit by a sparkplug repeatedly was interrupted by sparkplug failure. The lifecycle for the plugs was less than 10 hours. An electrode feed system for delivering continuous power needs to be designed and developed. As a result, further work on the underwater plasma technology was terminated. It needs development of a new sparking system and a redesign of the pulsed power supply system to enable the unit to operate within a well diameter of less than three inches. Both of these needs were beyond the scope of the project. Meanwhile, the laboratory sonication unit was waterproofed and hardened, enabling the unit to be used as a field prototype, operating at temperatures to 350 F and depths of 15,000 feet. The field prototype was extensively tested at a field service company's test facility before taking it to the field site. The field test was run in August 2001 in a Nicor Gas storage field observation well at Pontiac, Illinois. Segmented bond logs, gamma ray neutron logs, water level measurements and water chemistry samples were obtained before and after the downhole demonstration. Fifteen tests were completed in the field. Results from the water chemistry analysis showed an increase in the range of calcium from 1755-1984 mg/l before testing to 3400-4028 mg/l after testing. For magnesium, the range increased from 285-296 mg/l to 461-480 mg/l. The change in pH from a range of 3.11-3.25 to 8.23-8.45 indicated a buffering of the acidic well water, probably due to the increased calcium available for buffering. The segmented bond logs showed no damage to the cement bond in the well and the gamma ray neutron log showed no increase in the amount of hydrocarbons present in the formation where the testing took place. Thus, the gas storage bubble in the aquifer was not compromised. A review of all the field test data collected documents the fact that the application of low-frequency sonication technology definitely removes scale from well pipe. Phase One of this project took sonication technology from the concept stage through a successful ''proof-of-concept'' downhole application in a natural gas storage field

  8. Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase IV

    SciTech Connect (OSTI)

    R. P. Wells

    2006-11-14T23:59:59.000Z

    This Phase IV Remedial Design/Remedial Action Work Plan addresses the remediation of areas with the potential for UXO at the Idaho National Laboratory. These areas include portions of the Naval Proving Ground, the Arco High-Altitude Bombing Range, and the Twin Buttes Bombing Range. Five areas within the Naval Proving Ground that are known to contain UXO include the Naval Ordnance Disposal Area, the Mass Detonation Area, the Experimental Field Station, The Rail Car Explosion Area, and the Land Mine Fuze Burn Area. The Phase IV remedial action will be concentrated in these five areas. For other areas, such as the Arco High-Altitude Bombing Range and the Twin Buttes Bombing Range, ordnance has largely consisted of sand-filled practice bombs that do not pose an explosion risk. Ordnance encountered in these areas will be addressed under the Phase I Operations and Maintenance Plan that allows for the recovery and disposal of ordnance that poses an imminent risk to human health or the environment.

  9. POPULATION ESTIMATION PROCEDURES FOR ELK AND DEER IN THE BLACK HILLS, SOUTH DAKOTA: DEVELOPMENT OF A SIGHTABILITY

    E-Print Network [OSTI]

    POPULATION ESTIMATION PROCEDURES FOR ELK AND DEER IN THE BLACK HILLS, SOUTH DAKOTA: DEVELOPMENT PROCEDURES FOR ELK AND DEER IN THE BLACK HILLS, SOUTH DAKOTA: DEVELOPMENT OF A SIGHTABILITY MODEL my masters in elk research. It has been a wonderful learning and growing experience for which I am

  10. Apparatus and method for extraction of chemicals from aquifer remediation effluent water

    DOE Patents [OSTI]

    McMurtrey, Ryan D. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID); Moor, Kenneth S. (Idaho Falls, ID); Shook, G. Michael (Idaho Falls, ID); Moses, John M. (Dedham, MA); Barker, Donna L. (Idaho Falls, ID)

    2002-01-01T23:59:59.000Z

    An apparatus and method for extraction of chemicals from an aquifer remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating aquifers contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.

  11. Method and system for extraction of chemicals from aquifer remediation effluent water

    DOE Patents [OSTI]

    McMurtrey, Ryan D. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID); Moor, Kenneth S. (Idaho Falls, ID); Shook, G. Michael (Idaho Falls, ID); Barker, Donna L. (Idaho Falls, ID)

    2003-01-01T23:59:59.000Z

    A method and system for extraction of chemicals from an groundwater remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating groundwater contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.

  12. Improving Remedial Planning Performance: The Rattlesnake Creek Experience

    SciTech Connect (OSTI)

    Rieman, C.R.; Spector, H.L.; Andrews, S.M. [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States); Durham, L. A.; Johnson, R. L. [Argonne National Laboratory, 9700 S. Cass Ave., EVS 900, Argonne, IL 60439 (United States); Racino, R. R. [Cabrera Services, Inc., 29 Railroad Avenue, Middletown, NY 10940 (United States)

    2006-07-01T23:59:59.000Z

    The U.S. Army Corps of Engineers (USACE), Buffalo District, has responsibility for characterizing and remediating radiologically contaminated properties under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Most of these FUSRAP sites include radionuclide contamination in soils where excavation and offsite disposal is the selected remedial action. For many FUSRAP soil remediation projects completed to date, the excavated contaminated soil volumes have significantly exceeded the pre-excavation volume estimates that were developed for project planning purposes. The exceedances are often attributed to limited and sparse datasets that are used to calculate the initial volume estimates. These volume exceedances complicate project budgeting and planning. Building on these experiences, the USACE took a different approach in the remediation of Rattlesnake Creek, located adjacent to the Ashland 2 site, in Tonawanda, New York. This approach included a more extensive pre-design data collection effort to improve and reduce the uncertainty in the pre-excavation volume estimates, in addition to formalizing final status survey data collection strategies prior to excavation. The final status survey sampling was fully integrated with the pre-design data collection, allowing dual use of the pre-design data that was collected (i.e., using the data to close out areas where contamination was not found, and feeding the data into volume estimates when contamination was encountered). The use of real-time measurement techniques (e.g., X-ray fluorescence [XRF] and gamma walkover surveys) during pre-excavation data collection allowed the USACE to identify and respond to unexpected contamination by allocating additional data collection to characterizing new areas of concern. The final result was an estimated soil volume and excavation footprint with a firm technical foundation and a reduction in uncertainty. However, even with extensive pre-design data collection, additional contamination was found during the excavation that led to an increase in the soil volume requiring offsite disposal. This paper describes the lessons learned regarding improving remedial planning performance from the Rattlesnake Creek experience and evaluates the level of project uncertainty reduction achieved through pre-design data collection. (authors)

  13. Magnetotelluric images of the crustal structure of Chyulu Hills volcanic field, Kenya

    E-Print Network [OSTI]

    Meju, Max

    Magnetotelluric images of the crustal structure of Chyulu Hills volcanic field, Kenya V. Sakkas volcanic chain on the eastern flank of the Kenya Rift in East Africa. Transient electromagnetic (TEM flank of the Kenya Rift deduced from wide-angle P-wave data. In: Fuchs, K., Altherr, R., Muller, B

  14. EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess potential environmental impacts of the proposed rebuild of its 26-mile 115 kilovolt (kV) wood-pole Hills Creek-Lookout Point transmission line, which is generally located between Lowell and Oakridge, in Lane County, Oregon.

  15. Corrosion of Metals in Composite Cements Anthony Setiadi*, J. Hill and N. B. Milestone

    E-Print Network [OSTI]

    Sheffield, University of

    Corrosion of Metals in Composite Cements Anthony Setiadi*, J. Hill and N. B. Milestone. However, there may be issues regarding the corrosion of some of the metal components which arise from reprocessing and decommissioning due to the alkaline environment in the cement grouts. The corrosion

  16. ROBOTICS WITHIN THE TEACHING OF PROBLEM-SOLVING SCOTT TURNER AND GARY HILL

    E-Print Network [OSTI]

    Hill, Gary

    ROBOTICS WITHIN THE TEACHING OF PROBLEM-SOLVING SCOTT TURNER AND GARY HILL DIVISION OF COMPUTING-solving approaches, are tasks using Mindstorm (LEGO, Denmark) robot kits. This is being done as a foundation step of a previous robot problem. Results of student evaluation and feedback will be presented and the use of two

  17. The 26 December (Boxing Day) 1997 sector collapse and debris avalanche at Soufriere Hills Volcano, Montserrat

    E-Print Network [OSTI]

    Belousov, Alexander

    , Russia 5 Institut de Physique du Globe de Paris (IPGP), 4 Place Jussieu, B 89, 75252 Cedex 05 Paris & Mullineaux 1981). At Soufriere Hills, an andesilic lava dome had grown over the unstable, hydro- thermally dome was exposed and depressurized, and it exploded to generate a powerful pyroclastic density current

  18. Search for Harmonic tremor in the Galapagos Jonathan M. Lees, University of North Carolina, Chapel Hill

    E-Print Network [OSTI]

    Geist, Dennis

    Search for Harmonic tremor in the Galapagos Jonathan M. Lees, University of North Carolina, Chapel Hill Harmonic volcano tremor can provide details of conduit physics during magma flow and volcano.71.2 Hz. Harmonic tremor has not been reported on Galapagos volcanoes, possibly because seismic

  19. Highway 280 North or South Take the Sand Hill Road exit, head east

    E-Print Network [OSTI]

    Ford, James

    Highway 280 North or South · Take the Sand Hill Road exit, head east · Turn right on Stock Farm for "all" below From Bayshore US Highway 101 NorthFrom Bayshore US Highway 101 North or South · Take · Turn left on Stock Farm Road LKSC ParkingTurn left on Stock Farm Road · Make the next lefthand turn

  20. Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal

    E-Print Network [OSTI]

    Avouac, Jean-Philippe

    Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal J. Lave´1 of central Nepal, south of the Kathmandu Basin. The Main Frontal Thrust fault (MFT), which marks the southern analysis, complemented by geological investiga- tions in central Nepal. Active deformation in the Himalaya

  1. Ambient noise seismic imaging Journal: McGraw Hill 2008 Yearbook of Science & Technology

    E-Print Network [OSTI]

    Ritzwolle, Mike

    ForReview Ambient noise seismic imaging Journal: McGraw Hill 2008 Yearbook of Science & Technology List of Authors: Ritzwoller, Michael Keywords: ambient noise, seismology, seismic tomography, Rayleigh wave, Love wave, surface wave Abstract: A recent innovation in seismic imaging based on using long time

  2. Laboratory evaluation of damage criteria and permeability of Big Hill salt.

    SciTech Connect (OSTI)

    Ehgartner, Brian L.; Park, Byoung Yoon; Lee, Moo Yul; Bronowski, David R.

    2004-11-01T23:59:59.000Z

    To establish strength criteria of Big Hill salt, a series of quasi-static triaxial compression tests have been completed. This report summarizes the test methods, set-up, relevant observations, and results. The triaxial compression tests established dilatant damage criteria for Big Hill salt in terms of stress invariants (I{sub 1} and J{sub 2}) and principal stresses ({sigma}{sub a,d} and {sigma}{sub 3}), respectively: {radical}J{sub 2}(psi) = 1746-1320.5 exp{sup -0.00034I{sub 1}(psi)}; {sigma}{sub a,d}(psi) = 2248 + 1.25 {sigma}{sub 3} (psi). For the confining pressure of 1,000 psi, the dilatant damage strength of Big Hill salt is identical to the typical salt strength ({radical}J{sub 2} = 0.27 I{sub 1}). However, for higher confining pressure, the typical strength criterion overestimates the damage strength of Big Hill salt.

  3. Hazardous Waste Remedial Actions Program annual progress report, FY 1990

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    The Hazardous Waste Remedial Actions Programs (HAZWRAP), a unit of Martin Marietta Energy Systems, Inc., supports the Department of Energy (DOE) Oak Ridge Operations Office in broadly environmental areas, especially those relating to waste management and environmental restoration. HAZWRAP comprises six program areas, which are supported by central administrative and technical organizations. Existing programs deal with airborne hazardous substances, pollution prevention, remedial actions planning, environmental restoration, technology development, and information and data systems. HAZWRAP's mission to develop, promote, and apply-cost-effective hazardous waste management and environmental technologies to help solve national problems and concerns. HAZWRAP seeks to serve as integrator for hazardous waste and materials management across the federal government. It applies the unique combination of research and development (R D) capabilities, technologies, management expertise, and facilities in the Energy Systems complex to address problems of national importance. 24 figs., 10 tabs.

  4. Decontamination formulation with additive for enhanced mold remediation

    DOE Patents [OSTI]

    Tucker, Mark D. (Albuquerque, NM); Irvine, Kevin (Huntsville, AL); Berger, Paul (Rome, NY); Comstock, Robert (Bel Air, MD)

    2010-02-16T23:59:59.000Z

    Decontamination formulations with an additive for enhancing mold remediation. The formulations include a solubilizing agent (e.g., a cationic surfactant), a reactive compound (e.g., hydrogen peroxide), a carbonate or bicarbonate salt, a water-soluble bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate), a mold remediation enhancer containing Fe or Mn, and water. The concentration of Fe.sup.2+ or Mn.sup.2+ ions in the aqueous mixture is in the range of about 0.0001% to about 0.001%. The enhanced formulations can be delivered, for example, as a foam, spray, liquid, fog, mist, or aerosol for neutralization of chemical compounds, and for killing certain biological compounds or agents and mold spores, on contaminated surfaces and materials.

  5. In-situ groundwater remediation by selective colloid mobilization

    DOE Patents [OSTI]

    Seaman, J.C.; Bertch, P.M.

    1998-12-08T23:59:59.000Z

    An in-situ groundwater remediation pump and treat technique is described which is effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, and which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment. 3 figs.

  6. In-situ groundwater remediation by selective colloid mobilization

    DOE Patents [OSTI]

    Seaman, John C. (New Ellenton, SC); Bertch, Paul M. (Aiken, SC)

    1998-01-01T23:59:59.000Z

    An in-situ groundwater remediation pump and treat technique effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment.

  7. Current activities handbook: formerly utilized sites remedial action program

    SciTech Connect (OSTI)

    none,

    1981-02-27T23:59:59.000Z

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the activities each of the thirteen state legislatures potentially affected by the Formerly Utilized Sites Remedial Action Program. It contains a description of the state legislative procedural rules and a schedule of each legislative session; a summary of pending relevant legislation; the name and telephone number of legislative and state agency contacts; and the full text of all bills identified.

  8. Environmental Restoration Strategic Plan. Remediating the nuclear weapons complex

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    With the end of the cold war, the US has a reduced need for nuclear weapons production. In response, the Department of Energy has redirected resources from weapons production to weapons dismantlement and environmental remediation. To this end, in November 1989, the US Department of Energy (DOE) established the Office of Environmental Restoration and Waste Management (renamed the Office of Environmental Management in 1994). It was created to bring under a central authority the management of radioactive and hazardous wastes at DOE sites and inactive or shut down facilities. The Environmental Restoration Program, a major component of DOE`s Environmental Management Program, is responsible for the remediation and management of contaminated environmental media (e.g., soil, groundwater, sediments) and the decommissioning of facilities and structures at 130 sites in over 30 states and territories.

  9. Using GIS to Identify Remediation Areas in Landfills

    SciTech Connect (OSTI)

    Linda A.Tedrow

    2004-08-01T23:59:59.000Z

    This paper reports the use of GIS mapping software—ArcMap and ArcInfo Workstation—by the Idaho National Engineering and Environmental Laboratory (INEEL) as a non-intrusive method of locating and characterizing radioactive waste in a 97-acre landfill to aid in planning cleanup efforts. The fine-scale techniques and methods used offer potential application for other burial sites for which hazards indicate a non-intrusive approach. By converting many boxes of paper shipping records in multiple formats into a relational database linked to spatial data, the INEEL has related the paper history to our current GIS technologies and spatial data layers. The wide breadth of GIS techniques and tools quickly display areas in need of remediation as well as evaluate methods of remediation for specific areas as the site characterization is better understood and early assumptions are refined.

  10. Remedial Action Work Plan Amchitka Island Mud Pit Closures

    SciTech Connect (OSTI)

    DOE/NV

    2001-04-05T23:59:59.000Z

    This remedial action work plan presents the project organization and construction procedures developed for the performance of the remedial actions at U.S. Department of Energy (DOE's) sites on Amchitka Island, Alaska. During the late1960s and early 1970s, the U.S. Department of Defense and the U.S. Atomic Energy Commission (the predecessor agency to DOE) used Amchitka Island as a site for underground nuclear tests. A total of nine sites on the Island were considered for nuclear testing; however, tests were only conducted at three sites (i.e., Long Shot in 1965, Milrow in 1969, and Cannikin in 1971). In addition to these three sites, large diameter emplacement holes were drilled in two other locations (Sites D and F) and an exploratory hole was in a third location (Site E). It was estimated that approximately 195 acres were disturbed by drilling or preparation for drilling in conjunction with these activities. The disturbed areas include access roads, spoil-disposal areas, mud pits which have impacted the environment, and an underground storage tank at the hot mix plant which was used to support asphalt-paving operations on the island. The remedial action objective for Amchitka Island is to eliminate human and ecological exposure to contaminants by capping drilling mud pits, removing the tank contents, and closing the tank in place. The remedial actions will meet State of Alaska regulations, U.S. Fish and Wildlife Service refuge management goals, address stakeholder concerns, and address the cultural beliefs and practices of the native people. The U.S. Department of Energy, Nevada Operations Office will conduct work on Amchitka Island under the authority of the Comprehensive Emergency Response, Compensation, and Liability Act. Field activities are scheduled to take place May through September 2001. The results of these activities will be presented in a subsequent Closure Report.

  11. Hanford site tank waste remediation system programmatic environmental review report

    SciTech Connect (OSTI)

    Haass, C.C.

    1998-09-03T23:59:59.000Z

    The US Department of Energy (DOE) committed in the Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS) Record of Decision (ROD) to perform future National Environmental Policy Act (NEPA) analysis at key points in the Program. Each review will address the potential impacts that new information may have on the environmental impacts presented in the TWRS EIS and support an assessment of whether DOE`s plans for remediating the tank waste are still pursuing the appropriate plan for remediation or whether adjustments to the program are needed. In response to this commitment, DOE prepared a Supplement Analysis (SA) to support the first of these reevaluations. Subsequent to the completion of the SA, the Phase IB negotiations process with private contractors resulted in several changes to the planned approach. These changes along with other new information regarding the TWRS Program have potential implications for Phase 1 and Phase 2 of tank waste retrieval and waste storage and/or disposal that may influence the environmental impacts of the Phased Implementation alternative. This report focuses on identifying those potential environmental impacts that may require NEPA analysis prior to authorization to begin facility construction and operations.

  12. SEQUESTERING AGENTS FOR ACTIVE CAPS - REMEDIATION OF METALS AND ORGANICS

    SciTech Connect (OSTI)

    Knox, A; Michael Paller, M; Danny D. Reible, D; Xingmao Ma, X; Ioana G. Petrisor, I

    2007-05-10T23:59:59.000Z

    This research evaluated organoclays, zeolites, phosphates, and a biopolymer as sequestering agents for inorganic and organic contaminants. Batch experiments were conducted to identify amendments and mixtures of amendments for metal and organic contaminants removal and retention. Contaminant removal was evaluated by calculating partitioning coefficients. Metal retention was evaluated by desorption studies in which residue from the removal studies was extracted with 1 M MgCl{sub 2} solution. The results indicated that phosphate amendments, some organoclays, and the biopolymer, chitosan, were very effective sequestering agents for metals in fresh and salt water. Organoclays were very effective sorbents for phenanthrene, pyrene, and benzo(a)pyrene. Partitioning coefficients for the organoclays were 3000-3500 ml g{sup -1} for benzo(a)pyrene, 400-450 ml g{sup -1} for pyrene, and 50-70 ml g{sup -1} for phenanthrene. Remediation of sites with a mixture of contaminants is more difficult than sites with a single contaminant because metals and organic contaminants have different fate and transport mechanisms in sediment and water. Mixtures of amendments (e.g., organoclay and rock phosphate) have high potential for remediating both organic and inorganic contaminants under a broad range of environmental conditions, and have promise as components in active caps for sediment remediation.

  13. In Situ Remediation Integrated Program: FY 1994 program summary

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The US Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of the Office of Environmental Management (EM) in November 1989. In an effort to focus resources and address priority needs, EM-50 introduced the concept of integrated programs (IPs) and integrated demonstrations (IDs). The In Situ Remediation Integrated Program (ISR IP) focuses research and development on the in-place treatment of contaminated environmental media, such as soil and groundwater, and the containment of contaminants to prevent the contaminants from spreading through the environment. Using in situ remediation technologies to clean up DOE sites minimizes adverse health effects on workers and the public by reducing contact exposure. The technologies also reduce cleanup costs by orders of magnitude. This report summarizes project work conducted in FY 1994 under the ISR IP in three major areas: treatment (bioremediation), treatment (physical/chemical), and containment technologies. Buried waste, contaminated soils and groundwater, and containerized waste are all candidates for in situ remediation. Contaminants include radioactive waste, volatile and nonvolatile organics, heavy metals, nitrates, and explosive materials.

  14. Uranium Mill Tailings Remedial Action fiscal year 1992 roadmap

    SciTech Connect (OSTI)

    Not Available

    1993-02-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project is funded and managed as two separate projects: Surface remediation (UMTRA-S) and Groundwater compliance (UMTRA-G). Surface remediation is a Major System Acquisition and has been completed at 10 sites, 7 sites are under construction, and 7 sites are in the planning stage. The planning stages of the UMTRA-G Project, a major project, began in April 1991. A programmatic environmental impact statement (PEIS) has been started. Site characterization work and baseline risk assessment will begin FY 1993. Thus, the UMTRA-S Project is a mature and ongoing program with the roles of various organizations well defined, while the UMTRA-G Project is still being formulated and the interfaces between the DOE, states and tribes, and the EPA are being established. The Office of Environmental Restoration and Waste Management (EM) directed that all projects under its authority develop roadmaps for their activities. The UMTRA Project Roadmap was developed by the UMTRA Project Office with input from the TAC, RAC, the GJPO, and assistance from SAIC. A single roadmap has been prepared for both the UMTRA-S and UMTRA-G Projects. This was deemed appropriate due to the close relationship between the projects and to the fact that the same Government and contractor personnel are preparing the roadmaps. Roadmap development is a planning process that focuses on issue identification, root-cause analysis, and issues resolution. The methodology is divided into three phases: assessment, analysis, and issues resolution.

  15. Uranium Mill Tailings Remedial Action (UMTRA) Project. [UMTRA project

    SciTech Connect (OSTI)

    Not Available

    1989-09-01T23:59:59.000Z

    The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, hereinafter referred to as the Act.'' Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial action at designated inactive uranium processing sites (Attachment 1 and 2) and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing site. The purpose of the remedial actions is to stabilize and control such uranium mill tailings and other residual radioactive materials in a safe and environmentally sound manner to minimize radiation health hazards to the public. The principal health hazards and environmental concerns are: the inhalation of air particulates contaminated as a result of the emanation of radon from the tailings piles and the subsequent decay of radon daughters; and the contamination of surface and groundwaters with radionuclides or other chemically toxic materials. This UMTRA Project Plan identifies the mission and objectives of the project, outlines the technical and managerial approach for achieving them, and summarizes the performance, cost, and schedule baselines which have been established to guide operational activity. Estimated cost increases by 15 percent, or if the schedule slips by six months. 4 refs.

  16. The UMTRA PEIS: A strategy for groundwater remediation

    SciTech Connect (OSTI)

    Burt, C.; Ulland, L.; Weston, R.F.; Metzler, D. (DOE, Albuquerque, NM (United States))

    1993-01-01T23:59:59.000Z

    A programmatic environmental impact statement (PEIS) was initiated in 1992 for the uranium mill tailings remedial action (UMTRA) program. The PEIS kicked off the groundwater restoration phase of UMTRA, a project involving remediation of 24 sites in ten states and tribal lands contaminated with tailings from uranium mining and milling operations. The U.S. Department of Energy (DOE) agreed, in early 1992, that a PEIS was an appropriate strategy to comply with the National Environmental Policy Act (NEPA) for this second, groundwater phase of the project. This decision recognized that although a parallel effort was being undertaken in preparing a PEIS for DOE's Environmental Restoration/Waste Management (ER/WM) program, characteristics and the maturity of the UMTRA project made it more appropriate to prepare a separate PEIS. The ER/WM PEIS is intended to examine environmental restoration and waste management issues from a very broad perspective. For UMTRA, with surface remediation completed or well under way at 18 of the 24 sites, a more focused programmatic approach for groundwater restoration is more effective than including the UMTRA project within the ER/WM environmental impact statements. A separate document allows a more focused and detailed analysis necessary to efficiently tier site-specific environmental assessments for groundwater restoration at each of the 24 UMTRA former processing sites.

  17. UMTRA -- The US Uranium Mill Tailings Remedial Action Project

    SciTech Connect (OSTI)

    Lightner, R. [Dept. of Energy, Washington, DC (United States); Cormier, C. [Department of Energy, Albuquerque, NM (United States); Bierley, D. [Roy F. Weston, Inc., Albuquerque, NM (United States)

    1995-12-31T23:59:59.000Z

    In the late 1970s, the United States (US) established the first comprehensive regulatory structure for the management, disposal, and long-term care of wastes produced from its domestic uranium processing industry. This regulatory framework was established through the passage of the Uranium Mill Tailings Radiation Control Act of 1978, often referred to as UMTRCA. This legislation created the Uranium Mill Tailings Remedial Action (UMTRA) Project and assigned the US Department of Energy (DOE) the lead in conducting the required remedial action at 24 designated inactive uranium ore processing sites. With the majority of these 22 sites complete, the DOE`s UMTRA Project has established a distinguished reputation for safely and effectively remediating these low-level waste sites in a complex regulatory and socioeconomic environment. This paper describes the past accomplishments and current status of the UMTRA Project and discusses the DOE`s plans for addressing ground water contamination associated with these sites and its commitment to continuing the long-term care and management of these disposal cells.

  18. UMTRA (Uranium Mill Tailings Remedial Action) Project site management manual

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    The purpose of this manual is to summarize the organizational interfaces and the technical approach used to manage the planning, design development, National Environmental Policy Act (NEPA) compliance, engineering, and remedial action required to stabilize and control the designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites. This manual describes the Project's objective, participants' roles and responsibilities, technical approach for accomplishing the objective, and planning and managerial controls to be used in performing the site work. The narrative follows the flow of activities depicted in Figure 1.1, which provides the typical sequence of key Project activities. A list of acronyms used is presented at the end of the manual. The comparable manual for UMTRA Project vicinity properties is the Vicinity Properties Management and Implementation Manual'' (VPMIM) (UMTRA-DOE/AL-050601). Together, the two manuals cover the remedial action activities associated with UMTRA Project sites. The UMTRA Project's objective is to stabilize and control the uranium mill tailings, vicinity property materials, and other residual radioactive materials at the designated sites (Figure 1.2) in a safe and environmentally sound manner in order to minimize radiation health hazards to the public. 26 figs., 6 tabs.

  19. Remediation cleanup options for the Hoe Creek UCG site

    SciTech Connect (OSTI)

    Nordin, J.; Griffin, W.; Chatwin, T.; Lindblom, S.; Crader, S.

    1990-03-01T23:59:59.000Z

    The US Department of Energy must restore groundwater quality at the Hoe Creek, Wyoming, underground coal gasification site using the best proven practicable technology. Six alternative remediation methods are evaluated in this project: (1) excavation, (2) three variations of groundwater plume containment, (3) in situ vacuum extraction, (4) pump and treat using a defined pattern of pumping wells to obtain an effective matrix sweep, (5) in situ flushing using a surfactant, and (6) in situ bioremediation. Available site characterization data is insufficient to accurately project the cost of remediation. Several alternative hypothetical examples and associated costs are described in the text and in the appendices. However, not enough information is available to use these examples as a basis for comparison purposes. Before a cleanup method is selected, core borings should be taken to define the areal extent and depth of contaminated matrix material. Segments of these core borings should be analyzed for organic contaminants in the soil (e.g., benzene) and their relationship to the groundwater contamination. These analyses and subsequent treatability studies will show whether or not the contaminants can be effectively removed by surface on in situ volatilization, leached from the matrix using washing solutions, or removed by bioremediation. After this information is obtained, each technology should be evaluated with respect to cost and probability of success. A decision tree for implementing remediation cleanup at the Hoe Creek site is presented in this report. 26 refs., 11 figs., 3 tabs.

  20. Dissecting the eastern margin of the Tibetan plateau : a study of landslides, erosion and river incision in a transient landscape

    E-Print Network [OSTI]

    Ouimet, William Burke

    2007-01-01T23:59:59.000Z

    The eastern margin of the Tibetan plateau is characterized by large rivers dissecting regional topography that has been uplifted in association with the continued convergence of the Indian subcontinent and Eurasia. In this ...

  1. The development of orogenic plateaus : Plateaus: case studies examining relationships between tectonics, crustal strength, surface deformation, and plateau morphology

    E-Print Network [OSTI]

    Cook, Kristen Lee

    2008-01-01T23:59:59.000Z

    This thesis addresses processes associated with the uplift, deformation, and erosion of orogenic plateaus. The timing and mechanisms of uplift of the Tibetan Plateau and the Altiplano are the subject of ongoing debate. ...

  2. Tradeoffs associated with increasing water yield from the Edwards Plateau, Texas: balancing private costs and public benefits 

    E-Print Network [OSTI]

    Garriga, Matthew David

    1998-01-01T23:59:59.000Z

    The Edwards Aquifer supplies water to approximately 2 million people in central Texas and is recharged by rangelands on the Edwards Plateau, Texas. Since water yields increase from rangelands when brush is controlled, citizens of the region have a...

  3. Effects of short duration grazing on white-tailed deer in the Edwards PLateau and Rio Grande Plain of Texas

    E-Print Network [OSTI]

    Richardson, Calvin Lemuiel

    1986-01-01T23:59:59.000Z

    EFFECTS OF SHORT DURATION GRAZING ON WHITE-TAILED DEER IN THE EDWARDS PLATEAU AND RIO GRANDE PLAIN OF TEXAS A Thesis by CALVIN LEMUIEL RICHARDSON Submitted to the Graduate College of Texas ARM L'niversity in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1986 Major Subject: Wildlife and Fisheries Sciences EFFECTS OF SHORT DURATION GRAZING ON WHITE-TAILED DEER IN THE EDWARDS PLATEAU AND RIO GRANDE PLAIN OF TEXAS A Thesis by CALVIN LEMUIEL...

  4. Formerly Used Sites Remedial Action Program (FUSRAP) W. R. Grace Building 23 Remedial Action-Challenges and Successes - 12247

    SciTech Connect (OSTI)

    Barber, Brenda; Honerlah, Hans [U.S. Army Corps of Engineers - Baltimore District, 10 S. Howard St., Baltimore, Maryland, 21201 (United States); O'Neill, Mike [EA Engineering, Science, and Technology, 15 Loveton Circle, Baltimore, Maryland, 21152 (United States); Young, Carl [Cabrera Services, Inc., 1106 N. Charles St., Suite 300, Baltimore, MD 21201 (United States)

    2012-07-01T23:59:59.000Z

    Monazite sand processing was conducted at the W. R. Grace Curtis Bay Facility (Baltimore, Maryland) from mid-May 1956 through the spring of 1957 under license to the Atomic Energy Commission (AEC), for the extraction of source material in the form of thorium, as well as rare earth elements. The processing was conducted in the southwest quadrant of a ca. 100 year old, five-story, building (Building 23) in the active manufacturing portion of the facility. Building components and equipment in the southwest quadrant of Building 23 exhibited residual radiological activity remaining from the monazite sand processing. U.S. Army Corps of Engineers (USACE) conducted a remedial investigation (RI) and feasibility study (FS) and prepared a Record of Decision (ROD) to address residual radioactivity on building components and equipment in the southwest quadrant of Building 23. The remedy selected for the southwest quadrant of Building 23, which was documented in the ROD (dated May 2005), was identified as 'Alternative 2: Decontamination With Removal to Industrial Use Levels'. The selected remedy provided for either decontaminating or removing areas of radioactivity to meet the RGs. Demonstration of compliance with the selected ARAR was performed using the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) and other appropriate guidance, as well as appropriate dose modeling codes where necessary. USACE-Baltimore District along with its private industry partner worked together under the terms of a 2008 Settlement Agreement to implement the remedial action (RA) for the southwest quadrant of Building 23. The RA was conducted in two phases: Phase 1 was completed to improve the building condition for support of subsequent remedial action and decrease scope uncertainty of the remedial action, and Phase 2 included decontamination and removal activities to meet the RGs and demonstration of compliance with the selected ARAR. Challenges encountered during the RA include: coordination with stakeholders, coordination between multiple RA contractors, addressing unique structural challenges for Building 23, nonradiological hazards associated with the RA, weather issues, and complex final status survey (FSS) coordination. The challenges during the Phase 1 RA were handled successfully. The challenges for the Phase 2 RA, which is anticipated to be complete by late-summer of 2012, have been handled successfully so far. By fall of 2012, USACE is expecting to finalize a robust RA Closure Report, including the Final Status Survey Report, which summarizes the RA activities and documents compliance with the ROD. During the ongoing RA at Building 23, there have been and still are many challenges both technically and from a project management perspective, due in part to the nature and extent of impact at the site (residual radioactivity within an active processing building), dual oversight by the property owner and USACE, and site-specific challenges associated with a complex RA and multiple contractors. Currently, USACE and its industry partner are overseeing the completion of RA field activities. RA closure documentation for the remediation of Building 23 to address residual contamination in building materials will be reviewed/approved by USACE and its industry partner upon completion of the field activities. USACE and its industry partner are working well together, through the Settlement Agreement, to conduct a cost-efficient and effective remedial action to address the legacy issues at Building 23. This cooperative effort has set a firm foundation for achieving a successful RA at the RWDA using a 'forward think' approach, and it is a case study for other sites where an industry partner is involved. The collaborative effort led to implementation of an RA which is acceptable to the site owner, the regulators, and the public, thus allowing USACE to move this project forward successfully in the FUSRAP program. (authors)

  5. Salmon Site Remedial Investigation Report, Appendix B (Part 1)

    SciTech Connect (OSTI)

    USDOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  6. Salmon Site Remedial Investigation Report, Appendix B (Part 2)

    SciTech Connect (OSTI)

    USDOE /NV

    1999-09-01T23:59:59.000Z

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  7. Evaluation of Soil Flushing for Application to the Deep Vadose Zone in the Hanford Central Plateau

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Zhang, Z. F.; Carroll, Kenneth C.; Schramke, Janet A.; Wietsma, Thomas W.; Tartakovsky, Guzel D.; Gordon, Kathryn A.; Last, George V.

    2010-11-01T23:59:59.000Z

    Soil flushing was included in the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau as a technology with the potential to remove contaminants from the vadose zone. Soil flushing operates through the addition of water, and if necessary an appropriate mobilizing agent, to mobilize contaminants and flush them from the vadose zone and into the groundwater where they are subsequently captured by a pump-and-treat system. There are uncertainties associated with applying soil flushing technology to contaminants in the deep vadose zone at the Hanford Central Plateau. The modeling and laboratory efforts reported herein are intended to provide a quantitative assessment of factors that impact water infiltration and contaminant flushing through the vadose zone and into the underlying groundwater. Once in the groundwater, capture of the contaminants would be necessary, but this aspect of implementing soil flushing was not evaluated in this effort. Soil flushing was evaluated primarily with respect to applications for technetium and uranium contaminants in the deep vadose zone of the Hanford Central Plateau.

  8. Remediation progress at the Iron Mountain Mine Superfund site, California. Information Circular/1991

    SciTech Connect (OSTI)

    Biggs, F.R.

    1991-01-01T23:59:59.000Z

    The report was prepared by the U.S. Bureau of Mines to present a brief history of the listing of Iron Mountain Mine as a Superfund site on the National Priorities List (NPL) and subsequent remedial actions. The mine area is located on 4,400 acres near Redding, CA, and includes underground workings, an open pit area, waste rock dumps, and tailings piles. The property involves multiple sources of acid mine drainage (AMD) that are high in copper, zinc, and cadmium. The selected remedial actions, based on the Record of Decision of 1986, would partially cap the richmond mineralized zone to reduce infiltration of clean water, divert clean surface waters away from contaminated areas, fill surface subsidence areas, and enlarge the Spring Creek debris dam to provide increased surge capacity. Site remediation efforts at Iron Mountain are well into the remedial design-remedial action phase. Details of activities and designs of remedial elements are presented, and future activities, discussed.

  9. UONPR No. 1, Elk Hills, 26R Reservoir, Elk Hills oil and gas field, Kern County, California: Management Review: Surface operations and measurements of production and injection volumes

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    Evans, Carey and Crozier was given the task to conduct a Management Review of the Surface Operations of the 26R Reservoir in UONPR No. 1, Elk Hills field, Kern County, California. The MER strategy for this reservoir is to maintain pressure, and toward this end, gas injection volumes are scheduled to amount to 110% of calculated withdrawals. In spite of this, however, reservoir pressure continues to decline. The purpose of this study was, therefore, to determine if, and to what extent, field operating practices and accounting procedures may be contributing to this dilemma and to make appropriate recommendations pertaining to correcting any deficiencies which may have been found.

  10. Discrete Sampling Test Plan for the 200-BP-5 Operable Unit

    SciTech Connect (OSTI)

    Sweeney, Mark D.

    2010-02-04T23:59:59.000Z

    The Discrete Groundwater Sampling Project is conducted by the Pacific Northwest National Laboratory (PNNL) on behalf of CH2M HILL Plateau Remediation Company. The project is focused on delivering groundwater samples from proscribed horizons within select groundwater wells residing in the 200-BP-5 Operable Unit (200-BP-5 OU) on the Hanford Site. This document provides the scope, schedule, methodology, and other details of the PNNL discrete sampling effort.

  11. Remediation of Deep Vadose Zone Radionuclide and Metal Contamination: Status and Issues

    SciTech Connect (OSTI)

    Dresel, P. Evan; Truex, Michael J.; Cantrell, Keri

    2008-12-30T23:59:59.000Z

    This report documents the results of a PNNL literature review to report on the state of maturity of deep vadose zone remediation technologies for metal contaminants including some radionuclides. Its recommendations feed into decisionmakers need for scientific information and cost-effective in situ remediation technlogies needed under DOE's Environmental Management initiative Enhanced Remediation Methods: Scientific & Technical Basis for In Stu Treatment Systems for Metals and Radionuclides.

  12. Record of Decision/Remedial Alternative Selection for the Motor Shops Seepage Basin (716-A)

    SciTech Connect (OSTI)

    Palmer, E.

    1999-02-03T23:59:59.000Z

    This decision document presents the selected remedial alternative for the Motor Shops Seepage Basin located at the Savannah River Site in Aiken, South Carolina

  13. Savannah River Remediation Donates $10,000 to South Carolina State Nuclear Engineering Program

    Broader source: Energy.gov [DOE]

    *Editor's note: This article is cross-posted from Savannah River Remediation's website, where it was posted on September 28, 2012.

  14. Uranium Mill Tailings Remedial Action Project Safety Advancement Field Effort (SAFE) Program

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    In 1992, the Uranium Mill Tailings Remedial Action (UMTRA) Project experienced several health and safety related incidents at active remediation project sites. As a result, the U.S. Department of Energy (DOE) directed the Technical Assistance Contractor (TAC) to establish a program increasing the DOE`s overall presence at operational remediation sites to identify and minimize risks in operations to the fullest extent possible (Attachments A and B). In response, the TAC, in cooperation with the DOE and the Remedial Action Contractor (RAC), developed the Safety Advancement Field Effort (SAFE) Program.

  15. animal-based folk remedies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to PD MacMillan, Andrew 143 Reconnaissance Soil Geochemistry at the Riverton Uranium Mill Tailings Remedial Action Site, Fremont Environmental Sciences and Ecology Websites...

  16. EIS-0195: Remedial Actions at Operable Unit 4, Fernald Environmental Management Project, Fernald, Ohio

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal to conduct remedial action at Operable Unit 4 at the Fernald Environmental Management Project.

  17. Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations establish procedures for the investigation and remediation of contamination resulting from the unpermitted release of hazardous materials. The regulations aim to protect water...

  18. Versatile microbial surface-display for environmental remediation and biofuels production

    E-Print Network [OSTI]

    Hawkes, Daniel S

    2008-01-01T23:59:59.000Z

    engineering microbes for biofuels production. Science 315,xenobiotics remediation and biofuels production. TargetP. putida JS444 E. coli Biofuels Production Cellobiose

  19. Croatian Language and Cultural Maintenance in the Slavic-American Community of Strawberry Hill, Kansas City, Kansas

    E-Print Network [OSTI]

    Glasgow, Holly Hood

    2012-05-31T23:59:59.000Z

    The purpose of this qualitative study was to investigate levels of immigrant language retention among Croatian-Americans in the Slavic diaspora community of Strawberry Hill in Kansas City, Kansas. There have been three major waves of Croatian...

  20. Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program -12184

    SciTech Connect (OSTI)

    Clayton, Christopher [U.S Department of Energy Office of Legacy Management, Washington, DC; Kothari, Vijendra [U.S Department of Energy Office of Legacy Management, Morgantown, West Virginia; Starr, Ken [U.S Department of Energy Office of Legacy Management, Westminster, Colorado; Widdop, Michael; Gillespie, Joey [SM Stoller Corporation, Grand Junction, Colorado

    2012-02-26T23:59:59.000Z

    The U. S. Department of Energy (DOE) methods and protocols allow evaluation of remediation and final site conditions to determine if remediated sites remain protective. Two case studies are presented that involve the Niagara Falls Storage Site (NFSS) and associated vicinity properties (VPs), which are being remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are a part of the former Lake Ontario Ordnance Works (LOOW). In response to stakeholders concerns about whether certain remediated NFSS VPs were putting them at risk, DOE met with stakeholders and agreed to evaluate protectiveness. Documentation in the DOE records collection adequately described assessed and final radiological conditions at the completed VPs. All FUSRAP wastes at the completed sites were cleaned up to meet DOE guidelines for unrestricted use. DOE compiled the results of the investigation in a report that was released for public comment. In conducting the review of site conditions, DOE found that stakeholders were also concerned about waste from the Separations Process Research Unit (SPRU) at the Knolls Atomic Power Laboratory (KAPL) that was handled at LOOW. DOE agreed to determine if SPRU waste remained at that needed to be remediated. DOE reviewed records of waste characterization, historical handling locations and methods, and assessment and remediation data. DOE concluded that the SPRU waste was remediated on the LOOW to levels that pose no unacceptable risk and allow unrestricted use and unlimited exposure. This work confirms the following points as tenets of an effective long-term surveillance and maintenance (LTS&M) program: ? Stakeholder interaction must be open and transparent, and DOE must respond promptly to stakeholder concerns. ? DOE, as the long-term custodian, must collect and preserve site records in order to demonstrate that remediated sites pose no unacceptable risk. ? DOE must continue to maintain constructive relationships with the U.S. Army Corps of Engineers and state and federal regulators.

  1. ENVIRONMENTAL REMEDIAL ACTION – ARE WE DOING MORE HARM THAN GOOD?

    E-Print Network [OSTI]

    Bruce W. Church

    The International Commission on Radiological Protection (ICRP) (1) has stated that interventions i.e., remedial actions should do more good than harm. This paper examines completed cleanup projects to answer the question posed in the title. Various researchers have published that toxins in the environment only cause a small percentage of cancers i.e., 1-3 percent (2,3). Estimates of hypothetical fatal cancers are inflated because primarily it is assumed that people will change their living habits and move onto or near uncontrolled waste sites. An occupancy factor of 100 % is used and by using large populations exposed to miniscule levels of radiation (4) unreal levels of fatal cancers are predicted. What we observe are technically indefensible numbers of cancers being calculated for these hypothetical people. This and other maximizing assumptions inflate the risk. The inflated risk, along with very conservative criteria, drives the removal of large volumes of soil and debris. An unintended consequence of these costly well-intentioned (5) remedial actions is the real fatalities and injuries that occur to workers doing the construction and to members of the public through transportation activities. Even though some analysis include the estimates of worker risk, there is little or no discussion which highlights the fact that real risk is being traded for hypothetical risk. This paper is an attempt to review this situation and through cited literature and case studies, come to a better understanding of what if any good is really being done. Maybe it is time to consider this transfer of risk from hypothetical victims to the real victims in remedial action decision-making.

  2. Technical safety appraisal of the Naval Petroleum Reserve No. 1, Elk Hills, California

    SciTech Connect (OSTI)

    Not Available

    1989-04-01T23:59:59.000Z

    The existing Elk Hills facilities for fluid production consist of tank settings, gas and oil/water gathering pipelines, gas plants, compressor facilities, lease automatic custody transfer units which meter the crude oil going to sales, and natural gas sales meters and pipelines, water injection and source wells, and gas injection pipelines and wells. The principal safety concerns presented by operations at Elk Hills are fire, occupational safety and industrial hygiene considerations. Transportation and motor vehicle accidents are also of great concern because of the large amount of miles driven on more than 900 miles of roads. Typical operations involve hazardous materials and processing equipment such as vessels, compressors, boilers, piping and valves. The aging facilities, specifically the 35R Gas Plant (constructed in 1952) and many of the pipelines, introduce an additional element of hazard to the operations.

  3. Naval petroleum reserves: Preliminary analysis of future net revenues from Elk Hills production

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    This is an interim report on the present value of the net revenues from Elk Hills Naval Petroleum Reserve. GAO calculated alternative present values of the net revenues applying (1) low, medium, and high forecasts of future crude oil prices and (2) alternative interest rates for discounting the future net revenues to their present values. The calculations are sensitive to both the oil price forecasts and discount rates used; they are preliminary and should be used with caution. They do not take into account possible added tax revenues collected by the government if Elk Hills were sold nor varying production levels and practices, which could either increase or decrease the total amount of oil that can be extracted.

  4. Naval petroleum reserves: Oil sales procedures and prices at Elk Hills, April through December 1986

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    The Elk Hills Naval Petroleum Reserve is located near Bakersfield, California and ranks seventh among domestic producing oil fields. In Feb. 1986 the Department of Energy awarded contracts to 16 companies for the sale of about 82,000 barrels per day of NPR crude oil between April and September 1986. These companies bid a record high average discount of $4.49 from DOE's base price. The discounts ranged from $0.87 to $6.98 per barrel. These contracts resulted in DOE selling Elk Hills oil as low as $3.91 per barrel. Energy stated that the process for selling from NPR had gotten out of step with today's marketplace. Doe subsequently revised its sales procedures which requires bidders to submit a specific price for the oil rather than a discount to a base price. DOE also initiated other efforts designed to avoid future NPR oil sales at less than fair market value.

  5. Tank waste remediation system dangerous waste training plan

    SciTech Connect (OSTI)

    POHTO, R.E.

    1999-05-13T23:59:59.000Z

    This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by Lockheed Martin Hanford Corporation (LMHC) Tank Waste Remediation System (TWRS) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units operated by TWRS are: the Double-Shell Tank (DST) System (including 204-AR Waste Transfer Building), the 600 Area Purgewater Storage and the Effluent Treatment Facility. TSD Units undergoing closure are: the Single-Shell Tank (SST) System, 207-A South Retention Basin, and the 216-B-63 Trench.

  6. Activities of HPS standards committee in environmental remediation

    SciTech Connect (OSTI)

    Stencel, J.R. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Chen, S.Y. [Argonne National Lab., IL (United States)

    1994-12-31T23:59:59.000Z

    The Health Physics Society (HPS) develops American National Standards in the area of radiation protection using methods approved by the American National Standards Institute (ANSI). Two of its sections, Environmental Health Physics and Contamination Limits, have ongoing standards development which are important to some environmental remediation efforts. This paper describes the role of the HPS standards process and indicates particular standards under development which will be of interest to the reader. In addition, the authors solicit readers to participate in the voluntary standards process by either joining active working groups (WG) or suggesting appropriate and relevant topics which should be placed into the standards process.

  7. Modelling of Remediation Technologies at the Performance Assessment Level

    SciTech Connect (OSTI)

    Parton, N.J.; Paksy, A.; Eden, L.; Trivedi, D.P. [Nexia Solutions Limited, Hinton House, Risley, Warrington, Cheshire, UK, WA (United States)

    2008-07-01T23:59:59.000Z

    This paper presents approaches to modelling three different remediation technologies that are designed to support site operators during their assessment of remediation options for the management of radioactively contaminated land on nuclear licensed sites in the UK. The three selected technologies were soil washing, permeable reactive barrier and in-situ stabilisation. The potential exists to represent electrokinetics in the future. These technologies were chosen because it was considered that enough information already existed for site operators to assess mature technologies such as soil dig and disposal and groundwater pump and treat. Using the software code GoldSim, the models have been designed to allow site operators to make both a reasonable scoping level assessment of the viability of treatment and understand the cost-benefits of each technology. For soil washing, a standard soil leaching technique was simulated whereby the soil is separated into fines and oversize particles, and subsequently a chemical reagent is used to strip contamination off the soil. The cost benefit of this technology in terms of capital costs for the plant and materials, operational costs and waste disposal costs can also be assessed. The permeable reactive barrier (PRB) model can represent either a continuous wall or a funnel and gate system. The model simulates the transport of contaminants through the reactive material contained in the PRB. The outputs from the model include concentration of contaminants in the groundwater flow downstream of the PRB, mass of contaminants retained by the PRB, total mass and volume of waste and the various costs associated with the PRB remediation technology. The in-situ stabilisation (ISS) model has the capability to represent remediation by the addition of reagents that immobilise contaminated soil. The model simulates the release of contaminants from the treated soil over time. Performance is evaluated by comparison of the mass of contaminants retained and released to the area outside the treatment zone. Other outputs include amount of spoil generated (to be treated as waste) and the costs associated with the application of the ISS technology. These models are aimed to help users select a technology or technologies that are potentially suitable for a particular site. It is anticipated that they will prompt the user to undertake more detailed assessments to tailor the selected technology to their site specific circumstances and contaminated land conditions. (author)

  8. Enhancement of in situ microbial remediation of aquifers

    DOE Patents [OSTI]

    Fredrickson, James K. (Kennewick, WA); Brockman, Fred J. (Kennewick, WA); Streile, Gary P. (both or Richland, WA); Cary, John W. (both or Richland, WA); McBride, John F. (Carrboro, NC)

    1993-01-01T23:59:59.000Z

    Methods are provided for remediating subsurface areas contaminated by toxic organic compounds. An innocuous oil, such as vegetable oil, mineral oil, or other immiscible organic liquid, is introduced into the contaminated area and permitted to move therethrough. The oil concentrates or strips the organic contaminants, such that the concentration of the contaminants is reduced and such contaminants are available to be either pumped out of the subsurface area or metabolized by microorganisms. Microorganisms may be introduced into the contaminated area to effect bioremediation of the contamination. The methods may be adapted to deliver microorganisms, enzymes, nutrients and electron donors to subsurface zones contaminated by nitrate in order to stimulate or enhance denitrification.

  9. Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The Uranium Mill Tallings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1 (Chapter 3, paragraph 2). The UMTRA EPIP covers the time period of November 9, 1992, through November 8, 1993. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies.

  10. Uranium Mill Tailings Remedial Action Project environmental protection implementation plan

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the U.S. Department of Energy (DOE) Order 5400.1. The UMTRA EPIP is updated annually. This version covers the time period of 9 November 1994, through 8 November 1995. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies.

  11. Uranium Mill Tailings Remedial Action Project. 1995 Environmental Report

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    In accordance with U.S. Department of Energy (DOE) Order 23 1. 1, Environment, Safety and Health Reporting, the DOE prepares an annual report to document the activities of the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring program. This monitoring must comply with appropriate laws, regulations, and standards, and it must identify apparent and meaningful trends in monitoring results. The results of all monitoring activities must be communicated to the public. The UMTRA Project has prepared annual environmental reports to the public since 1989.

  12. Adaptive management: a paradigm for remediation of public facilities

    SciTech Connect (OSTI)

    Janecky, David R [Los Alamos National Laboratory; Whicker, Jeffrey J [Los Alamos National Laboratory; Doerr, Ted B [NON LANL

    2009-01-01T23:59:59.000Z

    Public facility restoration planning traditionally focused on response to natural disasters and hazardous materials accidental releases. These plans now need to integrate response to terrorist actions. Therefore, plans must address a wide range of potential vulnerabilities. Similar types of broad remediation planning are needed for restoration of waste and hazardous material handling areas and facilities. There are strong similarities in damage results and remediation activities between unintentional and terrorist actions; however, the uncertainties associated with terrorist actions result in a re-evaluation of approaches to planning. Restoration of public facilities following a release of a hazardous material is inherently far more complex than in confined industrial settings and has many unique technical, economic, social, and political challenges. Therefore, they arguably involve a superset of drivers, concerns and public agencies compared to other restoration efforts. This superset of conditions increases complexity of interactions, reduces our knowledge of the initial conditions, and even condenses the timeline for restoration response. Therefore, evaluations of alternative restoration management approaches developed for responding to terrorist actions provide useful knowledge for large, complex waste management projects. Whereas present planning documents have substantial linearity in their organization, the 'adaptive management' paradigm provides a constructive parallel operations paradigm for restoration of facilities that anticipates and plans for uncertainty, multiple/simUltaneous public agency actions, and stakeholder participation. Adaptive management grew out of the need to manage and restore natural resources in highly complex and changing environments with limited knowledge about causal relationships and responses to restoration actions. Similarities between natural resource management and restoration of a facility and surrounding area(s) after a disruptive event suggest numerous advantages over preset linearly-structured plans by incorporating the flexibility and overlap of processes inherent in effective facility restoration. We discuss three restoration case studies (e.g., the Hart Senate Office Building anthrax restoration, Rocky Flats actinide remediation, and hurricane destruction restoration), that implement aspects of adaptive management but not a formal approach. We propose that more formal adoption of adaptive management principles could be a basis for more flexible standards to improve site-specific remediation plans under conditions of high uncertainty.

  13. DVZ_Remediation_Technology_Tables_Info_Exchange.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OFSupplemental TechnologySummary of DSO 216 -Remediation

  14. 100-D/H Remedial Investigation/ Feasibility Study /Proposed Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less is more:culturingProtonAPRIL/MAY9 OFEnergyOctober Remedial

  15. 3D Model of the McGinness Hills Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15º eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.

  16. 3D Model of the McGinness Hills Geothermal Area

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-12-31T23:59:59.000Z

    The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15º eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.

  17. Inter-Machine Comparison of the Termination Phase and Energy Conversion in Tokamak Disruptions with Runaway Current Plateau Formation and Implications for ITER

    E-Print Network [OSTI]

    Inter-Machine Comparison of the Termination Phase and Energy Conversion in Tokamak Disruptions with Runaway Current Plateau Formation and Implications for ITER

  18. How the DNA sequence affects the Hill curve of transcriptional response

    E-Print Network [OSTI]

    M. Sheinman; Y. Kafri

    2011-11-16T23:59:59.000Z

    The Hill coefficient is often used as a direct measure of the cooperativity of binding processes. It is an essential tool for probing properties of reactions in many biochemical systems. Here we analyze existing experimental data and demonstrate that the Hill coefficient characterizing the binding of transcription factors to their cognate sites can in fact be larger than one -- the standard indication of cooperativity -- even in the absence of any standard cooperative binding mechanism. By studying the problem analytically, we demonstrate that this effect occurs due to the disordered binding energy of the transcription factor to the DNA molecule and the steric interactions between the different copies of the transcription factor. We show that the enhanced Hill coefficient implies a significant reduction in the number of copies of the transcription factors which is needed to occupy a cognate site and, in many cases, can explain existing estimates for numbers of the transcription factors in cells. The mechanism is general and should be applicable to other biological recognition processes.

  19. Investigation and remediation of a 1,2-dichloroethane spill. Part 1: Short and long-term remediation strategies

    SciTech Connect (OSTI)

    Sehayek, L.; Vandell, T.D.; Sleep, B.E.; Lee, M.D.; Chien, C.

    1999-06-30T23:59:59.000Z

    Release of an estimated 150,000 gallons of 1,2-dichloroethane (EDC) from a buried pipeline into a ditch and surrounding soil resulted in shallow subsurface contamination of a Gulf Coast site. Short-term remediation included removal of EDC DNAPL (dense nonaqueous phase liquid) by dredging and vacuuming the ditch, and by dredging the river where the ditch discharged. EDC saturation in shallow impacted sediments located beneath the ditch was at or below residual saturation and these sediments were therefore left in place. The ditch was lined, backfilled, and capped. Long-term remediation includes EDC DNAPL recovery and hydraulic containment from the shallow zone with long-term monitoring of the shallow, intermediate, and deep aquifers. Ground water, DNAPL, and dissolved phase models were used to guide field investigations and the selection of an effective remedial action strategy. The DNAPL modeling was conducted for a two-dimensional vertical cross section of the site, and included the three aquifers separated by two aquitards with microfractures. These aquitards were modeled using a dual porosity approach. Matrix and fracture properties of the aquitards used for DNAPL modeling were determined from small-scale laboratory properties. These properties were consistent with effective hydraulic conductivity determined from ground water flow modeling. A sensitivity analysis demonstrated that the vertical migration of EDC was attenuated by dissolution of EDC into the matrix of the upper aquitard. When the organic/water entry pressure of the aquitard matrix, or the solubility of EDC were decreased to unrealistically low values, EDC DNAPL accumulated in the aquifer below the upper aquitard. EDC DNAPL did not reach the regional (deepest) aquifer in any of the cases modeled. The limited extent of vertical EDC migration predicted is supported by ground water monitoring conducted over the four years since the spill.

  20. Proposed environmental remediation at Argonne National Laboratory, Argonne, Illinois

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    The Department of Energy (DOE) has prepared an Environmental Assessment evaluating proposed environmental remediation activity at Argonne National Laboratory-East (ANL-E), Argonne, Illinois. The environmental remediation work would (1) reduce, eliminate, or prevent the release of contaminants from a number of Resource Conservation and Recovery Act (RCRA) Solid Waste Management Units (SWMUs) and two radiologically contaminated sites located in areas contiguous with SWMUs, and (2) decrease the potential for exposure of the public, ANL-E employees, and wildlife to such contaminants. The actions proposed for SWMUs are required to comply with the RCRA corrective action process and corrective action requirements of the Illinois Environmental Protection Agency; the actions proposed are also required to reduce the potential for continued contaminant release. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required.