Sample records for hill deep anode

  1. Significant results of deep drilling at Elk Hills, Kern County, California

    SciTech Connect (OSTI)

    Fishburn, M.D. (Dept. of Energy, Elk Hills, CA (USA))

    1990-05-01T23:59:59.000Z

    Naval Petroleum Reserve 1 (Elk Hills) is located in the southwestern San Joaquin basin one of the most prolific oil-producing areas in the US. Although the basin is in a mature development stage, the presence of favorable structures and high-quality source rocks continue to make the deeper parts of the basin, specifically Elk Hills, an inviting exploration target. Of the three deep tests drilled by the US Department of Energy since 1976, significant geologic results were achieved in two wells. Well 987-25R reached low-grade metamorphic rock at 18,761 ft after penetrating over 800 ft of salt below the Eocene Point of Rocks Sandstone. In well 934-29R, the deepest well in California, Cretaceous sedimentary rocks were encountered at a total depth of 24,426 ft. In well 934-29R several major sand units were penetrated most of which encountered significant gas shows. Minor amounts of gas with no water were produced below 22,000 ft. In addition, production tests at 17,000 ft produced 46{degree} API gravity oil. Geochemical analysis of cores and cuttings indicated that the potential for hydrocarbon generation exists throughout the well and is significant because the possibility of hydrocarbon production exists at a greater depth than previously expected. A vertical seismic profile in the well indicated that basement at this location is at approximately 25,500 ft. Successful drilling of well 934-29R was attributed to the use of an oil-based mud system. The well took 917 days to drill, including 9,560 rotating hr with 134 bits. Bottom-hole temperature was 431{degree}F and pressures were approximately 18,000 psi. The high overburden pressure at 24,000 ft created drilling problems that ultimately led to the termination of drilling at 24,426 ft.

  2. Cardwell Hills, Lupine Meadows, Bald Hill and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Benton County, including Cardwell Hills, Lupine Meadows, Bald Hill and Fitton Green Natural Area. This area has been identi- fied as a key site in the U.S. Fish and Wildlife...

  3. Supporting information for Vertically Grown Multi-walled Carbon Nanotube Anode

    E-Print Network [OSTI]

    ion etch (DRIE) process the 50 µm deep anode chamber was etched into the silicon over a 5 mm × 5 mm. Summarized fabrication process flow The anode chamber and contact area were constructed on a 4" P was sputtered and patterned using a lift-off process to be only inside the etched anode chamber (Figure S1.d

  4. Carbonate fuel cell anodes

    DOE Patents [OSTI]

    Donado, Rafael A. (Chicago, IL); Hrdina, Kenneth E. (Glenview, IL); Remick, Robert J. (Bolingbrook, IL)

    1993-01-01T23:59:59.000Z

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  5. Anode performance | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of batteries PNNL researchers have developed a hybrid anode made of graphite and lithium that could quadruple the lifespan of lithium-sulfur batteries. Image courtesy of...

  6. Carbonate fuel cell anodes

    DOE Patents [OSTI]

    Donado, R.A.; Hrdina, K.E.; Remick, R.J.

    1993-04-27T23:59:59.000Z

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

  7. Results from a pilot cell test of cermet anodes

    SciTech Connect (OSTI)

    Windisch, Jr, C F; Strachan, D M; Henager, Jr, C H; Greenwell, E N [Pacific Northwest Lab., Richland, WA (United States); Alcorn, T R [Reynolds Metals Co., Muscle Shoals, AL (United States). Mfg. Technology Lab.

    1992-08-01T23:59:59.000Z

    Goal was to develop long-lasting, energy-efficient anodes for Hall-Heroult cells used to produce Al metal. The anodes were made from a ceramic/metal composite consisting of NiO and NiFe{sub 2}O{sub 4} and a Cu/Ni metal phase. Thirteen cermet anodes were tested at Reynolds Metals Co., Muscle Shoals, AL. All anodes corroded severely during the pilot test. Electrolyte components were found deep within the anodes. However, there were many deficiencies in the pilot cell test, mainly the failure to maintain optimal operating conditions. It is concluded that there is a variety of fabrication and operational considerations that need to be addressed carefully in any future testing. 118 figs, 16 tabs, 17 refs.(DLC)

  8. Characterization of anodic bonding

    E-Print Network [OSTI]

    Tudryn, Carissa Debra, 1978-

    2004-01-01T23:59:59.000Z

    Anodic bonding is a common process used in MicroElectroMechanical Systems (MEMS) device fabrication and packaging. Polycrystalline chemical vapor deposited (CVD) silicon carbide (SiC) is emerging as a new MEMS device and ...

  9. Anodes for alkaline electrolysis

    DOE Patents [OSTI]

    Soloveichik, Grigorii Lev (Latham, NY)

    2011-02-01T23:59:59.000Z

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  10. Movable anode x-ray source with enhanced anode cooling

    DOE Patents [OSTI]

    Bird, C.R.; Rockett, P.D.

    1987-08-04T23:59:59.000Z

    An x-ray source is disclosed having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events. 5 figs.

  11. Movable anode x-ray source with enhanced anode cooling

    DOE Patents [OSTI]

    Bird, Charles R. (Ypsilanti, MI); Rockett, Paul D. (Ann Arbor, MI)

    1987-01-01T23:59:59.000Z

    An x-ray source having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events.

  12. Beverly Hills High Emily Bloom

    E-Print Network [OSTI]

    Hwang, Kai

    Students Ali Abadi Beverly Hills High Emily Bloom Bakersfield High Camila Castro Rodriguez Mills E. Godwin High Nafiz'Ammar Fatani Da Vinci Science High Diana Felix San Marino High Karen Girdner

  13. Inflation over the hill

    E-Print Network [OSTI]

    Konstantinos Tzirakis; William H. Kinney

    2007-06-13T23:59:59.000Z

    We calculate the power spectrum of curvature perturbations when the inflaton field is rolling over the top of a local maximum of a potential. We show that the evolution of the field can be decomposed into a late-time attractor, which is identified as the slow roll solution, plus a rapidly decaying non-slow roll solution, corresponding to the field rolling ``up the hill'' to the maximum of the potential. The exponentially decaying transient solution can map to an observationally relevant range of scales because the universe is also expanding exponentially. We consider the two branches separately and we find that they are related through a simple transformation of the slow roll parameter $\\eta$ and they predict identical power spectra. We generalize this approach to the case where the inflaton field is described by both branches simultaneously and find that the mode equation can be solved exactly at all times. Even though the slow roll parameter $\\eta$ is evolving rapidly during the transition from the transient solution to the late-time attractor solution, the resultant power spectrum is an exact power-law spectrum. Such solutions may be useful for model-building on the string landscape.

  14. Nickel anode electrode

    DOE Patents [OSTI]

    Singh, Prabhakar (Bethel, CT); Benedict, Mark (Monroe, CT)

    1987-01-01T23:59:59.000Z

    A nickel anode electrode fabricated by oxidizing a nickel alloying material to produce a material whose exterior contains nickel oxide and whose interior contains nickel metal throughout which is dispersed the oxide of the alloying material and by reducing and sintering the oxidized material to form a product having a nickel metal exterior and an interior containing nickel metal throughout which is dispersed the oxide of the alloying material.

  15. Thin film buried anode battery

    DOE Patents [OSTI]

    Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

    2009-12-15T23:59:59.000Z

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  16. GEORGE WATTS HILL ALUMNI CENTER

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    BR IN KH O U S- BU LLITT CHILLER BUILDING F KENAN STADIUM GEORGE WATTS HILL ALUMNI CENTER EHRINGHAUS FIELD DEPARTMENT OF PUBLIC SAFETY C AR PEN TRY SH O P CHILLER BUILDING NEURO SCIENCES WATER TOWER ITS MANNING CHILLER BUILDING PUBLIC SAFETY BLDG. MORRISON RIDGEROAD EHRINGHAUS BOSHAMER BASEBALL STADIUM

  17. anodes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is analyzed Nielsen, Mads Pagh 25 Polymeric anodes for improved polymer light-emitting diode performance S. A. Cartera) Physics Websites Summary: Polymeric anodes for...

  18. anodization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is analyzed Nielsen, Mads Pagh 25 Polymeric anodes for improved polymer light-emitting diode performance S. A. Cartera) Physics Websites Summary: Polymeric anodes for...

  19. Silicon-Graphene Anodes | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Silicon-Graphene Anodes Technology available for licensing: Provides low-cost production process. Advanced gas phase deposition process yields anodes with five times the specific...

  20. Lithium Metal Anodes for Rechargeable Batteries. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Anodes for Rechargeable Batteries. Lithium Metal Anodes for Rechargeable Batteries. Abstract: Rechargeable lithium metal batteries have much higher energy density than those...

  1. Composite Electrolytes to Stabilize Metallic Linium Anodes

    Broader source: Energy.gov (indexed) [DOE]

    metal anode and its poor cycling as the fundamental problem for very high energy Li batteries. Hence, research takes the approach of completely isolating the anode from the...

  2. Black Hills Power- Commercial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Black Hills Power provides rebates for its commercial customers who install energy efficient heat pumps, motors, variable frequency drives, lighting, and water heaters. Custom rebates for approved...

  3. Black Hills Power- Residential Customer Rebate Program

    Broader source: Energy.gov [DOE]

    Black Hills Power offers cash rebates to residential customers who purchase and install energy efficient equipment in their homes. Incentives exist for water heaters, demand control units, air...

  4. WIND DATA REPORT Quincy, Quarry Hills

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Quincy, Quarry Hills 9/1/2006 ­ 11/30/2006 Prepared for Massachusetts Technology.......................................................................................................................... 7 Tower Effects on Measured Wind Speed

  5. WIND DATA REPORT Quincy Quarry Hills

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Quincy Quarry Hills December 2006 to February 2007 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  6. WIND DATA REPORT Quincy Quarry Hills

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Quincy Quarry Hills March 2007 to May 2007 Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  7. Microsoft Word - ThurstonHills_CX.docx

    Broader source: Energy.gov (indexed) [DOE]

    Dorie Welch Project Manager - KEWM-4 Proposed Action: Thurston Hills property funding Fish and Wildlife Project No.: 2011-003-00, BPA-007071 Categorical Exclusion Applied (from...

  8. Graham Hill | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal TechnologiesGeothermalGo for theEnergyandGraham Hill About

  9. Bull Hill | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility Jump to:Brunei:Hill Jump to: navigation,

  10. Laurel Hill | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,Lakefront Tow Tank JumpLatvia: Energy Resources JumpHill

  11. Trinity Hills | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place: Dallas, Texas Zip:Hills Jump to: navigation,

  12. Cedro Hill | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGoCaterpillar JumpCedro Hill Jump to:

  13. Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area...

    Open Energy Info (EERE)

    Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area (Goff & Decker, 1983) Exploration Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique...

  14. Loess Hills and Southern Iowa Development and Conservation (Iowa)

    Broader source: Energy.gov [DOE]

    The Loess Hills Development and Conservation Authority, the Loess Hills Alliance, and the Southern Iowa Development and Conservation Authority are regional organizations with representatives from...

  15. Novel Lithium Ion Anode Structures: Overview of New DOE BATT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Ion Anode Structures: Overview of New DOE BATT Anode Projects Novel Lithium Ion Anode Structures: Overview of New DOE BATT Anode Projects 2011 DOE Hydrogen and Fuel Cells...

  16. Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anode

    E-Print Network [OSTI]

    Zhou, Chongwu

    Nano Res 1 Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anode Titanium Oxide / Si Nanotube Arrays for Lithium-ion Battery Anode JiepengRong,,§Xin Fang Oxide / Si Nanotube Arrays for Lithium-ion Battery Anode Jiepeng Rong,1,§ Xin Fang,1,§ Mingyuan Ge,1

  17. NICKEL/YTTRIA-STABILISED ZIRCONIA CERMET ANODES

    E-Print Network [OSTI]

    NICKEL/YTTRIA-STABILISED ZIRCONIA CERMET ANODES FOR SOLID OXIDE FUEL CELLS Søren Primdahl #12;ii Primdahl, Søren Nickel/yttria-stabilised zirconia cermet anodes for solid oxide fuel cells Thesis as Risø-R-1137(EN) ISBN 87-550-2605-2 (internet) #12;iii NICKEL/YTTRIA-STABILISED ZIRCONIA CERMET ANODES

  18. Peering Deep inside Nongraphitic Anodes with Synchrotron Microtomograp...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    changes in the electrode structure. The blue arrows are intended to guide the eye to the more prominent changes from cycle to cycle. The horizontal and vertical scale...

  19. Retrofitting sacrificial anodes in the Arabian Gulf

    SciTech Connect (OSTI)

    Kiefer, J.H.; Thomason, W.H.; Alansari, N.G.

    1999-08-01T23:59:59.000Z

    Cathodic protection (CP) systems of 15 fixed offshore platforms were analyzed. These steel template structures, off the coast of the United Arab Emirates, are in water depths between 125 and 185 ft (115 and 170 m). A systematic survey program exists to monitor the CP systems including assessment of sacrificial anode depletion, and measurement of anode and platform potentials. These data are used to design new anode retrofits for older structures to extend CP system life. An analysis of field survey measurements, the method used to evaluate new anode needs, and locations for retrofit anodes are described.

  20. Fabrication of advanced design (grooved) cermet anodes

    SciTech Connect (OSTI)

    Windisch, C.F. Jr. (Pacific Northwest Lab., Richland, WA (United States)); Huettig, F.R. (Ceramic Magnetics, Inc., Fairfield, NJ (United States))

    1993-05-01T23:59:59.000Z

    Attempts were made to fabricate full-size anodes with advanced, or grooved, design using isostatic pressing, slip casting injection molding. Of the three approaches, isostatic pressing produced an anode with dimensions nearest to the target specifications, without serious macroscopic flaws. This approach is considered the most promising for making advanced anodes for aluminum smelting. However, significant work still remains to optimize the physical properties and microstructure of the anode, both of which were significantly different from that of previous anodes. Injection molding and slip casting yielded anode materials with serious deficiencies, including cracks and holes. Injection molding gave cermet material with the best intrinsic microstructure, i.e., the microstructure of the material between macroscopic flaws was very similar to that of anodes previously made at PNL. Reason for the similarity may have to do with amount of residual binder in the material prior to sintering.

  1. Black Hills Energy- Solar Power Program

    Broader source: Energy.gov [DOE]

    All incentive payments are subject to the availability of funds and a pre-installation site inspection. Black Hills Energy has established participation caps for each tier. The status of funding ...

  2. Microbial fuel cell with improved anode

    DOE Patents [OSTI]

    Borole, Abhijeet P.

    2010-04-13T23:59:59.000Z

    The present invention relates to a method for preparing a microbial fuel cell, wherein the method includes: (i) inoculating an anodic liquid medium in contact with an anode of the microbial fuel cell with one or more types of microorganisms capable of functioning by an exoelectrogenic mechanism; (ii) establishing a biofilm of the microorganisms on and/or within the anode along with a substantial absence of planktonic forms of the microorganisms by substantial removal of the planktonic microorganisms during forced flow and recirculation conditions of the anodic liquid medium; and (iii) subjecting the microorganisms of the biofilm to a growth stage by incorporating one or more carbon-containing nutritive compounds in the anodic liquid medium during biofilm formation or after biofilm formation on the anode has been established.

  3. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca

    2014-01-01T23:59:59.000Z

    Company-v3832/Lithium-Ion-Batteries- Outlook-Alternative-Anodes for Sodium Ion Batteries Marca M. Doeff * , Jordirechargeable sodium ion batteries, particularly for large-

  4. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    Anodes for Sodium Ion Batteries Identification of a suitabledevelopment of sodium ion batteries, because graphite, theanode for lithium ion batteries, does not undergo sodium

  5. Surface modifications for carbon lithium intercalation anodes

    DOE Patents [OSTI]

    Tran, Tri D. (Livermore, CA); Kinoshita, Kimio (Cupertino, CA)

    2000-01-01T23:59:59.000Z

    A prefabricated carbon anode containing predetermined amounts of passivating film components is assembled into a lithium-ion rechargeable battery. The modified carbon anode enhances the reduction of the irreversible capacity loss during the first discharge of a cathode-loaded cell. The passivating film components, such as Li.sub.2 O and Li.sub.2 CO.sub.3, of a predetermined amount effective for optimal passivation of carbon, are incorporated into carbon anode materials to produce dry anodes that are essentially free of battery electrolyte prior to battery assembly.

  6. Nanotube Composite Anode Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    available for licensng: A composite material suitable for use in an anode for a lithium-ion battery Reduces manufacturing costs. Provides increase capacity, safety, long-term...

  7. Anodes for rechargeable lithium batteries - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stories News Events Find More Like This Return to Search Anodes for rechargeable lithium batteries United States Patent Patent Number: 6,528,208 Issued: March 4, 2003...

  8. Deep Web Web Deep Web Web

    E-Print Network [OSTI]

    Deep Web 100872 Deep Web Web Deep Web Web Web Deep Web Deep Web TP391 A Uncertain Schema Matching in Deep Web Integration Service JIANG Fang-Jiao MENG Xiao-Feng JIA Lin-Lin (School of Information, Renmin University of China, Beijing, 100872) Abstract: With increasing of Deep Web, providing

  9. Elk Hills: still out in front

    SciTech Connect (OSTI)

    Rintoul, B.

    1982-07-01T23:59:59.000Z

    The producing history and capacity of the Elk Hills Oil and Gas Fields in California are described. Developments in the field are discussed, including waterflooding. The field presently produces ca. 160,000 bpd of oil and 350 mmcfd of natural gas. Gas liquids production totals ca. 683,000 gal/day. Waterflooding is expected to pay an increasingly important role in the production of crude oil. Steaming techniques also are viewed with favor after analysis of results of pilot projects. Exploratory develoment in Elk Hills also continues.

  10. Town of Chapel Hill- Energy Conservation Requirements for Town Buildings

    Broader source: Energy.gov [DOE]

    The Town of Chapel Hill’s energy-conservation ordinance requires that all town-owned buildings be designed to achieve a goal of achieving a Silver level certification as defined by the Green...

  11. Black Hills Energy (Gas)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Black Hills Energy offers its residential Iowa customers incentives to encourage energy efficiency in their homes. Black Hills Energy offers a free home energy evaluation to customers (both owners...

  12. Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area...

    Open Energy Info (EERE)

    of the Fenton Hill HDR Reservoir Donald W. Brown (1994) How to Achieve a Four-Fold Productivity Increase at Fenton Hill Additional References Retrieved from "http:en.openei.org...

  13. Remote control for anode-cathode adjustment

    DOE Patents [OSTI]

    Roose, Lars D. (Albuquerque, NM)

    1991-01-01T23:59:59.000Z

    An apparatus for remotely adjusting the anode-cathode gap in a pulse power machine has an electric motor located within a hollow cathode inside the vacuum chamber of the pulse power machine. Input information for controlling the motor for adjusting the anode-cathode gap is fed into the apparatus using optical waveguides. The motor, controlled by the input information, drives a worm gear that moves a cathode tip. When the motor drives in one rotational direction, the cathode is moved toward the anode and the size of the anode-cathode gap is diminished. When the motor drives in the other direction, the cathode is moved away from the anode and the size of the anode-cathode gap is increased. The motor is powered by batteries housed in the hollow cathode. The batteries may be rechargeable, and they may be recharged by a photovoltaic cell in combination with an optical waveguide that receives recharging energy from outside the hollow cathode. Alternatively, the anode-cathode gap can be remotely adjusted by a manually-turned handle connected to mechanical linkage which is connected to a jack assembly. The jack assembly converts rotational motion of the handle and mechanical linkage to linear motion of the cathode moving toward or away from the anode.

  14. anodic oxide overlayer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    process, the anode Sadoway, Donald Robert 35 Advantages of Microwave Sintering in Manufacturing of Anode Support Solid Oxide Fuel Cell Engineering Websites Summary: -SEM...

  15. anodic aluminium oxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Battery Anode Material Chemistry Websites Summary: Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material the graphite...

  16. anodizing aluminum sections: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Battery Anode Material Chemistry Websites Summary: Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material the graphite...

  17. anodic surface treatment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Battery Anode Material Chemistry Websites Summary: Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material the graphite...

  18. anodic film formation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Battery Anode Material Chemistry Websites Summary: Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material the graphite...

  19. anode biofilm transcriptomics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Battery Anode Material Chemistry Websites Summary: Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material the graphite...

  20. anodic iridium oxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Battery Anode Material Chemistry Websites Summary: Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material the graphite...

  1. anodized implant surface: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Battery Anode Material Chemistry Websites Summary: Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material the graphite...

  2. area iridium anodes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Battery Anode Material Chemistry Websites Summary: Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material the graphite...

  3. Interactions of nickel/zirconia solid oxide fuel cell anodes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactions of nickelzirconia solid oxide fuel cell anodes with coal gas containing arsenic. Interactions of nickelzirconia solid oxide fuel cell anodes with coal gas containing...

  4. anodic protection: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is analyzed Nielsen, Mads Pagh 27 Polymeric anodes for improved polymer light-emitting diode performance S. A. Cartera) Physics Websites Summary: Polymeric anodes for...

  5. anodic polarization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is analyzed Nielsen, Mads Pagh 32 Polymeric anodes for improved polymer light-emitting diode performance S. A. Cartera) Physics Websites Summary: Polymeric anodes for...

  6. anodic films formed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings Yan Yao capacity lithium-ion battery anode material, improvements in cycling...

  7. Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts Presented at the Department of Energy Fuel Cell...

  8. anode current response: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and generate architectures to efficiently treat wastewater. We examined how anode-brush diameter, number of anodes. Application of MFCs for wastewater treatment will...

  9. Bifunctional Anode Catalysts for Direct Methanol Fuel Cells....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anode Catalysts for Direct Methanol Fuel Cells. Bifunctional Anode Catalysts for Direct Methanol Fuel Cells. Abstract: Using the binding energy of OH* and CO* on close-packed...

  10. Establish and Expand Commercial Production of Graphite Anode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Expand Commercial Production of Graphite Anode Materials for High Performance Lithium-ion Batteries Establish and Expand Commercial Production of Graphite Anode Materials...

  11. Synthesis and Characterization of Silicon Clathrates for Anode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Silicon Clathrates for Anode Applications in Lithium-Ion Batteries Synthesis and Characterization of Silicon Clathrates for Anode Applications in Lithium-Ion Batteries 2012 DOE...

  12. Vehicle route to Stag Hill Campus

    E-Print Network [OSTI]

    Stevenson, Paul

    HILL COURT (1­44) UNIVERSITY COURT (45­66) SCS HC Yorkie's Bridge Rising Barrier Path to Ridgemount MILLENNIUMHOUSE SE AQA Car Park AQA Car Park PM Barrier Entrance Exit IAC LC Senate Car Park Guildford Railway 18 16 21 19 14 23 22 20 R Chancellors SU Mole 23 W Bourne 22 Black Water 21 Wey 27 Thames 24 Wandle

  13. Ecology, Silviculture, and Management of Black Hills

    E-Print Network [OSTI]

    Fried, Jeremy S.

    . Battaglia United States Department of Agriculture Forest Service Rocky Mountain Research Station General Technical Report RMRS-GTR-97 September 2002 #12;Shepperd, Wayne D.; Battaglia, Michael A. 2002. Ecology in Arizona, and the Black Hills of South Dakota. Michael A. Battaglia is a research associate with METI

  14. The Nitrogen-Nitride Anode.

    SciTech Connect (OSTI)

    Delnick, Frank M.

    2014-10-01T23:59:59.000Z

    Nitrogen gas N 2 can be reduced to nitride N -3 in molten LiCl-KCl eutectic salt electrolyte. However, the direct oxidation of N -3 back to N 2 is kinetically slow and only occurs at high overvoltage. The overvoltage for N -3 oxidation can be eliminated by coordinating the N -3 with BN to form the dinitridoborate (BN 2 -3 ) anion which forms a 1-D conjugated linear inorganic polymer with -Li-N-B-N- repeating units. This polymer precipitates out of solution as Li 3 BN 2 which becomes a metallic conductor upon delithiation. Li 3 BN 2 is oxidized to Li + + N 2 + BN at about the N 2 /N -3 redox potential with very little overvoltage. In this report we evaluate the N 2 /N -3 redox couple as a battery anode for energy storage.

  15. EA-1581: Sand Hills Wind Project, Wyoming

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management, with DOE’s Western Area Power Administration as a cooperating agency, was preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action had been implemented, Western would have interconnected the proposed facility to an existing transmission line. This project has been canceled.

  16. Improvement of four anode rods ion source

    SciTech Connect (OSTI)

    Abdel Salam, F. W.; El-Khabeary, H.; Abdel Reheem, A. M. [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority, P. No. 13759 (Egypt); Ahmed, M. M. [Physics Department, Faculty of Science, Helwan University, Cairo (Egypt)

    2011-03-15T23:59:59.000Z

    In this work, an improved form of a saddle field ion source has been designed and constructed. It consists of four anode rods made from copper and two copper cathode discs. The two cathode discs are placed symmetrically on both sides of the four anode rods. The electrical discharge and output ion beam characteristics were measured at different pressures using argon gas. The optimum distance between each two anode rods was determined. Also the optimum distance between the four anode rods and any cathode disc was obtained. It was found that the optimum distance between each two anode rods equal to 6 mm, while the optimum distance between the four anode rods and any cathode disc equal to 16 mm, where a stable discharge current and maximum output ion beam current can be obtained. The effect of negative extraction voltage applied to both the extractor electrode and Faraday cup on the output ion beam current was studied. The sputter yield of copper and aluminum targets using argon ions of different energies was determined.

  17. Improved oil recovery using horizontal wells at Elk Hills, California

    SciTech Connect (OSTI)

    Gangle, F.J.; Schultz, K.L.; McJannet, G.S.; Ezekwe, N.

    1995-03-01T23:59:59.000Z

    Eight horizontal wells have been drilled and completed in a steeply dipping Stevens sand reservoir in the Elk Hills field, Kern County, California. The subject reservoir, called the Stevens 26R, is a turbidite channel sand deposit one mile wide, three miles long, and one mile deep. Formation beds have a gross thickness up to 1,500 feet and dips as high as 60 degrees on the flanks. The original oil column of 1,810 feet has been pulled down to 200 feet by continual production since 1976. The reservoir management operating strategy has been full pressure maintenance by crestal gas injection since 1976. The steep dip of the formation makes gravity drainage the dominant drive mechanism. Additionally, improved recovery is coming from cycling dry gas through the large secondary gas cap region. The prudent placement of the horizontal wells above the oil/water contact promises to improve oil recovery and extend the operating life of the reservoir. Field results are given to compare the performance of the horizontal wells with the conventional wells. The horizontal wells produce at higher rates, lower draw downs, and lower gas/oil ratio which will extend the life of the project and result in higher recovery.

  18. 3D Model of the McGinness Hills Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15º eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.

  19. 3D Model of the McGinness Hills Geothermal Area

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-12-31T23:59:59.000Z

    The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15º eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.

  20. New High-Energy Nanofiber Anode Materials

    SciTech Connect (OSTI)

    Zhang, Xiangwu; Fedkiw, Peter; Khan, Saad; Huang, Alex; Fan, Jiang

    2013-11-15T23:59:59.000Z

    The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 ?m or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. • During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; • In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; • At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

  1. WIND DATA REPORT Camden Hills Regional High School, ME

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Camden Hills Regional High School, ME December 1, 2006 ­ February 28, 2007...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

  2. WIND DATA REPORT Camden Hills Regional High School, ME

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Camden Hills Regional High School, ME March 1st 2006 to May 31th 2006 Prepared.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  3. WIND DATA REPORT Camden Hills Regional High School, ME

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Camden Hills Regional High School, ME September 1st 2006 to November 30th 2006.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  4. WIND DATA REPORT Camden Hills Regional High School, ME

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Camden Hills Regional High School, ME December 1st 2005 to February 28th 2006.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  5. WIND DATA REPORT Camden Hills Regional High School, ME

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Camden Hills Regional High School, ME June 1st 2006 to August 31th 2006 Prepared.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  6. Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff & Janik, 2002) Exploration Activity...

  7. Cuttings Analysis At Fenton Hill HDR Geothermal Area (Laughlin...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Fenton Hill HDR Geothermal Area (Laughlin, Et Al., 1983) Exploration Activity...

  8. Core Analysis At Fenton Hill HDR Geothermal Area (Brookins &...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Fenton Hill HDR Geothermal Area (Brookins & Laughlin, 1983) Exploration Activity...

  9. Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Grigsby...

    Open Energy Info (EERE)

    Area (Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill HDR Geothermal Area...

  10. Conceptual Model At Fenton Hill HDR Geothermal Area (Grigsby...

    Open Energy Info (EERE)

    Grigsby & Tester, 1989) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Fenton Hill HDR Geothermal Area (Grigsby & Tester,...

  11. Black Hills Energy (Gas)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy offers multiple programs for Colorado commercial and industrial customers to save natural gas in eligible facilities. The commercial prescriptive rebate program provides...

  12. Black Hills Energy (Gas)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy (BHE) offers a variety of rebates for residential Colorado customers who purchase and install energy efficient natural gas appliances, heating equipment and insulation materials....

  13. Black Hills Energy (Electric)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy also offers the custom rebate program to commercial and industrial customers for projects that reduce energy usage. Eligible projects include chillers, unitary HVAC equipment,...

  14. Black Hills Energy (Gas)- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Black Hills Energy offers commercial and industrial customers incentives to encourage energy efficiency in eligible businesses. Prescriptive rebates are available for furnace and boiler...

  15. Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.

    DOE Patents [OSTI]

    Barnett, Robert J. (Goldendale, WA); Mezner, Michael B. (Sandy, OR); Bradford, Donald R (Underwood, WA)

    2004-10-05T23:59:59.000Z

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

  16. NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT

    SciTech Connect (OSTI)

    Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

    2004-05-06T23:59:59.000Z

    Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas and natural gas liquids production on a remote part of the Uintah & Ouray Reservation. Much of the natural gas and natural gas liquids are being produced from the Wingate Formation, which to our knowledge has never produced commercially anywhere. Another large percentage of the natural gas is being produced from the Entrada Formation which has not previously produced in this part of the Uinta Basin. In all, at least nine geologic formations are contributing hydrocarbons to these wells. This survey has clearly established the fact that high-quality data can be obtained in this area, despite the known obstacles.

  17. HILL Plateau Remediation Company are using American

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal HeatonHEP/NERSC/ASCRJune 2012Wind EnergyCH2M HILL

  18. Arbor Hills Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda,Anza ElectricIncAboutAquila IncHills

  19. Blue Hill Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyonsBirchBlockVI JumpBlue Hill Partners

  20. Campbell Hill Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformation 8thCalwind II CEC WindCamelot1Q08)Campbell Hill

  1. Crofton Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands2007)Criterion JumpHills Wind Farm

  2. Barren Hills Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard, Vermont:Carolina: EnergyBarren County,Hills

  3. Black Hills Power Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 | OpenEIBixby, Oklahoma: EnergyBlackHawkBlack Hills

  4. Rolling Hills Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio:RockwallRolling Hills Electric Coop Jump

  5. Deep drilling technology for hot crystalline rock

    SciTech Connect (OSTI)

    Rowley, J.C.

    1984-01-01T23:59:59.000Z

    The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

  6. An Insoluble Titanium-Lead Anode for Sulfate Electrolytes

    SciTech Connect (OSTI)

    Ferdman, Alla

    2005-05-11T23:59:59.000Z

    The project is devoted to the development of novel insoluble anodes for copper electrowinning and electrolytic manganese dioxide (EMD) production. The anodes are made of titanium-lead composite material produced by techniques of powder metallurgy, compaction of titanium powder, sintering and subsequent lead infiltration. The titanium-lead anode combines beneficial electrochemical behavior of a lead anode with high mechanical properties and corrosion resistance of a titanium anode. In the titanium-lead anode, the titanium stabilizes the lead, preventing it from spalling, and the lead sheathes the titanium, protecting it from passivation. Interconnections between manufacturing process, structure, composition and properties of the titanium-lead composite material were investigated. The material containing 20-30 vol.% of lead had optimal combination of mechanical and electrochemical properties. Optimal process parameters to manufacture the anodes were identified. Prototypes having optimized composition and structure were produced for testing in operating conditions of copper electrowinning and EMD production. Bench-scale, mini-pilot scale and pilot scale tests were performed. The test anodes were of both a plate design and a flow-through cylindrical design. The cylindrical anodes were composed of cylinders containing titanium inner rods and fitting over titanium-lead bushings. The cylindrical design allows the electrolyte to flow through the anode, which enhances diffusion of the electrolyte reactants. The cylindrical anodes demonstrate higher mass transport capabilities and increased electrical efficiency compared to the plate anodes. Copper electrowinning represents the primary target market for the titanium-lead anode. A full-size cylindrical anode performance in copper electrowinning conditions was monitored over a year. The test anode to cathode voltage was stable in the 1.8 to 2.0 volt range. Copper cathode morphology was very smooth and uniform. There was no measurable anode weight loss during this time period. Quantitative chemical analysis of the anode surface showed that the lead content after testing remained at its initial level. No lead dissolution or transfer from the anode to the product occurred.A key benefit of the titanium-lead anode design is that cobalt additions to copper electrolyte should be eliminated. Cobalt is added to the electrolyte to help stabilize the lead oxide surface of conventional lead anodes. The presence of the titanium intimately mixed with the lead should eliminate the need for cobalt stabilization of the lead surface. The anode should last twice as long as the conventional lead anode. Energy savings should be achieved due to minimizing and stabilizing the anode-cathode distance in the electrowinning cells. The anode is easily substitutable into existing tankhouses without a rectifier change.The copper electrowinning test data indicate that the titanium-lead anode is a good candidate for further testing as a possible replacement for a conventional lead anode. A key consideration is the cost. Titanium costs have increased. One of the ways to get the anode cost down is manufacturing the anodes with fewer cylinders. Additional prototypes having different number of cylinders were constructed for a long-term commercial testing in a circuit without cobalt. The objective of the testing is to evaluate the need for cobalt, investigate the effect of decreasing the number of cylinders on the anode performance, and to optimize further the anode design in order to meet the operating requirements, minimize the voltage, maximize the life of the anode, and to balance this against a reasonable cost for the anode. It is anticipated that after testing of the additional prototypes, a whole cell commercial test will be conducted to complete evaluation of the titanium-lead anode costs/benefits.

  7. Nanocomposite protective coatings for battery anodes

    DOE Patents [OSTI]

    Lemmon, John P; Xiao, Jie; Liu, Jun

    2014-01-21T23:59:59.000Z

    Modified surfaces on metal anodes for batteries can help resist formation of malfunction-inducing surface defects. The modification can include application of a protective nanocomposite coating that can inhibit formation of surface defects. such as dendrites, on the anode during charge/discharge cycles. For example, for anodes having a metal (M'), the protective coating can be characterized by products of chemical or electrochemical dissociation of a nanocomposite containing a polymer and an exfoliated compound (M.sub.a'M.sub.b''X.sub.c). The metal, M', comprises Li, Na, or Zn. The exfoliated compound comprises M' among lamella of M.sub.b''X.sub.c, wherein M'' is Fe, Mo, Ta, W, or V, and X is S, O, or Se.

  8. Microwave processing of tantalum capacitor anodes

    SciTech Connect (OSTI)

    Lauf, R J; Hamby, C; Holcombe, C E [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States); Vierow, W F [AVX Tantalum Corp., Biddeford, ME (United States)] [AVX Tantalum Corp., Biddeford, ME (United States)

    1992-08-01T23:59:59.000Z

    Porous tantalum anodes were sintered at temperatures from 1600 to 1900{degrees}C using a conventional high-vacuum furnace as well as both 2.45 GHz fixed-frequency and 4--8 GHz variable-frequency microwave furnaces. Various insulation and casketing techniques were used to couple the microwave power to the tantalum compacts. Several types of tantalum powder were used to assess the effect of microwave processing on sintered surface area and impurity levels. Some microwave sintered anodes have an unusual surface rippling not seen on conventionally fired parts. The rippling suggests that a microscopic arcing or plasma might have been generated. Two important effects could be exploited if this phenomenon can be controlled. First, the effective tantalum surface area could be increased, yielding higher capacitance per volume. Second, surface impurities might be cleaned away, allowing the formation of a better dielectric film during the anodization process and, ultimately, higher working voltage.

  9. Development of High Capacity Anode for Li-ion Batteries

    Broader source: Energy.gov (indexed) [DOE]

    stability of Si-based anode. 4 Milestones * Synthesize and characterize TiO 2 Graphene and SnO 2 Graphene nano-composite as anode for Li-ion batteries. - on going *...

  10. Fuel cell system shutdown with anode pressure control

    DOE Patents [OSTI]

    Clingerman, Bruce J. (Palmyra, NY); Doan, Tien M. (Columbia, MD); Keskula, Donald H. (Webster, NY)

    2002-01-01T23:59:59.000Z

    A venting methodology and pressure sensing and vent valving arrangement for monitoring anode bypass valve operating during the normal shutdown of a fuel cell apparatus of the type used in vehicle propulsion systems. During a normal shutdown routine, the pressure differential between the anode inlet and anode outlet is monitored in real time in a period corresponding to the normal closing speed of the anode bypass valve and the pressure differential at the end of the closing cycle of the anode bypass valve is compared to the pressure differential at the beginning of the closing cycle. If the difference in pressure differential at the beginning and end of the anode bypass closing cycle indicates that the anode bypass valve has not properly closed, a system controller switches from a normal shutdown mode to a rapid shutdown mode in which the anode inlet is instantaneously vented by rapid vents.

  11. Hill crossing during preheating after hilltop inflation

    E-Print Network [OSTI]

    Antusch, Stefan; Orani, Stefano

    2015-01-01T23:59:59.000Z

    In 'hilltop inflation', inflation takes place when the inflaton field slowly rolls from close to a maximum of its potential (i.e. the 'hilltop') towards its minimum. When the inflaton potential is associated with a phase transition, possible topological defects produced during this phase transition, such as domain walls, are efficiently diluted during inflation. It is typically assumed that they also do not reform after inflation, i.e. that the inflaton field stays on its side of the 'hill', finally performing damped oscillations around the minimum of the potential. In this paper we study the linear and the non-linear phases of preheating after hilltop inflation. We find that the fluctuations of the inflaton field during the tachyonic oscillation phase grow strong enough to allow the inflaton field to form regions in position space where it crosses 'over the top of the hill' towards the 'wrong vacuum'. We investigate the formation and behaviour of these overshooting regions using lattice simulations: Rather t...

  12. Hill crossing during preheating after hilltop inflation

    E-Print Network [OSTI]

    Stefan Antusch; David Nolde; Stefano Orani

    2015-03-20T23:59:59.000Z

    In 'hilltop inflation', inflation takes place when the inflaton field slowly rolls from close to a maximum of its potential (i.e. the 'hilltop') towards its minimum. When the inflaton potential is associated with a phase transition, possible topological defects produced during this phase transition, such as domain walls, are efficiently diluted during inflation. It is typically assumed that they also do not reform after inflation, i.e. that the inflaton field stays on its side of the 'hill', finally performing damped oscillations around the minimum of the potential. In this paper we study the linear and the non-linear phases of preheating after hilltop inflation. We find that the fluctuations of the inflaton field during the tachyonic oscillation phase grow strong enough to allow the inflaton field to form regions in position space where it crosses 'over the top of the hill' towards the 'wrong vacuum'. We investigate the formation and behaviour of these overshooting regions using lattice simulations: Rather than durable domain walls, these regions form oscillon-like structures (i.e. localized bubbles that oscillate between the two vacua) which should be included in a careful study of preheating in hilltop inflation.

  13. CITY Of MORGAN HILL DEVELOPMENT SERVIC ES CENTER

    E-Print Network [OSTI]

    Energy Efficiency Standards as part of the implementation of our local energy ordinance. As the BuildingCITY Of MORGAN HILL DEVELOPMENT SERVIC ES CENTER 1757 5 PEAKAVENUE MORGAN HILL, CA 95037-41 28 (408 Commissioner Arthur H . Rosenfeld Ph.D. Commissioner Julia Levin, J.D. California Energy Commission 1516 Ninth

  14. Hill SyStem PlaStic mulcHed

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    a Hill SyStem PlaStic mulcHed Strawberry Production Guide for colder areaS #12;#12;i Trade names do they intend or imply discrimination against those not mentioned. Hill SyStem PlaStic mulcHed ..................................................................27 Consider Fall Laying of Extra Plastic Mulch

  15. Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik...

    Open Energy Info (EERE)

    Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik & Goff, 2002) Exploration Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique Water-Gas...

  16. Effect of Vinylene Carbonate on Graphite Anode Cycling Efficiency

    E-Print Network [OSTI]

    Ridgway, Paul

    2010-01-01T23:59:59.000Z

    graphite formulations in particular, are the current standard for battery anodes in electric vehicle lithium-ion batteries (

  17. Hybrid anode for semiconductor radiation detectors

    DOE Patents [OSTI]

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19T23:59:59.000Z

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  18. Anode materials for lithium-ion batteries

    DOE Patents [OSTI]

    Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

    2014-12-30T23:59:59.000Z

    An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

  19. Microstructure and Polarization Characteristics of Anode Supported Tubular SOFC with Co-precipitated and Mechanically Mixed Ni-YSZ Anodes

    E-Print Network [OSTI]

    Tokyo, University of

    1 Microstructure and Polarization Characteristics of Anode Supported Tubular SOFC with Co SOFC is fabricated and the dependence of its polarization resistance on anode microstructural resistance of anode supported tubular SOFC using stereology and c-c theory is evaluated. Key Words: Solid

  20. Deep Research Submarine

    E-Print Network [OSTI]

    Woertz, Jeff

    2002-02-01T23:59:59.000Z

    The Deep Sea Research Submarine (Figure 1) is a modified VIRGINIA Class Submarine that incorporates a permanently installed Deep Sea Operations Compartment (Figure 2). Table 1 summarizes the characteristics of the Deep ...

  1. Fuel cell anode configuration for CO tolerance

    DOE Patents [OSTI]

    Uribe, Francisco A.; Zawodzinski, Thomas A.

    2004-11-16T23:59:59.000Z

    A polymer electrolyte fuel cell (PEFC) is designed to operate on a reformate fuel stream containing oxygen and diluted hydrogen fuel with CO impurities. A polymer electrolyte membrane has an electrocatalytic surface formed from an electrocatalyst mixed with the polymer and bonded on an anode side of the membrane. An anode backing is formed of a porous electrically conductive material and has a first surface abutting the electrocatalytic surface and a second surface facing away from the membrane. The second surface has an oxidation catalyst layer effective to catalyze the oxidation of CO by oxygen present in the fuel stream where at least the layer of oxidation catalyst is formed of a non-precious metal oxidation catalyst selected from the group consisting of Cu, Fe, Co, Tb, W, Mo, Sn, and oxides thereof, and other metals having at least two low oxidation states.

  2. Observation Wells At Fenton Hill HDR Geothermal Area (Shevenell...

    Open Energy Info (EERE)

    Basis Geophone emplacement holes PC-1 and PC-2 were drilled at Fenton Hill by Maness Drilling Company of Farmington, NM for Los Alamos National Laboratory in 1984. These wells...

  3. Town of Kill Devil Hills- Wind Energy Systems Ordinance

    Broader source: Energy.gov [DOE]

    In October 2007, the town of Kill Devil Hills adopted an ordinance to regulate the use of wind-energy systems. The ordinance directs any individual or organization wishing to install a wind-energy...

  4. Black Hills Energy (Gas)- Residential New Construction Rebate Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy offers new construction rebates for home builders in the eligible service area. Rebates between $800 and $5,000 are available for a range of efficiency measures incorporated into...

  5. Town of Chapel Hill- Land-Use Management Ordinance

    Broader source: Energy.gov [DOE]

    In 2003, the Town of Chapel Hill adopted a land-use management ordinance that includes prohibitions against neighborhood or homeowners association covenants or other conditions of sale that...

  6. Carbon and Water Cycling in a Texas Hill Country Woodland 

    E-Print Network [OSTI]

    Kamps, Ray Herbert

    2014-12-11T23:59:59.000Z

    Two tree species, Plateau live oak (Quercus fusiformis) and Ashe juniper (Juniperus ashei) survive and thrive in a dense woodland on thin soil overlying massive limestone formations in the Texas Hill Country with recurrent annual summer drought...

  7. Farmington Hills Partners With Michigan Saves With Eyes on the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hills is one of 50 communities competing to reduce energy over the next two years to win GUEP's 5 million prize. "We don't want financing to be a barrier," Michigan Saves...

  8. Rock Hill Utilities- Water Heater and Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed...

  9. Nanostructured Materials as Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash,EnergyNanophosphateas Anodes Nanostructured

  10. Lithium Metal Anodes for Rechargeable Batteries

    SciTech Connect (OSTI)

    Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

    2014-02-28T23:59:59.000Z

    Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

  11. Jobtong Deep Web Web""Surface WebDeep Web

    E-Print Network [OSTI]

    Jobtong Deep Web Web Web Web""Surface WebDeep Web Surface WebDeep Web Web[1] 20007BrightPlanet.comDeep Web[2] Web43,000-96,000Web7,500TB(Surface Web500) UIUC5Deep Web[3]2004Deep Web 307,000366,000-535,000"" Deep Web""Google Yahoo32%Deep Web WAMDMWebDeep WebJobtong Deep Web (Jobtong) Jobtong(, http

  12. Coring in deep hardrock formations

    SciTech Connect (OSTI)

    Drumheller, D.S.

    1988-08-01T23:59:59.000Z

    The United States Department of Energy is involved in a variety of scientific and engineering feasibility studies requiring extensive drilling in hard crystalline rock. In many cases well depths extend from 6000 to 20,000 feet in high-temperature, granitic formations. Examples of such projects are the Hot Dry Rock well system at Fenton Hill, New Mexico and the planned exploratory magma well near Mammoth Lakes, California. In addition to these programs, there is also continuing interest in supporting programs to reduce drilling costs associated with the production of geothermal energy from underground sources such as the Geysers area near San Francisco, California. The overall progression in these efforts is to drill deeper holes in higher temperature, harder formations. In conjunction with this trend is a desire to improve the capability to recover geological information. Spot coring and continuous coring are important elements in this effort. It is the purpose of this report to examine the current methods used to obtain core from deep wells and to suggest projects which will improve existing capabilities. 28 refs., 8 figs., 2 tabs.

  13. Sodium Titanates as Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    Anodes  for  Sodium  Ion  Batteries   Marca  M.  Doeff,  dual   intercalation   batteries   based   on   sodium  future   of   sodium  ion  batteries  will  be  discussed  

  14. anodal transcranial direct: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    duration between two consec- utive purge Stefanopoulou, Anna 119 Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material Chemistry...

  15. anodic fenton treatment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with atomic layer deposition (ALD) to fabricate Rubloff, Gary W. 32 Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous...

  16. anode supported planar: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: Journal of Power Sources SUPPORTING INFORMATION Effects of carbon brush anode size and loading, PA 16802, USA *Corresponding Author: E-mail: blogan@psu.edu,...

  17. anodically oxidized titanium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mixed anatase and rutile phases. Under simulated AM 1.5 G illumination, the peak solar energy conversion Heller, Eric 7 Porous anodic aluminum oxide scaffolds; formation mechanisms...

  18. anodic oxidized titanium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mixed anatase and rutile phases. Under simulated AM 1.5 G illumination, the peak solar energy conversion Heller, Eric 7 Porous anodic aluminum oxide scaffolds; formation mechanisms...

  19. Degradation Mechanisms of SOFC Anodes in Coal Gas Containing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phosphorus. Abstract: The interaction of phosphorus in synthetic coal gas with the nickel-based anode of solid oxide fuel cells has been investigated. Tests with both...

  20. Vehicle Technologies Office Merit Review 2014: Novel Anode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel anode...

  1. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01T23:59:59.000Z

    for rechargeable lithium batteries. J. Power Sources 139,for advanced lithium-ion batteries. J. Power Sources 174,nano-anodes for lithium rechargeable batteries. Angew. Chem.

  2. CX-005369: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replacement of Big Hill Deep Anode Ground Bed Site for Cavern 103CX(s) Applied: B1.3Date: 02/22/2011Location(s): TexasOffice(s): Strategic Petroleum Reserve Field Office

  3. Nanostructured Metal Oxide Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash,EnergyNanophosphateas Anodes Nanostructuredby10

  4. Nanostructured Metal Oxide Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash,EnergyNanophosphateas Anodes Nanostructuredby1009

  5. Alternative Anode Reaction for Copper Electrowinning

    SciTech Connect (OSTI)

    Not Available

    2005-07-01T23:59:59.000Z

    This report describes a project funded by the Department of Energy, with additional funding from Bechtel National, to develop a copper electrowinning process with lower costs and lower emissions than the current process. This new process also includes more energy efficient production by using catalytic-surfaced anodes and a different electrochemical couple in the electrolyte, providing an alternative oxidation reaction that requires up to 50% less energy than is currently required to electrowin the same quantity of copper. This alternative anode reaction, which oxidizes ferric ions to ferrous, with subsequent reduction back to ferric using sulfur dioxide, was demonstrated to be technically and operationally feasible. However, pure sulfur dioxide was determined to be prohibitively expensive and use of a sulfur burner, producing 12% SO{sub 2}, was deemed a viable alternative. This alternate, sulfur-burning process requires a sulfur burner, waste heat boiler, quench tower, and reaction towers. The electrolyte containing absorbed SO{sub 2} passes through activated carbon to regenerate the ferrous ion. Because this reaction produces sulfuric acid, excess acid removal by ion exchange is necessary and produces a low concentration acid suitable for leaching oxide copper minerals. If sulfide minerals are to be leached or the acid unneeded on site, hydrogen was demonstrated to be a potential reductant. Preliminary economics indicate that the process would only be viable if significant credits could be realized for electrical power produced by the sulfur burner and for acid if used for leaching of oxidized copper minerals on site.

  6. High Capacity Li Ion Battery Anodes Using Ge Nanowires

    E-Print Network [OSTI]

    Cui, Yi

    High Capacity Li Ion Battery Anodes Using Ge Nanowires Candace K. Chan, Xiao Feng Zhang, and Yi Cui efficiency > 99%. Structural characterization revealed that the Ge nanowires remain intact and connected nanowire anodes are promising candidates for the development of high-energy-density lithium batteries

  7. Interconnected hollow carbon nanospheres for stable lithium metal anodes

    E-Print Network [OSTI]

    Cui, Yi

    storage, batteries with higher energy storage density than existing lithium ion batteries need metal anodes. W hen interest in secondary lithium batteries began to emerge more than four decades ago1) accommodating the large change in electrode volume during cycling (unlike graphite and silicon anodes, where

  8. Electrolytic production of high purity aluminum using ceramic inert anodes

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Douglas A. (Murrysville, PA); DiMilia, Robert A. (Baton Rouge, LA); Dynys, Joseph M. (New Kensington, PA); Phelps, Frankie E. (Apollo, PA); LaCamera, Alfred F. (Trafford, PA)

    2002-01-01T23:59:59.000Z

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.

  9. Electrolytic production of high purity aluminum using inert anodes

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA)

    2001-01-01T23:59:59.000Z

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.

  10. anodized ti-6al-4v alloy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Battery Anode Material Chemistry Websites Summary: Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material the graphite...

  11. anodically bonded glass-based: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    loose communication Jain, Amit 16 ANODE WIRE SWELLING --A NEW PHENOMENON IN ANODE WIRE AGING UNDER HIGHACCUMUPATED DOSE Physics Websites Summary: -day practice of an...

  12. anodized ti-metal substrates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is analyzed Nielsen, Mads Pagh 33 Polymeric anodes for improved polymer light-emitting diode performance S. A. Cartera) Physics Websites Summary: Polymeric anodes for...

  13. The Fabrication of Titanium Dioxide Based Anode Material Using Aerosol Method

    E-Print Network [OSTI]

    Zhao, Lin

    2013-01-01T23:59:59.000Z

    synthesis of graphene-based titanium dioxide nanocompositesLos Angeles The Fabrication of Titanium Dioxide Based AnodeTHE THESIS The Fabrication of Titanium Dioxide Based Anode

  14. Deep Web video

    ScienceCinema (OSTI)

    None Available

    2012-03-28T23:59:59.000Z

    To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

  15. Deep Web video

    SciTech Connect (OSTI)

    None Available

    2009-06-01T23:59:59.000Z

    To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

  16. Analysis of Subsidence Data for the Big Hill Site, Texas

    SciTech Connect (OSTI)

    Bauer, Stephen J.

    1999-06-01T23:59:59.000Z

    The elevation change data measured at the Big Hill SPR site over the last 10 years has been studied and a model utilized to project elevation changes into the future. The subsidence rate at Big Hill is low in comparison with other Strategic Petroleum Reserve sites and has decreased with time due to the maintenance of higher operating pressures and the normal decrease in creep closure rate of caverns with time. However, the subsidence at the site is projected to continue. A model was developed to project subsidence values 20 years into the future; no subsidence related issues are apparent from these projections.

  17. West Lake Hills, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills, New York: Energy Resources JumpNorthLake Hills,

  18. Seven Hills, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma: EnergySeoulSettlers Hill GasHills, Ohio:

  19. Seven Mile Hill Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma: EnergySeoulSettlers Hill GasHills,Carbon

  20. Hidden Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation, search Name: Hi-GtelTennessee:Hills,Texas:Hills,

  1. Rolling Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio:RockwallRolling Hills Electric CoopHills,

  2. Town of Chapel Hill- Worthwhile Investments Save Energy (WISE) Homes and Buildings Program

    Broader source: Energy.gov [DOE]

    Chapel Hill is using money made available to it from the American Recovery and Reinvestment Act of 2009 to help subsidize energy efficiency improvements in Chapel Hill homes. Qualified homeowners...

  3. Piecewise Linear Hypersurfaces using the Marching Cubes Jonathan C. Roberts a and Steve Hill b

    E-Print Network [OSTI]

    Kent, University of

    Hill b a University of Kent at Canterbury, Computing Laboratory, Canterbury, England, UK. b Radan steve.hill@uk.radan.com #12; A two dimensional contour on a map, representing a particular height above

  4. Independent Activity Report, CH2M Hill Plateau Remediation Company- January 2011

    Broader source: Energy.gov [DOE]

    Review of the CH2M Hill Plateau Remediation Company Unreviewed Safety Question Procedure [ARPT-RL-2011-003

  5. Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust Takayuki Ushikubo a,

    E-Print Network [OSTI]

    Mcdonough, William F.

    Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust Takayuki Hills lithium weathering continental crust Hadean In situ Li analyses of 4348 to 3362 Ma detrital of REEs. The Jack Hills zircons also have fractionated lithium isotope ratios (7 Li=-19 to+13) about five

  6. Inert anodes and advanced smelting of aluminum

    SciTech Connect (OSTI)

    ASME Technical Working Group on Inert Anode Technologies

    1999-07-01T23:59:59.000Z

    This report provides a broad assessment of open literature and patents that exist in the area of inert anodes and their related cathode systems and cell designs, technologies that are relevant for the advanced smelting of aluminum. The report also discusses the opportunities, barriers, and issued associated with these technologies from a technical, environmental, and economic viewpoint. It discusses the outlook for the direct retrofit of advanced reduction technologies to existing aluminum smelters, and compares retrofits to ''brown field'' usage and ''green field'' adoption of the technologies. A number of observations and recommendations are offered for consideration concerning further research and development efforts that may be directed toward these advanced technologies. The opportunities are discussed in the context of incremental progress that is being made in conventional Hall-Heroult cell systems.

  7. ORIGINAL ARTICLE Christopher E. Hill S. Elizabeth Campbell

    E-Print Network [OSTI]

    Hill, Christopher E.

    ORIGINAL ARTICLE Christopher E. Hill á S. Elizabeth Campbell J. Cully Nordby á John M. Burt á: +1-206-6853157 S.E. Campbell á J.C. Nordby á J.M. Burt á M.D. Beecher Department of Psychology sharing is correlated with mating success in brown-headed c

  8. Linda Hill, Ph.D.1 Olha Buchel, MLS.1

    E-Print Network [OSTI]

    Janée, Greg

    . The agendas for digital library and classification research in relating to KOS are also proposed. [Keywords ( ) [] [] Integration of Knowledge Organization Systems into Digital Library Architectures Linda Hill, Ph.D.1 Olha Buchel, MLS.1 Greg Janée, MS.1 Marcia Lei Zeng, Ph.D.2 1 (Alexandria Digital Library Project, University

  9. AT&T Bell Laboratories Murray Hill, New Jersey 07974

    E-Print Network [OSTI]

    Perry, Dewayne E.

    AT&T Bell Laboratories Murray Hill, New Jersey 07974 Software and Systems Research Center Technical Report Object-Oriented programs and Testing Dewayne E. Perry Gail E. Kaiser* appears in The Journal Of Object Oriented Programming January/February 1990 __________________ * Columbia University, Department

  10. Cu-Ni-Fe anodes having improved microstructure

    DOE Patents [OSTI]

    Bergsma, S. Craig; Brown, Craig W.

    2004-04-20T23:59:59.000Z

    A method of producing aluminum in a low temperature electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten electrolyte having alumina dissolved therein in an electrolytic cell containing the electrolyte. A non-consumable anode and cathode is disposed in the electrolyte, the anode comprised of Cu--Ni--Fe alloys having single metallurgical phase. Electric current is passed from the anode, through the electrolyte to the cathode thereby depositing aluminum on the cathode, and molten aluminum is collected from the cathode.

  11. Adhesion of anodic films on aluminum-lithium alloys

    SciTech Connect (OSTI)

    Skeldon, P.; Zhou, X.; Thompson, G.E.; Wood, G.C. (Univ. of Manchester Institute of Science and Technology (United Kingdom). Corrosion and Protection Centre); Habazaki, H. (Tohoku Univ., Sendai (Japan). Inst. for Materials Research); Shimizu, K. (Keio Univ., Hiyoshi, Yokohama (Japan). University Chemical Lab.)

    1999-06-01T23:59:59.000Z

    During anodizing of certain binary Al alloys, the growing anodic oxide film detaches from the alloy substrate, subsequently allowing access of the electrolyte to the underlying bare metal and re-anodizing at a high current density. An Al-3% Li alloy was shown to reveal these phenomena, which are associated with the development of voids at the alloy/film interface as the film thickens. The development of voids, assisting the film detachment, was attributed to the reduced volume of lithium oxide (Li[sub 2]O) formed at the alloy/film interface and compared to that of alumina (Al[sub 2]O[sub 3]).

  12. Inert Anode Life in Low Temperature Reduction Process

    SciTech Connect (OSTI)

    Bradford, Donald R.

    2005-06-30T23:59:59.000Z

    The production of aluminum metal by low temperature electrolysis utilizing metal non-consumable anodes and ceramic cathodes was extensively investigated. Tests were performed with traditional sodium fluoride--aluminum fluoride composition electrolytes, potassium fluoride-- aluminum fluoride electrolytes, and potassium fluoride--sodium fluoride--aluminum fluoride electrolytes. All of the Essential First-Tier Requirements of the joint DOE-Aluminum Industry Inert Anode Road Map were achieved and those items yet to be resolved for commercialization of this technology were identified. Methods for the fabrication and welding of metal alloy anodes were developed and tested. The potential savings of energy and energy costs were determined and potential environmental benefits verified.

  13. Short time proton dynamics in bulk ice and in porous anode solid oxide fuel cell materials

    SciTech Connect (OSTI)

    Basoli, Francesco [Università degli Studi di Roma Tor Vergata, Italy] [Università degli Studi di Roma Tor Vergata, Italy; Senesi, Roberto [ORNL] [ORNL; Kolesnikov, Alexander I [ORNL] [ORNL; Licoccia, Silvia [NAST Center, University of Roma "Tor Vergata"] [NAST Center, University of Roma "Tor Vergata"

    2014-01-01T23:59:59.000Z

    Oxygen reduction and incorporation into solid electrolytes and the reverse reaction of oxygen evolution play a cru-cial role in Solid Oxide Fuel Cell (SOFC) applications. However a detailed un derstanding of the kinetics of the cor-responding reactions, i.e. on reaction mechanisms, rate limiting steps, reaction paths, electrocatalytic role of materials, is still missing. These include a thorough characterization of the binding potentials experienced by protons in the lattice. We report results of Inelastic Neutron Scattering (INS) measurements of the vibrational state of the protons in Ni- YSZ highly porous composites (75% to 90% ), a ceramic-metal material showing a high electrical conductivity and ther mal stability, which is known to be most effectively used as anodes for solid ox ide fuel cells. The results are compared with INS and Deep Inelastic Neutron Scattering (DINS) experiments on the proton binding states in bulk ice.

  14. FIB-SEM investigation of trapped intermetallic particles in anodic oxide films

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    of second-phase particles in the aluminium alloys substrates influences the anodic oxide films. They modifyFIB-SEM investigation of trapped intermetallic particles in anodic oxide films on AA1050 aluminium changes in the anodized anodic oxide film on AA1050 aluminium substrates. Design

  15. Novel Lithium Ion Anode Structures: Overview of New DOE BATT...

    Broader source: Energy.gov (indexed) [DOE]

    University 200,000 Synthesis and Characterization of Polymer-Coated Layered SiO x -Graphene Nanocomposite Anodes J-G Zhang and J. Liu Pacific Northwest National Laboratory...

  16. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01T23:59:59.000Z

    for advanced lithium-ion batteries. J. Power Sources 174,for lithium rechargeable batteries. Angew. Chem. Int. Ed.anodes for lithium-ion batteries. J. Mater. Chem. A 1,

  17. anode wire grids: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray position detection, simulation study of the anode wire modulation effect of the detector was carried out with Garfield program. Different gas mixtures were used as the...

  18. anode catalyst layer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OLEDs have been fabricated using a new anode-cathode-layer (ACL) that connects light emitting diode (OLED) 1, much development has been made to improve this device for...

  19. anode buffer layer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OLEDs have been fabricated using a new anode-cathode-layer (ACL) that connects light emitting diode (OLED) 1, much development has been made to improve this device for...

  20. anode cathodic protection: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OLEDs have been fabricated using a new anode-cathode-layer (ACL) that connects light emitting diode (OLED) 1, much development has been made to improve this device for...

  1. anodic tantala films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diodes Materials Science Websites Summary: to be an efficient anode for organic light-emitting diode OLED X. L. Zhu, J. X. Sun, H. J. Peng, Z. G. Meng, M. Wong an ultrathin...

  2. anode interfacial layer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OLEDs have been fabricated using a new anode-cathode-layer (ACL) that connects light emitting diode (OLED) 1, much development has been made to improve this device for...

  3. New Composite Silicon-Defect Graphene Anode Architecture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Composite Silicon-Defect Graphene Anode Architecture for High Capacity, High-Rate Li-ion Batteries Xin Zhao, Cary Hayner, Mayfair Kung, and Harold Kung, Northwestern...

  4. anodic materials: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    anode materia.l1-9 These materials have been showed large-14 the use of metal and carbon composites,15-20 and the introduction of nano- sized metals,21-25 have been Cho,...

  5. advanced anodic materials: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    anode materia.l1-9 These materials have been showed large-14 the use of metal and carbon composites,15-20 and the introduction of nano- sized metals,21-25 have been Cho,...

  6. Lithium-Titanium-Oxide Anodes Improve Battery Safety and Performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium-Titanium-Oxide Anodes Improve Battery Safety and Performance Technology available for licensing: Li4Ti5O12 spinel is a promising alternative to graphite electrodes with...

  7. anode supported solid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    membranes deposited on solid substrates. Such systems Boyer, Edmond 30 Anode-supported thin-film fuel cells operated in a single chamber configuration 2T-I-12 Energy Storage,...

  8. Breakdown Anodization (BDA) for hierarchical structures of titanium oxide

    E-Print Network [OSTI]

    Choi, Soon Ju, S.M. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Breakdown Anodization (BDA) of titanium dioxide is a very promising, fast fabrication method to construct micro-scale and nano-scale structures on titanium surfaces. This method uses environmentally friendly electrolytes, ...

  9. Porous anodic aluminum oxide scaffolds; formation mechanisms and applications

    E-Print Network [OSTI]

    Oh, Jihun

    2010-01-01T23:59:59.000Z

    Nanoporous anodic aluminium oxide (AAO) can be created with pores that self-assemble into ordered configurations. Nanostructured metal oxides have proven to be very useful as scaffolds for growth of nanowires and nanotubes ...

  10. Anode Materials DOI: 10.1002/anie.200804355

    E-Print Network [OSTI]

    Cho, Jaephil

    in High-Perfor- mance Lithium Secondary Batteries** Hyunjung Kim, Byunghee Han, Jaebum Choo, and Jaephil the capacity of graphite (ca. 372 mAhgÀ1 ),[1] which is currently used as an anode material. In spite

  11. Virus-Enabled Silicon Anode for Lithium-Ion Batteries

    SciTech Connect (OSTI)

    Chen, X L; Gerasopoulos, K; Guo, J C; Brown, A; Wang, Chunsheng; Ghodssi, Reza; Culver, J N

    2010-01-01T23:59:59.000Z

    A novel three-dimensional Tobacco mosaic virus assembled silicon anode is reported. This electrode combines genetically modified virus templates for the production of high aspect ratio nanofeatured surfaces with electroless deposition to produce an integrated nickel current collector followed by physical vapor deposition of a silicon layer to form a high capacity silicon anode. This composite silicon anode produced high capacities (3300 mAh/g), excellent charge?discharge cycling stability (0.20% loss per cycle at 1C), and consistent rate capabilities (46.4% at 4C) between 0 and 1.5 V. The biological templated nanocomposite electrode architecture displays a nearly 10-fold increase in capacity over currently available graphite anodes with remarkable cycling stability.

  12. Stainless steel anodes for alkaline water electrolysis and methods of making

    DOE Patents [OSTI]

    Soloveichik, Grigorii Lev

    2014-01-21T23:59:59.000Z

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  13. Fuel cell having dual electrode anode or cathode

    DOE Patents [OSTI]

    Findl, E.

    1984-04-10T23:59:59.000Z

    A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

  14. Direct Ethanol Fuel Cells: Platinum/Rhodium Anode

    E-Print Network [OSTI]

    Petta, Jason

    Direct Ethanol Fuel Cells: Platinum/Rhodium Anode Catalysis Ken Ellis-Guardiola PCCM REU 2010 #12 EtOH+3H2O 12H+ +2CO2+ 12e- Pt C 4H+ + 4e- + O2 2H2O O2 Anode Cathode The Direct Ethanol Fuel Cell #12 Fuel Cell Test ~ 1.5 mg Pt loading. 1.0 M Ethanol flowing at 1 ml/min. O2 flowing at 100 ml/min. Cells

  15. Process for anodizing a robotic device

    DOE Patents [OSTI]

    Townsend, William T. (Weston, MA)

    2011-11-08T23:59:59.000Z

    A robotic device has a base and at least one finger having at least two links that are connected in series on rotary joints with at least two degrees of freedom. A brushless motor and an associated controller are located at each joint to produce a rotational movement of a link. Wires for electrical power and communication serially connect the controllers in a distributed control network. A network operating controller coordinates the operation of the network, including power distribution. At least one, but more typically two to five, wires interconnect all the controllers through one or more joints. Motor sensors and external world sensors monitor operating parameters of the robotic hand. The electrical signal output of the sensors can be input anywhere on the distributed control network. V-grooves on the robotic hand locate objects precisely and assist in gripping. The hand is sealed, immersible and has electrical connections through the rotary joints for anodizing in a single dunk without masking. In various forms, this intelligent, self-contained, dexterous hand, or combinations of such hands, can perform a wide variety of object gripping and manipulating tasks, as well as locomotion and combinations of locomotion and gripping.

  16. Hyper-dendritic nanoporous zinc foam anodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chamoun, Mylad [Brookhaven National Lab. (BNL), Upton, NY (United States); Hertzberg, Benjamin J. [Princeton Univ., NJ (United States); Gupta, Tanya [Princeton Univ., NJ (United States); Davies, Daniel [Princeton Univ., NJ (United States); Bhadra, Shoham [Princeton Univ., NJ (United States); Van Tassell, Barry. [City College of New York, NY (United States); Erdonmez, Can [Brookhaven National Lab. (BNL), Upton, NY (United States); Steingart, Daniel A. [Princeton Univ., NJ (United States)

    2015-04-24T23:59:59.000Z

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrast to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn?/Zn²? showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.

  17. Hyper-dendritic nanoporous zinc foam anodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya; Davies, Daniel; Bhadra, Shoham; Van Tassell, Barry.; Erdonmez, Can; Steingart, Daniel A.

    2015-04-24T23:59:59.000Z

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrastmore »to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn?/Zn²? showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.« less

  18. Environmental protection and regulatory compliance at the Elk Hills Field

    SciTech Connect (OSTI)

    Chappelle, H.H. (BCM Engineers, Inc., Plymouth Meeting, PA (United States)); Donahoe, R.L. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); Kato, T.T. (EG and G Energy Measurements, Inc., Las Vegas, NV (United States)); Ordway, H.E. (Chevron U.S.A., Inc., San Francisco, CA (United States))

    1991-01-01T23:59:59.000Z

    Environmental protection has played an integral role in the development and operation of the Elk Hills field since production at the maximum efficient rate was authorized in 1976. The field is located in a non-attainment area for California and National Ambient Air Quality Standards for two criteria pollutants and their associated precursors, is home to four endangered species, and operates within the California regulatory framework. Environmental protection and regulatory compliance is a multi-faceted program carried out through a substantial commitment of resources and workforce involvement. This paper describes the actions taken and resources employed to protect the environment, specific technologies and projects implement, and the ongoing nature of these efforts at Elk Hills.

  19. Environmental protection and regulatory compliance at the Elk Hills Field

    SciTech Connect (OSTI)

    Chappelle, H.H. [BCM Engineers, Inc., Plymouth Meeting, PA (United States); Donahoe, R.L. [Bechtel Petroleum Operations, Inc., Tupman, CA (United States); Kato, T.T. [EG and G Energy Measurements, Inc., Las Vegas, NV (United States); Ordway, H.E. [Chevron U.S.A., Inc., San Francisco, CA (United States)

    1991-12-31T23:59:59.000Z

    Environmental protection has played an integral role in the development and operation of the Elk Hills field since production at the maximum efficient rate was authorized in 1976. The field is located in a non-attainment area for California and National Ambient Air Quality Standards for two criteria pollutants and their associated precursors, is home to four endangered species, and operates within the California regulatory framework. Environmental protection and regulatory compliance is a multi-faceted program carried out through a substantial commitment of resources and workforce involvement. This paper describes the actions taken and resources employed to protect the environment, specific technologies and projects implement, and the ongoing nature of these efforts at Elk Hills.

  20. DOE to accept bids for Elk Hills crude

    SciTech Connect (OSTI)

    Not Available

    1992-05-04T23:59:59.000Z

    This paper reports that the Department of Energy will accept bids in a reoffering sale covering 53,400 b/d of Elk Hills field oil but later may exercise an option to cut sales volumes and ship 20,000 b/d to Strategic Petroleum Reserve sites in Texas. DOE rejected all 19 bids submitted in an earlier semiannual sale of crude oil from the California naval petroleum reserve, saying they were too low. DOE the, The unique combination of federal and state government policies affecting the movement of oil into and out of the California market has contributed to a situation in which it apparently is very difficult for the government to receive a price for Elk Hills oil that satisfies the minimum price tests that govern the sale of Elk Hills oil. The 12 winning bids in the reoffering sale averaged $13.58/bbl, with bids for the higher quality Stevens zone crude averaging $13.92/bbl, about 67 cents/bbl higher than bids rejected last month. DOE the 20,000 b/d is all local pipelines can ship to the interstate All-American pipeline for transfer to Texas beginning in June.

  1. Three dimensional simulation for Big Hill Strategic Petroleum Reserve (SPR).

    SciTech Connect (OSTI)

    Ehgartner, Brian L. (Sandia National Laboratories, Albuquerque, NM); Park, Byoung Yoon; Sobolik, Steven Ronald (Sandia National Laboratories, Albuquerque, NM); Lee, Moo Yul (Sandia National Laboratories, Albuquerque, NM)

    2005-07-01T23:59:59.000Z

    3-D finite element analyses were performed to evaluate the structural integrity of caverns located at the Strategic Petroleum Reserve's Big Hill site. State-of-art analyses simulated the current site configuration and considered additional caverns. The addition of 5 caverns to account for a full site and a full dome containing 31 caverns were modeled. Operations including both normal and cavern workover pressures and cavern enlargement due to leaching were modeled to account for as many as 5 future oil drawdowns. Under the modeled conditions, caverns were placed very close to the edge of the salt dome. The web of salt separating the caverns and the web of salt between the caverns and edge of the salt dome were reduced due to leaching. The impacts on cavern stability, underground creep closure, surface subsidence and infrastructure, and well integrity were quantified. The analyses included recently derived damage criterion obtained from testing of Big Hill salt cores. The results show that from a structural view point, many additional caverns can be safely added to Big Hill.

  2. In situ characterization of nanoscale catalysts during anodic redox processes

    SciTech Connect (OSTI)

    Sharma, Renu [National Institute of Standards and Technology] National Institute of Standards and Technology; Crozier, Peter [Arizona State University] Arizona State University; Adams, James [Arizona State University] Arizona State University

    2013-09-19T23:59:59.000Z

    Controlling the structure and composition of the anode is critical to achieving high efficiency and good long-term performance. In addition to being a mixed electronic and ionic conductor, the ideal anode material should act as an efficient catalyst for oxidizing hydrogen, carbon monoxide and dry hydrocarbons without de-activating through either sintering or coking. It is also important to develop novel anode materials that can operate at lower temperatures to reduce costs and minimized materials failure associated with high temperature cycling. We proposed to synthesize and characterize novel anode cermets materials based on ceria doped with Pr and/or Gd together with either a Ni or Cu metallic components. Ceria is a good oxidation catalyst and is an ionic conductor at room temperature. Doping it with trivalent rare earths such as Pr or Gd retards sintering and makes it a mixed ion conductor (ionic and electronic). We have developed a fundamental scientific understanding of the behavior of the cermet material under reaction conditions by following the catalytic oxidation process at the atomic scale using a powerful Environmental Scanning Transmission Electron Microscope (ESTEM). The ESTEM allowed in situ monitoring of structural, chemical and morphological changes occurring at the cermet under conditions approximating that of typical fuel-cell operation. Density functional calculations were employed to determine the underlying mechanisms and reaction pathways during anode oxidation reactions. The dynamic behavior of nanoscale catalytic oxidation of hydrogen and methane were used to determine: ? Fundamental processes during anodic reactions in hydrogen and carbonaceous atmospheres ? Interfacial effects between metal particles and doped ceria ? Kinetics of redox reaction in the anode material

  3. Low cost fuel cell diffusion layer configured for optimized anode water management

    DOE Patents [OSTI]

    Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E

    2013-08-27T23:59:59.000Z

    A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.

  4. Deep-fried Turkey

    E-Print Network [OSTI]

    Birkhold, Sarah

    2000-11-09T23:59:59.000Z

    Deep-fried Turkey by Sarah G. Birkhold Assistant Professor and Extension Poultry Specialist, The Texas A&M University System lemon pepper can be applied both inside and outside the bird. Prepared marinades, available from the grocer, also can...

  5. Exploration for deep coal

    SciTech Connect (OSTI)

    NONE

    2008-12-15T23:59:59.000Z

    The most important factor in safe mining is the quality of the roof. The article explains how the Rosebud Mining Co. conducts drilling and exploration in 11 deep coal mine throughout Pennsylvania and Ohio. Rosebud uses two Atlas Copco CS10 core drilling rigs mounted on 4-wheel drive trucks. The article first appeared in Atlas Copco's in-house magazine, Deep Hole Driller. 3 photos.

  6. The possibility of forming a sacrificial anode coating for Mg

    SciTech Connect (OSTI)

    Dudney, Nancy J [ORNL; Li, Juchuan [Oak Ridge National Laboratory (ORNL); Sacci, Robert L [ORNL; Thomson, Jeffery K [ORNL

    2014-01-01T23:59:59.000Z

    Mg is the most active engineering metal, and is often used as a sacrificial anode/coating to protect other engineering metals from corrosion attack. So far no sacrificial anode coating has been developed or considered for Mg. This study explores the possibility of forming a sacrificial coating for Mg. A lithiated carbon coating and a metaphosphated coating are applied on the Mg surface, respectively, and their open-circuit-potentials are measured in saturated Mg(OH)2 solution. They exhibit more negative potentials than bare Mg. SEM reveals that the metaphosphated coating offers more effective and uniform protection for Mg than the lithiated carbon coating. These preliminary results indicate that development of a sacrificial anode coating for Mg is indeed possible.

  7. The dependence of natural graphite anode performance on electrode density

    SciTech Connect (OSTI)

    Shim, Joongpyo; Striebel, Kathryn A.

    2003-11-01T23:59:59.000Z

    The effect of electrode density for lithium intercalation and irreversible capacity loss on the natural graphite anode in lithium ion batteries was studied by electrochemical methods. Both the first-cycle reversible and irreversible capacities of the natural graphite anode decreased with an increase in the anode density though compression. The reduction in reversible capacity was attributed to a reduction in the chemical diffusion coefficient for lithium though partially agglomerated particles with a larger stress. For the natural graphite in this study the potentials for Li (de)insertion shifted between the first and second formation cycles and the extent of this shift was dependent on electrode density. The relation between this peak shift and the irreversible capacity loss are probably both due to the decrease in graphite surface area with compression.

  8. Battery with modular air cathode and anode cage

    DOE Patents [OSTI]

    Niksa, Marilyn J. (Painesville, OH); Pohto, Gerald R. (Mentor, OH); Lakatos, Leslie K. (Mentor, OH); Wheeler, Douglas J. (Cleveland Heights, OH); Niksa, Andrew J. (Painesville, OH); Schue, Thomas J. (Huntsburg, OH)

    1987-01-01T23:59:59.000Z

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

  9. Battery with modular air cathode and anode cage

    DOE Patents [OSTI]

    Niksa, Marilyn J. (Painesville, OH); Pohto, Gerald R. (Mentor, OH); Lakatos, Leslie K. (Mentor, OH); Wheeler, Douglas J. (Cleveland Heights, OH); Niksa, Andrew J. (Painesville, OH); Schue, Thomas J. (Huntsburg, OH); Turk, Thomas R. (Mentor, OH)

    1988-01-01T23:59:59.000Z

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

  10. Overview of SOFC Anode Interactions with Coal Gas Impurities

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.; Gemmen, Randall; Gerdes, Kirk; Finklea, Harry; Celik, Ismail B.

    2010-05-01T23:59:59.000Z

    An overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic and actual coal gas for periods greater than 1000 hours. Post-test analyses were performed to identify reaction products formed and their distribution, and compared to phases expected from thermochemical modeling. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

  11. Overview of SOFC Anode Interactions with Coal Gas Impurities

    SciTech Connect (OSTI)

    O. A. Marina; L. R. Pederson; R. Gemmen; K. Gerdes; H. Finklea; I. B. Celik

    2010-03-01T23:59:59.000Z

    An overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic and actual coal gas for periods greater than 1000 hours. Post-test analyses were performed to identify reaction products formed and their distribution, and compared to phases expected from thermochemical modeling. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

  12. Novel Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Lei Yang; Meilin Liu

    2008-12-31T23:59:59.000Z

    One of the unique advantages of SOFCs over other types of fuel cells is the potential for direct utilization of hydrocarbon fuels (it may involve internal reforming). Unfortunately, most hydrocarbon fuels contain sulfur, which would dramatically degrade SOFC performance at parts-per-million (ppm) levels. Low concentration of sulfur (ppm or below) is difficult to remove efficiently and cost-effectively. Therefore, knowing the exact poisoning process for state-of-the-art anode-supported SOFCs with Ni-YSZ cermet anodes, understanding the detailed anode poisoning mechanism, and developing new sulfur-tolerant anodes are essential to the promotion of SOFCs that run on hydrocarbon fuels. The effect of cell operating conditions (including temperature, H{sub 2}S concentration, cell voltage/current density, etc.) on sulfur poisoning and recovery of nickel-based anode in SOFCs was investigated. It was found that sulfur poisoning is more severe at lower temperature, higher H{sub 2}S concentration or lower cell current density (higher cell voltage). In-situ Raman spectroscopy identified the nickel sulfide formation process on the surface of a Ni-YSZ electrode and the corresponding morphology change as the sample was cooled in H{sub 2}S-containing fuel. Quantum chemical calculations predicted a new S-Ni phase diagram with a region of sulfur adsorption on Ni surfaces, corresponding to sulfur poisoning of Ni-YSZ anodes under typical SOFC operating conditions. Further, quantum chemical calculations were used to predict the adsorption energy and bond length for sulfur and hydrogen atoms on various metal surfaces. Surface modification of Ni-YSZ anode by thin Nb{sub 2}O{sub 5} coating was utilized to enhance the sulfur tolerance. A multi-cell testing system was designed and constructed which is capable of simultaneously performing electrochemical tests of 12 button cells in fuels with four different concentrations of H{sub 2}S. Through systematical study of state-of-the-art anode-supported SOFC button cells, it is seen that the long-term sulfur poisoning behavior of those cells indicate that there might be a second-stage slower degradation due to sulfur poisoning, which would last for a thousand hour or even longer. However, when using G-18 sealant from PNNL, the 2nd stage poisoning was effectively prohibited.

  13. Electrolytic production of metals using a resistant anode

    DOE Patents [OSTI]

    Tarcy, Gary P. (Plum Borough, PA); Gavasto, Thomas M. (New Kensington, PA); Ray, Siba P. (Plum Borough, PA)

    1986-01-01T23:59:59.000Z

    An electrolytic process comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO.sub.2 and/or Cu.sub.2 O.

  14. Electrolytic production of metals using a resistant anode

    DOE Patents [OSTI]

    Tarcy, G.P.; Gavasto, T.M.; Ray, S.P.

    1986-11-04T23:59:59.000Z

    An electrolytic process is described comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO[sub 2] and/or Cu[sub 2]O. 2 figs.

  15. Oxygen-producing inert anodes for SOM process

    DOE Patents [OSTI]

    Pal, Uday B

    2014-02-25T23:59:59.000Z

    An electrolysis system for generating a metal and molecular oxygen includes a container for receiving a metal oxide containing a metallic species to be extracted, a cathode positioned to contact a metal oxide housed within the container; an oxygen-ion-conducting membrane positioned to contact a metal oxide housed within the container; an anode in contact with the oxygen-ion-conducting membrane and spaced apart from a metal oxide housed within the container, said anode selected from the group consisting of liquid metal silver, oxygen stable electronic oxides, oxygen stable crucible cermets, and stabilized zirconia composites with oxygen stable electronic oxides.

  16. Effect of Sulfur and Hydrocarbon Fuels on Titanate/Ceria SOFC Anodes

    SciTech Connect (OSTI)

    Marina, O.A.; Pedersen, L.R.; Stevenson, J.W.

    2005-01-27T23:59:59.000Z

    The purpose of the project is to develop low-cost, high-performance anodes that offer low polarization resistance as well as improved tolerance for nonidealities in anode environment such as redox cycles, sulfur and other poisons, and hydrocarbons.

  17. Chemical Bonding In Amorphous Si Coated-carbon Nanotube As Anodes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bonding In Amorphous Si Coated-carbon Nanotube As Anodes For Li ion Batteries: A XANES Study. Chemical Bonding In Amorphous Si Coated-carbon Nanotube As Anodes For Li ion...

  18. Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    A battery structure including a cathode, a lithium metal anode and an electrolyte disposed between the lithium anode and the cathode utilizes a thin-film layer of lithium phosphorus oxynitride overlying so as to coat the lithium anode and thereby separate the lithium anode from the electrolyte. If desired, a preliminary layer of lithium nitride may be coated upon the lithium anode before the lithium phosphorous oxynitride is, in turn, coated upon the lithium anode so that the separation of the anode and the electrolyte is further enhanced. By coating the lithium anode with this material lay-up, the life of the battery is lengthened and the performance of the battery is enhanced.

  19. Enhanced performance of graphite anode materials by AlF3 coating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance of graphite anode materials by AlF3 coating for lithium-ion batteries. Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries....

  20. Solid state thin film battery having a high temperature lithium alloy anode

    DOE Patents [OSTI]

    Hobson, David O. (Oak Ridge, TN)

    1998-01-01T23:59:59.000Z

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

  1. Western Shallow Oil Zone, Elk Hills Field, Kern County, California:

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01T23:59:59.000Z

    This study, Appendix V, addresses the Gusher Sands and their sub units and pools. Basic pressure, production and assorted technical dta were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt made by Evans, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off points for exploitation engineers to develop specific programs towards these ends. 16 refs., 9 tabs.

  2. From the hills to the mountain. [Oil recovery in California

    SciTech Connect (OSTI)

    McDonald, J.

    1980-05-01T23:59:59.000Z

    The oil reserves at Elk Hills field, California, are listed as amounting to 835 million bbl. There is 12 times that amount lying in shallow sands in the San Joaquin Valley, although the oil is much heavier and requires more refining before use. Improved recovery techniques have enabled higher rates of recovery for heavy oil than in the past. Some of these techniques are described, including bottom-hole heating, steam injection, and oil mining. Bottom-hole heating alone raised recovery rates for heavy oil to 25%, and steam injection raised rates to 50%. It is predicted that oil mining may be able to accomplish 100% recovery of the heavy oil.

  3. Laguna Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups <LackawannaLago Vista, Texas:Hills, California:

  4. Laguna Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups <LackawannaLago Vista, Texas:Hills,

  5. Lea Hill, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana: Energy Resources JumpPrataHill, Washington:

  6. Lexington Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:NewJump to: navigation, searchCounty,Hills,

  7. Liberty Hill, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:NewJumpLiberia: EnergyTexas:Hill, Texas:

  8. EA-118 Hill County Electric Cooperative, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIX D9 STAT. 1117Hill County Electric Cooperative

  9. Brewster Hill, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBostonBrattleboro,Hampshire: EnergyBretHill, New York:

  10. Bunker Hill Village, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda, Washington: Energy(B2G)Bunker Hill Village, Texas:

  11. Waite Hill, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii: EnergyWaipio,Waite Hill, Ohio:

  12. West Hills, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills, New York: Energy Resources Jump to: navigation,

  13. Westwood Hills, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills,2732°, -76.7798172°Westside

  14. Campton Hills, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits Manual JumpEnergy InformationCampton Hills,

  15. Cedar Hill, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey asWest, New Jersey: Energy Resources JumpWestHill,

  16. Cherry Hills Village, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelan County,ChenangoHills Village, Colorado: Energy

  17. Cimarron Hills, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower InternationalChuichu,Cima NanoTech Jump to:Hills,

  18. City of Blue Hill, Nebraska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCity of Aplington, IowaCity of Blackwell,Blue Hill,

  19. Settlers Hill Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma: EnergySeoulSettlers Hill Gas Recovery

  20. Sewickley Hills, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma:Sevin Rosen FundsSewaren, NewHills,

  1. PP-118 Hill County Electric Cooperative Inc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse(Expired) | Department ofINCREASES |POlicy Flash8 Hill

  2. Jefferson Hills, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJane Capital4.1672949°,Information DavisHills,

  3. Heritage Hills, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|InformationInformationHensley, Arkansas: EnergyHills, New

  4. Hickory Hills, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation, search Name: Hi-GtelTennessee:Hills, Illinois:

  5. Humboldt Hill, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County,Ohio:Hughson,Hill, California: Energy

  6. Pine Hill, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermal Project JumpBeach,Hill, New York:

  7. Pine Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermal Project JumpBeach,Hill, New

  8. Pine Hills, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermal Project JumpBeach,Hill,

  9. Lost Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07) Wind Farm Jump1 JumpBeachVientosHills,

  10. City of Auburn Hills (Text Version) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag" | Department ofAddressing PolicyAuburn Hills

  11. Indian Hills, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7 Varnish cacheTransport and BuildingCreek,Hills,

  12. Mars Hill (2006) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconvertersourcesourceCharacterizationMark2015:Mars Hill

  13. Moulton Chandler Hills Wind Farm Phase II | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinutemanVistaZephyr) JumpMorroMoulton Chandler Hills

  14. Oak Hills Place, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,and Fees for GeothermalOTiltHills Place,

  15. Oak Hills, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,and Fees for GeothermalOTiltHills

  16. Orland Hills, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:Energy InformationOregon: Energy ResourcesOrion EnergyHills,

  17. Black Hills Power Inc (Montana) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyonsBirch Creek VillageForestBlack Hills

  18. Marshfield Hills, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,JemezMissouri:Marshfield Hills, Massachusetts: Energy

  19. McGinness Hills Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy ResourcesMaviMcCulloch County,McDowellMcGinness Hills

  20. Southern Minnesota Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity Corp Jumpsource HistoryCommunitySunbelt WindHills

  1. Crest Hill, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCp Holdings LlcCrenshaw County,Crest Hill, Illinois:

  2. Cumberland Hill, Rhode Island: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCpWing County,Electric Coop,Cumberland ElecHill,

  3. Dix Hills, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan:Emerling Farm <SiteLtd Di SDivideDix Hills,

  4. McGuinness Hills Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNewMassachusettsMayo Power JumpMcGuinness Hills

  5. Morgan Hill, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill, California: Energy Resources Jump to:

  6. Bay Hill, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County, Florida: Energy Resources JumpHill, Florida:

  7. Ben Hill County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmont County, Ohio: EnergyBelvedere,Hill County,

  8. Beverly Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina:Energy LLC Place:Beverly Hills, California: Energy

  9. Beverly Hills, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina:Energy LLC Place:Beverly Hills, California:

  10. Blue Hills, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |Bleckley County,Minnesota:OpenFlint EthanolHills,

  11. Puente Hills Energy Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublic Power &EnergyOpenPuente Hills Energy

  12. Quartz Hill, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublicPutnamQuail Valley,QuantumQuartz Hill,

  13. Raleigh Hills, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, search Name: Raghuraji AgroRajaram MaizeHills, Oregon:

  14. Rolling Hills Estates, California: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio:RockwallRolling Hills Electric Coop

  15. Fruit Hill, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° ShowCounty, California:Frontier, NorthFruit Hill,

  16. Valley Hill, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies andVacant Jump669°,Hill, North Carolina:

  17. City of Hill City, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCity ofInformationHarmony,City ofCity ofHill City,

  18. Cockrell Hill, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York: Energy ResourcesCoastalCobbCockrell Hill, Texas:

  19. Hill County Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformation Hess Retail NaturalHifluxHighlineHill

  20. Agoura Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgoura Hills, California: Energy Resources Jump

  1. El Dorado Hills, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open JumpEcologyEl Dorado Hills, California: Energy

  2. Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts (Presentation)

    SciTech Connect (OSTI)

    Dinh, H.; Gennett, T.

    2010-06-11T23:59:59.000Z

    This presentation is a summary of a Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts.

  3. Performance of Lithium Ion Cell Anode Graphites Under Various Cycling Conditions

    E-Print Network [OSTI]

    Ridgway, Paul

    2010-01-01T23:59:59.000Z

    graphite formulations in particular, are the current standard for lithium-ion anodes for electric vehicle batteries(

  4. In situ reduction and evaluation of anode supported single chamber solid oxide fuel cells

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    In situ reduction and evaluation of anode supported single chamber solid oxide fuel cells D.05.118 #12;Abstract Single chamber anode-supported fuel cells are investigated under several methane under methane-to-oxygen ratio (Rmix) of 2. Anode-supported fuel cells are investigated regarding

  5. Original Research Article Influence of anodic gas recirculation on solid oxide fuel cells in a micro

    E-Print Network [OSTI]

    Nielsen, Mads Pagh

    Original Research Article Influence of anodic gas recirculation on solid oxide fuel cells Anode off-gas recycle a b s t r a c t The recycle of anode depleted gas has been employed in solid oxide fuel cell systems for the advantage of reusing a fraction of the exhaust rich in steam

  6. Structural micro-porous carbon anode for rechargeable lithium-ion batteries

    DOE Patents [OSTI]

    Delnick, F.M.; Even, W.R. Jr.; Sylwester, A.P.; Wang, J.C.F.; Zifer, T.

    1995-06-20T23:59:59.000Z

    A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc. 6 figs.

  7. Carbon-Based Nanomaterials as an Anode for Lithium Ion Battery

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Carbon-Based Nanomaterials as an Anode for Lithium Ion Battery Fei YAO LPICM-École Polytechnique POLYTECHNIQUE Spécialité: Physique Par Fei YAO Carbon-Based Nanomaterials as an Anode for Lithium Ion Battery #12;I ABSTRACT In this thesis work, carbon-based nanomaterials using as an anode for lithium ion

  8. Structural micro-porous carbon anode for rechargeable lithium-ion batteries

    DOE Patents [OSTI]

    Delnick, Frank M. (Albuquerque, NM); Even, Jr., William R. (Livermore, CA); Sylwester, Alan P. (Washington, DC); Wang, James C. F. (Livermore, CA); Zifer, Thomas (Manteca, CA)

    1995-01-01T23:59:59.000Z

    A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc.

  9. Layer-by-Layer Characterization of a Model Biofuel Cell Anode by (in Situ) Vibrational Spectroscopy

    E-Print Network [OSTI]

    Brolo, Alexandre G.

    Layer-by-Layer Characterization of a Model Biofuel Cell Anode by (in Situ) Vibrational Spectroscopy during the construction of a model biofuel cell anode. The model anode was a layered structure formedDH to the CB layer confirmed successful enzyme immobilization. 1. Introduction Biofuel cells use microorganisms

  10. Effect of Sn and Ca doping on the corrosion of Pb anodes in lead acid batteries

    E-Print Network [OSTI]

    Popov, Branko N.

    Effect of Sn and Ca doping on the corrosion of Pb anodes in lead acid batteries Dragan Slavkova of lead anodes used in lead acid batteries. However, one drawback of these materials is their increased reserved. Keywords: Corrosion; Pb anodes; Lead acid batteries; Doping tin; Calcium 1. Introduction

  11. Posting type Informational Subject Introduction of a second copper-anode XRF system

    E-Print Network [OSTI]

    Fischer, Emily V.

    Posting type Informational Subject Introduction of a second copper-anode XRF system Module in samples collected after 12/1/01 have been determined by XRF analysis using a Cu-anode tube as the source/1/05 will be reported with an added indicator of the Cu- anode XRF system used in analysis, the first (1) or the second

  12. Posting type Advisory Subject Shifts in Mo-anode XRF element calibration factors

    E-Print Network [OSTI]

    Fischer, Emily V.

    Posting type Advisory Subject Shifts in Mo-anode XRF element calibration factors Module/Species A@crocker.ucdavis.edu Supporting information A molybdenum-anode XRF instrument is used to analyze the heavier elements (Ni, Cu, Zn with lighter deposits were acquired and used in the Mo-anode XRF system. The new calibration foils resulted

  13. Ultrathin Two-Dimensional Atomic Crystals as Stable Interfacial Layer for Improvement of Lithium Metal Anode

    E-Print Network [OSTI]

    Cui, Yi

    nature of graphite22 and Si anodes3,4 in lithium ion batteries that confine lithium ions inside nitride, graphene Lithium ion batteries have been a great success as the power source for portable battery chemistry such as Si anodes,3,4 Li-S, and Li- air.5 Li metal anode has the highest specific

  14. Reduced temperature aluminum production in an electrolytic cell having an inert anode

    SciTech Connect (OSTI)

    Dawless, Robert K. (Monroeville, PA); Ray, Siba P. (Murrysville, PA); Hosler, Robert B. (Sarver, PA); Kozarek, Robert L. (Apollo, PA); LaCamera, Alfred F. (Trafford, PA)

    2000-01-01T23:59:59.000Z

    Aluminum is produced by electrolytic reduction of alumina in a cell having a cathode, an inert anode and a molten salt bath containing metal fluorides and alumina. The inert anode preferably contains copper, silver and oxides of iron and nickel. Reducing the molten salt bath temperature to about 900-950.degree. C. lowers corrosion on the inert anode constituents.

  15. Los Alamos National Laboratory Investigates Fenton Hill to Support...

    Broader source: Energy.gov (indexed) [DOE]

    for geothermal experiments in an attempt to generate energy using steam produced from pumping water into hot rocks deep in the ground. Most of the 10 areas of concern on the site...

  16. Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota

    E-Print Network [OSTI]

    Rudnick, Roberta L.

    Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota Fang pegmatite and possible metasedimentary source rocks in the Black Hills, South Dakota, USA. The Harney Peak.5 and overlap with post- Archean shales and the Harney Peak Granite. For the granite suite

  17. HEPATIC MINERALS OF WHITE-TAILED AND MULE DEER IN THE SOUTHERN BLACK HILLS, SOUTH DAKOTA

    E-Print Network [OSTI]

    HEPATIC MINERALS OF WHITE-TAILED AND MULE DEER IN THE SOUTHERN BLACK HILLS, SOUTH DAKOTA Teresa J status, and species. Key words: Black Hills, elements, fire, liver, mule deer, Odocoileus hemionus and laboratory animals (Robbins, 1983). Liver concentrations of some trace elements have been measured in elk

  18. Connaught Hill Park 37.0 acres (Connaught Drive & Queensway St.)

    E-Print Network [OSTI]

    Northern British Columbia, University of

    CITY PARKS · Connaught Hill Park 37.0 acres (Connaught Drive & Queensway St.) Picnic Site 346.0 acres (Cranbrook Hill Rd.) Hiking Trails (15.0 km), Picnic Shelter and Sites, Viewpoint, Public (Heather Rd. & Austin Rd. West) Ball Diamonds, Soccer Pitch, Washrooms, Elks Centre · Recreation Place 33

  19. Sulfur tolerant molten carbonate fuel cell anode and process

    DOE Patents [OSTI]

    Remick, Robert J. (Naperville, IL)

    1990-01-01T23:59:59.000Z

    Molten carbonate fuel cell anodes incorporating a sulfur tolerant carbon monoxide to hydrogen water-gas-shift catalyst provide in situ conversion of carbon monoxide to hydrogen for improved fuel cell operation using fuel gas mixtures of over about 10 volume percent carbon monoxide and up to about 10 ppm hydrogen sulfide.

  20. Dynamics of Finite Dust Clouds in a Magnetized Anodic Plasma

    SciTech Connect (OSTI)

    Piel, A.; Pilch, I.; Trottenberg, T. [Institute for Experimental and Applied Physics, Christian-Albrechts University, D-24098 Kiel (Germany); Koepke, M. E. [Department of Physics, West Virginia University, Morgantown, West Virginia 26505-6315 (United States)

    2008-09-07T23:59:59.000Z

    The response to an external modulation voltage of small dust clouds confined in an anodic plasma is studied. Dust density waves are excited when the cloud is larger than a wavelength, whereas a sloshing and stretching motion is found for smaller clouds. The wave dispersion shows similarities with waveguide modes.

  1. anode electrode materials: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    anode electrode materials First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Nanostructured Electrode...

  2. Novel carbonaceous materials used as anodes in lithium ion cells

    SciTech Connect (OSTI)

    Sandi, G.; Winans, R.E.; Carrado, K.A.

    1997-09-01T23:59:59.000Z

    The objective of this work is to synthesize disordered carbons used as anodes in lithium ion batteries, where the porosity and surface area are controlled. Both parameters are critical since the irreversible capacity obtained in the first cycle seems to be associated with the surface area (an exfoliation mechanism occurs in which the exposed surface area continues to increase).

  3. Aerogel and xerogel composites for use as carbon anodes

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA); Tillotson, Thomas M. (Tracy, CA); Hrubesh, Lawrence W. (Pleasanton, CA)

    2008-08-12T23:59:59.000Z

    Disclosed herein are aerogel and xerogel composite materials suitable for use as anodes in fuel cells and batteries. Precursors to the aerogel and xerogel compounds are infused with inorganic polymeric materials or carbon particles and then gelled. The gels are then pyrolyzed to form composites with internal structural support.

  4. Anodic aluminium oxide catalytic membranes for asymmetric epoxidation{

    E-Print Network [OSTI]

    developments in the synthesis of inorganic materials have allowed chemists to create single-site catalysts these inorganic materials, mesoporous anodic aluminium oxide (AAO) membranes have received great attention.4 functionalized membrane material. To this end, we have explored the use of commercially available AAO membranes

  5. Molybdenum Dioxide As A Solid Oxide Fuel Cell Anodic Catalyst

    E-Print Network [OSTI]

    Collins, Gary S.

    Molybdenum Dioxide As A Solid Oxide Fuel Cell Anodic Catalyst Jay Thunstrom, Su Ha, Oscar Flores are being developed. One of the most auspicious and the topic presented here is the solid oxide fuel cell hydrocarbons and have great resistance to poisoning. Solid Oxide Fuel Cell Operation Three stages exist

  6. Pd/Ni-WO3 anodic double layer gasochromic device

    DOE Patents [OSTI]

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland; Liu, Ping

    2004-04-20T23:59:59.000Z

    An anodic double layer gasochromic sensor structure for optical detection of hydrogen in improved response time and with improved optical absorption real time constants, comprising: a glass substrate; a tungsten-doped nickel oxide layer coated on the glass substrate; and a palladium layer coated on the tungsten-doped nickel oxide layer.

  7. Polymer graphite composite anodes for Li-ion batteries

    E-Print Network [OSTI]

    Popov, Branko N.

    Polymer graphite composite anodes for Li-ion batteries Basker Veeraraghavan, Bala Haran, Ralph for the graphite particles by in-situ polymerization #12;Experimental Preparation of PPy/Graphite composites Dropwise addition of pyrrole into aqueous slurry of graphite at 0 °C with nitric acid acting as an oxidizer

  8. Silicon Based Anodes for Li-Ion Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Wang, Wei; Xiao, Jie; Xu, Wu; Graff, Gordon L.; Yang, Zhenguo; Choi, Daiwon; Li, Xiaolin; Wang, Deyu; Liu, Jun

    2012-06-15T23:59:59.000Z

    Silicon is environmentally benign and ubiquitous. Because of its high specific capacity, it is considered one of the most promising candidates to replace the conventional graphite negative electrode used in today's Li ion batteries. Silicon has a theoretical specific capacity of nearly 4200 mAh/g (Li21Si5), which is 10 times larger than the specific capacity of graphite (LiC6, 372 mAh/g). However, the high capacity of silicon is associated with huge volume changes (more than 300 percent) when alloyed with lithium, which can cause severe cracking and pulverization of the electrode and lead to significant capacity loss. Significant scientific research has been conducted to circumvent the deterioration of silicon based anode materials during cycling. Various strategies, such as reduction of particle size, generation of active/inactive composites, fabrication of silicon based thin films, use of alternative binders, and the synthesis of 1-D silicon nanostructures have been implemented by a number of research groups. Fundamental mechanistic research has also been performed to better understand the electrochemical lithiation and delithiation process during cycling in terms of crystal structure, phase transitions, morphological changes, and reaction kinetics. Although efforts to date have not attained a commercially viable Si anode, further development is expected to produce anodes with three to five times the capacity of graphite. In this chapter, an overview of research on silicon based anodes used for lithium-ion battery applications will be presented. The overview covers electrochemical alloying of the silicon with lithium, mechanisms responsible for capacity fade, and methodologies adapted to overcome capacity degradation observed during cycling. The recent development of silicon nanowires and nanoparticles with significantly improved electrochemical performance will also be discussed relative to the mechanistic understanding. Finally, future directions on the development of silicon based anodes will be considered.

  9. Modeling a short dc discharge with thermionic cathode and auxiliary anode

    SciTech Connect (OSTI)

    Bogdanov, E. [St. Petersburg State University, St. Petersburg 199034 (Russian Federation) [St. Petersburg State University, St. Petersburg 199034 (Russian Federation); University ITMO, Kronverkskiy pr. 49, St. Petersburg 197101 (Russian Federation); Demidov, V. I. [St. Petersburg State University, St. Petersburg 199034 (Russian Federation) [St. Petersburg State University, St. Petersburg 199034 (Russian Federation); West Virginia University, Morgantown, West Virginia 26506 (United States); Kaganovich, I. D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Koepke, M. E. [West Virginia University, Morgantown, West Virginia 26506 (United States)] [West Virginia University, Morgantown, West Virginia 26506 (United States); Kudryavtsev, A. A. [St. Petersburg State University, St. Petersburg 199034 (Russian Federation)] [St. Petersburg State University, St. Petersburg 199034 (Russian Federation)

    2013-10-15T23:59:59.000Z

    A short dc discharge with a thermionic cathode can be used as a current and voltage stabilizer, but is subject to current oscillation. If instead of one anode two anodes are used, the current oscillations can be reduced. We have developed a kinetic model of such a discharge with two anodes, where the primary anode has a small opening for passing a fraction of the discharge current to an auxiliary anode. The model demonstrates that the current-voltage relationship of the discharge with two anodes is characterized everywhere by positive slope, i.e., positive differential resistance. Therefore, the discharge with two anodes is expected to be stable to the spontaneous oscillation in current that is induced by negative differential resistance. As a result, such a discharge can be used in an engineering application that requires stable plasma, such as a current and voltage stabilizer.

  10. OPERATION OF SOLID OXIDE FUEL CELL ANODES WITH PRACTICAL HYDROCARBON FUELS

    SciTech Connect (OSTI)

    Scott A. Barnett; Jiang Liu; Yuanbo Lin

    2004-07-30T23:59:59.000Z

    This work was carried out to achieve a better understanding of how SOFC anodes work with real fuels. The motivation was to improve the fuel flexibility of SOFC anodes, thereby allowing simplification and cost reduction of SOFC power plants. The work was based on prior results indicating that Ni-YSZ anode-supported SOFCs can be operated directly on methane and natural gas, while SOFCs with novel anode compositions can work with higher hydrocarbons. While these results were promising, more work was clearly needed to establish the feasibility of these direct-hydrocarbon SOFCs. Basic information on hydrocarbon-anode reactions should be broadly useful because reformate fuel gas can contain residual hydrocarbons, especially methane. In the Phase I project, we have studied the reaction mechanisms of various hydrocarbons--including methane, natural gas, and higher hydrocarbons--on two kinds of Ni-containing anodes: conventional Ni-YSZ anodes and a novel ceramic-based anode composition that avoid problems with coking. The effect of sulfur impurities was also studied. The program was aimed both at achieving an understanding of the interactions between real fuels and SOFC anodes, and providing enough information to establish the feasibility of operating SOFC stacks directly on hydrocarbon fuels. A combination of techniques was used to provide insight into the hydrocarbon reactions at these anodes during SOFC operation. Differentially-pumped mass spectrometry was be used for product-gas analysis both with and without cell operation. Impedance spectroscopy was used in order to understand electrochemical rate-limiting steps. Open-circuit voltages measurements under a range of conditions was used to help determine anode electrochemical reactions. Life tests over a wide range of conditions were used to establish the conditions for stable operation of anode-supported SOFC stacks directly on methane. Redox cycling was carried out on ceramic-based anodes. Tests on sulfur tolerance of Ni-YSZ anodes were carried out.

  11. Deep Energy Retrofits & State Applications

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Deep Energy Retrofits & State Applications

  12. Western Shallow Oil Zone, Elk Hills Field, Kern County, California:

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01T23:59:59.000Z

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 with the United States Department of Energy. This study, Appendix II addresses the first Wilhelm Sands and its sub unites and pools. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off point for exploitation engineers to develop specific programs toward the end.

  13. DOE turns down all bids for Elk Hills crude

    SciTech Connect (OSTI)

    Not Available

    1992-03-30T23:59:59.000Z

    This paper reports that the U.S. Department of Energy has rejected all bids submitted in the Mar. 5 semiannual sale of crude oil from Elk Hills Naval Petroleum Reserve (NPR-1) in California. DOE the all 19 bids for the 53,740 b/d of crude were too low. The bids ranged from $11.71 to $14.06/bbl, with the top bids for the highest quality Stevens zone crude averaging $13.25/bbl. California oil companies the they bid what the market would bear, explaining a surplus of Alaskan crude on the West Coast has driven down the price of local crudes, notably heavy crudes. DOE will extend the current oil purchase contracts through April while it issues a new request for bids. It planned to issue the solicitation Mar. 23 and receive bids Apr. 15.

  14. Electrocatalyst for alcohol oxidation at fuel cell anodes

    DOE Patents [OSTI]

    Adzic, Radoslav (East Setauket, NY); Kowal, Andrzej (Cracow, PL)

    2011-11-02T23:59:59.000Z

    In some embodiments a ternary electrocatalyst is provided. The electrocatalyst can be used in an anode for oxidizing alcohol in a fuel cell. In some embodiments, the ternary electrocatalyst may include a noble metal particle having a surface decorated with clusters of SnO.sub.2 and Rh. The noble metal particles may include platinum, palladium, ruthenium, iridium, gold, and combinations thereof. In some embodiments, the ternary electrocatalyst includes SnO.sub.2 particles having a surface decorated with clusters of a noble metal and Rh. Some ternary electrocatalysts include noble metal particles with clusters of SnO.sub.2 and Rh at their surfaces. In some embodiments the electrocatalyst particle cores are nanoparticles. Some embodiments of the invention provide a fuel cell including an anode incorporating the ternary electrocatalyst. In some aspects a method of using ternary electrocatalysts of Pt, Rh, and SnO.sub.2 to oxidize an alcohol in a fuel cell is described.

  15. The Naming, Identification, and Protection of Place in the Loess Hills of the Middle Missouri Valley

    E-Print Network [OSTI]

    McDermott, David Thomas

    2009-11-09T23:59:59.000Z

    tool for field work in physical geography. The only time I have carried a gun with lethal intent was in the Loess Hills of northern Missouri. A coworker and I drove into the hills just south of St. Joseph and walked, on a crisp fall morning, up.... 5 One part of the perceptual story about the Hills is their location. This study will approach that question from two perspectives. It first will offer a traditional analysis using physical data on soil, bedrock, elevation, and slope...

  16. Position-sensitive proportional counter with low-resistance metal-wire anode

    DOE Patents [OSTI]

    Kopp, Manfred K. (Oak Ridge, TN)

    1980-01-01T23:59:59.000Z

    A position-sensitive proportional counter circuit is provided which allows the use of a conventional (low-resistance, metal-wire anode) proportional counter for spatial resolution of an ionizing event along the anode of the counter. A pair of specially designed active-capacitance preamplifiers are used to terminate the anode ends wherein the anode is treated as an RC line. The preamplifiers act as stabilized active capacitance loads and each is composed of a series-feedback, low-noise amplifier, a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at the anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction and handling of the anodes, and stabilizes the anode resistivity at high count rates (>10.sup.6 counts/sec).

  17. Report on the source of the electrochemical impedance on cermet inert anodes

    SciTech Connect (OSTI)

    Windisch, C.F. Jr.; Stice, N.D.

    1991-02-01T23:59:59.000Z

    the Inert Electrode Program at Pacific Northwest Laboratory (PNL) is supported by the Office of Industrial Processes of the US Department of Energy and is aimed at improving the energy efficiency of Hall-Heroult cells through the development of inert anodes. The inert anodes currently under study are composed of a cermet material of the general composition NiO-NiFe{sub 2}O{sub 4}-Cu. The program has three primary objectives: (a) to evaluate the anode material in a scaled-up, pilot cell facility, (b) to investigate the mechanisms of the electrochemical reactions at the anode surface, and (c) to develop sensors for monitoring anode and/or electrolyte conditions. This report covers the results of a portion of the studies on anode reaction mechanisms. The electrochemical impedances of cermet inert anodes in alumina-saturated molten cryolite as a function of frequency, current density, and time indicated that a significant component of the impedance is due to the gas bubbles produced at the anode during electrolysis. The data also showed a connection between surface structure and impedance that appears to be related to the effects of surface structure on bubble flow. Given the results of this work, it is doubtful that a resistive film contributes significantly to the electrochemical impedances on inert anodes. Properties previously assigned to such a film are more likely due to the bubbles and those factors that affect the properties and dynamics of the bubbles at the anode surface. 12 refs., 16 figs., 3 tabs.

  18. Thermal Neutron Detectors with Discrete Anode Pad Readout

    SciTech Connect (OSTI)

    Yu,B.; Schaknowski, N.A., Smith, G.C., DeGeronimo, G., Vernon, E.O.

    2008-10-19T23:59:59.000Z

    A new two-dimensional thermal neutron detector concept that is capable of very high rates is being developed. It is based on neutron conversion in {sup 3}He in an ionization chamber (unity gas gain) that uses only a cathode and anode plane; there is no additional electrode such as a Frisch grid. The cathode is simply the entrance window, and the anode plane is composed of discrete pads, each with their own readout electronics implemented via application specific integrated circuits. The aim is to provide a new generation of detectors with key characteristics that are superior to existing techniques, such as higher count rate capability, better stability, lower sensitivity to background radiation, and more flexible geometries. Such capabilities will improve the performance of neutron scattering instruments at major neutron user facilities. In this paper, we report on progress with the development of a prototype device that has 48 x 48 anode pads and a sensitive area of 24cm x 24cm.

  19. Anode-supported tubular SOFC at low temperature using Ni, Fe, GDC, and YSZ based anode support

    SciTech Connect (OSTI)

    Liang, B.; Suzuki, T.; Hamamoto, K.; Yamaguchi, T.; Fujishiro, Y.; Awano, M.; Ingram, B. J.; Carter, J. D. (Chemical Sciences and Engineering Division); (National Institute of Advanced Industrial Science and Technology)

    2011-01-01T23:59:59.000Z

    NiO-GDC, NiO-YSZ, NiO-Fe2O3-GDC, NiO-Fe2O3-YSZ anode tube supported tubular fuel cells was fabricated at the co-sintering temperature from 1250 C to 1400 C to investigate how the co-sintering temperature affect the open-circuit voltage. To focus on the changing of anode tube, all the tubular fuel cells support a ScSZ electrolyte layer and a LSCF cathode layer. The microstructure of the electrolyte layer sintered under 1300 C included pores inside it, and the densification of the electrolyte completed at the sintering temperatures above 1300 C. Furthermore, the shrinkage both in length and in diameter of a tubular fuel cell reaches as much as 20% at co-sintering temperature of 1400 C. The densification of ScSZ electrolyte layer and shrinkage of anode tube will result in the changing of open-circuit voltage of fuel cell from 1.0 V to 1.1 V.

  20. EIS-0266: Glass Mountain/Four Mile Hill Geothermal Project, California

    Broader source: Energy.gov [DOE]

    The EIS analyzes BPA's proposed action to approve the Transmission Services Agreements (TSAs) and Power Purchase Agreements (PPAs) with Calpine Siskiyou Geothermal Partners, L.P. (Calpine) to acquire output from the Fourmile Hill Geothermal Development Project (Project).

  1. Kevin Wood Landscape: a study in Texas Hill Country landscape design

    E-Print Network [OSTI]

    Secker, William Walker

    2002-01-01T23:59:59.000Z

    Kevin Wood Landscape resides in Austin, Texas as the premier residential landscape design firm. The firm, although small in stature, tackles a variety of projects throughout Austin and the immediate Hill Country. Close inspection within...

  2. Constraints on the Age of Heating at the Fenton Hill Site, Valles...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Journal Article: Constraints on the Age of Heating at the Fenton Hill Site, Valles Caldera, New Mexico Abstract Subsurface samples and...

  3. Case Study Walnut Hill United Methodist Church - Dallas, Texas, Chiller Replacement Analysis

    E-Print Network [OSTI]

    Phillips, J.

    1998-01-01T23:59:59.000Z

    In March of 1992 Walnut Hill United Methodist Church in Dallas, Tx. decided that their existing thermal storage and electric reciprocating chiller system were both in need of replacement. After analyzing several options, they chose to install 150...

  4. ICFT- An Initial Closed-Loop Flow Test of the Fenton Hill Phase...

    Open Energy Info (EERE)

    ICFT- An Initial Closed-Loop Flow Test of the Fenton Hill Phase II HDR Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: ICFT- An Initial...

  5. Intern experience at CH?M Hill, Inc.: an internship report

    E-Print Network [OSTI]

    Winter, William John, 1949-

    2013-03-13T23:59:59.000Z

    A review of the author's internship experience with CH?M HILL, Inc. during the period September 1975 through May 1976 is presented. During this nine month internship the author worked as an Engineer II in the Industrial Processes...

  6. Restructuring the urban neighborhood : the dialogue between image and ideology in Phoenix Hill, Louisville, Kentucky

    E-Print Network [OSTI]

    Isaacs, Mark Andrew

    1980-01-01T23:59:59.000Z

    This thesis addresses the problems of restructuring the urban neighborhood as specifically applied to the Phoenix Hill community in Louisville, Kentucky. Theory and concepts are briefly presented as a basis for design ...

  7. Los Alamos National Laboratory Investigates Fenton Hill to Support Future Land Use

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. – Supporting future land use for the U.S. Forest Service, Los Alamos National Laboratory’s Corrective Actions Program (CAP) completed sampling soil at Fenton Hill in the Jemez Mountains this month.

  8. A Cache of Mesquite Beans from the Mecca Hills, Salton Basin

    E-Print Network [OSTI]

    Swenson, James D

    1984-01-01T23:59:59.000Z

    University of Chicago Press. Bean, L. J. 1972 Mukat'sSmithsonian Institution. Bean, L. J. , and K. S. Saubel 1963Riverside. A Cache of Mesquite Beans from the Mecca Hills,

  9. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems I. Fluid...

  10. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems II....

  11. Cu--Ni--Fe anode for use in aluminum producing electrolytic cell

    DOE Patents [OSTI]

    Bergsma, S. Craig; Brown, Craig W.; Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2006-07-18T23:59:59.000Z

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising the steps of providing a molten salt electrolyte at a temperature of less than 900.degree. C. having alumina dissolved therein in an electrolytic cell having a liner for containing the electrolyte, the liner having a bottom and walls extending upwardly from said bottom. A plurality of non-consumable Cu--Ni--Fe anodes and cathodes are disposed in a vertical direction in the electrolyte, the cathodes having a plate configuration and the anodes having a flat configuration to compliment the cathodes. The anodes contain apertures therethrough to permit flow of electrolyte through the apertures to provide alumina-enriched electrolyte between the anodes and the cathodes. Electrical current is passed through the anodes and through the electrolyte to the cathodes, depositing aluminum at the cathodes and producing gas at the anodes.

  12. Peer Review of the Hot Dry Rock Project at Fenton Hill, New Mexico

    SciTech Connect (OSTI)

    None

    1998-12-01T23:59:59.000Z

    This report briefly describes the history of the hot dry rock experiment project conducted by the U.S. Department of Energy and Los Alamos National Laboratory at Fenton Hill, New Mexico, from about 1971 through 1995. The authors identify the primary lessons learned and techniques developed during the course of the Fenton Hill project, and summarize the extent to which these technologies have been transferred to the U.S. geothermal industry.

  13. Spacer for deep wells

    SciTech Connect (OSTI)

    Klein, G. D.

    1984-10-23T23:59:59.000Z

    A spacer for use in a deep well that is to have a submersible pump situated downhole and with a string of tubing attached to the pump for delivering the pumped fluid. The pump is electrically driven, and power is supplied via an armored cable which parallels the string of tubing. Spacers are clamped to the cable and have the tubing running through an eccentrically located passage in each spacer. The outside dimensions of a spacer fit freely inside any casing in the well.

  14. Process and apparatus for recovery of fissionable materials from spent reactor fuel by anodic dissolution

    DOE Patents [OSTI]

    Tomczuk, Zygmunt (Orland Park, IL); Miller, William E. (Naperville, IL); Wolson, Raymond D. (Lockport, IL); Gay, Eddie C. (Park Forest, IL)

    1991-01-01T23:59:59.000Z

    An electrochemical process and apparatus for the recovery of uranium and plutonium from spent metal clad fuel pins is disclosed. The process uses secondary reactions between U.sup.+4 cations and elemental uranium at the anode to increase reaction rates and improve anodic efficiency compared to prior art processes. In another embodiment of the process, secondary reactions between Cd.sup.+2 cations and elemental uranium to form uranium cations and elemental cadmium also assists in oxidizing the uranium at the anode.

  15. World Wide WebWWWDeep Web Web Deep Web

    E-Print Network [OSTI]

    Deep Web Web World Wide WebWWWDeep Web Web Deep Web Deep Web Deep Web Deep Web Deep Web 1 World Wide Web [1] Web 200,000TB Web Web Web Internet Web Web Web "" Surface Web Deep Web Surface Web 21.3% Surface Web Deep Web [2] Deep Web Web Crawler Deep Web 1 Web

  16. STUDIES ON THE ROLE OF THE SUBSTRATE INTERFACE FOR GERMANIUM AND SILICON LITHIUM ION BATTERY ANODES

    E-Print Network [OSTI]

    Florida, University of

    AND SILICON LITHIUM ION BATTERY ANODES235 SEM/FIB, microstructure characterization, and local electron atom probe........................................................................................................................16 1.1 Lithium Ion Batteries

  17. A MORE EFFICIENT ANODE MICROSTRUCTURE FOR SOFCs BASED ON PROTON CONDUCTORS

    SciTech Connect (OSTI)

    Rainwater, Ben H; Liu, Mingfei; Liu, Meilin

    2012-01-01T23:59:59.000Z

    While the desired microstructure of the state-of-the-art Ni-YSZ anode for a solid oxide fuel cell (SOFC) based on YSZ is well known, the anode microstructure for a SOFC based on a proton conductor is yet to be optimized. In this study, we examined the effect of anode porosity on the performance of a SOFC based on BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.1}Yb{sub 0.1}O{sub 3??} (BZCYYb), a mixed ion (proton and oxygen anion) conductor with high ionic conductivity at intermediate temperatures. Three cells with Ni-BZCYYb cermet anodes of different porosities (37%, 42%, and 50%) and identical electrolytes and cathode components were fabricated and tested. Under typical fuel cell operating conditions, the cell with anode of the lowest porosity (37%), prepared without pore former, achieved the highest performance, demonstrating a peak power density of 1.2 W/cm{sup 2} at 750 °C. This is radically different from the results of Ni-YSZ anodes for YSZ based cells, where high anode porosity (?55%) is necessary to achieve high performance. The observed increase in performance (or electrocatalytic activity for anode reactions) is attributed primarily to the unique microstructure of the anode fabricated without the use of pore forming precursors.

  18. Titania-graphene anode electrode paper | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    Titania-graphene anode electrode paper Re-direct Destination: A method for forming a nanocomposite material, the nanocomposite material formed thereby, and a battery made using the...

  19. anodic oxygen-transfer reactions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the duration between two consec- utive purge Stefanopoulou, Anna 92 Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material Chemistry...

  20. Buried anode lithium thin film battery and process for forming the same

    DOE Patents [OSTI]

    Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

    2004-10-19T23:59:59.000Z

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  1. Horizontal wells improve recovery at the Elk Hills Petroleum Reserve

    SciTech Connect (OSTI)

    Rintoul, B.

    1995-11-01T23:59:59.000Z

    In 1988 the US Department of Energy and Bechtel implemented a program to slow production declines in the Elk Hills 26R pool sand of the Naval Petroleum Reserve No. 1. It was also hoped horizontal wells would increase the production rate, decrease gas production and extend economic life of the reservoir. The Stevens sand pool targeted for the project is a high-quality, sand-rich turbidite channel system encapsulated within Miocene Monterey siliceous shales, mudstones and associated sediments. The pool is about 3-miles long by 3/4-mile wide. The paper describes the specifications and drilling of the first four out of the 14 horizontal wells drilled at this facility. Horizontal drilling technology has completely altered the future of the 26R pool. In 1980 estimated ultimate recovery (EUR) from the sand was 211 million bbl. With the latest horizontal well drilling campaign, the pool is expected to pass that estimate in 1997 when oil production is forecasted to be at least 13,000 b/d. EUR form the 26R sand now is more than 250 million bbl, and even that estimate is being revised upward.

  2. West Short Pine Hills field, Harding County, South Dakota

    SciTech Connect (OSTI)

    Strothman, B.

    1988-07-01T23:59:59.000Z

    The West Short Pine Hills field is a shallow gas field that produces from the Shannon Sandstone Member, on the Camp Crook anticline in southwestern Harding County, South Dakota. The Alma McCutchin 1-17 Heikkila discovery was drilled in the NW1/4, Sec. 17, T16N, R2E, to a depth of 1600 ft and completed in October 1977 for 600 MCFGD from perforations at 1405-1411 ft. To date, 40 gas wells have been completed with total estimated reserves of more than 20 bcf. The field encompasses 12,000 ac, with a current drill-site spacing unit of 160 ac. The field boundaries are fairly well defined, except on the south edge of the field. The wells range in depth from 1250 to 2200 ft, and cost $60,000-$85,000 to drill and complete. Core and log analyses indicate that the field has 70 ft of net pay, with average porosity of 30% and average permeability of 114 md. Most wells have been completed with nitrogen-sand frac. Williston Basin Interstate Pipeline Company of Bismarck, North Dakota, operates a compressor station and 2.5 mi of 4-in. line that connects the field to their 160 in. north-south transmission line to the Rapid City area. Currently, producers are netting $1.10-$1.25/million Btu. The late Mathew T. Biggs of Casper, Wyoming, was the geologist responsible for mapping and finding this gas deposit.

  3. A deep earthquake goes supershear

    SciTech Connect (OSTI)

    Wilson, R. Mark

    2014-09-01T23:59:59.000Z

    Seismic analysis of an aftershock off Russia’s Kamchatka Peninsula offers evidence that deep earthquakes are more complicated than geoscientists realized.

  4. Structural transformation of nickel hydroxide films during anodic oxidation

    SciTech Connect (OSTI)

    Crocker, R.W.; Muller, R.H.

    1992-05-01T23:59:59.000Z

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  5. Ni/YSZ Anode Interactions with Impurities in Coal Gas

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Thomsen, Edwin C.; Coffey, Greg W.

    2009-10-16T23:59:59.000Z

    Performance of solid oxide fuel cell (SOFC) with nickel/zirconia anodes on synthetic coal gas in the presence of low levels of phosphorus, arsenic, selenium, sulfur, hydrogen chloride, and antimony impurities were evaluated. The presence of phosphorus and arsenic led to the slow and irreversible SOFC degradation due to the formation of secondary phases with nickel, particularly close to the gas inlet. Phosphorus and antimony surface adsorption layers were identified as well. Hydrogen chloride and sulfur interactions with the nickel were limited to the surface adsorption only, whereas selenium exposure also led to the formation of nickel selenide for highly polarized cells.

  6. Forming gas treatment of lithium ion battery anode graphite powders

    DOE Patents [OSTI]

    Contescu, Cristian Ion; Gallego, Nidia C; Howe, Jane Y; Meyer, III, Harry M; Payzant, Edward Andrew; Wood, III, David L; Yoon, Sang Young

    2014-09-16T23:59:59.000Z

    The invention provides a method of making a battery anode in which a quantity of graphite powder is provided. The temperature of the graphite powder is raised from a starting temperature to a first temperature between 1000 and 2000.degree. C. during a first heating period. The graphite powder is then cooled to a final temperature during a cool down period. The graphite powder is contacted with a forming gas during at least one of the first heating period and the cool down period. The forming gas includes H.sub.2 and an inert gas.

  7. Developing High Capacity, Long Life Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E LGeothermalEnergy A NewLife Anodes

  8. Nano-structured Materials as Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash,Energy NRELNamrata Kolachalam About UsAnodes

  9. Method of deep drilling

    DOE Patents [OSTI]

    Colgate, Stirling A. (4616 Ridgeway, Los Alamos, NM 87544)

    1984-01-01T23:59:59.000Z

    Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  10. Science mentor program at Mission Hill Junior High School

    SciTech Connect (OSTI)

    Dahlquist, K. [Univ. of California, Santa Cruz, CA (United States)

    1994-12-31T23:59:59.000Z

    Science graduate students from the University of California at Santa Cruz mentor a class of 7th graders from the Mission Hill Junior High School. The program`s purpose is: (1) to create a scientific learning community where scientists interact at different levels of the educational hierarchy; (2) to have fun in order to spark interest in science; and (3) to support girls and minority students in science. A total of seven mentors met with the students at least once a week after school for one quarter to tutor and assist with science fair projects. Other activities included a field trip to a university earth science lab, judging the science fair, and assisting during laboratory exercises. Graduate students run the program with minimal organization and funding, communicating by electronic mail. An informal evaluation of the program by the mentors has concluded that the most valuable and effective activities have been the field trip and assisting with labs. The actual {open_quotes}mentor meetings{close_quotes} after school did not work effectively because they had a vaguely defined purpose and the kids did not show up regularly to participate. Future directions include redefining ourselves as mentors for the entire school instead of just one class and better coordinating our activities with the teachers` curriculum. We will continue to assist with the labs and organize formal tutoring for students having problems with math and science. Finally, we will arrange more activities and field trips such as an amateur astronomy night. We will especially target girls who attended the {open_quotes}Expanding Your Horizons{trademark} in Science, Mathematics, and Engineering{close_quotes} career day for those activities.

  11. Dry gas zone, Elk Hills Field, Kern County, California: General reservoir study: Engineering data, effective August 1, 1988

    SciTech Connect (OSTI)

    Not Available

    1989-01-10T23:59:59.000Z

    This reservoir study of the dry gas zone of Elk Hills Field is a data compilation with information relating to well: completion; production; pressure; and back pressure. (JF)

  12. Overview of SOFC Anode Interactions with Coal Gas Impurities

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.; Gemmen, Randall; Gerdes, Kirk; Finklea, Harry; Celik, Ismail B.

    2009-08-11T23:59:59.000Z

    Efficiencies greater than 50 percent (higher heating value) have been projected for solid oxide fuel cell (SOFC) systems fueled with gasified coal, even with carbon sequestration. Multiple minor and trace components are present in coal that could affect fuel cell performance, however, which vary widely depending on coal origin and type. Minor and trace components have been classified into three groups: elements with low volatility that are likely to remain in the ash, elements that will partition between solid and gas phases, and highly volatile elements that are unlikely to condense. Those in the second group are of most concern. In the following, an overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic coal gas. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

  13. Pulsed klystrons with feedback controlled mod-anode modulators

    SciTech Connect (OSTI)

    Reass, William A [Los Alamos National Laboratory; Baca, David M [Los Alamos National Laboratory; Jerry, Davis L [Los Alamos National Laboratory; Rees, Daniel E [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    This paper describes a fast rise and fall, totem-pole mod-anode modulators for klystron application. Details of these systems as recently installed utilizing a beam switch tube ''on-deck'' and a planar triode ''off-deck'' in a grid-catch feedback regulated configuration will be provided. The grid-catch configuration regulates the klystron mod-anode voltage at a specified set-point during switching as well as providing a control mechanism that flat-top regulates the klystron beam current during the pulse. This flat-topped klystron beam current is maintained while the capacitor bank droops. In addition, we will review more modern on-deck designs using a high gain, high voltage planar triode as a regulating and switching element. These designs are being developed, tested, and implemented for the Los Alamos Neutron Science Center (LANSCE) accelerator refurbishment project, ''LANSCE-R''. An advantage of the planar triode is that the tube can be directly operated with solid state linear components and provides for a very compact design. The tubes are inexpensive compared to stacked semiconductor switching assemblies and also provide a linear control capability. Details of these designs are provided as well as operational and developmental results.

  14. Aerogel and xerogel composites for use as carbon anodes

    SciTech Connect (OSTI)

    Cooper, John F. (Oakland, CA); Tillotson, Thomas M. (Tracy, CA); Hrubesh, Lawrence W. (Pleasanton, CA)

    2010-10-12T23:59:59.000Z

    A method for forming a reinforced rigid anode monolith and fuel and product of such method. The method includes providing a solution of organic aerogel or xerogel precursors including at least one of a phenolic resin, phenol (hydroxybenzene), resorcinol(1,3-dihydroxybenzene), or catechol(1,2-dihydroxybenzene); at least one aldehyde compound selected from the group consisting of formaldehyde, acetaldehyde, and furfuraldehyde; and an alkali carbonate or phosphoric acid catalyst; adding internal reinforcement materials comprising carbon to said precursor solution to form a precursor mixture; gelling said precursor mixture to form a composite gel; drying said composite gel; and pyrolyzing said composite gel to form a wettable aerogel/carbon composite or a wettable xerogel/carbon composite, wherein said composites comprise chars and said internal reinforcement materials, and wherein said composite is suitable for use as an anode with the chars being fuel capable of being combusted in a molten salt electrochemical fuel cell in the range from 500 C to 800 C to produce electrical energy. Additional methods and systems/compositions are also provided.

  15. Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries

    E-Print Network [OSTI]

    Cui, Yi

    on larger scales. Im- provement of the safety of lithium-ion batteries must occur if they are to be utilized in aqueous cells. However, the choice of a suitable anode material for an aqueous lithium-ion battery is moreSynthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion

  16. Carbon Supported Polyaniline as Anode Catalyst: Pathway to Platinum-Free Fuel Cells

    E-Print Network [OSTI]

    Zabrodskii, A G; Malyshkin, V G; Sapurina, I Y

    2006-01-01T23:59:59.000Z

    The effectiveness of carbon supported polyaniline as anode catalyst in a fuel cell (FC) with direct formic acid electrooxidation is experimentally demonstrated. A prototype FC with such a platinum-free composite anode exhibited a maximum room-temperature specific power of about 5 mW/cm2

  17. A Planar Anode -Supported Solid Oxide Fuel Cell Model with Internal Reforming of Natural Gas

    E-Print Network [OSTI]

    Boyer, Edmond

    1 A Planar Anode - Supported Solid Oxide Fuel Cell Model with Internal Reforming of Natural Gas.brault@univ-orleans.fr Abstract Solid Oxide Fuel Cells (SOFCs) are of great interest due to their high energy efficiency, low, a mathematical model of a co - flow planar anode - supported solid oxide fuel cell with internal reforming

  18. Measurement of Liquid Water Accumulation in a PEMFC with Dead-Ended Anode

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Measurement of Liquid Water Accumulation in a PEMFC with Dead-Ended Anode Jason B. Siegel,a, *,z, Maryland 20899, USA The operation and accumulation of liquid water within the cell structure of a polymer, accumulation of liquid water in the anode gas distribution channels was observed in most tested conditions

  19. Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials

    E-Print Network [OSTI]

    Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode 2012 Accepted 11 October 2012 Available online 6 November 2012 Keywords: Microbial fuel cell Power overshoot Polarization Anode potential Power density curves for microbial fuel cells (MFCs) often show power

  20. Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials

    E-Print Network [OSTI]

    Cho, Jaephil

    Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials Hyesun materials for lithium batteries were prepared using KIT-6 and SBA-15 SiO2 templates as an anode material for lithium batteries due to its high capacity (>600 mAh gÀ1 ) compared with graphite

  1. Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes Riccardo Ruffo,

    E-Print Network [OSTI]

    Cui, Yi

    Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes Riccardo Ruffo, Seung Sae Hong as a high-capacity anode in a lithium ion battery. The ac response was measured by using impedance for higher specific energy lithium ion batteries for applications such as electric vehicles, next generation

  2. Graphenesponges as high-performance low-cost anodes for microbial fuel Xing Xie,ab

    E-Print Network [OSTI]

    Cui, Yi

    Graphene­sponges as high-performance low-cost anodes for microbial fuel cells Xing Xie,ab Guihua Yu February 2012 DOI: 10.1039/c2ee03583a A high-performance microbial fuel cell (MFC) anode was con- structed. Microbial fuel cells (MFCs) harness the metabolism of exoelec- trogens, microorganisms that mediate

  3. Solid state thin film battery having a high temperature lithium alloy anode

    DOE Patents [OSTI]

    Hobson, D.O.

    1998-01-06T23:59:59.000Z

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures. 2 figs.

  4. Analysis of Mass Transport of Methanol at the Anode of a Direct Methanol Fuel Cell

    E-Print Network [OSTI]

    Zhao, Tianshou

    Analysis of Mass Transport of Methanol at the Anode of a Direct Methanol Fuel Cell C. Xu,a Y. L. He transport of methanol at the anode of a direct methanol fuel cell DMFC and show that the overall mass current density of an in-house-fabricated DMFC with different flow fields for various methanol

  5. Coulomb blockade effects in anodically oxidized titanium wires V. Schollmann,a)

    E-Print Network [OSTI]

    Haviland, David

    Coulomb blockade effects in anodically oxidized titanium wires V. Scho¨llmann,a) J. Johansson, K properties of narrow titanium Ti wires which are anodically oxidized through a resist mask. At temperatures- stricted to the temperature range where the charging energy is sufficiently large such that thermal

  6. Microstructural Degradation of Ni-YSZ Anodes for Solid Oxide Fuel

    E-Print Network [OSTI]

    Microstructural Degradation of Ni- YSZ Anodes for Solid Oxide Fuel Cells Karl Thydén Risø-PhD-32(EN 2008 #12;Author: Karl Thydén Title: Microstructural Degradation of Ni-YSZ Anodes for Solid Oxide Fuel Cells Department: Fuel Cells and Solid State Chemistry Department Risø-PhD-32(EN) March 2008 This thesis

  7. Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for

    E-Print Network [OSTI]

    Zhou, Chongwu

    -performance advanced lithium-ion batteries Bin Liu1 , Xianfu Wang1 , Haitian Chen3 , Zhuoran Wang1 , Di Chen1 , Yi and electric vehicle applications, the widely used graphite anodes with significant drawbacks become more anodes fabricated via a facile method. Further, complete lithium-ion batteries based on Si and commercial

  8. Study of Sn-Coated Graphite as Anode Material for Secondary Lithium-Ion Batteries

    E-Print Network [OSTI]

    Popov, Branko N.

    Study of Sn-Coated Graphite as Anode Material for Secondary Lithium-Ion Batteries Basker Sandia National Laboratories, Albuquerque, New Mexico, USA Tin-graphite composites have been developed as an alternate anode material for Li-ion batteries using an autocatalytic deposition technique. The specific

  9. ENS'05 Paris, France, 14-16 December 2005 CONTROL POROUS PATTERN OF ANODIC ALUMINUM OXIDE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ENS'05 Paris, France, 14-16 December 2005 CONTROL POROUS PATTERN OF ANODIC ALUMINUM OXIDE BY FOILS simpler, and low cost method to fabricate porous pattern of the anodic aluminum oxide (AAO) based on the aluminum foils laminate approach were carried out. During our experiments, it was found that the pores

  10. Durability Prediction of Solid Oxide Fuel Cell Anode Material under Thermo-Mechanical and Fuel Gas Contaminants Effects

    SciTech Connect (OSTI)

    Iqbal, Gulfam; Guo, Hua; Kang , Bruce S.; Marina, Olga A.

    2011-01-10T23:59:59.000Z

    Solid Oxide Fuel Cells (SOFCs) operate under harsh environments, which cause deterioration of anode material properties and service life. In addition to electrochemical performance, structural integrity of the SOFC anode is essential for successful long-term operation. The SOFC anode is subjected to stresses at high temperature, thermal/redox cycles, and fuel gas contaminants effects during long-term operation. These mechanisms can alter the anode microstructure and affect its electrochemical and structural properties. In this research, anode material degradation mechanisms are briefly reviewed and an anode material durability model is developed and implemented in finite element analysis. The model takes into account thermo-mechanical and fuel gas contaminants degradation mechanisms for prediction of long-term structural integrity of the SOFC anode. The proposed model is validated experimentally using a NexTech ProbostatTM SOFC button cell test apparatus integrated with a Sagnac optical setup for simultaneously measuring electrochemical performance and in-situ anode surface deformation.

  11. Anode shroud for off-gas capture and removal from electrolytic oxide reduction system

    DOE Patents [OSTI]

    Bailey, James L.; Barnes, Laurel A.; Wiedmeyer, Stanley G.; Williamson, Mark A.; Willit, James L.

    2014-07-08T23:59:59.000Z

    An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies and an anode shroud for each of the anode assemblies. The anode shroud may be used to dilute, cool, and/or remove off-gas from the electrolytic oxide reduction system. The anode shroud may include a body portion having a tapered upper section that includes an apex. The body portion may have an inner wall that defines an off-gas collection cavity. A chimney structure may extend from the apex of the upper section and be connected to the off-gas collection cavity of the body portion. The chimney structure may include an inner tube within an outer tube. Accordingly, a sweep gas/cooling gas may be supplied down the annular space between the inner and outer tubes, while the off-gas may be removed through an exit path defined by the inner tube.

  12. Anode-cathode power distribution systems and methods of using the same for electrochemical reduction

    DOE Patents [OSTI]

    Koehl, Eugene R; Barnes, Laurel A; Wiedmeyer, Stanley G; Williamson, Mark A; Willit, James L

    2014-01-28T23:59:59.000Z

    Power distribution systems are useable in electrolytic reduction systems and include several cathode and anode assembly electrical contacts that permit flexible modular assembly numbers and placement in standardized connection configurations. Electrical contacts may be arranged at any position where assembly contact is desired. Electrical power may be provided via power cables attached to seating assemblies of the electrical contacts. Cathode and anode assembly electrical contacts may provide electrical power at any desired levels. Pairs of anode and cathode assembly electrical contacts may provide equal and opposite electrical power; different cathode assembly electrical contacts may provide different levels of electrical power to a same or different modular cathode assembly. Electrical systems may be used with an electrolyte container into which the modular cathode and anode assemblies extend and are supported above, with the modular cathode and anode assemblies mechanically and electrically connecting to the respective contacts in power distribution systems.

  13. The Environmental Aspects of Deep Seabed Mining

    E-Print Network [OSTI]

    Kindt, John Warren

    1989-01-01T23:59:59.000Z

    United States Deep Seabed Mining, 19 WM. & MARY L. REV. 77 (Aspects of Deep Seabed Mining" John Warren Kindt* I.with deep seabed mining. As of 1988, the available

  14. Process for mitigating corrosion and increasing the conductivity of steel studs in soderberg anodes of aluminum reduction cells

    DOE Patents [OSTI]

    Oden, Laurance L. (Albany, OR); White, Jack C. (Albany, OR); Ramsey, James A. (The Dalles, OR)

    1994-01-01T23:59:59.000Z

    A corrosion resistant electrically conductive coating on steel anode studs used in the production of aluminum by electrolysis.

  15. Corrosion of metals and alloys : anodic test for evaluation of intergranular corrosion susceptibility of heat-treatable aluminium alloys

    E-Print Network [OSTI]

    International Organization for Standardization. Geneva

    2006-01-01T23:59:59.000Z

    Corrosion of metals and alloys : anodic test for evaluation of intergranular corrosion susceptibility of heat-treatable aluminium alloys

  16. DOE to ship 20,000 b/d of Elk Hills oil to SPR

    SciTech Connect (OSTI)

    Not Available

    1992-05-11T23:59:59.000Z

    This paper reports that the U.S. department of Energy has decided to ship 20,000 b/d of its Elk Hills field production in California to the Strategic Petroleum Reserve on the Gulf Coast. DOE says prices are too low to sell the high quality Elk Hills Stevens zone oil on the California market. It had warned local buyers it might divert the oil to the Gulf Coast. It says shipping the Elk Hills crude to the SPR site at Big Hill, Tex., will save $2/bbl under the price of comparable crude delivered there for storage in the SPR. Pipeline shipments are to begin June 1 and continue for 4 months, totaling about 2.4 million bbl. DOE may or may not continue the shipments, depending on results of the semiannual Elk Hills crude oil sale in September. Reductions in the existing 12 sales contracts will be prorated among buyers. The 20,000 b/d volume is the most that can be shipped from the West Coast to the Gulf Coast through available pipelines.

  17. A New Method for Quantitative Marking of Deposited Lithium via Chemical Treatment on Graphite Anodes in Lithium-Ion Cells

    E-Print Network [OSTI]

    Schmidt, Volker

    Anodes in Lithium-Ion Cells Yvonne Krämer*[a] , Claudia Birkenmaier[b] , Julian Feinauer[a,c] , Andreas lithium-ion cells is presented. Graphite anode samples were extracted from pristine and differently aged lithium-ion cells. The samples present a variety of anodes with various states of lithium plating

  18. Anode-supported thin-film fuel cells operated in a single chamber configuration 2T-I-12

    E-Print Network [OSTI]

    Haile, Sossina M.

    on the anode, producing a complex response in fuel cell power output. Under optimized gas compositions and flowAnode-supported thin-film fuel cells operated in a single chamber configuration 2T-I-12 Zongping of anode-supported, thin-film, single chamber fuel cells (SCFCs) have been investigated. Cells, in which Ni

  19. Strategic Petroleum Reserve (SPR) geological site characterization report, Big Hill Salt Dome

    SciTech Connect (OSTI)

    Hart, R.J.; Ortiz, T.S.; Magorian, T.R.

    1981-09-01T23:59:59.000Z

    Geological and geophysical analyses of the Big Hill Salt Dome were performed to determine the suitability of this site for use in the Strategic Petroleum Reserve (SPR). Development of 140 million barrels (MMB) of storage capacity in the Big Hill Salt Dome is planned as part of the SPR expansion to achieve 750 MMB of storage capacity. Objectives of the study were to: (1) Acquire, evaluate, and interpret existing data pertinent to geological characterization of the Big Hill Dome; (2) Characterize the surface and near-surface geology and hydrology; (3) Characterize the geology and hydrology of the overlying cap rock; (4) Define the geometry and geology of the dome; (5) Determine the feasibility of locating and constructing 14 10-MMB storage caverns in the south portion of the dome; and (6) Assess the effects of natural hazards on the SPR site. Recommendations are included. (DMC)

  20. Elk Hills endangered and threatened species program: Phase 1 progress summary

    SciTech Connect (OSTI)

    O'Farrell, T.P.

    1980-03-01T23:59:59.000Z

    The endangered San Joaquin kit fox, Vulpes macrotis mutica, and bluntnosed leopard lizard, Crotaphytus silus, are known to occur on the Elk Hills Naval Petroleum Reserve, NPR-1. An integrated, multiphased field program was designed to gather, synthesize, and interpret ecological information necessary for Biological Assessments required by the Secretary of Interior. These assessments will be used as the basis for a formal consultation with the Department of Interior to determine whether DOE activities on Elk Hills are compatible with the continued existence of the two species. Transects totalling 840 km were walked through all sections of Elk Hills to determine: (1) the presence and relative densities of endangered or threatened species; (2) past and potential impacts of NPR-1 activities on endangered and threatened species; and (3) the potential application of remote sensing for gathering necessary data.

  1. U.S. strategic petroleum reserve Big Hill 114 leak analysis 2012.

    SciTech Connect (OSTI)

    Lord, David L.; Roberts, Barry L.; Lord, Anna C. Snider; Sobolik, Steven Ronald; Park, Byoung Yoon; Rudeen, David Keith [GRAM, Inc., Albuquerque, NM

    2013-06-01T23:59:59.000Z

    This report addresses recent well integrity issues related to cavern 114 at the Big Hill Strategic Petroleum Reserve site. DM Petroleum Operations, M&O contractor for the U.S. Strategic Petroleum Reserve, recognized an apparent leak in Big Hill cavern well 114A in late summer, 2012, and provided written notice to the State of Texas as required by law. DM has since isolated the leak in well A with a temporary plug, and is planning on remediating both 114 A- and B-wells with liners. In this report Sandia provides an analysis of the apparent leak that includes: (i) estimated leak volume, (ii) recommendation for operating pressure to maintain in the cavern between temporary and permanent fixes for the well integrity issues, and (iii) identification of other caverns or wells at Big Hill that should be monitored closely in light of the sequence of failures there in the last several years.

  2. Conversion of the Big Hill geological site characterization report to a three-dimensional model.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Rautman, Christopher Arthur

    2003-02-01T23:59:59.000Z

    The Big Hill salt dome, located in southeastern Texas, is home to one of four underground oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Big Hill site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 14 oil storage caverns at the site. This work provides a realistic and internally consistent geologic model of the Big Hill site that can be used in support of future work.

  3. Anode reactive bleed and injector shift control strategy

    DOE Patents [OSTI]

    Cai, Jun [Rochester, NY; Chowdhury, Akbar [Pittsford, NY; Lerner, Seth E [Honeoye Falls, NY; Marley, William S [Rush, NY; Savage, David R [Rochester, NY; Leary, James K [Rochester, NY

    2012-01-03T23:59:59.000Z

    A system and method for correcting a large fuel cell voltage spread for a split sub-stack fuel cell system. The system includes a hydrogen source that provides hydrogen to each split sub-stack and bleed valves for bleeding the anode side of the sub-stacks. The system also includes a voltage measuring device for measuring the voltage of each cell in the split sub-stacks. The system provides two levels for correcting a large stack voltage spread problem. The first level includes sending fresh hydrogen to the weak sub-stack well before a normal reactive bleed would occur, and the second level includes sending fresh hydrogen to the weak sub-stack and opening the bleed valve of the other sub-stack when the cell voltage spread is close to stack failure.

  4. Lithium ion batteries with titania/graphene anodes

    DOE Patents [OSTI]

    Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

    2013-05-28T23:59:59.000Z

    Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

  5. Structural Analysis of Novel Lignin-derived Carbon Composite Anodes

    SciTech Connect (OSTI)

    McNutt, Nicholas W [ORNL; Rios, Orlando [ORNL; Feygenson, Mikhail [ORNL; Proffen, Thomas E [ORNL; Keffer, David J [ORNL

    2014-01-01T23:59:59.000Z

    The development of novel lignin-based carbon composite anodes consisting of nanocrystalline and amorphous domains motivates the understanding of a relationship of the structural properties characterizing these materials, such as crystallite size, intracrystallite dspacing, crystalline volume fraction and composite density, with their pair distribution functions (PDF), obtained from both molecular dynamics simulation and neutron scattering. A model for these composite materials is developed as a function of experimentally measurable parameters and realized in fifteen composite systems, three of which directly match all parameters of their experimental counterparts. The accurate reproduction of the experimental PDFs using the model systems validates the model. The decomposition of the simulated PDFs provides an understanding of each feature in the PDF and allows for the development of a mapping between the defining characteristics of the PDF and the material properties of interest.

  6. Parallel vacuum arc discharge with microhollow array dielectric and anode

    SciTech Connect (OSTI)

    Feng, Jinghua; Zhou, Lin; Fu, Yuecheng; Zhang, Jianhua; Xu, Rongkun; Chen, Faxin; Li, Linbo; Meng, Shijian, E-mail: mengshijian04@126.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2014-07-15T23:59:59.000Z

    An electrode configuration with microhollow array dielectric and anode was developed to obtain parallel vacuum arc discharge. Compared with the conventional electrodes, more than 10 parallel microhollow discharges were ignited for the new configuration, which increased the discharge area significantly and made the cathode eroded more uniformly. The vacuum discharge channel number could be increased effectively by decreasing the distances between holes or increasing the arc current. Experimental results revealed that plasmas ejected from the adjacent hollow and the relatively high arc voltage were two key factors leading to the parallel discharge. The characteristics of plasmas in the microhollow were investigated as well. The spectral line intensity and electron density of plasmas in microhollow increased obviously with the decease of the microhollow diameter.

  7. POPULATION ESTIMATION PROCEDURES FOR ELK AND DEER IN THE BLACK HILLS, SOUTH DAKOTA: DEVELOPMENT OF A SIGHTABILITY

    E-Print Network [OSTI]

    POPULATION ESTIMATION PROCEDURES FOR ELK AND DEER IN THE BLACK HILLS, SOUTH DAKOTA: DEVELOPMENT PROCEDURES FOR ELK AND DEER IN THE BLACK HILLS, SOUTH DAKOTA: DEVELOPMENT OF A SIGHTABILITY MODEL my masters in elk research. It has been a wonderful learning and growing experience for which I am

  8. Perovskite anode electrocatalysis for direct methanol fuel cells

    SciTech Connect (OSTI)

    White, J.H.; Sammells, A.F. (Eltron Research, Inc., Boulder, CO (United States))

    1993-08-01T23:59:59.000Z

    This investigation explores direct methanol fuel cells incorporating perovskite anode electrocatalysts. Preliminary electrochemical performance was addressed following incorporation of electrocatalysts into polymer electrolyte (Nafion 417) fuel cells. Perovskite electrocatalysts demonstrating activity towards direct methanol oxidation during cyclic voltammetry measurements included, respectively, SrRu[sub 0.5]Pt[sub 0.5]O[sub 3], SrRu[sub 0.5]Pd[sub 0.5]O[sub 3], SrPdO[sub 3], SmCoO[sub 3], SrRuO[sub 3], La[sub 0.8]Ce[sub 0.2]CoC[sub 3],SrCo[sub 0.5]Ti[sub 0.5]O[sub 3], and La[sub 0.8]Sr[sub 0.2]CoO[sub 3] where SrRu[sub 0.5]Pt[sub 0.5]P[sub 3] gave methanol oxidation currents up to 28 mA/cm[sup 2] at 0.45 V vs. SCE. Correlations were found between electrocatalyst solid-state and thermodynamic parameters corresponding to, respectively, molecular electronic polarizability, the optical dielectric constant, the perovskite spin-only magnetic moment, the number of d-electrons in perovskite A and B lattice sites, and the average metal-oxygen binding energy for the perovskite lattice, and corresponding fuel cell performance. This may have future merit for the prediction of new electrocatalyst family members for promoting direct methanol oxidation. Methanol diffusion from anode to cathode compartments appears to be a major obstacle to the development of polymer electrolyte methanol fuel cells.

  9. EFFECT OF FUEL IMPURITY ON STRUCTURAL INTEGRITY OF Ni-YSZ ANODE OF SOFCs

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Marina, Olga A.; Pederson, Larry R.; Khaleel, Mohammad A.

    2011-01-01T23:59:59.000Z

    Electricity production through the integration of coal gasification with solid oxide fuel cells (SOFCs) may potentially be an efficient technique for clean energy generation. However, multiple minor and trace components are naturally present in coals. These impurities in coal gas not only degrade the electrochemical performance of Ni-YSZ anode used in SOFCs, but also severely endanger the structural integrity of the Ni-YSZ anode. In this paper, effect of the trace impurity of the coal syngases on the mechanical degradation of Ni-YSZ anode was studied by using an integrated experimental/modeling approach. Phosphorus is taken as an example of impurity. Anode-support button cell was used to experimentally explore the migration of phosphorous impurity in the Ni-YSZ anode of SOFCs. X-ray mapping was used to show elemental distributions and new phase formation. The subsequent finite element stress analyses were conducted using the actual microstructure of the anode to illustrate the degradation mechanism. It was found that volume expansion induced by the Ni phase change produces high stress level such that local failure of the Ni-YSZ anode is possible under the operating conditions

  10. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    SciTech Connect (OSTI)

    Anil V. Virkar

    2001-06-21T23:59:59.000Z

    A simple, approximate analysis of the effect of differing cathode and anode areas on the measurement of cell performance on anode-supported solid oxide fuel cells, wherein the cathode area is smaller than the anode area, is presented. It is shown that the effect of cathode area on cathode polarization, on electrolyte contribution, and on anode resistance, as normalized on the basis of the cathode area, is negligible. There is a small but measurable effect on anode polarization, which results from concentration polarization. Effectively, it is the result of a greater amount of fuel transported to the anode/electrolyte interface in cases wherein the anode area is larger than the cathode area. Experiments were performed on cells made with differing cathode areas and geometries. Cathodic and anodic overpotentials measured using reference electrodes, and the measured ohmic area specific resistances by current interruption, were in good agreement with expectations based on the analysis presented. At 800 C, the maximum power density measured with a cathode area of {approx}1.1 cm{sup 2} was {approx}1.65 W/cm{sup 2} compared to {approx}1.45 W/cm{sup 2} for cathode area of {approx}2 cm{sup 2}, for anode thickness of {approx}1.3 mm, with hydrogen as the fuel and air as the oxidant. At 750 C, the measured maximum power densities were {approx}1.3 W/cm{sup 2} for the cell with cathode area {approx}1.1 cm{sup 2}, and {approx}1.25 W/cm{sup 2} for the cell with cathode area {approx}2 cm{sup 2}.

  11. Development of metal-coated ceramic anodes for molten carbonate fuel cells. Final report

    SciTech Connect (OSTI)

    Khandkar, A.C.; Elangovan, S.; Marianowski, L.G.

    1990-03-01T23:59:59.000Z

    This report documents the developmental efforts on metal coating of various ceramic substrates (LiAlO{sub 2}, SrTiO{sub 3}, and LiFeO{sub 2}) and the critical issues associated with fabricating anodes using metal-coated LiAlO{sub 2} substrates. Electroless Ni and Cu coating technology was developed to achieve complete metal coverage on LiAlO{sub 2} powder substrates. Metal coated SrTiO{sub 3} powders were fabricated into anodes by a process identical to that reported in the GE literature. Microstructural examination revealed that the grains of the ceramic had fused together, with the metal having dewetted from the surface of the ceramic. Alternate substrates that might allow for better wetting of the metal on the ceramic such as LiFeO{sub 2} and Li{sub 2}MnO{sub 3} were identified. Cu/Ni-coated (50:50 mol ratio, 50 w/o metal loading) LiFeO{sub 2} anodes were optimized to meet the MCFC anode specifications. Metal-coated gamma-LiAlO{sub 2} substrates were also developed. By using suitable chemical surface modification methods, the gamma-UAlO{sub 2} substrate surface may be modified to allow a stable metal coated anode to be fabricated. Creep testing of the metal coated ceramic anodes were conducted at IGT. It was determined that the predominant creep mechanism is due to particle rearrangement. The anode porosity, and mean pore size had significant effect on the creep of the anode. Lower porosity and pore size consistent with performance criteria are desired to reduce creep. Lower metal loading with uniformity of coverage will result in lower creep behavior of the anode. Of the two substrates evaluated, LiFeO{sub 2} in general exhibited lower creep which was attributed to superior metal adhesion.

  12. Development of metal-coated ceramic anodes for molten carbonate fuel cells

    SciTech Connect (OSTI)

    Khandkar, A.C.; Elangovan, S.; Marianowski, L.G.

    1990-03-01T23:59:59.000Z

    This report documents the developmental efforts on metal coating of various ceramic substrates (LiAlO{sub 2}, SrTiO{sub 3}, and LiFeO{sub 2}) and the critical issues associated with fabricating anodes using metal-coated LiAlO{sub 2} substrates. Electroless Ni and Cu coating technology was developed to achieve complete metal coverage on LiAlO{sub 2} powder substrates. Metal coated SrTiO{sub 3} powders were fabricated into anodes by a process identical to that reported in the GE literature. Microstructural examination revealed that the grains of the ceramic had fused together, with the metal having dewetted from the surface of the ceramic. Alternate substrates that might allow for better wetting of the metal on the ceramic such as LiFeO{sub 2} and Li{sub 2}MnO{sub 3} were identified. Cu/Ni-coated (50:50 mol ratio, 50 w/o metal loading) LiFeO{sub 2} anodes were optimized to meet the MCFC anode specifications. Metal-coated gamma-LiAlO{sub 2} substrates were also developed. By using suitable chemical surface modification methods, the gamma-UAlO{sub 2} substrate surface may be modified to allow a stable metal coated anode to be fabricated. Creep testing of the metal coated ceramic anodes were conducted at IGT. It was determined that the predominant creep mechanism is due to particle rearrangement. The anode porosity, and mean pore size had significant effect on the creep of the anode. Lower porosity and pore size consistent with performance criteria are desired to reduce creep. Lower metal loading with uniformity of coverage will result in lower creep behavior of the anode. Of the two substrates evaluated, LiFeO{sub 2} in general exhibited lower creep which was attributed to superior metal adhesion.

  13. The effects of microstructure on the corrosion of glycine/nitrate processed cermet inert anodes: A preliminary study

    SciTech Connect (OSTI)

    Windisch, Jr, C F; Chick, L A; Maupin, G D; Stice, N D

    1991-07-01T23:59:59.000Z

    The Inert Electrodes Program at the Pacific Northwest Laboratory (PNL) is supported by the Office of Industrial Processes of the US Department of Energy and is aimed at improving the energy efficiency of Hall-Heroult cells through the development of inert anodes. The inert anodes currently under the study are composed of a cermet material of the general composition NiO-NiFe{sub 2}O{sub 4}-Cu. The program has three primary objectives: (a) to evaluate the anode material in a scaled-up, pilot cell facility, (b) to investigate the mechanisms of the electrochemical reactions at the anodes surface, and (c) to develop sensors for monitoring various anode and/or electrolyte conditions. This report covers the results of a portion of the studies on anode reaction mechanisms. The anode mechanism studies were focused in four areas in FY 1990 and FY 1991: (a) the determination of whether a film formed on cermet inert anodes and (if it existed) the characterization of this film, (b) the determination of the sources of the anode impedance, (c) the evaluation of the effects of silica and a precorroded state on anode corrosion, and (d) a preliminary study on the effect of microstructure on the corrosion properties of the anodes. This report discusses the results of the microstructure studies. 6 refs., 32 figs., 3 tabs.

  14. Inert Anode/Cathode Program: Fiscal Year 1986 annual report. [For Hall-Heroult cells

    SciTech Connect (OSTI)

    Brenden, B.B.; Davis, N.C.; Koski, O.H.; Marschman, S.C.; Pool, K.H.; Schilling, C.H.; Windisch, C.F.; Wrona, B.J.

    1987-06-01T23:59:59.000Z

    Purpose of the program is to develop long-lasting, energy-efficient anodes, cathodes, and ancillary equipment for Hall-Heroult cells used by the aluminum industry. The program is divided into four tasks: Inert Anode Development, Cathode Materials Evaluation, Cathode Bonding Development, and Sensor Development. To devise sensors to control the chemistry of Hall-Heroult cells using stable anodes and cathodes. This report highlights the major FY86 technical accomplishments, which are presented in the following sections: Management, Materials Development, Materials Evaluation, Thermodynamic Evaluation, Laboratory Cell Tests, Large-Scale Tests, Cathode Materials Evaluation, Cathode Bonding Development, and Sensor Development.

  15. DEEP Summer Academy 2015 Request for Proposals

    E-Print Network [OSTI]

    Prodiæ, Aleksandar

    DEEP Summer Academy 2015 Request for Proposals Deadline: November 30th 2014 Primary Contact: DEEP Request for Proposals: DEEP Summer Academy 2015 About the Engineering Outreach Office The Engineering Office, visit: http://outreach.engineering.utoronto.ca/aboutus.htm Overview of DEEP Summer Academy

  16. Western Shallow Oil Zone, Elk Hills Field, Kern County, California: General Reservoir Study, Executive Summary: Bittium, Wilhelm, Gusher, and Calitroleum Sands

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-12-22T23:59:59.000Z

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 with the United States Department of Energy. The study addresses the Bittium Wilhelm, Gusher, and Calitroleum Sands and their several sub units and pools. A total of twenty-eight (28) separate reservoir units have been identified and analyzed. Areally, these reservoirs are located in 31 separate sections of land including and lying northwest of sections 5G, 8G, and 32S, all in the Elk Hills Oil Fileds, Naval Petroleum Reserve No. 1, Kern County California. Vertically, the reservoirs occur as shallow as 2600 feet and as deep as 4400 feet. Underlying a composite productive area of about 8300 acres, the reservoirs originally contained an estimated 138,022,000 stock tank barrels of oil, and 85,000 MMCF of gas, 6300 MMCF of which occurred as free gas in the Bittium and W-1B Sands. Since original discovery in April 1919, a total of over 500 wells have been drilled into or through the zones, 120 of which were completed as Western Shallow Oil Zone producers. Currently, these wells are producing about 2452 barrels of oil per day, 1135 barrels of water per day and 5119 MCF of gas per day from the collective reservoirs. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent vertification. This study has successfully identified the size and location of all commercially productive pools in the Western Shallow Oil Zone. It has identified the petrophysical properties and the past productive performance of the reservoirs. Primary reserves have been determined and general means of enhancing future recovery have been suggested. 11 figs., 8 tabs.

  17. WebDeep Web Surface Web

    E-Print Network [OSTI]

    Web WebWeb WebWeb WebHTML Web WebDeep Web Surface Web " " Deep Web21 Dot-ComWebWeb2.0 WebWeb ""Web WebWeb Deep Web WebWeb SNS Web WebWeb 20017BrightPlanet.comDeep Web Web43,000-96,000Web7,500TB(Surface Web500) UIUCDeep Web2004Deep Web 307,000366,000-535,000 WebDeep Web "" Deep Web 1 Web Web #12

  18. Application of horizontal drilling in the development of a complex turbidite sandstone reservoir, Elk Hills Field, Kern County, California

    SciTech Connect (OSTI)

    Reid, S.A. (Bechtel Petroleum Operations, Inc., Tupman, CA (USA)); McJannet, G.S. (Dept. of Energy, Tupman, CA (USA)); Hart, O.D. (Chevron Inc., Tupman, CA (USA))

    1990-05-01T23:59:59.000Z

    Horizontal drilling techniques have been used at the Elk Hills field, to more effectively produce the complex 26R reservoir. This Stevens zone reservoir of the Miocene Monterey Formation contains turbid sediments deposited in a deep-sea fan setting and consists of several distinct sandstone layers averaging 150 ft thick and usually separated by mudstone beds. Layers in the reservoir dip as much as 50{degree} southwest. An expanding gas cap makes many vertical wells less favorable to operate. Horizontal completions were thought ideal for the pool because (1) original oil-water contact is level and believed stable, (2) water production is low, (3) a horizontal well provides for a long production life; and (4) several sandstone layers can be produced through one well. For the first well, the plan was to redrill an idle well to horizontal along an arc with a radius of 350 ft. The horizontal section was to be up to 1,000 ft long and extend northeast slightly oblique to dip just above the average oil-water contact. The well was drilled in September 1988, reached horizontal nearly as planned, was completed after perforating 210 ft of oil sand, and produced a daily average of 1,000 bbl oil and 8 bbl of water. However, structural influence was stronger than expected, causing the horizontal drill path to turn directly updip away from the bottom-hole target area. The well also encountered variable oil-water contacts, with more than half the horizontal section possibly water productive. Geologic and drilling data from the first well were used for planning another well. This well was drilled in October 1989, and was highly successful with over 1,000 ft of productive interval.

  19. Magnetotelluric images of the crustal structure of Chyulu Hills volcanic field, Kenya

    E-Print Network [OSTI]

    Meju, Max

    Magnetotelluric images of the crustal structure of Chyulu Hills volcanic field, Kenya V. Sakkas volcanic chain on the eastern flank of the Kenya Rift in East Africa. Transient electromagnetic (TEM flank of the Kenya Rift deduced from wide-angle P-wave data. In: Fuchs, K., Altherr, R., Muller, B

  20. EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess potential environmental impacts of the proposed rebuild of its 26-mile 115 kilovolt (kV) wood-pole Hills Creek-Lookout Point transmission line, which is generally located between Lowell and Oakridge, in Lane County, Oregon.

  1. Corrosion of Metals in Composite Cements Anthony Setiadi*, J. Hill and N. B. Milestone

    E-Print Network [OSTI]

    Sheffield, University of

    Corrosion of Metals in Composite Cements Anthony Setiadi*, J. Hill and N. B. Milestone. However, there may be issues regarding the corrosion of some of the metal components which arise from reprocessing and decommissioning due to the alkaline environment in the cement grouts. The corrosion

  2. ROBOTICS WITHIN THE TEACHING OF PROBLEM-SOLVING SCOTT TURNER AND GARY HILL

    E-Print Network [OSTI]

    Hill, Gary

    ROBOTICS WITHIN THE TEACHING OF PROBLEM-SOLVING SCOTT TURNER AND GARY HILL DIVISION OF COMPUTING-solving approaches, are tasks using Mindstorm (LEGO, Denmark) robot kits. This is being done as a foundation step of a previous robot problem. Results of student evaluation and feedback will be presented and the use of two

  3. The 26 December (Boxing Day) 1997 sector collapse and debris avalanche at Soufriere Hills Volcano, Montserrat

    E-Print Network [OSTI]

    Belousov, Alexander

    , Russia 5 Institut de Physique du Globe de Paris (IPGP), 4 Place Jussieu, B 89, 75252 Cedex 05 Paris & Mullineaux 1981). At Soufriere Hills, an andesilic lava dome had grown over the unstable, hydro- thermally dome was exposed and depressurized, and it exploded to generate a powerful pyroclastic density current

  4. Search for Harmonic tremor in the Galapagos Jonathan M. Lees, University of North Carolina, Chapel Hill

    E-Print Network [OSTI]

    Geist, Dennis

    Search for Harmonic tremor in the Galapagos Jonathan M. Lees, University of North Carolina, Chapel Hill Harmonic volcano tremor can provide details of conduit physics during magma flow and volcano.71.2 Hz. Harmonic tremor has not been reported on Galapagos volcanoes, possibly because seismic

  5. Highway 280 North or South Take the Sand Hill Road exit, head east

    E-Print Network [OSTI]

    Ford, James

    Highway 280 North or South · Take the Sand Hill Road exit, head east · Turn right on Stock Farm for "all" below From Bayshore US Highway 101 NorthFrom Bayshore US Highway 101 North or South · Take · Turn left on Stock Farm Road LKSC ParkingTurn left on Stock Farm Road · Make the next lefthand turn

  6. Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal

    E-Print Network [OSTI]

    Avouac, Jean-Philippe

    Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal J. Lave´1 of central Nepal, south of the Kathmandu Basin. The Main Frontal Thrust fault (MFT), which marks the southern analysis, complemented by geological investiga- tions in central Nepal. Active deformation in the Himalaya

  7. Ambient noise seismic imaging Journal: McGraw Hill 2008 Yearbook of Science & Technology

    E-Print Network [OSTI]

    Ritzwolle, Mike

    ForReview Ambient noise seismic imaging Journal: McGraw Hill 2008 Yearbook of Science & Technology List of Authors: Ritzwoller, Michael Keywords: ambient noise, seismology, seismic tomography, Rayleigh wave, Love wave, surface wave Abstract: A recent innovation in seismic imaging based on using long time

  8. Laboratory evaluation of damage criteria and permeability of Big Hill salt.

    SciTech Connect (OSTI)

    Ehgartner, Brian L.; Park, Byoung Yoon; Lee, Moo Yul; Bronowski, David R.

    2004-11-01T23:59:59.000Z

    To establish strength criteria of Big Hill salt, a series of quasi-static triaxial compression tests have been completed. This report summarizes the test methods, set-up, relevant observations, and results. The triaxial compression tests established dilatant damage criteria for Big Hill salt in terms of stress invariants (I{sub 1} and J{sub 2}) and principal stresses ({sigma}{sub a,d} and {sigma}{sub 3}), respectively: {radical}J{sub 2}(psi) = 1746-1320.5 exp{sup -0.00034I{sub 1}(psi)}; {sigma}{sub a,d}(psi) = 2248 + 1.25 {sigma}{sub 3} (psi). For the confining pressure of 1,000 psi, the dilatant damage strength of Big Hill salt is identical to the typical salt strength ({radical}J{sub 2} = 0.27 I{sub 1}). However, for higher confining pressure, the typical strength criterion overestimates the damage strength of Big Hill salt.

  9. FORT UNION DEEP

    SciTech Connect (OSTI)

    Lyle A. Johnson Jr.

    2002-03-01T23:59:59.000Z

    Coalbed methane (CBM) is currently the hottest area of energy development in the Rocky Mountain area. The Powder River Basin (PRB) is the largest CBM area in Wyoming and has attracted the majority of the attention because of its high permeability and relatively shallow depth. Other Wyoming coal regions are also being targeted for development, but most of these areas have lower permeability and deeper coal seams. This project consists of the development of a CBM stimulation system for deep coal resources and involves three work areas: (1) Well Placement, (2) Well Stimulation, and (3) Production Monitoring and Evaluation. The focus of this project is the Washakie Basin. Timberline Energy, Inc., the cosponsor, has a project area in southern Carbon County, Wyoming, and northern Moffat County, Colorado. The target coal is found near the top of the lower Fort Union formation. The well for this project, Evans No.1, was drilled to a depth of 2,700 ft. Three coal seams were encountered with sandstone and some interbedded shale between seams. Well logs indicated that the coal seams and the sandstone contained gas. For the testing, the upper seam at 2,000 ft was selected. The well, drilled and completed for this project, produced very little water and only occasional burps of methane. To enhance the well, a mild severity fracture was conducted to fracture the coal seam and not the adjacent sandstone. Fracturing data indicated a fracture half-length of 34 ft, a coal permeability of 0.2226 md, and permeability of 15.3 md. Following fracturing, the gas production rate stabilized at 10 Mscf/day within water production of 18 bpd. The Western Research Institute (WRI) CBM model was used to design a 14-day stimulation cycle followed by a 30-day production period. A maximum injection pressure of 1,200 psig to remain well below the fracture pressure was selected. Model predictions were 20 Mscf/day of air injection for 14 days, a one-day shut-in, then flowback. The predicted flowback was a four-fold increase over the prestimulation rate with production essentially returning to prestimulation rates after 30 days. The physical stimulation was conducted over a 14-day period. Problems with the stimulation injection resulted in a coal bed fire that was quickly quenched when production was resumed. The poststimulation, stabilized production was three to four times the prestimulation rate. The methane content was approximately 45% after one day and increased to 65% at the end of 30 days. The gas production rate was still two and one-half times the prestimulation rate at the end of the 30-day test period. The field results were a good match to the numerical simulator predictions. The physical stimulation did increase the production, but did not produce a commercial rate.

  10. FORT UNION DEEP

    SciTech Connect (OSTI)

    Lyle A. Johnson Jr.

    2002-09-01T23:59:59.000Z

    Coalbed methane (CBM) is currently the hottest area of energy development in the Rocky Mountain area. The Powder River Basin (PRB) is the largest CBM area in Wyoming and has attracted the majority of the attention because of its high permeability and relatively shallow depth. Other Wyoming coal regions are also being targeted for development, but most of these areas have lower permeability and deeper coal seams. This project consists of the development of a CBM stimulation system for deep coal resources and involves three work areas: (1) Well Placement, (2) Well Stimulation, and (3) Production Monitoring and Evaluation. The focus of this project is the Washakie Basin. Timberline Energy, Inc., the cosponsor, has a project area in southern Carbon County, Wyoming, and northern Moffat County, Colorado. The target coal is found near the top of the lower Fort Union formation. The well for this project, Evans No.1, was drilled to a depth of 2,700 ft. Three coal seams were encountered with sandstone and some interbedded shale between seams. Well logs indicated that the coal seams and the sandstone contained gas. For the testing, the upper seam at 2,000 ft was selected. The well, drilled and completed for this project, produced very little water and only occasional burps of methane. To enhance the well, a mild severity fracture was conducted to fracture the coal seam and not the adjacent sandstone. Fracturing data indicated a fracture half-length of 34 ft, a coal permeability of 0.2226 md, and permeability of 15.3 md. Following fracturing, the gas production rate stabilized at 10 Mscf/day within water production of 18 bpd. The Western Research Institute (WRI) CBM model was used to design a 14-day stimulation cycle followed by a 30-day production period. A maximum injection pressure of 1,200 psig to remain well below the fracture pressure was selected. Model predictions were 20 Mscf/day of air injection for 14 days, a one-day shut-in, then flowback. The predicted flowback was a four-fold increase over the prestimulation rate with production essentially returning to prestimulation rates after 30 days. The physical stimulation was conducted over a 14-day period. Problems with the stimulation injection resulted in a coal bed fire that was quickly quenched when production was resumed. The poststimulation, stabilized production was three to four times the prestimulation rate. The methane content was approximately 45% after one day and increased to 65% at the end of 30 days. The gas production rate was still two and one-half times the prestimulation rate at the end of the 30-day test period. The field results were a good match to the numerical simulator predictions. The physical stimulation did increase the production, but did not produce a commercial rate.

  11. Amorphous Metallic Glass as New High Power and Energy Density Anodes For Lithium Ion Rechargeable Batteries

    E-Print Network [OSTI]

    Meng, Shirley Y.

    We have investigated the use of aluminum based amorphous metallic glass as the anode in lithium ion rechargeable batteries. Amorphous metallic glasses have no long-range ordered microstructure; the atoms are less closely ...

  12. A study of certain trace metals in sea water using anodic stripping voltammetry

    E-Print Network [OSTI]

    Fitzgerald, William Francis, 1926-

    1970-01-01T23:59:59.000Z

    Anodic stripping voltammetry utilizing a thin film mercury composite graphite electrode has been evaluated and applied for the direct analysis of the metals, Zn,J Cu, Pb, and Cd in sea water. The electrode was observed to ...

  13. Vehicle Technologies Office Merit Review 2015: High Energy Anode Material Development for Li-ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by Sinode Systems at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy anode material...

  14. Investigation on Aluminum-Based Amorphous Metallic Glass as New Anode Material in Lithium Ion Batteries

    E-Print Network [OSTI]

    Meng, Shirley Y.

    Aluminum based amorphous metallic glass powders were produced and tested as the anode materials for the lithium ion rechargeable batteries. Ground Al??Ni₁?La₁? was found to have a ...

  15. Argonne and CalBattery strike deal for silicon-graphene anode...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and CalBattery strike deal for silicon-graphene anode material By Angela Hardin * February 25, 2013 Tweet EmailPrint LEMONT, Ill. - The U.S. Department of Energy's Argonne National...

  16. Study on Degradation of Solid Oxide Fuel Cell With Pure Ni Anode Zhenjun Jiaoa

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    Study on Degradation of Solid Oxide Fuel Cell With Pure Ni Anode Zhenjun Jiaoa , Naoki Shikazonoa Solid oxide fuel cell (SOFC) has attracted more and more attentions in the last few decades

  17. anode-cathode microbial fuel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OLEDs have been fabricated using a new anode-cathode-layer (ACL) that connects light emitting diode (OLED) 1, much development has been made to improve this device for...

  18. Mitigation of Sulfur Poisoning of Ni/Zirconia SOFC Anodes by...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cells (SOFC). Prior to operating on fuel gas containing low concentrations of H2S, the nickelzirconia anodes were briefly exposed to antimony or tin vapor, which only slightly...

  19. Modeling of the anode side of a direct methanol fuel cell with analytical solutions

    E-Print Network [OSTI]

    Mosquera, Martín A

    2010-01-01T23:59:59.000Z

    In this work, analytical solutions were derived (for any methanol oxidation reaction order) for the profiles of methanol concentration and proton current density by assuming diffusion mass transport mechanism, Tafel kinetics, and fast proton transport in the anodic catalyst layer of a direct methanol fuel cell. An expression for the Thiele modulus that allows to express the anodic overpotential as a function of the cell current, and kinetic and mass transfer parameters was obtained. For high cell current densities, it was found that the Thiele modulus ($\\phi^2$) varies quadratically with cell current density; yielding a simple correlation between anodic overpotential and cell current density. Analytical solutions were derived for the profiles of both local methanol concentration in the catalyst layer and local anodic current density in the catalyst layer. Under the assumptions of the model presented here, in general, the local methanol concentration in the catalyst layer cannot be expressed as an explicit fun...

  20. Nickel Phase Wettability and YSZ Redox Fracture Percolation in Solid Oxide Fuel Cell Anodes

    E-Print Network [OSTI]

    Petta, Jason

    Nickel Phase Wettability and YSZ Redox Fracture Percolation in Solid Oxide Fuel Cell Anodes Alex and Aerospace Engineering Background Solid oxide fuel cells lose mechanical stability and functionality when

  1. Stability of Iridium Anode in Molten Oxide Electrolysis for Ironmaking: Influence of Slag Basicity

    E-Print Network [OSTI]

    Kim, Hojong

    Molten oxide electrolysis (MOE) is a carbon-neutral, electrochemical technique to decompose metal oxide directly into liquid metal and oxygen gas upon use of an inert anode. What sets MOE apart from other technologies is ...

  2. P-230 / X. Yu P-230: Novel Electrical-Chemically Polished Stainless Steel Anode Organic

    E-Print Network [OSTI]

    time, top emission OLEDs with evaporated aluminum anode on glass (called Devices AA) were fabricated be widely used in ceiling lighting illuminator and automotive application in the future. High work

  3. Vehicle Technologies Office Merit Review 2015: Si Alloy Anode: Sudden Fade Challenge

    Broader source: Energy.gov [DOE]

    Presentation given by 3M at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Si alloy anode: sudden fade challenge.

  4. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Douglas A. (Murrysville, PA)

    2002-01-01T23:59:59.000Z

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  5. Anode protection system for shutdown of solid oxide fuel cell system

    DOE Patents [OSTI]

    Li, Bob X; Grieves, Malcolm J; Kelly, Sean M

    2014-12-30T23:59:59.000Z

    An Anode Protection Systems for a SOFC system, having a Reductant Supply and safety subsystem, a SOFC anode protection subsystem, and a Post Combustion and slip stream control subsystem. The Reductant Supply and safety subsystem includes means for generating a reducing gas or vapor to prevent re-oxidation of the Ni in the anode layer during the course of shut down of the SOFC stack. The underlying ammonia or hydrogen based material used to generate a reducing gas or vapor to prevent the re-oxidation of the Ni can be in either a solid or liquid stored inside a portable container. The SOFC anode protection subsystem provides an internal pressure of 0.2 to 10 kPa to prevent air from entering into the SOFC system. The Post Combustion and slip stream control subsystem provides a catalyst converter configured to treat any residual reducing gas in the slip stream gas exiting from SOFC stack.

  6. Mitigation of Sulfur Poisoning of Ni/Zirconia SOFC Anodes by Antimony and Tin

    SciTech Connect (OSTI)

    Marina, Olga A.; Coyle, Christopher A.; Engelhard, Mark H.; Pederson, Larry R.

    2011-02-28T23:59:59.000Z

    Surface Ni/Sb and Ni/Sb alloys were found to efficiently minimize the negative effects of sulfur on the performance of Ni/zirconia anode-supported solid oxide fuel cells (SOFC). Prior to operating on fuel gas containing low concentrations of H2S, the nickel/zirconia anodes were briefly exposed to antimony or tin vapor, which only slightly affected the SOFC performance. During the subsequent exposures to 1 and 5 ppm H2S, increases in anodic polarization losses were minimal compared to those observed for the standard nickel/zirconia anodes. Post-test XPS analyses showed that Sb and Sn tended to segregate to the surface of Ni particles, and further confirmed a significant reduction of adsorbed sulfur on the Ni surface in Ni/Sn and Ni/Sb samples compared to the Ni. The effect may be the result of weaker sulfur adsorption on bimetallic surfaces, adsorption site competition between sulfur and Sb or Sn on Ni, or other factors. The use of dilute binary alloys of Ni-Sb or Ni-Sn in the place of Ni, or brief exposure to Sb or Sn vapor, may be effective means to counteract the effects of sulfur poisoning in SOFC anodes and Ni catalysts. Other advantages, including suppression of coking or tailoring the anode composition for the internal reforming, are also expected.

  7. Stimulation Technologies for Deep Well Completions

    SciTech Connect (OSTI)

    None

    2003-09-30T23:59:59.000Z

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a study to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. An assessment of historical deep gas well drilling activity and forecast of future trends was completed during the first six months of the project; this segment of the project was covered in Technical Project Report No. 1. The second progress report covers the next six months of the project during which efforts were primarily split between summarizing rock mechanics and fracture growth in deep reservoirs and contacting operators about case studies of deep gas well stimulation.

  8. STIMULATION TECHNOLOGIES FOR DEEP WELL COMPLETIONS

    SciTech Connect (OSTI)

    Stephen Wolhart

    2003-06-01T23:59:59.000Z

    The Department of Energy (DOE) is sponsoring a Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a project to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. Phase 1 was recently completed and consisted of assessing deep gas well drilling activity (1995-2007) and an industry survey on deep gas well stimulation practices by region. Of the 29,000 oil, gas and dry holes drilled in 2002, about 300 were drilled in the deep well; 25% were dry, 50% were high temperature/high pressure completions and 25% were simply deep completions. South Texas has about 30% of these wells, Oklahoma 20%, Gulf of Mexico Shelf 15% and the Gulf Coast about 15%. The Rockies represent only 2% of deep drilling. Of the 60 operators who drill deep and HTHP wells, the top 20 drill almost 80% of the wells. Six operators drill half the U.S. deep wells. Deep drilling peaked at 425 wells in 1998 and fell to 250 in 1999. Drilling is expected to rise through 2004 after which drilling should cycle down as overall drilling declines.

  9. Designer carbons as potential anodes for lithium secondary batteries

    SciTech Connect (OSTI)

    Winans, R.E.; Carrado, K.A.; Thiyagarajan, P. [and others

    1995-07-01T23:59:59.000Z

    Carbons are the material of choice for lithium secondary battery anodes. Our objective is to use designed synthesis to produce a carbon with a predictable structure. The approach is to pyrolyze aromatic hydrocarbons within a pillared clay. Results from laser desorption mass spectrometry, scanning tunneling microscopy, X-ray diffraction, and small angle neutron scattering suggest that we have prepared disordered, porous sheets of carbon, free of heteroatoms. One of the first demonstrations of template-directed carbon formation was reported by Tomita and co-workers, where polyacrylonitrile was carbonized at 700{degrees}C yielding thin films with relatively low surface areas. More recently, Schwarz has prepared composites using polyfurfuryl alcohol and pillared clays. In the study reported here, aromatic hydrocarbons and polymers which do not contain heteroatoms are being investigated. The alumina pillars in the clay should act as acid sites to promote condensation similar to the Scholl reaction. In addition, these precursors should readily undergo thermal polymerization, such as is observed in the carbonization of polycyclic aromatic hydrocarbons.

  10. Stimulation Technologies for Deep Well Completions

    SciTech Connect (OSTI)

    Stephen Wolhart

    2005-06-30T23:59:59.000Z

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

  11. UONPR No. 1, Elk Hills, 26R Reservoir, Elk Hills oil and gas field, Kern County, California: Management Review: Surface operations and measurements of production and injection volumes

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    Evans, Carey and Crozier was given the task to conduct a Management Review of the Surface Operations of the 26R Reservoir in UONPR No. 1, Elk Hills field, Kern County, California. The MER strategy for this reservoir is to maintain pressure, and toward this end, gas injection volumes are scheduled to amount to 110% of calculated withdrawals. In spite of this, however, reservoir pressure continues to decline. The purpose of this study was, therefore, to determine if, and to what extent, field operating practices and accounting procedures may be contributing to this dilemma and to make appropriate recommendations pertaining to correcting any deficiencies which may have been found.

  12. Going Deep vs. Going Wide

    Broader source: Energy.gov [DOE]

    Going Deep vs. Going Wide, from the Residential Energy Efficiency Solutions Conference 2012. Provides an overview on the progress of four energy efficiency programs: Clean Energy Works Oregon, Efficiency Maine, Energy Upgrade California Flex Path, and EcoHouse Loan Program.

  13. Deep-web search engine ranking algorithms

    E-Print Network [OSTI]

    Wong, Brian Wai Fung

    2010-01-01T23:59:59.000Z

    The deep web refers to content that is hidden behind HTML forms. The deep web contains a large collection of data that are unreachable by link-based search engines. A study conducted at University of California, Berkeley ...

  14. Croatian Language and Cultural Maintenance in the Slavic-American Community of Strawberry Hill, Kansas City, Kansas

    E-Print Network [OSTI]

    Glasgow, Holly Hood

    2012-05-31T23:59:59.000Z

    The purpose of this qualitative study was to investigate levels of immigrant language retention among Croatian-Americans in the Slavic diaspora community of Strawberry Hill in Kansas City, Kansas. There have been three major waves of Croatian...

  15. Electrocatalysis of anodic and cathodic oxygen-transfer reactions

    SciTech Connect (OSTI)

    Wels, B.R.

    1990-09-21T23:59:59.000Z

    The electrocatalysis of oxygen-transfer reactions is discussed in two parts. In Part I, the reduction of iodate (IO{sub 3}{sup {minus}}) is examined as an example of cathodic oxygen transfer. On oxide-covered Pt electrodes (PtO), a large cathodic current is observed in the presence of IO{sub 3}{sup {minus}} to coincide with the reduction of PtO. The total cathodic charge exceeds the amount required for reduction of PtO and IO{sub 3}{sup {minus}} to produce an adsorbed product. An electrocatalytic link between reduction of IO{sub 3}{sup {minus}} and reduction of PtO is indicated. In addition, on oxide-free Pt electrodes, the reduction of IO{sub 3}{sup {minus}} is determined to be sensitive to surface treatment. The electrocatalytic oxidation of CN{sup {minus}} is presented as an example of anodic oxygen transfer in Part II. The voltametric response of CN{sup {minus}} is virtually nonexistent at PbO{sub 2} electrodes. The response is significantly improved by doping PbO{sub 2} with Cu. Cyanide is also oxidized effectively at CuO-film electrodes. Copper is concluded to serve as an adsorption site for CN{sup {minus}}. It is proposed that an oxygen tunneling mechanism comparable to electron tunneling does not occur at the electrode-solution interface. The adsorption of CN{sup {minus}} is therefore considered to be a necessary prerequisite for oxygen transfer. 201 refs., 23 figs., 2 tabs.

  16. Effect of entropy of lithium intercalation in cathodes and anodes on Li-ion battery thermal management

    SciTech Connect (OSTI)

    Viswanathan, Vilayanur V.; Choi, Daiwon; Wang, Donghai; Xu, Wu; Towne, Silas A.; Williford, Ralph E.; Zhang, Jiguang; Liu, Jun; Yang, Zhenguo

    2010-06-01T23:59:59.000Z

    The entropy changes (?S) in various cathode and anode materials, as well as complete Li-ion batteries, were measured using an electrochemical thermodynamic measurement system (ETMS). LiCoO2 has a much larger entropy change than electrodes based on LiNixCoyMnzO2 and LiFePO4, while lithium titanate based anode has lower entropy change compared to graphite anodes. Reversible heat generation rate was found to be a significant portion of the total heat generation rate. The appropriate combinations of cathode and anode were investigated to minimize reversible heat.

  17. Technical safety appraisal of the Naval Petroleum Reserve No. 1, Elk Hills, California

    SciTech Connect (OSTI)

    Not Available

    1989-04-01T23:59:59.000Z

    The existing Elk Hills facilities for fluid production consist of tank settings, gas and oil/water gathering pipelines, gas plants, compressor facilities, lease automatic custody transfer units which meter the crude oil going to sales, and natural gas sales meters and pipelines, water injection and source wells, and gas injection pipelines and wells. The principal safety concerns presented by operations at Elk Hills are fire, occupational safety and industrial hygiene considerations. Transportation and motor vehicle accidents are also of great concern because of the large amount of miles driven on more than 900 miles of roads. Typical operations involve hazardous materials and processing equipment such as vessels, compressors, boilers, piping and valves. The aging facilities, specifically the 35R Gas Plant (constructed in 1952) and many of the pipelines, introduce an additional element of hazard to the operations.

  18. Naval petroleum reserves: Preliminary analysis of future net revenues from Elk Hills production

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    This is an interim report on the present value of the net revenues from Elk Hills Naval Petroleum Reserve. GAO calculated alternative present values of the net revenues applying (1) low, medium, and high forecasts of future crude oil prices and (2) alternative interest rates for discounting the future net revenues to their present values. The calculations are sensitive to both the oil price forecasts and discount rates used; they are preliminary and should be used with caution. They do not take into account possible added tax revenues collected by the government if Elk Hills were sold nor varying production levels and practices, which could either increase or decrease the total amount of oil that can be extracted.

  19. Naval petroleum reserves: Oil sales procedures and prices at Elk Hills, April through December 1986

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    The Elk Hills Naval Petroleum Reserve is located near Bakersfield, California and ranks seventh among domestic producing oil fields. In Feb. 1986 the Department of Energy awarded contracts to 16 companies for the sale of about 82,000 barrels per day of NPR crude oil between April and September 1986. These companies bid a record high average discount of $4.49 from DOE's base price. The discounts ranged from $0.87 to $6.98 per barrel. These contracts resulted in DOE selling Elk Hills oil as low as $3.91 per barrel. Energy stated that the process for selling from NPR had gotten out of step with today's marketplace. Doe subsequently revised its sales procedures which requires bidders to submit a specific price for the oil rather than a discount to a base price. DOE also initiated other efforts designed to avoid future NPR oil sales at less than fair market value.

  20. Deep Web Entity Monitoring Mohammadreza Khelghati

    E-Print Network [OSTI]

    Hiemstra, Djoerd

    Deep Web Entity Monitoring Mohammadreza Khelghati Database Group University of Twente, Netherlands. This data is defined as hidden web or deep web which is not accessible through search engines. It is estimated that deep web contains data in a scale several times bigger than the data accessible through

  1. Sampling the National Deep Web Denis Shestakov

    E-Print Network [OSTI]

    Hammerton, James

    Sampling the National Deep Web Denis Shestakov Department of Media Technology, Aalto University pages filled with information from myriads of online databases. This part of the Web, known as the deep a problem of deep Web characterization: how to estimate the total number of online databases on the Web? We

  2. Deep reflection-mode photoacoustic imaging of

    E-Print Network [OSTI]

    Wang, Lihong

    near-infrared laser pulses of 804-nm wavelength for PA excitation to achieve deep penetration-frequency PAM system. To achieve deep penetration of light, we chose the 804-nm near-infrared wavelengthDeep reflection-mode photoacoustic imaging of biological tissue Kwang Hyun Song and Lihong V. Wang

  3. Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells

    SciTech Connect (OSTI)

    R.A. Christini; R.K. Dawless; S.P. Ray; D.A. Weirauch, Jr.

    2001-11-05T23:59:59.000Z

    During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase and Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be done. The anode composition needs further improvements to attain commercial purity targets. At the present corrosion rate, the vertical plate anodes will wear too rapidly leading to a rapidly increasing anode-cathode gap and thermal instabilities in the cell. Cathode wetting as a function of both cathode plate composition and bath composition needs to be better understood to ensure that complete drainage of the molten aluminum off the plates occurs. Metal buildup appears to lead to back reaction and low current efficiencies.

  4. How the DNA sequence affects the Hill curve of transcriptional response

    E-Print Network [OSTI]

    M. Sheinman; Y. Kafri

    2011-11-16T23:59:59.000Z

    The Hill coefficient is often used as a direct measure of the cooperativity of binding processes. It is an essential tool for probing properties of reactions in many biochemical systems. Here we analyze existing experimental data and demonstrate that the Hill coefficient characterizing the binding of transcription factors to their cognate sites can in fact be larger than one -- the standard indication of cooperativity -- even in the absence of any standard cooperative binding mechanism. By studying the problem analytically, we demonstrate that this effect occurs due to the disordered binding energy of the transcription factor to the DNA molecule and the steric interactions between the different copies of the transcription factor. We show that the enhanced Hill coefficient implies a significant reduction in the number of copies of the transcription factors which is needed to occupy a cognate site and, in many cases, can explain existing estimates for numbers of the transcription factors in cells. The mechanism is general and should be applicable to other biological recognition processes.

  5. Method for providing uranium articles with a corrosion resistant anodized coating

    DOE Patents [OSTI]

    Waldrop, Forrest B. (Powell, TN); Washington, Charles A. (Oak Ridge, TN)

    1982-01-01T23:59:59.000Z

    Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75.degree. C. with a current flow of less than about 0.036 A/cm.sup.2 of surface area while the pH of the solution is maintained in a range of about 2 to 11.5. The pH values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating.

  6. Breathing oscillations in enlarged cylindrical-anode-layer Hall plasma accelerator

    SciTech Connect (OSTI)

    Geng, S. F.; Wang, C. X. [Southwestern Institute of Physics, Chengdu 610041 (China) [Southwestern Institute of Physics, Chengdu 610041 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Tang, D. L.; Qiu, X. M. [Southwestern Institute of Physics, Chengdu 610041 (China)] [Southwestern Institute of Physics, Chengdu 610041 (China); Fu, R. K. Y. [Plasma Technology Limited, Festival Walk Tower, Tat Chee Avenue, Kowloon, Hong Kong (China)] [Plasma Technology Limited, Festival Walk Tower, Tat Chee Avenue, Kowloon, Hong Kong (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)] [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2013-05-28T23:59:59.000Z

    Breathing oscillations in the discharge of an enlarged cylindrical-anode-layer Hall plasma accelerator are investigated by three-dimensional particle-in-cell (PIC) simulation. Different from the traditional breathing mode in a circular Hall plasma accelerator, the bulk plasma oscillation here is trigged by the potential barrier generated by the concentrated ion beam and substantial enough to compete with the anode voltage. The electric field near the anode is suppressed by the potential barrier thereby decreasing the electron density by {approx}36%. The discharge is restored to the normal level after the concentrated beam explodes and then it completes one cycle of electro-driven breathing oscillation. The breathing mode identified by the PIC simulation has a frequency range of {approx}156 kHz-{approx}250 kHz and does not vary monotonically with the discharge voltage.

  7. Graphdiyne as a high-capacity lithium ion battery anode material

    SciTech Connect (OSTI)

    Jang, Byungryul; Koo, Jahyun; Park, Minwoo; Kwon, Yongkyung; Lee, Hoonkyung, E-mail: hkiee3@konkuk.ac.kr [School of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of)] [School of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of); Lee, Hosik [School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of)] [School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Nam, Jaewook [School of Chemical Engineering, Sungkyunkwan University, Suwon 300 (Korea, Republic of)] [School of Chemical Engineering, Sungkyunkwan University, Suwon 300 (Korea, Republic of)

    2013-12-23T23:59:59.000Z

    Using the first-principles calculations, we explored the feasibility of using graphdiyne, a 2D layer of sp and sp{sup 2} hybrid carbon networks, as lithium ion battery anodes. We found that the composite of the Li-intercalated multilayer ?-graphdiyne was C{sub 6}Li{sub 7.31} and that the calculated voltage was suitable for the anode. The practical specific/volumetric capacities can reach up to 2719?mAh?g{sup ?1}/2032?mAh?cm{sup ?3}, much greater than the values of ?372?mAh?g{sup ?1}/?818?mAh?cm{sup ?3}, ?1117?mAh?g{sup ?1}/?1589?mAh?cm{sup ?3}, and ?744?mAh?g{sup ?1} for graphite, graphynes, and ?-graphdiyne, respectively. Our calculations suggest that multilayer ?-graphdiyne can serve as a promising high-capacity lithium ion battery anode.

  8. Composit, Nanoparticle-Based Anode material for Li-ion Batteries Applied in Hybrid Electric (HEV's)

    SciTech Connect (OSTI)

    Dr. Malgorzata Gulbinska

    2009-08-24T23:59:59.000Z

    Lithium-ion batteries are promising energy storage devices in hybrid and electric vehicles with high specific energy values ({approx}150 Wh/kg), energy density ({approx}400 Wh/L), and long cycle life (>15 years). However, applications in hybrid and electric vehicles require increased energy density and improved low-temperature (<-10 C) performance. Silicon-based anodes are inexpensive, environmentally benign, and offer excellent theoretical capacity values ({approx}4000 mAh/g), leading to significantly less anode material and thus increasing the overall energy density value for the complete battery (>500 Wh/L). However, tremendous volume changes occur during cycling of pure silicon-based anodes. The expansion and contraction of these silicon particles causes them to fracture and lose electrical contact to the current collector ultimately severely limiting their cycle life. In Phase I of this project Yardney Technical Products, Inc. proposed development of a carbon/nano-silicon composite anode material with improved energy density and silicon's cycleability. In the carbon/nano-Si composite, silicon nanoparticles were embedded in a partially-graphitized carbonaceous matrix. The cycle life of anode material would be extended by decreasing the average particle size of active material (silicon) and by encapsulation of silicon nanoparticles in a ductile carbonaceous matrix. Decreasing the average particle size to a nano-region would also shorten Li-ion diffusion path and thus improve rate capability of the silicon-based anodes. Improved chemical inertness towards PC-based, low-temperature electrolytes was expected as an additional benefit of a thin, partially graphitized coating around the active electrode material.

  9. Triple stack glass-to-glass anodic bonding for optogalvanic spectroscopy cells with electrical feedthroughs

    SciTech Connect (OSTI)

    Daschner, R.; Kübler, H.; Löw, R.; Pfau, T., E-mail: t.pfau@physik.uni-stuttgart.de [5. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (Germany); Baur, H.; Frühauf, N. [Institut für Großflächige Mikroelektronik, Universität Stuttgart, 70569 Stuttgart (Germany)

    2014-07-28T23:59:59.000Z

    We demonstrate the use of an anodic bonding technique for building a vacuum tight vapor cell for the use of Rydberg spectroscopy of alkali atoms with thin film electrodes on the inside of the cell. The cell is fabricated by simultaneous triple stack glass-to-glass anodic bonding at 300?°C. This glue-free, low temperature sealing technique provides the opportunity to include thin film electric feedthroughs. The pressure broadening is only limited by the vapor pressure of rubidium and the lifetime is at least four months with operating temperatures up to 230?°C.

  10. Fabrication of copper-based anodes via atmosphoric plasma spraying techniques

    DOE Patents [OSTI]

    Lu, Chun (Monroeville, PA)

    2012-04-24T23:59:59.000Z

    A fuel electrode anode (18) for a solid oxide fuel cell is made by presenting a solid oxide fuel cell having an electrolyte surface (15), mixing copper powder with solid oxide electrolyte in a mixing step (24, 44) to provide a spray feedstock (30,50) which is fed into a plasma jet (32, 52) of a plasma torch to melt the spray feed stock and propel it onto an electrolyte surface (34, 54) where the spray feed stock flattens into lamellae layer upon solidification, where the layer (38, 59) is an anode coating with greater than 35 vol. % based on solids volume.

  11. Anodic polymerization of vinyl ethylene carbonate in Li-Ion battery electrolyte

    SciTech Connect (OSTI)

    Chen, Guoying; Zhuang, Guorong V.; Richardson, Thomas J.; Gao, Liu; Ross Jr., Philip N.

    2005-02-28T23:59:59.000Z

    A study of the anodic oxidation of vinyl ethylene carbonate (VEC) was conducted with post-mortem analysis of reaction products by ATR-FTIR and gel permeation chromatography (GPC). The half-wave potential (E1/2) for oxidation of VEC is ca. 3.6 V producing a resistive film on the electrode surface. GPC analysis of the film on a gold electrode produced by anodization of a commercial Li-ion battery electrolyte containing 2 percent VEC at 4.1 V showed the presence of a high molecular weight polymer. IR analysis indicated polycarbonate with alkyl carbonate rings linked by aliphatic methylene and methyl branches.

  12. A Patterned 3D Silicon Anode Fabricated by Electrodeposition on a Virus-Structured Current Collector

    SciTech Connect (OSTI)

    Chen, X L; Gerasopoulos, K; Guo, J C; Brown, A; Wang, Chunsheng; Ghodssi, Reza; Culver, J N

    2011-01-01T23:59:59.000Z

    Electrochemical methods were developed for the deposition of nanosilicon onto a 3D virus-structured nickel current collector. This nickel current collector is composed of self-assembled nanowire-like rods of genetically modified tobacco mosaic virus (TMV1cys), chemically coated in nickel to create a complex high surface area conductive substrate. The electrochemically depo­sited 3D silicon anodes demonstrate outstanding rate performance, cycling stability, and rate capability. Electrodeposition thus provides a unique means of fabricating silicon anode materials on complex substrates at low cost.

  13. Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial Suqin Ci a,c

    E-Print Network [OSTI]

    Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells Suqin Ci, Nanchang 330063, PR China b Department of Mechanical, University of Wisconsin--Milwaukee, 3200 North Cramer November 2011 Available online 20 November 2011 Keywords: Carbon nanotubes Nitrogen doping Anode Microbial

  14. Parameterization of GDL Liquid Water Front Propagation and Channel Accumulation for Anode Purge Scheduling in Fuel Cells

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Parameterization of GDL Liquid Water Front Propagation and Channel Accumulation for Anode Purge, and (2) accumulation and transport of liquid water in the Gas Diffusion Layer (GDL) originally presented experimentally iden- tified parameter to match the rate of liquid water accumulation in the anode channel

  15. Tin Anode for Sodium-Ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and Electrolyte Reservoir

    E-Print Network [OSTI]

    Li, Teng

    Tin Anode for Sodium-Ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and Electrolyte Information ABSTRACT: Sodium (Na)-ion batteries offer an attractive option for low cost grid scale storage due to the abundance of Na. Tin (Sn) is touted as a high capacity anode for Na-ion batteries with a high theoretical

  16. Effects of Nitrogen and Water Accumulation in the Dead-Ended-Anode Operation of PEM Fuel Cells

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    in the literature. Once properly calibrated, models can be used for fuel cell diagnostic and anode purge schedulingEffects of Nitrogen and Water Accumulation in the Dead-Ended-Anode Operation of PEM Fuel Cells S operation and associated hydrogen starvation on voltage measurements and fuel cell life are scarce

  17. p-Type semiconducting nickel oxide as an efficiency-enhancing anodal interfacial layer in bulk heterojunction solar cells

    DOE Patents [OSTI]

    Irwin, Michael D; Buchholz, Donald B; Marks, Tobin J; Chang, Robert P. H.

    2014-11-25T23:59:59.000Z

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode, a p-type semiconductor layer formed on the anode, and an active organic layer formed on the p-type semiconductor layer, where the active organic layer has an electron-donating organic material and an electron-accepting organic material.

  18. Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes

    E-Print Network [OSTI]

    Bioelectrochemical Microbial fuel cell Biofuels Separators a b s t r a c t The combined use of brush anodes and glass was 75 ± 1 W/m3 . Removing the separator decreased power by 8%. Adding a second cathode increased power into the anode chamber. The use of a cloth separator (J-cloth, JC) substan- tially improved power generation

  19. Simply AlF3-treated Li4Ti5O12 composite anode materials for stable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simply AlF3-treated Li4Ti5O12 composite anode materials for stable and ultrahigh power lithium-ion batteries. Simply AlF3-treated Li4Ti5O12 composite anode materials for stable and...

  20. EURODISPLAY 2002 631 P-64: A Comparative Study of Metal Oxide Coated Indium-tin Oxide Anodes

    E-Print Network [OSTI]

    EURODISPLAY 2002 631 P-64: A Comparative Study of Metal Oxide Coated Indium-tin Oxide Anodes and Technology Clear Water Bay, Kowloon, Hong Kong Abstract Indium-tin oxide anodes capped with certain oxides-emitting diodes (OLEDs). The oxides of tin, zinc, praseodymium, yttrium, gallium, terbium and titanium have been

  1. Parasitic corrosion-resistant anode for use in metal/air or metal/O/sub 2/ cells

    DOE Patents [OSTI]

    Joy, R.W.; Smith, D.F.

    1982-09-20T23:59:59.000Z

    A consumable metal anode is described which is used in refuelable electrochemical cells and wherein at least a peripheral edge portion of the anode is protected against a corrosive alkaline environment of the cell by the application of a thin metal coating, the coating being formed of metals such as nickel, silver, and gold.

  2. Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries

    E-Print Network [OSTI]

    Marcinek, M.

    2008-01-01T23:59:59.000Z

    Meeting on Lithium Batteries, Biarritz, France, June 18–23,Thin-Film Anodes for Li-ion Batteries M. Marcinek, L. J.Sn/C anodes for lithium batteries. Thin layers of graphitic

  3. Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries

    E-Print Network [OSTI]

    Marcinek, M.

    2008-01-01T23:59:59.000Z

    Meeting on Lithium Batteries, Biarritz, France, June 18–23,Sn/C anodes for lithium batteries. Thin layers of graphiticKeywords: Sn/C; Lithium Batteries; Anode; Plasma; Microwave

  4. Pumped Storage Hydropower (Project Development Support)—Geotechnical Investigation and Value Stream Analysis for the Iowa Hill Pumped-Storage Development

    Broader source: Energy.gov [DOE]

    Pumped Storage Hydropower (Project Development Support)—Geotechnical Investigation and Value Stream Analysis for the Iowa Hill Pumped-Storage Development

  5. Deep Vadose Zone Field Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortal Decision Support forDeep Insights from Thin

  6. Pure Aluminum as the Anode in Top Emission OLED Xiao-Ming Yu, Hua-Jun Peng, Xiu-Ling Zhu, Jia-Xin Sun,

    E-Print Network [OSTI]

    Pure Aluminum as the Anode in Top Emission OLED Xiao-Ming Yu, Hua-Jun Peng, Xiu-Ling Zhu, Jia (TOLED) with pure aluminum metal layer as the bottom anode has been fabricated. The brightness as high as that of the TOLED with additional high work function silver deposited on aluminum as the anode

  7. Study of Reservoir Heterogencities and Structural Features Affecting Production in the Shallow Oil Zone, Eastern Elk Hills Area, California

    SciTech Connect (OSTI)

    Janice Gillespie

    2004-11-01T23:59:59.000Z

    Late Neogene (Plio-Pleistocene) shallow marine strata of the western Bakersfield Arch and Elk Hills produce hydrocarbons from several different reservoirs. This project focuses on the shallow marine deposits of the Gusher and Calitroleum reservoirs in the Lower Shallow Oil Zone (LSOZ). In the eastern part of the study area on the Bakersfield Arch at North and South Coles Levee field and in two wells in easternmost Elk Hills, the LSOZ reservoirs produce dry (predominantly methane) gas. In structurally higher locations in western Elk Hills, the LSOZ produces oil and associated gas. Gas analyses show that gas from the eastern LSOZ is bacterial and formed in place in the reservoirs, whereas gas associated with oil in the western part of the study area is thermogenic and migrated into the sands from deeper in the basin. Regional mapping shows that the gas-bearing LSOZ sands in the Coles Levee and easternmost Elk Hills area are sourced from the Sierra Nevada to the east whereas the oil-bearing sands in western Elk Hills appear to be sourced from the west. The eastern Elk Hills area occupied the basin depocenter, farthest from either source area. As a result, it collected mainly low-permeability offshore shale deposits. This sand-poor depocenter provides an effective barrier to the updip migration of gases from east to west. The role of small, listric normal faults as migration barriers is more ambiguous. Because our gas analyses show that the gas in the eastern LSOZ reservoirs is bacterial, it likely formed in-place near the reservoirs and did not have to migrate far. Therefore, the gas could have been generated after faulting and accumulated within the fault blocks as localized pools. However, bacterial gas is present in both the eastern AND western parts of Elk Hills in the Dry Gas Zone (DGZ) near the top of the stratigraphic section even though the measured fault displacement is greatest in this zone. Bacterial gas is not present in the west in the deeper LSOZ which has less measured fault displacement. The main difference between the DGZ and the LSOZ appears to be the presence of a sandpoor area in the LSOZ in eastern Elk Hills. The lack of permeable migration pathways in this area would not allow eastern bacterial gas to migrate farther updip into western Elk Hills. A similar sand-poor area does not appear to exist in the DGZ but future research may be necessary to verify this.

  8. Application of turbidite facies of the Stevens Oil Zone for reservoir management, Elk Hills Field, California

    SciTech Connect (OSTI)

    Reid, S.A.; Thompson, T.W. [Bechtel Petroleum Operations, Inc., Tupman, CA (United States); McJannet, G.S. [Dept. of Energy, Tupman, CA (United States)

    1996-12-31T23:59:59.000Z

    A detailed depositional model for the uppermost sand reservoirs of the Stevens Oil Zone, Elk Hills Field, California, contains three facies: turbidite channel-fill sand bodies, overbank Sandstone and mudstone, and pelagic and hemipelagic siliceous shale. Sand bodies are the primary producing facies and consist of layered, graded sandstone with good permeability. The presence of incipient anticlines with subsea relief in the late Miocene resulted in deposition of lenticular and sinuous sand Was within structurally created channels. Relief of these structural channels was low when the earliest sand bodies were deposited, leading to a wide channel complex bounded by broad overbank deposits of moderate to low permeability. As deposition proceeded, increased structural relief constrained the channels, resulting in narrower sand body width and relatively abrupt channel terminations against very low permeability siliceous shale. With post-Miocene uplift and differential compaction, stratigraphic mounding of sand bodies helped create structural domes such as the 24Z reservoir. Stratigraphic traps including the 26R reservoir were also created. Such traps vary in seal quality from very effective to leaky, depending on the lateral transition from sand bodies to siliceous shale. Application of the Elk Hills turbidity model (1) provides a framework for monitoring production performance in the 24Z and Northwest Stevens waterflood projects; and for tracking gas migration into and out of the 26R reservoir, (2) helps b identify undeveloped locations in the 26R reservoir ideally suited for horizontal wells, (3) has led to the identification of two new production trends in the 29R area, and (4) makes possible the development of exploration plays in western Elk Hills.

  9. Application of turbidite facies of the Stevens Oil Zone for reservoir management, Elk Hills Field, California

    SciTech Connect (OSTI)

    Reid, S.A.; Thompson, T.W. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); McJannet, G.S. (Dept. of Energy, Tupman, CA (United States))

    1996-01-01T23:59:59.000Z

    A detailed depositional model for the uppermost sand reservoirs of the Stevens Oil Zone, Elk Hills Field, California, contains three facies: turbidite channel-fill sand bodies, overbank Sandstone and mudstone, and pelagic and hemipelagic siliceous shale. Sand bodies are the primary producing facies and consist of layered, graded sandstone with good permeability. The presence of incipient anticlines with subsea relief in the late Miocene resulted in deposition of lenticular and sinuous sand Was within structurally created channels. Relief of these structural channels was low when the earliest sand bodies were deposited, leading to a wide channel complex bounded by broad overbank deposits of moderate to low permeability. As deposition proceeded, increased structural relief constrained the channels, resulting in narrower sand body width and relatively abrupt channel terminations against very low permeability siliceous shale. With post-Miocene uplift and differential compaction, stratigraphic mounding of sand bodies helped create structural domes such as the 24Z reservoir. Stratigraphic traps including the 26R reservoir were also created. Such traps vary in seal quality from very effective to leaky, depending on the lateral transition from sand bodies to siliceous shale. Application of the Elk Hills turbidity model (1) provides a framework for monitoring production performance in the 24Z and Northwest Stevens waterflood projects; and for tracking gas migration into and out of the 26R reservoir, (2) helps b identify undeveloped locations in the 26R reservoir ideally suited for horizontal wells, (3) has led to the identification of two new production trends in the 29R area, and (4) makes possible the development of exploration plays in western Elk Hills.

  10. Mystical design in Dorothy Richardson's Pilgramage: the case of Dimple Hill

    E-Print Network [OSTI]

    Sargent, Laura Jane

    1990-01-01T23:59:59.000Z

    meeting appears in Revolvin Li hts (III 324-29) . Here, she realizes that her witnessing of Quaker worship is a "deeply engraved memory, " more powerful "than any of the bright remembered things that had seemed so good as they came" (III 324). 40... transformation to follow. By the time Miriam reaches Dimple Hill, she has already traveled a great distance on the road to her "true identity. " When her journey begins, Miriam, at seventeen, has a keen, rapidly maturing intellect and a predisposition...

  11. When perception says "no" to action: Approach cues make steep hills appear even steeper

    E-Print Network [OSTI]

    Krpan, Dario; Schnall, Simone

    2014-07-21T23:59:59.000Z

    :morphology, phys- Journal of Experimental Social Psychology 55 (2014) 89–98 Contents lists available at ScienceDirect Journal of Experiment .eactions this environment affords (Proffitt, 2006;Witt, 2011). For exam- ple, a hill appears steeper when a heavy backpack... SD) Good (+1 SD) C lim b in g P ro p e n si ty Physical Condi#2;on Approach and Climb Approach and No Climb Approach Without Instruc#2;ons Fig. 6. Effects of experimental manipulation on climbing propensity for participants in poor (?1 SD) and good...

  12. Western Shallow Oil Zone, Elk Hills Field, Kern County, California: General Reservoir Study:

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01T23:59:59.000Z

    This study, Appendix I, addresses the Bittium Sands and its sub units and pools. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evanc, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoirs. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off point for exploitation engineers to develop specific programs toward the end. 21 figs., 9 tabs.

  13. Naval petroleum reserves: Sales procedures and prices received for Elk Hills oil

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    The Congress expressed concern about the Department of Energy's actions in selling oil from the Elk Hills Naval Petroleum Reserve at what appeared to be unreasonably low prices. DOE officials believe that Naval Petroleum Reserve oil has been and is currently being produced at the appropriate rate and that no recoverable oil has been lost. This fact sheet provides information on the basis for the procedures followed by DOE in selling Naval Petroleum Reserve oil and sales data for the period extending from October 1985 through April 1986.

  14. Precambrian geology of a portion of the Purdy Hill quadrangle, Mason County, Texas 

    E-Print Network [OSTI]

    Mutis-Duplat, Emilio

    1969-01-01T23:59:59.000Z

    ) (Head of Department) (Membe r) A ust 1969 ABS TRAC T Precambrian Geology of a Portion of the Purdy Hill Quadrangle, Mason County, Texas. (August 1969) Emilio Mutis-Duplat, Geologist and Geophysicist, Unive re idad Nacional de Colombia; Directed by...'s understanding of the geology of the area. Dr. Robert R. Berg, Head of the Department of Geology, who was a permanent source of encouragement. The members of the Awards Committee of the Department of Geology, for the award that provided financial support...

  15. Slip and Dilation Tendency Anlysis of McGinness Hills Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the McGinness Hills geothermal field was calculated based on the faults mapped McGinness Hills area (Siler 2012, unpublished). The McGinness Hills area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the McGinness area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. The McGinness Hills geothermal system is characterized by a left-step in a north-northeast striking west-dipping fault system wit...

  16. Consent Order, CH2M Hill Hanford Group, Inc. - EA-2000-09 | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment.AttachmentEnergy M Hill Hanford Group, Inc.

  17. Consent Order, Kaiser-Hill Company, LLC - EA 98-03 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment.AttachmentEnergy M Hill

  18. -Supporting information-Improving Startup Performance with Carbon Mesh Anodes in

    E-Print Network [OSTI]

    Sackett Building, University Park, PA 16802, USA b State Key Joint Laboratory of Environment Simulation Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China, with values between ca. +0.2 and 0 V (Fig. S1). When the reactors are operated with a set anode potential

  19. Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings

    E-Print Network [OSTI]

    Cui, Yi

    capacity lithium-ion battery anode material, improvements in cycling stability are required. Here we show become electrically isolated during volume changes. Rechargeable lithium-ion batteries have been identified as the most promising energy storage technology for portable electronics and electric vehicles.1

  20. Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery

    DOE Patents [OSTI]

    Neudecker, Bernd J. (Knoxville, TN); Bates, John B. (Oak Ridge, TN)

    2001-01-01T23:59:59.000Z

    Disclosed are silicon-tin oxynitride glassy compositions which are especially useful in the construction of anode material for thin-film electrochemical devices including rechargeable lithium-ion batteries, electrochromic mirrors, electrochromic windows, and actuators. Additional applications of silicon-tin oxynitride glassy compositions include optical fibers and optical waveguides.

  1. Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material

    E-Print Network [OSTI]

    Cho, Jaephil

    Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material­14 the use of metal and carbon composites,15­20 and the introduction of nano- sized metals,21­25 have been reported. Studies involving hollow lithium reactive metal, however, have yet to be reported, although

  2. Three steps in the anode reaction of the polymer electrolyte membrane fuel cell. Effect of CO

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Three steps in the anode reaction of the polymer electrolyte membrane fuel cell. Effect of CO Anne in the polymer electrolyte membrane fuel cell (PEMFC) using electrochemical impedance spectroscopy (EIS mechanism 1. Introduction In the polymer electrolyte membrane fuel cell (PEMFC), the largest overpotential

  3. MicroScale Modeling of an AnodeSupported Planar Solid Oxide Fuel Cell

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Micro­Scale Modeling of an Anode­Supported Planar Solid Oxide Fuel Cell P. Chinda1 , W. Wechsatol A micro ­ scale model of a Solid Oxide Fuel Cell (SOFC) involving the mass transfer together the available literatures. Keywords: Solid Oxide Fuel Cells, Micro ­ Scale Model, Mass Transfer, Electrochemical

  4. Altering Anode Thickness To Improve Power Production in Microbial Fuel Cells with Different Electrode Distances

    E-Print Network [OSTI]

    ,2 Several types of MFCs with different electrode arrangements have been developed, including two-chamber, single-chamber, flat-plate, and stacked electrode reactors.3-6 Of these, the single-chamber air cathode,17 as well as in other electrolytic cells for ion removal.18-20 One advantage of the carbon felt anode over

  5. Use of Carbon Mesh Anodes and the Effect of Different Pretreatment

    E-Print Network [OSTI]

    Use of Carbon Mesh Anodes and the Effect of Different Pretreatment Methods on Power Production, China, and Department of Civil and Environmental Engineering, Penn State University, 231Q Sackett electrode spacing improves power generation. Carbon cloth and carbon paper materials typically used

  6. Anode supported single chamber solid oxide fuel cells operating in exhaust gases of thermal engine

    E-Print Network [OSTI]

    Boyer, Edmond

    Anode supported single chamber solid oxide fuel cells operating in exhaust gases of thermal engine. Conventional solid oxide fuel cells are separated into two compartments containing each electrode split hydrocarbons, pollutant emissions reduction hal-01056363,version1-21Aug2014 #12;1. Introduction Solid oxide

  7. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes

    E-Print Network [OSTI]

    Cai, Long

    A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes Nian Liu1 lithium-ion batteries and in more recent Li­O2 and Li­S batteries as a replacement for the dendrite to the level of commercial lithium-ion batteries (3.7 mAh cm22 ). Particle fracture and loss of electrical

  8. Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life

    E-Print Network [OSTI]

    Zhou, Chongwu

    Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life Mingyuan Ge material in a lithium ion battery. Even after 250 cycles, the capacity remains stable above 2000, 1600 in energy storage has stimulated significant interest in lithium ion battery research. The lithium ion

  9. Nano-structured anode material for high-power battery system in electric vehicles.

    SciTech Connect (OSTI)

    Amine, K.; Belharouak, I.; Chen, Z.; Taison, T.; Yumoto, H.; Ota, N.; Myung, S.-T.; Sun, Y.-K. (Chemical Sciences and Engineering Division); (Enerdel Lithium Power Systems); (Iwate Univ.); (Hanyang Univ.)

    2010-07-27T23:59:59.000Z

    A new MSNP-LTO anode is developed to enable a high-power battery system that provides three times more power than any existing battery system. It shows excellent cycle life and low-temperature performance, and exhibits unmatched safety characteristics.

  10. ORIGINAL Open Access Immobilization of anode-attached microbes in a

    E-Print Network [OSTI]

    ORIGINAL Open Access Immobilization of anode-attached microbes in a microbial fuel cell Rachel C for exoelectrogenic activity on electrodes in BESs. Keywords: microbial fuel cell, microbial electrolysis cell. A single layer of airbrushed coating did not reduce the voltage produced by a biofilm in a microbial fuel

  11. Microbial Power-Generating Capabilities on Micro-/Nano-Structured Anodes in

    E-Print Network [OSTI]

    Cincinnati, University of

    Microbial fuel cells (MFCs) are an alternative electricity gen- erating technology and efficient method-/Nano-Structured Anode Materials, Microbial Fuel Cell 1 Introduction The last three decades have witnessed significant develop- ments and performance improvements in microbial fuel cell (MFC) technology [1]. These advances

  12. Impact of Initial Biofilm Growth on the Anode Impedance of Microbial Fuel Cells

    E-Print Network [OSTI]

    Mench, Matthew M.

    . Ramasamy,1 Zhiyong Ren,2 Matthew M. Mench,1 John M. Regan2 1 Fuel Cell Dynamics and Diagnostics LaboratoryARTICLE Impact of Initial Biofilm Growth on the Anode Impedance of Microbial Fuel Cells Ramaraja P: Electrochemical impedance spectroscopy (EIS) was used to study the behavior of a microbial fuel cell (MFC) during

  13. A Prototype RICH Detector Using Multi-Anode Photo Multiplier Tubes and Hybrid Photo-Diodes

    E-Print Network [OSTI]

    E. Albrecht; G. Barber; J. H. Bibby; N. H. Brook; G. Doucas; A. Duane; S. Easo; L. Eklund; M. French; V. Gibson; T. Gys; A. W. Halley; N. Harnew; M. John; D. Piedigrossi; J. Rademacker; B. Simmons; N. Smale; P. Teixeira-Dias; L. Toudup; D. Websdale; G. Wilkinson; S. A. Wotton; .

    2000-01-23T23:59:59.000Z

    The performance of a prototype Ring Imaging Cherenkov Detector is studied using a charged particle beam. The detector performance, using CF4 and air as radiators, is described. Cherenkov angle precision and photoelectron yield using hybrid photo-diodes and multi-anode PMTs agree with simulations and are assessed in terms of the requirements of the LHCb experiment.

  14. Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries

    E-Print Network [OSTI]

    Popov, Branko N.

    Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries of the composite. The composite material has been studied for specific discharge capacity, coulombic efficiency for the Li-ion battery. Of various carbon materials that have been tried, graphite is favored because it (i

  15. Carbon Corrosion in PEM Fuel Cell Dead-Ended Anode Jixin Chen,*,z

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Carbon Corrosion in PEM Fuel Cell Dead-Ended Anode Operations Jixin Chen,*,z Jason B. Siegel on the electrode carbon corrosion of the Proton Exchange Membrane (PEM) fuel cell. A reduced order isothermal model. This model explains, and can be used to quantify, the carbon corrosion behavior dur- ing DEA operation

  16. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures

    SciTech Connect (OSTI)

    Huang, Cheng; Xiao, Jie; Shao, Yuyan; Zheng, Jianming; Bennett, Wendy D.; Lu, Dongping; Saraf, Laxmikant V.; Engelhard, Mark H.; Ji, Liwen; Zhang, Jiguang; Li, Xiaolin; Graff, Gordon L.; Liu, Jun

    2014-01-09T23:59:59.000Z

    Lithium-sulfur (Li-S) batteries have recently attracted extensive attention due to the high theoretical energy density and potential low cost. Even so, significant challenges prevent widespread adoption, including continuous dissolution and consumption of active sulfur during cycling. Here we present a fundamentally new design using electrically connected graphite and lithium metal as a hybrid anode to control undesirable surface reactions on the anode. The lithiated graphite placed in front of the lithium metal functions as an artificial self-regulated solid electrolyte interface (SEI) layer to actively control the electrochemical reaction while minimizing the deleterious side reactions on the surface and bulk lithium metal. Continuous corrosion and contamination of lithium anode by dissolved polysulfides is largely mitigated. Excellent electrochemical performance has been observed. Li-S cell incorporating the hybrid design retain a capacity of more than 800 mAh g-1 for 400 cycles, corresponding to only 11% fade and a Coulombic efficiency above 99%. This simple hybrid concept may also provide new lessons for protecting metal anodes in other energy storage devices.

  17. Band gap structure modification of amorphous anodic Al oxide film by Ti-alloying

    SciTech Connect (OSTI)

    Canulescu, S., E-mail: stec@fotonik.dtu.dk; Schou, J. [Department of Photonics Engineering, Technical University of Denmark, 4000 Roskilde (Denmark); Rechendorff, K.; Pleth Nielsen, L. [Danish Technological Institute, Kongsvang Alle 29, 8000 Aarhus (Denmark); Borca, C. N. [Paul Scherrer Institute, 5232 Villigen (Switzerland); Jones, N. C.; Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus (Denmark); Bordo, K.; Ambat, R. [Department of Mechanical Engineering, Technical University of Denmark, 2800 Kongens Lyngby (Denmark)

    2014-03-24T23:59:59.000Z

    The band structure of pure and Ti-alloyed anodic aluminum oxide has been examined as a function of Ti concentration varying from 2 to 20 at.?%. The band gap energy of Ti-alloyed anodic Al oxide decreases with increasing Ti concentration. X-ray absorption spectroscopy reveals that Ti atoms are not located in a TiO{sub 2} unit in the oxide layer, but rather in a mixed Ti-Al oxide layer. The optical band gap energy of the anodic oxide layers was determined by vacuum ultraviolet spectroscopy in the energy range from 4.1 to 9.2?eV (300–135?nm). The results indicate that amorphous anodic Al{sub 2}O{sub 3} has a direct band gap of 7.3?eV, which is about ?1.4?eV lower than its crystalline counterpart (single-crystal Al{sub 2}O{sub 3}). Upon Ti-alloying, extra bands appear within the band gap of amorphous Al{sub 2}O{sub 3}, mainly caused by Ti 3d orbitals localized at the Ti site.

  18. Evolution of microstructures inside the Ni-YSZ anode of a solid oxide fuel cell

    E-Print Network [OSTI]

    Petta, Jason

    Evolution of microstructures inside the Ni-YSZ anode of a solid oxide fuel cell Jeff Lillibridge Department of Mechanical & Aerospace Engineering Advisor: Mikko Haataja #12;What is a solid oxide fuel cell microstructuralcoarsening processes to electrochemical performancein solid oxide fuel cells: An integrated modeling approach

  19. Phase transformations and microstructural design of lithiated metal anodes for lithium-ion rechargeable batteries

    E-Print Network [OSTI]

    Limthongkul, Pimpa, 1975-

    2002-01-01T23:59:59.000Z

    There has been great recent interest in lithium storage at the anode of Li-ion rechargeable battery by alloying with metals such as Al, Sn, and Sb, or metalloids such as Si, as an alternative to the intercalation of graphite. ...

  20. Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Rogers, John A.

    Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries Taeseup Song, Jianliang Xia ABSTRACT Silicon is a promising candidate for electrodes in lithium ion batteries due to its large reversible capacity and long-term cycle stability. KEYWORDS Lithium ion battery, silicon, nanotubes