Powered by Deep Web Technologies
Note: This page contains sample records for the topic "highly insulating window" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Highly Insulating Window Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Technology Window Technology Temperature differentials across a window, particularly with cold exterior environments in residential buildings, can lead to significant energy losses. Currently available low-emissivity coatings, gas-fills, and insulating frames provide significant energy savings over typical single or double glazed products. The EWC website provides information on how double glazed low-e gas-filled windows work as well as information on commercially available superwindows (three layer, multiple low-e coatings, high performance gas-fills). The next generation of highly insulating window systems will benefit from incremental improvements being made to current components (i.e. more insulating spacers and frame materials/designs, low-e coatings with improved performance properties). LBNL uses its experimental facilities and software tools to collaborate with window and glass industry representatives to better understand the impacts of new components on overall product performance.

2

Highly Insulating Windows - Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Cost The following is an estimate of the cost effective incremental cost of highly-insulating windows (U-factor=0.20 Btu/hr-ft2-F) compared to regular ENERGY STAR windows (U-factor 0.35 Btu/hr-ft2-F). Energy savings from lower U-factors were simulated with RESFEN over an assumed useful window life of 25 years. To determine the maximum incremental cost at which highly-insulating windows would still be cost-effective, we used a formula used by many utility companies to calculate the cost of saved energy from energy efficiency programs, based on the programs' cost and savings. We turned this formula around so that the cost of saved energy equals the present energy prices in the studied locations, whereas the program cost (the incremental cost of the windows) is the dependent variable. By entering 5%

3

Highly Insulating Windows - Publ  

NLE Websites -- All DOE Office Websites (Extended Search)

Highly Insulating Windows - Publications Future Advanced Windows for Zero-Energy Homes, J. Apte, D. Arasteh, J. Huang, 2003 ASHRAE Annual Meeting, 2002 Nine representative window products are examined in eight representative U.S. climates. Annual energy and peak demand impacts are investigated. We conclude that a new generation of window products is necessary for zero-energy homes if windows are not to be an energy drain on these homes. Performance Criteria for Residential Zero Energy Windows, D. Arasteh, H. Goudey, J. Huang, C. Kohler, R. Mitchell, 2006, submitted to ASHRAE Through the use of whole house energy modeling, typical efficient products are evaluated in five US climates and compared against the requirements for ZEHs. Products which meet these needs are defined as a function of climate.

4

Highly Insulating Windows - Fram  

NLE Websites -- All DOE Office Websites (Extended Search)

Frames Frames Research performed at the Norwegian University of Science and Technology and LBNL has identified various highly insulating frame solutions. A report was released in 2007 describing some of these frames. This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m2K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC.

5

Prospects for highly insulating window systems  

SciTech Connect

Windows and other fenestration systems are often considered the weakest links in energy-efficient residences. This opinion is reinforced by building standards, audit guidelines, and standard window performance evaluation techniques geared toward sizing building HVAC equipment. In this paper we show that it should be possible to design highly insulating windows (U < 0.12 Btu/hr-ft/sup 2/-F) with high solar transmittances (SC > 0.6). If we then view annual window performance from the basic perspective of control of energy flows, we conclude that it should thus be possible to develop a new generation of ''super window'' that will outperform the best insulated wall or roof for any orientation even in a northern climate. We review several technical approaches that suggest how such a window system might be designed and built. These include multiglazed windows having one or more low-emittance coatings and gas-filled or evacuated cavities. Another approach uses a layer of transparent silica aerogel, a microporus material having a conductivity in air of about R7 per inch. We conclude by presenting data on annual energy performance in a cold climate for a range of ''super windows''. 8 refs., 6 figs.

Arasteh, D.; Selkowitz, S.

1985-04-01T23:59:59.000Z

6

Window insulation  

SciTech Connect

Insulating apparatus consisting of a plurality of low thermal conductivity panels slidably carried in a conventional window frame is described. 13 claims.

Saucier, E.

1980-01-01T23:59:59.000Z

7

Highly Insulating Windows Volume Purchase Program Final Report  

SciTech Connect

This report summarizes the Highly Insulating Windows Volume Purchase Program, conduced by PNNL for DOE-BTP, including a summary of outcomes and lessons learned.

Parker, Graham B.; Mapes, Terry S.; Zalis, WJ

2013-02-01T23:59:59.000Z

8

Window insulator  

SciTech Connect

An insulator for mounting to a window. A pair of plastic layers including a plurality of partitions positioned therebetween form air pockets between the layers. A plurality of suction cups and suction grooves arranged in rows on one outer surface of the sheet removably secure the sheet to a window. The sheet includes a circumferentially extending recessed portion receiving the window frame.

Nesbitt, W. A.

1985-10-01T23:59:59.000Z

9

State-of-the-Art Highly Insulating Window Frames - Research and Market  

NLE Websites -- All DOE Office Websites (Extended Search)

State-of-the-Art Highly Insulating Window Frames - Research and Market State-of-the-Art Highly Insulating Window Frames - Research and Market Review Title State-of-the-Art Highly Insulating Window Frames - Research and Market Review Publication Type Report LBNL Report Number LBNL-1133E Year of Publication 2007 Authors Gustavsen, Arlid, Bjørn Petter Jelle, Dariush K. Arasteh, and Christian Kohler Call Number LBNL-1133E Abstract This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m2K), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC.

10

Side-by-Side Field Evaluation of Highly Insulating Windows in the PNNL Lab Homes  

SciTech Connect

To examine the energy, air leakage, and thermal performance of highly insulating windows, a field evaluation was undertaken in a matched pair of all-electric, factory-built “Lab Homes” located on the Pacific Northwest National Laboratory (PNNL) campus in Richland, Washington. The “baseline” Lab Home B was retrofitted with “standard” double-pane clear aluminum-frame slider windows and patio doors, while the “experimental” Lab Home A was retrofitted with Jeld-Wen® triple-pane vinyl-frame slider windows and patio doors with a U-factor of 0.2 and solar heat gain coefficient of 0.19. To assess the window, the building shell air leakage, energy use, and interior temperatures of each home were compared during the 2012 winter heating and summer cooling seasons. The measured energy savings in Lab Home B averaged 5,821 watt-hours per day (Wh/day) during the heating season and 6,518 Wh/day during the cooling season. The overall whole-house energy savings of Lab Home B compared to Lab Home A are 11.6% ± 1.53% for the heating season and 18.4 ± 2.06% for the cooling season for identical occupancy conditions with no window coverings deployed. Extrapolating these energy savings numbers based on typical average heating degree days and cooling degree days per year yields an estimated annual energy savings of 12.2%, or 1,784 kWh/yr. The data suggest that highly insulating windows are an effective energy-saving measure that should be considered for high-performance new homes and in existing retrofits. However, the cost effectiveness of the measure, as determined by the simple payback period, suggests that highly insulating window costs continue to make windows difficult to justify on a cost basis alone. Additional reductions in costs via improvements in manufacturing and/or market penetration that continue to drive down costs will make highly insulating windows much more viable as a cost-effective energy efficiency measure. This study also illustrates that highly insulating windows have important impacts on peak load, occupant comfort, and condensation potential, which are not captured in the energy savings calculation. More consistent and uniform interior temperature distributions suggest that highly insulated windows, as part of a high performance building envelope, may enable more centralized duct design and downsized HVAC systems. Shorter, more centralized duct systems and smaller HVAC systems to yield additional cost savings, making highly insulating windows more cost effective as part of a package of new construction or retrofit measures which achieve significant reductions in home energy use.

Widder, Sarah H.; Parker, Graham B.; Baechler, Michael C.; Bauman, Nathan N.

2012-08-01T23:59:59.000Z

11

Detailed thermal performance data on conventional and highly insulating window systems  

SciTech Connect

Data on window heat-transfer properties (U-value and shading coefficient (SC)) are usually presented only for a few window designs at specific environmental conditions. With the introduction of many new window glazing configurations (using low-emissivity coatings and gas fills) and the interest in their annual energy performance, it is important to understand the effects of window design parameters and environmental conditions on U and SC. This paper discusses the effects of outdoor temperature, wind speed, insolation, surface emittance, and gap width on the thermal performance of both conventional and highly insulating windows. Some of these data have been incorporated into the fenestration chapter of the ''ASHRAE Handbook - 1985 Fundamentals.'' The heat-transfer properties of multiglazed insulating window designs are also presented. These window systems include those having (1) one or more low-emittance coatings; (2) low-conductivity gas-fill or evacuated cavities; (3) a layer of transparent silica aerogel, a highly insulating microporous material; or (4) combinations of the above. Using the detailed building energy analysis program, DOE 2.1B, we show that these systems, which all maintain high solar transmittance, can add more useful thermal energy to a space than they lose, even in a northern climate. Thus, in terms of seasonal energy flows, these fenestration systems out-perform insulated walls or roofs.

Arasteh, D.; Selkowitz, S.; Hartmann, J.

1986-01-01T23:59:59.000Z

12

Field Evaluation of Highly Insulating Windows in the Lab Homes: Winter Experiment  

SciTech Connect

This field evaluation of highly insulating windows was undertaken in a matched pair of 'Lab Homes' located on the Pacific Northwest National Laboratory (PNNL) campus during the 2012 winter heating season. Improving the insulation and solar heat gain characteristics of a home's windows has the potential to significantly improve the home's building envelope and overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high quality installation and/or window retrofit will also minimize or reduce air leakage through the window cavity and thus also contribute to reduced heat loss in the winter and cooling loss in the summer. These improvements all contribute to decreasing overall annual home energy use. Occupant comfort (non-quantifiable) can also be increased by minimizing or eliminating the cold 'draft' (temperature) many residents experience at or near window surfaces that are at a noticeably lower temperature than the room air temperature. Lastly, although not measured in this experiment, highly insulating windows (triple-pane in this experiment) also have the potential to significantly reduce the noise transmittance through windows compared to standard double-pane windows. The metered data taken in the Lab Homes and data analysis presented here represent 70 days of data taken during the 2012 heating season. As such, the savings from highly insulating windows in the experimental home (Lab Home B) compared to the standard double-pane clear glass windows in the baseline home (Lab Home A) are only a portion of the energy savings expected from a year-long experiment that would include a cooling season. The cooling season experiment will take place in the homes in the summer of 2012, and results of that experiment will be reported in a subsequent report available to all stakeholders.

Parker, Graham B.; Widder, Sarah H.; Bauman, Nathan N.

2012-06-01T23:59:59.000Z

13

Insulating window system  

SciTech Connect

An insulating window system is described for use with existing structural windows which consists of: a window track, the track secured to and outlining the structural windows and includes a jaw means, the jaw means includes a pair of spaced jaws, the jaws extending outward from the track and being concaved towards each other forming a semi-oval channel; a glazing frame means having a base member and a pane holder, the base member having two outwardly extending spaced arms, the arms being concaved towards each other forming a semi-oval channel and engaging the jaws when passed there against, for locking the window track and glazing frame means together; the pane holder extending from the glazing frame means and includes an end section and a face section, the face section overlaying the base member with the end section extending therebetween, all forming a glazing channel for securing a glazing pane.

Miller, W.

1986-04-15T23:59:59.000Z

14

State-of-the-Art Highly Insulating Window Frames - Research and Market Review  

DOE Green Energy (OSTI)

This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m{sup 2}K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC. The frame research review also shows examples of window frames developed in order to increase the energy efficiency of the frames and the glazings which the frames are to be used together with. The authors find that two main tracks are used in searching for better solutions. The first one is to minimize the heat losses through the frame itself. The result is that conductive materials are replaced by highly thermal insulating materials and air cavities. The other option is to reduce the window frame area to a minimum, which is done by focusing on the net energy gain by the entire window (frame, spacer and glazing). Literature shows that a window with a higher U-value may give a net energy gain to a building that is higher than a window with a smaller U-value. The net energy gain is calculated by subtracting the transmission losses through the window from the solar energy passing through the windows. The net energy gain depends on frame versus glazing area, solar factor, solar irradiance, calculation period and U-value. The frame research review also discusses heat transfer modeling issues related to window frames. Thermal performance increasing measures, surface modeling, and frame cavity modeling are among the topics discussed. The review shows that the current knowledge gives the basis for improving the calculation procedures in the calculation standards. At the same time it is room for improvement within some areas, e.g. to fully understand the natural convection effects inside irregular vertical frame cavities (jambs) and ventilated frame cavities.

Gustavsen, Arild; Jelle, Bjorn Petter; Arasteh, Dariush; Kohler, Christian

2007-01-01T23:59:59.000Z

15

Key Elements of and Materials Performance Targets for Highly Insulating Window Frames  

DOE Green Energy (OSTI)

The thermal performance of windows is important for energy efficient buildings. Windows typically account for about 30-50 percent of the transmission losses though the building envelope, even if their area fraction of the envelope is far less. The reason for this can be found by comparing the thermal transmittance (U-factor) of windows to the U-factor of their opaque counterparts (wall, roof and floor constructions). In well insulated buildings the U-factor of walls, roofs an floors can be between 0.1-0.2 W/(m2K). The best windows have U-values of about 0.7-1.0. It is therefore obvious that the U-factor of windows needs to be reduced, even though looking at the whole energy balance for windows (i.e. solar gains minus transmission losses) makes the picture more complex.In high performance windows the frame design and material use is of utmost importance, as the frame performance is usually the limiting factor for reducing the total window U-factor further. This paper describes simulation studies analyzing the effects on frame and edge-of-glass U-factors of different surface emissivities as well as frame material and spacer conductivities. The goal of this work is to define materials research targets for window frame components that will result in better frame thermal performance than is exhibited by the best products available on the market today.

Gustavsen, Arild; Grynning, Steinar; Arasteh, Dariush; Jelle, Bjorn Petter; Goudey, Howdy

2011-03-28T23:59:59.000Z

16

Thermal insulation of window glass  

SciTech Connect

The thermal insulation of window glass can be increased by a factor of two using spray-on semiconductive SnO/sub 2/: Sb or IN/sub 2/O/sub 3/: Sn coatings. (auth)

Sievers, A.J.

1973-11-01T23:59:59.000Z

17

Thermally insulated windows and doors  

SciTech Connect

Complete thermal insulation of metal rails and stiles in vertically or horizontally sliding or rolling windows or doors is provided by including in the frame thereof centered rigid plastic shapes which extend between panels of the windows or doors. All rails and stiles of each panel are thereby exposed only to either interior or exterior ambient temperatures.

Schmidt, D.F.

1979-05-01T23:59:59.000Z

18

THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS  

E-Print Network (OSTI)

PERFORMANCE VALUES FOR SEVERAL WINDOW DESIGNS XBL 796-10098IN MINNEAPOLIS AS A FUNCTION OF WINDOW AREA AND GLAZING/Thermal Performance of Insulating Window Systems Stephen E.

Selkowitz, Stephen E.

2011-01-01T23:59:59.000Z

19

Vacuum Glazing; A Thermally Insulating Window Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacuum Glazing; A Thermally Insulating Window Technology Vacuum Glazing; A Thermally Insulating Window Technology Speaker(s): Cenk Kocer Date: May 31, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Sunnie Lim The vacuum glazing consists of two panes of glass separated by a sub-millimetre vacuum gap. Under the action of atmospheric pressure the separation of the panes is maintained by an array of high strength spacers in the gap. The glass panes are hermetically sealed at the edge using a low melting point glass frit (solder glass). Since 1913 many have worked on a practical implementation of such a flat insulating glass structure, with success finally being reported in 1989 by Collins et al. at the University of Sydney. The purpose of this talk is to present a brief history of the vacuum glazing research at the University of Sydney, and outline in detail

20

State-of-the-Art Highly Insulating Window Frames - Research and Market Review  

E-Print Network (OSTI)

and spacer effects on window U-value. ASHRAE Transactions,Residential Zero Energy Windows, ASHRAE Transactions, Vol.for low-conductivity window frames, Solar Energy Materials

Gustavsen, Arild

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "highly insulating window" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Key Elements of and Materials Performance Targets for Highly Insulating Window Frames  

E-Print Network (OSTI)

D. Curcija. 2006. THERM 5.2 / WINDOW 5.2, NFRC SimulationSashlite 2011. The Shashlite window website http://2010. Development of a slim window frame made of glass fibre

Gustavsen, Arild

2012-01-01T23:59:59.000Z

22

Highly Insulating Windows with a U-value less than 0.6 W/m2K  

Science Conference Proceedings (OSTI)

U.S. households rely primarily on three sources of energy: natural gas, electricity, and fuel oil. In the past several decades, electricity consumption by households has grown dramatically, and a significant portion of electricity used in homes is for lighting. Lighting includes both indoor and outdoor lighting and is found in virtually every household in the United States. In 2001, according to the US Energy Information Administration, lighting accounted for 101 billion kWh (8.8 percent) of U.S. household electricity use. Incandescent lamps, which are commonly found in households, are highly inefficient sources of light because about 90 percent of the energy used is lost as heat. For that reason, lighting has been one focus area to increase the efficiency of household electricity consumption. Windows have several functions, and one of the main functions is to provide a view to the outside. Daylighting is another one of windows main functions and determines the distribution of daylight to a space. Daylighting windows do not need to be transparent, and a translucent daylighting window is sufficient, and often desired, to diffuse the light and make the space more environmentally pleasing. In homes, skylights are one source of daylighting, but skylights are not very energy efficient and are inseparably linked to solar heat gain. In some climates, added solar heat gains from daylighting may be welcome; but in other climates, heat gain must be controlled. More energy efficient skylights and daylighting solutions, in general, are desired and can be designed by insulating them with aerogels. Aerogels are a highly insulating and transparent material in its pure form. The overall objective for this project was to prepare an economical, translucent, fiber-reinforced aerogel insulation material for daylighting applications that is durable for manufacturing purposes. This advanced insulation material will increase the thermal performance of daylighting windows, while satisfying constraints such as durability, cost, user acceptance, size limits, and environmental safety concerns. The energy efficient daylighting window will consist of a translucent and resilient aerogel panel sandwiched between glass panes in double glazed windows. Compared to the best windows available today, the double glazed translucent windows with 1/2-inch aerogel inserts will have a U-value of 1.2 W/m{sup 2} K (0.211 BTU/ft{sup 2} h F) without any coating or low conductivity fill gases. These windows will be more effective than the windows with an Energy Star rating of U-2 W/m{sup 2} K and could be made even more efficient by using low-e coated glass glazings and inert gas fills. This report summarizes the work accomplished on Cooperative Agreement DE-FC26-03NT41950. During this project, Aspen Aerogels made transparent and translucent aerogels from TMOS and TEOS. We characterized the transparency of the aerogels, reinforced the transparent aerogels with fibers and prepared large translucent aerogel panels and blankets. We also conducted an initial market study for energy efficient translucent windows. A lab-scale process was developed that could be scaled-up to manufacture blankets of these translucent aerogels. The large blankets prepared were used to fabricate prototype translucent windows and skylights. The primary goal of this project was to develop transparent, resilient, hydrophobic silica aerogels that have low thermal conductivities (R-10/inch) to be used to produce aerogel insulated double-glazing windows with a U value of 0.6 W/m{sup 2}K. To meet this objective we developed a process and equipment to produce blankets of translucent, hydrophobic aerogel. We focused on silica, organically-modified silica aerogels (Ormosils), and fiber reinforced silica aerogels due to the appreciable expertise in silica sol-gel processing available with the personnel at Aspen Aerogels, and also due to the quantity of knowledge available in the scientific literature. The project was conducted in three budget periods, herein called BP1, BP2 and BP3.

Wendell Rhine; Ying Tang; Wenting Dong; Roxana Trifu; Reduane Begag

2008-11-30T23:59:59.000Z

23

Highly Insulating Windows for Improved Energy Efficiency and Reliability in Fenestration Applications  

Science Conference Proceedings (OSTI)

EverSealed Windows, Inc. (ESW) agreed in early 2006, prior to the contract award, to add three additional deliverables to the Project (new Milestones 30, 31 and 32), and have the results of these three deliverables form the basis of the go/no-go decision for proceeding from BP1 to BP2. ESW completed all three milestones and the DOE agreed in November 2006 to continue the Project. ESW subsequently initiated work on BP2 and its two milestones. These were to (1) Assemble and test glass-to-metal bonded coupons to test the strength of ESW's glass-to-metal bonds (ESW's Test Vehicle 1 or TV1), and (2) to assemble and test the hermeticity of glass and metal packages (ESW's Test Vehicle 2 or TV2). ESW completed both milestones of BP2 in late 2010, demonstrating that its bonds were both strong enough and hermetic enough that vacuum insulating glass units could be assembled and survive a 40+ year service life in any climate in North America. Based on the accomplishments in BP-1, the DOE held a go/no-go meeting in Washington, DC in mid-November 2006 and moved the Project into Budget Period 2 (BP-2). During this go/no-go meeting, the DOE expressed a concern that ESW did not have a back-up plan or process should ESW be unable to make its diffusion bonding process more than adequate for the necessary bond strength and hermeticity of the seal. ESW suggested and volunteered to investigate using a glass frit (i.e., solder glass) as a back-up to its diffusion bonding of glass to oxidized metal.

Stark, David

2010-11-30T23:59:59.000Z

24

Contoured insulation window for evacuated solar collector  

SciTech Connect

An insulating contoured window is provided for use with an enclosed chamber such as an evacuated flat plate solar heat collector with the contoured solar window being of minimum thickness and supported solely about its peripheral edge portions. The window is contoured in both its longitudinal and transverse directions, such that in its longitudinal direction the window is composed of a plurality of sinusoidal corrugations whereas in its transverse direction the peaks of such corrugations are contoured in the form of paraboloids so that the structure may withstand the forces generated thereon by the atmosphere.

Coppola, F. T.; Lentz, W. P.; Vandewoestine, R. V.

1980-02-05T23:59:59.000Z

25

Apparatus for insulating windows and the like  

DOE Patents (OSTI)

Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in "kit" form.

Mitchell, Robert A. (R.D. #1, Box 462-A, Voorheesville, NY 12186)

1984-01-01T23:59:59.000Z

26

Apparatus for insulating windows and the like  

DOE Patents (OSTI)

Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in kit'' form. 11 figs.

Mitchell, R.A.

1984-06-19T23:59:59.000Z

27

Laser sealed vacuum insulation window  

SciTech Connect

A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the glass panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1987-01-01T23:59:59.000Z

28

Laser sealed vacuum insulating window  

DOE Patents (OSTI)

A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the galss panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

Benson, D.K.; Tracy, C.E.

1985-08-19T23:59:59.000Z

29

Window insulation: how to sort through the options  

SciTech Connect

Options available for residential settings are discussed, including: how to identify window insulating devices that can save a significant amount of energy, including a discussion of components and types; how operating window insulating devices compares with using conventional, non-insulating window coverings; how to choose a product that can serve all the functions traditionally required of window coverings; how to avoid problems with do-it-yourself projects; and how to estimate costs and savings with window insulation. In addition, this publication provides information on window choices for new construction, and an overview of current research in window insulation. The appendices provide summaries of selected grant projects, and a reading list is presented for those who want more information on window insulation.

Miller, B.A.

1984-03-01T23:59:59.000Z

30

High Performance Window Attachments  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Performance Window High Performance Window Attachments D. Charlie Curcija Lawrence Berkeley National Laboratory dccurcija@lbl.gov 510-495-2602 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Impact of Project: * Motivate manufacturers to make improvements in Window systems U-Factors, SHGC and daylighting utilization * Increase awareness of benefits from energy efficient window attachments Problem Statement: * A wide range of residential window attachments are available, but they have widely unknown

31

Gas-Filled Panels, High Performance Insulation  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-Filled Panels high performance insulation Windows & Daylighting | Building Technologies | Environmental Energy Technologies Division | Berkeley Lab gfp4b.jpg (5624 bytes)...

32

Affordable Window Insulation with R-10/inch Rating  

Science Conference Proceedings (OSTI)

During the performance of contract DE-FC26-00-NT40998, entitled ''Affordable Window Insulation with R-10/inch Value'', research was conducted at Aspen Aerogels, Inc. to develop new transparent aerogel materials suitable for window insulation applications. The project requirements were to develop a formulation or multiple formulations that have high transparency (85-90%) in the visible region, are hydrophobic (will not opacify with exposure to water vapor or liquid), and have at least 2% resiliency (interpreted as recoverable 2% strain and better than 5% strain to failure in compression). Results from an unrelated project showed that silica aerogels covalently bonded to organic polymers exhibit excellent mechanical properties. At the outset of this project, we believed that such a route is the best to improve mechanical properties. We have applied Design of Experiment (DOE) techniques to optimize formulations including both silica aerogels and organically modified silica aerogels (''Ormosils''). We used these DOE results to optimize formulations around the local/global optimization points. This report documents that we succeeded in developing a number of formulations that meet all of the stated criteria. We successfully developed formulations utilizing a two-step approach where the first step involves acid catalyzed hydrolysis and the second step involves base catalyzed condensation to make the gels. The gels were dried using supercritical CO{sub 2} and we were able to make 1 foot x 1 foot x 0.5 inch panels that met the criteria established.

Jenifer Marchesi Redouane Begag; Je Kyun Lee; Danny Ou; Jong Ho Sonn; George Gould; Wendell Rhine

2004-10-15T23:59:59.000Z

33

Insulating windows. (Latest citations from the US Patent Bibliographic file with exemplary claims). Published Search  

SciTech Connect

The bibliography contains citations of selected patents concerning window insulation systems. Double and multi-paned windows, insulating glass sealants, frames, insulation systems, and window construction techniques are discussed. Thermally efficient window shades, shutters, and blinds are also presented. (Contains a minimum of 55 citations and includes a subject term index and title list.)

1994-03-01T23:59:59.000Z

34

High Performance Windows Volume Purchase: The Windows Volume Purchase RFP  

NLE Websites -- All DOE Office Websites (Extended Search)

The Windows The Windows Volume Purchase RFP to someone by E-mail Share High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Facebook Tweet about High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Twitter Bookmark High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Google Bookmark High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Delicious Rank High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Digg Find More places to share High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on AddThis.com... Home About FAQs Low-E Storm Windows Request for Proposal Contacts For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers

35

Reflective insulating blinds for windows and the like  

DOE Patents (OSTI)

Energy-conserving window blinds are provided. The blinds are fabricated from coupled and adjustable slats, each slat having an insulation layer and a reflective surface to face outwardly when the blinds are closed. A range of desired light and air transmission may be selected with the reflective surfaces of the slats adapted to direct sunlight upward toward the ceiling when the blinds are open. When the blinds are closed, the insulation of the slats reduces the heat loss or gain produced by the windows. If desired, the reflective surfaces of the slats may be concave. The edges of the slats are designed to seal against adjacent slats when the blinds are closed to ensure minimum air flow between slats.

Barnes, P.R.; Shapira, H.B.

1979-12-07T23:59:59.000Z

36

Reflective insulating blinds for windows and the like  

DOE Patents (OSTI)

Energy-conserving window blinds are provided. The blinds are fabricated from coupled and adjustable slats, each slat having an insulation layer and a reflective surface to face outwardly when the blinds are closed. A range of desired light and air transmission may be selected with the reflective surfaces of the slats adapted to direct sunlight upward toward the ceiling when the blinds are open. When the blinds are closed, the insulation of the slats reduces the heat loss or gain produced by the windows. If desired, the reflective surfaces of the slats may be concave. The edges of the slats are designed to seal against adjacent slats when the blinds are closed to ensure minimum air flow between slats.

Barnes, Paul R. (Lenoir City, TN); Shapira, Hanna B. (Oak Ridge, TN)

1981-01-01T23:59:59.000Z

37

SINTEF Building and Infrastructure State-of-the-Art Highly Insulating  

E-Print Network (OSTI)

SINTEF Building and Infrastructure State-of-the-Art Highly Insulating Window Frames ­ Research-of-the-Art Highly Insulating Window Frames ­ Research and Market Review Project report 6 ­ 2007 SINTEF Building) and Christian Kohler4) State-of-the-Art Highly Insulating Window Frames ­ Research and Market Review Keywords

38

High Performance Windows Volume Purchase: Subscribe to Windows...  

NLE Websites -- All DOE Office Websites (Extended Search)

Subscribe to Windows Volume Purchase Event News and Updates to someone by E-mail Share High Performance Windows Volume Purchase: Subscribe to Windows Volume Purchase Event News and...

39

Building Technologies Office: High Performance Windows Volume Purchase  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Windows Volume Purchase High Performance Windows Volume Purchase DOE's Building Technologies Office (BTO) is coordinating a volume purchase of high performance windows, and low-e storm windows, to expand the market of these high efficiency products. Price is the principal barrier to more widespread market commercialization. The aim of this volume purchase initiative is to work with industry and potential buyers to make highly insulated windows more affordable. Announcement EPA Most Efficient Program for window technology to launched in January 2013. Program Highlights Features Image of person signing document. Volume Purchase RFP Arrow Image of a question mark. Frequently Asked Questions Arrow Image of low-e storm window with two orange-yellow arrows hitting the window and reflecting back inside. Building Envelope and Windows R&D Program Blog Arrow

40

High Performance Windows Volume Purchase: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Events to someone by E-mail Share High Performance Windows Volume Purchase: Events on Facebook Tweet about High Performance Windows Volume Purchase: Events on Twitter Bookmark High...

Note: This page contains sample records for the topic "highly insulating window" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

High Performance Windows Volume Purchase: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News to someone by E-mail Share High Performance Windows Volume Purchase: News on Facebook Tweet about High Performance Windows Volume Purchase: News on Twitter Bookmark High...

42

Thermal and solar-optical properties of silica aerogel for use in insulated windows  

SciTech Connect

Silica aerogel is a porous insulating material that is transport to solar radiation. To understand its insulating performance in a window system, it is necessary to first study component heat transfer paths. Aerogel's absorption coefficient, a measure of the attenuation of radiation heat transfer, was determined over the spectral range 1-200 ..mu..m. Although radiation heat transfer is negligible over much of this region, there is a transmission window between 3-6 ..mu..m. At ambient temperatures, for aerogel thicknesses of 0.5-5.0 cm, radiation heat transfer through an unmodified aerogel window is less than 15% of the total heat flux. For evacuated or high-temperature furnace windows, this contribution can be over 50%. Thermal radiative transfer can be somewhat decreased by allowing the aerogel to absorb moisture, but solar transmission and optical clarity are sacrificed. Absorption of water vapor over time causes irreversible structural changes that increase scattering in the solar spectrum. Aerogel's thermal performance can be improved by replacing the pore gas with one of lower conductivity or by evacuating the aerogel to pressure below 0.1 atm. A hypothetical evacuated aerogel window has a calcuated U-Value of approx. =0.5 W/m/sup 2/-K for a gap spacing of 12.5 mm, which is four times better than currently available low-emissivity gas-filled units of similar size. 8 refs., 9 figs.

Hartmann, J.; Rubin, M.; Arasteh, D.

1987-06-01T23:59:59.000Z

43

Community demonstration of insulated window coverings. Final report  

SciTech Connect

Work performed through the Community Demonstration of Insulated Window Coverings Department of Energy contract included installation of more than 750 square feet of window shades in public buildings throughout Summers County, West Virginia. Window quilts were constructed and placed in the three county senior citizens' centers, a fire department, the county courthouse, the county library, and one school. Energy savings payback from the use of these shades is expected to surpass the cost of the grant within the lifetime of the shades. Other results of the DOE-funded project have met the outlined purposes for which the undertaking was conducted. Community awareness of energy conservation was enhanced through workshops and favorable press coverage. Refinements in working mechanics of the shades and in quilting methods have been an outgrowth of the experimentation which took place. Most importantly, an on-going cottage industry has emerged and has legally incorporated as a producer's cooperative. Finally, the conception of combining traditional quilting skills with the need for energy conservation innovations is proving a natural marriage, as the West Virginia Department of Culture currently helps the co-op put finishing touches on the product. Installation of 17 large shades was slower than anticipated. Delays included unforeseen fire restrictions in assembly buildings, and the need for many design innovations. If it were not for supplemental labor provided through the Green Thumb Senior Employment Program, the budget could have never carried the task to completion. The greatest value of this project may lie beyond the 17 public building installations. The practical experience and design process resulting from the installations should lead to jobs paid for by selling the product that has evolved.

Averill, J.

1982-01-01T23:59:59.000Z

44

Building Technologies Office: High Performance Windows Volume...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Technologies Office: High Performance Windows Volume Purchase to someone by E-mail Share Building Technologies Office: High Performance Windows Volume Purchase on Facebook...

45

High Performance Windows Volume Purchase: For Builders  

NLE Websites -- All DOE Office Websites (Extended Search)

For Builders to someone by E-mail Share High Performance Windows Volume Purchase: For Builders on Facebook Tweet about High Performance Windows Volume Purchase: For Builders on...

46

High Performance Windows Volume Purchase: For Manufacturers  

NLE Websites -- All DOE Office Websites (Extended Search)

For Manufacturers to someone by E-mail Share High Performance Windows Volume Purchase: For Manufacturers on Facebook Tweet about High Performance Windows Volume Purchase: For...

47

Drafty Windows: Is it Better to Insulate or Replace Them? | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drafty Windows: Is it Better to Insulate or Replace Them? Drafty Windows: Is it Better to Insulate or Replace Them? Drafty Windows: Is it Better to Insulate or Replace Them? February 9, 2010 - 8:45am Addthis Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory I've lived in my condominium for several years, and though it naturally stays cooler in the summer (with all west-facing windows) I struggle to keep it warm in the winter without taking out a loan to pay utilities. Like any homeowner, I must answer the question: Is it better to try and insulate my existing window, or am I better off replacing it? Sometimes the answer is purely about upfront costs, but other times the inefficiency more than justifies the cost of replacement. There are several ways to make windows more efficient: The least expensive

48

High Performance Windows Volume Purchase: For Utilities  

NLE Websites -- All DOE Office Websites (Extended Search)

and mixed climates, R-5 windows on average reduce window heat loss by 40% and overall space conditioning costs by 10% relative to common ENERGY STAR windows. Promotion of high...

49

Key Elements of and Materials Performance Targets for Highly Insulating  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Elements of and Materials Performance Targets for Highly Insulating Key Elements of and Materials Performance Targets for Highly Insulating Window Frames Title Key Elements of and Materials Performance Targets for Highly Insulating Window Frames Publication Type Journal Article LBNL Report Number LBNL-5099E Year of Publication 2011 Authors Gustavsen, Arlid, Steinar Grynning, Dariush K. Arasteh, Bjørn Petter Jelle, and Howdy Goudey Journal Energy and Buildings Volume 43 Issue 10 Pagination 2583-2594 Date Published 10/2011 Keywords Fenestration, heat transfer modeling, thermal performance, thermal transmittance, u-factor, window frames Abstract The thermal performance of windows is important for energy efficient buildings. Windows typically account for about 30-50 percent of the transmission losses though the building envelope, even if their area fraction of the envelope is far less. The reason for this can be found by comparing the thermal transmittance (U-factor) of windows to the U-factor of their opaque counterparts (wall, roof and floor constructions). In well insulated buildings the U-factor of walls, roofs an floors can be between 0.1-0.2 W/(m2K). The best windows have U-values of about 0.7-1.0. It is therefore obvious that the U-factor of windows needs to be reduced, even though looking at the whole energy balance for windows (i.e. solar gains minus transmission losses) makes the picture more complex.

50

High voltage variable diameter insulator  

DOE Patents (OSTI)

A high voltage feedthrough assembly (10) having a tubular insulator (15) extending between the ground plane ring (16) and the high voltage ring (30). The insulator (15) is made of Pyrex and decreases in diameter from the ground plane ring (16) to the high voltage ring (30), producing equipotential lines almost perpendicular to the wall (27) of the insulator (15) to optimize the voltage-holding capability of the feedthrough assembly (10).

Vanecek, David L. (Martinez, CA); Pike, Chester D. (Pinole, CA)

1984-01-01T23:59:59.000Z

51

New and Underutilized Technology: High R-Value Windows | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High R-Value Windows High R-Value Windows New and Underutilized Technology: High R-Value Windows October 8, 2013 - 2:47pm Addthis The following information outlines key deployment considerations for high R-value windows within the Federal sector. Benefits High R-value windows are highly insulated windows rated at triple pane, R5 or greater (U value 0.22 and lower). Application High R-value windows are appropriate for deployment within most building categories. These windows should be considered in building design, renovation, or during window replacement projects. Key Factors for Deployment High R-value windows are available within the Federal sector and should be considered in building design, renovation, or during window replacement projects. The U.S. Department of Energy (DOE) has a volume purchasing program in

52

High Performance Windows Volume Purchase: About the High Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program to someone by E-mail Share High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Facebook Tweet about High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Twitter Bookmark High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Google Bookmark High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Delicious Rank High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Digg Find More places to share High Performance Windows Volume Purchase:

53

High Performance Windows Volume Purchase: Information Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Information Resources to someone by E-mail Share High Performance Windows Volume Purchase: Information Resources on Facebook Tweet about High Performance Windows Volume Purchase: Information Resources on Twitter Bookmark High Performance Windows Volume Purchase: Information Resources on Google Bookmark High Performance Windows Volume Purchase: Information Resources on Delicious Rank High Performance Windows Volume Purchase: Information Resources on Digg Find More places to share High Performance Windows Volume Purchase: Information Resources on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers For Utilities Information Resources Information Resources Numerous publications will be available to help educate buyers, product

54

A shade and a shutter - insulating window covers you can make  

SciTech Connect

Designs for an insulating shade for windows are presented. The Roman Shade II is an unpleated curtain constructed of a light colored liner, a polyester fiberfill layer, a vapor barrier, and an outer fabric. The curtain is attached at the top window molding and held against the frame by a clamp. Instructions for measurements, sewing, quilting, installing, and cleaning are provided.

1979-08-01T23:59:59.000Z

55

High Performance Windows Volume Purchase: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to Contacts to someone by E-mail Share High Performance Windows Volume Purchase: Contacts on Facebook Tweet about High Performance Windows Volume Purchase: Contacts on Twitter Bookmark High Performance Windows Volume Purchase: Contacts on Google Bookmark High Performance Windows Volume Purchase: Contacts on Delicious Rank High Performance Windows Volume Purchase: Contacts on Digg Find More places to share High Performance Windows Volume Purchase: Contacts on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers For Utilities Information Resources Contacts Web site and High Performance Windows Volume Purchase Program contacts are provided below. Website Contact Send us your comments, report problems, and/or ask questions about

56

Contaminated Outdoor High Voltage Insulators  

Science Conference Proceedings (OSTI)

The external insulation of power lines and outdoor substations is a weak point in transmission systems. The insulation is particularly susceptible to failure if proper attention has not been given to its design, condition monitoring, and maintenance. In regions with high contamination levels, regular maintenance and the application of palliative measures can be critical to ensure that the system meets its outage performance targets. This can involve pure maintenance measures such as cleaning the insulato...

2009-12-22T23:59:59.000Z

57

Comparison of residential window distributions and effects of mass and insulation  

DOE Green Energy (OSTI)

The energy requirements and comfort implications of various window distributions and window areas (representing conventional, sun-tempered, and passive solar designs) are investigated for single-family residences in Albuquerque, NM, Denver, CO, and Madison, WI. Three distinct mass levels ranging from lightweight to heavyweight interiors and three distinct insulation levels, including energy-conserving, night-insulated, and superinsulated cases, are analyzed. Energy requirements are reported for residences with electric resistance heating and mechanical air conditioning. Comfort conditions reported are based on interior average air temperatures and mean-squared errors.

Hannifan, M.; Christensen, C.; Perkins, R.

1981-07-01T23:59:59.000Z

58

High order Parzen windows and randomized sampling.  

E-Print Network (OSTI)

???In the thesis, high order Parzen windows are studied for understanding some algorithms in learning theory and randomized sampling in multivariate approximation. Our ideas are… (more)

Zhou, Xiangjun (???)

2009-01-01T23:59:59.000Z

59

NON-INTRUSIVE SENSOR FOR GAS FILL VERIFICATION OF INSULATED GLASS WINDOWS  

SciTech Connect

A sensor capable of measuring the amount of oxygen (an unwanted component that is only present because of improper filling or seal failure) within an argon-filled insulated glass window has been designed, built and successfully tested. It operates by using the optical absorption of oxygen in the atmospheric A-band centered at 762 nm. Light emitted by an argon-filled surface glow discharge lamp is Zeeman-tuned on and off an oxygen absorption line using an AC-modulated electromagnet. In the presence of oxygen, the change in the measured intensity of the lamp, obtained using standard demodulation techniques, is proportional to the oxygen column density. Measurements using an industry-standard insulated glass window indicate that the sensor can measure the amount of oxygen in a nominally argon-filled IG window (with a window gap of 10 mm) with a precision of 0.50% oxygen using a 16 second integration time. This level of precision is well within the limits required by the IG window manufacturing industry for proper monitoring of newly manufactured window units.

Andrew Freedman; Paul L. Kebabian; Richard R. Romano; James Woodroffe

2003-10-01T23:59:59.000Z

60

High temperature structural insulating material  

DOE Patents (OSTI)

A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

Chen, W.Y.

1984-07-27T23:59:59.000Z

Note: This page contains sample records for the topic "highly insulating window" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Zero Energy Windows  

E-Print Network (OSTI)

solar gains with highly insulating windows, which leads to windows with positive heating energy flows offsetting buildingheating energy needs, reject solar gain to reduce cooling loads, significantly mitigate a building’

Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

2006-01-01T23:59:59.000Z

62

High performance solar control office windows  

SciTech Connect

Investigations conducted over a 9 month period on the use of ion beam sputtering methods for the fabrication of solar control windows for energy conservation are described. Principal emphasis was placed on colored, reflecting, heat rejecting, office building windows for reducing air conditioning loads and to aid in the design of energy conserving buildings. The coating techniques were developed primarily for use with conventional absorbing plate glass such as PPG solarbronze, but were also demonstrated on plastic substrates for retrofit applications. Extensive material investigations were conducted to determine the optimum obtainable characteristics, with associated weathering studies as appropriate aimed at achieving a 20 year minimum life. Conservative estimates indicate that successful commercialization of the windows developed under this program would result in energy savings of 16,000,000 barrels of oil/year by 1990 if installation were only 10 percent of new commercial building stock. These estimates are relative to existing design for energy conserving windows. Installation in a greater percentage of new stock and for retrofit applications could lead to proportionately greater energy savings. All such installations are projected as cost effective as well as energy effective. A secondary program was carried out to modify the techniques to yield thermal control windows for residential applications. These windows were designed to provide a high heat retention capability without seriously affecting their transmission of incident solar radiation, thereby enhancing the greenhouse effect. This part of the program was successful in producing a window form which could be interchanged for standard residential window material in a cost and energy effective manner. The only variation from standard stock in appearance is a very light rose or neutral gray coloring.

King, W.J.

1977-12-01T23:59:59.000Z

63

Low heat transfer, high strength window materials  

DOE Patents (OSTI)

A multi-pane window with improved insulating qualities; comprising a plurality of transparent or translucent panes held in an essentially parallel, spaced-apart relationship by a frame. Between at least one pair of panes is a convection defeating means comprising an array of parallel slats or cells so designed as to prevent convection currents from developing in the space between the two panes. The convection defeating structures may have reflective surfaces so as to improve the collection and transmittance of the incident radiant energy. These same means may be used to control (increase or decrease) the transmittance of solar energy as well as to decouple the radiative transfer between the interior surfaces of the transparent panes.

Berlad, Abraham L. (Stony Brook, NY); Salzano, Francis J. (Patchogue, NY); Batey, John E. (Stony Brook, NY)

1978-01-01T23:59:59.000Z

64

High pressure electrical insulated feed thru connector  

DOE Patents (OSTI)

A feed-thru type hermetic electrical connector including at least one connector pin feeding through an insulator block within the metallic body of the connector shell. A compression stop arrangement coaxially disposed about the insulator body is brazed to the shell, and the shoulder on the insulator block bears against this top in a compression mode, the high pressure or internal connector being at the opposite end of the shell. Seals between the pin and an internal bore at the high pressure end of the insulator block and between the insulator block and the metallic shell at the high pressure end are hermetically brazed in place, the first of these also functioning to transfer the axial compressive load without permitting appreciable shear action between the pin and insulator block.

Oeschger, Joseph E. (Palo Alto, CA); Berkeland, James E. (San Jose, CA)

1979-11-13T23:59:59.000Z

65

window  

Science Conference Proceedings (OSTI)

NIST. window. (definition). ... 17 December 2004. (accessed TODAY) Available from: http://www.nist.gov/dads/HTML/window.html. to NIST home page.

2013-05-08T23:59:59.000Z

66

High Performance Solar Control Office Windows  

E-Print Network (OSTI)

Solar Control Office Windows William King December 1977 C'eSOLAR CONTROL OFFICE WINDOWS Wm. J. King KINETIC COATINGS,R. Berman. Consultation on window characteristics and aid in

King, William J.

2011-01-01T23:59:59.000Z

67

Ultra high vacuum broad band high power microwave window  

DOE Patents (OSTI)

An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

Nguyen-Tuong, Viet (Seaford, VA); Dylla, III, Henry Frederick (Yorktown, VA)

1997-01-01T23:59:59.000Z

68

Ultra high vacuum broad band high power microwave window  

DOE Patents (OSTI)

An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

Nguyen-Tuong, V.; Dylla, H.F. III

1997-11-04T23:59:59.000Z

69

Window  

NLE Websites -- All DOE Office Websites (Extended Search)

Window A window thermal analysis computer program that is the de facto standard used by U.S. manufacturers to characterize product performance. The program has been selected by the...

70

High Performance Windows Volume Purchase: NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

NewsDetail to someone by E-mail Share High Performance Windows Volume Purchase: NewsDetail on Facebook Tweet about High Performance Windows Volume Purchase: NewsDetail on Twitter...

71

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

solar gains with highly insulating windows, which leads to windows with positive heating energy flows offsetting buildingBuilding Heating Loads (Trillion BTU/yr) Year Made Number of Buildings (Thousands, 1993) U Factor SHGC Window Window SolarSolar Window Cond Window Infiltration Non-Window Infiltration Other Loads Total Loads Total Loads Window Properties Total Building Heating

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

72

Are You Ready Phase Two? Pricing Changes and Commercial Products Added to DOE High-Performance Windows Program  

Science Conference Proceedings (OSTI)

This article, for publication in Door and Window Manufacturer magazine, describes DOE's High Performance Windows Volume Purchase Program, WVPP, and how PNNL, which manages the program for DOE, is assisting DOE in the transition to the next phase (Phase II), which begins in May. While the foundation of the program will remain relatively unchanged, PNNL is employing several new strategies to continue the momentum built during the program's first full year of implementation. The program helps buyers and manufacturers to develop a market for highly insulating windows and low-E storm windows at affordable prices and thereby overcome the principal barrier of cost.

Mapes, Terry S.

2011-05-01T23:59:59.000Z

73

Issue 5: Optimizing High Levels of Insulation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issue 5: Optimizing High Levels of Insulation NREL, Ren Anderson Building America Technical Update Meeting July 25 th , 2012 Issue 5 - How Much Insulation is Too Much? How do we define the cost-effective limit for improvements in enclosure efficiency? Key Factors to Consider: -Cost of savings vs. cost of grid-supplied energy -Cost of efficiency savings vs. cost of savings from renewable generation. -Savings from envelope improvements vs. other efficiency options Context * It is widely believed that code-specified insulation levels also represent cost-effective limits. * However, the cost-effective insulation levels exceed IECC values in many climates. * The homeowner-driven value of modest increases in enclosure performance can create economies of scale that will reduce

74

High Performance Windows Volume Purchase: For Light Commercial Buyers  

NLE Websites -- All DOE Office Websites (Extended Search)

For Light For Light Commercial Buyers to someone by E-mail Share High Performance Windows Volume Purchase: For Light Commercial Buyers on Facebook Tweet about High Performance Windows Volume Purchase: For Light Commercial Buyers on Twitter Bookmark High Performance Windows Volume Purchase: For Light Commercial Buyers on Google Bookmark High Performance Windows Volume Purchase: For Light Commercial Buyers on Delicious Rank High Performance Windows Volume Purchase: For Light Commercial Buyers on Digg Find More places to share High Performance Windows Volume Purchase: For Light Commercial Buyers on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers For Utilities Information Resources For Light Commercial Buyers Significant energy savings from low-E window technology are possible in the

75

A high-power L-band RF window  

E-Print Network (OSTI)

June. 2001. [3] "700 MHz Window R&D at LBNL", R. Rimmer et.Testing of PEP-II RF Cavity Windows", M. Neubauer et. al. ,A HIGH-POWER L-BAND RF WINDOW* R.A. Rimmer † , G. Koehler,

2001-01-01T23:59:59.000Z

76

Gaseous insulators for high voltage electrical equipment  

DOE Patents (OSTI)

Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

Christophorou, Loucas G. (Oak Ridge, TN); James, David R. (Knoxville, TN); Pace, Marshall O. (Knoxville, TN); Pai, Robert Y. (Concord, TN)

1981-01-01T23:59:59.000Z

77

Gaseous insulators for high voltage electrical equipment  

DOE Patents (OSTI)

Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

Christophorou, Loucas G. (Oak Ridge, TN); James, David R. (Knoxville, TN); Pace, Marshall O. (Knoxville, TN); Pai, Robert Y. (Concord, TN)

1979-01-01T23:59:59.000Z

78

High Performance Windows Volume Purchase: Presentations for Past Events and  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations for Past Events and Webinars to someone by E-mail Share High Performance Windows Volume Purchase: Presentations for Past Events and Webinars on Facebook Tweet about High Performance Windows Volume Purchase: Presentations for Past Events and Webinars on Twitter Bookmark High Performance Windows Volume Purchase: Presentations for Past Events and Webinars on Google Bookmark High Performance Windows Volume Purchase: Presentations for Past Events and Webinars on Delicious Rank High Performance Windows Volume Purchase: Presentations for Past Events and Webinars on Digg Find More places to share High Performance Windows Volume Purchase: Presentations for Past Events and Webinars on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers

79

High Performance Windows Volume Purchase: For Residential Buyers  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buyers to someone by E-mail Residential Buyers to someone by E-mail Share High Performance Windows Volume Purchase: For Residential Buyers on Facebook Tweet about High Performance Windows Volume Purchase: For Residential Buyers on Twitter Bookmark High Performance Windows Volume Purchase: For Residential Buyers on Google Bookmark High Performance Windows Volume Purchase: For Residential Buyers on Delicious Rank High Performance Windows Volume Purchase: For Residential Buyers on Digg Find More places to share High Performance Windows Volume Purchase: For Residential Buyers on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers For Utilities Information Resources For Residential Buyers Both home owners and buyers can take advantage of the energy savings from

80

High accuracy windows for today's 24bit ADC's.  

E-Print Network (OSTI)

??This paper presents a new high accuracy window design method based on semi-infinite linear programming by using the Dual Nestled Complex Approximation (DNCA) algorithm. The… (more)

Tran, To; Dahl, Mattias; Claesson, Ingvar

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "highly insulating window" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Window coverings  

SciTech Connect

This brochure discusses the following: how heat loss and gain occurs, moisture problems, conventional coverings seldom save energy, plastic window sheets, insulated window coverings, and what to look for. (MHR)

1981-01-01T23:59:59.000Z

82

Building Technologies Office: Advanced Insulation for High Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Insulation for Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project to someone by E-mail Share Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Facebook Tweet about Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Twitter Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Google Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Delicious Rank Building Technologies Office: Advanced Insulation for High

83

Separation of High Order Harmonics with Fluoride Windows  

SciTech Connect

The lower orders produced in high order harmonic generation can be effciently temporally separated into monochromatic pulses by propagation in a Fluoride window while still preserving their femtosecond pulse duration. We present calculations for MgF2, CaF2, and LiF windows for the third, fifth, and seventh harmonics of 800 nm. We demonstrate the use of this simple and inexpensive technique in a femtosecond pump/probe experiment using the fifth harmonic.

Allison, Tom; van Tilborg, Jeroen; Wright, Travis; Hertlein, Marcus; Falcone, Roger; Belkacem, Ali

2010-08-02T23:59:59.000Z

84

High power windows for WR650 waveguide couplers  

Science Conference Proceedings (OSTI)

Based on the robust, pre-stressed planar window concept successfully tested for PEP II and LEDA, a new design for planar ceramic windows to be used with WR650 waveguide fundamental power couplers at 1300 MHz or 1500 MHz has been developed. These windows should operate in pulsed or CW mode and sustain at least 100 kW average power levels. This paper describes an overview of the simulations performed to match the ceramics in WR650 waveguides, design details, as well as the RF measurements and performance assessed by RF power tests on several high power windows manufactured at JLAB. Funding Agency: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177, and by The Office of Naval Research under contract to the Dept. of Energy.

Mircea Stirbet; Robert Rimmer; Thomas Elliott; Edward Daly; Katherine Wilson; Lynn Vogel; Haipeng Wang; Brian Carpenter; Karl Smith; Thomas Powers; Michael Drury; Robert Nichols; G. Davis

2007-06-01T23:59:59.000Z

85

High-temperature Foam-reinforced Thermal Insulation  

Science Conference Proceedings (OSTI)

Symposium, Advanced Materials for Harsh Environments. Presentation Title, High-temperature Foam-reinforced Thermal Insulation. Author(s), Jacob J. Stiglich, ...

86

Expansion Joint Concepts for High Temperature Insulation Systems  

E-Print Network (OSTI)

As high temperature steam and process piping expands with heat, joints begin to open between the insulation sections, resulting in increased energy loss and possible unsafe surface temperatures. Many different expansion joint designs are presently in use for both single and double layer insulation construction. However, due to the installation cost reduction associated with single layer systems and increased thickness capabilities of insulation manufacturers, much attention is being given to utilizing single layer construction as much as possible.

Harrison, M. R.

1980-01-01T23:59:59.000Z

87

Electrochromic window with high reflectivity modulation  

DOE Patents (OSTI)

A multi-layered, active, thin film, solid-state electrochromic device having a high reflectivity in the near infrared in a colored state, a high reflectivity and transmissivity modulation when switching between colored and bleached states, a low absorptivity in the near infrared, and fast switching times, and methods for its manufacture and switching are provided. In one embodiment, a multi-layered device comprising a first indium tin oxide transparent electronic conductor, a transparent ion blocking layer, a tungsten oxide electrochromic anode, a lithium ion conducting-electrically resistive electrolyte, a complimentary lithium mixed metal oxide electrochromic cathode, a transparent ohmic contact layer, a second indium oxide transparent electronic conductor, and a silicon nitride encapsulant is provided. Through elimination of optional intermediate layers, simplified device designs are provided as alternative embodiments. Typical colored-state reflectivity of the multi-layered device is greater than 50% in the near infrared, bleached-state reflectivity is less than 40% in the visible, bleached-state transmissivity is greater than 60% in the near infrared and greater than 40% in the visible, and spectral absorbance is less than 50% in the range from 0.65-2.5 .mu.m.

Goldner, Ronald B. (Lexington, MA); Gerouki, Alexandra (Medford, MA); Liu, Te-Yang (Arlington, MA); Goldner, Mark A. (Cambridge, MA); Haas, Terry E. (Southborough, MA)

2000-01-01T23:59:59.000Z

88

High voltage gas insulated transmission line with continuous particle trapping  

DOE Patents (OSTI)

This invention provides a novel high voltage gas insulated transmission line utilizing insulating supports spaced at intervals with snap-in means for supporting a continuous trapping apparatus and said trapping apparatus having perforations and cutouts to facilitate trapping of contaminating particles and system flexibility.

Cookson, Alan H. (Pittsburgh, PA); Dale, Steinar J. (Monroeville, PA)

1983-01-01T23:59:59.000Z

89

Sunlight Responsive Thermochromic Window System  

SciTech Connect

Pleotint has embarked on a novel approach with our Sunlight Responsive Thermochromic, SRT™, windows. We are integrating dynamic sunlight control, high insulation values and low solar heat gain together in a high performance window. The Pleotint SRT window is dynamic because it reversibly changes light transmission based on thermochromics activated directly by the heating effect of sunlight. We can achieve a window package with low solar heat gain coefficient (SHGC), a low U value and high insulation. At the same time our windows provide good daylighting. Our innovative window design offers architects and building designers the opportunity to choose their desired energy performance, excellent sound reduction, external pane can be self-cleaning, or a resistance to wind load, blasts, bullets or hurricanes. SRT windows would provide energy savings that are estimated at up to 30% over traditional window systems. Glass fabricators will be able to use existing equipment to make the SRT window while adding value and flexibility to the basic design. Glazing installers will have the ability to fit the windows with traditional methods without wires, power supplies and controllers. SRT windows can be retrofit into existing buildings,

Millett, F,A; Byker,H, J

2006-10-27T23:59:59.000Z

90

High-performance, non-CFC-based thermal insulation: Gas filled panels  

SciTech Connect

Because of the forthcoming phase-out of CFCs and to comply with the more stringent building and appliance energy-use standards, researchers in industry and in the public sector are pursuing the development of non-CFC-based, high-performance insulation materials. This report describes the results of research and development of one alternative insulation material: highly insulating GFPs. GFPs insulate in two ways: by using a gas barrier envelope to encapsulate a low-thermal-conductivity gas or gas mixture (at atmospheric pressure), and by using low-emissivity baffles to effectively eliminate convective and radiative heat transfer. This approach has been used successfully to produce superinsulated windows. Unlike foams or fibrous insulations, GFPs are not a homogeneous material but rather an assembly of specialized components. The wide range of potential applications of GFPs (appliances, manufactured housing, site-built buildings, refrigerated transport, and so on) leads to several alternative embodiments. While the materials used for prototype GFPs are commercially available, further development of components may be necessary for commercial products. With the exception of a description of the panels that were independently tested, specific information concerning panel designs and materials is omitted for patent reasons; this material is the subject of a patent application by Lawrence Berkeley Laboratory.

Griffith, B.T.; Arasteh, D.; Selkowitz, S.

1992-04-01T23:59:59.000Z

91

Separation of High Order Harmonics with Fluoride Windows  

E-Print Network (OSTI)

Harmonics with Fluoride Windows T. K. Allison, 1,2? J. vanpropagation in a ?uoride window while still preserving theirfor MgF 2 , CaF 2 , and LiF windows for the third, ?fth, and

Allison, Tom

2010-01-01T23:59:59.000Z

92

Zero Energy Windows  

Science Conference Proceedings (OSTI)

Windows in the U.S. consume 30 percent of building heating and cooling energy, representing an annual impact of 4.1 quadrillion BTU (quads) of primary energy. Windows have an even larger impact on peak energy demand and on occupant comfort. An additional 1 quad of lighting energy could be saved if buildings employed effective daylighting strategies. The ENERGY STAR{reg_sign} program has made standard windows significantly more efficient. However, even if all windows in the stock were replaced with today's efficient products, window energy consumption would still be approximately 2 quads. However, windows can be ''net energy gainers'' or ''zero-energy'' products. Highly insulating products in heating applications can admit more useful solar gain than the conductive energy lost through them. Dynamic glazings can modulate solar gains to minimize cooling energy needs and, in commercial buildings, allow daylighting to offset lighting requirements. The needed solutions vary with building type and climate. Developing this next generation of zero-energy windows will provide products for both existing buildings undergoing window replacements and products which are expected to be contributors to zero-energy buildings. This paper defines the requirements for zero-energy windows. The technical potentials in terms of national energy savings and the research and development (R&D) status of the following technologies are presented: (1) Highly insulating systems with U-factors of 0.1 Btu/hr-ft{sup 2}-F; (2) Dynamic windows: glazings that modulate transmittance (i.e., change from clear to tinted and/or reflective) in response to climate conditions; and (3) Integrated facades for commercial buildings to control/ redirect daylight. Market transformation policies to promote these technologies as they emerge into the marketplace are then described.

Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

2006-05-17T23:59:59.000Z

93

High-R window technology development. Phase 2, Final report  

SciTech Connect

Of all building envelope elements, windows always have had the highest heat loss rates. However, recent advances in window technologies such as low-emissivity (low-E) coatings and low- conductivity gas fillings have begun to change the status of windows in the building energy equation, raising the average R-value (resistance to heat flow) from 2 to 4 h-ft{sup 2}-{degrees}F/Btu. Building on this trend and using a novel combination of low-E coatings, gas-fills, and three glazing layers, the authors developed a design concept for R-6 to R-10 ``super`` windows. Three major window manufacturers produced prototype superwindows based this design for testing and demonstration in three utility-sponsored and -monitored energy-conserving homes in northwestern Montana. This paper discusses the design and tested performance of these three windows and identifies areas requiring further research if these window concepts are to be successfully developed for mass markets.

Arasteh, D.

1991-01-01T23:59:59.000Z

94

Carpe Diem: Install Insulated Roman Shades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carpe Diem: Install Insulated Roman Shades Carpe Diem: Install Insulated Roman Shades Carpe Diem: Install Insulated Roman Shades March 16, 2010 - 11:44am Addthis John Lippert As I mentioned in yesterday's blog, I had insulated window quilts installed on most of my home's windows. I should have bought window quilts for all of our windows, but I refrained from doing so on two downstairs windows to save money (which, in the long run, I didn't). There were window shades already there; they didn't do much from a thermal perspective, but they did provide privacy and room darkening. Well, they need to be replaced now, and I'm looking again at high efficiency thermal window shades. This time I'm considering thermal Roman shades. About a dozen years ago my wife and I went on the Tour of Solar Homes, the local component of the annual National Solar Tour sponsored by the American

95

Insulator coating for high temperature alloys method for producing insulator coating for high temperature alloys  

DOE Patents (OSTI)

A method for fabricating an electrically insulating coating on a surface is disclosed comprising coating the surface with a metal, and reacting the metal coated surface with a nonmetal so as to create a film on the metal-coated surface. Alternatively, the invention provides for a method for producing a noncorrosive, electrically insulating coating on a surface saturated with a nonmetal comprising supplying a molten fluid, dissolving a metal in the molten fluid to create a mixture, and contacting the mixture with the saturated surface. Lastly, the invention provides an electrically insulative coating comprising an underlying structural substrate coated with an oxide or nitride compound. This invention has applications to breeding blankets for fusion reactors as well as to alkali metal thermal to electric converters.

Park, J.H.

1994-12-31T23:59:59.000Z

96

SECONDARY ELECTRON TRAJECTORIES IN HIGH-GRADIENT VACUUM INSULATORS WITH FAST HIGH-VOLTAGE PULSES  

Science Conference Proceedings (OSTI)

Vacuum insulators composed of alternating layers of metal and dielectric, known as high-gradient insulators (HGIs), have been shown to withstand higher electric fields than conventional insulators. Primary or secondary electrons (emitted from the insulator surface) can be deflected by magnetic fields from external sources, the high-current electron beam, the conduction current in the transmission line, or the displacement current in the insulator. These electrons are deflected either toward or away from the insulator surface and this affects the performance of the vacuum insulator. This paper shows the effects of displacement current from short voltage pulses on the performance of high gradient insulators. Generally, vacuum insulator failure is due to surface flashover, initiated by electrons emitted from a triple junction. These electrons strike the insulator surface thus producing secondary electrons, and can lead to a subsequent electron cascade along the surface. The displacement current in the insulator can deflect electrons either toward or away from the insulator surface, and affects the performance of the vacuum insulator when the insulator is subjected to a fast high-voltage pulse. Vacuum insulators composed of alternating layers of metal and dielectric, known as high-gradient insulators (HGIs), have been shown to withstand higher electric fields than conventional insulators. HGIs, being tolerant of the direct view of high-current electron and ion beams, and having desirable RF properties for accelerators, are a key enabling technology for the dielectric-wall accelerators (DWA) being developed at Lawrence Livermore National Laboratory (LLNL). Characteristically, insulator surface breakdown thresholds go up as the applied voltage pulse width decreases. To attain the highest accelerating gradient in the DWA, short accelerating voltage pulses are only applied locally, along the HGI accelerator tube, in sync with the charged particle bunch, and the effects of displacement current on trajectories of electrons emitted from HGI surface are particularly interesting. This paper presents simulated electron trajectories experiencing either constant or short-duration applied voltage pulses. Comparisons of these trajectories clearly indicate the importance of the voltage pulse shape, especially the rise time, in the flashover initiation process for HGIs.

Chen, Y; Blackfield, D; Nelson, S D; Poole, B

2010-04-21T23:59:59.000Z

97

PERFORMANCE ANALYSIS OF A WINDOWED HIGH TEMPERATURE GAS RECEIVER USING A SUSPENSION OF ULTRAFINE CARBON PARTICLES AS THE SOLAR ABSORBER  

E-Print Network (OSTI)

efficiency. INTRODUCTION Recently, there has been renewed interest in windowed high temperature receivers for solar thermal

Fisk, William J.

2012-01-01T23:59:59.000Z

98

High density load bearing insulation peg  

DOE Patents (OSTI)

A high density peg is disclosed which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure. 4 figs.

Nowobilski, J.J.; Owens, W.J.

1985-01-29T23:59:59.000Z

99

High density load bearing insulation peg  

DOE Patents (OSTI)

A high density peg which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure.

Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

1985-01-01T23:59:59.000Z

100

High-R Window Technology Development : Phase II Final Report.  

SciTech Connect

Of all building envelope elements, windows always have had the highest heat loss rates. However, recent advances in window technologies such as low-emissivity (low-E) coatings and low- conductivity gas fillings have begun to change the status of windows in the building energy equation, raising the average R-value (resistance to heat flow) from 2 to 4 h-ft{sup 2}-{degrees}F/Btu. Building on this trend and using a novel combination of low-E coatings, gas-fills, and three glazing layers, the authors developed a design concept for R-6 to R-10 super'' windows. Three major window manufacturers produced prototype superwindows based this design for testing and demonstration in three utility-sponsored and -monitored energy-conserving homes in northwestern Montana. This paper discusses the design and tested performance of these three windows and identifies areas requiring further research if these window concepts are to be successfully developed for mass markets.

Arasteh, Dariush

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "highly insulating window" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

High-power testing of PEP-II RF cavity windows  

SciTech Connect

We describe the high power testing of RF cavity windows for the PEP-II B factory. The window is designed for continuous operation at 476 MHz with up to 500 kW throughput and has been tested to full power using a modified PEP Klystron. The windows use an anti-multipactor coating on the vacuum side and the application and processing of this layer is discussed. The high power test configuration, RF processing history and high power performance are described.

Neubauer, M.; Allen, M.; Fant, K.; Hill, A.; Hoyt, M.; Judkins, J.; Schwarz, H. [Stanford Linear Accelerator Center, CA (United States); Rimmer, R.A. [Lawrence Berkeley National Lab., CA (United States)

1996-06-01T23:59:59.000Z

102

New High-Efficiency Window Prototype Result of DOE Partnership...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Window Prototype Result of DOE Partnership December 4, 2006 - 9:34am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced a next-generation residential and...

103

On diamond windows for high power synchrotron x-ray beams  

SciTech Connect

Recent advances in chemical vapor deposition (CVD) technology has made available thin, free-standing polycrystalline diamond foils that can be used as the window material on high heat load synchrotron x-ray beamlines. Diamond windows have many advantages that stem from the exceptionally attractive thermal, structural, and physical properties of diamond. Numerical simulations indicate that diamond windows can offer an attractive and at times the only alternative to beryllium windows for use on the third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, and analytical and numerical results are presented to provide a basis for the design and testing of such windows.

Khounsary, A.M.; Kuzay, T.M.

1991-12-31T23:59:59.000Z

104

On diamond windows for high power synchrotron x-ray beams  

SciTech Connect

Recent advances in chemical vapor deposition (CVD) technology has made available thin, free-standing polycrystalline diamond foils that can be used as the window material on high heat load synchrotron x-ray beamlines. Diamond windows have many advantages that stem from the exceptionally attractive thermal, structural, and physical properties of diamond. Numerical simulations indicate that diamond windows can offer an attractive and at times the only alternative to beryllium windows for use on the third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, and analytical and numerical results are presented to provide a basis for the design and testing of such windows.

Khounsary, A.M.; Kuzay, T.M.

1991-01-01T23:59:59.000Z

105

Variable pressure insulating jackets for high-temperature batteries  

DOE Green Energy (OSTI)

A new method is proposed for controlling the temperature of high-temperature batteries namely, varying the hydrogen pressure inside of multifoil insulation by varying the temperature of a reversible hydrogen getter. Calculations showed that the rate of heat loss through 1.5 cm of multifoil insulation between a hot-side temperature of 425[degrees]C and a cold-side temperature of 25[degrees]C could be varied between 17.6 W/m[sup 2] and 7,000 W/m[sup 2]. This change in heat transfer rate can be achieved by varying the hydrogen pressure between 1.0 Pa and 1,000 Pa, which can be done with an available hydrogen gettering alloy operating in the range of 50[degrees]C to 250[degrees]C. This approach to battery cooling requires cylindrical insulating jackets, which are best suited for bipolar batteries having round cells approximately 10 to 18 cm in diameter.

Nelson, P.A.; Chilenskas, A.A.; Malecha, R.F.

1992-01-01T23:59:59.000Z

106

Variable pressure insulating jackets for high-temperature batteries  

DOE Green Energy (OSTI)

A new method is proposed for controlling the temperature of high-temperature batteries namely, varying the hydrogen pressure inside of multifoil insulation by varying the temperature of a reversible hydrogen getter. Calculations showed that the rate of heat loss through 1.5 cm of multifoil insulation between a hot-side temperature of 425{degrees}C and a cold-side temperature of 25{degrees}C could be varied between 17.6 W/m{sup 2} and 7,000 W/m{sup 2}. This change in heat transfer rate can be achieved by varying the hydrogen pressure between 1.0 Pa and 1,000 Pa, which can be done with an available hydrogen gettering alloy operating in the range of 50{degrees}C to 250{degrees}C. This approach to battery cooling requires cylindrical insulating jackets, which are best suited for bipolar batteries having round cells approximately 10 to 18 cm in diameter.

Nelson, P.A.; Chilenskas, A.A.; Malecha, R.F.

1992-12-31T23:59:59.000Z

107

Window Types | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Window Types Window Types Window Types June 18, 2012 - 8:06am Addthis A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto What does this mean for me? If you have old windows, they are likely losing large amounts of energy through the frames and glazing. By upgrading old windows, you can reduce heating and cooling costs in your home. Windows come in a number of different frame and glazing types. By combining an energy-efficient frame choice with a glazing type tailored to your climate and application, you can customize each of your home's windows. Types of Window Frames Improving the thermal resistance of the frame can contribute to a window's

108

Window Types | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Window Types Window Types Window Types June 18, 2012 - 8:06am Addthis A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto What does this mean for me? If you have old windows, they are likely losing large amounts of energy through the frames and glazing. By upgrading old windows, you can reduce heating and cooling costs in your home. Windows come in a number of different frame and glazing types. By combining an energy-efficient frame choice with a glazing type tailored to your climate and application, you can customize each of your home's windows. Types of Window Frames Improving the thermal resistance of the frame can contribute to a window's

109

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

The High Performance Windows Volume Purchase (WVP) Program The High Performance Windows Volume Purchase (WVP) Program The U.S. Department of Energy's Building Technologies Program (BTP) is coordinating a volume purchase program intended to overcome cost and awareness barriers to the wider adoption of highly-insulating windows and low-E storm windows. These products include windows meeting a number of specifications including a U-factor of 0.22 or less as well as storm windows with low-emissivity glass. Buyer groups with a potential interest in purchasing these products in volume will learn about their availability and cost through the program's product listings. Over 50 manufacturers proposed products for the first round of these listings, for which submittals were due by February 19, 2010. DOE does not purchase any products through this project, nor does DOE

110

Thermal, structural, and fabrication aspects of diamond windows for high power synchrotron x-ray beamlines  

SciTech Connect

Recent advances in chemical vapor deposition (CVD) technology have made it possible to produce thin free-standing diamond foils that can be used as the window material in high heat load, synchrotron beamlines. Numerical simulations suggest that these windows can offer an attractive and at times the only altemative to beryllium windows for use in third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, as are the microstructure characteristics bearing on diamond`s performance in this role. Analytic and numerical results are also presented to provide a basis for the design and testing of such windows.

Khounsary, A.M. [Argonne National Lab., IL (United States); Phillips, W. [Crystallume, Menlo Park, CA (United States)

1992-12-01T23:59:59.000Z

111

Thermal, structural, and fabrication aspects of diamond windows for high power synchrotron x-ray beamlines  

SciTech Connect

Recent advances in chemical vapor deposition (CVD) technology have made it possible to produce thin free-standing diamond foils that can be used as the window material in high heat load, synchrotron beamlines. Numerical simulations suggest that these windows can offer an attractive and at times the only altemative to beryllium windows for use in third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, as are the microstructure characteristics bearing on diamond's performance in this role. Analytic and numerical results are also presented to provide a basis for the design and testing of such windows.

Khounsary, A.M. (Argonne National Lab., IL (United States)); Phillips, W. (Crystallume, Menlo Park, CA (United States))

1992-01-01T23:59:59.000Z

112

Self-monitoring high voltage transmission line suspension insulator  

DOE Patents (OSTI)

A high voltage transmission line suspension insulator (18 or 22) which monitors its own dielectric integrity. A dielectric rod (10) has one larger diameter end fitting attachable to a transmission line and another larger diameter end fitting attachable to a support tower. The rod is enclosed in a dielectric tube (14) which is hermetically sealed to the rod's end fittings such that a liquidtight space (20) is formed between the rod and the tube. A pressurized dielectric liquid is placed within that space. A discoloring dye placed within this space is used to detect the loss of the pressurized liquid.

Stemler, Gary E. (Vancouver, WA); Scott, Donald N. (Vancouver, WA)

1981-01-01T23:59:59.000Z

113

Window shopping  

SciTech Connect

The author addresses the energy efficiency of windows and describes changes and new products available in this consumer information article. Experiments currently being done by Lawrence Berkeley Laboratory (LBL), Bonneville Power Authority and the Washington State Energy Office show that some of these superwindows collect more energy from the sun than they let escape from inside the home. One type of window in current production is the low-E (low-emissivity) and the IGUs (insulated glass units). Low-E techniques include glazing of the glass with various materials including polyester and metallic coatings. Other measures include filling the airspace in double pane windows with argon, aerogel or by creating a vacuum in the airspace. Another factor the author considers is ultraviolet light protection.

Best, D.

1990-03-01T23:59:59.000Z

114

Aerogel-Based Insulation for High-Temperature Industrial Processes  

SciTech Connect

Under this program, Aspen Aerogels has developed an industrial insulation called Pyrogel HT, which is 4-5 times more thermally efficient than current non-aerogel technology. Derived from nanoporous silica aerogels, Pyrogel HT was specifically developed to address a high temperature capability gap not currently met with Aspen Aerogels{trademark} flagship product, Pyrogel XT. Pyrogel XT, which was originally developed on a separate DOE contract (DE-FG36-06GO16056), was primarily optimized for use in industrial steam processing systems, where application temperatures typically do not exceed 400 C. At the time, further improvements in thermal performance above 400 C could not be reasonably achieved for Pyrogel XT without significantly affecting other key material properties using the current technology. Cumulative sales of Pyrogel HT into domestic power plants should reach $125MM through 2030, eventually reaching about 10% of the total insulation market share in that space. Global energy savings would be expected to scale similarly. Over the same period, these sales would reduce domestic energy consumption by more than 65 TBtu. Upon branching out into all industrial processes in the 400 C-650 C regime, Pyrogel HT would reach annual sales levels of $150MM, with two-thirds of that being exported.

Dr. Owen Evans

2011-10-13T23:59:59.000Z

115

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Considerations for Window Performance Considerations for Window Performance Advanced window technologies can have a major effect on comfort and on the annual energy performance of a house. However, there is a broader and possibly more significant impact of the recent revolution in window performance. Because the new glazing technologies provide highly effective insulating value and solar protection, there are important implications for how a house is designed. There is a long-established set of window design guidelines and assumptions intended to reduce heating and cooling energy use. These are based, in part, on the historical assumption that windows were the weak link in the building envelope. These assumptions frequently created limitations on design freedom or generated conflicts with other performance requirements,

116

Advanced Insulation for High Performance Cost-effective Wall, Roof, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Insulation for High Performance Advanced Insulation for High Performance Cost-effective Wall, Roof, and Foundation Systems Research Project Advanced Insulation for High Performance Cost-effective Wall, Roof, and Foundation Systems Research Project The U.S. Department of Energy (DOE) is currently conducting research into advanced insulation for high performance wall, roof, and foundation systems. Heat flows from hotter to colder spaces, and insulation is designed to resist this flow by keeping hot air out in the summer and in during the winter. Project Description This project seeks to develop high performing, durable, hydrofluorocarbon and hydrochlorofluorocarbons -free insulation with an R-value greater than 7.5-per-inch and a Class A fire performance. Project Partners Research is being undertaken between DOE and Dow Chemical.

117

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduced Condensation Reduced Condensation Condensation High performance windows with new glazing technologies not only reduce energy costs but make homes more comfortable as well. High-performance windows create warmer interior glass surfaces, reducing frost and condensation. High-performance windows with warm edge technology and insulating frames have such a warm interior surface that condensation on any interior surfaces is significantly reduced under all conditions. Condensation occurs when the interior surface temperature of the glass drops below either the dewpoint or frost point. A window's frame and/or glazing system can contribute to the possibility of condensation if they are poor performers for a specific climate. High-performance windows create warmer interior glass surfaces, reducing condensation and frost.

118

High Rate Plasticity under Pressure using a Windowed Pressure-Shear Impact Experiment  

SciTech Connect

An experimental technique has been developed to study the strength of materials under conditions of moderate pressures and high shear strain rates. The technique is similar to the traditional pressure-shear plate-impact experiments except that window interferometry is used to measure both the normal and transverse particle velocities at a sample-window interface. Experimental and simulation results on vanadium samples backed with a sapphire window show the utility of the technique to measure the flow strength under dynamic loading conditions. The results show that the strength of the vanadium is 600 MPa at a pressure of 4.5 GPa and a plastic strain of 1.7%.

Florando, J N; Jiao, T; Grunschel, S E; Clifton, R J; Ferranti, L; Becker, R C; Minich, R W; Bazan, G

2009-07-29T23:59:59.000Z

119

Windows, Doors, & Skylights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Windows, Doors, & Skylights Windows, Doors, & Skylights Windows, Doors, & Skylights Windows affect home aesthetics as well as energy use. Learn more about energy-efficient windows. Windows affect home aesthetics as well as energy use. Learn more about energy-efficient windows. Energy-efficient windows, doors, and skylights-also known as fenestration-can help lower a home's heating, cooling, and lighting costs. Learn about the energy performance ratings to consider when selecting windows, doors, and skylights, and how to maximize their energy efficiency in your home. Featured Window Types A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto

120

Electrochemical Windows of Sulfone-Based Electrolytes for High-Voltage Li-Ion Batteries  

Science Conference Proceedings (OSTI)

Further development of high-voltage lithium-ion batteries requires electrolytes with electrochemical windows greater than 5 V. Sulfone-based electrolytes are promising for such a purpose. Here we compute the electrochemical windows for experimentally tested sulfone electrolytes by different levels of theory in combination with various solvation models. The MP2 method combined with the polarizable continuum model is shown to be the most accurate method to predict oxidation potentials of sulfone-based electrolytes with mean deviation less than 0.29 V. Mulliken charge analysis shows that the oxidation happens on the sulfone group for ethylmethyl sulfone and tetramethylene sulfone, and on the ether group for ether functionalized sulfones. Large electrochemical windows of sulfone-based electrolytes are mainly contributed by the sulfone group in the molecules which helps lower the HOMO level. This study can help understand the voltage limits imposed by the sulfone-based electrolytes and aid in designing new electrolytes with greater electrochemical windows.

Shao, Nan [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL; Jiang, Deen [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "highly insulating window" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Round-robin artificial contamination test on high voltage dc insulators  

Science Conference Proceedings (OSTI)

This paper summarizes the results of a worldwide round-robin test of high voltage dc (HVDC) insulators, which was carried out in six laboratories aiming at standardization of the method for artificial contamination tests on HVDC insulators. Flashover characteristics of three kinds of specimens were evaluated by the clean fog and the salt fog procedures. Sufficient information is now available to allow the preparation of provisional international specifications for artificial contamination testing of HVDC insulators.

Naito, K.; Schneider, H.M.

1995-07-01T23:59:59.000Z

122

Study on structure heat capacity of high-rise residences: (part 2) comparison by insulation methods  

Science Conference Proceedings (OSTI)

This paper follows the paper of Part 1. Here we examined Air-Conditioning loads (hereinafter referred to as AC loads) impact in several deferent cases of insulation methods in interior of super high-rise residences by using the dynamic simulation software ... Keywords: AC load, heat capacity, heat insulation method, high-rise residences, simulation

Yupeng Wang; Hiroatsu Fukuda; Akihiro Mitsumoto; Akihito Ozaki; Yuko Kuma

2007-08-01T23:59:59.000Z

123

Experimental and Numerical Examination of the Thermal Transmittance of High Performance Window Frames  

E-Print Network (OSTI)

Developing Low -conductance Window Frames: Capabilities andLimitations o f Current Window Heat Transfer Design Tools -Simulations of I nternal Window Frame Caviti es Validated

Gustavsen Ph.D., Arild

2010-01-01T23:59:59.000Z

124

Window Menu  

Science Conference Proceedings (OSTI)

... 2007. Window Menu. The window menu has been updated: Documentation ... the item. Older Documentation for Window Menu.

125

High-temperature zirconia insulation and method for making same  

DOE Patents (OSTI)

The present invention is directed to a highly pure, partially stabilized, fibrous zirconia composite for use as thermal insulation in environments where temperatures up to about 2000.degree. C. are utilized. The composite of the present invention is fabricated into any suitable configuration such as a cone, cylinder, dome or the like by vacuum molding an aqueous slurry of partially stabilized zirconia fibers into a desired configuration on a suitably shaped mandrel. The molded fibers are infiltrated with zirconyl nitrate and the resulting structure is then dried to form a rigid structure which may be removed and placed in a furnace. The structure is then heated in air to a temperature of about 600.degree. C. for driving off the nitrate from the structure and for oxidizing the zirconyl ion to zirconia. Thereafter, the structure is heated to about 950.degree. to 1,250.degree. C. to fuse the zirconia fibers at their nexi in a matrix of zirconia. The composite produced by the present invention is self-supporting and can be readily machined to desired final dimensions. Additional heating to about 1800.degree. to 2000.degree. C. further improves structural rigidity.

Wrenn, Jr., George E. (Clinton, TN); Holcombe, Jr., Cressie E. (Knoxville, TN); Lewis, Jr., John (Oak Ridge, TN)

1988-01-01T23:59:59.000Z

126

Gravitational-wave astronomy: the high-frequency window  

E-Print Network (OSTI)

This contribution is divided in two parts. The first part provides a text-book level introduction to gravitational radiation. The key concepts required for a discussion of gravitational-wave physics are introduced. In particular, the quadrupole formula is applied to the anticipated ``bread-and-butter'' source for detectors like LIGO, GEO600, EGO and TAMA300: inspiralling compact binaries. The second part provides a brief review of high frequency gravitational waves. In the frequency range above (say) 100Hz, gravitational collapse, rotational instabilities and oscillations of the remnant compact objects are potentially important sources of gravitational waves. Significant and unique information concerning the various stages of collapse, the evolution of protoneutron stars and the details of the supranuclear equation of state of such objects can be drawn from careful study of the gravitational-wave signal. As the amount of exciting physics one may be able to study via the detections of gravitational waves from these sources is truly inspiring, there is strong motivation for the development of future generations of ground based detectors sensitive in the range from hundreds of Hz to several kHz.

Nils Andersson; Kostas D Kokkotas

2004-03-20T23:59:59.000Z

127

Vacuum Window Glazings for Energy-Efficient Buildings : Summary Report.  

SciTech Connect

The technical feasibility of a patented, laser-welded, evacuated insulating window was studies. The window has two edge-sealed sheets of glass separated by 0.5-mm glass spheres spaced 30 mm apart in a regular array. A highly insulating frame is required and several designs were analyzed. The vacuum window's combination of high solar transmittance and low thermal conductance makes it superior to many other windows in cold climates. In the US Pacific Northwest, the vacuum window could save about 6 MJ of heating energy annually per square meter of window in comparison to conventional, double-glazed windows. A large, vacuum laser-welding facility was designed and installed to conduct glass welding experiments and to fabricate full-sized vacuum windows. Experiments confirmed the feasibility of laser-sealing glass in vacuum but identified two difficulties. Under some circumstances, bubbles of dissolved gases form during welding and weaken the seal. Glass also vaporizes and contaminates the laser beam steering mirror. A novel moving metal foil mirror was developed to circumvent the contamination problem, but is has not yet been used to complete welding experiments and fabricate full-sized vacuum windows. 63 refs., 53 figs., 19 tabs.

Benson, David K.

1990-05-01T23:59:59.000Z

128

Vacuum window glazings for energy-efficient buildings  

Science Conference Proceedings (OSTI)

The technical feasibility of a patented, laser-welded, evacuated insulating window was studied. The window has two edge-sealed sheets of glass separated by 0.5-mm glass spheres spaced 30 mm apart in a regular array. A highly insulating frame is required and several designs were analyzed. The vacuum window's combination of high solar transmittance and low thermal conductance makes it superior to many other windows in cold climates. In the US Pacific Northwest, the vacuum window could save about 6 MJ of heating energy annually per square meter of window in comparison to conventional, double-glazed windows. A large, vacuum laser-welding facility was designed and installed to conduct glass welding experiments and to fabricate full-sized vacuum windows. Experiments confirmed the feasibility of laser-sealing glass in vacuum but identified two difficulties. Under some circumstances, bubbles of dissolved gases form during welding and weaken the seal. Glass also vaporizes and contaminates the laser beam steering mirror. A novel moving metal foil mirror was developed to circumvent the contamination problem, but it has not yet been used to complete welding experiments and fabricate full-sized vacuum windows. 63 refs., 53 figs., 19 tabs.

Benson, D.K.; Smith, L.K.; Tracy, C.E.; Potter, T.; Christensen, C. (Solar Energy Research Inst., Golden, CO (USA)); Soule, D.E. (Western Illinois Univ., Macomb, IL (USA))

1990-05-01T23:59:59.000Z

129

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

U-factor and R-value? While the U-factor is used to express the insulation value of windows, R-value is used for insulation in most other parts of the building envelope (walls,...

130

Experimental and Numerical Examination of the Thermal Transmittance of High Performance Window Frames  

E-Print Network (OSTI)

windows are often called passive -house wind ows, as windowse window frames, like passive-house windows. In this p aperare supposed to satisfy the Passive house requirements of

Gustavsen Ph.D., Arild

2010-01-01T23:59:59.000Z

131

Monitor window  

Science Conference Proceedings (OSTI)

... from the three Info buttons. Text can be typed into the window. The window can be saved to a file (as can all the other text windows). ...

132

Effect of Space Charge on Surface Insulation of High-Voltage Direct-Current Bushings  

Science Conference Proceedings (OSTI)

Operating data on bushings and post insulators for HVDC converter stations demonstrate that large-diameter insulators perform poorly when exposed to a combination of rain or fog and airborne contaminants. A technique that produces an intense space charge, resulting in corona at the high-voltage electrode of HVDC bushings, shows promise of improving flashover performance in some laboratory applications, but apparently has little effect under simulated service conditions.

1987-11-03T23:59:59.000Z

133

Energy-efficient windows  

SciTech Connect

This fact sheet describes energy efficient windows for the reduction of home heating and cooling energy consumption. It discusses controlling air leaks by caulking and weatherstripping and by replacing window frames. Reducing heat loss and condensation is discussed by describing the types of glazing materials, the number of glass and air spaces, frame and spacer materials, and the use of movable insulation (shutters, drapes, etc.). A resource list is provided for further information.

1994-10-01T23:59:59.000Z

134

SUPERGLASS. Engineering field tests - Phase 3. Production, market planning, and product evaluation for a high-thermal-performance insulating glass design utilizing HEAT MIRROR transparent insulation. Final report  

DOE Green Energy (OSTI)

HEAT MIRROR transparent window insulation consists of a clear polyester film two mils (.002'') thick with a thin, clear low-emissivity (.15) coating deposited on one side by state-of-the-art vacuum deposition processes. This neutral-colored invisible coating reflects long-wave infrared energy (heat). When mounted by being stretched with a 1/2'' air-gap on each side of the film, the resulting unit reduces heat loss by 60% compared to dual insulating glass. Southwall Corporation produces HEAT MIRROR transparent insulation and markets it to manufacturers of sealed insulating glass (I.G.) units and window and building manufacturers who make their own I.G. These companies build and sell the SUPERGLASS sealed glazing units. Units made and installed in buildings by six customers were visited. These units were located in many geographic regions, including the Pacific Northwest, Rocky Mountains, New England, Southeast, and West Coast. As much as could be obtained of their history was recorded, as was their current condition and performance. These units had been in place from two weeks to over a year. All of the units were performing thermally very well, as measured by taking temperature profiles through them and through adjacent conventional I.G. units. Some units had minor visual defects (attributed to I.G. assembly techniques) which are discussed in detail. Overall occupant acceptance was enthusiastically positive. In addition to saving energy, without compromise of optical quality or appearance, the product makes rooms with large glazing areas comfortable to be in in cold weather. All defects observed were present when built; there appears to be no in-field degradation of quality at this time.

Tilford, C L

1982-11-01T23:59:59.000Z

135

CANBUS , ++ WINDOWS.  

E-Print Network (OSTI)

; : .., .., .., .., .., .., .., .., .., .., .., .., .., .., ... . . . 630090 , . . CANBUS , ++ WINDOWS. , CANBUS CAMAC intelligent controllers with CANBUS interface and on software written on C++ in WINDOWS media. Solutions Interface), IXXAT Windows. VCI , , CAN-, .. Windows c #12; VCI

Kozak, Victor R.

136

High Power Testing Results of the X-band Mixed-mode RF Windows for Linear Colliders  

SciTech Connect

In this paper, we summarize the high power testing results of the X-band mixed-mode RF windows at KEK and SLAC for linear colliders. The main feature of these windows is that the combination of modes on the surface of the ceramic significantly decreases the electric and magnetic fields in the junction between the ceramic and the metal. So far two types of high power windows (with the diameter of 53 mm and 64 mm) have been fabricated. A high power model of the smaller type window was fabricated and tested in a resonant ring at KEK. A maximum circulating power of 81 MW with 300 ns duration or 66 MW with 700 ns duration was achieved. Light emission was observed for a power level of over 10 MW. Later, both windows were shipped to SLAC for even higher power testing using combined power from two klystrons. The first window (53 mm diameter) achieved a transmitted power of 80 MW with 1.5 microsec duration at 30 Hz repetition. It was not destroyed during the testing. The testing of the second window was carried out next to the small type and achieved 62 MW with 1.5 microsec duration with 10 Hz repetition. The final results of both windows are presented in this report.

Loewen, Roderick J

2000-10-26T23:59:59.000Z

137

Reflred - Windows  

Science Conference Proceedings (OSTI)

... data. There are a number of different windows in the system. The choose window lets you select directory and dataset. ...

138

Developing Low-Conductance Window Frames: Capabilities and Limitations of  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing Low-Conductance Window Frames: Capabilities and Limitations of Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools Title Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools Publication Type Journal Article LBNL Report Number LBNL-1022E Year of Publication 2008 Authors Gustavsen, Arlid, Dariush K. Arasteh, Bjørn Petter Jelle, Dragan C. Curcija, and Christian Kohler Journal Journal of Building Physics Volume 32 Pagination 131-153 Call Number LBNL-1022E Abstract While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows which incorporate very low conductance glazings. Developing low-conductance window frames requires accurate simulation tools for product research and development. Based on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we conclude that current procedures specified in ISO standards are not sufficiently adequate for accurately evaluating heat transfer through the low-conductance frames.

139

Development and Application of Insulated Drill Pipe for High Temperature, High Pressure Drilling  

Science Conference Proceedings (OSTI)

This project aimed to extend the insulated drill pipe (IDP) technology already demonstrated for geothermal drilling to HTHP drilling in deep gas reservoirs where temperatures are high enough to pose a threat to downhole equipment such as motors and electronics. The major components of the project were: a preliminary design; a market survey to assess industry needs and performance criteria; mechanical testing to verify strength and durability of IDP; and development of an inspection plan that would quantify the ability of various inspection techniques to detect flaws in assembled IDP. This report is a detailed description of those activities.

Tom Champness; Tony Worthen; John Finger

2008-12-31T23:59:59.000Z

140

High power testing of the 402.5 MHZ and 805 MHZ RF windows for the spallation neutron source accelerator  

SciTech Connect

Hisorically, Radio Frequency (RF) windows have been a common point of failure in input power couplers; therefore, reliable RF windows are critical to the success of the Spallation Neutron Source (SNS) project. The normal conducting part of the SNS accelerator requires six RF windows at 402.5 MHz and eight RF windows at 805 MHz[l]. Each RF window will transmit up to 180 kW of average power and 2.5 MW peak power at 60 Hz with 1.2 millisecond pulses. The RF windows, designed and manufactured by Thales, were tested at the full average power for 4 hours to ensure no problems with the high average power and then tested to an effective forward power level of 10 MW by testing at 2.5 MW forward power into a short and varying the phase of the standing wave. The sliding short was moved from 0 to 180 degrees to ensure no arcing or breakdown problems occur in any part of the window. This paper discusses the results of the high power testing of both the 402.5 MHz and the 805 MHz RF windows. Problems encountered during testing and the solutions for these problems are discussed.

Cummings, K. A. (Karen Ann); De Baca, J. M. (John M.); Harrison, J. S. (John S.); Rodriguez, M. B. (Manuelita B.); Torrez, P. A. (Phillip A.); Warner, D. K. (David K.)

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "highly insulating window" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

SIPC Advisory -Vulnerability in Windows Graphics Rendering Engine Could Allow Remote Code Execution -RISK: HIGH  

E-Print Network (OSTI)

SIPC Advisory - Vulnerability in Windows Graphics Rendering Engine Could Allow Remote Code/4/2011 SUBJECT: Vulnerability in Windows Graphics Rendering Engine Could Allow Remote Code Execution OVERVIEW: A new vulnerability has been discovered in Microsoft Windows Graphics Rendering Engine, which could

Holliday, Vance T.

142

Method of preparing thermal insulation for high temperature microwave sintering operations  

DOE Patents (OSTI)

Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

1996-07-16T23:59:59.000Z

143

Method of preparing thermal insulation for high temperature microwave sintering operations  

DOE Patents (OSTI)

Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Morrow, Marvin S. (Kingston, TN)

1996-01-01T23:59:59.000Z

144

Thermal insulation for high temperature microwave sintering operations and method thereof  

DOE Patents (OSTI)

Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

1995-09-12T23:59:59.000Z

145

Thermal insulation for high temperature microwave sintering operations and method thereof  

DOE Patents (OSTI)

Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Morrow, Marvin S. (Kingston, TN)

1995-01-01T23:59:59.000Z

146

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Storm Windows Storm Windows Window Attachments For detailed information on storm windows and other window attachments, visit www.windowattachments.org exit disclaimer , a site supported by Lawrence Berkeley National Laboratory, Building Green, and the U.S. Department of Energy. DOE's Energy Savers You can improve the energy efficiency of existing windows by adding interior or exterior storm panels. Storm Window Panels exit disclaimer Storm windows can reduce the air leakage and improve the insulating value of existing windows. They can be installed on the interior or exterior side of windows, and can be mounted permanently or for seasonal use. Interior storm windows can be more easily installed and removed for ventilation or cleaning. Storm windows can reduce air leakage. However, it is important that humid

147

Reflred - Windows  

Science Conference Proceedings (OSTI)

... The Tcl console window lets you interact directly with Tcl/Tk. The help window lets you browse the help text. 2002-09-13. Browse Index

148

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Comfort Improved Comfort Comfort High performance windows with new glazing technologies not only reduce energy costs but make homes more comfortable as well. During cold weather, exterior temperatures drive interior glass surface temperatures down below the room air temperature; how low the glass temperature drops depends on the window's insulating quality. If people are exposed to the effects of a cold surface, they can experience significant radiant heat loss to that cold surface and they feel uncomfortable, even if the room air temperature is comfortable. When the interior glass surface temperature is 52ËšF or less, it is most likely that there will be discomfort. During warm weather, solar radiation can cause discomfort. Just as people turn up the heat to compensate for cold windows in cold weather, they may use

149

High Temperature Universal Silicon on Insulator (SOI) Gate Drive  

higher current drive, on-chip regulation capacitors, and more space efficient and robust on-chip layout. ... •Development of high temperature galvanic isolation

150

Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles  

E-Print Network (OSTI)

An experimental apparatus was designed to measure the effective thermal conductivity of various high temperature insulations subject to large temperature gradients representative of typical launch vehicle reentry aerodynamic heating conditions. The insulation sample cold side was maintained around room temperature, while the hot side was heated to temperatures as high as 1800°F. The environmental pressure was varied from 1 x 10 -4 to 760 torr. All the measurements were performed in a dry gaseous nitrogen environment. The effective thermal conductivity of the following insulation samples were measured: Saffilä at 1.5, 3, 6 lb/ft 3 , Q-Fiberä felt at 3, 6 lb/ft 3 , Cerachromeä at 6, 12 lb/ft 3 , and three multi-layer insulation configurations at 1.5 and 3 lb/ft 3 .. Introduction Metallic and refractory-composite thermal protection systems are being considered for a new generation of reusable launch vehicles (RLV). The main function of the thermal protection system (TPS) is to...

Kamran Daryabeigi

1999-01-01T23:59:59.000Z

151

Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles  

E-Print Network (OSTI)

An experimental apparatus was designed to measure the effective thermal conductivity of various high temperature insulations subject to large temperature gradients representative of typical launch vehicle reentry aerodynamic heating conditions. The insulation sample cold side was maintained around room temperature, while the hot side was heated to temperatures as high as 1800F. The environmental pressure was varied from 1 x 10 -4 to 760 torr. All the measurements were performed in a dry gaseous nitrogen environment. The effective thermal conductivity of the following insulation samples were measured: Saffil at 1.5, 3, 6 lb/ft 3 , Q-Fiber felt at 3, 6 lb/ft 3 , Cerachrome at 6, 12 lb/ft 3 , and three multi-layer insulation configurations at 1.5 and 3 lb/ft 3 .. Introduction Metallic and refractory-composite thermal protection systems are being considered for a new generation of reusable launch vehicles (RLV). The main function of the thermal protection system (TPS) is to mai...

Kamran Daryabeigi Langley

1999-01-01T23:59:59.000Z

152

Electronic properties of doped Mott insulators and high temperature superconductors  

E-Print Network (OSTI)

High-temperature superconducting cuprates, which are the quintessential example of a strongly correlated system and the most extensively studied materials after semiconductors, spurred the development in the fields of ...

Ribeiro, Tiago Castro

2005-01-01T23:59:59.000Z

153

Calcium silicate insulation structure  

DOE Patents (OSTI)

An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

Kollie, Thomas G. (Oak Ridge, TN); Lauf, Robert J. (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

154

Tips: Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Windows Windows Tips: Windows June 18, 2012 - 9:43am Addthis Tips: Windows Windows can be one of your home's most attractive features. Windows provide views, daylighting, ventilation, and heat from the sun in the winter. Unfortunately, they can also account for 10% to 25% of your heating bill by letting heat out. During the summer, your air conditioner must work harder to cool hot air from sunny windows. Install ENERGY STAR®-qualified windows and use curtains and shade to give your air conditioner and energy bill a break. If your home has single-pane windows, consider replacing them with double-pane windows with high-performance glass-low-e or spectrally selective coatings. In colder climates, select gas-filled windows with low-e coatings to reduce heat loss. In warmer climates, select windows with

155

"Flexible aerogel as a superior thermal insulation for high temperature superconductor cable applications"  

Science Conference Proceedings (OSTI)

High temperature superconducting (HTS) cables are an advanced technology that can both strengthen and improve the national electrical distribution infrastructure. HTS cables require sufficient cooling to overcome inherent low temperature heat loading. Heat loads are minimized by the use of cryogenic envelopes or cryostats. Cryostats require improvement in efficiency, reliability, and cost reduction to meet the demanding needs of HTS conductors (1G and 2G wires). Aspen Aerogels has developed a compression resistant aerogel thermal insulation package to replace compression sensitive multi-layer insulation (MLI), the incumbent thermal insulation, in flexible cryostats for HTS cables. Oak Ridge National Laboratory tested a prototype aerogel package in a lab-scale pipe apparatus to measure the rate of heat invasion. The lab-scale pipe test results of the aerogel solution will be presented and directly compared to MLI. A compatibility assessment of the aerogel material with HTS system components will also be presented. The aerogel thermal insulation solution presented will meet the demanding needs of HTS cables.

White, Shannon O. [Aspen Aerogel, Inc.; Demko, Jonathan A [ORNL; Tomich, A. [Aspen Aerogel, Inc.

2010-01-01T23:59:59.000Z

156

High Voltage Direct Current Live Line and Insulator Testing  

Science Conference Proceedings (OSTI)

This report has two main parts. The focus of the first part is on live work in overhead high-voltage direct current (HVDC) lines operating above 100 kV dc. It does not address issues related to lines for electric transport that typically operate below 60 kV dc worldwide. In addition, this first part of the report is not a detailed treatise on live work but, rather, addresses the main issues related to dc live work. More detailed information on the general topic of live work can be found in the references...

2011-12-23T23:59:59.000Z

157

Insulating shade assembly with removable cover  

SciTech Connect

An insulating window shade assembly is described which consists of: bracket means adapted to be mounted on the frame of a window; a first roller carrying an insulating shade and being disposed within the bracket means on the inside of the window, the shade being adapted to be drawn from the roller to cover the inside of the window and to be wound upon the roller to expose the window, a second roller carrying a removable cover fabric on the inside of the shade and being supported by the bracket means, the second roller being spaced from and disposed independently of the first roller, means disposed adjacent only the bottom edge of the insulating shade for connecting only the bottom edge of the cover fabric to the bottom only of the insulating shade so that the insulating shade and cover fabric may be drawn together over the inside of the window; guide means disposed adjacent the second roller and between the second roller and the insulating shade, the cover fabric passing over the guide means, for causing the cover fabric to hang closely adjacent the front of the insulating shade when the insulating shade is drawn over the window and when the insulating shade and cover fabric are connected together by the connecting means, and means for continually tensioning the cover fabric when the insulating shade is drawn and when the cover fabric is connected thereto so that the cover fabric lies smoothly over the shade.

Hausmann, S.; McLane, A. Jr.

1986-09-09T23:59:59.000Z

158

SINTEF Building and Infrastructure State-of-the-Art Highly Insulating  

NLE Websites -- All DOE Office Websites (Extended Search)

Frames - Research and Market Review Keywords: Windows, window frame, energy use, thermal transmittance, U-value, Passivhaus Figures on coverpage are based on work reported in...

159

Highly Insulating Glazing Systems using Non-Structural Center Glazing Layers  

SciTech Connect

Three layer insulating glass units with two low-e coatings and an effective gas fill are known to be highly insulating, with center-of-glass U-factors as low as 0.57 W/m{sup 2}-K (0.10 Btu/h-ft{sup 2}- F). Such units have historically been built with center layers of glass or plastic which extend all the way through the spacer system. This paper shows that triple glazing systems with non-structural center layers which do not create a hermetic seal at the edge have the potential to be as thermally efficient as standard designs, while potentially removing some of the production and product integration issues that have discouraged the use of triples.

Kohler, Christian; Arasteh, Dariush; Goudey, Howdy; Kohler, Christian

2008-04-09T23:59:59.000Z

160

Building America Top Innovations 2013 Profile Â… High-Efficiency Window Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

inexpensive, portable, and can be installed by inexpensive, portable, and can be installed by home occupants, making them a good solution for supplemental cooling, for installing air conditioning in homes that lack ductwork, and for renters. As a result, 7.5 million window air conditioners are purchased each year in the United States-more than all other home cooling equipment combined. However, a window air conditioner is required to meet only modest minimum efficiency standards, and its typical installation in a window causes air leakage, which significantly reduces the equipment's performance. To measure the impact these products have on home energy use, researchers at the National Renewable Energy Laboratory (NREL) studied the performance of one 10-year-old and three new window air conditioners in a range of

Note: This page contains sample records for the topic "highly insulating window" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Dynamic Residential Window prototype  

NLE Websites -- All DOE Office Websites (Extended Search)

to have dynamic seasonal solar control: high solar gains in the winter with high insulation and low solar gains in the summer. Dynamic, high performance products can be based...

162

Window Properties  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Properties: measurements, simulations and ratings Window Properties: measurements, simulations and ratings Determining the thermal and optical performance of window systems is essential to researchers striving to develop improved products and to window manufacturers who need to demonstrate the energy performance of their products to architects, engineers, builders, and the general public. LBNL is involved in basic research in this field, in developing software and test procedures to analyze and quantify window heat transfer and optics, and in developing standards and rating procedures. Infrared Laboratory experiments provide surface temperature maps of window products. A companion Traversing System measures air velocity and air temperatures near the surface of test specimens. The MoWiTT facility provides accurate measurements of the heat flow through complete window systems subjected to real weather conditions. MoWiTT results have been used to validate the performance of emerging technologies and research prototypes as well as to validate thermal performance models.

163

Windows and Daylighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Office building exterior Office building exterior Windows and Daylighting Windows research is aimed at improving energy efficiency in buildings and homes across the nation. Research includes: New glazing materials Windows simulation software Advanced high-performance fenestration systems Daylighting technologies Measurement of window properties Windows performance in residential and commercial buildings. Contacts Stephen Selkowitz SESelkowitz@lbl.gov (510) 486-5064 Eleanor Lee ESLee@lbl.gov (510) 486-4997 Charlie Curcija DCCurcija@lbl.gov (510) 495-2602 Links Windows and Daylighting Daylighting the New York Times Headquarters Building Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

164

Building America Top Innovations 2013 Profile Â… High-Efficiency Window Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

an inexpensive, portable form of spot cooling, an inexpensive, portable form of spot cooling, making them a good solution for supplemental cooling, for air conditioning in homes that lack ductwork, and for renters. As a result, 7.5 million window air conditioners are purchased each year in the United States-more than all other home cooling equipment combined. However, window air conditioners have low minimum efficiency standards, and their installation typically results in air leakage, which significantly reduces the equipment's performance. To measure the impact these products have on home energy use, researchers at the National Renewable Energy Laboratory (NREL) studied the performance of one 10-year-old and three new window air conditioners in a range of climates and conditions at NREL's Advanced Heating, Ventilation, and

165

The Revision of the UK Pipe Insulation Standard: - Its Likely Effect on Building Energy Efficiency and the Uptake of Highly Efficient Insulation Materials  

E-Print Network (OSTI)

The UK Government has set an ambitious target of a 20% reduction in CO2 emissions by 2010 based on a 1990 baseline. Since buildings account for over 40% of current CO2 emissions, the revision of building and building services insulation standards has been a high priority. The previous UK pipe insulation standard (BS 5422 - 1990) was based on an economic thickness methodology that resulted in thickness requirements for different materials of unequal energy saving value. The 2001 revision (BS 5422 - 2001) not only addresses this imbalance by defining environmental thicknesses that deliver equivalent energy savings but also increases the potential to reduce CO2 emissions by up to 5 million tonnes per annum. To stimulate this potential, the UK Government has introduced a tax incentive under the existing Capital Allowances scheme to promote the widespread adoption of the new standard in both new build and, more importantly, in renovation projects. Just as importantly, the new standard highlights the true cost-effectiveness of highly efficient insulation materials such as phenolic foam. Phenolic foam had already gained more than a 15% market share in the UK pipe insulation market prior to the recent changes to the standard on the basis of its excellent thermal resistance and fire properties. However, previous economic thickness models had promoted the use of less efficient materials with a poorer level of energy saving being the result. With this loophole now closed, the phenolic foam industry believes that its product will receive the acclamation that it deserves - while helping the UK Government to meet its own CO2 targets.

Ashford, P.

2002-01-01T23:59:59.000Z

166

Gas insulated transmission line with insulators having field controlling recesses  

DOE Patents (OSTI)

A gas insulated transmission line having a novel insulator for supporting an inner conductor concentrically within an outer sheath. The insulator has a recess contiguous with the periphery of one of the outer and inner conductors. The recess is disposed to a depth equal to an optimum gap for the dielectric insulating fluid used for the high voltage insulation or alternately disposed to a large depth so as to reduce the field at the critical conductor/insulator interface.

Cookson, Alan H. (Pittsburgh, PA); Pederson, Bjorn O. (Chelmsford, MA)

1984-01-01T23:59:59.000Z

167

Effect of changes in viewing window transmission on high-temperature Thomson scattering data  

DOE Green Energy (OSTI)

Unmonitored changes in the transmission of viewing windows owing to deposited films can produce errors in Thomson scattering temperature measurements. This effect is illustrated by a recent run on the Tokamak Fusion Test Reactor (TFTR) where apparent errors of over 25% in peak temperatures of 9 keV owing to carbon films were noted. Since coatings can also be removed by hydrogen discharges, the transmission of a window may change with time, resulting in variable errors in the temperature. It is proposed that these changes be monitored by calibration {ital in} {ital situ} with the aid of a low-pressure hydrogen glow discharge.

McNeill, D.H. (Princeton Research Forum, P. O. Box 497, Princeton, New Jersey 08542 (USA))

1990-04-01T23:59:59.000Z

168

Reflred - Windows  

Science Conference Proceedings (OSTI)

... reduction. The Tcl console window lets you interact directly with Tcl/Tk. Use it to help configure the application colors, etc. ...

169

Short Term Aging of Polymer Insulators: Impact of High Humidity Environment  

Science Conference Proceedings (OSTI)

For many years, EPRI has performed large scale aging tests on polymer insulators and evaluated many polymer insulators removed from service in an effort to understand what the aging factors are. EPRI has learned that a significant aging factor is corona discharge activity and has developed a test that focuses on how corona discharge activity degrades polymer insulators. This report highlights the latest development of a short-term aging test designed to assess how well a polymer insulator can ...

2012-12-20T23:59:59.000Z

170

BRAZING THIN BERYLLIUM WINDOWS  

SciTech Connect

Thin, high-vacuum Be windows were vacuum brazed to Cu supports for electronic devices, using small frames of 630-705 deg C In--Cu--Ag brazing alloy. The edges of the Be windows were coated with Cu before brazing. The brazing procedure is described. (D.L.C.)

Papacosta, J.P.; Murdock, D.M.; Crews, R.W.

1962-11-01T23:59:59.000Z

171

A neural network-based estimation of electric fields along high voltage insulators  

Science Conference Proceedings (OSTI)

This paper presents a two-dimensional (2D) electric fields estimation program to calculate the field distribution along the leakage distance of an insulator under polluted conditions using artificial neural network (ANN). A fog type suspension insulator ... Keywords: Electric fields, Insulator, Neural networks, Pollution

Zafer Aydogmus

2009-05-01T23:59:59.000Z

172

Guidelines for the Selection, Use, and Handling of High Temperature Insulation  

Science Conference Proceedings (OSTI)

This guide addresses design considerations for selecting replacement materials based on reviewing acceptable operating experience; handling new and used insulating materials safely; and identifying training criteria for personnel that come in contact with insulation. The user can complete an economically sound, energy conserving, and safe insulation maintenance project by applying this guide.

1997-11-13T23:59:59.000Z

173

Insulator Reference Book: Chapter 1: Insulator Fundamentals  

Science Conference Proceedings (OSTI)

This technical update report presents a draft first chapter of the Electric Power Research Institute (EPRI) Insulator Reference Book, which is being developed to give utility transmission engineers a comprehensive information resource on all aspects of high-voltage insulators.BackgroundHigh-voltage insulators are an essential part of the power delivery system. They ensure the safe transmission of electricity from generating stations to substations, where the ...

2013-12-19T23:59:59.000Z

174

Modular panels prevent window heat losses  

SciTech Connect

A Parker Hannifin plant in Cleveland found it possible to provide insulation which would handle a variety of temperature changes. The answer was a modular insulation system which covers windows in the winter, yet allows for adequate ventilation in the summer.

1981-04-01T23:59:59.000Z

175

Practical reasons for investigating ion transport in high temperature insulating materials  

SciTech Connect

Practical problems encountered in a number of advanced technology applications, particularly those related to energy conversion, are discussed. Refractory ionic compounds which are abundant and of high melting point are listed, and technological problems are discussed in terms of specific materials problems. The argument is made that basic information concerning transport properties in refractory compounds is lacking to such an extent that it is difficult to design and assess advanced energy generation systems. Technology applications include (a) ceramic nuclear fuels for high temperature fission reactors, (b) high temperature gas turbine blades, (c) insulators in controlled thermonuclear reactors, and (d) magnetohydrodynamic generators. Some of the difficulties inherent in making transport property measurements at high temperatures are also listed.

Sonder, E.

1976-07-01T23:59:59.000Z

176

CAVE WINDOW  

DOE Patents (OSTI)

A cave window is described. It is constructed of thick glass panes arranged so that interior panes have smaller windowpane areas and exterior panes have larger areas. Exterior panes on the radiation exposure side are remotely replaceable when darkened excessively. Metal shutters minimize exposure time to extend window life.

Levenson, M.

1960-10-25T23:59:59.000Z

177

A Design Guide for Early-Market Electrochromic Windows  

E-Print Network (OSTI)

T. Wilmert. 2004. Window Systems for High Performanceof electrochromic windows: a pilot study”, Building andfor an Electrochromic Window Wall Attached are curtainwall

2006-01-01T23:59:59.000Z

178

Laser sealed evacuated window glazings  

SciTech Connect

The design and fabrication of a highly insulating, evacuated window glazing have been investigated. A thermal network model has been used to parametrically predict the thermal performance of such a window. Achievable design, options are predicted to provide a glazing with a thermal conductance less than 0.6 W/m/sup 2/K (R > 10/sup 0/F ft/sup 2/ h/Btu) which is compact, lightweight, and durable. A CO/sub 2/ laser has been used to produce a continuous, leak tight, welded glass perimeter seal around 25 x 25 cm/sup 2/ test specimens. Various diameters of regularly spaced spherical support spacers were incorporated in the specimens as well as an integral SnO/sub 2/:F transparent, low emissivity coating for suppression of radiative heat transfer. Laser sealing rates of .06 cm/s were achieved at a 580/sup 0/C glass working temperature with 400 W of continuous wave (CW) laser power.

Benson, D.K.; Tracy, C.E.; Jorgensen, G.J.

1984-10-01T23:59:59.000Z

179

ZIP. Economic Insulation Levels for Houses  

SciTech Connect

ZIP was developed to support the calculations and database used to estimate the economic levels of insulation published in the U.S. Department of Energy`s Insulation Fact Sheet. The program allows the user to estimate economic levels of insulation for attics, exterior walls, floors over unheated areas, slab floors, and basement and crawlspace walls for new and existing houses in any 3-digit zip code location in the U.S., based on local climate data, local prices for energy and insulation, and the type and estimated efficiency of its heating and cooling system. ZIP recognizes five different heating systems: natural gas, oil furnaces, electric furnaces, electric baseboard, and electric heat pump and two cooling systems: central and window electric air conditioners. An evaporative cooling system can also be specified, but this is not treated as a true air-conditioning system. In addition, the user can specify the approximate operating efficiency of the heating and cooling systems (low, medium, high, or very high). ZIP can be run for a single zip code and specified heating and cooling system or in a batch mode for any number of consecutive zip codes to provide a table of economic insulation levels for use at the state or national level.

McElroy, D. [Oak Ridge National Lab., TN (United States)

1989-01-01T23:59:59.000Z

180

ZIP. Economic Insulation Levels for Houses  

SciTech Connect

ZIP was developed to support the calculations and database used to estimate the economic levels of insulation published in the U.S. Department of Energy's Insulation Fact Sheet. The program allows the user to estimate economic levels of insulation for attics, exterior walls, floors over unheated areas, slab floors, and basement and crawlspace walls for new and existing houses in any 3-digit zip code location in the U.S., based on local climate data, local prices for energy and insulation, and the type and estimated efficiency of its heating and cooling system. ZIP recognizes five different heating systems: natural gas, oil furnaces, electric furnaces, electric baseboard, and electric heat pump and two cooling systems: central and window electric air conditioners. An evaporative cooling system can also be specified, but this is not treated as a true air-conditioning system. In addition, the user can specify the approximate operating efficiency of the heating and cooling systems (low, medium, high, or very high). ZIP can be run for a single zip code and specified heating and cooling system or in a batch mode for any number of consecutive zip codes to provide a table of economic insulation levels for use at the state or national level.

McElroy, D. (Oak Ridge National Lab., TN (United States))

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "highly insulating window" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Tokamak physics experiment: Diagnostic windows study  

SciTech Connect

We detail the study of diagnostic windows and window thermal stress remediation in the long-pulse, high-power Tokamak Physics Experiment (TPX) operation. The operating environment of the TPX diagnostic windows is reviewed, thermal loads on the windows estimated, and cooling requirements for the windows considered. Applicable window-cooling technology from other fields is reviewed and its application to the TPX windows considered. Methods for TPX window thermal conditioning are recommended, with some discussion of potential implementation problems provided. Recommendations for further research and development work to ensure performance of windows in the TPX system are presented.

Merrigan, M.; Wurden, G.A.

1995-11-01T23:59:59.000Z

182

Arranging PPP Windows  

Science Conference Proceedings (OSTI)

03/15/2005. Arranging PPP Windows. Suggestions for arranging the two PPP windows: Use Attach / adjust windows.

183

LBNL Windows & Daylighting Software -- WINDOW: System Requirements  

NLE Websites -- All DOE Office Websites (Extended Search)

REQUIREMENTS OPERATING SYSTEM Program has been tested on Microsoft Vista, Microsoft Windows 7, Microsoft Windows XP, Windows 2000TM.. It has been reported by users that the...

184

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Glass Glass Vacuum-insulated Glass Vacuum-insulated glazing units are made up of 2 panes of glass with a very small air space. The air space contains spacers which help maintain the separation between the panes. Most of the emerging glass technologies are available or nearly on the market. These include insulation-filled and evacuated glazings to improve heat transfer by lowering U-factors. Evacuated Windows The most thermally efficient gas fill would be no gas at all-a vacuum. The window industry is pursuing the development of vacuum-insulated glass (VIG) for use in window units in which the space between the panes is evacuated. If the vacuum pressure is low enough, there would be no conductive or convective heat exchange between the panes of glass, thus lowering the U-factor. A vacuum glazing must have a good low-E coating to

185

Method of fabricating a microelectronic device package with an integral window  

DOE Patents (OSTI)

A method of fabricating a microelectronic device package with an integral window for providing optical access through an aperture in the package. The package is made of a multilayered insulating material, e.g., a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC). The window is inserted in-between personalized layers of ceramic green tape during stackup and registration. Then, during baking and firing, the integral window is simultaneously bonded to the sintered ceramic layers of the densified package. Next, the microelectronic device is flip-chip bonded to cofired thick-film metallized traces on the package, where the light-sensitive side is optically accessible through the window. Finally, a cover lid is attached to the opposite side of the package. The result is a compact, low-profile package, flip-chip bonded, hermetically-sealed package having an integral window.

Peterson, Kenneth A. (Albuquerque, NM); Watson, Robert D. (Tijeras, NM)

2003-01-01T23:59:59.000Z

186

windows Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

DEPUTY GROUP LEADER Charlie Curcija 495-2602 90-3111 dccurcija@lbl.gov WINDOWS AND DAYLIGHTING STAFF Andre Anders 486-6745 53-004 aanders@lbl.gov Dennis...

187

Laser having improved windows  

SciTech Connect

A discharge tube for a gaseous laser is terminated with windows made of crystalline quartz which do not fluoresce in the presence of high energy, visible and ultraviolet light radiation.

Alves, R.W.; Costich, V.R.

1976-11-23T23:59:59.000Z

188

ACCELERATED AGING STUDY OF MACHINE WINDING INSULATION UNDER AC AND HIGH FREQUENCY PULSE VOLTAGE APPLICATION.  

E-Print Network (OSTI)

?? It is common practice to perform accelerated aging with 60 Hz ac to determine the lifetime characteristics of insulation used in the machine. Comparable… (more)

Chalise, Sajal Raj

2010-01-01T23:59:59.000Z

189

Investigation of a high impedance magnetically insulated transmission line oscillator with hollow load  

Science Conference Proceedings (OSTI)

A novel high-impedance magnetically insulated transmission line oscillator (MILO) with greatly restrained power deposition on the anode has been investigated. Methods to increase the MILO impedance and decrease the anode current are discussed. A MILO with impedance of 30 {Omega} and power conversion efficiency of 25% is presented by particle-in-cell simulations. Compared with the previous MILO in our lab, the anode current of the proposed MILO is reduced about 50%, the power conversion efficiency doubles, and the power deposition on anode is reduced nearly one half. Furthermore, considerations for reducing the power deposition on load have also been carried out in MILO design, and the load current is reduced to 4.6 kA, only 17% of the total anode current. Finally, a hollow load was introduced to reduce the power deposition density on the load, without decreasing the power conversion efficiency.

Zhou Heng; Shu Ting; Li Zhiqiang [College of Opto-electric Science and Engineering, National University of Defense Technology, Hunan 410073 (China)

2012-09-15T23:59:59.000Z

190

Homeowners' demand for home insulation  

SciTech Connect

The survey was conducted to provide guidance based on the views and experience of a national sample of homeowners about the insulation of their homes. The telephone survey was conducted with 1,012 homeowners between January 12 and 22, 1978 in the East, Midwest, South, and West regions of the U.S. From the survey data were compiled on plans for installing home insulation with emphasis on attic insulation; how many homes now have various types of insulation; recent experiences in obtaining attic insulation--its cost, material used, when installed, whether installed by the homeowner or a contractor; the kinds of insulation thought to be needed--attic insulation, wall insulation, storm doors and windows; whether homeowners planning attic insulation feel that they have the necessary information to do the work themselves or if they feel they know enough to make the necessary arrangements with a contractor; the effect of higher fuel costs on likelihood of installing attic insulation; shortages of insulating materials; what sources of information are relied on when planning attic insulation; attitudes toward having utility companies install insulation to be paid for by means of utility bills; how much trust homeowners have in the advice of government, utility companies, insulation manufacturers, insulation installers, and retail stores about how much insulation is needed; the likely effect of a tax credit on plans to insulate the attic; and the concern about energy shortages.

1978-04-01T23:59:59.000Z

191

LBNL Windows & Daylighting Software -- WINDOW  

NLE Websites -- All DOE Office Websites (Extended Search)

downloading and installing Optics 6, as it has a few bug fixes and works with Windows 7 and 8. NFRC (National Fenestration Rating Council) will "sunset" use of Optics 5.1...

192

SINTEF Building and Infrastructure State-of-the-Art Highly Insulating  

NLE Websites -- All DOE Office Websites (Extended Search)

the search was performed through Internet search engines with English and German search terms, the list will not be a complete one, including all window frames complying by...

193

THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS  

E-Print Network (OSTI)

Heat Mirrors for Passive Solar Heating Applications", LBLsolar collector and passive solar heating applications with

Selkowitz, Stephen E.

2011-01-01T23:59:59.000Z

194

Field Evaluation of Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Windows Evaluation of Windows Last Updated: 10/20/2009 Various tools can be used to evaluate windows in the field. Unless a new window still has the NFRC label attached to it, it is nearly impossible to determine by sight what the thermal and optical performance of a window is. These tools can provide information, such as low-e coating, gap width and gas fill, that can be used to approximate the performance of a window. Solar gain and Low-e detector This device can be used to determine if a low-e coating is present in the window, what type of coating it is, and where it is located. The type of low-e coating will indicate the amount of solar gain that is admitted through the coating. Readings can be "low", "medium" or "high". The device will also indicate on which glass surface the low-e coating is in relation to the position of the device. Limitations: Only works on glass of 1/8" (3 mm) or thinner. Cost: around $350 from EDTM.com

195

Electrical wire insulation and electromagnetic coil  

DOE Patents (OSTI)

An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

Bich, George J. (Penn Hills, PA); Gupta, Tapan K. (Monroeville, PA)

1984-01-01T23:59:59.000Z

196

Vacuum-barrier window for wide-bandwidth high-power microwave transmission  

DOE Patents (OSTI)

A vacuum output window comprises a planar dielectric material with identical systems of parallel ridges and valleys formed in opposite surfaces. The valleys in each surface neck together along parallel lines in the bulk of the dielectric. Liquid-coolant conduits are disposed linearly along such lines of necking and have water or even liquid nitrogen pumped through to remove heat. The dielectric material can be alumina, or its crystalline form, sapphire. The electric-field of a broadband incident megawatt millimeter-wave radio frequency energy is oriented perpendicular to the system of ridges and valleys. The ridges, about one wavelength tall and with a period of about one wavelength, focus the incident energy through in ribbons that squeeze between the liquid-coolant conduits without significant losses over very broad bands of the radio spectrum. In an alternative embodiment, the liquid-coolant conduits are encased in metal within the bulk of the dielectric.

Caplan, Malcolm (Fremont, CA); Shang, Clifford C. (Tracy, CA)

1996-01-01T23:59:59.000Z

197

Vacuum-barrier window for wide-bandwidth high-power microwave transmission  

DOE Patents (OSTI)

A vacuum output window comprises a planar dielectric material with identical systems of parallel ridges and valleys formed in opposite surfaces. The valleys in each surface neck together along parallel lines in the bulk of the dielectric. Liquid-coolant conduits are disposed linearly along such lines of necking and have water or even liquid nitrogen pumped through to remove heat. The dielectric material can be alumina, or its crystalline form, sapphire. The electric-field of a broadband incident megawatt millimeter-wave radio frequency energy is oriented perpendicular to the system of ridges and valleys. The ridges, about one wavelength tall and with a period of about one wavelength, focus the incident energy through in ribbons that squeeze between the liquid-coolant conduits without significant losses over very broad bands of the radio spectrum. In an alternative embodiment, the liquid-coolant conduits are encased in metal within the bulk of the dielectric. 4 figs.

Caplan, M.; Shang, C.C.

1996-08-20T23:59:59.000Z

198

BSP 930 WINDOWS HANDBOOK  

Science Conference Proceedings (OSTI)

... click Default Computer. When the Default Computer Properties window appears, select Windows NT System, then Logon. ...

199

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Control Window Film Solar Control Window Film Window Attachments For detailed information on storm windows and other window attachments, visit www.windowattachments.org exit disclaimer , a site supported by Lawrence Berkeley National Laboratory, Building Green, and the U.S. Department of Energy. DOE's Energy Savers You can improve the energy efficiency of existing windows by applying a film. High-Reflectivity Window Films exit disclaimer International Window Film Association For more information on window film, check the Window Film Information Center exit disclaimer . Solar control window film reduces solar heat gain by reflection and absorption. As they also block solar heat gain in winter months, these films are ideal for cooling-dominated climates. Window films can be tinted

200

Peg supported thermal insulation panel  

DOE Patents (OSTI)

A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "highly insulating window" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Peg supported thermal insulation panel  

DOE Patents (OSTI)

A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

Nowobilski, J.J.; Owens, W.J.

1985-04-30T23:59:59.000Z

202

Building Technologies Office: Vacuum Insulation Panels Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacuum Insulation Vacuum Insulation Panels Research Project to someone by E-mail Share Building Technologies Office: Vacuum Insulation Panels Research Project on Facebook Tweet about Building Technologies Office: Vacuum Insulation Panels Research Project on Twitter Bookmark Building Technologies Office: Vacuum Insulation Panels Research Project on Google Bookmark Building Technologies Office: Vacuum Insulation Panels Research Project on Delicious Rank Building Technologies Office: Vacuum Insulation Panels Research Project on Digg Find More places to share Building Technologies Office: Vacuum Insulation Panels Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research

203

Empirical assessment of a prismatic daylight-redirecting window film in a  

NLE Websites -- All DOE Office Websites (Extended Search)

Empirical assessment of a prismatic daylight-redirecting window film in a Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed Title Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed Publication Type Conference Paper LBNL Report Number LBNL-6496E Year of Publication 2013 Authors Thanachareonkit, Anothai, Eleanor S. Lee, and Andrew McNeil Conference Name Illuminating Engineering Society (IES) Annual Conference 2013 Date Published 10/2013 Conference Location Huntington Beach, California Keywords building energy efficiency., daylighting, microstructure film, prismatic film, windows Abstract Daylight redirecting systems with vertical windows have the potential to offset lighting energy use in deep perimeter zones. Microstructured prismatic window films can be manufactured using low-cost, roll-to-roll fabrication methods and adhered to the inside surface of existing windows as a retrofit measure or installed as a replacement insulating glass unit in the clerestory portion of the window wall. A clear film patterned with linear, 50-250 micrometer high, four-sided asymmetrical prisms was fabricated and installed in the south-facing, clerestory low-e, clear glazed windows of a full-scale testbed facility. Views through the film were distorted. The film was evaluated in a sunny climate over a two-year period to gauge daylighting and visual comfort performance. The daylighting aperture was small (window-to-wall ratio of 0.18) and the lower windows were blocked off to isolate the evaluation to the window film. Workplane illuminance measurements were made in the 4.6 m (15 ft) deep room furnished as a private office. Analysis of discomfort glare was conducted using high dynamic range imaging coupled with the evalglare software tool, which computes the daylight glare= probability and other metrics used to evaluate visual discomfort.

204

High voltage capability electrical coils insulated with materials containing SF.sub.6 gas  

DOE Patents (OSTI)

A coil is made having a plurality of layers of adjacent metal conductor windings subject to voltage stress, where the windings have insulation therebetween containing a small number of minute disposed throughout its cross-section, where the voids are voids filled with SF.sub.6 gas to substitute for air or other gaseous materials in from about 60% to about 95% of the cross-sectional void volume in the insulation, thus incorporating an amount of SF.sub.6 gas in the cross-section of the insulation effective to substantially increase corona inception voltages.

Lanoue, Thomas J. (Muncie, IN); Zeise, Clarence L. (Penn Township, Allegheny County, PA); Wagenaar, Loren (Muncie, IN); Westervelt, Dean C. (Acme, PA)

1988-01-01T23:59:59.000Z

205

Walls and Windows  

SciTech Connect

Energy travels in and out of a building through the walls and windows by means of conduction, convection, and radiation. The walls and windows, complex systems in themselves, are part of the overall building system. A wall system is composed of multiple layers that work in concert to provide shelter from the exterior weather. Wall systems vary in the degree to which they provide thermal resistance, moisture resistance, durability, and thermal storage. High tech windows are now available that can resist radiation heat transfer while still providing light and visibility. The combination of walls and windows within the building system can be adapted to meet a wide range of environmental conditions, recognizing that the best building envelope system for one climate may not be the first choice for another location.

Stovall, Therese K [ORNL

2007-01-01T23:59:59.000Z

206

Spring Home Maintenance: Windows, Windows, Windows! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! April 26, 2013 - 11:42am Addthis Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Use these tips for window maintence and treatments to save energy this spring. The beginning of spring marks the point in the year when I'm cleaning, purging the house of things I no longer need, and updating my home on needed repairs. This year, I'm focusing on how to lower my energy bills

207

Spring Home Maintenance: Windows, Windows, Windows! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Maintenance: Windows, Windows, Windows! Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! April 26, 2013 - 11:42am Addthis Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Use these tips for window maintence and treatments to save energy this spring. The beginning of spring marks the point in the year when I'm cleaning, purging the house of things I no longer need, and updating my home on needed repairs. This year, I'm focusing on how to lower my energy bills

208

A search model for topological insulators with high-throughput robustness descriptors  

Science Conference Proceedings (OSTI)

Topological insulators (TI) are becoming one of the most studied classes of novel materials because of their great potential for applications ranging from spintronics to quantum computers. To fully integrate TI materials in electronic devices, high-quality epitaxial single-crystalline phases with sufficiently large bulk bandgaps are necessary. Current efforts have relied mostly on costly and time-consuming trial-and-error procedures. Here we show that by defining a reliable and accessible descriptor {cflx X}TI, which represents the topological robustness or feasibility of the candidate, and by searching the quantum materials repository aflowlib.org, we have automatically discovered 28 TIs (some of them already known) in five different symmetry families. These include peculiar ternary halides, Cs{l_brace}Sn,Pb,Ge{r_brace}{l_brace}Cl,Br,I{r_brace}{sub 3}, which could have been hardly anticipated without high-throughput means. Our search model, by relying on the significance of repositories in materials development, opens new avenues for the discovery of more TIs in different and unexplored classes of systems.

Yang, Kesong; Setyawan, Wahyu; Wang, Shidong; Nardelli, Marco B.; Curtarolo, Stephano

2012-05-13T23:59:59.000Z

209

Insulation Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Materials Insulation Materials Insulation Materials May 30, 2012 - 10:08am Addthis Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Rigid foam board adds R-value to this wall in a Florida home. | Photo courtesy of FSEC/IBACOS. Rigid foam board adds R-value to this wall in a Florida home. | Photo

210

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidance on Window Durability Guidance on Window Durability There is no simple rating or absolute guarantee of the durability of a window. You may want to study the design and workmanship of the window and rely on recommendations from others who have used similar products. The advice of experienced architects and builders can be helpful. As with other products, warranties can be an indicator of the reliability of the window and its manufacturer. Durability may vary with location; for example, some materials are degraded by salt near the ocean. These aspects of window durability deserve special attention: frame and sashes; insulating glass seals; weatherstripping; and local requirements for structural integrity. Frame and Sashes Although design and workmanship may be the most important factors

211

New High Capacity Getter for Vacuum-Insulated Mobile Liquid Hydrogen Storage Systems  

DOE Green Energy (OSTI)

Current ''Non evaporable getters'' (NEGs), based on the principle of metallic surface sorption of gas molecules, are important tools for the improving the performance of many vacuum systems. High porosity alloys or powder mixtures of Zr, Ti, Al, V, Fe and other metals are the base materials for this type of getters. The continuous development of vacuum technologies has created new challenges for the field of getter materials. The main sorption parameters of the current NEGs, namely, pumping speed and sorption capacity, have reached certain upper limits. Chemically active metals are the basis of a new generation of NEGs. The introduction of these new materials with high sorption capacity at room temperature is a long-awaited development. These new materials enable the new generation of NEGs to reach faster pumping speeds, significantly higher sticking rates and sorption capacities up to 104 times higher during their lifetimes. Our development efforts focus on producing these chemically active metals with controlled insulation or protection. The main structural forms of our new getter materials are spherical powders, granules and porous multi-layers. The full pumping performance can take place at room temperature with activation temperatures ranging from room temperature to 650 C. In one of our first pilot projects, our proprietary getter solution was successfully introduced as a getter pump in a double-wall mobile LH2 tank system. Our getters were shown to have very high sorption capacity of all relevant residual gases, including H2. This new concept opens the opportunity for significant vacuum improvements, especially in the field of H2 pumping which is an important task in many different vacuum applications.

H. Londer; G. R. Myneni; P. Adderley; G. Bartlok; J. Setina; W. Knapp; D. Schleussner

2006-05-01T23:59:59.000Z

212

Thermal Insulation Systems  

E-Print Network (OSTI)

Thermal insulation systems are receiving a high degree of attention in view of increasing energy cost. Industrial, commercial and residential energy users are all well aware of energy cost increases and great emphasis is being directed to energy cost reduction programs. One of the best places to start with energy conservation is to employ proper insulation systems. This article discusses the significant properties of thermal insulation materials primarily for industrial application. Some of the information is applicable to commercial and residential insulation. Only hot service conditions will be covered.

Stanley, T. F.

1982-01-01T23:59:59.000Z

213

Window Energy Efficiency Checklist  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Energy Efficiency Checklist While most new windows have labels indicating their energy properties, such information is not often available for existing windows. Here is a...

214

Zero Energy Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

made standard windows significantly more efficient. However, even if all windows in the stock were replaced with todays efficient products, window energy consumption would still be...

215

Advancement of Electrochromic Windows  

E-Print Network (OSTI)

to Electrochromic Windows Attachment 12: Analysis of VisualMarket Electrochromic Windows Attachment 17: Summary ofof the Electrochromic Windows Attachment 4: An Assessment of

2006-01-01T23:59:59.000Z

216

Zero Energy Windows  

E-Print Network (OSTI)

of Electrochromic Windows Controlled for Daylight and Visualof Electrochromic Windows, California Energy Commission /Potential of Electrochromic Windows in the U.S. Commercial

Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

2006-01-01T23:59:59.000Z

217

Tutorial Design Windows - CECM  

E-Print Network (OSTI)

Tutorial Design Windows: Activity 2: Activity 2 Design Window Return to tutorial. Exercise 1: Exercise 1 Design Window Return to exercises. Exercise 2: Exercise  ...

218

Advancement of Electrochromic Windows  

E-Print Network (OSTI)

Early-Market Electrochromic Windows. LBNL-59950. 17. Summaryof Daylight through Windows. http://www.lrc.rpi.edu/Occupants’ Control of Window Blinds in Private Offices.

2006-01-01T23:59:59.000Z

219

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Glazing Glazing Double-Glazed, Clear Glass This figure illustrates the performance of a typical double-glazed unit with two lites of clear glass. The inner and outer layers of glass are both clear and separated by an air gap. Double glazing, compared to single glazing, cuts heat loss in half due to the insulating air space between the glass layers. In addition to reducing the heat flow, a double-glazed unit with clear glass will allow the transmission of high visible light and high solar heat gain. Double Clear Center of Glass Properties Note: These values are for the center of glass only. They should only be used to compare the effect of different glazing types, not to compare total window products. Frame choice can drastically affect performance. These values represent double glazing with a 1/2" air gap.

220

LBNL Windows & Daylighting Software -- WINDOW tutorials  

NLE Websites -- All DOE Office Websites (Extended Search)

Movie) bullet Creating a Window with a Generic Frame in WINDOW 6 or 7 (QuickTime Movie) Advanced Tutorials: bullet Database structure for Shading Systems in WINDOW7 (QuickTime)...

Note: This page contains sample records for the topic "highly insulating window" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Documentation (all versions) WINDOW 5.0 : bullet WINDOW 5.0 User Manual (3 MB, Adobe PDF format) bullet NFRC THERM 5.2 WINDOW 5.2 Simulation Manual (July 2006) (13 MB, Adobe PDF...

222

Molecular beam epitaxy of SrTiO{sub 3} with a growth window  

Science Conference Proceedings (OSTI)

Many complex oxides with only nonvolatile constituents do not have a wide growth window in conventional molecular beam epitaxy (MBE) approaches, which makes it difficult to obtain stoichiometric films. Here it is shown that a growth window in which the stoichiometry is self-regulating can be achieved for SrTiO{sub 3} films by using a hybrid MBE approach that uses a volatile metal-organic source for Ti, titanium tetra isopropoxide (TTIP). The growth window widens and shifts to higher TTIP/Sr flux ratios with increasing temperature, showing that it is related to the desorption of the volatile TTIP. We demonstrate stoichiometric, highly perfect, insulating SrTiO{sub 3} films. The approach can be adapted for the growth of other complex oxides that previously were believed to have no wide MBE growth window.

Jalan, Bharat; Moetakef, Pouya; Stemmer, Susanne [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States)

2009-07-20T23:59:59.000Z

223

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

directories. Gas Library Import Fixed a display problem that would occur when importing a Gas Library record from another WINDOW 7 database. Window Library Export Fixed problem...

224

Validation of the thermal effect of roof with the Spraying and green plants in an insulated building  

E-Print Network (OSTI)

of the insulation efficiency of the RC building. Windfor an RC building with a high degree of insulation in thebuildings have insulating material to provide thermal insulation

Zhou, Nan; Gao, Weijun; Nishida, Masaru; Ojima, Toshio

2004-01-01T23:59:59.000Z

225

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

CGDB Import Into WINDOW CGDB Import Into WINDOW Updated: 11/14/12 Detailed Instructions for Importing CGDB data into WINDOW These instructions apply to either WINDOW 6 or 7. WINDOW 6 vs WINDOW 7 Because the database structure of WINDOW 6 is different that WINDOW 7, there are different CGDB files to go with each version of WINDOW. There are also different versions of the XML files for each version, because in WINDOW 7 some problems with the files were fixed. Setup of CGDB The CGDB consists of a WINDOW database of records in the Shading Layer, Shade Material Library, and Glass Library, as well as a set of text files for systems that reference BSDF XML files. Database: The installation will put two databases into the "LBNL Shared" directory: (the location will depend on your operating system):

226

Precipitable Water Estimation from High-Resolution Split Window Radiance Measurements  

Science Conference Proceedings (OSTI)

A technique that uses the spatial variance of image brightness temperature to derive total column Precipitable water is applied to high-resolution multispectral aircraft scanner data for the 19 June 1986 COHMEX day. The technique has several ...

Gary J. Jedlovec

1990-09-01T23:59:59.000Z

227

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding Windows Understanding Windows Benefits of Energy Efficient Windows The purpose for windows is to provide natural light, natural ventilation, and views to the outside. The benefits of high performance windows allows for Energy & Cost Savings, Improved Comfort, Less Condensation, Increased Light & View, Reduced Fading, and Lower HVAC Costs. Benefits of Energy Efficient Windows Design Considerations Windows are a complex and interesting element in residential design. New window products and technologies have changed the performance of windows in a radical way. Issues such as climate, orientation, shading, and window area all effect the energy performance, but human factor issues such as access to fresh air, daylight, and natural views impact the comfort of a home.

228

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Performance: Air Leakage (AL) Measuring Performance: Air Leakage (AL) Is my window leaking air? The Air Leakage (AL) rating pertains to leakage through the window assembly itself. Air infiltration can also occur around the frame of the window due to poor installation or poor maintenance of existing window systems. Make sure windows are properly installed and maintained (caulking and weatherstripping). Cold glass can create uncomfortable drafts as air next to the window is cooled and drops to the floor. This is not a result of air leaking through or around the window assembly but from a convective loop created when next to a window is cooled and drops to the floor. This air movement can be avoided by installing high-performance windows. Heat loss and gain occur by infiltration through cracks in the window

229

Disruptions, Disruptivity, and Safer Operating Windows in the High-? Spherical Torus NSTX  

SciTech Connect

This paper discusses disruption rates, disruption causes, and disruptivity statistics in the high- ?N National Spherical Torus Experiment (NSTX) [M. Ono, et al. Nuclear Fusion 40, 557 (2000)]. While the overall disruption rate is rather high, configurations with high ?N , moderate q*, strong boundary shaping, sufficient rotation, and broad pressure and current profiles are found to have the lowest disruptivity; active n=1 control further reduces the disruptivity. The disruptivity increases rapidly for q*<2.7, which is substantially above the ideal MHD current limit. In quiescent conditions, qmin >1.25 is generally acceptable for avoiding the onset of core rotating n=1 kink/tearing modes; when EPM and ELM disturbances are present, the required qmin for avoiding those modes is raised to ~1.5. The current ramp and early flat-top phase of the discharges are prone to n=1 core rotating modes locking to the wall, leading to a disruption. Small changes to the discharge fueling during this phase can often mitigate the rotation damping associated with these modes and eliminate the disruption. The largest stored energy disruptions are those that occur at high current when a plasma current rampdown is initiated incorrectly.

Gerhardt, S P; Diallo, A; Gates, D; LeBlanc, B P; Menard, J E; Mueller, D; Sabbagh, S A; Soukhanovskii, V; Tritz, K

2012-09-27T23:59:59.000Z

230

Calcium fluoride window mounting  

SciTech Connect

A technique has been developed for joining a large calcium fluoride crystal to a stainless-steel flange by means of a silver transition ring. The process involves both vacuum brazing using a copper-silver alloy and air brazing using silver chloride. This paper describes the procedure used in fabricating a high-vacuum leak-tight calcium fluoride window assembly.

Berger, D.D.

1982-10-01T23:59:59.000Z

231

Disruptions, Disruptivity, and Safer Operating Windows in the High-? Spherical Torus NSTX  

Science Conference Proceedings (OSTI)

A fusion pilot plant study was initiated to clarify the development needs in moving from ITER to a first of a kind fusion power plant. The mission of the pilot plant was set to encompass component test and fusion nuclear science missions yet produce net electricity with high availability in a device designed to be prototypical of the commercial device. The objective of the study was to evaluate three different magnetic configuration options, the advanced tokamak (AT), spherical tokamak (ST) and compact stellarator (CS) in an effort to establish component characteristics, maintenance features and the general arrangement of each candidate device. With the move to look beyond ITER the fusion community is now beginning to embark on DEMO reactor studies with an emphasis on defining configuration arrangements that can meet a high availability goal. This paper reviews the AT pilot plant design, detailing the selected maintenance approach, the device arrangement and sizing of the in-vessel components. Details of interfacing auxiliary systems and services that impact the ability to achieve high availability operations will also be discussed.

Brown, T; Goldston, R J; El-Guebaly, L; Kessel, C; Neilson, G H; Malang, S; Menard, J E; Prager, S; Scott, S; Titus, P; Waganer, L

2012-09-26T23:59:59.000Z

232

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Technologies Window Technologies Operator Types Traditional operable window types include the projected or hinged types such as casement, awning, and hopper, and the sliding types such as double- and single-hung and horizontal sliding. This section on Operator Types describes how these typical windows work. Operator Types Glazing Types Traditionally, windows have been made from clear glass, but advanced technologies have significantly improved the thermal performance of glass. This section on Glazing Types describes some of these technologies. Glazing Types Gas Fills Gas fills improve the thermal performance of insulating glazing units by reducing the conductance of the air space between the layers. This section on Gas Fills describes the thermal performance benefits of adding gas to an IGU.

233

Saving energy with storm windows and doors  

SciTech Connect

The objective of conserving heating and cooling fuels with properly designed and installed doors and windows will not succeed until the window and door energy problems are specifically identified and specific solutions are understood. Almost three times as much heat is lost directly through the glass as from the edges of the frame. One square foot of single glazing loses as much heat as 10 ft/sup 2/ of solid wall. Almost 70 percent of the heating load and 46 percent of the cooling load are related to windows and doors. Homeowners are urged to caulk and weatherstrip; keep windows and doors in good repair; and install windows and doors with insulating glass. (MCW)

Gorell, F.

1976-03-01T23:59:59.000Z

234

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Benefits of Efficient Windows Benefits of Efficient Windows Looking for information on windows for a new house? Window Selection Tool Selection Process Design Guidance Installation Looking for information on replacement windows? Window Selection Tool Assessing Options Selection Process Design Guidance Installation Energy & Cost Savings Energy efficient windows can substantially reduce the costs associated with heating and cooling. This section on Energy & Cost Savings illustrates these savings in both heating and cooling climates. Energy Savings Lower HVAC Costs High-performance windows not only provide reduced annual heating and cooling bills, they also reduce the peak heating and cooling loads. This section on Lower HVAC Cost illustrates how the use of high performance windows can help in reducing HVAC equipment sizing.

235

Windowed versus windowless solar energy cavity receivers  

DOE Green Energy (OSTI)

A model for a windowed, high-temperature cavity receiver of the heated-air type is developed and used to evaluate the greenhouse effect as a method for obtaining high receiver operating efficiencies. The effects on receiver efficiency of varying the window cutoff wavelength, the amount of absorption in the window pass-band, the cavity operating temperature, and the number of windows are determined. Single windowed cavities are found to offer theoretical efficiencies comparable to windowless ones, while multiple windowed units are found to suffer from low operating efficiencies due to losses resulting from reflections at each window/air interface. A ''first order'' examination is made of the feasibility of air cooling the window to assure its survival. This appears possible if a proper combination of cooling technique and window material characteristics is selected.

Jarvinen, P. O.

1976-09-01T23:59:59.000Z

236

Vacuum insulation of the high energy negative ion source for fusion application  

Science Conference Proceedings (OSTI)

Vacuum insulation on a large size negative ion accelerator with multiple extraction apertures and acceleration grids for fusion application was experimentally examined and designed. In the experiment, vacuum insulation characteristics were investigated in the JT-60 negative ion source with >1000 apertures on the grid with the surface area of {approx}2 m{sup 2}. The sustainable voltages varied with a square root of the gap lengths between the grids, and decreased with number of the apertures and with the surface area of the grids. Based on the obtained results, the JT-60SA (super advanced) negative ion source is designed to produce 22 A, 500 keV D{sup -} ion beams for 100 s.

Kojima, A.; Hanada, M.; Inoue, T.; Watanabe, K.; Taniguchi, M.; Kashiwagi, M.; Umeda, N.; Tobari, H. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Hilmi, A.; Kobayashi, S.; Yamano, Y. [Saitama University, Saitama, Saitama-ken, 338-8570 (Japan); Grisham, L. R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

2012-02-15T23:59:59.000Z

237

Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows  

E-Print Network (OSTI)

to energy-efficient windows André Anders, Jonathan L. Slack,to electrochromic windows for vehicles and buildings [1].in conventional electrochromic windows because of its high

Anders, Andre

2008-01-01T23:59:59.000Z

238

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Technologies: Low Conductance Spacers Window Technologies: Low Conductance Spacers Spacers The lites of glass in an insulating unit must be held apart at the appropriate distance by spacers. In addition to keeping the glass lites separated, the spacer system must serve a number of functions: accommodate stress induced by thermal expansion and pressure differences; provide a moisture barrier that prevents passage of water or water vapor that would fog the unit; provide a gas-tight seal that prevents the loss of any special low-conductance gas in the air space; create an insulating barrier that reduces the formation of interior condensation at the edge. Spacers The standard solution for insulating glass units (IGUs) is the use of metal spacers and sealants. These spacers, typically aluminum, also

239

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

(6.3.74 -- February 14, 2012) Release Notes Updated: 02/15/13 If you find bugs, or if you think these have not been fixed, please do not hesitate to send an email to WINDOWHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. WINDOW 6.3.74 Program Changes Window LIbrary: Window Types In previous versions of WINDOW 6.3, there were two different Window Type lists, with conflicting ID numbers, which resulted in the possibility of a Window Library made with one set of Window Types would become corrupted (the wrong Window Types assigned) if the database records were imported into a another database with the different Window Type list. To solve this problem, we have added a database "migration" with this version of WINDOW -- when it opens any older database, it will update the Window Types list to have the choices (and IDs) shown below and then it will also update all the Window Library records to map to the new Window Types based on what the records were set to originally.

240

A Tale of Three Windows: Part 1 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Tale of Three Windows: Part 1 A Tale of Three Windows: Part 1 A Tale of Three Windows: Part 1 August 1, 2012 - 12:37pm Addthis The original windows in Andrea's home. | Photo courtesy of Andrea Spikes. The original windows in Andrea's home. | Photo courtesy of Andrea Spikes. Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory I will admit right up front that, despite the fact that our aluminum windows are more than 20 years old, and are obviously inefficient, we never bothered to replace them simply because we didn't want to shell out the bucks. We've lived with these windows (two standard windows plus a patio door) for nearly ten years, and have simply used insulating blinds and curtains, plus the old standby heat-shrink plastic, to keep the winter cold and summer heat at bay. Those methods are certainly budget-friendly,

Note: This page contains sample records for the topic "highly insulating window" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

High Performance Window Attachments  

NLE Websites -- All DOE Office Websites (Extended Search)

dccurcija@lbl.gov 510-495-2602 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Impact of Project: * Motivate manufacturers to make...

242

Insulation Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Materials Insulation Materials May 30, 2012 - 10:08am Addthis Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Rigid foam board adds R-value to this wall in a Florida home. | Photo courtesy of FSEC/IBACOS. Rigid foam board adds R-value to this wall in a Florida home. | Photo

243

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

WINDOW 6 and THERM 6 Technical Documentation WINDOW 6 and THERM 6 Technical Documentation Algorithm Documentation WINDOW6 and THERM6 implement the ISO 15099 algorithms: bullet ISO 15099 The algorithms in WINDOW6 and THERM6 follow the procedures presented in ISO 15099: "Thermal performance of windows, doors and shading devices - Detailed calculations." See: http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO+15099%3A2003 In addition to implementing ISO 15099 algorithms in WINDOW6 and THERM6, we have added additional capabilities to WINDOW6. The following reports and papers describe these additional capabilities and/or elaborate on ISO15099. bullet Thermal Algorithm Documentation for THERM6: Conrad 5 & Viewer 5 Technical and Programming Documentation June 20, 2006 bullet Thermal Algorithm Documentation for WINDOW6:

244

LBNL Windows & Daylighting Software -- WINDOW  

NLE Websites -- All DOE Office Websites (Extended Search)

WINDOW WINDOW NFRC Certification Version Release Version Beta Version WINDOW 6.3 (For NFRC Certification and modeling Complex Glazing Systems) WINDOW 7.1 For modeling vacuum glazing, deflected glass, vertical venetian blinds and perforated screens WINDOW 7.2 For modeling Cellular Shades, in addition to vacuum glazing, deflected glass, vertical venetian blinds and perforated screens Download WINDOW 6.3 (for NFRC Certification and complex glazing systems) Download WINDOW 7.1 Download WINDOW 7.2 Knowledge Base (Check here first if you are experiencing a problem with the software) Knowledge Base (Check here first if you are experiencing a problem with the software) Knowledge Base (Check here first if you are experiencing a problem with the software) New Features

245

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

all the Window Records in a database opened in this new version. Click here for a zip file (called W6mdb.zip) that contains a W6.mdb file for WINDOW 6.3.74 that has the...

246

Insulation fact sheet  

SciTech Connect

Electricity bills, oil bills, gas bills - all homeowners pay for one or more of these utilities, and wish they paid less. Often many of us do not really know how to control or reduce our utility bills. We resign ourselves to high bills because we think that is the price we have to pay for a comfortable home. We encourage our children to turn off the lights and appliances, but may not recognize the benefits of insulating the attic. This publication provides facts relative to home insulation. It discusses where to insulate, what products to use, the decision making process, installation options, and sources of additional information.

1997-08-01T23:59:59.000Z

247

Residents and windows. 1. Shielding of windows  

SciTech Connect

In order to assess the influence of the shielding of windows performed by occupants in residential buildings on the heat balance of the building, the shielding of 40,000 windows was determined by observation during two heating seasons. It is shown that the demand for privacy has a large effect on the degree of window-shielding. There are also indications that many occupants trying to save energy use window-shielding as one of their means to achieve this.

Lyrberg, M.D.

1983-06-01T23:59:59.000Z

248

Troubleshooting Microsoft Windows XP  

Science Conference Proceedings (OSTI)

From the Publisher:Troubleshooting Microsoft Windows XP provides fast answers to problems that can arise when using the Windows XP Home or Windows XP Professional operating system. The book addresses common issues with the new user interface, the taskbar ...

Stephen W. Sagman

2001-12-01T23:59:59.000Z

249

Introduction Windows and Precomputation  

E-Print Network (OSTI)

Introduction Windows and Precomputation Linear Combinations and Joint Expansions Endomorphisms;Introduction Windows and Precomputation Linear Combinations and Joint Expansions Endomorphisms and Complex Bases Outline 1 Introduction 2 Windows and Precomputation 3 Linear Combinations and Joint Expansions 4

250

Using X Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

option 3 or 510-486-8611 Home For Users Network Connections Using X Windows Using X Windows Introduction X-Windows allows you to display remote applications on...

251

Aerogel: a transparent insulator for solar applications  

SciTech Connect

Aerogel is a transparent, low density, insulating material suitable for a variety of solar applications. Significant energy savings can be realized by using aerogel for a window glazing material. Other possible applications include solar collector covers, transparent insulating jackets for direct gain passive solar devices, and situations that require both transparency and good insulation. Because silica aerogel has a low density (2 to 10% solid), it has a thermal conductivity as low as 0.014 W/m/sup 0/K without evacuation, and if evacuated, lower than 0.006 W/m/sup 0/K. It provides a clear view with only slight coloring due to its weak and nearly isotropic scattering of light. This paper describes significant progress made in the past year at our laboratory in the development of aerogel. We have improved the transparency, developed new preparation methods using less toxic materials, and initiated successful experiments in drying alcogels at near ambient temperature. Optical transmission, light scattering, and electron microscopy data show that CO/sub 2/ supercritical drying of alcogels produces aerogels similar in quality to those produced by high temperature supercritical drying. These advances make the commercial production of aerogel much more feasible.

Hunt, A.J.; Russo, R.E.; Tewari, P.H.; Lofftus, K.D.

1985-06-01T23:59:59.000Z

252

Use of high temperature insulation for ceramic matrix composites in gas turbines  

SciTech Connect

A ceramic composition for insulating components, made of ceramic matrix composites, of gas turbines is provided. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere and the arrangement of spheres is such that the composition is dimensionally stable and chemically stable at a temperature of approximately 1600.degree. C. A stationary vane of a gas turbine comprising the composition of the present invention bonded to the outer surface of the vane is provided. A combustor comprising the composition bonded to the inner surface of the combustor is provided. A transition duct comprising the insulating coating bonded to the inner surface of the transition is provided. Because of abradable properties of the composition, a gas turbine blade tip seal comprising the composition also is provided. The composition is bonded to the inside surface of a shroud so that a blade tip carves grooves in the composition so as to create a customized seal for the turbine blade tip.

Morrison, Jay Alan (Orlando, FL); Merrill, Gary Brian (Pittsburgh, PA); Ludeman, Evan McNeil (New Boston, NH); Lane, Jay Edgar (Murrysville, PA)

2001-01-01T23:59:59.000Z

253

RUGGED CERAMIC WINDOW FOR RF APPLICATIONS  

Science Conference Proceedings (OSTI)

High-current RF cavities that are needed for many accelerator applications are often limited by the power transmission capability of the pressure barriers (windows) that separate the cavity from the power source. Most efforts to improve RF window design have focused on alumina ceramic, the most popular historical choice, and have not taken advantage of new materials. Alternative window materials have been investigated using a novel Merit Factor comparison and likely candidates have been tested for the material properties which will enable construction in the self-matched window configuration. Window assemblies have also been modeled and fabricated using compressed window techniques which have proven to increase the power handling capability of waveguide windows. Candidate materials have been chosen to be used in fabricating a window for high power testing at Thomas Jefferson National Accelerator Facility.

MIKE NEUBAUER

2012-11-01T23:59:59.000Z

254

Chapter 5. Auxiliary Windows  

Science Conference Proceedings (OSTI)

... simultaneously. New ones are created by the New command in the Messages submenu in any OOF2 window's OOF.Windows menu. ...

2013-08-23T23:59:59.000Z

255

Choosing a Residential Window  

NLE Websites -- All DOE Office Websites (Extended Search)

Choosing a Residential Window LBNLs Windows and Daylighting Group provides technical support to government and industry efforts to help consumers and builders choose...

256

Windows 8-Windows Phone applikationsutveckling; Windows 8/Windows Phone application development.  

E-Print Network (OSTI)

?? Den här rapporten beskriver utvecklingen av en applikation för Windows 8 och Windows Phone 8 där fokus ligger på multiplattformsutveckling. Applikationen använder sig av… (more)

Johansson, Henrik

2013-01-01T23:59:59.000Z

257

Windows | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Windows Jump to: navigation, search TODO: Add description List of Windows Incentives...

258

thumbnails for windows  

Science Conference Proceedings (OSTI)

... 4) Cut and paste the above text window into some text editor, and save into the ... Then, in Windows, open the write folder and use 'View / thumbnails'.

259

Tips: Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

high-performance glass-low-e or spectrally selective coatings. In colder climates, select gas-filled windows with low-e coatings to reduce heat loss. In warmer climates, select...

260

Switchable window modeling. Task 12: Building energy analysis and design tools for solar applications, Subtask A.1: High-performance glazing  

SciTech Connect

This document presents the work conducted as part of Subtask A.1, High-Performance Glazing, of Task 12 of the IEA Solar Heating and Cooling Program. At the start of the task, the participants agreed that chromogenic technology (switchable glazing) held considerable promise, and that algorithms to accurately model their dynamic behavior were needed. The purpose of this subtask was to develop algorithms that could be incorporated into building energy analysis programs for predicting the thermal and optical performance of switchable windows. The work entailed a review of current techniques for modelling switchable glazing in windows and switchable windows in buildings and methods for improving upon existing modeling approaches. The proposed approaches correct some of the shortcomings in the existing techniques, and could be adapted for use in other similar programs. The proposed approaches generally provide more detailed calculations needed for evaluating the short-term (hourly and daily) impact of switchable windows on the energy and daylighting performance of a building. Examples of the proposed algorithms are included.

Reilly, S.; Selkowitz, S.; Winkelmann, F.

1992-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "highly insulating window" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Method for minimizing contaminant particle effects in gas-insulated electrical apparatus  

DOE Patents (OSTI)

Electrical breakdown of a gas insulator in high voltage apparatus is preved by placing an electrical insulative coating on contaminant particles in the gas insulator.

Pace, Marshall O. (Knoxville, TN); Adcock, James L. (Knoxville, TN); Christophorou, Loucas G. (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

262

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Specular Glazing Systems Specular Glazing Systems NFRC THERM 6.3 / WINDOW 6.3 Simulation Manual July 2013: bullet Entire Manual in PDF Format approximate 8 MB Comparison of WINDOW 5 / THERM 5 and WINDOW 6 / THERM 6 Results for Specular Glazing Systems (PDF Format) NFRC WINDOW 6 / THERM 6 Training for Specular Systems (Power Point Presentation, Oct/Nov 2010) Tutorials Complex Glazing Systems bullet WINDOW 6.2 / THERM 6.2 Research Version User Manual (Documents features in WINDOW6 and THERM 6 for modeling complex glazing systems) bullet WINDOW 6.2 / THERM 6.2 Simulation Manual Chapter for Complex Glazing (Draft) This was used for NFRC Simulator training in June 2009, and includes detailed descriptions for modeling venetian blinds between glass and frits. bullet Complex Glazing Summary -- PDF File

263

Windows activation Sergei Striganov  

E-Print Network (OSTI)

Windows activation Sergei Striganov Fermilab July 25, 2007 #12;Beam windows residual activity of irradiated object should be much larger than -ray interaction length (3.7 cm in windows). In such model activation is proportional to star density. For beam size much smaller windows transverse dimension

McDonald, Kirk

264

Numerical investigation of the physical model of a high-power electromagnetic wave in a magnetically insulated transmission line  

SciTech Connect

An efficient numerical code for simulating the propagation of a high-power electromagnetic pulse in a vacuum transmission line is required to study the physical phenomena occurring in such a line, to analyze the operation of present-day megavolt generators at an {approx}10-TW power level, and to design such new devices. The main physical theoretical principles are presented, and the stability of flows in the near-threshold region at the boundary of the regime of magnetic self-insulation is investigated based on one-dimensional telegraph equations with electron losses. Numerical (difference) methods-specifically, a method of characteristics and a finite-difference scheme-are described and their properties and effectiveness are compared by analyzing the high-frequency modes.

Samokhin, A. A. [Troitsk Institute for Innovation and Fusion Research (Russian Federation)

2010-02-15T23:59:59.000Z

265

LBNL Windows & Daylighting Software -- WINDOW5.02: Feature List  

NLE Websites -- All DOE Office Websites (Extended Search)

bullet Window Library: RESFEN5 has a Window Library that allows data for specific windows to be imported from the WINDOW5 program. A default set of WINDOW5 data is installed...

266

SYSTEM ADMINISTRATOR: WINDOWS SERVER 2003  

E-Print Network (OSTI)

SYSTEM ADMINISTRATOR: WINDOWS SERVER 2003 MCSA © 2011 Microsoft Corporation. All rights reserved MCPDMCPD WINDOWS DEVELOPERWEB DEVELOPER Job Role/Achievement Certification Recommended Coursework Student TECHNICIAN: WINDOWS 7 MCITPMCITP SUPPORT TECHNICIAN: WINDOWS VISTA SERVER ADMINISTRATOR: WINDOWS SERVER 2003

Atkinson, Katie

267

The Efficient Window Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 The Efficient Window Collaborative http://www.efficientwindows.org Energy-efficient windows make up only about 35% of the U.S. residential window market, even though they are cost-effective in approximately 80% or more of all applications. To ensure that efficient windows reach their optimum potential in homes throughout the U.S., the Department of Energy and key players in the U.S. window industry have formed the Efficient Window Collaborative (EWC). The EWC's goal is doubling the market share of efficient windows by 2005. With 31 charter members from the window and glass industries, the EWC is managed jointly by the Washington, D.C.-based Alliance to Save Energy and the Center for Building Science's Windows and Daylighting Group. The EWC serves as a focal point for voluntary

268

Insulator Reference Book: Edition 1 Draft  

Science Conference Proceedings (OSTI)

High voltage insulators are a crucial part of ensuring that the electricity generated can be safely transmitted across the country to its destination, high voltage substations where the voltage is reduced and transmitted again to commercial and residential consumers. Insulators provide the mechanical means by which high voltage wires are suspended from transmission structures while providing the insulation to prevent a short circuit to ground.When insulators fail either in their ...

2012-12-20T23:59:59.000Z

269

Window Programming in DFKI Oz  

E-Print Network (OSTI)

This paper describes how to do window programming in DFKI Oz. The DFKI Oz window interface is based on the Tk toolkit which in turn is based on the script language Tcl. It provides a high level abstraction of Tk widgets allowing for objectoriented and concurrent window programming. A generic translation scheme from Oz values to Tcl/Tk commands provides for minimality and flexibility on the Oz side. The Tcl/Tk interface is implemented in Oz using the open programming facilities and is an example of how to connect an external and sequential agent to Oz. Contents 1 Introduction 1 2 Crash Course to Window Programming 3 2.1 Widget creation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2.2 Widget hierarchy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 2.3 Tickles and Tcl/Tk commands : : : : : : : : : : : : : : : : : : : : : 5 2.4 Geometry management : : : : : : : : : : : : : : : : : : : : : : : : : : 7 2.5 Invoking widget commands : : : : : : : : : : : : ...

Michael Mehl

1995-01-01T23:59:59.000Z

270

Equation of State and Material Property Measurements of Hydrogen Isotopes at the High-Pressure, High-Temperature, Insulator-Metal Transition  

Science Conference Proceedings (OSTI)

A high-intensity laser was used to shock compress liquid deuterium to pressures between 0.22 and 3.4 megabars (Mbar). Shock density, pressure, and temperature were determined using a variety of experimental techniques and diagnostics. This pressure regime spans the transformation of deuterium from an insulating molecular fluid to an atomic metallic fluid. Data reveal a significant increase in compressibility and a temperature inflection near 1 Mbar, both indicative of such a transition. Single-wavelength reflectivity measurements of the shock front demonstrated that deuterium shocked above {approx}0.5 Mbar is indeed metallic. (c) 2000 The American Astronomical Society.

Cauble, R.; Celliers, P. M.; Collins, G. W.; Silva, L. B. da; Gold, D. M.; Foord, M. E.; Budil, K. S.; Wallace, R. J.; Ng, A.

2000-04-01T23:59:59.000Z

271

LBNL Windows & Daylighting Software -- WINDOW: NFRC info  

NLE Websites -- All DOE Office Websites (Extended Search)

5.2 (5.2.17): July 2003 Download WINDOW 5.2.17 (Glass Library has IGDB version 14.0) Download THERM 5.2.14 This version of WINDOW 5.2 is approved by NFRC for use with the new NFRC...

272

02preview.windows.compreview.windows.com Release Preview  

E-Print Network (OSTI)

02preview.windows.compreview.windows.com Windows 8 Release Preview Product guidepreview.windows.com #12;03 01preview.windows.compreview.windows.com © 2012 Microsoft Corporation. All rights reserved. #12;Contents Windows 7, only better 06 The new Start screen 06 Touch, keyboard, and mouse: seamless integration

Fähndrich, Manuel A.

273

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Standards Performance Standards Even the expert eye cannot easily tell an efficient window from a conventional window. That is why energy ratings, endorsement programs and consumer incentives play an important role in creating awareness for window energy efficiency among consumers, builders, architects and performance standard programs. Learn about NFRC certification and labeling Learn about ENERGY STAR® for windows, doors and skylights High Performance Windows and Low-E Storm Windows Volume Purchase Program Utility and State Incentives for energy efficiency improvements Building Codes Most locations have building energy codes that mandate minimum performance levels for windows, doors, and skylights. The builder, contractor or homeowner must adhere to the code requirements, which typically cover

274

LBNL Windows & Daylighting Software -- WINDOW5.02: Feature List  

NLE Websites -- All DOE Office Websites (Extended Search)

Microsoft Vista and Windows 7 Operating System Issues Last update:071612 12:38 PM The LBNL Windows & Daylighting suite of software programs (WINDOW, THERM, Optics) are installed...

275

Advanced Windows Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior of Advanced Windows Test Facility Exterior of Advanced Windows Test Facility Advanced Windows Test Facility This multi-room laboratory's purpose is to test the performance and properties of advanced windows and window systems such as electrochromic windows, and automatically controlled shutters and blinds. The lab simulates real-world office spaces. Embedded instrumentation throughout the lab records solar gains and losses for specified time periods, weather conditions, energy use, and human comfort indicators. Electrochromic glazings promise to be a major advance in energy-efficient window technology, helping to achieve the goal of transforming windows and skylights from an energy liability in buildings to an energy source. The glazing can be reversibly switched from a clear to a transparent, colored

276

window.xp  

NLE Websites -- All DOE Office Websites (Extended Search)

New New in Building Energy Efficiency Selecting Windows for Energy Efficiency New window technologies have increased energy benefits and comfort, and have provided more practical options for consumers. This selection guide will help homeowners, architects, and builders take advantage of the expanding window market. The guide contains three sections: an explanation of energy-related window characteristics, a discussion of window energy performance ratings, and a convenient checklist for window selection. S electing the right window for a specific home invariably requires tradeoffs between dif- ferent energy performance features, and with other non-energy issues. An understanding of some basic energy concepts is therefore essential to choosing appropriate windows and skylights. As illustrated on the fol-

277

Safety Share - Window Blinds  

NLE Websites -- All DOE Office Websites (Extended Search)

- Window Blinds On November 17, 2010, an HSS employee was adjusting the window blinds in his office. One might expect this low hazard, routine operation to require little or no...

278

Whole Window Performance Criteria  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Criteria This graph shows the relationship between whole window U-factor and center of glass U-factor (U-cog) for two window types for two generic frames from the...

279

Building Energy Software Tools Directory : Window  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Back to Tool Screenshot of WINDOW definition. Screenshot of WINDOW glass library. Screenshot of WINDOW assembly definition...

280

New Window of Opportunity:  

Science Conference Proceedings (OSTI)

Page 1. New Window of Opportunity: Certificate Transparency - A Certification Authority's Perspective Ben Wilson, SVP DigiCert ...

2013-04-10T23:59:59.000Z

Note: This page contains sample records for the topic "highly insulating window" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Advancement of Electrochromic Windows  

E-Print Network (OSTI)

advanced spectrally selective low-e double-pane windows and the same type of daylighting control system

2006-01-01T23:59:59.000Z

282

Subject Responses to Electrochromic Windows  

E-Print Network (OSTI)

large-area electrochromic windows in commercial buildings”,of electrochromic windows: a pilot study”, Building andceramic electrochromic window: field study results”, Energy

Clear, Robert; Inkarojrit, Vorapat; Lee, Eleanor

2006-01-01T23:59:59.000Z

283

FLUDViz: Installation Instructions for Windows  

Science Conference Proceedings (OSTI)

... Tk for communication between the OpenGL graphics window and the Tcl/Tk control window. ... invokes OpenGL and WGL (Windows GL extensions). ...

284

Chapter 4. The Graphics Window  

Science Conference Proceedings (OSTI)

... OOF2: The Manual. Chapter 4. The Graphics Window. ... Chapter 4. The Graphics Window. ... Figure 4.1 shows the structure of the Graphics Window. ...

2013-07-05T23:59:59.000Z

285

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-E Coatings Low-E Coatings Low-E Center-of-glass values of double pane units with and without low-E coatings. When heat or light energy is absorbed by glass, it is either convected away by moving air or reradiated by the glass surface. The ability of a material to radiate energy is called its emissivity. All materials, including windows, emit (or radiate) heat in the form of long-wave, far-infrared energy depending on their temperature. This emission of radiant heat is one of the important components of heat transfer for a window. Thus reducing the window's emittance can greatly improve its insulating properties. Standard clear glass has an emittance of 0.84 over the long-wave portion of the spectrum, meaning that it emits 84% of the energy possible for an object at its temperature. It also means that 84% of the long-wave

286

Insulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Insulation Insulation Where to Insulate Learn where to insulate in a home to save money and improve comfort. Read more Insulation Get the facts about how insulation works. Read more Estimate the Payback Period for Insulation Adding insulation to your home will likely have an attractive payback. Read more You can reduce your home's heating and cooling costs through proper insulation and air sealing techniques. These techniques will also make your home more comfortable. Any air sealing efforts will complement your insulation efforts, and vice versa. Proper moisture control and ventilation strategies will improve the effectiveness of air sealing and insulation, and vice versa. Featured Insulation for New Home Construction Planning carefully for insulation results in reduced utility bills and superior comfort during the life of the home. In this house, raised heel trusses accommodate R-60 insulation. | Credit: Paul Norton, NREL.

287

Thermal insulation for residential homes. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning materials and methods used for thermal insulation of residential homes. The thermal efficiency of window glass, cellular materials, glass wool, fibers, wood, foams, and other insulating materials is reviewed. Construction methods and insulation effectiveness are compared among geographic regions. (Contains 250 citations and includes a subject term index and title list.)

NONE

1995-01-01T23:59:59.000Z

288

Thermal insulation for residential homes. (Latest citations from the NTIS data base). Published Search  

SciTech Connect

The bibliography contains citations concerning materials and methods used for thermal insulation of residential buildings. The thermal efficiency of window glass, cellular materials, glass wool, fibers, wood, foams, and other insulating materials is reviewed. Construction methods and insulation R values are compared between geographic regions. (Contains a minimum of 217 citations and includes a subject term index and title list.)

Not Available

1992-06-01T23:59:59.000Z

289

Thermal insulation for residential homes. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning materials and methods used for thermal insulation of residential homes. The thermal efficiency of window glass, cellular materials, glass wool, fibers, wood, foams, and other insulating materials is reviewed. Construction methods and insulation effectiveness are compared among geographic regions. (Contains a minimum of 219 citations and includes a subject term index and title list.)

Not Available

1993-09-01T23:59:59.000Z

290

Thermal insulation for residential homes. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning materials and methods used for thermal insulation of residential homes. The thermal efficiency of window glass, cellular materials, glass wool, fibers, wood, foams, and other insulating materials is reviewed. Construction methods and insulation effectiveness are compared among geographic regions. (Contains a minimum of 220 citations and includes a subject term index and title list.)

Not Available

1993-12-01T23:59:59.000Z

291

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

to report your findings. Getting feedback from users is how we improve the program. WINDOW 7.2.8 (September 30, 2013) Program Changes TARCOG DLL Changes The TARCOG.DLL file,...

292

Mobile Window Thermal Test  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Window Thermal Test (MoWiTT) Facility Mobile Window Thermal Test (MoWiTT) Facility winter.jpg (469135 bytes) The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed to help buildings retain some of the energy that would have leaked out of less efficient windows. Designing efficient window-and-frame systems is one strategy for reducing the energy use of buildings. But the net energy flowing through a window is a combination of temperature- driven thermal flows and transmission of incident solar energy, both of which vary with time. U-factor and solar heat gain coefficient (SHGC), the window properties that control these flows, depend partly on ambient conditions. Window energy flows can affect how much energy a building uses, depending on when the window flows are available to help meet other energy demands within the building, and when they are adverse, adding to building energy use. This leads to a second strategy for reducing building energy use: using the beneficial solar gain available through a window, either for winter heating or for daylighting, while minimizing adverse flows.

293

Installing Windows with Foam Sheathing on a Wood-Frame Wall  

SciTech Connect

Residential housing design continues to move toward the development of high-performance sustainable building systems. To be sustainable, a building must not only be efficient and durable but also economically viable. For these reasons, new methods of enclosure design have been examined that provide high thermal performance and long-term durability and also reduce material use (including waste), simplify or integrate systems and details, and potentially reduce overall initial costs of construction. One new idea relating to enclosure design is to use exterior foam insulating sheathing as the primary sheathing and drainage plane for the wall assembly. However, as with any building enclosure system, proper details for the management of water, vapor, and energy transfer is critical. Window systems need to be installed in such a way as to be consistent with principles of building science. Window installations also require an understanding of how to maintain the continuity of the drainage plane of the wall.

Not Available

2005-05-01T23:59:59.000Z

294

Microsoft Windows Embedded Compact Cryptographic ...  

Science Conference Proceedings (OSTI)

Page 1. Microsoft Windows Cryptographic Primitives Library (bcrypt.dll) Security Policy Document ... Microsoft Windows Embedded Compact ...

2013-08-07T23:59:59.000Z

295

Advancement of Electrochromic Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Advancement of Electrochromic Windows Advancement of Electrochromic Windows Title Advancement of Electrochromic Windows Publication Type Report LBNL Report Number LBNL-59821 Year of Publication 2006 Authors Lee, Eleanor S., Stephen E. Selkowitz, Robert D. Clear, Dennis L. DiBartolomeo, Joseph H. Klems, Luis L. Fernandes, Gregory J. Ward, Vorapat Inkarojrit, and Mehry Yazdanian Date Published 04/2006 Other Numbers CEC-500-2006-052 Keywords commercial buildings, daylight, daylighting controls, Electrochromic windows, energy efficiency, human factors, peak demand, switchable windows, visual comfort Abstract This guide provides consumer-oriented information about switchable electrochromic (EC) windows. Electrochromic windows change tint with a small applied voltage, providing building owners and occupants with the option to have clear or tinted windows at any time, irrespective of whether it's sunny or cloudy. EC windows can be manually or automatically controlled based on daylight, solar heat gain, glare, view, energy-efficiency, peak electricity demand response, or other criteria. Window controls can be integrated with other building systems, such as lighting and heating/cooling mechanical systems, to optimize interior environmental conditions, occupant comfort, and energy-efficiency.

296

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Guidance for Replacement Windows Design Guidance for Replacement Windows Opportunities for Design Improvements Energy-efficient windows offer benefits under diverse design conditions. Window performance can be improved by taking orientation, window area and shading into account. Fine-tuning your window selection to the houses conditions and optimizing these conditions where possible helps further cut heating and cooling demand. Besides long-term energy savings, these upfront opportunities may be available: Smaller HVAC equipment: Lower heating and cooling demand means optimum equipment is smaller and costs less. ENERGY STAR Homes recognition: High-performance design can allow homes to be recognized by the ENERGY STAR program. Many States and localities offer design help and/or incentives for ENERGY STAR homes.

297

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Financing & Incentives Financing & Incentives Financing or incentive programs may be available to you if: You intend to replace old windows with high-performance, energy efficient windows. You plan to build a new home with windows that keep energy costs low and provide for a comfortable interior. If you are looking for utility programs within your state that can help you finance such an investment in efficient windows, download an overview of utility and state programs. Incentives and Rebates for Energy-Efficient Windows Offered through Utility and State Programs Utility and State Incentives We have provided an overview of utility and state programs that can help you as a resident, building owner, or builder to finance improvements in window energy efficiency. Download an overview of utility and state

298

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Guidance for New Windows Design Guidance for New Windows Opportunities for Design Improvements Energy-efficient windows offer benefits under diverse design conditions. Window performance can be improved by taking orientation, window area and shading into account. Fine-tuning your window selection to the houses conditions and optimizing these conditions where possible helps further cut heating and cooling demand. Besides long-term energy savings, these upfront opportunities may be available: Smaller HVAC equipment: Lower heating and cooling demand means optimum equipment is smaller and costs less. ENERGY STAR Homes recognition: High-performance design can allow homes to be recognized by the ENERGY STAR program. Many States and localities offer design help and/or incentives for ENERGY STAR homes.

299

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Optics 6.0 Optics 6.0 (6.0 -- February 13, 2012) Release Notes Updated: 07/16/12 Program Changes Microsoft Windows 7 / Vista Operating System"Aware" Optics now installs and operates much better under the Microsoft Windows 7 and Vista operating systems. It is no longer necessary to run the "VistaFix" batch file after installing the program. Fixed Bugs If you find bugs, or if you think these have not been fixed, please do not hesitate to send an email to OpticsHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. Paths Appear in Tools/Options In the Microsoft Windows 7 / Vista Operating System environments, the program would not display the directory paths in the Tools / Options "File Locations" dialog box. This is now fixed.

300

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Cellular / Honeycomb Shades Cellular / Honeycomb Shades Updated 09/30/2013 It is now possible to model cellular / honeycomb shading systems in the Shading System Library and then add them to a glazing system in the Glazing System Library. NOTE: Before attempting to calculate a glazing system with a cellular shade, you must make the following change to the THERM7.ini file, which is located in C:\Users\Public\LBNL\Settings. Close WINDOW7 before making this change. DocPath=C:\Users\Public\LBNL\WINDOW7\debug Shading Layer Library A cellular / honeycomb shade can now be defined in the Shading Layer Library. Defining this type of shading system requires an XML file which contains information about the cell geometry and the material thermal and optical properties. WINDOW can model two different types of cellular shades:

Note: This page contains sample records for the topic "highly insulating window" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Dynamic Windows.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

including products with improved fixed or static properties and products with dynamic solar heat gain proper- ties. Nine representative window products are examined in eight...

302

Zero Energy Windows  

E-Print Network (OSTI)

systems, such as space conditioning and lighting. Windows2. Table 1: Annual Space-Conditioning Energy Consumption ofquads Table 2: Annual Space-Conditioning Energy Consumption

Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

2006-01-01T23:59:59.000Z

303

Windows Vistan käyttöönotto organisaatioympäristössä.  

E-Print Network (OSTI)

??Työn tavoitteena oli kehittää menetelmä, jolla Windows Vista- käyttöjärjestelmä voidaan asentaa usealle tietokoneelle samanaikaisesti mahdollisimman tehokkaasti. Lisäksi käyttöönotto täytyi tapahtua automaattisesti, jotta se ei vie… (more)

Kamula, Erkki

2009-01-01T23:59:59.000Z

304

Windows Server 2008 -infrastruktuuri.  

E-Print Network (OSTI)

??Tämä työ käsittelee Windows 2008 -verkkoinfrastrukstuuri-kurssin materiaalin suunnittelua ja testausta. Työ toteutettiin Metropolia Ammattikorkeakoululle keväällä 2010. Työn alussa esitellään työssä käytetty virtuaalisointiohjelmisto ja toiminta, sekä… (more)

Sundgren, Patrik

2011-01-01T23:59:59.000Z

305

ADVANCEMENT OF ELECTROCHROMIC WINDOWS  

NLE Websites -- All DOE Office Websites (Extended Search)

Eleanor Lee, Co-Principal Investigator Steve Marsh, Curtainwall Engineering, Sensors and Instrumentation Robin Mitchell, Window Modeling Thomas Richardson, Ph.D., Material...

306

Design options for low-conductivity window frames  

Science Conference Proceedings (OSTI)

The window industry's commercialization of low-emissivity coatings and low-conductivity gas-filling over the past few years has helped to drastically reduce heat transfer rates through the glazed areas of windows. However, few changes have taken place in the design and construction of window frames and edges, leaving these elements to account for most of the heat transfer through today's state-of-the-art windows. This paper presents design and material requirements for the manufacture of low-conductivity window frames obtained through the use of finite element computer modeling. Such frames will compliment and not degrade today's most energy-efficient insulated glass units. 7 refs., 2 figs., 5 tabs.

Byars, N.; Arasteh, D.

1990-10-01T23:59:59.000Z

307

Greenhouse window U-factors under field conditions  

SciTech Connect

Field measurements of U-factor are reported for two projecting greenhouse windows, each paired with a picture window of comparable insulation level during testing. A well-known calorimetric field test facility was used to make the measurements. The time-varying U-factors obtained are related to measurements of exterior conditions. For one of the greenhouse windows, which was the subject of a published laboratory hotbox test and simulation study, the results are compared with published test and simulation data and found to be in disagreement. Data on interior and exterior film coefficients are presented, and it is shown that the greenhouse window has a significantly lower interior film coefficient than a conventional window under the same interior conditions. This is advanced as a possible explanation of the disagreement.

Klems, J.H.

1997-06-01T23:59:59.000Z

308

The Oklahoma Field Test: Air-conditioning electricity savings from standard energy conservation measures, radiant barriers, and high-efficiency window air conditioners  

SciTech Connect

A field test Involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMS) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this typo of housing.

Ternes, M.P.; Levins, W.P.

1992-08-01T23:59:59.000Z

309

Efficient Windows Collaborative  

SciTech Connect

The project goals covered both the residential and commercial windows markets and involved a range of audiences such as window manufacturers, builders, homeowners, design professionals, utilities, and public agencies. Essential goals included: (1) Creation of 'Master Toolkits' of information that integrate diverse tools, rating systems, and incentive programs, customized for key audiences such as window manufacturers, design professionals, and utility programs. (2) Delivery of education and outreach programs to multiple audiences through conference presentations, publication of articles for builders and other industry professionals, and targeted dissemination of efficient window curricula to professionals and students. (3) Design and implementation of mechanisms to encourage and track sales of more efficient products through the existing Window Products Database as an incentive for manufacturers to improve products and participate in programs such as NFRC and ENERGY STAR. (4) Development of utility incentive programs to promote more efficient residential and commercial windows. Partnership with regional and local entities on the development of programs and customized information to move the market toward the highest performing products. An overarching project goal was to ensure that different audiences adopt and use the developed information, design and promotion tools and thus increase the market penetration of energy efficient fenestration products. In particular, a crucial success criterion was to move gas and electric utilities to increase the promotion of energy efficient windows through demand side management programs as an important step toward increasing the market share of energy efficient windows.

Nils Petermann

2010-02-28T23:59:59.000Z

310

Efficient Windows Collaborative  

SciTech Connect

The project goals covered both the residential and commercial windows markets and involved a range of audiences such as window manufacturers, builders, homeowners, design professionals, utilities, and public agencies. Essential goals included: (1) Creation of 'Master Toolkits' of information that integrate diverse tools, rating systems, and incentive programs, customized for key audiences such as window manufacturers, design professionals, and utility programs. (2) Delivery of education and outreach programs to multiple audiences through conference presentations, publication of articles for builders and other industry professionals, and targeted dissemination of efficient window curricula to professionals and students. (3) Design and implementation of mechanisms to encourage and track sales of more efficient products through the existing Window Products Database as an incentive for manufacturers to improve products and participate in programs such as NFRC and ENERGY STAR. (4) Development of utility incentive programs to promote more efficient residential and commercial windows. Partnership with regional and local entities on the development of programs and customized information to move the market toward the highest performing products. An overarching project goal was to ensure that different audiences adopt and use the developed information, design and promotion tools and thus increase the market penetration of energy efficient fenestration products. In particular, a crucial success criterion was to move gas and electric utilities to increase the promotion of energy efficient windows through demand side management programs as an important step toward increasing the market share of energy efficient windows.

Nils Petermann

2010-02-28T23:59:59.000Z

311

Window inference in isabelle  

E-Print Network (OSTI)

Window inference is a transformational style of reasoning that provides an intuitive framework for managing context during the transformation of subterms under transitive relations. This report describes the design for a prototype window inference tool in Isabelle, and discusses possible directions for the final tool. 1

Mark Staples

1995-01-01T23:59:59.000Z

312

AN ENERGY EFFICIENT WINDOW SYSTEM FINAL REPORT.  

E-Print Network (OSTI)

financing mechanisms. Building code insulation requirements.mechanisms ·Building code insulation requirements .Regionalfincancing mechanisms Building code insulation requirements

Authors, Various

2011-01-01T23:59:59.000Z

313

Inferring Convective Weather Characteristics with Geostationary High Spectral Resolution IR Window Measurements: A Look into the Future  

Science Conference Proceedings (OSTI)

A high spectral resolution geostationary sounder can make spectrally detailed measurements of the infrared spectrum at high temporal resolution, which provides unique information about the lower-tropospheric temperature and moisture structure. ...

Justin M. Sieglaff; Timothy J. Schmit; W. Paul Menzel; Steven A. Ackerman

2009-08-01T23:59:59.000Z

314

TRNSYS for windows packages  

SciTech Connect

TRNSYS 14.1 was released in 1994. This package represents a significant step forward in usability due to several graphical utility programs for DOS. These programs include TRNSHELL, which encapsulates TRNSYS functions, PRESIM, which allows the graphical creation of a simulation system, and TRNSED, which allows the easy sharing of simulations. The increase in usability leads to a decrease in the time necessary to prepare the simulation. Most TRNSYS users operate on PC computers with the Windows operating system. Therefore, the next logical step in increased usability was to port the current TRNSYS package to the Windows operating system. Several organizations worked on this conversion that has resulted in two distinct Windows packages. One package closely resembles the DOS version and includes TRNSHELL for Windows and PRESIM for Windows. The other package incorporates a general front-end, called IISIBat, that is a general simulation tool front-end. 8 figs.

Blair, N.J.; Beckman, W.A.; Klein, S.A.; Mitchell, J.W.

1996-09-01T23:59:59.000Z

315

Windows technology assessment  

SciTech Connect

This assessment estimates that energy loss through windows is approximately 15 percent of all the energy used for space heating and cooling in residential and commercial buildings in New York State. The rule of thumb for the nation as a whole is about 25 percent. The difference may reflect a traditional assumption of single-pane windows while this assessment analyzed installed window types in the region. Based on the often-quoted assumption, in the United States some 3.5 quadrillion British thermal units (Btu) of primary energy, costing some $20 billion, is annually consumed as a result of energy lost through windows. According to this assessment, in New York State, the energy lost due to heat loss through windows is approximately 80 trillion Btu at an annual cost of approximately $1 billion.

Baron, J.J.

1995-10-01T23:59:59.000Z

316

A true virtual window  

E-Print Network (OSTI)

Previous research from environmental psychology shows that human well-being suffers in windowless environments in many ways and a window view of nature is psychologically and physiologically beneficial to humans. Current window substitutes, still images and video, lack three dimensional properties necessary for a realistic viewing experience ? primarily motion parallax. We present a new system using a head-coupled display and image-based rendering to simulate a photorealistic artificial window view of nature with motion parallax. Evaluation data obtained from human subjects suggest that the system prototype is a better window substitute than a static image and has significantly more positive effects on observers? moods. The test subjects judged the system prototype as a good simulation of, and acceptable replacement for, a real window, and accorded it much higher ratings for realism and preference than a static image.

Radikovic, Adrijan Silvester

2004-12-01T23:59:59.000Z

317

Orbital disc insulator for SF.sub.6 gas-insulated bus  

DOE Patents (OSTI)

An insulator for supporting a high voltage conductor within a gas-filled grounded housing consists of radially spaced insulation rings fitted to the exterior of the bus and the interior of the grounded housing respectively, and the spaced rings are connected by trefoil type rings which are integrally formed with the spaced insulation rings.

Bacvarov, Dosio C. (Greensburg, PA); Gomarac, Nicholas G. (West Newton, PA)

1977-01-01T23:59:59.000Z

318

Selecting windows for energy efficiency  

SciTech Connect

New window technologies have increased energy benefits and comfort, and have provided more practical options for consumers. This selection guide will help homeowners, architects, and builders take advantage of the expanding window market. The guide contains three sections: an explanation of energy-related window characteristics, a discussion of window energy performance ratings, and a convenient checklist for window selection.

1997-05-01T23:59:59.000Z

319

Secure Windows Dr. Bernd Borchert  

E-Print Network (OSTI)

Secure Windows Dr. Bernd Borchert WSI für Informatik Univ. Tübingen #12;Problem: Trojans Server Windows" Server (encoding) Internet #12;Server (encoding) Internet Solution: ,,Secure Windows" #12;Server (encoding) Internet Solution: ,,Secure Windows" #12;Server (encoding) Internet Solution: ,,Secure Windows

Borchert, Bernd

320

Gas filled panel insulation  

DOE Patents (OSTI)

A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation.

Griffith, Brent T. (Berkeley, CA); Arasteh, Dariush K. (Oakland, CA); Selkowitz, Stephen E. (Piedmont, CA)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "highly insulating window" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Gas filled panel insulation  

DOE Patents (OSTI)

A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.

Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.

1993-12-14T23:59:59.000Z

322

Insulation Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE/CE-0180 DOE/CE-0180 2008 Department of Energy Assistant Secretary Energy Efficiency and Renewable Energy Contents: Introduction Why Insulate Your House? How Insulation Works Which Kind of Insulation is Best? What Is an R-Value? Reading the Label Insulation Product Types Insulating a New House Where and How Much Air Sealing Moisture Control and Ventilation Installation Issues Precautions Attics Walls Design Options Crawlspaces and Slabs Advanced Wall Framing Metal Framing Insulating Concrete Forms Massive Walls Structural Insulated Panels External Insulation Finish System Attic Ventilation or a Cathedralized Attic Adding Insulation to an Existing House Where and How Much How Much Insulation Do I Already Have? Air Sealing Moisture Control and Ventilation Insulation Installation, the Retrofit Challenge

323

Fully synthetic taped insulation cables  

DOE Patents (OSTI)

A high voltage oil-impregnated electrical cable with fully polymer taped insulation operable to 765 kV. Biaxially oriented, specially processed, polyethylene, polybutene or polypropylene tape with an embossed pattern is wound in multiple layers over a conductive core with a permeable screen around the insulation. Conventional oil which closely matches the dielectric constant of the tape is used, and the cable can be impregnated after field installation because of its excellent impregnation characteristics.

Forsyth, Eric B. (Brookhaven, NY); Muller, Albert C. (Center Moriches, NY)

1984-01-01T23:59:59.000Z

324

ENERGY EFFICIENT WINDOWS PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network (OSTI)

OF NEWLY INSTALLED RESIDEN~WINDOWS, J. Weidt, ~Heidt, and S.25, LBL/DOE ENERGY-EFFICIENT WINDOWS RESEARCH PROGRAM. --~S.of various high performance window designs. (XBL 796~10098)

Berman, S.

2013-01-01T23:59:59.000Z

325

Atmospheric Pressure Deposition for Electrochromic Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Pressure Deposition Atmospheric Pressure Deposition for Electrochromic Windows TDM - Karma Sawyer Robert C. Tenent National Renewable Energy Laboratory robert.tenent@nrel.gov 303-384-6775 4/4/2013 Insulating Glass Unit (IGU) Glass Transparent Conductor (TC) Active Electrode Counter Electrode Ion Conductor 2 | Building Technologies Office eere.energy.gov Purpose and Objectives * Expense - Current market price of $50-$100/ft 2 - Projections indicate under $20/ft 2 needed - A new production paradigm is required * Aesthetics - Architects hesitant to adopt "smurf glass"

326

Atmospheric Pressure Deposition for Electrochromic Windows  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atmospheric Pressure Deposition Atmospheric Pressure Deposition for Electrochromic Windows TDM - Karma Sawyer Robert C. Tenent National Renewable Energy Laboratory robert.tenent@nrel.gov 303-384-6775 4/4/2013 Insulating Glass Unit (IGU) Glass Transparent Conductor (TC) Active Electrode Counter Electrode Ion Conductor 2 | Building Technologies Office eere.energy.gov Purpose and Objectives * Expense - Current market price of $50-$100/ft 2 - Projections indicate under $20/ft 2 needed - A new production paradigm is required * Aesthetics - Architects hesitant to adopt "smurf glass"

327

Collaborative Sharing of Windows between MacOS X, the X Window System and Windows  

E-Print Network (OSTI)

Collaborative Sharing of Windows between MacOS X, the X Window System and Windows Daniel Stødle This paper investigates how one best can share windows between many different computers in a collaborative application. We present an architecture of a system allowing windows on MacOS X to be shared with computers

Bjørndalen, John Markus

328

Left-over Windows Cause Window Clutter... But What Causes Left-over Windows?  

E-Print Network (OSTI)

Left-over Windows Cause Window Clutter... But What Causes Left-over Windows? Julie Wagner1 that they can return to later. However, users also struggle with window clutter, facing an increasing number of `left-over windows' that get in the way. Our goal is to understand how users create and cope with left

329

The Efficient Windows Collaborative  

SciTech Connect

The Efficient Windows Collaborative (EWC) is a coalition of manufacturers, component suppliers, government agencies, research institutions, and others who partner to expand the market for energy efficient window products. Funded through a cooperative agreement with the U.S. Department of Energy, the EWC provides education, communication and outreach in order to transform the residential window market to 70% energy efficient products by 2005. Implementation of the EWC is managed by the Alliance to Save Energy, with support from the University of Minnesota and Lawrence Berkeley National Laboratory.

Petermann, Nils

2006-03-31T23:59:59.000Z

330

Storm Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

windows, and are available in a range of materials. If you have old windows in your home, replacing them with new, energy-efficient windows will most likely return your...

331

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Lower HVAC Costs Lower HVAC Costs HVAC sizing tools Several computation procedures exist for proper sizing of HVAC equipment. The most prominent ones, which are also recommended by the ENERGY STAR Homes program, are ACCA Manual J exit disclaimer and the ASHRAE Handbook of Fundamentals. Factors to be considered: The energy performance of the windows themselves must be considered in load calculations. NFRC-certified window performance values significantly increase the accuracy of these calculations. Window orientation and overhangs must be taken into account. Overhangs are an important factor influencing solar gains through windows. Where internal shades and blinds will be actively used, these should also be accounted for in load calculations. High-performance windows not only provide reduced annual heating and

332

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheets & Publications: Books Fact Sheets & Publications: Books Residential Windows: A Guide to New Technology and Energy Performance Available from Norton Professional Books. exit disclaimer Single copy price: $35.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer Window Systems for High-performance Buildings Available from Norton Professional Books. exit disclaimer Single copy price: $50.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer Residential Windows: A Guide to New Technology and Energy Performance, 3rd Edition John Carmody, Stephen Selkowitz, Dariush Arasteh and Lisa Heschong Residential Windows The Department of Energy's Windows and Glazing Research Program supported the development of this book. Support was provided

333

AIR LEAKAGE OF NEWLY INSTALLED RESIDENTIAL WINDOWS  

E-Print Network (OSTI)

Through Sash/Frame Cracks . Window Operation Types . . . . .Window Operation Types . . . . .Air Leakage of Installed Windows Scattergram of Field

Weidt, John

2013-01-01T23:59:59.000Z

334

Measurements of Multi-Layer Insulation at High Boundary Temperature, using a Simple Non-Calorimetric Method  

E-Print Network (OSTI)

In spite of abundant literature, the thermal performance of Multi-Layer Insulation (MLI) still deserves dedicated investigation for specific applications, as the achievable insulation strongly depends on installation details. Furthermore, less accurate information is available for warm than for cold boundaries, since errors due to edge effects in small test benches increase strongly with warm boundary temperature. We establish here the thermal performance of MLI between 300 K and 77 K or 4 K, without bringing calorimetric methods into play, through the accurate measurement of a temperature profile. A cylinder in thin copper, wrapped with MLI, is cooled at one extremity while suspended under vacuum inside a sheath at room temperature. For known thermal conductivity and thickness of the tube, the heat flux can be inferred from the temperature profile. In-situ measurement of the thermal conductivity is obtained by applying a know heat flow at the warm extremity of the cylinder. Results, cross-checked with a cali...

Mazzone, L; Rieubland, Jean Michel; Vandoni, Giovanna

2002-01-01T23:59:59.000Z

335

Multiple density layered insulator  

DOE Patents (OSTI)

A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

Alger, T.W.

1994-09-06T23:59:59.000Z

336

Multiple density layered insulator  

DOE Patents (OSTI)

A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

Alger, Terry W. (Tracy, CA)

1994-01-01T23:59:59.000Z

337

Improved DC Gun Insulator  

SciTech Connect

Many user facilities such as synchrotron light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic, creating a buildup of charge and causing eventual puncture. A novel ceramic manufacturing process is proposed. It will incorporate bulk resistivity in the region where it is needed to bleed off accumulated charge caused by highly energetic electrons. This process will be optimized to provide an appropriate gradient in bulk resistivity from the vacuum side to the air side of the HV standoff ceramic cylinder. A computer model will be used to determine the optimum cylinder dimensions and required resistivity gradient for an example RF gun application. A ceramic material example with resistivity gradient appropriate for use as a DC gun insulator will be fabricated by glazing using doping compounds and tested.

M.L. Neubauer, K.B. Beard, R. Sah, C. Hernandez-Garcia, G. Neil

2009-05-01T23:59:59.000Z

338

LBNL Window & Daylighting Software -- RESFEN: System Requirements  

NLE Websites -- All DOE Office Websites (Extended Search)

SYSTEM REQUIREMENTS OPERATING SYSTEM Program has been tested on Microsoft Windows 7, Windows XP, Windows 2000TM.. Older version of Microsoft Windows might work, but are not...

339

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Replacement Compare Annual Energy Costs for Replacement Windows in a Typical House Use the Window Selection Tool to compare the annual energy performance of different window...

340

6.2.285. OOF.Windows  

Science Conference Proceedings (OSTI)

... Open or raise the Layer Editor window. OOF.Windows.Messages; OOF.Windows.OOF2 -- Raise the main OOF2 window. ...

2013-07-05T23:59:59.000Z

Note: This page contains sample records for the topic "highly insulating window" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Advancement of Electrochromic Windows  

E-Print Network (OSTI)

Research Energy Systems Integration Advancement ofintegration issues related to using EC windows within a whole building energy efficient systemenergy- savings benefit with EC-daylighting-HVAC integration (assuming a conventional VAV system

2006-01-01T23:59:59.000Z

342

Windows as Luminaires  

NLE Websites -- All DOE Office Websites (Extended Search)

Windows with low-e coatings have already captured a 35% market share in the U.S, with sales of 25 million square meters (270 million square feet) per year. Fig. 1 is based on a...

343

Superconductive radiofrequency window assembly  

DOE Patents (OSTI)

The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

Phillips, H.L.; Elliott, T.S.

1998-05-19T23:59:59.000Z

344

Superconducting radiofrequency window assembly  

DOE Patents (OSTI)

The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

Phillips, H.L.; Elliott, T.S.

1997-03-11T23:59:59.000Z

345

Seeing Windows Through  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Seeing Windows Through A profusion of gases, glazings, and gap sizes are among the factors that confound efforts to measure the energy performance of a window or skylight. The increasing variety of efficiency-enhancing options for windows and their frames poses a formidable challenge to builders, utilities, code officials, and consumers. Fortunately, a new system for accurately rating and labeling these products promises to help demystify them and to foster nationwide improvements in energy efficiency. NFRC is Born Window trade groups have historically organized around specific materials or components (such as glass or frames), and energy has rarely been their focal point. This changed in 1989 with the formation of the National Fenestration Rating Council. One impetus behind the industry's

346

Windows with complex shading  

NLE Websites -- All DOE Office Websites (Extended Search)

thermal properties MoWiTT measured system SHGC to check method The transmission of solar energy through a complicated system such as a window with a venetian blind andor...

347

Available Technologies: Superinsulated Commercial Window ...  

Superinsulated Commercial Window Framing System. IB-3155. APPLICATIONS OF TECHNOLOGY: Window and façade framing systems for non-residential building c ...

348

LBNL Window & Daylighting Software -- RESFEN  

NLE Websites -- All DOE Office Websites (Extended Search)

cooling costs associated with windows while increasing occupant comfort and minimizing window surface condensation problems. However, consumers are often confused about how to pick...

349

Windows Installation Notes for EXPGUI  

Science Conference Proceedings (OSTI)

... a DOS window to run gsaskit.exe and an unzip program (for example Winzip) to unpack Tcl/Tk and EXPGUI. For newer versions of Windows, the ...

350

Membranes Improve Insulation Efficiency  

E-Print Network (OSTI)

It has been determined from extensive tests involving test models and home attics that loose fill and fiber batt insulation does not function as expected by the industry. The reason for this deficiency is current test methods do not accurately predict the magnitude of air infiltration into fiber insulation as used in home attics, radiant heat infiltration into the insulation during summer, or radiant heat loss through the insulation during winter conditions. The use of (1) moisture permeable membranes over the insulation, and (2) layered membranes between fiber batts to form closed cells in the insulation both dramatically improve the efficiency of the fiber insulation. The efficiency of this insulation will be improved to an even greater degree if these membranes reflect radiant heat as well as reduce convection air currents. Extensive tests have also been conducted which show that if moisture permeable membranes are used over fiber insulation, the moisture content of the insulation will be reduced.

Bullock, C. A.

1986-01-01T23:59:59.000Z

351

Window Daylighting Demo  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Window Daylighting Demo: Window Daylighting Demo: Accelerated Deployment of Daylighting and Shading Systems Stephen Selkowitz Lawrence Berkeley National Laboratory seselkowitz@lbl.gov 510-486-5064 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Façade has large energy impacts. Cooling and lighting average ~ 40% of energy use in commercial buildings and often >50% in peak electric demand. * Many glazing/shading/daylighting options exist, but selecting the "best" solution is

352

Window Daylighting Demo  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Daylighting Demo: Window Daylighting Demo: Accelerated Deployment of Daylighting and Shading Systems Stephen Selkowitz Lawrence Berkeley National Laboratory seselkowitz@lbl.gov 510-486-5064 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Façade has large energy impacts. Cooling and lighting average ~ 40% of energy use in commercial buildings and often >50% in peak electric demand. * Many glazing/shading/daylighting options exist, but selecting the "best" solution is

353

Delineating the conformal window  

E-Print Network (OSTI)

We identify and characterise the conformal window in gauge theories relevant for beyond the standard model building, e.g. Technicolour, using the criteria of metric confinement and causal analytic couplings, which are known to be consistent with the phase diagram of supersymmetric QCD from Seiberg duality. Using these criteria we find perturbation theory to be consistent throughout the predicted conformal window for several of these gauge theories and we discuss recent lattice results in the light of our findings.

Mads T. Frandsen; Thomas Pickup; Michael Teper

2010-07-09T23:59:59.000Z

354

Strategies for using PassfacesTM for Windows  

Science Conference Proceedings (OSTI)

... Passfaces for Windows capitalizes on an innate human ability and introduces a ... caliber of passwords is high and the security consciousness is high ...

355

Storm Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storm Windows Storm Windows Storm Windows June 18, 2012 - 8:20am Addthis An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. Interior storm windows improved the energy efficiency of a daycare center with windows on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. Interior storm windows improved the energy efficiency of a daycare center with windows on the north elevation. | Photo courtesy of Larry Kinney,

356

Storm Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storm Windows Storm Windows Storm Windows June 18, 2012 - 8:20am Addthis An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. Interior storm windows improved the energy efficiency of a daycare center with windows on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. Interior storm windows improved the energy efficiency of a daycare center with windows on the north elevation. | Photo courtesy of Larry Kinney,

357

Superconducting Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Superconducting Topological Insulators Print Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly resist scattering from defects, naturally achieving some of the most desirable traits for computing components and next-generation "spintronics" technologies. More recent angle-resolved photoemission spectroscopy (ARPES) studies performed at ALS Beamlines 10.0.1 and 12.0.1 by the same collaboration have paved a way for these novel material properties to be taken even further. Their studies showed that by doping the TI, bismuth selenide, with copper, it's possible to make the topologically ordered electrons superconducting, dropping electrical resistance in the surface states all the way to zero.

358

Superconducting Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Superconducting Topological Insulators Print Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly resist scattering from defects, naturally achieving some of the most desirable traits for computing components and next-generation "spintronics" technologies. More recent angle-resolved photoemission spectroscopy (ARPES) studies performed at ALS Beamlines 10.0.1 and 12.0.1 by the same collaboration have paved a way for these novel material properties to be taken even further. Their studies showed that by doping the TI, bismuth selenide, with copper, it's possible to make the topologically ordered electrons superconducting, dropping electrical resistance in the surface states all the way to zero.

359

Superconducting Topological Insulators  

NLE Websites -- All DOE Office Websites (Extended Search)

Superconducting Topological Insulators Print Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly resist scattering from defects, naturally achieving some of the most desirable traits for computing components and next-generation "spintronics" technologies. More recent angle-resolved photoemission spectroscopy (ARPES) studies performed at ALS Beamlines 10.0.1 and 12.0.1 by the same collaboration have paved a way for these novel material properties to be taken even further. Their studies showed that by doping the TI, bismuth selenide, with copper, it's possible to make the topologically ordered electrons superconducting, dropping electrical resistance in the surface states all the way to zero.

360

Updating the Doors and Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Updating the Doors and Windows Updating the Doors and Windows Updating the Doors and Windows August 23, 2012 - 2:46pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory Since I can't afford to replace my windows like Andrea did recently (I've got a lot more of them for one thing), the next best thing is to be sure the existing ones-- which are double-paned, so that's a help-are well sealed. One of my energy audit recommendations was to caulk the window frames inside and out. My handyman friend Rob and his brother got the outside of the windows caulked (hmm, I have to ask him about the basement windows -- it's kind of tucked away under the entry deck over the dog door.) He said that it looked like some of the edges (the tops of the second floor windows especially) hadn't ever been done and the ones that had, had highly

Note: This page contains sample records for the topic "highly insulating window" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Insulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Insulation Insulation May 30, 2012 - 9:14am Addthis Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSEC/IBACOS. Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSEC/IBACOS. Foam core structural insulated panels are built in a factory, shipped to the jobsite, and assembled. | Photo courtesy of Michael Baechler. Foam core structural insulated panels are built in a factory, shipped to the jobsite, and assembled. | Photo courtesy of Michael Baechler. Spray foam insulation fills the nooks and crannies in the walls of this energy-efficient Florida home. | Photo courtesy of FSEC/IBACOS. Foam core structural insulated panels are built in a factory, shipped to the jobsite, and assembled. | Photo courtesy of Michael Baechler.

362

The Effects of Contamination on HVDC Insulators  

Science Conference Proceedings (OSTI)

EPRI is currently documenting the various issues that should be considered when converting existing AC lines to high voltage DC (HVDC) lines. One issue that has not yet been dealt with properly is the selection of external DC insulation with respect to contamination. Since the beginning of overhead power transmission, it has been recognized that the performance of external insulation is adversely affected when the insulating surface is contaminated with airborne deposits such as marine salt or industrial...

2010-12-13T23:59:59.000Z

363

Gas insulated substation equipment for industrial applications  

SciTech Connect

Until recently the only available method for construction of high voltage systems was to use exposed air insulated equipment supported on porcelain columns. The past decade has witnessed the introduction and wide acceptance of compressed gas insulated equipment as a viable alternative to the conventional substation system. The characteristics of gas insulated substations (GIS) and their application for industrial use at service voltages at 69 kV and above are discussed.

Kenedy, J.J.

1984-11-01T23:59:59.000Z

364

Porcelain Insulator Vintage Guide: 1st Edition  

Science Conference Proceedings (OSTI)

Insulators play an important role in transmission lines and are sometimes considered part of the structure. They are required to perform two functions, mechanically and electrically suspend the conductor from the structure. If the insulator fails at either task, the flow of electricity is interrupted. Insulators for high-voltage transmission (relative to the era) started around 1904. The technology using porcelain is more than 100 years old and has not significantly changed in the past 50 years. ...

2012-12-14T23:59:59.000Z

365

Windows: Technical paper with comments  

SciTech Connect

Functional requirements of windows are examined including window location; hardware design, operation, and placement; energy conservation needs; and egress requirements. Basic window styles and design characteristics are described. Problems confronting persons with disabilities are identified and recommendations are made on the development of minimum functional and safety specifications for windows.

Woods, W.

1984-09-01T23:59:59.000Z

366

Why packages? The Windows tools  

E-Print Network (OSTI)

Why packages? The Windows tools A sample package Going further Package Development in Windows from August 13, 2008; updated November 23, 2012 1 of 45 #12;Why packages? The Windows tools A sample of packages 2 The Windows tools The main tools Missing pieces Installing the tools 3 A sample package Getting

Murdoch, Duncan

367

The use of coated micropowders to reduce radiation heat transfer in foam insulation  

E-Print Network (OSTI)

Polyurethane foam is the most effective insulation currently available for buildings. Chlorofluorocarbon (CFC) blowing agents, which have low thermal conductivities, contribute highly to the effectiveness of this insulation. ...

Marge, Arlene Lanciani

1991-01-01T23:59:59.000Z

368

Adaptive Liquid Crystal Windows  

SciTech Connect

Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of power consumption by ALCWs allows for on-board power electronics for automatic matching of transmission through windows to varying climate conditions without drawing the power from the power grid. ALCWs are capable of transmitting more sunlight in winters to assist in heating and less sunlight in summers to minimize overheating. As such, they can change the window from being a source of energy loss to a source of energy gain. In addition, the scalable AMI’s roll-to-roll process, proved by making 1ft × 1ftALCW prototype panels, allows for cost-effective production of large-scale window panels along with capability to change easily their color and shape. In addition to architectural glazing in houses and commercial buildings, ALCWs can be used in other applications where control of sunlight is needed, such as green houses, used by commercial produce growers and botanical gardens, cars, aircrafts, etc.

Taheri, Bahman; Bodnar, Volodymyr

2011-12-31T23:59:59.000Z

369

Starburst99 for Windows  

E-Print Network (OSTI)

We describe a Windows compatible version of the evolutionary synthesis code Starburst99. Starburst99 for Windows was developed from the public UNIX based version at STScI. We converted the original Fortran77 source code into a version for a Win32 environment with an Absoft Fortran Pro x86 compiler. Extensive testing showed no significant numerical differences in comparison with the previous UNIX version. The software application consists of the source code, executable, and a number of auxiliary files. The package installs on any PC running Windows 2000, XP, or Vista and can be obtained as freeware at http://www.stsci.edu/science/starburst/PCStarburst99.html. We give an overview of the different running modes and provide instructions for getting started with the initial set-up.

Claus Leitherer; Julia Chen

2008-11-14T23:59:59.000Z

370

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 (7.2.29 -- December 29 2013) Release Notes Updated: 12/29/13 If you find bugs, or have comments about this version, please do not hesitate to send an email to WINDOWHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. WINDOW 7.2.29 (December 29, 2013) Program Changes Glazing System Shading System Details For shading system in a Glazing System Library construction, the emittances, conductance and TIR are not displayed, as they are only available after a calculation has been completed. Perforated Screens An input value for "Effective Openness Factor" has been added to the Shading Layer Library for perforated screens. At a future date, we will update the program to calculate this value automatically.

371

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Deflection Modeling Deflection Modeling It is now possible to model the effects of glass deflection in WINDOW 7. Glazing System Library The Glazing System Library is where the deflection modeling input values are entered. When the "Model Deflection" box is checked, a Deflection input box appears. When the Glazing System is calculated, two rows of results, one for the undeflected state and one for the deflected state, appear for Center of Glass Results, Temperature Data and Angular data. In addition, a Deflection tab appears, which shows the deflection of each glass layer and the resulting gap width for each gap. Glazing System Deflect Input There are two options for defining the deflection in a glazing system, by choosing from the "Input" pulldown list:

372

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacuum Glazing Modeling Vacuum Glazing Modeling It is now possible to model vacuum glazing in WINDOW 7. The first step is to define a new vacuum "gap" in the "Gap Library" (formerly the Gas Library). Then that vacuum gap is used in a glazing system to calculate the thermal characteristics of the glazing system with a vacuum gap. Gap Library The Gas Library has been renamed the Gap Library. To define a vacuum gap, check the "Vacuum" checkbox (this is only available for single gases, not gas mixtures). When this box is checked, new input variables will appear, including the vacuum pressure, the specific heat ratio and molecular weight of the vacuum gas. It is also necessary to define a pillar system for the vacuum gap. Pillar Definition Double click the double arrow to the right of the Pillar Definition pulldown to define a new pillar system. Define the shape and dimensions of the pillar system.

373

LBNL Window & Daylighting Software -- RESFEN: System Requirements  

NLE Websites -- All DOE Office Websites (Extended Search)

SYSTEM REQUIREMENTS OPERATING SYSTEM Windows 95, Windows 98, Windows 2000, Windows XP, or Windows NT CPU TYPE Pentium (a 133 MHz pentium will take about 40 seconds to perform a...

374

DOE-2 Input File From WINDOW  

NLE Websites -- All DOE Office Websites (Extended Search)

a DOE2 input file from WINDOW 5 Last update: 02012008 01:19 PM Creating a DOE-2 Input File for One Window In the WINDOW Window Library, which defines a complete window including...

375

Transport properties in the vicinity of Mott insulators  

E-Print Network (OSTI)

Understanding the states in the vicinity of the Mott insulator is crucial to understanding both the physics of the transition between a Mott insulating phase and a metallic phase and the physics of the cuprate high-temperature ...

Nave, Cody Patrick, 1980-

2007-01-01T23:59:59.000Z

376

Insulation | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

planning to do the job yourself. How does it work? Insulation slows heat flow through the building envelope of your home. Insulation in your home provides resistance to heat flow....

377

Insulating polymer concrete  

DOE Patents (OSTI)

A lightweight insulating polymer concrete formed from a lightweight closed cell aggregate and a water resistance polymeric binder.

Schorr, H. Peter (Douglaston, NY); Fontana, Jack J. (Shirley, NY); Steinberg, Meyer (Melville, NY)

1987-01-01T23:59:59.000Z

378

Polymer Insulator Vintage Guide  

Science Conference Proceedings (OSTI)

For more than 30 years, polymer long rod suspension insulators have been available and used on transmission lines. The primary functions of polymer insulatorsalso called composite insulators or nonceramic insulatorsare to provide 1) mechanical strength to attach the conductors to the structures and 2) electrical insulation between the conductors and the structure. Initially, the use of polymer insulators was limited because utilities had limited experience; however, today, the use is more widespread. Con...

2011-12-12T23:59:59.000Z

379

Thermal Insulation Materials  

Science Conference Proceedings (OSTI)

... IN. Knauf Insulation Product Testing Laboratory, Shelbyville, IN [200883- 0] MI. Dow Chemical Building Solutions Product Perf. ...

2014-01-03T23:59:59.000Z

380

Windows and lighting program  

SciTech Connect

More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity -- factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout the indoor environment, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Windows and lighting are thus essential components of any comprehensive building science program. Despite important achievements in reducing building energy consumption over the past decade, significant additional savings are still possible. These will come from two complementary strategies: (1) improve building designs so that they effectively apply existing technologies and extend the market penetration of these technologies; and (2) develop advanced technologies that increase the savings potential of each application. Both the Windows and Daylighting Group and the Lighting System Research Group have made substantial contributions in each of these areas, and continue to do so through the ongoing research summarized here. 23 refs., 16 figs.

1990-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "highly insulating window" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Window To The Stars  

E-Print Network (OSTI)

We present Window To The Stars, a graphical user interface to the popular TWIN single/binary stellar evolution code, for novices, students and professional astrophysicists. It removes the drudgery associated with the traditional approach to running the code, while maintaining the power, output quality and flexibility a modern stellar evolutionist requires. It is currently being used for cutting edge research and interactive teaching.

Robert G. Izzard; Evert Glebbeek

2006-07-27T23:59:59.000Z

382

Superconducting radiofrequency window assembly  

DOE Patents (OSTI)

The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

Phillips, Harry L. (Seaford, VA); Elliott, Thomas S. (Yorktown, VA)

1997-01-01T23:59:59.000Z

383

Superconductive radiofrequency window assembly  

DOE Patents (OSTI)

The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

Phillips, Harry Lawrence (Seaford, VA); Elliott, Thomas S. (Yorktown, VA)

1998-01-01T23:59:59.000Z

384

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheets & Publications Fact Sheets & Publications Residential Windows: A Guide to New Technology and Energy Performance Available from Norton Professional Books. exit disclaimer Single copy price: $35.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer Window Systems for High-performance Buildings Available from Norton Professional Books. exit disclaimer Single copy price: $50.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer State Fact Sheets for New and Existing Construction The EWC State Fact Sheets provide a simple, portable step-by-step guide to selecting energy efficient windows considering the conditions in that state. Each one summarizes the key considerations found elsewhere on this site, and provides a summary of results from the Window Selection Tool for key cities in that state.

385

What is the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

What is the Efficient Windows Collaborative? What is the Efficient Windows Collaborative? The EWC is a coalition of window, door, skylight, and component manufacturers, research organizations, federal, state and local government agencies, and others interested in expanding the market for high-efficiency fenestration products. Its goals are to double the current market penetration of efficient window technologies, and to make NFRC labeling a near-universal practice in U.S. markets. The Alliance to Save Energy has the lead coordination and management role. Using its active involvement with the energy efficiency industry and its experience in promoting energy efficient products, the Alliance is committed to working with the fenestration industry to make the Collaborative an effective force in the marketplace.

386

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Performance: Visible Transmittance (VT) Measuring Performance: Visible Transmittance (VT) How to maximize daylight? Historically, only clear glass was used to maximize the amount of light entering through a window. Especially in cooling-dominated climate, this desirable daylight also came with undesirable solar heat gain. With the advancement of high-performance glazing systems, it is possible for low-E coatings to reject the solar heat gain while allowing the visible light to pass through the glass. The type of low-E coating that is appropriate for your specific house depends on location, orientation, window area, and shading strategies. The visible transmittance (VT) is an optical property that indicates the fraction of visible light transmitted through the window. This is separate from the Solar Heat Gain Coefficient (SHGC), since many modern windows

387

Windows Public Tools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Windows Public Tools Windows Public Tools Windows Public Tools Windows TOOL DESCRIPTION KarlBridge The KarlBridge package by Doug Karl. A program that runs on a PC with two Ethernet boards, turning the PC into a sophisticated, high-level, packet-filtering bridge. It can filter packets based on any specified protocol, including IP, XNS, DECNET, LAT, IPX, AppleTalk, etc. FakeDOS FakeDoS is a PC password system that, when executed from the AUTOEXEC.BAT file, will present the user with an apparently normal DOS prompt on bootup. However, the system is actually waiting for the correct password to be typed in. LOCK'M-UP The LogTime program logs the current time into a file, maintaining the last 170 entries stored. This can be useful when placed in AUTOEXEC.BAT as a method of tracking the use of a computer.

388

Electrochromic sun control coverings for windows  

DOE Green Energy (OSTI)

The 2 billion square meters (m{sup 2}) of building windows in the United States cause a national energy drain almost as large as the energy supply of the Alaskan oil pipeline. Unlike the pipeline, the drain of energy through windows will continue well into the 21st century. A part of this energy drain is due to unwanted sun gain through windows. This is a problem throughout the country in commercial buildings because they generally require air conditioning even in cold climates. New commercial windows create an additional 1600 MW demand for peak electric power in the United States each year. Sun control films, widely used in new windows and as retrofits to old windows, help to mitigate this problem. However, conventional, static solar control films also block sunlight when it is wanted for warmth and daylighting. New electrochromic, switchable, sun-gain-control films now under development will provide more nearly optimal and automatic sun control for added comfort, decreased building operating expense, and greater energy saving. Switchable, electrochromic films can be deposited on polymers at high speeds by plasma enhanced chemical vapor deposition (PECVD) in a process that may be suitable for roll coating. This paper describes the electrochromic coatings and the PECVD processes, and speculates about their adaptability to high-speed roll coating. 8 refs., 3 figs.

Benson, D K; Tracy, C E

1990-04-01T23:59:59.000Z

389

ITER Central Solenoid Coil Insulation Qualification  

Science Conference Proceedings (OSTI)

An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4x4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.

Martovetsky, Nicolai N [ORNL; Mann Jr, Thomas Latta [ORNL; Miller, John L [ORNL; Freudenberg, Kevin D [ORNL; Reed, Richard P [Cryogenic Materials, Inc.; Walsh, Robert P [Florida State University; McColskey, J D [National Institute of Standards and Technology (NIST), Boulder; Evans, D [Advanced Cryogenic Materials

2010-01-01T23:59:59.000Z

390

ITER CENTRAL SOLENOID COIL INSULATION QUALIFICATION  

Science Conference Proceedings (OSTI)

An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4 x 4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.

Martovetsky, N N; Mann, T L; Miller, J R; Freudenberg, K D; Reed, R P; Walsh, R P; McColskey, J D; Evans, D

2009-06-11T23:59:59.000Z

391

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome to the Efficient Windows Collaborative Welcome to the Efficient Windows Collaborative YOUR GATEWAY TO INFORMATION ON HOW TO CHOOSE ENERGY-EFFICIENT RESIDENTIAL WINDOWS 101 Efficient Windows Collaborative (EWC) members have made a commitment to manufacture and promote energy-efficient windows. This site provides unbiased information on the benefits of energy-efficient windows, descriptions of how they work, and recommendations for their selection and use. Selecting Windows for New Construction Window Selection Tool Selection Process Design Guidance Installation Selecting Replacement Windows Window Selection Tool Assessing Replacement Options Selection Process Design Guidance Installation Understanding Windows Benefits of Energy Efficient Windows Design Considerations How to Measure Performance Window Technologies

392

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

NLE Websites -- All DOE Office Websites (Extended Search)

a copy of THERM 7 Beta Knowledge Base Release Notes Forum Documentation Get a copy of WINDOW 7.1 to accompany THERM 7 Beta -- NOTE: WINDOW 7.2 is not compatible with THERM 7.1....

393

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

NLE Websites -- All DOE Office Websites (Extended Search)

a copy of THERM 7 Beta Knowledge Base Release Notes Forum Documentation Get a copy of WINDOW 7.1 to accompany THERM 7 Beta -- NOTE: WINDOW 7.0 is not compatible with THERM 7.1....

394

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Radiance in WINDOW 7 beta August 3rd, 2012 Last Updated: 08032012 This package will add the capability to generate basic Radiance images from within WINDOW. You need to...

395

Energy Efficient Electrochromic Windows Incorporating Ionic Liquids  

SciTech Connect

One approach to increasing the energy efficiency of windows is to control the amount of solar radiation transmitted through a window by using electrochromic technology. What is unique about this project is that the electrochromic is based on the reduction/oxidation reactions of cathodic and anodic organic semi-conducting polymers using room temperature ionic liquids as ion transport electrolytes. It is believed that these types of coatings would be a lower cost alternative to traditional all inorganic thin film based electrochromic technologies. Although there are patents1 based on the proposed technology, it has never been reduced to practice and thoroughly evaluated (i.e. durability and performance) in a window application. We demonstrate that by using organic semi-conductive polymers, specific bands of the solar spectrum (specifically visible and near infrared) can be targeted for electrochemical variable transmittance responsiveness. In addition, when the technology is incorporated into an insulating glass unit, the energy parameters such as the solar heat gain coefficient and the light to solar gain ratio are improved over that of a typical insulating glass unit comprised of glass with a low emissivity coating. A minimum of {approx}0.02 quads of energy savings per year with a reduction of carbon emissions for electricity of {approx}320 MKg/yr benefit is achieved over that of a typical insulating glass unit including a double silver low-E coating. Note that these values include a penalty in the heating season. If this penalty is removed (i.e. in southern climates or commercial structures where cooling is predominate year-round) a maximum energy savings of {approx}0.05 quad per year and {approx}801 MKg/yr can be achieved over that of a typical insulating glass unit including a double silver low-E coating. In its current state, the technology is not durable enough for an exterior window application. The primary downfall is that the redox chemistry fails to recover to a bleached state upon exposure to heat and solar radiation while being cycled over time from the bleached to the dark state. Most likely the polymers are undergoing degradation reactions which are accelerated by heat and solar exposure while in either the reduced or oxidized states and the performance of the polymers is greatly reduced over time. For this technology to succeed in an exterior window application, there needs to be more work done to understand the degradation of the polymers under real-life application conditions such as elevated temperatures and solar exposure so that recommendations for improvements in to the overall system can be made. This will be the key to utilizing this type of technology in any future real-life applications.

Cheri Boykin; James Finley; Donald Anthony; Julianna Knowles; Richard Markovic; Michael Buchanan; Mary Ann Fuhry; Lisa Perrine

2008-11-30T23:59:59.000Z

396

T-596: 0-Day Windows Network Interception Configuration Vulnerability |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: 0-Day Windows Network Interception Configuration 6: 0-Day Windows Network Interception Configuration Vulnerability T-596: 0-Day Windows Network Interception Configuration Vulnerability April 6, 2011 - 5:48am Addthis PROBLEM: 0-Day exploit of IPv4 and IPv6 mechanics and how it applies to Microsoft Windows Operating systems. PLATFORM: Microsoft Operating Systems (OS) Windows Vista, Windows 7, and Windows 2008 Server ABSTRACT: The links below describe a parasitic IPv6 layered over a native IPv4 network. This attack can be used to stage potential man-in-the-middle (MITM) attacks on IPv4 traffic. Please see the "Other Links" section below, as it provides an external URL reference. reference LINKS: InfoSec Institute - SLAAC Attack Cisco Threat Comparison and Best-Practice White Paper IMPACT ASSESSMENT: High

397

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Release Notes Release Notes Updated: 11/07/11 History of COMFEN 3.1 Releases New Features Glazed Wall Assembly In addition to modeling individual windows, COMFEN now has the capability of modeling "Glazed Wall Assemblies" which allow you to specify the number of horizontal and vertical framing members, as well as their spacing, and the program automatically generates the facade. Click here for more details. Material Library COMFEN now has a Material Library, which can be used in the Wall Construction and Spandrel Libraries. See the User Manual for more details. Wall Library COMFEN now has a Wall Library which can be used to build up layers from the Material Library to define a wall. See the User Manual for more details. Spandrel Library COMFEN now has a Spandrel Library which can be used to build up layers from the Material Library to define a spandrel, including glass and glazing systems as the outer-most layers. See the User Manual for more details.

398

Atmospheric Condensation Potential of Windows in Hot, Humid Climates  

E-Print Network (OSTI)

In hot, humid climates, the internal surfaces of windows in air-conditioned buildings are in contact with relatively colder air. Meanwhile, the external surfaces are exposed to hot humid atmospheric air. This hygro-thermal condition may cause frequent atmospheric condensation on external surfaces of windows when their surface temperature drops below the dew point temperature of the hot humid air. To date, external surface condensation on windows has been given relatively much less importance than their internal surface condensation. In addition, the thermal analysis of windows in hot humid climates has always been performed in the absence of condensation. Under moderate air temperature and humidity conditions, such practice is acceplable. However, when windows experience atmospheric condensation on their external surfaces, the effect of condensation on window energy loss needs to be examined. In this paper, the external condensation process is analyzed and the atmospheric water vapor mass condensation rate has been obtained by utilizing a simplified transient uni-dimensional finite difference model. The results show that this model has enhanced the assessment of the potential for atmospheric condensation on windows in hot, humid climates and in predicting the amount of condensation expected, as well as the associated energy loss for given thermal and moisture conditions. The numerical computation of the model is able to account for condensation and its impact on the temperature gradient across the window. Thermal analysis of both single and insulated double-glazed windows under condensation conditions is presented. The work also includes the computational procedure used and the results or a case study demonstrating the model's capabilities.

El Diasty, R.; Budaiwi, I.

1992-05-01T23:59:59.000Z

399

Process for making ceramic insulation  

SciTech Connect

A method is provided for producing insulation materials and insulation for high temperature applications using novel castable and powder-based ceramics. The ceramic components produced using the proposed process offers (i) a fine porosity (from nano-to micro scale); (ii) a superior strength-to-weight ratio; and (iii) flexibility in designing multilayered features offering multifunctionality which will increase the service lifetime of insulation and refractory components used in the solid oxide fuel cell, direct carbon fuel cell, furnace, metal melting, glass, chemical, paper/pulp, automobile, industrial heating, coal, and power generation industries. Further, the ceramic components made using this method may have net-shape and/or net-size advantages with minimum post machining requirements.

Akash, Akash (Salt Lake City, UT); Balakrishnan, G. Nair (Sandy, UT)

2009-12-08T23:59:59.000Z

400

Windows Installation Information for EXPGUI  

Science Conference Proceedings (OSTI)

... in liveplot for example) can take 3-5 times longer in Windows than in ... display a plot, I get no plot (and possibly the DOS window disappears without ...

Note: This page contains sample records for the topic "highly insulating window" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Strengthened lithium for x-ray blast windows  

Science Conference Proceedings (OSTI)

Lithium's high x-ray transparency makes it an attractive material for windows intended to protect soft x-ray diagnostics in high energy density experiments. Pure lithium is soft and weak, but lithium mixed with lithium hydride powder becomes harder and stronger, in principle without any additional x-ray absorption. A comparison with the standard material for x-ray windows, beryllium, suggests that lithium or lithium strengthened by lithium hydride may well be an excellent option for such windows.

Pereira, N. R. [Ecopulse Inc., P.O. Box 528, Springfield, Virginia 22150 (United States); Imam, M. A. [Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States)

2008-05-15T23:59:59.000Z

402

Nanolens Window Coatings for Daylighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nanolens Window Coatings for Nanolens Window Coatings for Daylighting Kyle J. Alvine Pacific Northwest National Laboratory Kyle.alvine@pnnl.gov / (509) - 372 - 4475 April 4 th , 2013 Demonstration of the effect To develop a novel, low-cost window coating to double daylight penetration to offset lighting energy use 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: PNNL is developing a novel, low-cost window coating to redirect daylight deeper into buildings to significantly offset lighting energy.

403

Nanolens Window Coatings for Daylighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanolens Window Coatings for Nanolens Window Coatings for Daylighting Kyle J. Alvine Pacific Northwest National Laboratory Kyle.alvine@pnnl.gov / (509) - 372 - 4475 April 4 th , 2013 Demonstration of the effect To develop a novel, low-cost window coating to double daylight penetration to offset lighting energy use 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: PNNL is developing a novel, low-cost window coating to redirect daylight deeper into buildings to significantly offset lighting energy.

404

Performance of a multifunctional PV/T hybrid solar window  

Science Conference Proceedings (OSTI)

A building-integrated multifunctional PV/T solar window has been developed and evaluated. It is constructed of PV cells laminated on solar absorbers placed in a window behind the glazing. To reduce the cost of the solar electricity, tiltable reflectors have been introduced in the construction to focus radiation onto the solar cells. The reflectors render the possibility of controlling the amount of radiation transmitted into the building. The insulated reflectors also reduce the thermal losses through the window. A model for simulation of the electric and hot water production was developed. The model can perform yearly energy simulations where different features such as shading of the cells or effects of the glazing can be included or excluded. The simulation can be run with the reflectors in an active, up right, position or in a passive, horizontal, position. The simulation program was calibrated against measurements on a prototype solar window placed in Lund in the south of Sweden and against a solar window built into a single family house, Solgaarden, in Aelvkarleoe in the central part of Sweden. The results from the simulation shows that the solar window annually produces about 35% more electric energy per unit cell area compared to a vertical flat PV module. (author)

Davidsson, Henrik; Perers, Bengt; Karlsson, Bjoern [Energy and Building Design, Lund University, P.O. Box 118, SE 221 00 Lund (Sweden)

2010-03-15T23:59:59.000Z

405

New Window Technology Saves Energy and the View | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Window Technology Saves Energy and the View New Window Technology Saves Energy and the View New Window Technology Saves Energy and the View November 5, 2013 - 3:55pm Addthis Researchers at the Energy Department's National Renewable Energy Laboratory are developing innovative new window technology that helps improve occupants' comfort and cuts energy use. | Photo courtesy of Pat Corkery, NREL. Researchers at the Energy Department's National Renewable Energy Laboratory are developing innovative new window technology that helps improve occupants' comfort and cuts energy use. | Photo courtesy of Pat Corkery, NREL. Gabrial Boeckman NREL Communications Manager for Buildings & Communities What does this project do? With funding from the Energy Department, the National Renewable Energy Laboratory is working to develop innovative insulating window film

406

New Window Technology Saves Energy and the View | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Window Technology Saves Energy and the View New Window Technology Saves Energy and the View New Window Technology Saves Energy and the View November 5, 2013 - 3:55pm Addthis Researchers at the Energy Department's National Renewable Energy Laboratory are developing innovative new window technology that helps improve occupants' comfort and cuts energy use. | Photo courtesy of Pat Corkery, NREL. Researchers at the Energy Department's National Renewable Energy Laboratory are developing innovative new window technology that helps improve occupants' comfort and cuts energy use. | Photo courtesy of Pat Corkery, NREL. Gabrial Boeckman NREL Communications Manager for Buildings & Communities What does this project do? With funding from the Energy Department, the National Renewable Energy Laboratory is working to develop innovative insulating window film

407

AttrActive Windows: Dynamic Windows for Digital Bulletin Boards  

E-Print Network (OSTI)

In this paper we describe AttrActive Windows, a novel interface for presenting live, interactive, multimedia content on a network of public, digital, bulletin boards. Implementing a paper flyer metaphor, AttrActive Windows are paper-like in appearance and are attached to a virtual corkboard by virtual pushpins. Windows can therefore appear in different orientations, creating an attractive, informal look. Attractive Windows can also have autonomous behaviors that are consistent with the corkboard metaphor, like fluttering in the wind. We describe the AttrActive Windows prototype, and offer the results of an initial evaluative user study.

Laurent Denoue; Les Nelson; Elizabeth Churchill

2003-01-01T23:59:59.000Z

408

A professor's life, simplified Windows  

E-Print Network (OSTI)

A professor's life, simplified Windows® 7 makes a professor's "technology life" easier. Now, using programs quickly. Windows Search finds virtually anything on your PC instantly­ files, photos, documents, even a buried e-mail. 2. Helps you get started faster Windows7 operating system is not tardy. It starts

Bernstein, Phil

409

Corrugated outer sheath gas-insulated transmission line  

DOE Patents (OSTI)

A gas-insulated transmission line includes two transmission line sections each of which are formed of a corrugated outer housing enclosing an inner high-voltage conductor disposed therein, with insulating support means supporting the inner conductor within the outer housing and an insulating gas providing electrical insulation therebetween. The outer housings in each section have smooth end sections at the longitudinal ends thereof which are joined together by joining means which provide for a sealing fixed joint.

Kemeny, George A. (Pittsburgh, PA); Cookson, Alan H. (Churchill Boro, PA)

1981-01-01T23:59:59.000Z

410

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Connect to LinkedIn Visit us on Facebook Visit us on Twitter Send Email Efficient Windows Collaborative New Construction Windows Window Selection Tool Selection Process Design...

411

Simulating Complex Window Systems using BSDF Data  

E-Print Network (OSTI)

Simulating Complex Window Systems using BSDF Data MariaJune 2009 Simulating Complex Window Systems using BSDF Datathe performance of conventional window systems. Complex

Konstantoglou, Maria

2011-01-01T23:59:59.000Z

412

Window performance for human thermal comfort  

E-Print Network (OSTI)

of Heat Transfer through Windows”. ASHRAE Transactions 93,Performance of Vinyl-framed Windows”. Proc. 5 th Conf. Onet al. 2003b, "Operable Windows, Personal Control & Occupant

Huizenga, C; Zhang, H.; Mattelaer, P.; Yu, T.; Arens, Edward A; Lyons, P.

2006-01-01T23:59:59.000Z

413

Operable windows, personal control and occupant comfort.  

E-Print Network (OSTI)

ASHRAE’s permission. Operable Windows, Personal Control, andcontrol of operable windows in naturally-ventilated officeences on the operation of windows in a naturally venti-

Brager, Gail; Paliaga, Gwelen; de Dear, Richard

2004-01-01T23:59:59.000Z

414

Performance Criteria for Residential Zero Energy Windows  

E-Print Network (OSTI)

LaFrance. 2006. “Zero Energy Windows. ” Proceedings of the2003. “Future Advanced Windows for Zero-Energy Homes. ”and cooling energy use of windows in residential buildings—

Arasteh, Dariush; Goudey, Howdy; Huang, Joe; Kohler, Christian; Mitchell, Robin

2006-01-01T23:59:59.000Z

415

LBNL Windows & Daylighting Software -- THERM: System Requirements  

NLE Websites -- All DOE Office Websites (Extended Search)

SYSTEM REQUIREMENTS OPERATING SYSTEM Program has been tested on Microsoft Windows XP, Windows 2000TM.. Older version of Microsoft Windows might work, but are not supported. (The...

416

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Selection Tool: Existing Construction Windows The Window Selection Tool will take you through a series of design conditions pertaining to your design and location. It is a...

417

BT::Advancement of Electrochromic Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Diagram showing a zoned window wall Diagram showing a zoned window wall Electrochromic windows in a bleached state (left) or colored state (right). This website provides...

418

Insulated laser tube structure and method of making same  

DOE Patents (OSTI)

An insulated high temperature ceramic laser tube having substantially uniform insulation along the length of the tube is disclosed having particulate ceramic insulation positioned between the outer wall of the ceramic laser tube and the inner surface of tubular ceramic fiber insulation which surrounds the ceramic laser tube. The particulate ceramic insulation is preferably a ceramic capable of sintering to the outer surface of the ceramic laser tube and to the inner surface of the tubular ceramic fiber insulation. The addition of the particulate ceramic insulation to fill all the voids between the ceramic laser tube and the fibrous ceramic insulation permits the laser tube to be operated at a substantially uniform temperature throughout the length of the laser tube.

Dittbenner, Gerald R. (4353 Findlay Way, Livermore, CA 94550)

1999-01-01T23:59:59.000Z

419

KSI's Cross Insulated Core Transformer Technology  

Science Conference Proceedings (OSTI)

Cross Insulated Core Transformer (CCT) technology improves on Insulated Core Transformer (ICT) implementations. ICT systems are widely used in very high voltage, high power, power supply systems. In an ICT transformer ferrite core sections are insulated from their neighboring ferrite cores. Flux leakage is present at each of these insulated gaps. The flux loss is raised to the power of stages in the ICT design causing output voltage efficiency to taper off with increasing stages. KSI's CCT technology utilizes a patented technique to compensate the flux loss at each stage of an ICT system. Design equations to calculate the flux compensation capacitor value are presented. CCT provides corona free operation of the HV stack. KSI's CCT based High Voltage power supply systems offer high efficiency operation, high frequency switching, low stored energy and smaller size over comparable ICT systems.

Uhmeyer, Uwe [Kaiser Systems, Inc, 126 Sohier Road, Beverly, MA 01915 (United States)

2009-08-04T23:59:59.000Z

420

ZeroEnergyWindow_1031.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Background and Performance Objective Background and Performance Objective Zero Energy Window Prototype HIGH PERFORMANCE WINDOW OF THE FUTURE T of 0.35 - 0.5 BTU/h-ft 2 -F to levels of 0.1 - 0.15 BTU/h-ft 2 -F. At the same time, the strategy for optimal control of solar gain varies with season and climate in the U.S. Rather than argue over a high or low solar heat gain coefficient (SHGC), the year-round, all-climate solution is a variable SHGC that can

Note: This page contains sample records for the topic "highly insulating window" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

WindowsMillenniumEdition (Me) Windows98/98SecondEdition(SE)  

E-Print Network (OSTI)

WindowsMillenniumEdition (Me) Windows98/98SecondEdition(SE) Windows2000Professional WindowsXPHomeEdition WindowsXPProfessional Installation Guide Installing Nikon View 4 and Supporting Software Windows software (such as Cumulus) Mac OS Nikon D1 Nikon D1X Nikon D1H Windows Millennium Edition (Me) Windows 98

Kleinfeld, David

422

Vacuum Insulator Development for the Dielectric Wall Accelerator  

Science Conference Proceedings (OSTI)

At Lawrence Livermore National Laboratory, we are developing a new type of accelerator, known as a Dielectric Wall Accelerator, in which compact pulse forming lines directly apply an accelerating field to the beam through an insulating vacuum boundary. The electrical strength of this insulator may define the maximum gradient achievable in these machines. To increase the system gradient, we are using 'High Gradient Insulators' composed of alternating layers of dielectric and metal for the vacuum insulator. In this paper, we present our recent results from experiment and simulation, including the first test of a High Gradient Insulator in a functioning Dielectric Wall Accelerator cell.

Harris, J R; Blackfield, D; Caporaso, G J; Chen, Y; Hawkins, S; Kendig, M; Poole, B; Sanders, D M; Krogh, M; Managan, J E

2008-03-17T23:59:59.000Z

423

Window Interfaces: A Taxonomy of Window Manager User Interfaces  

E-Print Network (OSTI)

This article presents a taxonomy for the user-visible parts of window managers. It is interesting that there are actually very few significant differences, and the differences can be classified in a taxonomy with fairly limited branching. This taxonomy should be useful in evaluating the similarities and differences of various window managers, and it will also serve as a guide for the issues that need to be addressed by designers of future window manager user interfaces. The advantages and disadvantages of the various options are also presented. Since many modern window managers allow the user interface to be customized to a large degree, it is important to study the choices available. A window manager is a software package that helps the user monitor and control different contexts by separating them physically onto different parts of one or more display screens. At its simplest, a window manager provides many separate terminals on the same screen, each with its own connection to a time-sharing computer. At its most advanced, a window manager supports many different activities, each of which uses many windows, and each window, in turn, can contain many different kinds of information including text, graphics, and even video. Window managers are sometimes implemented as part of a computer’s operating system and sometimes as a server that can be used if desired. They September 1988 0272-1;1618810900-0065s0100 198R ltEE 65

Brad A. Myers

1988-01-01T23:59:59.000Z

424

Temperature Profile of IR Blocking Windows Used in Cryogenic X-Ray Spectrometers  

SciTech Connect

Cryogenic high-resolution X-ray spectrometers are typically operated with thin IR blocking windows to reduce radiative heating of the detector while allowing good x-ray transmission. We have estimated the temperature profile of these IR blocking windows under typical operating conditions. We show that the temperature in the center of the window is raised due to radiation from the higher temperature stages. This can increase the infrared photon flux onto the detector, thereby increasing the IR noise and decreasing the cryostat hold time. The increased window temperature constrains the maximum window size and the number of windows required. We discuss the consequences for IR blocking window design.

Friedrich, S.; Funk, T.; Drury, O.; Labov, S.E.

2000-08-08T23:59:59.000Z

425

Design of traveling wave windows for the PEP-II RF coupling network  

SciTech Connect

The waveguide windows in the PEP-II RF coupling network have to withstand high power of 500 kW. Traveling wave windows have lower power dissipation than conventional self-matched windows, thus rendering the possibility of less stringent mechanical design. The traveling wave behavior is achieved by providing a reflecting iris on each side of the window, and depending on the configuration of the irises, traveling wave windows are characterized as inductive or capacitive types. A numerical design procedure using MAFIA has been developed for traveling wave windows. The relative advantages of inductive and capacitive windows are discussed. Furthermore, the issues of bandwidth and multipactoring are also addressed.

Kroll, N.M.; Ng, C.K.; Judkins, J.; Neubauer, M.

1995-05-01T23:59:59.000Z

426

DOE-2 Input File From WINDOW  

NLE Websites -- All DOE Office Websites (Extended Search)

an EnergyPlus input file from WINDOW 5 Last update: 12232008 01:54 PM Creating an EnergyPlus Input File for One Window In the WINDOW Window Library, which defines a complete...

427

Loose-fill insulations  

SciTech Connect

Whether you are increasing the insulation levels in your current home or selecting insulation for a new home, choosing the right insulation material can be challenging. Fibrous loose-fill insulations such as cellulose, fiberglass, and rock wool are options you may wish to consider. This publication will introduce you to these materials--what they are, how they are applied, how they compare with each other, and other considerations regarding their use--so that you can decide whether loose fills are right for your home.

1995-05-01T23:59:59.000Z

428

Reflective Insulation Handbook.  

Science Conference Proceedings (OSTI)

When reflective-foil insulation manufacturers wanted the Bonneville Power Administration (BPA) to include their products in the Residential Weatherization Program, they lacked conclusive test data to prove that their products met program specifications. Reflective foils lacked widespread acceptance because of uncertainty about their insulation values. BPA discovered that the Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL) was preparing a study to test how well reflective foils reduced horizontal heat flow. Because the insulation value of reflective foils depends upon the direction of heat flow, BPA provided additional funding to test their effectiveness in reducing upward and downward heat flow and to produce this Handbook. The objectives of this study were to develop acceptable test and evaluation methods, produce an initial data base of idealized reflective-foil insulation systems, extend this data base to a limited number of commercially available products to develop and test analytical models to predict thermal performance and develop a Reflective Insulation Handbook for homeowners and insulation contractors. This handbook describes how heat is transferred; the function of an insulation; what reflective insulation is; types of reflective insulation; where it can be used; installation procedures; thermal performance; and useful sources of information. 10 figs., 2 tabs.

Desjarlais, Andre O.; Tye, Ronald P.

1990-08-01T23:59:59.000Z

429

Boron nitride insulating material  

DOE Patents (OSTI)

High temperature BN-insulated heaters for use as fuel pin simulators in reactor thermal hydraulic test facility studies comprise a cylindrical housing and a concentric heating element disposed within the housing and spaced apart from the housing to define an annular region therebetween. The annular region contains BN for providing electrical resistance and thermal conductivity between the housing and the heating element. The fabrication method of this invention comprises the steps of cold pressing BN powder at a pressure of 20 to 80,000 psig and a dwell time of at least 0.1-3 seconds to provide hollow cylindrical preforms of suitable dimensions for insertion into the annular region, the BN powder having a tap density of about 0.6-1.1 g/cm.sup.3 and an orientation ratio of at least about 100/3.5. The preforms are inserted into the annular region and crushed in place.

Morgan, Jr., Chester S. (Oak Ridge, TN); Cavin, O. Burl (Knoxville, TN); McCulloch, Reginald W. (Concord, TN); Clark, David L. (Clearwater, FL)

1978-01-01T23:59:59.000Z

430

Energy Savings with Smart Window Technology  

Window / façade manufacturer – Added value / higher margin • Construction company – Smart Window investment balanced by reduced ... Transport Vehicles

431

BSP 930 WINDOWS NT SECURITY CHECKLIST  

Science Conference Proceedings (OSTI)

MICROSOFT WINDOWS NT 3.51/4.0 SECURITY CHECKLIST. Domain Name_____. ... 3.0, WINDOWS NT ACCOUNT POLICIES, ...

432

Image Windows - description of data types  

Science Conference Proceedings (OSTI)

... image, or RGB color image. cstack Stack of color (RGB) images. FRED (text) window; Dialog; (various) graphics windows.

433

Design and Application of CVD Diamond Windows for X-Rays at the Advanced Photon Source  

Science Conference Proceedings (OSTI)

Two types of directly cooled, 0.2-mm-thick, 8-mm-diameter clear aperture CVD diamond windows have been designed and successfully fabricated by two different vendors for use at the Advanced Photon Source (APS). Both windows contain a direct braze joint between the diamond and the cooled OFHC copper. These windows can be used to replace the front-end beryllium windows in high-heat-load applications and can be used as white beam windows in the beamlines. This paper presents the detailed design of the diamond windows, the thermal analysis of the diamond window under different thermal load configurations, as well as a complete list of the existing APS front-end beryllium window configurations and replacement scenarios. Small-angle scattering experiments have been conducted on both diamond windows and a polished beryllium window, and the results are presented.

Jaski, Yifei [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Bldg 401, Argonne, IL 60439 (United States); Cookson, David [University of Chicago, CARS, APS Sector 15, 9700 S. Cass Ave, Bldg. 434D, Argonne, IL 60439 (United States)

2007-01-19T23:59:59.000Z

434

Design and application of CVD diamond windows for x-rays at the Advanced Photon Source.  

Science Conference Proceedings (OSTI)

Two types of directly cooled, 0.2-mm-thick, 8-mm-diameter clear aperture CVD diamond windows have been designed and successfully fabricated by two different vendors for use at the Advanced Photon Source (APS). Both windows contain a direct braze joint between the diamond and the cooled OFHC copper. These windows can be used to replace the front-end beryllium windows in high-heat-load applications and can be used as white beam windows in the beamlines. This paper presents the detailed design of the diamond windows, the thermal analysis of the diamond window under different thermal load configurations, as well as a complete list of the existing APS front-end beryllium window configurations and replacement scenarios. Small-angle scattering experiments have been conducted on both diamond windows and a polished beryllium window, and the results are presented.

Jaski, Y.; Cookson, D.; Experimental Facilities Division (APS); Univ. of Chicago

2007-01-01T23:59:59.000Z

435

Windows 7 -käyttöjärjestelmän ominaisuudet, käyttö ja Windows XP -vertailu.  

E-Print Network (OSTI)

??Tämän opinnäytetyön tutkimuskohteena oli Windows 7 -käyttöjärjestelmä. Sen ominaisuuksia ja käyttöä arvioitiin käyttäjän näkökulmasta. Lisäksi selvitettiin mm. asennusvaihtoehtoja, käyttöjärjestelmän versioiden eroja ja toimintoihin sekä so-velluksiin… (more)

Nevala, Jukka

2010-01-01T23:59:59.000Z

436

WinCuts: Manipulating Arbitrary Window Regions for  

E-Print Network (OSTI)

Each window on our computer desktop provides a view into some information. Although users can currently manipulate multiple windows, we assert that being able to spatially arrange smaller regions of these windows could help users perform certain tasks more efficiently. In this paper, we describe a novel interaction technique that allows users to replicate arbitrary regions of existing windows into independent windows called WinCuts. Each WinCut is a live view of a region of the source window with which users can interact. We also present an extension that allows users to share WinCuts across multiple devices. Next, we classify the set of tasks for which WinCuts may be useful, both in single as well as multiple device scenarios. We present high level implementation details so that other researchers can replicate this work. And finally, we discuss future work that we will pursue in extending these ideas.

More Effective Use; Desney S. Tan; Brian Meyers; Mary Czerwinski

2004-01-01T23:59:59.000Z

437

Microelectronic device package with an integral window  

DOE Patents (OSTI)

An apparatus for packaging of microelectronic devices, including an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can include a cofired ceramic frame or body. The package can have an internal stepped structure made of one or more plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination.

Peterson, Kenneth A. (Albuquerque, NM); Watson, Robert D. (Tijeras, NM)

2002-01-01T23:59:59.000Z

438

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools Tools Looking for windows for a new home? Use the Window Selection Tool to compare annual energy performance for windows in new construction. Window Selection Tool Looking for replacement windows? Use the Window Selection Tool to compare annual energy performance for replacement windows. Window Selection Tool Window Selection Tool Use the Window Selection Tool for new or replacement windows to compare the annual energy performance of different window types and design conditions for a typical house. Find manufacturers who offer windows and skylights within the generic results shown. Learn more about manufacturers' specific product options. Use the Window Selection Tool to: Compare how various window or skylight types affect estimated energy cost for a typical house in your location.

439

Cooled window for X-rays or charged particles  

DOE Patents (OSTI)

A window is disclosed that provides good structural integrity and a very high capacity for removal of the heat deposited by x-rays, electrons, or ions, with minimum attenuation of the desired beam. The window is cooled by providing microchannels therein through which a coolant is pumped. For example, the window may be made of silicon with etched microchannels therein and covered by a silicon member. A window made of silicon with a total thickness of 520 {micro}m transmits 96% of the x-rays at an energy of 60 keV, and the transmission is higher than 90% for higher energy photons. 1 fig.

Logan, C.M.

1996-04-16T23:59:59.000Z

440

Cooled window for X-rays or charged particles  

DOE Patents (OSTI)

A window that provides good structural integrity and a very high capacity for removal of the heat deposited by x-rays, electrons, or ions, with minimum attenuation of the desired beam. The window is cooled by providing microchannels therein through which a coolant is pumped. For example, the window may be made of silicon with etched microchannels therein and covered by a silicon member. A window made of silicon with a total thickness of 520 .mu.m transmits 96% of the x-rays at an energy of 60 keV, and the transmission is higher than 90% for higher energy photons.

Logan, Clinton M. (Pleasanton, CA)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "highly insulating window" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Tips: Insulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Insulation Tips: Insulation May 2, 2012 - 6:03pm Addthis Where to Insulate. Adding insulation in the areas shown here may be the best way to improve your home's energy efficiency. Insulate either the attic floor or under the roof. Check with a contractor about crawl space or basement insulation. Where to Insulate. Adding insulation in the areas shown here may be the best way to improve your home's energy efficiency. Insulate either the attic floor or under the roof. Check with a contractor about crawl space or basement insulation. Insulation is made from a variety of materials, and it usually comes in four types: rolls and batts, loose-fill, rigid foam, and foam-in-place. Rolls and Batts Rolls and batts -- or blankets -- are flexible products made from mineral

442

18 December 2006 BUILDING INSULATION  

E-Print Network (OSTI)

18 December 2006 07200-1 BUILDING INSULATION CONSTRUCTION STANDARD SPECIFICATION SECTION 07200 BUILDING INSULATION PART 1 - GENERAL 1.01 Summary.....................................................................................5 2.04 Pre-Engineered Building Insulation

443

Beam line windows at LAMPF  

Science Conference Proceedings (OSTI)

The A-6 main beam-line window at LAMPF separates the vacuum of the main beam line from the isotope production station, proton irradiation ports, and the beam stop, which operate in air. This window must withstand the design beam current of 1 mA at 800 MeV for periods of at least 3000 hours without failure. The window is water cooled and must be strong enough to withstand the 2.1 MPa (300 psig) cooling water pressure, as well as beam-induced thermal stresses. Two designs have been used to meet these goals, a stepped-plate window and a hemispherical window, both made from a precipitation-hardened nickel base alloy, Alloy 718. Calculations of the temperatures and stresses in each of these windows are presented.

Brown, R.D.; Grisham, D.L.; Lambert, J.E.

1985-01-01T23:59:59.000Z

444

WINDOW 5 Glass Library Update  

NLE Websites -- All DOE Office Websites (Extended Search)

WINDOW 6 or 7 Glass Library Update WINDOW 6 or 7 Glass Library Update Last update:12/09/13 07:26 PM Automatic IGDB Update Feature in WINDOW 6 and 7 The latest versions of WINDOW 6 and 7 have an automatic IGDB database update function in the Glass Library. When you first open the program, it checks to see if there is an IGDB version later than what you already have installed, and will notify you if there is an update. Then you can download and install the IGDB database, and click on the Update IGDB button in the Glass Library in order to start the automatic update. For older versions of WINDOW 6 and 7 without the automatic IGDB update function bullet How to Check the Current WINDOW5 IGDB Version bullet Updating the Glass Library bullet Problem Updating the Glass Library bullet Discontinued Records or Reused NFRC IDs

445

Windows for energy efficient buildings  

SciTech Connect

Information is compiled and reviewed on energy efficient windows. The status, support organization, and descriptions of some research, development, demonstration, and applications program of energy efficient windows are presented. Information about contract opportunities and recently awarded contracts is included. New products, materials, components, patents, and legislation are summarized. Information on industry organizations, literature, publications, and reports is included. A matrix of numerical performance data of window thermal barriers is presented. (MCW)

1980-01-01T23:59:59.000Z

446

Window treatments for cold climates  

SciTech Connect

Design considerations for various types of energy conserving window treatments to avoid condensation related maintenance problems are discussed. The window heat losses, dew point temperatures and allowable relative humidities at which condensation may occur on interior glass surfaces at an interior temperature of 65 DEGF (degrees Fahrenheit) and exterior temperatures from -50 to 30 DEGF were calculated by computer. Vapor pressures were also computed to show the importance of vapor (air) tight weather stripping and coverings for window treatments.

Carlson, A.R.

1983-06-01T23:59:59.000Z

447

Solar Window Technology for BIPV or  

E-Print Network (OSTI)

a high degree of light transmission whilst generating electricity from a reduced area of expensive transmission capability of the panel making them generally unsuitable for use as windows etc. A solution light to an array of PV cells arranged to allow light transmission between each PV cell yet still

Painter, Kevin

448

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Selection Process for Replacement Windows Selection Process for Replacement Windows What are the benefits of energy-efficient windows? Energy & Cost Savings Improved Comfort Less Condensation Increased Light & View Reduced Fading Lower HVAC Costs How is window performance measured? U-factor Solar Heat Gain Coefficient Visible Transmittance Air Leakage Condensation Resistance Are there financing and incentive programs? Overview of Utility and State Programs Building Codes Energy Rating Programs 1. Assess Your Existing Windows Assess whether your windows should be repaired, retrofitted, or replaced. While most new windows have labels indicating their energy properties, such information is not often available for existing windows. Download Window Energy Efficiency Checklist for assistance. Window Replacement

449

Comparison of Thermal Insulation Materials.  

E-Print Network (OSTI)

??This thesis is about comparing of different thermal insulation materials of different manufactures. In our days there are a lot of different thermal insulation materials… (more)

Chaykovskiy, German

2010-01-01T23:59:59.000Z

450

Equipment Insulation | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Equipment Insulation Jump to: navigation, search TODO: Add description List of Equipment Insulation...

451

Building Insulation | Open Energy Information  

Open Energy Info (EERE)

Building Insulation Jump to: navigation, search TODO: Add description List of Building Insulation Incentives Retrieved from "http:en.openei.orgwindex.php?titleBuildingInsulat...

452

High-Efficiency Polycrystalline CdTe Thin-Film Solar Cells with an Oxygenated Amorphous CdS (a-CdS:O) Window Layer: Preprint  

DOE Green Energy (OSTI)

In the conventional CdS/CdTe device structure, the poly-CdS window layer has a bandgap of {approx}2.4 eV, which causes absorption in the short-wavelength region. Higher short-circuit current densities (Jsc) can be achieved by reducing the CdS thickness, but this can adversely impact device open-circuit voltage (Voc) and fill factor (FF). Also, poly-CdS film has about 10% lattice mismatch related to the CdTe film, which limits the improvement of device Voc and FF. In this paper, we report a novel window material: oxygenated amorphous CdS film (a-CdS:O) prepared at room temperature by rf sputtering. The a-CdS:O film has a higher optical bandgap (2.5-3.1 eV) than the poly-CdS film and an amorphous structure. The preliminary device results have demonstrated that Jsc of the CdTe device can be greatly improved while maintaining higher Voc and FF. We have fabricated a CdTe cell demonstrating an NREL-confirmed Jsc of 25.85 mA/cm2 and a total-area efficiency of 15.4%.

Wu, X.; Dhere, R. G.; Yan, Y.; Romero, M. J.; Zhang, Y.; Zhou, J.; DeHart, C.; Duda, A.; Perkins, C.; To, B.

2002-05-01T23:59:59.000Z

453

Establishment of a Rating Program for Pre- and Post-Fabricated Windows  

SciTech Connect

This document was prepared to support the Smart Buildings-Material Testing and Rating Centres (SB-2) activity of the Asia-Pacific Economic Cooperation (APEC) Energy Smart Communities Initiative (ESCI). The ESCI was put forward by APEC Leaders at the 2010 meeting in Japan. APEC is the premier forum for facilitating economic growth, cooperation, trade and investment in the Asia-Pacific region. This document addresses the testing and certification of building products and equipment to support building energy codes, focusing specifically on energy-efficient factory-built windows. It sets forth a proposed structure for an APEC economy to establish a testing, rating, certification, and labeling program for efficient factory-built windows. In the context of this document, efficient windows would be windows made with insulating glass (IG) and an efficient frame assembly. The minimum efficiency metric (or thermal performance) for these windows is not quantified in this document and would generally be established by a governmental agency.

Parker, Graham B.; Mapes, Terry S.; Shah, B.; Bloyd, Cary N.

2011-08-01T23:59:59.000Z

454

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Replacement Windows for Existing Homes Homes Replacement Windows for Existing Homes Homes Window Selection Tool Use the Window Selection Tool for existing homes (replacement windows) to compare performance of 20 different window types in your location. The Window Selection Tool will take you through a series of design conditions pertaining to your design and location. It is a step-by-step decision-making tool to help determine the most energy efficient window for your house. Window Selection Tool Assessing Options This section provides guidance the options available to improve the performance of your existing windows or to replace them. You can assess whether to repair, retrofit or replace your existing windows. Window Selection Process This section provides step-by-step guidance on the window selection process for replacement windows including issues of code, energy, durability, and installation.

455

An Approach for Improving Cirrus Cloud-Top Pressure/Height Estimation by Merging High-Spatial-Resolution Infrared-Window Imager Data with High-Spectral-Resolution Sounder Data  

Science Conference Proceedings (OSTI)

The next-generation Visible and Infrared Imaging Radiometer Suite (VIIRS) offers infrared (IR)-window measurements with a horizontal spatial resolution of at least 1 km, but it lacks IR spectral bands that are sensitive to absorption by carbon ...

Elisabeth Weisz; W. Paul Menzel; Nadia Smith; Richard Frey; Eva E. Borbas; Bryan A. Baum

2012-08-01T23:59:59.000Z

456

Glass fiber composition. [for use as thermal insulation  

DOE Patents (OSTI)

The invention relates to a glass fiber composition useful for thermal insulation having a low melting temperature and high chemical durability.

Wolf, G.A.; Kupfer, M.J.

1980-12-19T23:59:59.000Z

457

Pipe Insulation Economies  

E-Print Network (OSTI)

Pipe Insulation Economies is a computer program written in IBM basic to simplify the economic insulation thickness for an insulated pipe. Many articles have been written on this subject, from simple nomographs to a small book written in 1976 by the Federal Energy Administration, called "Economic Thickness for Industrial Insulation (ETI)." This paper is meant to fall somewhere between these extremes without sacrificing the accuracy necessary for economic considerations. Within this text, insulation is dealt with not as a material but as a method to slow heat transfer. To simplify the various mechanisms by which heat is transferred, the variable "thermal conductivity" is used. This is modeled for average insulation temperature. Another variable which has caused problems in the past is the ambient air film coefficient, or surface resistance. This program deals with this coefficient by making an initial assumption, then using an iterative process to refine the actual values before making the economic calculations. The program will use the input data to determine first of all the heat loss in BTU per hr/ft. of pipe. Using this result the lowest annual cost, therefore the most economical insulation thickness, is determined.

Schilling, R. E.

1986-06-01T23:59:59.000Z

458

Measure Guideline: Internal Insulation of Masonry Walls  

Science Conference Proceedings (OSTI)

This measure guideline provides recommendations for interior insulation assemblies that control interstitial condensation and durability risks; recommendations for acceptable thermal performance are also provided. An illustrated guide of high-risk exterior details (which concentrate bulk water), and recommended remediation details is provided. This is followed by a recommended methodology for risk assessment of a masonry interior insulation project: a series of steps are suggested to assess the risks associated with this retrofit, with greater certainty with added steps.

Straube, J. F.; Ueno, K.; Schumacher, C. J.

2012-07-01T23:59:59.000Z

459

Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools  

E-Print Network (OSTI)

and spacer effects on window U- value. ASHRAE Transactions,Enermodal. (2001). Modelling Windows, Glass Doors and OtherA. (2001). Heat transfer in window frames with internal

Gustavsen, Arild

2009-01-01T23:59:59.000Z

460

Ring Ring Oy -yrityksen Windows XP -käyttöjärjestelmästä siirtyminen Windows 7 -käyttöjärjestelmään ja ylläpidon näkökulma.  

E-Print Network (OSTI)

??Opinnäytetyön aiheena oli selvittää millä tapaa Windows XP -käyttöjärjestelmä eroaa Windows 7 -käyttöjärjestelmästä ylläpidon näkökulmasta. Selvitys pohjautuu toimeksiantajan toiveeseen saada lisää tietoa Windows 7 -käyttöjärjestelmän… (more)

Ritala, Ilkka

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "highly insulating window" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The Window Strategy with Options  

E-Print Network (OSTI)

The window strategy is one of several marketing strategies using futures and options to establish a floor price and allow for upside price potential. It also reduces option premium costs. This publication discusses how the window strategy works and when to use it.

McCorkle, Dean; Amosson, Stephen H.; Fausett, Marvin

1999-06-23T23:59:59.000Z

462

Window Functions for CMB Experiments  

E-Print Network (OSTI)

We discuss the applicability and derivation of window functions for cosmic microwave background experiments on large and intermediate angular scales. These window functions describe the response of the experiment to power in a particular mode of the fluctuation spectrum. We give general formulae, illustrated with specific examples, for the most common observing strategies.

Martin White; Mark Srednicki

1994-02-15T23:59:59.000Z

463

High-Voltage Direct Current Corona Testing of Transmission Line Hardware and Insulator Assemblies: Development of Test Methodology  

Science Conference Proceedings (OSTI)

When specifying hardware for new high-voltage direct current (HVDC) lines or replacement hardware for existing HVDC lines utilities generally require that the hardware meet specific corona performance requirements.While standards and test methods exist for testing hardware used on HVAC systems, no such material is available for HVDC systems.HVAC tests are sometimes conducted on the hardware and the results obtained are then related to HVDC by utilizing the peak HVAC line to ...

2013-12-20T23:59:59.000Z

464

Assessment of the Energy Rating of Insulated Wall Assemblies - A Step Towards Building Energy Labeling  

E-Print Network (OSTI)

Considerable efforts are recently focusing on energy labeling of components and systems in buildings. In Canada, the energy rating of windows was established, which provides a protocol to rate different types of windows with respect to their energy performance. It takes into account the interaction between: solar heat gain, heat loss due to air leakage and due to the thermal properties of the entire window assembly. A major research project, jointly sponsored by NRC-IRC and the polyurethane spray foam industry, was established to assess the thermal and air leakage performance of insulated walls with the focus on developing an energy rating procedure for insulated wall assemblies. This paper is one in a series of publications to present partial results of this project. Experimental data and computer simulation comparison of a set of wall specimens are presented together with a summary of the proposed procedure for the determination of the energy rating of insulated walls (WER).

Elmahdy, H.; Maref, W.; Saber, H.; Swinton, M.; Glazer, R.

2010-01-01T23:59:59.000Z

465

Experimental and Numerical Examination of the Thermal Transmittance of High  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental and Numerical Examination of the Thermal Transmittance of High Experimental and Numerical Examination of the Thermal Transmittance of High Performance Window Frames Title Experimental and Numerical Examination of the Thermal Transmittance of High Performance Window Frames Publication Type Conference Paper LBNL Report Number LBNL-3886E Year of Publication 2010 Authors Gustavsen, Arlid, Goce Talev, Dariush K. Arasteh, Howdy Goudey, Christian Kohler, Sivert Uvsløkk, and Bjørn Petter Jelle Conference Name Thermal Performance of the Exterior Envelopes of Whole Buildings XI International Conference Date Published Dec 5-9, 2010 Conference Location Clearwater Beach, FL Call Number LBNL-3886E Abstract While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows which incorporate very low conductance glazings. Developing low-conductance window frames requires accurate simulation tools for product research and development.

466

Window solar heating unit  

SciTech Connect

The unit may be mounted either in a window or between the studs of a building that is to be supplied with solar heat. The bottom of the unit extends farther from the building than the top and is wider than the top of the unit such that the transparent side away from the building has an arcuate form and is gradually flared outwardly in a downward direction to increase the exposure to the sun during the day. A plurality of absorptive tubes within the unit are slanted from the upper portion of the unit downwardly and outwardly to the front arcuate portion of the bottom. Openings between the unit and the building are provided for air flow, and a thermostatically controlled fan is mounted in one of the openings. A baffle is mounted between the absorptive tubes and the mounting side of the solar heating unit, and the surfaces of the baffle and the absorptive tubes are painted a dull black for absorbing heat transmitted from the sun through the transparent, slanting side.

Davis, E.J.

1978-09-12T23:59:59.000Z

467

Body Fat as Insulation  

NLE Websites -- All DOE Office Websites (Extended Search)

Body Fat as Insulation Name: Bulza Location: NA Country: NA Date: NA Question: Does the fat layer under the skinkeep an animal warm? Replies: Some animals, yes. Polar bears and...

468

Insulation | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

comfort during the life of the home. In this house, raised heel trusses accommodate R-60 insulation. | Credit: Paul Norton, NREL. Building a new energy-efficient home requires...

469

Windows Vista Step by Step Deluxe Edition  

Science Conference Proceedings (OSTI)

The smart way to learn Windows Vista one step at a time! Updated with expanded coverage, this deluxe edition covers all of the latest Windows Vista features. You ll discover the smartest ways to stay organized with Windows Mail, Windows Contact, Windows ...

Joyce Cox; Joan Preppernau

2008-02-01T23:59:59.000Z

470

A First-Generation Prototype Dynamic Residential Window  

NLE Websites -- All DOE Office Websites (Extended Search)

A First-Generation Prototype Dynamic Residential Window A First-Generation Prototype Dynamic Residential Window Title A First-Generation Prototype Dynamic Residential Window Publication Type Report LBNL Report Number LBNL-56075 Year of Publication 2004 Authors Kohler, Christian, Howdy Goudey, and Dariush K. Arasteh Call Number LBNL-56075 Abstract We present the concept for a smart highly efficient dynamic window that maximizes solar heat gain during the heating season and minimizes solar heat gain during the cooling season in residential buildings. We describe a prototype dynamic window that relies on an internal shade, which deploys automatically in response to solar radiation and temperature. This prototype was built at Lawrence Berkeley National Laboratory from commercially available off-the-shelf components. It is a stand-alone, standard-size product, so it can be easily installed in place of standard window products. Our design shows promise for near-term commercialization. Improving thermal performance of this prototype by incorporating commercially available highly efficient glazing technologies could result in the first window that could be suitable for use in zero-energy homes. The units predictable deployment of shading could help capture energy savings that are not possible with manual shading. Installation of dynamically shaded windows in the field will allow researchers to better quantify the energy effects of shades, which could lead to increased efficiency in the sizing of heating, ventilation, and air conditioning equipment for residences.

471

High voltage research (breakdown strengths of gaseous and liquid insulators). Semiannual report, April 1--September 30, 1977  

DOE Green Energy (OSTI)

Direct current breakdown strength measurements on a large number of multicomponent gas mixtures at low (approximately less than 1 atm) and high (approximately less than 5 atm) pressures led to the discovery of many gas mixtures of electron-attaching gases and strongly electron-attaching gases with N/sub 2/ and C/sub 3/F/sub 8/ which are superior to SF/sub 6/. Of special significance are mixtures containing C/sub 4/F/sub 6/ (perfluoro-2-butyne). The breakdown strength of one such mixture (20 percent C/sub 4/F/sub 6/ to 80 percent SF/sub 6/) is approximately 30 percent higher than pure SF/sub 6/ under identical conditions, both at low (approximately 0.7 atm) and high (4.6 atm) pressures. Perfluorocyclohexene (C/sub 6/F/sub 10/) and C/sub 5/F/sub 8/ (perfluorocyclopentene) were found at low pressure (approximately 0.2 atm) to be, respectively, approximately 2.1 and 2.2 times better than SF/sub 6/ under comparable conditions; they both have a potential as additives in gas mixtures. The effect of the inelastic electron scattering properties of a gas via negative ion resonances in the low-energy range (1 to approximately 4 eV) on the breakdown strength has been demonstrated for H/sub 2/, N/sub 2/, and CO and binary mixtures of these with SF/sub 6/ and C/sub 4/F/sub 6/ (perfluoro-2-butyne). The construction of a new high pressure (to approximately 11 atm), variable temperature (-50/sup 0/C to + 150/sup 0/C) apparatus has been completed and a practical test facility utilizing cylindrical electrode geometries has been put into operation; the first results on the latter apparatus were on SF/sub 6/-N/sub 2/ and c-C/sub 4/F/sub 8/--N/sub 2/ mixtures. Studies of environmental effects of dielectric gases via their electron-impact-induced decompositions and analysis of their breakdown products have begun using mass spectrometry and gas chromatography; C/sub 4/F/sub 6/ (perfluoro-2-butyne) seems to be resistant to electron-impact-induced decomposition indicating long-term stability.

Christophorou, L. G.; James, D. R.; Pai, R. Y.; Mathis, R. A.; Pace, M. O.; Bouldin, D. W.; Christodoulides, A. A.; Chan, C. C.

1977-11-01T23:59:59.000Z

472

Vacuum foil insulation system  

DOE Patents (OSTI)

In a multifoil thermal insulation package having a plurality of concentric cylindrical cups, means are provided for reducing heat loss from the penetration region which extends through the cups. At least one cup includes an integral skirt extending from one end of the cup to intersection with the penetration means. Assembly of the insulation package with the skirted cup is facilitated by splitting the cup to allow it to be opened up and fitted around the other cups during assembly.

Hanson, John P. (White Oak Boro, PA); Sabolcik, Rudolph E. (Carroll Township, PA); Svedberg, Robert C. (Elizabeth Township, PA)

1976-11-16T23:59:59.000Z

473

Parallel Processing with Windows NT Networks  

E-Print Network (OSTI)

Workstation-based parallel processing is an area that is still dominated by Unix-based systems. We have been building new methods for shared-memory parallel processing systems on top of Windows NT based networks of machines. As of present we have been involved in four related systems, called Calypso NT, Chime, Malaxis and MILAN. All of these are middleware, that is they are system level libraries and utility programs that allow programmers to utilize a network efficiently for high volume computations. Calypso was first built on Unix [BDK95], and then ported to Windows NT. Chime and Malaxis are NT systems and MILAN is still under the design phase. This paper describes the systems, the techniques used to implement them on Windows NT and the roadblocks from a Unix programmer's point of view. 1. Introduction This paper describes the experience of porting to and programming with Windows NT (from a Unix programmer 's perspective) while implementing four related parallel processing projec...

Partha Dasgupta

1997-01-01T23:59:59.000Z

474

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Triple Low-E Glazing Triple Low-E Glazing Triple-Glazed, High-solar-gain Low-E Glass This figure illustrates the performance of a window with a very low heat loss rate (low U-factor). In this case there are three glazing layers and two low-E coatings, ½" argon gas or ¼" krypton gas fill between glazings, and low-conductance edge spacers. The middle glazing layer can be glass or suspended plastic film. Some windows use four glazing layers (two glass layers and two suspended plastic films). This product is suited for buildings located in very cold climates. Both Low-E coatings in this product have high solar heat and visible light transmittance, which is ideal for passive solar design. The use of three layers, however, results in lower solar heat gain relative to double glazing with high-solar-gain Low-E.

475

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

NLE Websites -- All DOE Office Websites (Extended Search)

7.0 7.0 Last Updated: 05/20/2013 EN 673 / ISO 10077 Using WINDOW 7 and THERM 7 for EN 673 / ISO 10077 Calculations If you are interested in using WINDOW and THERM for EN 673 / ISO 10077 calculations, we have added that option to WINDOW 7. The calculation is not fully automated in the program yet, so there are many steps and a spreadsheet for the final calculation. We are interested in feedback (email WINDOWHelp@lbl.gov) about the process and the results from anyone who tests this feature. CAUTION: Do not model shading systems with the EN 673 thermal model. The program will produce results but they will most likely not be correct. Download this zip file (EN673.zip) which contains the following: Description of how to use WINDOW 6 and THERM 6 for the EN 673 / ISO 10077 calculations (PDF file)

476

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Last Updated: 12/29/2013 If you find bugs, or have comments about this version, please do not hesitate to send an email to WINDOWHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. WINDOW 7.2 (7.2.29) (12/29/2013) Release Notes -- Please read these before running this version ! This version contains these new modeling features Honeycomb shades Dynamic Glazing (Thermochromic and Electrochromic) This version is compatible with THERM 7.1 Please send us emails as you find issues in the program -- that is the only way that we can make it more robust. We hope to iterate versions fairly quickly in the next month or so to get the bugs ironed out. Radiance for WINDOW 7 Get a copy of Radiance for WINDOW 7.2 Must be used with WINDOW 7.0.59 or later

477

LBNL Windows & Daylighting Software -- WINDOW5: Knowledge Base  

NLE Websites -- All DOE Office Websites (Extended Search)

6.3 Knowledge Base 6.3 Knowledge Base Tip - use the Find function in your browser to search this page Last update:11/04/13 01:16 PM Download WINDOW 6.3 Send feedback via email to WindowHelp@lbl.gov. Also as bugs and comments are submitted by testers, the will be posted on this Knowledge Base, so check here for the latest information about the program. CONTENTS INSTALLATION KNOWN BUGS ** Operating Systems -- Microsoft Windows 7 and Vista ** Environmental Conditions -- Kimura convection model not working Locked Files with Install/De-install Environmental Conditions -- Fixed Combined Coefficient Bug Installation Problems Error Message during Calc due to decimal point of "," Minimum computer requirements Importing THERM file into WINDOW generates "Unnamed file has a bad format" error message

478

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

NLE Websites -- All DOE Office Websites (Extended Search)

Last Updated: 06262013 Complex Glazing System Modeling WINDOW 6.3 can be used to model complex glazing systems, in particular venetian blinds and roller shades (although not for...

479

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

NLE Websites -- All DOE Office Websites (Extended Search)

to report your findings. Getting feedback from users is how we improve the program. WINDOW 7.1 (7.1.73) (8302013) Release Notes -- Please read these before running this...

480

LBNL Windows & Daylighting Software -- WINDOW5.02: Version Fixes  

NLE Websites -- All DOE Office Websites (Extended Search)

opening an optics db as a W5 db 748 energy plus reports working properly for windows with 2 glazing systems 742 eliminated a memory leak related to Therm temperature...

Note: This page contains sample records for the topic "highly insulating window" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Buildings Energy Data Book: 5.2 Windows  

Buildings Energy Data Book (EERE)

5 5 Residential Prime Window Sales, by Glass Type (Million Units) 1980 8.6 34% 0.0 0% 16.6 66% 25.2 100% 1990 4.9 14% 12.0 34% 18.7 53% 35.6 100% 1993 2.8 14% 17.2 84% 0.4 2% 20.4 100% 1995 5.5 12% 37.8 85% 1.3 3% 44.5 100% 1999 4.8 8% 55.2 89% 2.0 3% 62.0 100% 2001 3.9 7% 50.9 90% 1.5 3% 56.3 100% 2003 4.7 7% 55.9 89% 2.2 4% 62.8 100% 2005 4.2 6% 63.8 91% 2.5 3% 70.5 100% 2007 2.7 5% 55.0 93% 1.4 2% 59.1 100% 2009 1.6 4% 36.2 93% 1.2 3% 38.9 100% Note(s): 1) IG = insulated glazing. Source(s): Double Pane Single Pane Sealed IG (1) Other Total AAMA/NWWDA, Study of the U.S. Market for Windows and Doors, 1996, Table 22, p.49; AAMA/WDMA, Study of U.S. and Canadian Market for Windows and Doors, Apr. 2000, Exhibit E.7, p. 55; AAMA/WDMA, Study of the Market for U.S. Doors, Windows and Skylights, Apr. 2004, Exhibit D.4, p. 46; AAMA/WDMA, Study of U.S. Market for Windows, Doors, and Skylights, Apr. 2006, Exhibit D.8 Conventional Window Glass Usage, p. 50; AAMA/WDMA, S