National Library of Energy BETA

Sample records for highly flammable gaseous

  1. Gaseous insulators for high voltage electrical equipment

    DOE Patents [OSTI]

    Christophorou, Loucas G.; James, David R.; Pace, Marshall O.; Pai, Robert Y.

    1979-01-01

    Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

  2. Gaseous insulators for high voltage electrical equipment

    DOE Patents [OSTI]

    Christophorou, Loucas G.; James, David R.; Pace, Marshall O.; Pai, Robert Y.

    1981-01-01

    Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

  3. HIGH ENERGY GASEOUS DISCHARGE DEVICES

    DOE Patents [OSTI]

    Josephson, V.

    1960-02-16

    The high-energy electrical discharge device described comprises an envelope, a pair of main discharge electrodes supported in opposition in the envelope, and a metallic shell symmetrically disposed around and spaced from the discharge path between the electrodes. The metallic shell comprises a first element of spaced helical turns of metallic material and a second element of spaced helical turns of methllic material insulatedly supported in superposition outside the first element and with the turns overlapping the gap between the turns of the first element.

  4. THE IMPACT OF OZONE ON THE LOWER FLAMMABLE LIMIT OF HYDROGEN IN VESSELS CONTAINING SAVANNAH RIVER SITE HIGH LEVEL WASTE

    SciTech Connect (OSTI)

    Sherburne, Carol; Osterberg, Paul; Johnson, Tom; Frawely, Thomas

    2013-01-23

    The Savannah River Site, in conjunction with AREVA Federal services, has designed a process to treat dissolved radioactive waste solids with ozone. It is known that in this radioactive waste process, radionuclides radiolytically break down water into gaseous hydrogen and oxygen, which presents a well defined flammability hazard. Flammability limits have been established for both ozone and hydrogen separately; however, there is little information on mixtures of hydrogen and ozone. Therefore, testing was designed to provide critical flammability information necessary to support safety related considerations for the development of ozone treatment and potential scale-up to the commercial level. Since information was lacking on flammability issues at low levels of hydrogen and ozone, a testing program was developed to focus on filling this portion of the information gap. A 2-L vessel was used to conduct flammability tests at atmospheric pressure and temperature using a fuse wire ignition source at 1 percent ozone intervals spanning from no ozone to the Lower Flammable Limit (LFL) of ozone in the vessel, determined as 8.4%(v/v) ozone. An ozone generator and ozone detector were used to generate and measure the ozone concentration within the vessel in situ, since ozone decomposes rapidly on standing. The lower flammability limit of hydrogen in an ozone-oxygen mixture was found to decrease from the LFL of hydrogen in air, determined as 4.2 % (v/v) in this vessel. From the results of this testing, Savannah River was able to develop safety procedures and operating parameters to effectively minimize the formation of a flammable atmosphere.

  5. Lessons Learned from Practical Field Experience with High Pressure Gaseous

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels | Department of Energy Practical Field Experience with High Pressure Gaseous Fuels Lessons Learned from Practical Field Experience with High Pressure Gaseous Fuels Presentation given by Douglas Horne of the Clean Vehicle Energy Foundation at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009 cng_h2_workshop_7_horne.pdf (4.54 MB) More Documents & Publications High Pressure Fuel Storage Cylinders Periodic Inspection and End of Life Issues Workshop Notes from

  6. HIGH ENERGY GASEOUS PLASMA CONTAINMENT DEVICE

    DOE Patents [OSTI]

    Josephson, V.; Hammel, J.E.

    1959-01-13

    An apparatus is presenied for producing neutrons as a result of collisions between ions in high temperature plasmas. The invention resides in the particular arrangement of ihe device whereby ihe magneiic and electric fields are made to cross at substantially right angles in several places along a torus shaped containment vessel. A plasma of deuterium gas is generated in the vessel under the electric fields and is "trapped" in any one of the "crossed field" regions to produce a release of energy.

  7. Investigation of Flammable Gas Releases from High Level Waste Tanks during Periodic Mixing

    SciTech Connect (OSTI)

    Swingle, R.F.

    1999-01-07

    The Savannah River Site processes high-level radioactive waste through precipitation by the addition of sodium tetraphenylborate in a large (approximately 1.3 million gallon) High Level Waste Tank. Radiolysis of water produces a significant amount of hydrogen gas in this slurry. During quiescent periods the tetraphenylborate slurry retains large amounts of hydrogen as dissolved gas and small bubbles. When mixing pumps start, large amounts of hydrogen release due to agitation of the slurry. Flammability concerns necessitate an understanding of the hydrogen retention mechanism in the slurry and a model of how the hydrogen releases from the slurry during pump operation. Hydrogen concentration data collected from the slurry tank confirmed this behavior in the full-scale system. These measurements also provide mass transfer results for the hydrogen release during operation. The authors compared these data to an existing literature model for mass transfer in small, agitated reactors and developed factors to scale this existing model to the 1.3 million gallon tanks in use at the Savannah River Site. The information provides guidance for facility operations.

  8. Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from High Ethanol Content Fuels

    SciTech Connect (OSTI)

    Gardiner, D.; Bardon, M.; Pucher, G.

    2008-10-01

    Study determined the flammability of fuel tank headspace vapors as a function of ambient temperature for seven E85 fuel blends, two types of gasoline, and denatured ethanol at a low tank fill level.

  9. D&D of the French High Enrichment Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    BEHAR, Christophe; GUIBERTEAU, Philippe; DUPERRET, Bernard; TAUZIN, Claude

    2003-02-27

    This paper describes the D&D program that is being implemented at France's High Enrichment Gaseous Diffusion Plant, which was designed to supply France's Military with Highly Enriched Uranium. This plant was definitively shut down in June 1996, following French President Jacques Chirac's decision to end production of Highly Enriched Uranium and dismantle the corresponding facilities.

  10. THE EFFECT OF THE PRESENCE OF OZONE ON THE LOWER FLAMMABILITY LIMIT OF HYDROGEN IN VESSELS CONTAINING SAVANNAH RIVER SITE HIGH LEVEL WASTE

    SciTech Connect (OSTI)

    Sherburne, C.

    2012-01-12

    The Enhanced Chemical Cleaning (ECC) process uses ozone to effect the oxidation of metal oxalates produced during the dissolution of sludge in the Savannah River Site (SRS) waste tanks. The ozone reacts with the metal oxalates to form metal oxide and hydroxide precipitants, and the CO{sub 2}, O{sub 2}, H{sub 2}O and any unreacted O{sub 3} gases are discharged into the vapor space. In addition to the non-radioactive metals in the waste, however, the SRS radioactive waste also contains a variety of radionuclides, hence, hydrogen gas is also present in the vapor space of the ECC system. Because hydrogen is flammable, the impact of this resultant gas stream on the Lower Flammability Limit (LFL) of hydrogen must be understood for all possible operating scenarios of both normal and off-normal situations, with particular emphasis at the elevated temperatures and pressures of the typical ECC operating conditions. Oxygen is a known accelerant in combustion reactions, but while there are data associated with the behavior of hydrogen/oxygen environments, recent, relevant studies addressing the effect of ozone on the flammability limit of hydrogen proved scarce. Further, discussions with industry experts verified the absence of data in this area and indicated that laboratory testing, specific to defined operating parameters, was needed to comprehensively address the issue. Testing was thus designed and commissioned to provide the data necessary to support safety related considerations for the ECC process. A test matrix was developed to envelope the bounding conditions considered credible during ECC processing. Each test consists of combining a gas stream of high purity hydrogen with a gas stream comprised of a specified mixture of ozone and oxygen in a temperature and pressure regulated chamber such that the relative compositions of the two streams are controlled. The gases are then stirred to obtain a homogeneous mixture and ignition attempted by applying 10J of energy to a

  11. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1984-06-19

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  12. High-temperature sorbent method for removal of sulfur-containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1982-07-07

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorbtion capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  13. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, John E.; Jalan, Vinod M.

    1984-01-01

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  14. Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels; Phase 3: Effects of Winter Gasoline Volatility and Ethanol Content on Blend Flammability; Flammability Limits of Denatured Ethanol

    SciTech Connect (OSTI)

    Gardiner, D. P.; Bardon, M. F.; Clark, W.

    2011-07-01

    This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammable headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.

  15. Methodology for flammable gas evaluations

    SciTech Connect (OSTI)

    Hopkins, J.D., Westinghouse Hanford

    1996-06-12

    There are 177 radioactive waste storage tanks at the Hanford Site. The waste generates flammable gases. The waste releases gas continuously, but in some tanks the waste has shown a tendency to trap these flammable gases. When enough gas is trapped in a tank`s waste matrix, it may be released in a way that renders part or all of the tank atmosphere flammable for a period of time. Tanks must be evaluated against previously defined criteria to determine whether they can present a flammable gas hazard. This document presents the methodology for evaluating tanks in two areas of concern in the tank headspace:steady-state flammable-gas concentration resulting from continuous release, and concentration resulting from an episodic gas release.

  16. Flammable gas data evaluation. Progress report

    SciTech Connect (OSTI)

    Whitney, P.D.; Meyer, P.A.; Miller, N.E.

    1996-10-01

    The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Numerous safety and environmental concerns surround these tanks and their contents. One such concern is the propensity for the waste in these tanks to generate, retain, and periodically release flammable gases. This report documents some of the activities of the Flammable Gas Project Data Evaluation Task conducted for Westinghouse Hanford Company during fiscal year 1996. Described in this report are: (1) the results of examining the in-tank temperature measurements for insights into gas release behavior; (2) the preliminary results of examining the tank waste level measurements for insights into gas release behavior; and (3) an explanation for the observed hysteresis in the level/pressure measurements, a phenomenon observed earlier this year when high-frequency tank waste level measurements came on-line.

  17. Safetygram Gaseous Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hydrogen is a colorless, odorless, tasteless, highly flammable gas. It is also the lightestweight gas. Since hydrogen is noncorrosive, special materials of construction are not usually required. The American Society of Mechanical Engineers (ASME) code and the American National Standards Institute (ANSI) Pressure Piping code specify vessel and piping design requirements for the pressures and temperatures involved. Applicable Dangerous Goods regulations specify requirements for vessels used for transportation.

  18. Flammable Gas Detection for the D-Zero Gas System

    SciTech Connect (OSTI)

    Spires, L.D.; Foglesong, J.; /Fermilab

    1991-02-11

    The use of flammable gas and high voltage in detector systems is common in many experiments at Fermilab. To mitigate the hazards associated with these systems, Fermilab Engineering Standard SD-45B (Ref. 1) was adopted. Since this note is meant to be a guide and not a mandatory standard, each experiment is reviewed for compliance with SD-45B by the flammable gas safety subcommittee. Currently, there are only two types of flammable gas in use, ethane (Appendix A) and methane (Appendix B). The worst flammable-gas case is C2H6 (ethane), which has an estimated flow rate that is 73% of the CH4 (methane) flow but a heat of combustion (in kcal/g-mole) that is 173% of that of methane. In the worst case, if ethane were to spew through its restricting orifice into its gas line at 0 psig and then through a catastrophic leak into Room 215 (TRD) or Room 511 (CDC/FDCNTX), the time that would be required to build up a greater than Class 1 inventory (0.4kg H2 equivalent) would be 5.2 hours (Ref. 2). Therefore a worst-case flammable gas leak would have to go undetected for over 5 hours in order to transform a either mixing room to an environment with a Risk Class greater than Class 1. The mixing systems, gas lines, and detectors themselves will be thoroughly leak checked prior to active service. All vessels that are part of the mixing systems will be protected from overpressure by safety valves vented outside the building. Both the input and output of all detector volumes are protected from overpressure in the same way. The volume immediately outside the central tracking detectors is continuously purged by nitrogen from boiloff from the main nitrogen dewar at the site. However, if flammable gas were to build up in the mixing rooms or particular detector areas, no matter how unlikely, flammable gas detectors that are part of the interlock chain of each gas mixing system will shut down the appropriate system. This includes shutting off the output of flammable gas manifolds within the

  19. MICROSTRUCTURE AND MECHANICAL PROPERTY PERFORMANCE OF COMMERCIAL GRADE API PIPELINE STEELS IN HIGH PRESSURE GASEOUS HYDROGEN

    SciTech Connect (OSTI)

    Stalheim, Mr. Douglas; Boggess, Todd; San Marchi, Chris; Jansto, Steven; Somerday, Dr. B; Muralidharan, Govindarajan; Sofronis, Prof. Petros

    2010-01-01

    The continued growth of the world s developing countries has placed an ever increasing demand on traditional fossil fuel energy sources. This development has lead to increasing research and development of alternative energy sources. Hydrogen gas is one of the potential alternative energy sources under development. Currently the most economical method of transporting large quantities of hydrogen gas is through steel pipelines. It is well known that hydrogen embrittlement has the potential to degrade steel s mechanical properties when hydrogen migrates into the steel matrix. Consequently, the current pipeline infrastructure used in hydrogen transport is typically operated in a conservative fashion. This operational practice is not conducive to economical movement of significant volumes of hydrogen gas as an alternative to fossil fuels. The degradation of the mechanical properties of steels in hydrogen service is known to depend on the microstructure of the steel. Understanding the levels of mechanical property degradation of a given microstructure when exposed to hydrogen gas under pressure can be used to evaluate the suitability of the existing pipeline infrastructure for hydrogen service and guide alloy and microstructure design for new hydrogen pipeline infrastructure. To this end, the 2 Copyright 2010 by ASME microstructures of relevant steels and their mechanical properties in relevant gaseous hydrogen environments must be fully characterized to establish suitability for transporting hydrogen. A project to evaluate four commercially available pipeline steels alloy/microstructure performance in the presences of gaseous hydrogen has been funded by the US Department of Energy along with the private sector. The microstructures of four pipeline steels were characterized and then tensile testing was conducted in gaseous hydrogen and helium at pressures of 800, 1600 and 3000 psi. Based on measurements of reduction of area, two of the four steels that performed the best

  20. Flammability Control In A Nuclear Waste Vitrification System

    SciTech Connect (OSTI)

    Zamecnik, John R.; Choi, Alexander S.; Johnson, Fabienne C.; Miller, Donald H.; Lambert, Daniel P.; Stone, Michael E.; Daniel, William E. Jr.

    2013-07-25

    The Defense Waste Processing Facility at the Savannah River Site processes high-level radioactive waste from the processing of nuclear materials that contains dissolved and precipitated metals and radionuclides. Vitrification of this waste into borosilicate glass for ultimate disposal at a geologic repository involves chemically modifying the waste to make it compatible with the glass melter system. Pretreatment steps include removal of excess aluminum by dissolution and washing, and processing with formic and nitric acids to: 1) adjust the reduction-oxidation (redox) potential in the glass melter to reduce radionuclide volatility and improve melt rate; 2) adjust feed rheology; and 3) reduce by steam stripping the amount of mercury that must be processed in the melter. Elimination of formic acid in pretreatment has been studied to eliminate the production of hydrogen in the pretreatment systems, which requires nuclear grade monitoring equipment. An alternative reductant, glycolic acid, has been studied as a substitute for formic acid. However, in the melter, the potential for greater formation of flammable gases exists with glycolic acid. Melter flammability is difficult to control because flammable mixtures can be formed during surges in offgases that both increase the amount of flammable species and decrease the temperature in the vapor space of the melter. A flammable surge can exceed the 60% of the LFL with no way to mitigate it. Therefore, careful control of the melter feed composition based on scaled melter surge testing is required. The results of engineering scale melter tests with the formic-nitric flowsheet and the use of these data in the melter flammability model are presented.

  1. Use Lower Flammable Limit Monitoring Equipment to Improve Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency This process heating ...

  2. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE [SEC 1 & 2

    SciTech Connect (OSTI)

    HU, T.A.

    2003-09-30

    Flammable gases such as hydrogen, ammonia, and methane are observed in the tank dome space of the Hanford Site high-level waste tanks. This report assesses the steady-state flammability level under normal and off-normal ventilation conditions in the tank dome space for 177 double-shell tanks and single-shell tanks at the Hanford Site. The steady-state flammability level was estimated from the gas concentration of the mixture in the dome space using estimated gas release rates, Le Chatelier's rule and lower flammability limits of fuels in an air mixture. A time-dependent equation of gas concentration, which is a function of the gas release and ventilation rates in the dome space, has been developed for both soluble and insoluble gases. With this dynamic model, the time required to reach the specified flammability level at a given ventilation condition can be calculated. In the evaluation, hydrogen generation rates can be calculated for a given tank waste composition and its physical condition (e.g., waste density, waste volume, temperature, etc.) using the empirical rate equation model provided in Empirical Rate Equation Model and Rate Calculations of Hydrogen Generation for Hanford Tank Waste, HNF-3851. The release rate of other insoluble gases and the mass transport properties of the soluble gas can be derived from the observed steady-state gas concentration under normal ventilation conditions. The off-normal ventilation rate is assumed to be natural barometric breathing only. A large body of data is required to do both the hydrogen generation rate calculation and the flammability level evaluation. For tank waste that does not have sample-based data, a statistical-based value from probability distribution regression was used based on data from tanks belonging to a similar waste group. This report (Revision 3) updates the input data of hydrogen generation rates calculation for 177 tanks using the waste composition information in the Best-Basis Inventory Detail

  3. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect (OSTI)

    HU TA

    2009-10-26

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

  4. Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology

    SciTech Connect (OSTI)

    Kostival, A.; Rivkin, C.; Buttner, W.; Burgess, R.

    2013-11-01

    Pressure relief devices (PRDs) are viewed as essential safety measures for high-pressure gas storage and distribution systems. These devices are used to prevent the over-pressurization of gas storage vessels and distribution equipment, except in the application of certain toxic gases. PRDs play a critical role in the implementation of most high-pressure gas storage systems and anyone working with these devices should understand their function so they can be designed, installed, and maintained properly to prevent any potentially dangerous or fatal incidents. As such, the intention of this report is to introduce the reader to the function of the common types of PRDs currently used in industry. Since high-pressure hydrogen gas storage systems are being developed to support the growing hydrogen energy infrastructure, several recent failure incidents, specifically involving hydrogen, will be examined to demonstrate the results and possible mechanisms of a device failure. The applicable codes and standards, developed to minimize the risk of failure for PRDs, will also be reviewed. Finally, because PRDs are a critical component for the development of a successful hydrogen energy infrastructure, important considerations for pressure relief devices applied in a hydrogen gas environment will be explored.

  5. Process and system for producing high-density pellets from a gaseous medium

    DOE Patents [OSTI]

    Foster, Christopher A.

    1999-01-01

    A process and system for producing pellets of high density carbon dioxide or other gases utilize a chamber containing a plurality of cell-like freezing compartments within which ice is to be formed. A gas desired to be frozen into ice is introduced into the chamber while the internal pressure of the chamber is maintained at a level which is below the equilibrium triple pressure of the gas. The temperature of the freezing compartments is lowered to a temperature which is below the equilibrium vapor pressure temperature of the gas at the chamber pressure so that the gas condenses into ice within the compartments. The temperature of the freezing compartments is thereafter raised so that the ice is thereby released from and falls out of the compartments as pellets for collection.

  6. High-frequency acoustic sensors for operation in a gaseous medium. Final report

    SciTech Connect (OSTI)

    Kino, G.S.

    1990-12-31

    Photothermal microscopy is a technique for measuring thermal properties on a small scale by using focused laser beams as heat sources and as temperature probes. Typically used for nondestructive evaluation (NDE) of materials, its main advantage is its ability to measure types of flaws that are not visible optically or acoustically. Because of the optical nature of photothermal microscopy, sub-micron resolutions can be obtained in many of these thermal measurements. The greatest limitation of these systems is their relatively poor signal-to-noise ratios and, consequently, slow imaging speeds. To circumvent this problem, a variety of approaches to the detection of thermal waves has been pursued in recent years. This thesis compares the relative merits of a common class of techniques that rely on direct observation of physical changes in the heated sample, including a novel approach to interferometric measurement of the thermal expansion. It is found that the optimum approach depends not only on the physical properties of the sample being studies, but also upon the resolution of the experiment and the damage threshold of the specimen. Finally, this dissertation describes the applications of photothermal microscopy to the study of the anisotropic thermal properties of the new high-{Tc} superconductors. By adding a high-vacuum cryostat to the microscope, the authors have been able to study the influence of the superconducting transition on the thermal conductivity. The measurements of the anisotropic thermal conductivity demonstrate that the heat flow along the superconducting planes is enhanced below the transition, and that no such enhancement exists in the non-superconducting direction. Material examined was Bi-Ca-Sr-Cu-O.

  7. Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency This process heating tip sheet recommends using lower flammable limit monitoring equipment to improve oven efficiency. PROCESS HEATING TIP SHEET #11 Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency (October 2007) (228.04 KB) More Documents & Publications Check

  8. Flammable gas interlock spoolpiece flow response test plan and procedure

    SciTech Connect (OSTI)

    Schneider, T.C., Fluor Daniel Hanford

    1997-02-13

    The purpose of this test plan and procedure is to test the Whittaker electrochemical cell and the Sierra Monitor Corp. flammable gas monitors in a simulated field flow configuration. The sensors are used on the Rotary Mode Core Sampling (RMCS) Flammable Gas Interlock (FGI), to detect flammable gases, including hydrogen and teminate the core sampling activity at a predetermined concentration level.

  9. Estimation of Flammability Limits of Selected Fluorocarbons with F(sub 2) and CIF(sub3)

    SciTech Connect (OSTI)

    Trowbridge, L.D.

    1999-09-01

    During gaseous diffusion plant operations, conditions leading to the formation of flammable gas mixtures may occasionally arise. Currently, these could consist of the evaporative coolant CFC-114 and fluorinating agents such as F(sub 2) and CIF(sub 3). Replacement of CFC-114 with non-ozone-depleting substitutes such as c-C(sub 4)F(sub 8) and C(sub 4)F(sub 10) is planned. Consequently, in the future, these too must be considered potential ''fuels'' in flammable gas mixtures. Two questions of practical interest arise: (1) can a particular mixture sustain and propagate a flame if ignited, and (2) what is the maximum pressure that can be generated by the burning (and possibly exploding) gas mixture, should ignite? Experimental data on these systems are limited. To assist in answering these questions, a literature search for relevant data was conducted, and mathematical models were developed to serve as tools for predicting potential detonation pressures and estimating (based on empirical correlations between gas mixture thermodynamics and flammability for known systems) the composition limits of flammability for these systems. The models described and documented in this report are enhanced versions of similar models developed in 1992.

  10. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect (OSTI)

    MEACHAM JE

    2008-11-17

    This report assesses the steady state flammability level under off normal ventilation conditions in the tank headspace for 28 double-shell tanks (DST) and 149 single shell-tanks (SST) at the Hanford Site. Flammability was calculated using estimated gas release rates, Le Chatelier's rule, and lower flammability limits of fuels in an air mixture. This revision updates the hydrogen generation rate input data for al1 177 tanks using waste composition information from the Best Basis Inventory Detail Report (data effective as of August 4,2008). Assuming only barometric breathing, the shortest time to reach 25% of the lower flammability limit is 13 days for DSTs (i.e., tank 241-AZ-102) and 36 days for SSTs (i.e., tank 241-B-203). Assuming zero ventilation, the shortest time to reach 25% of the lower flammability limit is 12 days for DSTs (i.e., tank 241-AZ-102) and 34 days for SSTs (i.e., tank 241-B-203).

  11. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect (OSTI)

    MEACHAM JE

    2009-10-26

    This report assesses the steady state flammability level under off normal ventilation conditions in the tank headspace for 28 double-shell tanks (DST) and 149 single shell-tanks (SST) at the Hanford Site. Flammability was calculated using estimated gas release rates, Le Chatelier's rule, and lower flammability limits of fuels in an air mixture. This revision updates the hydrogen generation rate input data for all 177 tanks using waste composition information from the Best Basis Inventory Detail Report (data effective as of August 4,2008). Assuming only barometric breathing, the shortest time to reach 25% of the lower flammability limit is 11 days for DSTs (i.e., tank 241-AZ-10l) and 36 days for SSTs (i.e., tank 241-B-203). Assuming zero ventilation, the shortest time to reach 25% of the lower flammability limit is 10 days for DSTs (i.e., tank 241-AZ-101) and 34 days for SSTs (i.e., tank 241-B-203).

  12. The Chemistry of Flammable Gas Generation

    SciTech Connect (OSTI)

    ZACH, J.J.

    2000-10-30

    The document collects information from field instrumentation, laboratory tests, and analytical models to provide a single source of information on the chemistry of flammable gas generation at the Hanford Site. It considers the 3 mechanisms of formation: radiolysis, chemical reactions, and thermal generation. An assessment of the current models for gas generation is then performed. The results are that the various phenomena are reasonably understood and modeled compared to field data.

  13. Combination free electron and gaseous laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM); Stein, William E. (Los Alamos, NM)

    1980-01-01

    A multiple laser having one or more gaseous laser stages and one or more free electron stages. Each of the free electron laser stages is sequentially pumped by a microwave linear accelerator. Subsequently, the electron beam is directed through a gaseous laser, in the preferred embodiment, and in an alternative embodiment, through a microwave accelerator to lower the energy level of the electron beam to pump one or more gaseous lasers. The combination laser provides high pulse repetition frequencies, on the order of 1 kHz or greater, high power capability, high efficiency, and tunability in the synchronous production of multiple beams of coherent optical radiation.

  14. Photon detectors with gaseous amplification

    SciTech Connect (OSTI)

    Va`vra, J.

    1996-08-01

    Gaseous photon detectors, including very large 4{pi}-devices such as those incorporated in SLD and DELPHI, are finally delivering physics after many years of hard work. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photoelectrons. Among detector builders, there is hardly anybody who did not make mistakes in this area, and who does not have a healthy respect for the problems involved. This point is stressed in this paper, and it is suggested that only a very small operating phase space is available for running gaseous photon detectors in a very large system with good efficiency and few problems. In this paper the authors discuss what was done correctly or incorrectly in first generation photon detectors, and what would be their recommendations for second generation detectors. 56 refs., 11 figs.

  15. Assessment of gas flammability in transuranic waste container

    SciTech Connect (OSTI)

    Connolly, M.J.; Loehr, C.A.; Djordjevic, S.M.; Spangler, L.R.

    1995-12-01

    The Safety Analysis Report for the TRUPACT-II Shipping Package [Transuranic Package Transporter-II (TRUPACT-II) SARP] set limits for gas generation rates, wattage limits, and flammable volatile organic compound (VOC) concentrations in transuranic (TRU) waste containers that would be shipped to the Waste Isolation Pilot Plant (WIPP). Based on existing headspace gas data for drums stored at the Idaho National Engineering Laboratory (INEL) and the Rocky Flats Environmental Technology Site (RFETS), over 30 percent of the contact-handled TRU waste drums contain flammable VOC concentrations greater than the limit. Additional requirements may be imposed for emplacement of waste in the WIPP facility. The conditional no-migration determination (NMD) for the test phase of the facility required that flame tests be performed if significant levels of flammable VOCs were present in TRU waste containers. This paper describes an approach for investigating the potential flammability of TRU waste drums, which would increase the allowable concentrations of flammable VOCS. A flammability assessment methodology is presented that will allow more drums to be shipped to WIPP without treatment or repackaging and reduce the need for flame testing on drums. The approach includes experimental work to determine mixture lower explosive limits (MLEL) for the types of gas mixtures observed in TRU waste, a model for predicting the MLEL for mixtures of VOCS, hydrogen, and methane, and revised screening limits for total flammable VOCs concentrations and concentrations of hydrogen and methane using existing drum headspace gas data and the model predictions.

  16. FLAMMABLE GAS DIFFUSION THROUGH SINGLE SHELL TANK (SST) DOMES

    SciTech Connect (OSTI)

    MEACHAM, J.E.

    2003-11-10

    This report quantified potential hydrogen diffusion through Hanford Site Single-Shell tank (SST) domes if the SSTs were hypothetically sealed airtight. Results showed that diffusion would keep headspace flammable gas concentrations below the lower flammability limit in the 241-AX and 241-SX SST. The purpose of this document is to quantify the amount of hydrogen that could diffuse through the domes of the SSTs if they were hypothetically sealed airtight. Diffusion is assumed to be the only mechanism available to reduce flammable gas concentrations. The scope of this report is limited to the 149 SSTs.

  17. Low flammability cap-sensitive flexible explosive composition

    DOE Patents [OSTI]

    Wagner, Martin G.

    1992-01-14

    A cap-sensitive flexible explosive composition of reduced flammability is provided by incorporating a finely divided, cap-sensitive explosive in a flame resistant polymeric binder system which contains a compatible flame retardant material.

  18. Particulate and Gaseous Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Gaseous Emissions - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  19. GASEOUS DISPOSAL PROCESS

    DOE Patents [OSTI]

    Ryan, R.F.; Thomasson, F.R.; Hicks, J.H.

    1963-01-22

    A method is described of removing gaseous radioactive Xe and Kr from water containing O. The method consists in stripping the gases from the water stream by means of H flowing countercurrently to the stream. The gases are then heated in a deoxo bed to remove O. The carrier gas is next cooled and passed over a charcoal adsorbent bed maintained at a temperature of about --280 deg F to remove the Xe and Kr. (AEC)

  20. NGPL Production, Gaseous Equivalent

    U.S. Energy Information Administration (EIA) Indexed Site

    NGPL Production, Gaseous Equivalent Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 148,450 139,621 157,047 151,450 160,290 156,305 1973-2016

  1. NGPL Production, Gaseous Equivalent

    Gasoline and Diesel Fuel Update (EIA)

    NGPL Production, Gaseous Equivalent Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 148,450 139,621 157,047 151,450 160,290 156,305 1973-2016

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012

  2. Modeling Tools for Flammability Ranking of Low-GWP Refrigerant Blends |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Modeling Tools for Flammability Ranking of Low-GWP Refrigerant Blends Modeling Tools for Flammability Ranking of Low-GWP Refrigerant Blends Credit: National Institute of Standards and Technology Credit: National Institute of Standards and Technology Modeling Tools for Flammability Ranking of Low-GWP Refrigerant Blends Credit: National Institute of Standards and Technology Modeling Tools for Flammability Ranking of Low-GWP Refrigerant Blends Lead Performer: National

  3. Portsmouth Gaseous Diffusion Plant | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portsmouth Gaseous Diffusion Plant Portsmouth Gaseous Diffusion Plant Portsmouth Gaseous Diffusion Plant | November 2009 Aerial View Portsmouth Gaseous Diffusion Plant | November 2009 Aerial View The current mission at the Portsmouth Gaseous Diffusion Plant is to effectively implement EM responsibilities, obligations and activities to accomplish environmental remediation actions in compliance with regulatory milestones and agreements; disposition legacy and newly generated waste; implement Cold

  4. Project W-030 flammable gas verification monitoring test

    SciTech Connect (OSTI)

    BARKER, S.A.

    1999-02-24

    This document describes the verification monitoring campaign used to document the ability of the new ventilation system to mitigate flammable gas accumulation under steady state tank conditions. This document reports the results of the monitoring campaign. The ventilation system configuration, process data, and data analysis are presented.

  5. Flammable gas interlock spoolpiece flow response test report

    SciTech Connect (OSTI)

    Schneider, T.C., Fluor Daniel Hanford

    1997-03-24

    The purpose of this test report is to document the testing performed under the guidance of HNF-SD-WM-TC-073, {ital Flammable Gas Interlock Spoolpiece Flow Response Test Plan and Procedure}. This testing was performed for Lockheed Martin Hanford Characterization Projects Operations (CPO) in support of Rotary Mode Core Sampling jointly by SGN Eurisys Services Corporation and Numatec Hanford Company. The testing was conducted in the 305 building Engineering Testing Laboratory (ETL). NHC provides the engineering and technical support for the 305 ETL. The key personnel identified for the performance of this task are as follows: Test responsible engineering manager, C. E. Hanson; Flammable Gas Interlock Design Authority, G. P. Janicek; 305 ETL responsible manager, N. J. Schliebe; Cognizant RMCS exhauster engineer, E. J. Waldo/J. D. Robinson; Cognizant 305 ETL engineer, K. S. Witwer; Test director, T. C. Schneider. Other support personnel were supplied, as necessary, from 305/306 ETL. The testing, on the flammable Gas Interlock (FGI) system spoolpiece required to support Rotary Mode Core Sampling (RMCS) of single shell flammable gas watch list tanks, took place between 2-13-97 and 2-25-97.

  6. SIMPLE TRANSIENT CALCULATIONS OF CELL FLAMMABLE GAS CONCENTRATIONS

    SciTech Connect (OSTI)

    , J; David Allison , D; John Mccord, J

    2009-05-06

    The Saltstone Facility at Savannah River Site (SRS) mixes low-level radiological liquid waste with grout for permanent disposal as cement in vault cells. The grout mixture is poured into each cell in approximately 17 batches (8 to 10 hours duration). The grout mixture contains ten flammable gases of concern that are released from the mixture into the cell. Prior to operations, simple parametric transient calculations were performed to develop batch parameters (including schedule of batch pours) to support operational efficiency while ensuring that a flammable gas mixture does not develop in the cell vapor space. The analysis demonstrated that a nonflammable vapor space environment can be achieved, with workable operational constraints, without crediting the ventilation flow as a safety system control. Isopar L was identified as the primary flammable gas of concern. The transient calculations balanced inflows of the flammable gases into the vapor space with credited outflows of diurnal breathing through vent holes and displacement from new grout pours and gases generated. Other important features of the analyses included identifying conditions that inhibited a well-mixed vapor space, the expected frequency and duration of such conditions, and the estimated level of stratification that could develop.

  7. Gaseous Hydrogen Delivery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Gaseous Hydrogen Delivery Gaseous hydrogen is most commonly delivered either by trucks or through pipelines. Because gaseous hydrogen is typically produced at relatively low pressures (20-30 bar), it must be compressed prior to transport. Learn more about gaseous hydrogen compression. Trucks that haul gaseous hydrogen are called tube trailers. Gaseous hydrogen is compressed to pressures of 180 bar (~2,600 psig) or higher into long cylinders which are stacked on the trailer that the

  8. School science project 'demystifies' Portsmouth Gaseous Diffusion...

    Energy Savers [EERE]

    School science project 'demystifies' Portsmouth Gaseous Diffusion Plant Site School science project 'demystifies' Portsmouth Gaseous Diffusion Plant Site June 2, 2015 - 10:40am ...

  9. Independent Activity Report, Portsmouth Gaseous Diffusion Plant...

    Office of Environmental Management (EM)

    Portsmouth Gaseous Diffusion Plant - August 2011 Independent Activity Report, Portsmouth Gaseous Diffusion Plant - August 2011 August 2011 Orientation Visit to the Portsmouth ...

  10. Gaseous-fuel engine technology

    SciTech Connect (OSTI)

    1995-12-31

    This publication contains three distinct groups of papers covering gaseous-fuel injection and control, gaseous-fuel engine projects, and gaseous-fuel engine/vehicle applications. Contents include: ultra rapid natural gas port injection; a CNG specific fuel injector using latching solenoid technology; development of an electronically-controlled natural gas-fueled John Deere PowerTech 8.1L engine; adapting a Geo Metro to run on natural gas using fuel-injection technology; behavior of a closed loop controlled air valve type mixer on a natural gas fueled engine under transient operation; and a turbocharged lean-burn 4.3 liter natural gas engine.

  11. An analysis of tank and pump pit flammable gas data in support of saltwater pumping safety basis simplification

    SciTech Connect (OSTI)

    MCCAIN, D.J.

    2000-07-26

    Hanford Site high-level waste tanks are interim stabilized by pumping supernatant and interstitial waste liquids to double-shell tanks (DSTs) through a saltwell pump (SWP). The motor to this SWP is located atop the tank, inside a pump pit. A pumping line extends down from the pump motor into the well area, located in the salt/sludge solids in the tank below. Pumping of these wastes is complicated by the fact that some of the wastes generate and retain potentially hazardous amounts of hydrogen, nitrous oxide, and ammonia. Monitoring of flammable gas concentrations during saltwell pumping activities has shown that one effect of pumping is acceleration in the release of accumulated hydrogen. A second effect is that of a temporarily increased hydrogen concentration in both the dome space and pump pit. There is a safety concern that the hydrogen concentration during saltwell pumping activities might approach the lower flammability limit (LFL) in either the tank dome space or the pump pit. The current Final Safety Analysis Report (FSAR) (CHG 2000) for saltwell pumping requires continuous flammable gas monitoring in both the pump pit and the tank vapor space during saltwell pumping. The FSAR also requires that portable exhauster fans be available by most of the passively ventilated tanks to be saltwell pumped in the event that additional air flow is required to dilute the headspace concentration of flammable gases to acceptable levels. The first objective of this analysis is to review the need for an auxiliary exhauster. Since the purpose of the exhauster is to diffuse unacceptably high flammable gas concentrations, discovery of an alternate method of accomplishing the same task may provide cost savings. The method reviewed is that of temporarily stopping the saltwell pumps. This analysis also examines the typical hydrogen concentration peaks and the rates of increase in hydrogen levels already witnessed in tanks during saltwell pumping activities. The historical data

  12. Retained Gas Sampling Results for the Flammable Gas Program

    SciTech Connect (OSTI)

    J.M. Bates; L.A. Mahoney; M.E. Dahl; Z.I. Antoniak

    1999-11-18

    The key phenomena of the Flammable Gas Safety Issue are generation of the gas mixture, the modes of gas retention, and the mechanisms causing release of the gas. An understanding of the mechanisms of these processes is required for final resolution of the safety issue. Central to understanding is gathering information from such sources as historical records, tank sampling data, tank process data (temperatures, ventilation rates, etc.), and laboratory evaluations conducted on tank waste samples.

  13. Overview of the Flammability of Gases Generated in Hanford Waste Tanks

    SciTech Connect (OSTI)

    LA Mahoney; JL Huckaby; SA Bryan; GD Johnson

    2000-07-21

    This report presents an overview of what is known about the flammability of the gases generated and retained in Hanford waste tanks in terms of the gas composition, the flammability and detonability limits of the gas constituents, and the availability of ignition sources. The intrinsic flammability (or nonflammability) of waste gas mixtures is one major determinant of whether a flammable region develops in the tank headspace; other factors are the rate, surface area, volume of the release, and the tank ventilation rate, which are not covered in this report.

  14. Systems acceptance and operability testing for rotary mode core sampling in flammable gas tanks

    SciTech Connect (OSTI)

    Corbett, J.E., Westinghouse Hanford

    1996-07-29

    This document provides instructions for the system acceptance and operability testing of the rotary mode core sampling system, modified for use in flammable gas tanks.

  15. Use of the slow-strain-rate technique for the evaluation of structural materials for application in high-temperature gaseous environments

    SciTech Connect (OSTI)

    Johnson, C.E.; Ugiansky, G.M.

    1981-01-01

    Types 309, 310, 310S, 347 and 446 stainless steels, Incoloy 800, and Inconel 671 were tested at temperatures from 370 to 1040/sup 0/C at strain rates from 10/sup -4/ to 10/sup -7//s in H/sub 2/S plus water, gaseous mixtures of CO, CO/sub 2/, H/sub 2/, CH/sub 4/, H/sub 2/S, and H/sub 2/O, and in nominally inert environments of He and Ar. Type 310 steel showed a marked reduction in mechanical properties at low strain rates (< 10/sup -5//s) in H/sub 2/S/H/sub 2/O at 540/sup 0/C, and this was associated with the occurrence of a large degree of secondary intergranular cracking in addition to the main ductile fracture mode. The occurrence of the secondary cracking was taken as the primary indication of embrittlement in subsequent tests. It occurred to some degree in all alloys tested in the simulated coal-gasification environments at 600/sup 0/C. The mechanism(s) of the embrittlement phenomena remain uncertain; a number of possible causes including creep and several environmentally-induced fracture processes are outlined. It is shown that the overall results of the test program are in good agreement with in-plant experience.

  16. Verification experiment on the downblending of high enriched uranium (HEU) at the Portsmouth Gaseous Diffusion Plant. Digital video surveillance of the HEU feed stations

    SciTech Connect (OSTI)

    Martinez, R.L.; Tolk, K.; Whiting, N.; Castleberry, K.; Lenarduzzi, R.

    1998-08-01

    As part of a Safeguards Agreement between the US and the International Atomic Energy Agency (IAEA), the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio, was added to the list of facilities eligible for the application of IAEA safeguards. Currently, the facility is in the process of downblending excess inventory of HEU to low enriched uranium (LEU) from US defense related programs for commercial use. An agreement was reached between the US and the IAEA that would allow the IAEA to conduct an independent verification experiment at the Portsmouth facility, resulting in the confirmation that the HEU was in fact downblended. The experiment provided an opportunity for the DOE laboratories to recommend solutions/measures for new IAEA safeguards applications. One of the measures recommended by Sandia National Laboratories (SNL), and selected by the IAEA, was a digital video surveillance system for monitoring activity at the HEU feed stations. This paper describes the SNL implementation of the digital video system and its integration with the Load Cell Based Weighing System (LCBWS) from Oak Ridge National Laboratory (ORNL). The implementation was based on commercially available technology that also satisfied IAEA criteria for tamper protection and data authentication. The core of the Portsmouth digital video surveillance system was based on two Digital Camera Modules (DMC-14) from Neumann Consultants, Germany.

  17. A Safer Replacement for Highly Flammable Liquids Currently Used...

    Office of Science (SC) Website

    ... Since development, LSPS powder has been supplied to dozens of industrial corporations (automotive, electronics, oil & gas), as well as academic and research institutes. Recently, ...

  18. Fuel Cells and Renewable Gaseous Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 3-C: Renewable Gaseous FuelsFuel Cells and Renewable Gaseous FuelsSarah Studer, ORISE Fellow—Fuel Cell Technologies Office, U.S. Department of Energy

  19. DOE Releases Request for Information for Paducah Gaseous Diffusion...

    Energy Savers [EERE]

    Information for Paducah Gaseous Diffusion Plant Deactivation & Remediation Services DOE Releases Request for Information for Paducah Gaseous Diffusion Plant Deactivation & ...

  20. Research Division flammable gas system calibration procedure and stability studies

    SciTech Connect (OSTI)

    Semenchenko, A.; Hojvat, C.

    1993-03-01

    The number of detectors which shifted from initial 50% LEL calibration by more than 5% over 90 days period is small enough in order to increase the time interval between calibrations at least to 120 days, but with any further increase in time between the calibrations probability of SC100 failure greatly increases. In order to keep the number of detectors with abnormal sensitivity low, we would recommend 120 days to be the maximum allowable interval for our present environmental conditions. Information is also presentd on the calibration of the SC100 Combustible Gas Sensor and the DC110 controller. The sensorand controlled form part of the flammable gas detecting systems installed at Fermilab.

  1. Low energy consumption method for separating gaseous mixtures and in particular for medium purity oxygen production

    DOE Patents [OSTI]

    Jujasz, Albert J.; Burkhart, James A.; Greenberg, Ralph

    1988-01-01

    A method for the separation of gaseous mixtures such as air and for producing medium purity oxygen, comprising compressing the gaseous mixture in a first compressor to about 3.9-4.1 atmospheres pressure, passing said compressed gaseous mixture in heat exchange relationship with sub-ambient temperature gaseous nitrogen, dividing the cooled, pressurized gaseous mixture into first and second streams, introducing the first stream into the high pressure chamber of a double rectification column, separating the gaseous mixture in the rectification column into a liquid oxygen-enriched stream and a gaseous nitrogen stream and supplying the gaseous nitrogen stream for cooling the compressed gaseous mixture, removing the liquid oxygen-enriched stream from the low pressure chamber of the rectification column and pumping the liquid, oxygen-enriched steam to a predetermined pressure, cooling the second stream, condensing the cooled second stream and evaporating the oxygen-enriched stream in an evaporator-condenser, delivering the condensed second stream to the high pressure chamber of the rectification column, and heating the oxygen-enriched stream and blending the oxygen-enriched stream with a compressed blend-air stream to the desired oxygen concentration.

  2. Flammable gas tank waste level reconciliation for 241-SX-105

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddie, L.A.

    1997-06-23

    Fluor Daniel Northwest was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 241-SX-105 (SX-105, typical). The trapped gas evaluation document states that Tank SX-105 exceeds the 25% of the lower flammable limit criterion, based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the Welty Report is the basis for this letter report. The Welty Report is also a part of the trapped gas evaluation document criteria. The Welty Report contains various tank information, including: physical information, status, levels, and dry wells. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unaccounted for surface level rise. From 1973 through 1980, the Welty Report tracked Tank SX-105 transfers and reported a net cumulative change of 20.75 in. This surface level increase is from an unknown source or is unaccounted for. Duke Engineering and Services Hanford and Lockheed Martin Hanford Corporation are interested in determining the validity of unexplained surface level changes reported in the Welty Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unaccounted for surface level changes as shown in the Welty Report from 1973 through 1980. Tank SX-105 initially received waste from REDOX starting the second quarter of 1955. After June 1975, the tank primarily received processed waste (slurry) from the 242-S Evaporator/Crystallizer and transferred supernate waste to Tanks S-102 and SX-102. The Welty Report shows a cumulative change of 20.75 in. from June 1973 through December 1980.

  3. Flammable gas tank waste level reconcilliation for 241-SX-102

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddie, L.A.

    1997-06-23

    Fluoro Dynel Northwest (FDNW) was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 24 1-S-1 1 1 (S-I 1 1, typical). The trapped gas evaluation document (ref 1) states that Tank SX-102 exceeds the 25% of the lower flammable limit (FL) criterion (ref 2), based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the ``Wallet Report`` is the basis for this letter report (ref 3). The Wallet Report is also a part of the trapped gas evaluation document criteria. The Wallet Report contains various tank information, including: physical information, status, levels, and dry wells, see Appendix A. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unacquainted for surface level rise. From 1973 through 1980, the Wallet Report tracked Tank S- 102 transfers and reported a net cumulative change of 19.95 in. This surface level increase is from an unknown source or is unacquainted for. Duke Engineering and Services Hanford (DASH) and Leached Martin Hanford Corporation (LMHC) are interested in determining the validity of the unexplained surface level changes reported in the 0611e Wallet Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unacquainted for surface level changes as shown in the Wallet Report from 1973 through 1980.

  4. Gaseous Hydrogen Compression | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    » Gaseous Hydrogen Compression Gaseous Hydrogen Compression Hydrogen is typically produced at relatively low pressures (20-30 bar) and must be compressed prior to transport. Most compressors used today for gaseous hydrogen compression are either positive displacement compressors or centrifugal compressors. Positive displacement compressors can be reciprocating or rotary. Reciprocating compressors use a motor with a linear drive to move a piston or a diaphragm back and forth. This motion

  5. Hydrogen and Gaseous Fuel Safety and Toxicity

    SciTech Connect (OSTI)

    Lee C. Cadwallader; J. Sephen Herring

    2007-06-01

    Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

  6. Independent Oversight Review, Portsmouth Gaseous Diffusion Plant...

    Office of Environmental Management (EM)

    selected aspects of the work planning and control process being implemented by the Portsmouth Gaseous Diffusion Plant (PORTS) contractor, Fluor-Babcock & Wilcox Portsmouth (FBP). ...

  7. Apparatus for recovering gaseous hydrocarbons from hydrocarbon...

    Office of Scientific and Technical Information (OSTI)

    A method and apparatus are provided for producing gaseous hydrocarbons from formations comprising solid hydrocarbon hydrates located under either a body of land or a body of water. ...

  8. Independent Oversight Review, Portsmouth Gaseous Diffusion Plant...

    Office of Environmental Management (EM)

    Plant - November 2013 Independent Oversight Review, Portsmouth Gaseous Diffusion Plant - November 2013 November 5, 2013 Review of Preparedness for Severe Natural Phenomena Events ...

  9. Paducah Gaseous Diffusion Plant Final Environmental Assessment...

    Energy Savers [EERE]

    Point of contact for more information: Robert Smith, Department of Energy-Paducah Paducah Gaseous Diffusion Plant Final Environmental Assessment for Potential Land and Facilities ...

  10. Program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks

    SciTech Connect (OSTI)

    Johnson, G.D.

    1991-08-01

    This program plan describes the activities being conducted for the resolution of the flammable gas problem that is associated with 23 high-level waste tanks at the Hanford Site. The classification of the wastes in all of these tanks is not final and some wastes may not be high-level wastes. However, until the characterization and classification is complete, all the tanks are treated as if they contain high-level waste. Of the 23 tanks, Tank 241-SY-101 (referred to as Tank 101-SY) has exhibited significant episodic releases of flammable gases (hydrogen and nitrous oxide) for the past 10 years. The major near-term focus of this program is for the understanding and stabilization of this tank. An understanding of the mechanism for gas generation and the processes for the episodic release will be obtained through sampling of the tank contents, laboratory studies, and modeling of the tank behavior. Additional information will be obtained through new and upgraded instrumentation for the tank. A number of remediation, or stabilization, concepts will be evaluated for near-term (2 to 3 years) applications to Tank 101-SY. Detailed safety assessments are required for all activities that will occur in the tank (sampling, removal of equipment, and addition of new instruments). This program plan presents a discussion of each task, provides schedules for near-term activities, and gives a summary of the expected work for fiscal years 1991, 1992, and 1993. 16 refs., 7 figs., 8 tabs.

  11. Flammable gas issues in double-contained receiver tanks. Revision 2

    SciTech Connect (OSTI)

    Peurrung, L.M.; Mahoney, L.A.; Stewart, C.W.; Gauglitz, P.A.; Pederson, L.R.; Bryan, S.A.; Shepard, C.L.

    1998-08-01

    Four double-contained receiver tanks (DCRTs) at Hanford will be used to store salt-well pumped liquids from tanks on the Flammable Gas Watch List. This document was created to serve as a reference document describing the current knowledge of flammable gas issues in DCRTs. The document identifies, describes, evaluates, and attempts to quantify potential gas carryover and release mechanisms. It estimates several key parameters needed for these calculations, such as initial aqueous concentrations and ventilation rate, and evaluates the uncertainty in those estimates. It justifies the use of the Schumpe model for estimating vapor-liquid equilibrium constants. It identifies several potential waste compatibility issues (such as mixing and pH or temperature changes) that could lead to gas release and provides a basis for calculating their effects. It evaluates the potential for gas retention in precipitated solids within a DCRT and whether retention could lead to a buoyant displacement instability (rollover) event. It discusses rates of radiolytic, thermal, and corrosive hydrogen generation within the DCRT. It also describes in detail the accepted method of calculating the lower flammability limit (LFL) for mixtures of flammable gases. The report incorporates these analyses into two models for calculating headspace flammability, one based on instantaneous equilibrium between dissolved gases and the headspace and one incorporating limited release rates based on mass-transfer considerations. Finally, it demonstrates the use of both models to estimate headspace flammable gas concentrations and minimum ventilation rates required to maintain concentrations below 25% of the LFL.

  12. TRU waste transportation -- The flammable gas generation problem

    SciTech Connect (OSTI)

    Connolly, M.J.; Kosiewicz, S.T.

    1997-11-01

    The Nuclear Regulatory Commission (NRC) has imposed a flammable gas (i.e., hydrogen) concentration limit of 5% by volume on transuranic (TRU) waste containers to be shipped using the TRUPACT-II transporter. This concentration is the lower explosive limit (LEL) in air. This was done to minimize the potential for loss of containment during a hypothetical 60 day period. The amount of transuranic radionuclide that is permissible for shipment in TRU waste containers has been tabulated in the TRUPACT-II Safety Analysis Report for Packaging (SARP, 1) to conservatively prevent accumulation of hydrogen above this 5% limit. Based on the SARP limitations, approximately 35% of the TRU waste stored at the Idaho National Engineering and Environmental Lab (INEEL), Los Alamos National Lab (LANL), and Rocky Flats Environmental Technology Site (RFETS) cannot be shipped in the TRUPACT-II. An even larger percentage of the TRU waste drums at the Savannah River Site (SRS) cannot be shipped because of the much higher wattage loadings of TRU waste drums in that site`s inventory. This paper presents an overview of an integrated, experimental program that has been initiated to increase the shippable portion of the Department of Energy (DOE) TRU waste inventory. In addition, the authors will estimate the anticipated expansion of the shippable portion of the inventory and associated cost savings. Such projection should provide the TRU waste generating sites a basis for developing their TRU waste workoff strategies within their Ten Year Plan budget horizons.

  13. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOE Patents [OSTI]

    Hindin, Saul G.; Roberts, George W.

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  14. Development of Compact Gaseous Sensors with Internal Reference...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compact Gaseous Sensors with Internal Reference for Monitoring O2 and NOx in Combustion Environments Development of Compact Gaseous Sensors with Internal Reference for Monitoring ...

  15. Paducah Gaseous Diffusion Plant - GW OU Northwest Plume | Department...

    Office of Environmental Management (EM)

    Gaseous Diffusion Plant - GW OU Northwest Plume Paducah Gaseous Diffusion Plant - GW OU Northwest Plume January 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater ...

  16. DOE Issues Final Request for Proposal for Paducah Gaseous Diffusion...

    Energy Savers [EERE]

    Paducah Gaseous Diffusion Plant Support Services DOE Issues Final Request for Proposal for Paducah Gaseous Diffusion Plant Support Services October 6, 2014 - 4:13pm Addthis Media ...

  17. DOE Issues Final Request for Proposal for Portsmouth Gaseous...

    Energy Savers [EERE]

    Portsmouth Gaseous Diffusion Plant Support Services DOE Issues Final Request for Proposal for Portsmouth Gaseous Diffusion Plant Support Services December 9, 2014 - 3:37pm Addthis ...

  18. DOE Seeks Small Businesses for Paducah Gaseous Diffusion Plant...

    Office of Environmental Management (EM)

    Seeks Small Businesses for Paducah Gaseous Diffusion Plant Infrastructure Support Services DOE Seeks Small Businesses for Paducah Gaseous Diffusion Plant Infrastructure Support Services ...

  19. EA-1927: Paducah Gaseous Diffusion Plant Potential Land and Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paducah Gaseous Diffusion Plant Potential Land and Facilities Transfers; McCracken County, Kentucky EA-1927: Paducah Gaseous Diffusion Plant Potential Land and Facilities ...

  20. DOE Seeks Small Businesses for Portsmouth Gaseous Diffusion Plant...

    Energy Savers [EERE]

    Portsmouth Gaseous Diffusion Plant Infrastructure Support Services DOE Seeks Small Businesses for Portsmouth Gaseous Diffusion Plant Infrastructure Support Services July 2, 2014 - ...

  1. Deactivation Project Begins at Paducah Gaseous Diffusion Plant...

    Office of Environmental Management (EM)

    Begins at Paducah Gaseous Diffusion Plant Deactivation Project Begins at Paducah Gaseous Diffusion Plant October 21, 2014 - 5:00pm Addthis EM Paducah site lead Jennifer Woodard ...

  2. Portsmouth Gaseous Diffusion Plant - Quadrant I Groundwater Investigat...

    Office of Environmental Management (EM)

    Portsmouth Gaseous Diffusion Plant - Quadrant I Groundwater Investigative (5-Unit) Area Plume Portsmouth Gaseous Diffusion Plant - Quadrant I Groundwater Investigative (5-Unit) ...

  3. Paducah Gaseous Diffusion Plant - GW OU Southwest Plume | Department...

    Office of Environmental Management (EM)

    Southwest Plume Paducah Gaseous Diffusion Plant - GW OU Southwest Plume January 1, 2014 - ... InstallationName, State: Paducah Gaseous Diffusion Plant, KY Responsible DOE Office: ...

  4. Paducah Gaseous Diffusion Plant - GW OU Northeast Plume | Department...

    Office of Environmental Management (EM)

    Northeast Plume Paducah Gaseous Diffusion Plant - GW OU Northeast Plume January 1, 2014 - ... InstallationName, State: Paducah Gaseous Diffusion Plant, KY Responsible DOE Office: ...

  5. Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels, Phase 2: Evaluations of Field Samples and Laboratory Blends

    SciTech Connect (OSTI)

    Gardiner, D. P.; Bardon, M. F.; LaViolette, M.

    2010-04-01

    Study to measure the flammability of gasoline/ethanol fuel vapors at low ambient temperatures and develop a mathematical model to predict temperatures at which flammable vapors were likely to form.

  6. Independent Oversight Review, Portsmouth Gaseous Diffusion Plant – November 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    Review of Preparedness for Severe Natural Phenomena Events at the Portsmouth Gaseous Diffusion Plant.

  7. Process for removing metal carbonyls from gaseous streams

    SciTech Connect (OSTI)

    Heyd, R.L.; Pignet, T.P.

    1988-04-26

    A process for removing metal carbonyl contaminates from a gaseous stream is described containing such contaminates and which is free from sulfur contaminates, which process comprises contacting the gaseous stream with a zinc sulfide absorbent to thereby remove metal carbonyl contaminates from the gaseous stream, and separating the gaseous stream from the zinc sulfide absorbent.

  8. Independent Oversight Review, Portsmouth Gaseous Diffusion Plant- January 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    Review of the Portsmouth Gaseous Diffusion Plant Work Planning and Control Activities Prior to Work Execution

  9. K-25 Gaseous Diffusion Process Building | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    » Signature Facilities » K-25 Gaseous Diffusion Process Building K-25 Gaseous Diffusion Process Building K-25 Gaseous Diffusion Process Building New! K-25 Virtual Museum The K-25 plant, located on the southwestern end of the Oak Ridge reservation, used the gaseous diffusion method to separate uranium-235 from uranium-238. Based on the well-known principle that molecules of a lighter isotope would pass through a porous barrier more readily than molecules of a heavier one, gaseous diffusion

  10. Flammability of selected heat resistant alloys in oxygen gas mixtures

    SciTech Connect (OSTI)

    Zawierucha, R.; McIlroy, K.; Million, J.F.

    1995-12-31

    Within recent years, the use of oxygen has increased in applications where elevated temperatures and corrosion may be significant factors. In such situations, traditional alloys used in oxygen systems will not be adequate. Where alternative alloys must be utilized, based upon environmental requirements, it is essential that they may be characterized with respect to their ignition and combustion resistance in oxygen. Promoted ignition and promoted ignition-combustion are terms which have been used to describe a situation where a substance with low oxygen supports the combustion of a compatibility ignites and more ignition resistant material. In this paper, data will be presented on the promoted ignition-combustion behavior of selected heat resistant engineering alloys that may be considered for gaseous oxygen applications in severe environments. In this investigation, alloys have been evaluated via both flowing and static (fixed volume) approaches using a rod configuration. Oxygen-nitrogen gas mixtures with compositions ranging from approximately 40 to 99.7% oxygen at pressures of 3.55 to 34.6 MPa were used in the comparative studies.

  11. Flammable gas safety program. Analytical methods development: FY 1994 progress report

    SciTech Connect (OSTI)

    Campbell, J.A.; Clauss, S.; Grant, K.; Hoopes, V.; Lerner, B.; Lucke, R.; Mong, G.; Rau, J.; Wahl, K.; Steele, R.

    1994-09-01

    This report describes the status of developing analytical methods to account for the organic components in Hanford waste tanks, with particular focus on tanks assigned to the Flammable Gas Watch List. The methods that have been developed are illustrated by their application to samples obtained from Tank 241-SY-101 (Tank 101-SY).

  12. Onsite Gaseous Centrifuge Enrichment Plant UF6 Cylinder Destructive Analysis

    SciTech Connect (OSTI)

    Anheier, Norman C.; Cannon, Bret D.; Qiao, Hong; Carter, Jennifer C.; McNamara, Bruce K.; O'Hara, Matthew J.; Phillips, Jon R.; Curtis, Michael M.

    2012-07-17

    The IAEA safeguards approach for gaseous centrifuge enrichment plants (GCEPs) includes measurements of gross, partial, and bias defects in a statistical sampling plan. These safeguard methods consist principally of mass and enrichment nondestructive assay (NDA) verification. Destructive assay (DA) samples are collected from a limited number of cylinders for high precision offsite mass spectrometer analysis. DA is typically used to quantify bias defects in the GCEP material balance. Under current safeguards measures, the operator collects a DA sample from a sample tap following homogenization. The sample is collected in a small UF6 sample bottle, then sealed and shipped under IAEA chain of custody to an offsite analytical laboratory. Current practice is expensive and resource intensive. We propose a new and novel approach for performing onsite gaseous UF6 DA analysis that provides rapid and accurate assessment of enrichment bias defects. DA samples are collected using a custom sampling device attached to a conventional sample tap. A few micrograms of gaseous UF6 is chemically adsorbed onto a sampling coupon in a matter of minutes. The collected DA sample is then analyzed onsite using Laser Ablation Absorption Ratio Spectrometry-Destructive Assay (LAARS-DA). DA results are determined in a matter of minutes at sufficient accuracy to support reliable bias defect conclusions, while greatly reducing DA sample volume, analysis time, and cost.

  13. Summary of tank information relating salt well pumping to flammable gas safety issues

    SciTech Connect (OSTI)

    Caley, S.M.; Mahoney, L.A.; Gauglitz, P.A.

    1996-09-01

    The Hanford Site has 149 single-shell tanks (SSTs) containing radioactive wastes that are complex mixes of radioactive and chemical products. Active use of these SSTs was phased out completely by November 1980, and the first step toward final disposal of the waste in the SSTs is interim stabilization, which involves removing essentially all of the drainable liquid from the tank. Stabilization can be achieved administratively, by jet pumping to remove drainable interstitial liquid, or by supernatant pumping. To date, 116 tanks have been declared interim stabilized; 44 SSTs have had drainable liquid removed by salt well jet pumping. Of the 149 SSTs, 19 are on the Flammable Gas Watch List (FGWL) because the waste in these tanks is known or suspected, in all but one case, to generate and retain mixtures of flammable gases, including; hydrogen, nitrous oxide, and ammonia. Salt well pumping to remove the drainable interstitial liquid from these SSTs is expected to cause the release of much of the retained gas, posing a number of safety concerns. The scope of this work is to collect and summarize information, primarily tank data and observations, that relate salt well pumping to flammable gas safety issues. While the waste within FGWL SSTs is suspected offering flammable gases, the effect of salt well pumping on the waste behavior is not well understood. This study is being conducted for the Westinghouse Hanford Company as part of the Flammable Gas Project at the Pacific Northwest National Laboratory (PNNL). Understanding the historical tank behavior during and following salt well pumping will help to resolve the associated safety issues.

  14. Fuel Cells and Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office | 1 7/14/2015 Fuel Cells and Renewable Gaseous Fuels Bioenergy 2015: Renewable Gaseous Fuels Breakout Session Sarah Studer, PhD ORISE Fellow Fuel Cell Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy June 24, 2015 Washington, DC Fuel Cell Technologies Office | 2 7/14/2015 7/14/2015 DOE Hydrogen and Fuel Cells Program Integrated approach to widespread commercialization of H 2 and fuel cells Fuel Cell Cost Durability H 2 Cost

  15. Methods and systems for deacidizing gaseous mixtures

    DOE Patents [OSTI]

    Hu, Liang

    2010-05-18

    An improved process for deacidizing a gaseous mixture using phase enhanced gas-liquid absorption is described. The process utilizes a multiphasic absorbent that absorbs an acid gas at increased rate and leads to reduced overall energy costs for the deacidizing operation.

  16. Senior DOE Officials Visit Paducah Gaseous Diffusion Plant Site...

    Energy Savers [EERE]

    Senior DOE Officials Visit Paducah Gaseous Diffusion Plant Site Senior DOE Officials Visit Paducah Gaseous Diffusion Plant Site April 29, 2015 - 12:00pm Addthis EM Paducah site ...

  17. The Promise of Renewable Gaseous Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Promise of Renewable Gaseous Fuels The Promise of Renewable Gaseous Fuels Breakout Session 3-C: Renewable Gaseous Fuels The Promise of Renewable Gaseous Fuels Jeffrey Reed, Director of Business Strategy and Development, Southern California Gas Company/San Diego Gas & Electric reed_bioenergy_2015.pdf (1.91 MB) More Documents & Publications QER - Comment of American Gas Association 3 Initial Results of the DeNOx SCR System by Urea Injection in the Euro 5 Bus Renewable Natural Gas

  18. Methodology for Predicting Flammable Gas Mixtures in Double Contained Receiver Tanks [SEC 1 THRU SEC 3

    SciTech Connect (OSTI)

    HEDENGREN, D.C.

    2000-01-31

    This methodology document provides an estimate of the maximum concentrations of flammable gases (ammonia, hydrogen, and methane) which could exist in the vapor space of a double-contained receiver tank (DCRT) from the simultaneous saltwell pumping of one or more single-shell tanks (SSTs). This document expands Calculation Note 118 (Hedengren et a1 1997) and removes some of the conservatism from it, especially in vapor phase ammonia predictions. The methodologies of Calculation Note 118 (Hedengren et a1 1997) are essentially identical for predicting flammable gas mixtures in DCRTs from saltwell pumping for low DCRT ventilation rates, 1e, < 1 cfm. The hydrogen generation model has also been updated in the methodology of this document.

  19. Laboratory flammability studies of mixtures of hydrogen, nitrous oxide, and air

    SciTech Connect (OSTI)

    Cashdollar, K L; Hertzberg, M; Zlochower, I A; Lucci, C E; Green, G M; Thomas, R A

    1992-06-26

    At the request of the Department of Energy and the Westinghouse Hanford Company, the Bureau of Mines has investigated the flammability of mixtures of hydrogen, nitrous oxide, and air. This work is relevant to the possible hazards of flammable gas generation from nuclear waste tanks at Hanford, WA. The tests were performed in a 120-L spherical chamber under both quiescent and turbulent conditions using both electric spark and pyrotechnic ignition sources. The data reported here for binary mixtures of hydrogen in air generally confirm the data of previous investigators, but they are more comprehensive than those reported previously. The results clarify to a greater extent the complications associated with buoyancy, turbulence, and selective diffusion. The data reported here for ternary mixtures of hydrogen and nitrous oxide in air indicate that small additions of nitrous oxide (relative to the amount of air) have little effect, but that higher concentrations of nitrous oxide (relative to air) significantly increase the explosion hazard.

  20. Gaseous modification of MCrAlY coatings

    DOE Patents [OSTI]

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes methods for modifying MCrAlY coatings by using gaseous carburization, gaseous nitriding or gaseous carbonitriding. The modified MCrAlY coatings are useful in thermal barrier coating systems, which may be used in gas turbine engines.

  1. Process for obtaining gaseous streams rich in ethene

    SciTech Connect (OSTI)

    Cabral, J.A.; Coutinho, P.H.

    1981-02-17

    This invention relates to the production of ethene with a highly profitable yield by means of fluidized bed catalytic cracking of a mixture containing 0.13 to 50 parts by weight of ethanol to 100 parts by weight of hydrocarbons blend at a temperature between 430/sup 0/C and 550/sup 0/C., and pressure between 0 and 5.0kg/cm2 ga in such way that the final gaseous product resulting therefrom has an ethene content between 18.8% and 64% by volume.

  2. Theoretical solution of the minimum charge problem for gaseous detonations

    SciTech Connect (OSTI)

    Ostensen, R.W.

    1990-12-01

    A theoretical model was developed for the minimum charge to trigger a gaseous detonation in spherical geometry as a generalization of the Zeldovich model. Careful comparisons were made between the theoretical predictions and experimental data on the minimum charge to trigger detonations in propane-air mixtures. The predictions are an order of magnitude too high, and there is no apparent resolution to the discrepancy. A dynamic model, which takes into account the experimentally observed oscillations in the detonation zone, may be necessary for reliable predictions. 27 refs., 9 figs.

  3. Potential Flammable Gas Explosion in the TRU Vent and Purge Machine

    SciTech Connect (OSTI)

    Vincent, A

    2006-04-05

    The objective of the analysis was to determine the failure of the Vent and Purge (V&P) Machine due to potential explosion in the Transuranic (TRU) drum during its venting and/or subsequent explosion in the V&P machine from the flammable gases (e.g., hydrogen and Volatile Organic Compounds [VOCs]) vented into the V&P machine from the TRU drum. The analysis considers: (a) increase in the pressure in the V&P cabinet from the original deflagration in the TRU drum including lid ejection, (b) pressure wave impact from TRU drum failure, and (c) secondary burns or deflagrations resulting from excess, unburned gases in the cabinet area. A variety of cases were considered that maximized the pressure produced in the V&P cabinet. Also, cases were analyzed that maximized the shock wave pressure in the cabinet from TRU drum failure. The calculations were performed for various initial drum pressures (e.g., 1.5 and 6 psig) for 55 gallon TRU drum. The calculated peak cabinet pressures ranged from 16 psig to 50 psig for various flammable gas compositions. The blast on top of cabinet and in outlet duct ranged from 50 psig to 63 psig and 12 psig to 16 psig, respectively, for various flammable gas compositions. The failure pressures of the cabinet and the ducts calculated by structural analysis were higher than the pressure calculated from potential flammable gas deflagrations, thus, assuring that V&P cabinet would not fail during this event. National Fire Protection Association (NFPA) 68 calculations showed that for a failure pressure of 20 psig, the available vent area in the V&P cabinet is 1.7 to 2.6 times the required vent area depending on whether hydrogen or VOCs burn in the V&P cabinet. This analysis methodology could be used to design the process equipment needed for venting TRU waste containers at other sites across the Department of Energy (DOE) Complex.

  4. Equipment design guidance document for flammable gas waste storage tank new equipment

    SciTech Connect (OSTI)

    Smet, D.B.

    1996-04-11

    This document is intended to be used as guidance for design engineers who are involved in design of new equipment slated for use in Flammable Gas Waste Storage Tanks. The purpose of this document is to provide design guidance for all new equipment intended for application into those Hanford storage tanks in which flammable gas controls are required to be addressed as part of the equipment design. These design criteria are to be used as guidance. The design of each specific piece of new equipment shall be required, as a minimum to be reviewed by qualified Unreviewed Safety Question evaluators as an integral part of the final design approval. Further Safety Assessment may be also needed. This guidance is intended to be used in conjunction with the Operating Specifications Documents (OSDs) established for defining work controls in the waste storage tanks. The criteria set forth should be reviewed for applicability if the equipment will be required to operate in locations containing unacceptable concentrations of flammable gas.

  5. Diffusion method of seperating gaseous mixtures

    DOE Patents [OSTI]

    Pontius, Rex B.

    1976-01-01

    A method of effecting a relatively large change in the relative concentrations of the components of a gaseous mixture by diffusion which comprises separating the mixture into heavier and lighter portions according to major fraction mass recycle procedure, further separating the heavier portions into still heavier subportions according to a major fraction mass recycle procedure, and further separating the lighter portions into still lighter subportions according to a major fraction equilibrium recycle procedure.

  6. A safety assessment of rotary mode core sampling in flammable gas single shell tanks: Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Raymond, R.E.

    1996-04-15

    This safety assessment (SA) addresses each of the required elements associated with the installation, operation, and removal of a rotary-mode core sampling (RMCS) device in flammable-gas single-shell tanks (SSTs). The RMCS operations are needed in order to retrieve waste samples from SSTs with hard layers of waste for which push-mode sampling is not adequate for sampling. In this SA, potential hazards associated with the proposed action were identified and evaluated systematically. Several potential accident cases that could result in radiological or toxicological gas releases were identified and analyzed and their consequences assessed. Administrative controls, procedures and design changes required to eliminate or reduce the potential of hazards were identified. The accidents were analyzed under nine categories, four of which were burn scenarios. In SSTS, burn accidents result in unacceptable consequences because of a potential dome collapse. The accidents in which an aboveground burn propagates into the dome space were shown to be in the ``beyond extremely unlikely`` frequency category. Given the unknown nature of the gas-release behavior in the SSTS, a number of design changes and administrative controls were implemented to achieve these low frequencies. Likewise, drill string fires and dome space fires were shown to be very low frequency accidents by taking credit for the design changes, controls, and available experimental and analytical data. However, a number of Bureau of Mines (BOM) tests must be completed before some of the burn accidents can be dismissed with high confidence. Under the category of waste fires, the possibility of igniting the entrapped gases and the waste itself were analyzed. Experiments are being conducted at the BOM to demonstrate that the drill bit is not capable of igniting the trapped gas in the waste. Laboratory testing and thermal analysis demonstrated that, under normal operating conditions, the drill bit will not create high

  7. Method for reacting nongaseous material with a gaseous reactant

    DOE Patents [OSTI]

    Lumpkin, Robert E.; Duraiswamy, Kandaswamy

    1979-03-27

    This invention relates to a new and novel method and apparatus for reacting nongaseous material with a gaseous reactant comprising introducing a first stream containing a nongaseous material into a reaction zone; simultaneously introducing a second stream containing a gaseous reactant into the reaction zone such that the gaseous reactant immediately contacts and reacts with the first stream thereby producing a gaseous product; forming a spiralling vortex within the reaction zone to cause substantial separation of gases, including the gaseous product, from the nongaseous material; forming and removing a third stream from the reaction zone containing the gaseous product which is substantially free of the nongaseous material before a major portion of the gaseous product can react with the nongaseous material; and forming and removing a fourth stream containing the nongaseous material from the reaction zone.

  8. Method and apparatus for producing laser radiation following two-photon excitation of a gaseous medium

    DOE Patents [OSTI]

    Bischel, William K. [Menlo Park, CA; Jacobs, Ralph R. [Livermore, CA; Prosnitz, Donald [Hamden, CT; Rhodes, Charles K. [Palo Alto, CA; Kelly, Patrick J. [Fort Lewis, WA

    1979-02-20

    Method and apparatus for producing laser radiation by two-photon optical pumping of an atomic or molecular gaseous medium and subsequent lasing action. A population inversion is created as a result of two-photon absorption of the gaseous species. Stark tuning is utilized, if necessary, in order to tune the two-photon transition into exact resonance. In particular, gaseous ammonia (NH.sub.3) or methyl fluoride (CH.sub.3 F) is optically pumped by a pair of CO.sub.2 lasers to create a population inversion resulting from simultaneous two-photon excitation of a high-lying vibrational state, and laser radiation is produced by stimulated emission of coherent radiation from the inverted level.

  9. Method and apparatus for producing laser radiation following two-photon excitation of a gaseous medium

    DOE Patents [OSTI]

    Bischel, W.K.; Jacobs, R.R.; Prosnitz, D.P.; Rhodes, C.K.; Kelly, P.J.

    1979-02-20

    Method and apparatus are disclosed for producing laser radiation by two-photon optical pumping of an atomic or molecular gaseous medium and subsequent lasing action. A population inversion is created as a result of two-photon absorption of the gaseous species. Stark tuning is utilized, if necessary, in order to tune the two-photon transition into exact resonance. In particular, gaseous ammonia (NH[sub 3]) or methyl fluoride (CH[sub 3]F) is optically pumped by a pair of CO[sub 2] lasers to create a population inversion resulting from simultaneous two-photon excitation of a high-lying vibrational state, and laser radiation is produced by stimulated emission of coherent radiation from the inverted level. 3 figs.

  10. TECHNICAL JUSTIFICATION FOR CHOOSING PROPANE AS A CALIBRATION AGENT FOR TOTAL FLAMMABLE VOLATILE ORGANIC COMPOUND (VOC) DETERMINATIONS

    SciTech Connect (OSTI)

    DOUGLAS, J.G.

    2006-07-06

    This document presents the technical justification for choosing and using propane as a calibration standard for estimating total flammable volatile organic compounds (VOCs) in an air matrix. A propane-in-nitrogen standard was selected based on a number of criteria: (1) has an analytical response similar to the VOCs of interest, (2) can be made with known accuracy and traceability, (3) is available with good purity, (4) has a matrix similar to the sample matrix, (5) is stable during storage and use, (6) is relatively non-hazardous, and (7) is a recognized standard for similar analytical applications. The Waste Retrieval Project (WRP) desires a fast, reliable, and inexpensive method for screening the flammable VOC content in the vapor-phase headspace of waste containers. Table 1 lists the flammable VOCs of interest to the WRP. The current method used to determine the VOC content of a container is to sample the container's headspace and submit the sample for gas chromatography--mass spectrometry (GC-MS) analysis. The driver for the VOC measurement requirement is safety: potentially flammable atmospheres in the waste containers must be allowed to diffuse prior to processing the container. The proposed flammable VOC screening method is to inject an aliquot of the headspace sample into an argon-doped pulsed-discharge helium ionization detector (Ar-PDHID) contained within a gas chromatograph. No actual chromatography is performed; the sample is transferred directly from a sample loop to the detector through a short, inert transfer line. The peak area resulting from the injected sample is proportional to the flammable VOC content of the sample. However, because the Ar-PDHID has different response factors for different flammable VOCs, a fundamental assumption must be made that the agent used to calibrate the detector is representative of the flammable VOCs of interest that may be in the headspace samples. At worst, we desire that calibration with the selected calibrating

  11. The Promise of Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reed, Southern California Gas Company The Promise of Renewable Gaseous Fuels June 24, 2015 DOE Bioenergy Summit 2 2 Southern California Gas Company » The nation's largest natural gas distribution utility  20.9 million consumers  5.8 million meters  500 communities » Subsidiary of Sempra Energy (SRE) » Affiliated with SDG&E » Leader in customer satisfaction, pipeline safety and environmental solutions NOx is a Unique Challenge for SoCal Over 80% of Southern California is in

  12. Results of vapor space monitoring of flammable gas Watch List tanks

    SciTech Connect (OSTI)

    Wilkins, N.E.

    1997-09-18

    This report documents the measurement of headspace gas concentrations and monitoring results from the Hanford tanks that have continuous flammable gas monitoring. The systems used to monitor the tanks are Standard Hydrogen Monitoring Systems. Further characterization of the tank off-gases was done with Gas Characterization Systems and vapor grab samples. The background concentrations of all tanks are below the action level of 6250 ppm. Other information which can be derived from the measurements (such as generation rate, release rate, and ventilation rate) is also discussed.

  13. Non-Destructive Analysis Calibration Standards for Gaseous Diffusion Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (GDP) Decommissioning | Department of Energy Non-Destructive Analysis Calibration Standards for Gaseous Diffusion Plant (GDP) Decommissioning Non-Destructive Analysis Calibration Standards for Gaseous Diffusion Plant (GDP) Decommissioning The decommissioning of Gaseous Diffusion Plant facilities requires accurate, non-destructive assay (NDA) of residual enriched uranium in facility components for safeguards and nuclear criticality safety purposes. Current practices used to perform NDA

  14. EA-1927: Paducah Gaseous Diffusion Plant Potential Land and Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfers; McCracken County, Kentucky | Department of Energy 27: Paducah Gaseous Diffusion Plant Potential Land and Facilities Transfers; McCracken County, Kentucky EA-1927: Paducah Gaseous Diffusion Plant Potential Land and Facilities Transfers; McCracken County, Kentucky SUMMARY DOE's Portsmouth/Paducah Project Office prepared an EA that assesses the potential environmental impacts of the proposed transfer of land and facilities at the Paducah Gaseous Diffusion Plant from DOE to other

  15. Energy Department Extends Contract for Cleanup of Portsmouth Gaseous

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diffusion Plant | Department of Energy Extends Contract for Cleanup of Portsmouth Gaseous Diffusion Plant Energy Department Extends Contract for Cleanup of Portsmouth Gaseous Diffusion Plant March 28, 2016 - 9:00pm Addthis Media Contact Brad Mitzelfelt, 859-219-4035 brad.mitzelfelt@lex.doe.gov LEXINGTON, Ky. - The U.S. Department of Energy (DOE) today announced that it has exercised its option to extend the contract for decontamination and decommissioning (D&D) of the Portsmouth Gaseous

  16. DOE Issues Final Request for Proposal for Portsmouth Gaseous Diffusion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Support Services | Department of Energy Portsmouth Gaseous Diffusion Plant Support Services DOE Issues Final Request for Proposal for Portsmouth Gaseous Diffusion Plant Support Services December 9, 2014 - 3:37pm Addthis Media Contact Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati -- The U.S. Department of Energy today issued a Final Request for Proposal (RFP), for the continued performance of infrastructure support services at the Portsmouth Gaseous Diffusion

  17. DOE Seeks Proposals for Portsmouth Gaseous Diffusion Plant Technical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services Contract | Department of Energy Proposals for Portsmouth Gaseous Diffusion Plant Technical Services Contract DOE Seeks Proposals for Portsmouth Gaseous Diffusion Plant Technical Services Contract June 19, 2012 - 12:00pm Addthis Media Contact Bill Taylor bill.taylor@srs.gov 803-952-8564 Cincinnati - The Department of Energy today issued a Draft Request for Proposals (RFP) for an Environmental Technical Services acquisition at the Portsmouth Gaseous Diffusion Plant near Piketon, Ohio.

  18. DOE - Office of Legacy Management -- Paducah Gaseous Diffusion Plant - KY

    Office of Legacy Management (LM)

    01 Paducah Gaseous Diffusion Plant - KY 01 Site ID (CSD Index Number): KY.01 Site Name: Paducah Gaseous Diffusion Plant Site Summary: Site Link: http://energy.gov/pppo/paducah-site External Site Link: Alternate Name(s): Paducah Gaseous Diffusion Plant Alternate Name Documents: Location: Paducah, Kentucky Location Documents: Historical Operations (describe contaminants): Historical Operations Documents: Eligibility Determination: Owned by the U.S. Department of Energy (DOE). DOE oversees

  19. DOE Seeks Deactivation Contractor for Paducah Gaseous Diffusion Plant |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Deactivation Contractor for Paducah Gaseous Diffusion Plant DOE Seeks Deactivation Contractor for Paducah Gaseous Diffusion Plant August 9, 2013 - 5:30pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today issued a Request for Task Proposal (RTP) for deactivation activities at the Paducah Gaseous Diffusion Plant (GDP) in Paducah, Kentucky. These services are required so that DOE can address the return

  20. DOE Seeks Quotes for Paducah Gaseous Diffusion Plant Environmental

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Services | Department of Energy Quotes for Paducah Gaseous Diffusion Plant Environmental Technical Services DOE Seeks Quotes for Paducah Gaseous Diffusion Plant Environmental Technical Services August 13, 2012 - 12:00pm Addthis Media Contact Bill Taylor Bill.Taylor@srs.gov 803-952-8564 Cincinnati- The Department of Energy (DOE) today issued a Request for Quotation (RFQ) for an Environmental Technical Services acquisition at the Paducah Gaseous Diffusion Plant (GDP) for the

  1. Independent Oversight Review, Portsmouth Gaseous Diffusion Plant - April

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 | Department of Energy Portsmouth Gaseous Diffusion Plant - April 2013 Independent Oversight Review, Portsmouth Gaseous Diffusion Plant - April 2013 April 2013 Review of the Integrated Safety Management System Phase I Verification Review at the Portsmouth Gaseous Diffusion Plant The Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent review of the U.S. Department of Energy (DOE) Portsmouth/Paducah

  2. Property:PotentialBiopowerGaseousGeneration | Open Energy Information

    Open Energy Info (EERE)

    Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialBiopowerGaseousGeneration" Showing 25...

  3. OSTIblog Articles in the gaseous diffusion Topic | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    Related Topics: 70th Anniversary, atomic bomb, DOE Research & Development (R&D) Accomplishments, electromagnetic, gaseous diffusion, Manhattan Project, nuclear chain reaction, ...

  4. Paducah Gaseous Diffusion Plant Draft Paducah Environmental Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    Draft Environmental Assessment (EA) for Potential Land and Facilities Transfers at the Paducah Gaseous Diffusion Plant in McCracken County, Kentucky. DOE is inviting comments on...

  5. ASSESSMENT OF THE IMPACT OF TOA PARTITIONING ON DWPF MELTER OFF-GAS FLAMMABILITY

    SciTech Connect (OSTI)

    Daniel, G.

    2013-06-18

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of increasing the amount of TOA in the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process. The results of this study showed that the concentrations of nonvolatile carbon of the current solvent limit (150 ppm) in the Slurry Mix Evaporator (SME) product would be about 7% higher and the nonvolatile hydrogen would be 2% higher than the actual current solvent (126 ppm) with an addition of up to 3 ppm of TOA when the concentration of Isopar L in the effluent transfer is controlled below 87 ppm and the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle. Therefore, the DWPF melter off-gas flammability assessment is conservative for up to an additional 3 ppm of TOA in the effluent based on these assumptions. This report documents the calculations performed to reach this conclusion.

  6. 2011 GASEOUS IONS GORDON RESEARCH CONFERENCE

    SciTech Connect (OSTI)

    Scott Anderson

    2011-03-04

    The Gaseous Ions: Structures, Energetics and Reactions Gordon Research Conference will focus on ions and their interactions with molecules, surfaces, electrons, and light. The conference will cover theory and experiments, and systems ranging from molecular to biological to clusters to materials. The meeting goal continues to be bringing together scientists interested in fundamentals, with those applying fundamental phenomena to a wide range of practical problems. Each of the ten conference sessions will focus on a topic within this spectrum, and there will also be poster sessions for contributed papers, with sufficient space and time to allow all participants to present their latest results. To encourage active participation by young investigators, about ten of the poster abstracts will be selected for 15 minute 'hot topic' talks during the conference sessions. Hot topic selection will be done about a month before the meeting. Funds should be available to offset the participation cost for young investigators.

  7. Report on the handling of safety information concerning flammable gases and ferrocyanide at the Hanford waste tanks

    SciTech Connect (OSTI)

    Not Available

    1990-07-01

    This report discusses concerns safety issues, and management at Hanford Tank Farm. Concerns center on the issue of flammable gas generation which could ignite, and on possible exothermic reactions of ferrocyanide compounds which were added to single shell tanks in the 1950's. It is believed that information concerning these issues has been mis-handled and the problems poorly managed. (CBS)

  8. Responding to Terrorist Incidents in Your Community: Flammable-Liquid Fire Fighting Techniques for Municipal and Rural Firefighters

    SciTech Connect (OSTI)

    Denise Baclawski

    2010-03-08

    The University of Nevada, Reno Fire Science Academy (FSA) applied for grant funding to develop and deliver programs for municipal, rural, and volunteer firefighters. The FSA specializes in preparing responders for a variety of emergency events, including flammable liquid fires resulting from accidents, intentional acts, or natural disasters. Live fire training on full scale burnable props is the hallmark of FSA training, allowing responders to practice critical skills in a realistic, yet safe environment. Unfortunately, flammable liquid live fire training is often not accessible to municipal, rural, or volunteer firefighters due to limited department training budgets, even though most department personnel will be exposed to flammable liquid fire incidents during the course of their careers. In response to this training need, the FSA developed a course during the first year of the grant (Year One), Responding to Terrorist Incidents in Your Community: Flammable-Liquid Fire Fighting Techniques for Municipal and Rural Firefighters. During the three years of the grant, a total of 2,029 emergency responders received this training. In Year Three, two new courses, a train-the-trainer for Responding to Terrorist Incidents in Your Community and Management of Large-Scale Disasters for Public Officials were developed and pilot tested during the Real-World Disaster Management Conference held at the FSA in June of 2007. Two research projects were conducted during Years Two and Three. The first, conducted over a two year period, evaluated student surveys regarding the value of the flammable liquids training received. The second was a needs assessment conducted for rural Nevada. Both projects provided important feedback and a basis for curricula development and improvements.

  9. Assessment of the impact of the next generation solvent on DWPF melter off-gas flammability

    SciTech Connect (OSTI)

    Daniel, W. E.

    2013-02-13

    An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of replacing the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process with the Next Generation Solvent (NGS-MCU) and blended solvent. The results of this study showed that the concentrations of nonvolatile carbon and hydrogen of the current solvent in the Slurry Mix Evaporator (SME) product would both be about 29% higher than their counterparts of the NGS-MCU and blended solvent in the absence of guanidine partitioning. When 6 ppm of guanidine (TiDG) was added to the effluent transfer to DWPF to simulate partitioning for the NGS-MCU and blended solvent cases and the concentration of Isopar{reg_sign} L in the effluent transfer was controlled below 87 ppm, the concentrations of nonvolatile carbon and hydrogen of the NGS-MCU and blended solvent were still about 12% and 4% lower, respectively, than those of the current solvent. It is, therefore, concluded that as long as the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle and the concentration of Isopar{reg_sign} L in the effluent transfer is controlled below 87 ppm, using the current solvent assumption of 105 ppm Isopar{reg_sign} L or 150 ppm solvent in lieu of NGS-MCU or blended solvent in the DWPF melter off-gas flammability assessment is conservative for up to an additional 6 ppm of TiDG in the effluent due to guanidine partitioning. This report documents the calculations performed to reach this conclusion.

  10. Report on the Effect the Low Enriched Uranium Delivered Under the Highly Enriched Uranium Agreement Between the USA and the Russian Federation has on the Domestic Uranium Mining, Conversion, and Enrichment Industries and the Ops of the Gaseous Diffusion

    Broader source: Energy.gov [DOE]

    The successful implementation of the HEU Agreement remains a high priority of the U.S. Government. The agreement also serves U.S. and Russian commercial interests. HEU Agreement deliveries are an...

  11. Growth of graphene films from non-gaseous carbon sources

    DOE Patents [OSTI]

    Tour, James; Sun, Zhengzong; Yan, Zheng; Ruan, Gedeng; Peng, Zhiwei

    2015-08-04

    In various embodiments, the present disclosure provides methods of forming graphene films by: (1) depositing a non-gaseous carbon source onto a catalyst surface; (2) exposing the non-gaseous carbon source to at least one gas with a flow rate; and (3) initiating the conversion of the non-gaseous carbon source to the graphene film, where the thickness of the graphene film is controllable by the gas flow rate. Additional embodiments of the present disclosure pertain to graphene films made in accordance with the methods of the present disclosure.

  12. Combustion characteristics of alternative gaseous fuels

    SciTech Connect (OSTI)

    Park, O.; Veloo, Peter S.; Liu, N.; Egolfopoulos, Fokion N.

    2011-01-01

    Fundamental flame properties of mixtures of air with hydrogen, carbon monoxide, and C{sub 1}C{sub 4} saturated hydrocarbons were studied both experimentally and numerically. The fuel mixtures were chosen in order to simulate alternative gaseous fuels and to gain insight into potential kinetic couplings during the oxidation of fuel mixtures. The studies included the use of the counterflow configuration for the determination of laminar flame speeds, as well as extinction and ignition limits of premixed flames. The experiments were modeled using the USC Mech II kinetic model. It was determined that when hydrocarbons are added to hydrogen flames as additives, flame ignition, propagation, and extinction are affected in a counterintuitive manner. More specifically, it was found that by substituting methane by propane or n-butane in hydrogen flames, the reactivity of the mixture is reduced both under pre-ignition and vigorous burning conditions. This behavior stems from the fact that propane and n-butane produce higher amounts of methyl radicals that can readily recombine with atomic hydrogen and reduce thus the rate of the H + O{sub 2} ? O + OH branching reaction. The kinetic model predicts closely the experimental data for flame propagation and extinction for various fuel mixtures and pressures, and for various amounts of carbon dioxide in the fuel blend. On the other hand, it underpredicts, in general, the ignition temperatures.

  13. Qualitative assessment of the ignition of highly flammable fuels by primary explosives

    SciTech Connect (OSTI)

    Elischer, P.P.; De Yong, L.

    1983-06-01

    An assessment of the ignition of fuel/air mixtures and of fabrics soaked with different fuels (ethanol, n-hexane and diethyl ether) by primary explosives has been carried out.

  14. Photoelectron spectroscopy of wet and gaseous samples through graphene membranes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kraus, Jürgen; Reichelt, Robert; Günther, Sebastian; Gregoratti, Luca; Amati, Matteo; Kiskinova, Maya; Yulaev, Alexander; Vlassiouk, Ivan V.; Kolmakov, Andrei

    2014-01-01

    Photoelectron spectroscopy (PES) and microscopy are highly important for exploring morphologically and chemically complex liquid–gas, solid–liquid and solid–gas interfaces under realistic conditions, but the very small electron mean free path inside dense media imposes serious experimental challenges. Currently, near ambient pressure PES is conducted using dexterously designed electron energy analyzers coupled with differentially pumped electron lenses which make it possible to conduct PES measurements at a few hPa. This report proposes an alternative ambient pressure approach that can be applied to a broad class of samples and be implemented in conventional PES instruments. It uses ultrathin electron transparent but molecularmore » impermeable membranes to isolate the high pressure sample environment from the high vacuum PES detection system. We show that the separating graphene membrane windows are both mechanically robust and sufficiently transparent for electrons in a wide energy range to allow soft X-ray PES of liquid and gaseous water. The performed proof-of-principle experiments confirm the possibility to probe vacuum-incompatible toxic or reactive samples placed inside such hermetic, gas flow or fluidic environmental cells.« less

  15. EM Begins Demolishing K-31 Gaseous Diffusion Building

    Broader source: Energy.gov [DOE]

    OAK RIDGE, Tenn. – EM's demolition of the K-31 Building at Oak Ridge’s East Tennessee Technology Park (ETTP) began Wednesday, marking the removal of the fourth of five gaseous diffusion buildings at the former uranium enrichment site.

  16. Method for removing acid gases from a gaseous stream

    DOE Patents [OSTI]

    Gorin, Everett; Zielke, Clyde W.

    1981-01-01

    In a process for hydrocracking a heavy aromatic polynuclear carbonaceous feedstock containing reactive alkaline constituents to produce liquid hydrocarbon fuels boiling below about 475.degree. C. at atmospheric pressure by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, thereafter separating a gaseous stream containing hydrogen, at least a portion of the hydrocarbon fuels and acid gases from the molten metal halide and regenerating the molten metal halide, thereby producing a purified molten metal halide stream for recycle to the hydrocracking zone, an improvement comprising; contacting the gaseous acid gas, hydrogen and hydrocarbon fuels-containing stream with the feedstock containing reactive alkaline constituents to remove acid gases from the acid gas containing stream. Optionally at least a portion of the hydrocarbon fuels are separated from gaseous stream containing hydrogen, hydrocarbon fuels and acid gases prior to contacting the gaseous stream with the feedstock.

  17. Development of Compact Gaseous Sensors with Internal Reference for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monitoring O2 and NOx in Combustion Environments | Department of Energy Compact Gaseous Sensors with Internal Reference for Monitoring O2 and NOx in Combustion Environments Development of Compact Gaseous Sensors with Internal Reference for Monitoring O2 and NOx in Combustion Environments Compact sensors have been developed to allow for real-time monitoring of O2 and NOx during combustion. deer08_singh.pdf (396.99 KB) More Documents & Publications Compact Electrochemical Bi-functional

  18. Energy Department Selects Deactivation Contractor for Paducah Gaseous

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diffusion Plant | Department of Energy Deactivation Contractor for Paducah Gaseous Diffusion Plant Energy Department Selects Deactivation Contractor for Paducah Gaseous Diffusion Plant July 22, 2014 - 5:48pm Addthis News Media Contact Brad Mitzelfelt, (859) 219-4035, brad.mitzelfelt@lex.doe.gov LEXINGTON, Ky. - The U.S. Department of Energy (DOE) today awarded a Task Order under the Nationwide Environmental Management ID/IQ Unrestricted Contract to Fluor Federal Services, Inc. for

  19. DOE Awards Contract for Paducah Gaseous Diffusion Plant Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Support Services | Department of Energy Paducah Gaseous Diffusion Plant Infrastructure Support Services DOE Awards Contract for Paducah Gaseous Diffusion Plant Infrastructure Support Services June 17, 2015 - 5:45pm Addthis Media Contact: Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati -- The U.S. Department of Energy (DOE) today announced the award of a contract to Swift & Staley, Inc. of Kevil, Kentucky, for the performance of infrastructure support services at the

  20. DOE Awards Contract for Portsmouth Gaseous Diffusion Plant Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Support Services | Department of Energy Portsmouth Gaseous Diffusion Plant Infrastructure Support Services DOE Awards Contract for Portsmouth Gaseous Diffusion Plant Infrastructure Support Services January 15, 2016 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati -- The U.S. Department of Energy (DOE) today announced the award of a contract to Portsmouth Mission Alliance, LLC of Idaho Falls, Idaho, for the performance of infrastructure

  1. DOE Releases Request for Information for Paducah Gaseous Diffusion Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deactivation & Remediation Services | Department of Energy Paducah Gaseous Diffusion Plant Deactivation & Remediation Services DOE Releases Request for Information for Paducah Gaseous Diffusion Plant Deactivation & Remediation Services September 2, 2015 - 3:00pm Addthis Media Contact Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati -- The U.S. Department of Energy (DOE) today issued a Request for Information (RFI) seeking to solicit input via capability

  2. DOE Seeks Small Businesses for Portsmouth Gaseous Diffusion Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Support Services | Department of Energy Portsmouth Gaseous Diffusion Plant Infrastructure Support Services DOE Seeks Small Businesses for Portsmouth Gaseous Diffusion Plant Infrastructure Support Services July 2, 2014 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564, bill.taylor@srs.gov Cincinnati -- The U.S. Department of Energy (DOE) today issued a Draft Request for Proposal (RFP) seeking eligible small businesses under North American Industry Classification System

  3. Paducah Gaseous Diffusion Plant Final Environmental Assessment for

    Energy Savers [EERE]

    DOE Site Tours Nostalgic for Former Workers Paducah DOE Site Tours Nostalgic for Former Workers July 15, 2016 - 9:35am Addthis Eugene Waggoner poses for a portrait in the C-300 Central Control Building at the Paducah Gaseous Diffusion Plant. (Story and photo by Dylan Nichols, Fluor Paducah Deactivation Project.) Eugene Waggoner poses for a portrait in the C-300 Central Control Building at the Paducah Gaseous Diffusion Plant. (Story and photo by Dylan Nichols, Fluor Paducah Deactivation Project.)

  4. Testing and Certification of Gaseous Storage Tanks for Vehicles: The

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    European Commission (EC) Perspective | Department of Energy Testing and Certification of Gaseous Storage Tanks for Vehicles: The European Commission (EC) Perspective Testing and Certification of Gaseous Storage Tanks for Vehicles: The European Commission (EC) Perspective These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 - 29, 2010, in Beijing, China. ihfpv_moretto.pdf (1.17 MB) More Documents & Publications International Hydrogen

  5. DOE - Office of Legacy Management -- Portsmouth Gaseous Diffusion Plant -

    Office of Legacy Management (LM)

    026 Portsmouth Gaseous Diffusion Plant - 026 FUSRAP Considered Sites Site: Portsmouth Gaseous Diffusion Plant (026 ) More information at http://energy.gov/em Designated Name: Not Designated under FUSRAP Alternate Name: Portsmouth, OH, Site Location: Pike County, Ohio Evaluation Year: Not considered for FUSRAP - in another program Site Operations: Production of enriched uranium Site Disposition: Remediation in progress by DOE Office of Environmental Management. After the site is complete, it

  6. DOE Seeks Small Businesses for Paducah Gaseous Diffusion Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Support Services | Department of Energy Small Businesses for Paducah Gaseous Diffusion Plant Infrastructure Support Services DOE Seeks Small Businesses for Paducah Gaseous Diffusion Plant Infrastructure Support Services June 10, 2014 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati -- The U.S. Department of Energy (DOE) today issued a Draft Request for Proposal (RFP) seeking eligible small businesses under North American Industry

  7. Portsmouth Gaseous Diffusion Plant- Quadrant I Groundwater Investigative (5-Unit) Area Plume

    Broader source: Energy.gov [DOE]

    Groundwater Database Report - Portsmouth Gaseous Diffusion Plant - Quadrant I Groundwater Investigative (5-Unit) Area Plume

  8. Synthesis of high molecular weight PEO using non-metal initiators

    DOE Patents [OSTI]

    Yang, Jin; Sivanandan, Kulandaivelu; Pistorino, Jonathan; Eitouni, Hany Basam

    2015-05-19

    A new synthetic method to prepare high molecular weight poly(ethylene oxide) with a very narrow molecular weight distribution (PDI<1.5) is described. The method involves a metal free initiator system, thus avoiding dangerous, flammable organometallic compounds.

  9. Paducah Gaseous Diffusion Plant Northwest Plume interceptor system evaluation

    SciTech Connect (OSTI)

    Laase, A.D.; Clausen, J.L.

    1998-07-01

    The Paducah Gaseous Diffusion Plant (PGDP) recently installed an interceptor system consisting of four wells, evenly divided between two well fields, to contain the Northwest Plume. As stated in the Northwest Plume Record of Decision (ROD), groundwater will be pumped at a rate to reduce further contamination and initiate control of the northwest contaminant plume. The objective of this evaluation was to determine the optimum (minimal) well field pumping rates required for plume hotspot containment. Plume hotspot, as defined in the Northwest Plume ROD and throughout this report, is that portion of the plume with trichloroethene (TCE) concentrations greater than 1,000 {micro}g/L. An existing 3-dimensional groundwater model was modified and used to perform capture zone analyses of the north and south interceptor system well fields. Model results suggest that the plume hotspot is not contained at the system design pumping rate of 100 gallons per minute (gal/min) per well field. Rather, the modeling determined that north and south well field pumping rates of 400 and 150 gal/min, respectively, are necessary for plume hotspot containment. The difference between the design and optimal pumping rates required for containment can be attributed to the discovery of a highly transmissive zone in the vicinity of the two well fields.

  10. IAEA verification experiment at the Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Gordon, D.M.; Subudhi, M.; Calvert, O.L.; Bonner, T.N.; Adams, J.G.; Cherry, R.C.; Whiting, N.E.

    1998-08-01

    In April 1996, the United States (US) added the Portsmouth Gaseous Diffusion Plant to the list of facilities eligible for the application of International Atomic Energy Agency (IAEA) safeguards. At that time, the US proposed that the IAEA carry out a Verification Experiment at the plant with respect to the downblending of about 13 metric tons of highly enriched uranium (HEU) in the form of UF{sub 6}. This material is part of the 226 metric tons of fissile material that President Clinton has declared to be excess to US national-security needs and which will be permanently withdrawn from the US nuclear stockpile. In September 1997, the IAEA agreed to carry out this experiment, and during the first three weeks of December 1997, the IAEA verified the design information concerning the downblending process. The plant has been subject to short-notice random inspections since December 17, 1997. This paper provides an overview of the Verification Experiment, the monitoring technologies used in the verification approach, and some of the experience gained to date.

  11. Independent design review report for truck {number_sign}1 modifications for flammable gas tanks

    SciTech Connect (OSTI)

    Wilson, G.W.

    1997-05-09

    The East and West Tank Farm Standing Order 97-01 requires that the PMST be modified to include purging of the enclosed space underneath the shielded receiver weather cover per National Fire Protection Association (NFPA) 496, Purged and Pressurized Enclosures for Electrical Equipment. The Standing Order also requires that the PMST be modified by replacing the existing electrical remote latch (RLU) unit with a mechanical remote latch unit. As the mechanical remote latch unit was exactly like the RLU installed on the Rotary Mode Core Sampler Trucks (RMCST) and the design for the RMCST went through formal design review, replacing the RLU was done utilizing informal design verification and was completed per work package ES-97-0028. As the weather cover purge was similar to the design for the RMCSTS, this design was reviewed using the independent review method with multiple independent reviewers. A function design criteria (WHC-SD-WM-FDC-048, Functional Design Criteria for Core Sampling in Flammable Gas Watch List Tanks) provided the criteria for the modifications. The review consisted of distributing the design review package to the reviewers and collecting and dispositioning the RCR comments. The review package included the ECNs for review, the Design Compliance Matrix, copies of all drawings affected, and copies of outstanding ECNs against these drawings. A final meeting was held to ensure that all reviewers were aware of the changes to ECNs from incorporation of RCR comments.

  12. Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants

    SciTech Connect (OSTI)

    Manohar S. Sohal; J. Stephen Herring

    2008-07-01

    Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable

  13. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    DOE Patents [OSTI]

    Ghate, Madhav R.; Yang, Ralph T.

    1987-01-01

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon, zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high parity hydrogen from gaseous products of coal gasification and as an acid gas scrubber.

  14. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    DOE Patents [OSTI]

    Ghate, M.R.; Yang, R.T.

    1985-10-03

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high purity hydrogen from gaseous products of coal gasification and as an acid gas scrubber. 2 figs., 2 tabs.

  15. Laser acceleration of protons using multi-ion plasma gaseous targets

    SciTech Connect (OSTI)

    Liu, Tung -Chang; Shao, Xi; Liu, Chuan -Sheng; Eliasson, Bengt; W. T. Hill, III; Wang, Jyhpyng; Chen, Shih -Hung

    2015-02-01

    We present a theoretical and numerical study of a novel acceleration scheme by applying a combination of laser radiation pressure and shielded Coulomb repulsion in laser acceleration of protons in multi-species gaseous targets. By using a circularly polarized CO₂ laser pulse with a wavelength of 10 μm—much greater than that of a Ti: Sapphire laser—the critical density is significantly reduced, and a high-pressure gaseous target can be used to achieve an overdense plasma. This gives us a larger degree of freedom in selecting the target compounds or mixtures, as well as their density and thickness profiles. By impinging such a laser beam on a carbon–hydrogen target, the gaseous target is first compressed and accelerated by radiation pressure until the electron layer disrupts, after which the protons are further accelerated by the electron-shielded carbon ion layer. An 80 MeV quasi-monoenergetic proton beam can be generated using a half-sine shaped laser beam with a peak power of 70 TW and a pulse duration of 150 wave periods.

  16. Laser acceleration of protons using multi-ion plasma gaseous targets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Tung -Chang; Shao, Xi; Liu, Chuan -Sheng; Eliasson, Bengt; W. T. Hill, III; Wang, Jyhpyng; Chen, Shih -Hung

    2015-02-01

    We present a theoretical and numerical study of a novel acceleration scheme by applying a combination of laser radiation pressure and shielded Coulomb repulsion in laser acceleration of protons in multi-species gaseous targets. By using a circularly polarized CO₂ laser pulse with a wavelength of 10 μm—much greater than that of a Ti: Sapphire laser—the critical density is significantly reduced, and a high-pressure gaseous target can be used to achieve an overdense plasma. This gives us a larger degree of freedom in selecting the target compounds or mixtures, as well as their density and thickness profiles. By impinging such amore » laser beam on a carbon–hydrogen target, the gaseous target is first compressed and accelerated by radiation pressure until the electron layer disrupts, after which the protons are further accelerated by the electron-shielded carbon ion layer. An 80 MeV quasi-monoenergetic proton beam can be generated using a half-sine shaped laser beam with a peak power of 70 TW and a pulse duration of 150 wave periods.« less

  17. Extruder system and method for treatment of a gaseous medium

    DOE Patents [OSTI]

    Silvi, Norberto; Perry, Robert James; Singh, Surinder Prabhjot; Balch, Gary Stephen; Westendorf, Tiffany Elizabeth Pinard

    2016-04-05

    A system for treatment of a gaseous medium, comprises an extruder having a barrel. The extruder further comprises a first inlet port, a second inlet port, and a plurality of outlet ports coupled to the barrel. The first inlet port is configured for feeding a lean sorbent, the second inlet port is configured for feeding a gaseous medium, and the plurality of outlet ports are configured for releasing a plurality of components removed from the gaseous medium. Further, the extruder comprises a plurality of helical elements coupled to a plurality of kneading elements, mounted on a shaft, and disposed within the barrel. The barrel and the plurality of helical and kneading elements together form an absorption unit and a desorption unit. The first and second inlet ports are formed in the absorption unit and the plurality of outlet ports are formed in the absorption and desorption units.

  18. Process for removing carbonyl sulfide from gaseous streams

    SciTech Connect (OSTI)

    Tellis, C.

    1981-11-10

    This invention relates to a process for reducing the carbonyl sulfide content of a gaseous stream which has a concentration of carbonyl sulfide of from at least 1 to about 100 parts per million, by volume, which comprises providing an absorbent bed wherein the absorbent comprises zinc oxide and contains no more than 5%, by weight, of an oxide of an alkli or alkaline earth metal, and contacting said process stream with said adsorbent bed at a temperature of from about ambient to 250/sup 0/ C. For a period of time sufficient to remove at least 90% of the carbonyl sulfide content of said gaseous stream.

  19. MELTER OFF-GAS FLAMMABILITY ASSESSMENT FOR DWPF ALTERNATE REDUCTANT FLOWSHEET OPTIONS

    SciTech Connect (OSTI)

    Choi, A.

    2011-07-08

    Glycolic acid and sugar are being considered as potential candidates to substitute for much of the formic acid currently being added to the Defense Waste Processing Facility (DWPF) melter feed as a reductant. A series of small-scale melter tests were conducted at the Vitreous State Laboratory (VSL) in January 2011 to collect necessary data for the assessment of the impact of these alternate reductants on the melter off-gas flammability. The DM10 melter with a 0.021 m{sup 2} melt surface area was run with three different feeds which were prepared at SRNL based on; (1) the baseline formic/nitric acid flowsheet, (2) glycolic/formic/nitric acid flowsheet, and (3) sugar/formic/nitric acid flowsheet - these feeds will be called the baseline, glycolic, and sugar flowsheet feeds, respectively, hereafter. The actual addition of sugar to the sugar flowsheet feed was made at VSL before it was fed to the melter. For each feed, the DM10 was run under both bubbled (with argon) and non-bubbled conditions at varying melter vapor space temperatures. The goal was to lower its vapor space temperature from nominal 500 C to less than 300 C at 50 C increments and maintain steady state at each temperature at least for one hour, preferentially for two hours, while collecting off-gas data including CO, CO{sub 2}, and H{sub 2} concentrations. Just a few hours into the first test with the baseline feed, it was discovered that the DM10 vapor space temperature would not readily fall below 350 C simply by ramping up the feed rate as the test plan called for. To overcome this, ambient air was introduced directly into the vapor space through a dilution air damper in addition to the natural air inleakage occurring at the operating melter pressure of -1 inch H{sub 2}O. A detailed description of the DM10 run along with all the data taken is given in the report issued by VSL. The SRNL personnel have analyzed the DM10 data and identified 25 steady state periods lasting from 32 to 92 minutes for all

  20. Integration of the Uncertainties of Anion and TOC Measurements into the Flammability Control Strategy for Sludge Batch 8 at the DWPF

    SciTech Connect (OSTI)

    Edwards, T. B.

    2013-03-14

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of a flammability control strategy for DWPFs melter operation during the processing of Sludge Batch 8 (SB8). SRNLs support has been in response to technical task requests that have been made by SRRs Waste Solidification Engineering (WSE) organization. The flammability control strategy relies on measurements that are performed on Slurry Mix Evaporator (SME) samples by the DWPF Laboratory. Measurements of nitrate, oxalate, formate, and total organic carbon (TOC) standards generated by the DWPF Laboratory are presented in this report, and an evaluation of the uncertainties of these measurements is provided. The impact of the uncertainties of these measurements on DWPFs strategy for controlling melter flammability also is evaluated. The strategy includes monitoring each SME batch for its nitrate content and its TOC content relative to the nitrate content and relative to the antifoam additions made during the preparation of the SME batch. A linearized approach for monitoring the relationship between TOC and nitrate is developed, equations are provided that integrate the measurement uncertainties into the flammability control strategy, and sample calculations for these equations are shown to illustrate the impact of the uncertainties on the flammability control strategy.

  1. Methods for deacidizing gaseous mixtures by phase enhanced absorption

    DOE Patents [OSTI]

    Hu, Liang

    2012-11-27

    An improved process for deacidizing a gaseous mixture using phase enhanced gas-liquid absorption is described. The process utilizes a multiphasic absorbent that absorbs an acid gas at increased rate and leads to reduced overall energy costs for the deacidizing operation.

  2. Atmospheric escape by magnetically driven wind from gaseous planets

    SciTech Connect (OSTI)

    Tanaka, Yuki A.; Suzuki, Takeru K.; Inutsuka, Shu-ichiro

    2014-09-01

    We calculate the mass loss driven by magnetohydrodynamic (MHD) waves from hot Jupiters by using MHD simulations in one-dimensional flux tubes. If a gaseous planet has a magnetic field, MHD waves are excited by turbulence at the surface, dissipate in the upper atmosphere, and drive gas outflows. Our calculation shows that mass-loss rates are comparable to the observed mass-loss rates of hot Jupiters; therefore, it is suggested that gas flow driven by MHD waves can play an important role in the mass loss from gaseous planets. The mass-loss rate varies dramatically with the radius and mass of a planet: a gaseous planet with a small mass but an inflated radius produces a very large mass-loss rate. We also derive an analytical expression for the dependence of mass-loss rate on planet radius and mass that is in good agreement with the numerical calculation. The mass-loss rate also depends on the amplitude of the velocity dispersion at the surface of a planet. Thus, we expect to infer the condition of the surface and the internal structure of a gaseous planet from future observations of mass-loss rate from various exoplanets.

  3. STAR FORMATION IN THE EXTENDED GASEOUS DISK OF THE ISOLATED GALAXY CIG 96

    SciTech Connect (OSTI)

    Espada, D.; Sabater, J.; Verdes-Montenegro, L.; Sulentic, J.; Munoz-Mateos, J. C.; Gil de Paz, A.; Verley, S.; Leon, S.

    2011-07-20

    We study the Kennicutt-Schmidt star formation law and efficiency in the gaseous disk of the isolated galaxy CIG 96 (NGC 864), with special emphasis on its unusually large atomic gas (H I) disk (r{sub Hmathsci}/r{sub 25} = 3.5, r{sub 25} = 1.'85). We present deep Galaxy Evolution Explorer near- and far-UV observations, used as a recent star formation tracer, and we compare them with new, high-resolution (16''or 1.6 kpc) Very Large Array H I observations. The UV and H I maps show good spatial correlation outside the inner 1', where the H I phase dominates over H{sub 2}. Star-forming regions in the extended gaseous disk are mainly located along the enhanced H I emission within two (relatively) symmetric, giant gaseous spiral arm-like features, which emulate an H I pseudo-ring at r {approx_equal} 3'. Inside this structure, two smaller gaseous spiral arms extend from the northeast and southwest of the optical disk and connect to the previously mentioned H I pseudo-ring. Interestingly, we find that the (atomic) Kennicutt-Schmidt power-law index systematically decreases with radius, from N {approx_equal} 3.0 {+-} 0.3 in the inner disk (0.'8-1.'7) to N = 1.6 {+-} 0.5 in the outskirts of the gaseous disk (3.'3-4.'2). Although the star formation efficiency (SFE), the star formation rate per unit of gas, decreases with radius where the H I component dominates as is common in galaxies, we find that there is a break of the correlation at r = 1.5r{sub 25}. At radii 1.5r{sub 25} < r < 3.5r{sub 25}, mostly within the H I pseudo-ring structure, regions exist whose SFE remains nearly constant, SFE {approx_equal} 10{sup -11} yr{sup -1}. We discuss possible mechanisms that might be triggering the star formation in the outskirts of this galaxy, and we suggest that the constant SFE for such large radii (r > 2r{sub 25}) and at such low surface densities might be a common characteristic in extended UV disk galaxies.

  4. Stellar and gaseous nuclear disks observed in nearby (U)LIRGs...

    Office of Scientific and Technical Information (OSTI)

    Stellar and gaseous nuclear disks observed in nearby (U)LIRGs Citation Details In-Document Search Title: Stellar and gaseous nuclear disks observed in nearby (U)LIRGs We present ...

  5. Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant | Department of Energy Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant Full Document and Summary Versions are available for download Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant (436.49 KB) Summary - Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant (47.06 KB) More Documents & Publications Briefing: DOE EM ITR Landfill

  6. NOVEL TECHNOLOGIES FOR GASEOUS CONTAMINANTS CONTROL

    SciTech Connect (OSTI)

    B.S. Turk; T. Merkel; A. Lopez-Ortiz; R.P. Gupta; J.W. Portzer; G.N. Krishnan; B.D. Freeman; G.K. Fleming

    2001-09-30

    The overall objective of this project is to develop technologies for cleaning/conditioning the syngas from an integrated gasification combined cycle (IGCC) system to meet the tolerance limits for contaminants such as H{sub 2}S, COS, NH{sub 3}, HCN, HCl, and alkali for fuel cell and chemical production applications. RTI's approach is to develop a modular system that (1) removes reduced sulfur species to sub-ppm levels using a hybrid process consisting of a polymer membrane and a regenerable ZnO-coated monolith or a mixed metal oxide sorbent; (2) removes hydrogen chloride vapors to sub-ppm levels using an inexpensive, high-surface area material; and (3) removes NH{sub 3} with acidic adsorbents. RTI is working with MEDAL, Inc., and North Carolina State University (NCSU) to develop polymer membrane technology for bulk removal of H{sub 2}S from syngas. These membranes are being engineered to remove the acid gas components (H{sub 2}S, CO{sub 2}, NH{sub 3}, and H{sub 2}O) from syngas by focusing on the ''solubility selectivity'' of the novel polymer compositions. The desirable components of the syngas (H{sub 2} and CO) are maintained at high-pressure conditions as a non-permeate stream while the impurities are transported across the membrane to the low pressure side. RTI tested commercially available and novel materials from MEDAL using a high-temperature, high-pressure (HTHP) permeation apparatus. H{sub 2}S/H{sub 2} selectivities >30 were achieved, although there was a strong negative dependence with temperature. MEDAL believes that all the polymer compositions tested so far can be prepared as hollow fiber membrane modules using the existing manufacturing technology. For fuel cell and chemical applications, additional sulfur removal (beyond that achievable with the membranes) is required. To overcome limitations of conventional ZnO pellets, RTI is testing a monolith with a thin coating of high surface area zinc-oxide based materials. Alternatively, a regenerable sorbent

  7. A safety equipment list for rotary mode core sampling systems operation in single shell flammable gas tanks

    SciTech Connect (OSTI)

    SMALLEY, J.L.

    1999-05-18

    This document identifies all interim safety equipment to be used for rotary mode core sampling of single-shell flammable gas tanks utilizing Rotary Mode Core Sampling systems (RMCS). This document provides the safety equipment for RMCS trucks HO-68K-4600, HO-68K-4647, trucks three and four respectively, and associated equipment. It is not intended to replace or supersede WHC-SD-WM-SEL-023, (Kelly 1991), or WHC-SD-WM-SEL-032, (Corbett 1994), which classifies 80-68K-4344 and HO-68K-4345 respectively. The term ''safety equipment'' refers to safety class (SC) and safety significant (SS) equipment, where equipment refers to structures, systems and components (SSC's). The identification of safety equipment in this document is based on the credited design safety features and analysis contained in the Authorization Basis (AB) for rotary mode core sampling operations in single-shell flammable gas tanks. This is an interim safety classification since the AB is interim. This document will be updated to reflect the final RMCS equipment safety classification designations upon completion of a final AB which will be implemented with the release of the Final Safety Analysis Report (FSAR).

  8. Gaseous Sulfate Solubility in Glass: Experimental Method

    SciTech Connect (OSTI)

    Bliss, Mary

    2013-11-30

    Sulfate solubility in glass is a key parameter in many commercial glasses and nuclear waste glasses. This report summarizes key publications specific to sulfate solubility experimental methods and the underlying physical chemistry calculations. The published methods and experimental data are used to verify the calculations in this report and are expanded to a range of current technical interest. The calculations and experimental methods described in this report will guide several experiments on sulfate solubility and saturation for the Hanford Waste Treatment Plant Enhanced Waste Glass Models effort. There are several tables of sulfate gas equilibrium values at high temperature to guide experimental gas mixing and to achieve desired SO3 levels. This report also describes the necessary equipment and best practices to perform sulfate saturation experiments for molten glasses. Results and findings will be published when experimental work is finished and this report is validated from the data obtained.

  9. Paducah Gaseous Diffusion Plant environmental report for 1992

    SciTech Connect (OSTI)

    Horak, C.M.

    1993-09-01

    This two-part report, Paducah Gaseous Diffusion Plant Environmental Report for 1992, is published annually. It reflects the results of an environmental monitoring program designed to quantify potential increases in the concentration of contaminants and potential doses to the resident human population. The Paducah Gaseous Diffusion Plant (PGDP) overall goal for environmental management is to protect the environment and PGDP`s neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, reduce the generation of waste, and minimize hazardous waste by substitution of materials.

  10. Paducah Gaseous Diffusion Plant Environmental report for 1990

    SciTech Connect (OSTI)

    Counce-Brown, D.

    1991-09-01

    This two-part report, Paducah Gaseous Diffusion Plant Site Environmental Report for 1990, is published annually. It reflects the results of a comprehensive, year-round program to monitor the impact of operations at Paducah Gaseous Diffusion Plant (PGDP) on the area's groundwater and surface waters, soil, air quality, vegetation, and wildlife. In addition, an assessment of the effect of PGDP effluents on the resident human population is made. PGDP's overall goal for environmental management is to protect the environment and PGDP's neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, to reduce the formation of waste, and to minimize hazardous waste by substitution of materials.

  11. Paducah Gaseous Diffusion Plant Annual Site Environmental Report for 1993

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The purpose of this document is to summarize effluent monitoring and environmental surveillance results and compliance with environmental laws, regulations, and orders at the Paducah Gaseous Diffusion Plant (PGDP). Environmental monitoring at PGDP consists of two major activities: effluent monitoring and environmental surveillance. Effluent monitoring is direct measurement or the collection and analysis of samples of liquid and gaseous discharges to the environment. Environmental surveillance is direct measurement or the collection and analysis of samples of air, water, soil, foodstuff, biota, and other media. Environmental monitoring is performed to characterize and quantify contaminants, assess radiation exposures of members of the public, demonstrate compliance with applicable standards and permit requirements, and detect and assess the effects (if any) on the local environment. Multiple samples are collected throughout the year and are analyzed for radioactivity, chemical content, and various physical attributes.

  12. Method of producing gaseous products using a downflow reactor

    DOE Patents [OSTI]

    Cortright, Randy D; Rozmiarek, Robert T; Hornemann, Charles C

    2014-09-16

    Reactor systems and methods are provided for the catalytic conversion of liquid feedstocks to synthesis gases and other noncondensable gaseous products. The reactor systems include a heat exchange reactor configured to allow the liquid feedstock and gas product to flow concurrently in a downflow direction. The reactor systems and methods are particularly useful for producing hydrogen and light hydrocarbons from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. The generated gases may find used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be collected for later use or distribution.

  13. Method and apparatus for analyzing particle-containing gaseous suspensions

    DOE Patents [OSTI]

    Solomon, Peter R.; Carangelo, Robert M.; Best, Philip E.

    1987-01-01

    The method and apparatus permit analyses, by optical means, of properties of gaseous suspensions of particles, by measuring radiation that is emitted, transmitted or scattered by the particles. Determinations of composition, size, temperature and spectral emittance can be performed either in-situ or by sampling, and Fourier-transform infrared spectrometric techniques are most effectively used. Apparatus specifically adapted for performing radiation scattering analyses, and for collecting radiation from different sources, are provided.

  14. Method and apparatus for analyzing particle-containing gaseous suspensions

    DOE Patents [OSTI]

    Solomon, P.R.; Carangelo, R.M.; Best, P.E.

    1987-03-24

    The method and apparatus permit analyses, by optical means, of properties of gaseous suspensions of particles, by measuring radiation that is emitted, transmitted or scattered by the particles. Determinations of composition, size, temperature and spectral emittance can be performed either in-situ or by sampling, and Fourier-transform infrared spectrometric techniques are most effectively used. Apparatus specifically adapted for performing radiation scattering analyses, and for collecting radiation from different sources, are provided. 51 figs.

  15. Process and composition for drying of gaseous hydrogen halides

    DOE Patents [OSTI]

    Tom, Glenn M.; Brown, Duncan W.

    1989-08-01

    A process for drying a gaseous hydrogen halide of the formula HX, wherein X is selected from the group consisting of bromine, chlorine, fluorine, and iodine, to remove water impurity therefrom, comprising: contacting the water impurity-containing gaseous hydrogen halide with a scavenger including a support having associated therewith one or more members of the group consisting of: (a) an active scavenging moiety selected from one or more members of the group consisting of: (i) metal halide compounds dispersed in the support, of the formula MX.sub.y ; and (ii) metal halide pendant functional groups of the formula -MX.sub.y-1 covalently bonded to the support, wherein M is a y-valent metal, and y is an integer whose value is from 1 to 3; (b) corresponding partially or fully alkylated compounds and/or pendant functional groups, of the metal halide compounds and/or pendant functional groups of (a); wherein the alkylated compounds and/or pendant functional groups, when present, are reactive with the gaseous hydrogen halide to form the corresponding halide compounds and/or pendant functional groups of (a); and M being selected such that the heat of formation, .DELTA.H.sub.f of its hydrated halide, MX.sub.y.(H.sub.2 O).sub.n, is governed by the relationship: .DELTA.H.sub.f .gtoreq.n.times.10.1 kilocalories/mole of such hydrated halide compound wherein n is the number of water molecules bound to the metal halide in the metal halide hydrate. Also disclosed is an appertaining scavenger composition and a contacting apparatus wherein the scavenger is deployed in a bed for contacting with the water impurity-containing gaseous hydrogen halide.

  16. Federal Facility Agreement for the Paducah Gaseous Diffusion Plant Summary

    Office of Environmental Management (EM)

    Federal Facility Agreement for the Paducah Gaseous Diffusion Plant State Kentucky Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA/RCRA Scope Summary Ensure that the environmental impacts of activities at the Site are investigated and appropriate response actions are taken. Parties U.S. DOE; Kentucky Natural Resources and Environmental Protection Cabinet; U.S. EPA Date 2/01/1998 SCOPE * Ensure all releases of hazardous substances, pollutants, or contaminants are addressed to

  17. Self-scrubbing removal of submicron particles from gaseous effluents

    SciTech Connect (OSTI)

    Lyon, R.K.

    1993-07-06

    A method is described for removal of submicron particles from gaseous effluents which contain sulfur dioxide among other substances, comprising the steps of: injecting liquid water droplets into a gaseous effluent containing submicron particles, said effluent being at a temperature higher than the bulk water dew point, said injection step cooling the effluent to approximately the bulk dew point of water and causing at least some but less than all of the water to evaporate; delaying the injection of any further substances into the effluent until the effluent and the injected water reach a substantially uniform temperature at approximately the bulk water dew point; following said delay, injecting gaseous ammonia into the resulting mixture of effluent and water in order to cause ammonium sulfite on said submicron particles, thus increasing the size of said particles, and also such as to cause water to condense onto the ammonium sulfite-coated particles, thus further increasing the size of said particles; and separating at least some of the resultant enlarged particles from the effluent.

  18. Gas phase decontamination of gaseous diffusion process equipment

    SciTech Connect (OSTI)

    Bundy, R.D.; Munday, E.B.; Simmons, D.W.; Neiswander, D.W.

    1994-03-01

    D&D of the process facilities at the gaseous diffusion plants (GDPs) will be an enormous task. The EBASCO estimate places the cost of D&D of the GDP at the K-25 Site at approximately $7.5 billion. Of this sum, nearly $4 billion is associated with the construction and operation of decontamination facilities and the dismantlement and transport of contaminated process equipment to these facilities. In situ long-term low-temperature (LTLT) gas phase decontamination is being developed and demonstrated at the K-25 site as a technology that has the potential to substantially lower these costs while reducing criticality and safeguards concerns and worker exposure to hazardous and radioactive materials. The objective of gas phase decontamination is to employ a gaseous reagent to fluorinate nonvolatile uranium deposits to form volatile LJF6, which can be recovered by chemical trapping or freezing. The LTLT process permits the decontamination of the inside of gas-tight GDP process equipment at room temperature by substituting a long exposure to subatmospheric C1F for higher reaction rates at higher temperatures. This paper outlines the concept for applying LTLT gas phase decontamination, reports encouraging laboratory experiments, and presents the status of the design of a prototype mobile system. Plans for demonstrating the LTLT process on full-size gaseous diffusion equipment are also outlined briefly.

  19. Flammable Gas Safety Program: Mechanisms of gas generation from simulated SY Tank Farm wastes. Progress report, FY 1994

    SciTech Connect (OSTI)

    Barefield, E.K.; Boadtright, D.; Deshpande, A.; Doctorovich, F.; Liotta, C.L.; Neumann, H.M.; Seymore, S.

    1995-09-01

    This is the final report for work done at Georgia Tech during Fiscal Year 1994. The objectives of this work were to develop a better understanding of the mechanism of formation of flammable gases in the thermal decomposition of metal complexants, such as HEDTA and sodium glycolate, in simulated SY waste mixtures. This project is a continuation of work begun under earlier contracts with Westinghouse Hanford Co. Three major areas are discussed: development of a reliable analysis for dissolved ammonia, the initiation of long term studies of HEDTA decomposition in stainless steel vessels and product analyses through 3800 h, and further consideration of product analyses and kinetic data reported in FY 1993 for decomposition of HEDTA and sodium glycolate in Teflon-lined glass vessels. A brief exploration was also made of the speciation of aluminum(l1l) in the presence of HEDTA as a function of pH using {sup 27}Al NMR.

  20. Evaluation of mitigation strategies in Facility Group 1 double-shell flammable-gas tanks at the Hanford Site

    SciTech Connect (OSTI)

    Unal, C.; Sadasivan, P.; Kubic, W.L.; White, J.R.

    1997-11-01

    Radioactive nuclear waste at the Hanford Site is stored in underground waste storage tanks at the site. The tanks fall into two main categories: single-shell tanks (SSTs) and double-shell tanks (DSTs). There are a total of 149 SSTs and 28 DSTs. The wastes stored in the tanks are chemically complex. They basically involve various sodium salts (mainly nitrite, nitrate, carbonates, aluminates, and hydroxides), organic compounds, heavy metals, and various radionuclides, including cesium, strontium, plutonium, and uranium. The waste is known to generate flammable gas (FG) [hydrogen, ammonia, nitrous oxide, hydrocarbons] by complex chemical reactions. The process of gas generation, retention, and release is transient. Some tanks reach a quasi-steady stage where gas generation is balanced by the release rate. Other tanks show continuous cycles of retention followed by episodic release. There currently are 25 tanks on the Flammable Gas Watch List (FGWL). The objective of this report is to evaluate possible mitigation strategies to eliminate the FG hazard. The evaluation is an engineering study of mitigation concepts for FG generation, retention, and release behavior in Tanks SY-101, AN-103, AN 104, An-105, and Aw-101. Where possible, limited quantification of the effects of mitigation strategies on the FG hazard also is considered. The results obtained from quantification efforts discussed in this report should be considered as best-estimate values. Results and conclusions of this work are intended to help in establishing methodologies in the contractor`s controls selection analysis to develop necessary safety controls for closing the FG unreviewed safety question. The general performance requirements of any mitigation scheme are discussed first.

  1. The Blend Down Monitoring System Demonstration at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Benton, J.; Close, D.; Johnson, W., Jr.; Kerr, P.; March-Leuba, J.; Mastal, E.; Moss, C.; Powell, D.; Sumner, J.; Uckan, T.; Vines, R.; Wright, P.D.

    1999-07-25

    Agreements between the governments of the US and the Russian Federation for the US purchase of low enriched uranium (LEU) derived from highly enriched uranium (HEU) from dismantled Russian nuclear weapons calls for the establishment of transparency measures to provide confidence that nuclear nonproliferation goals are being met. To meet these transparency goals, the agreements call for the installation of nonintrusive US instruments to monitor the down blending of HEU to LEU. The Blend Down Monitoring System (BDMS) has been jointly developed by the Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) to continuously monitor {sup 235}U enrichments and mass flow rates at Russian blending facilities. Prior to its installation in Russian facilities, the BDMS was installed and operated in a UF{sub 6} flow loop in the Paducah Gaseous Diffusion Plant simulating flow and enrichment conditions expected in a typical down-blending facility. A Russian delegation to the US witnessed the equipment demonstration in June, 1998. To conduct the demonstration in the Paducah Gaseous Diffusion Plant (PGDP), the BDMS was required to meet stringent Nuclear Regulatory Commission licensing, safety and operational requirements. The Paducah demonstration was an important milestone in achieving the operational certification for the BDMS use in Russian facilities.

  2. Portsmouth Gaseous Diffusion Plant Environmental report for 1990

    SciTech Connect (OSTI)

    Counce-Brown, D.

    1991-09-01

    This calendar year 1990 annual report on environmental surveillance of the US Department of Energy's (DOE's) Portsmouth Gaseous Diffusion Plant (PORTS) and its environs consists of two parts: the summary, discussion, and conclusions (Part 1) and the data presentation (Part 2). The objectives of this report are as follows: report 1990 monitoring data for the installation and its environs that may have been affected by operations on the plant site, provide reasonably detailed information about the plant site and plant operations, provide detailed information on input and assumptions used in all calculations, provide trend analyses (when appropriate) to indicate increases and decreases in environmental impact, and provide general information on plant quality assurance.

  3. DOE Issues Final Request for Proposal for Paducah Gaseous Diffusion Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Support Services | Department of Energy Paducah Gaseous Diffusion Plant Support Services DOE Issues Final Request for Proposal for Paducah Gaseous Diffusion Plant Support Services October 6, 2014 - 4:13pm Addthis Media Contact Bill Taylor, 803-952-8564, bill.taylor@srs.gov Cincinnati -- The U.S. Department of Energy (DOE) today issued a Final Request for Proposal (RFP), for the performance of infrastructure support services at the Paducah Gaseous Diffusion Plant (PGDP), Paducah, Kentucky. A

  4. DOE - Office of Legacy Management -- Oak Ridge Gaseous Diffusion Plant - TN

    Office of Legacy Management (LM)

    02 Oak Ridge Gaseous Diffusion Plant - TN 02 FUSRAP Considered Sites Site: Oak Ridge Gaseous Diffusion Plant (TN.02 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see http://www.mbe.doe.gov/me70/manhattan/come_through.htm Documents Related to Oak Ridge Gaseous Diffusion Plant

  5. Characterization of the Installed Costs of Prime Movers Using Gaseous Opportunity Fuels, September 2007

    Broader source: Energy.gov [DOE]

    A report addendum and final white paper for the Characterization of the Installed Costs of Prime Movers Using Gaseous Opportunity Fuels

  6. Voluntary Protection Program Onsite Review, Infrastructure Support Contract Paducah Gaseous Diffusion Plant- May 2013

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Infrastructure Support Contract Paducah Gaseous Diffusion Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  7. EA-1856: Conveyance of Real Property at the Portsmouth Gaseous Diffusion Plant in Pike County, Ohio

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of conveyance of land and facilities at the Portsmouth Gaseous Diffusion Plant, in Piketon, Ohio, for economic development purposes.

  8. Voluntary Protection Program Onsite Review, Infrastructure Support Contract Paducah Gaseous Diffusion Plant- March 2012

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Infrastructure Support Contract Paducah Gaseous Diffusion Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  9. Regenerable sorbent and method for removing hydrogen sulfide from hot gaseous mixtures

    DOE Patents [OSTI]

    Farrior, Jr., William L. (Morgantown, WV)

    1978-01-01

    Hydrogen sulfide is effectively removed from hot gaseous mixtures useful for industrial purposes by employing a solid absorbent consisting of silica-supported iron oxide in pellet form.

  10. EA-1927: Conveyance of Land and Facilities at the Paducah Gaseous...

    Broader source: Energy.gov (indexed) [DOE]

    Draft EA for potential land and facilities transfers at the Paducah Gaseous Diffusion Plant in McCracken County, Kentucky. OPPORTUNITES FOR PUBLIC COMMENT No public comment...

  11. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOE Patents [OSTI]

    Heffel, James W.; Scott, Paul B.; Park, Chan Seung

    2011-11-01

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  12. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOE Patents [OSTI]

    Heffel, James W.; Scott, Paul B.

    2003-09-02

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  13. Three-electrode low pressure discharge apparatus and method for uniform ionization of gaseous media

    DOE Patents [OSTI]

    McLellan, Edward J.

    1983-01-01

    Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode (1) and cathode (2) to below breakdown voltage using a dc voltage source (3). An array of resistors (4) or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit (5) producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO.sub.2 laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.

  14. Paducah Gaseous Diffusion Plant environmental report for 1989

    SciTech Connect (OSTI)

    Turner, J.W. )

    1990-10-01

    This two-part environmental report is published annually. It reflects the results of a comprehensive, year-round program to monitor the impact of operations at Paducah Gaseous Diffusion Plant (PGDP) on the area's groundwater and surface waters, soil, air quality, vegetation, and wildlife. In addition, an assessment of the effect of PGDP effluents on the resident human population is made. PGDP's overall goal for environmental management is to protect the environment and PGDP's neighbors and to maintain full compliance with all current regulations. The current environmental strategy is to identify any deficiencies and to develop a system to resolve them. The long-range goal of environmental management is to minimize the source of pollutants, to reduce the formation of waste, and to minimize hazardous waste by substitution of materials. 36 refs.

  15. Seismic issues at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Fricke, K.E. )

    1989-11-01

    A seismic expert workshop was held at the Paducah Gaseous Diffusion Plant (PGDP) on March 13--15, 1989. the PGDP is operated by Martin Marietta Energy Systems, Inc. for the United States Department of Energy (DOE). During the last twenty years the design criteria for natural phenomenon hazards has steadily become more demanding at all of the DOE Oak Ridge Operations (ORO) sites. The purpose of the two-day workshop was to review the seismic vulnerability issues of the PGDP facilities. Participants to the workshop included recognized experts in the fields of seismic engineering, seismology and geosciences, and probabilistic analysis, along with engineers and other personnel from Energy Systems. A complete list of the workshop participants is included in the front of this report. 29 refs.

  16. Portsmouth Gaseous Diffusion Plant annual site environmental report for 1993

    SciTech Connect (OSTI)

    Horak, C.M.

    1994-11-01

    This calendar year (CY) 1993 annual report on environmental monitoring of the US Department of Energy`s (DOE`s) Portsmouth Gaseous Diffusion Plant (Portsmouth) and its environs consists of three separate documents: a summary pamphlet for the general public; a more detail discussion and of compliance status, data, and environmental impacts (this document); and a volume of detailed data that is available on request. The objectives of this report are to report compliance status during 1993; provide information about the plant site and plant operations; report 1993 monitoring data for the installation and its environs that may have been affected by operations on the plant site; document information on input and assumptions used in calculations; provide trend analyses (where appropriate) to indicate increases and decreases in environmental impact, and provide general information on quality assurance for the environmental monitoring program.

  17. Structure of the NiFe2O4(001) surface in contact with gaseous...

    Office of Scientific and Technical Information (OSTI)

    Structure of the NiFe2O4(001) surface in contact with gaseous O2 and water vapor Citation ... Title: Structure of the NiFe2O4(001) surface in contact with gaseous O2 and water vapor ...

  18. Effects of radiation and compression on propagating spherical flames of methane/air mixtures near the lean flammability limit

    SciTech Connect (OSTI)

    Chen, Zheng [State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2010-12-15

    Large discrepancies between the laminar flame speeds and Markstein lengths measured in experiments and those predicted by simulations for ultra-lean methane/air mixtures bring a great concern for kinetic mechanism validation. In order to quantitatively explain these discrepancies, a computational study is performed for propagating spherical flames of lean methane/air mixtures in different spherical chambers using different radiation models. The emphasis is focused on the effects of radiation and compression. It is found that the spherical flame propagation speed is greatly reduced by the coupling between thermal effect (change of flame temperature or unburned gas temperature) and flow effect (inward flow of burned gas) induced by radiation and/or compression. As a result, for methane/air mixtures near the lean flammability limit, the radiation and compression cause large amounts of under-prediction of the laminar flame speeds and Markstein lengths extracted from propagating spherical flames. Since radiation and compression both exist in the experiments on ultra-lean methane/air mixtures reported in the literature, the measured laminar flame speeds and Markstein lengths are much lower than results from simulation and thus cannot be used for kinetic mechanism validation. (author)

  19. Guidelines for Transportation, Handling, and Use of Fast Pyrolysis Bio-Oil. Part 1. Flammability and Toxicity

    SciTech Connect (OSTI)

    Oasmaa, Anja; Kalli, Anssi; Lindfors, Christian; Elliott, Douglas C.; Springer, David L.; Peacocke, Cordner; Chiaramonti, David

    2012-05-04

    An alternative sustainable fuel, biomass-derived fast pyrolysis oil or 'bio-oil', is coming into the market. Fast pyrolysis pilot and demonstration plants for fuel applications producing tonnes of bio-oil are in operation, and commercial plants are under design. There will be increasingly larger amounts of bio-oil transportation on water and by land, leading to a need for specifications and supporting documentation. Bio-oil is different from conventional liquid fuels, and therefore must overcome both technical and marketing hurdles for its acceptability in the fuels market. A comprehensive Material Safety Data Sheet (MSDS) is required, backed with independent testing and certification. In order to standardise bio-oil quality specifications are needed. The first bio-oil burner fuel standard in ASTM (D7544) was approved in 2009. CEN standardisation has been initiated in Europe. In the EU a new chemical regulation system, REACH (Registration, Evaluation and Authorisation of Chemicals) is being applied. Registration under REACH has to be made if bio-oil is produced or imported to the EU. In the USA and Canada, bio-oil has to be filed under TOSCA (US Toxic Substances Control Act). In this paper the state of the art on standardisation is discussed, and new data for the transportation guidelines is presented. The focus is on flammability and toxicity.

  20. Selective Gaseous Extraction: Research, Development and Training for Isotope Production, Final Technical Report

    SciTech Connect (OSTI)

    Bertch, Timothy C,

    2014-03-31

    General Atomics and the University of Missouri Research Reactor (MURR) completed research and development of selective gaseous extraction of fission products from irradiated fuel, which included training and education of MURR students. The process used porous fuel and after irradiation flowed product gases through the fuel to selectively removed desired fission products with the primary goal of demonstrating the removal of rhodium 105. High removal rates for the ruthenium/rhodium (Ru/Rh), tellurium/iodine (Te/I) and molybdenum/technetium (Mo/Tc) series were demonstrated. The success of this research provides for the reuse of the target for further production, significantly reducing the production of actinide wastes relative to processes that dissolve the target. This effort was conducted under DOE funding (DE-SC0007772). General Atomics objective of the project was to conduct R&D on alternative methods to produce a number of radioactive isotopes currently needed for medical and industry applications to include rhodium-105 and other useful isotopes. Selective gaseous extraction was shown to be effective at removing radioisotopes of the ruthenium/rhodium, tellurium/iodine and molybdenum/technetium decay chains while having trace to no quantities of other fission products or actinides. This adds a new, credible method to the area of certain commercial isotope production beyond current techniques, while providing significant potential reduction of process wastes. Waste reduction, along with reduced processing time/cost provides for superior economic feasibility which may allow domestic production under full cost recovery practices. This provides the potential for improved access to domestically produced isotopes for medical diagnostics and treatment at reduced cost, providing for the public good.

  1. Engine gaseous, aerosol precursor and particulate at simulated flight altitude conditions. Technical memo

    SciTech Connect (OSTI)

    Wey, C.C.

    1998-10-01

    The overall objective of the NASA Atmospheric Effects of Aviation Project (AEAP) is to develop scientific bases for assessing atmospheric impacts of the exhaust emissions by both current and future fleets of subsonic and supersonic aircraft. Among the six primary elements of the AEAP is Emissions Characterization. The objective of the Emission Characterization effort is to determine the exhaust emission constituents and concentrations at the engine exit plane. The specific objective of this engine test is to obtain a database of gaseous and particulate emissions as a function of fuel sulfur and engine operating conditions. The database of the particulate emission properties is to be used as a comparative baseline with subsequent flight measurement. The engine used in this test was a Pratt and Whitney F100-200E turbofan engine. Aviation fuel (Jet A) with a range of fuel sulfur was used. Low and high sulfur values are limited by commercially available fuels and by fuel specification limits of 0.3% by weight. Test matrix was set by parametrically varying the combustor inlet temperature (T3) between idle and maximum power setting at simulated SLS and up to five other altitudes for each fuel. Four diagnostic systems, extractive and non-intrusive, were assembled for the gaseous and particulate emissions characterization measurements study. NASA extractive system includes smoke meter and analyzers for measurement of CO, CO{sub 2}, NO, NOx, O{sub 2}, total unburnt hydrocarbons (THC), and SO{sub 2}. Particulate emissions were characterized by University of Missouri-Rolla Mobile Aerosol Sampling System.

  2. Application of Gaseous Sphere Injection Method for Modeling Under-expanded H2 Injection

    SciTech Connect (OSTI)

    Whitesides, R; Hessel, R P; Flowers, D L; Aceves, S M

    2010-12-03

    A methodology for modeling gaseous injection has been refined and applied to recent experimental data from the literature. This approach uses a discrete phase analogy to handle gaseous injection, allowing for addition of gaseous injection to a CFD grid without needing to resolve the injector nozzle. This paper focuses on model testing to provide the basis for simulation of hydrogen direct injected internal combustion engines. The model has been updated to be more applicable to full engine simulations, and shows good agreement with experiments for jet penetration and time-dependent axial mass fraction, while available radial mass fraction data is less well predicted.

  3. Nuclear criticality safety aspects of gaseous uranium hexafluoride (UF{sub 6}) in the diffusion cascade

    SciTech Connect (OSTI)

    Huffer, J.E.

    1997-04-01

    This paper determines the nuclear safety of gaseous UF{sub 6} in the current Gaseous Diffusion Cascade and auxiliary systems. The actual plant safety system settings for pressure trip points are used to determine the maximum amount of HF moderation in the process gas, as well as the corresponding atomic number densities. These inputs are used in KENO V.a criticality safety models which are sized to the actual plant equipment. The ENO V.a calculation results confirm nuclear safety of gaseous UF{sub 6} in plant operations..

  4. Innovative Decontamination Technology for Use in Gaseous Diffusion Plant Decommissioning

    SciTech Connect (OSTI)

    Peters, M.J.; Norton, C.J.; Fraikor, G.B.; Potter, G.L.; Chang, K.C.

    2006-07-01

    The results of bench scale tests demonstrated that TechXtract{sup R} RadPro{sup TM} technology (hereinafter referred to as RadPro{sup R}) can provide 100% coverage of complex mockup gaseous diffusion plant (GDP) equipment and can decontaminate uranium (U) deposits with 98% to 99.99% efficiency. Deployment tests demonstrated RadPro{sup R} can be applied as foam, mist/fog, or steam, and fully cover the internal surfaces of complex mockup equipment, including large piping. Decontamination tests demonstrated that two formulations of RadPro{sup R}, one with neutron attenuators and one without neutron attenuators, could remove up to 99.99% of uranyl fluoride deposits, one of the most difficult to remove deposits in GDP equipment. These results were supplemented by results from previous tests conducted in 1994 that showed RadPro{sup R} could remove >97% of U and Tc-99 contamination from actual GDP components. Operational use of RadPro{sup R} at other DOE and commercial facilities also support these data. (authors)

  5. Bioavailability study for the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Phipps, T.L.; Kszos, L.A.

    1996-08-01

    The overall purpose of this plan is to assess the bioavailability of metals in the continuous and intermittent outfalls. The results may be used to determine alternative metal limits that more appropriately measure the portion of metal present necessary for toxicity to aquatic life. These limits must remain protective of in-stream aquatic life; thus, the highest concentration of metal in the water will be determined concurrently with an assessment of acute or chronic toxicity on laboratory tests. Using the method developed by the Kentucky Division of Water (KDOW), biomonitoring results and chemical data will be used to recommend alternative metal limits for the outfalls of concern. The data will be used to meet the objectives of the study: (1) evaluate the toxicity of continuous outfalls and intermittent outfalls at Paducah Gaseous Diffusion Plant; (2) determine the mean ratio of dissolved to Total Recoverable metal for Cd, Cr, Cu, Pb, Ni, and Zn in the continuous and intermittent outfalls; (3) determine whether the concentration of total recoverable metal discharged causes toxicity to fathead minnows and /or Ceriodaphnia; and (4) determine alternative metal limits for each metal of concern (Cd, Cr, Cu, Pb, Ni, and Zn).

  6. Portsmouth Gaseous Diffusion Plant environmental report for 1989

    SciTech Connect (OSTI)

    Turner, J.W. )

    1990-10-01

    This calendar year 1989 annual report on environmental surveillance of the US Department of Energy's (DOE) Portsmouth Gaseous Diffusion Plant (PORTS) and its environs consists of two parts: the Summary, Discussion, and Conclusions (Part 1) and the Data Presentation (Part 2). The objectives of this report are the following: report 1989 monitoring data for the installation and its environs that may have been affected by operations on the plant site, provide reasonably detailed information about the plant site and plant operations, provide detailed information on input and assumptions used in all calculations, provide trend analyses (where appropriate) to indicate increases and decreases in environmental impact, and provide general information on plant quality assurance. Routine monitoring and sampling for radiation, radioactive materials, and chemical substances on and off the DOE site are used to document compliance with appropriate standards, to identify trends, to provide information for the public, and to contribute to general environmental knowledge. The surveillance program assists in fulfilling the DOE policy of protecting the public, employees, and environment from harm that could be caused by its activities and reducing negative environmental impacts to the greatest degree practicable. Environmental-monitoring information complements data on specific releases, trends, and summaries. 26 refs.

  7. Effect of gaseous inhibitors on PCDD/F formation

    SciTech Connect (OSTI)

    Ruokojaervi, P.H.; Halonen, I.A.; Tuppurainen, K.A.; Tarhanen, J.; Ruuskanen, J.

    1998-10-15

    Emissions of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) from municipal waste incineration are currently a subject of considerable public concern because of their extreme toxicity. PCDD/F formation in incineration processes is being studied widely, but studies on inhibition are quite sparse, especially in a pilot-plant scale. In this work, the effect of four gaseous inhibitors (sulfur dioxide, ammonia, dimethylamine, and methyl mercaptan) on PCDD/PCDF formation in the combustion of liquid fuel was studied using a pilot-scale plant. The inhibitors were injected into the flue gas stream after the first economizer at a temperature of 670 C and just before the second economizer at 410 C. Both the chlorophenol and PCDD and PCDF concentrations decreased when inhibitors were added. Particle-phase PCDD/F concentrations in particular decreased by up to 98%. The results suggest that the formation of PCDD/Fs is hindered in the particle phase at the early stages of the PCDD/F formation chain, probably even before precursors such as chlorophenols have been formed.

  8. Process safety management for highly hazardous chemicals

    SciTech Connect (OSTI)

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  9. Liquid and Gaseous Waste Operations Department annual operating report, CY 1991

    SciTech Connect (OSTI)

    Maddox, J.J.; Scott, C.B.

    1992-03-01

    This report discusses work at the Liquid and Gaseous Waste Operations Department of ORNL. An operating summary, upgrade activities and maintenance activities are presented for the Process Waste Treatment Plant, Nonradiological Wastewater Treatment Plant, and Runoff Treatment Facility.

  10. DEVELOPMENT OF AN ANTIFOAM TRACKING SYSTEM AS AN OPTION TO SUPPORT THE MELTER OFF-GAS FLAMMABILITY CONTROL STRATEGY AT THE DWPF

    SciTech Connect (OSTI)

    Edwards, T.; Lambert, D.

    2014-08-27

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of an additional strategy for confidently satisfying the flammability controls for DWPF’s melter operation. An initial strategy for implementing the operational constraints associated with flammability control in DWPF was based upon an analytically determined carbon concentration from antifoam. Due to the conservative error structure associated with the analytical approach, its implementation has significantly reduced the operating window for processing and has led to recurrent Slurry Mix Evaporator (SME) and Melter Feed Tank (MFT) remediation. To address the adverse operating impact of the current implementation strategy, SRR issued a Technical Task Request (TTR) to SRNL requesting the development and documentation of an alternate strategy for evaluating the carbon contribution from antifoam. The proposed strategy presented in this report was developed under the guidance of a Task Technical and Quality Assurance Plan (TTQAP) and involves calculating the carbon concentration from antifoam based upon the actual mass of antifoam added to the process assuming 100% retention. The mass of antifoam in the Additive Mix Feed Tank (AMFT), in the Sludge Receipt and Adjustment Tank (SRAT), and in the SME is tracked by mass balance as part of this strategy. As these quantities are monitored, the random and bias uncertainties affecting their values are also maintained and accounted for. This report documents: 1) the development of an alternate implementation strategy and associated equations describing the carbon concentration from antifoam in each SME batch derived from the actual amount of antifoam introduced into the AMFT, SRAT, and SME during the processing of the batch. 2) the equations and error structure for incorporating the proposed strategy into melter off-gas flammability assessments

  11. Method for selectively removing fluorine and fluorine-containing contaminants from gaseous UF.sub.6

    DOE Patents [OSTI]

    Jones, Robert L.; Otey, Milton G.; Perkins, Roy W.

    1982-01-01

    This invention is a method for effecting preferential removal and immobilization of certain gaseous contaminants from gaseous UF.sub.6. The contaminants include fluorine and fluorides which are more reactive with CaCO.sub.3 than is UF.sub.6. The method comprises contacting the contaminant-carrying UF.sub.6 with particulate CaCO.sub.3 at a temperature effecting reaction of the contaminant and the CaCO.sub.3.

  12. DOE Releases Final Request for Proposal for Paducah Gaseous Diffusion Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deactivation and Remediation Services | Department of Energy Releases Final Request for Proposal for Paducah Gaseous Diffusion Plant Deactivation and Remediation Services DOE Releases Final Request for Proposal for Paducah Gaseous Diffusion Plant Deactivation and Remediation Services July 21, 2016 - 2:00pm Addthis Media Contact: Lynette Chafin, 513-246-0461 Cincinnati -- The U.S. Department of Energy (DOE) today issued a Request for Proposals (RFP) for deactivation and remediation services

  13. Pattern recognition techniques to reduce backgrounds in the search for the {sup 136}Xe double beta decay with gaseous TPCs

    SciTech Connect (OSTI)

    Iguaz, F. J.; Cebrin, S.; Dafni, T.; Gmez, H.; Herrera, D. C.; Irastorza, I. G.; Luzon, G.; Segui, L.; Tomas, A. [Laboratorio de Fsica Nuclear y Astropartculas, Universidad de Zaragoza (Spain)] [Laboratorio de Fsica Nuclear y Astropartculas, Universidad de Zaragoza (Spain)

    2013-08-08

    The observation of the neutrinoless double beta decay may provide essential information on the nature of neutrinos. Among the current experimental approaches, a high pressure gaseous TPC is an attractive option for the search of double beta decay due to its good energy resolution and the detailed topological information of each event. We present in this talk a detailed study of the ionization topology of the {sup 136}Xe double beta decay events in a High Pressure Xenon TPC, as well as that of the typical competing backgrounds. We define some observables based on graph theory concepts to develop automated discrimination algorithms. Our criteria are able to reduce the background level by about three orders of magnitude in the region of interest of the {sup 136}Xe Q{sub ??} for a signal acceptance of 40%. This result provides a quantitative assessment of the benefit of topological information offered by gaseous TPCs for double beta decay search, and proves that it is a promising feature in view of future experiments in the field. Possible ideas for further improvement in the discrimination algorithms and the dependency of these results with the gas diffusion and readout granularity will be also discussed.

  14. Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    SciTech Connect (OSTI)

    Donna Post Guillen

    2013-09-01

    The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammable hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.

  15. Stratified charge combustion system and method for gaseous fuel internal combustion engines

    SciTech Connect (OSTI)

    Rhoades, W.A. Jr.

    1986-03-11

    This patent describes a stratified charge combustion system for use in a gaseous fuel internal combustion engine. This system consists of: (a) a combustion chamber; (b) an ignition; (c) a gaseous fuel injection valve assembly in communication with the combustion chamber and in spaced relationship from the ignition source with a portion of the inside surfaces extending between the fuel injection valve assembly and the ignition source. The fuel valve assembly defines an entry port for the entrance of gaseous fuel, the entry port is recessed outside of a fixed inside surface. (d) means for pressuring the gaseous fuel prior to injection; and (e) a curved transitional surface extending from the entry port toward the portion of the inside surfaces extending between the fuel injection valve assembly and the ignition source. The curved transitional surface curves away from the direction of the entry port. The curved transitional surface has a curvature for the particular direction and configuration of the entry port. The particular configuration of the portion of the inside surfaces extends between the injection valve assembly and the ignition source. The particular arrangment of the fuel injection valve assembly in the combustion chamber, and for the particular pressure of the gaseous fuel is to produce the Coanda Effect in the injected gaseous fuel flow after it passes through the entry port and follows the curved transitional surface under the Coanda Effect. As the curved transitional surface curves away from the direction of the entry port, a flow is produced of the gaseous fuel that clings to and follows the particular configuration of the inside surfaces to the ignition source.

  16. IAEA Verification Experiment at the Portsmouth Gaseous Diffusion Plant: Report on the Cascade Header Enrichment Monitor

    SciTech Connect (OSTI)

    P. L. Kerr; D. A. Close; W. S. Johnson; R. M. Kandarian; C. E. Moss; C. D. Romero

    1999-03-01

    The authors describe the Cascade Header Enrichment Monitor (CHEM) for the Portsmouth Gaseous Diffusion Plant at Piketon, Ohio, and present the calibration and measurement results. The US government has offered excess fissile material that is no longer needed for defense purposes for International Atomic Energy Agency (IAEA) inspection. Measurement results provided by the CHEM were used by the IAEA in a verification experiment to provide confidence that the US successfully blended excess highly enriched uranium (HEU) down to low enriched uranium (LEU). The CHEM measured the uranium enrichment in two cascade header pipes, a 20.32-cm HEU pipe and a 7.62-cm product LEU pipe. The CHEM determines the amount of {sup 235}U from the 185.7-keV gamma-ray photopeak and the amount of total uranium by x-ray fluorescence (XRF) of the 98.4-keV x-ray from uranium with a {sup 57}Co XRF source. The ratio yields the enrichment. The CHEM consists of a collimator assembly, an electromechanically cooled germanium detector, and a rack-mounted personal computer running commercial and custom software. The CHEM was installed in December 1997 and was used by the IAEA inspectors for announced and unannounced inspections on the HEU and LEU header pipes through October 1998. The equipment was sealed with tamper-indicating enclosures when the inspectors were not present.

  17. Safeguards Verification Measurements using Laser Ablation, Absorbance Ratio Spectrometry in Gaseous Centrifuge Enrichment Plants

    SciTech Connect (OSTI)

    Anheier, Norman C.; Cannon, Bret D.; Kulkarni, Gourihar R.; Munley, John T.; Nelson, Danny A.; Qiao, Hong; Phillips, Jon R.

    2012-07-17

    Laser Ablation Absorbance Ratio Spectrometry (LAARS) is a new verification measurement technology under development at the US Department of Energy (DOE) Pacific Northwest National Laboratory (PNNL). LAARS uses three lasers to ablate and then measure the relative isotopic abundance of uranium compounds. An ablation laser is tightly focused on uranium-bearing solids, producing a small atomic uranium vapor plume. Two collinear wavelength-tuned spectrometry lasers transit through the plume and the absorbance of U-235 and U-238 isotopes are measured to determine U-235 enrichment. The measurement is independent of chemical form and degree of dilution with nuisance dust and other materials. LAARS has high relative precision and detection limits approaching the femtogram range for U-235. The sample is scanned and assayed point-by-point at rates reaching 1 million measurements/hour, enabling LAARS to detect and analyze uranium in trace samples. The spectrometer is assembled using primarily commercially available components and features a compact design and automated analysis.Two specific gaseous centrifuge enrichment plant (GCEP) applications of the spectrometer are currently under development: 1) LAARS-Environmental Sampling (ES), which collects and analyzes aerosol particles for GCEP misuse detection and 2) LAARS-Destructive Assay (DA), which enables onsite enrichment DA sample collection and analysis for protracted diversion detection. The two applications propose game-changing technological advances in GCEP safeguards verification.

  18. EA-1856: Conveyance of Land and Facilities at the Portsmouth Gaseous Diffusion Plant for Economic Development Purposes, Piketon, Ohio

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of conveyance of land and facilities at the Portsmouth Gaseous Diffusion Plant, in Piketon, Ohio, for economic development purposes.

  19. Oak Ridge National Lebroatory Liquid&Gaseous Waste Treatment System Strategic Plan

    SciTech Connect (OSTI)

    Van Hoesen, S.D.

    2003-09-09

    Excellence in Laboratory operations is one of the three key goals of the Oak Ridge National Laboratory (ORNL) Agenda. That goal will be met through comprehensive upgrades of facilities and operational approaches over the next few years. Many of ORNL's physical facilities, including the liquid and gaseous waste collection and treatment systems, are quite old, and are reaching the end of their safe operating life. The condition of research facilities and supporting infrastructure, including the waste handling facilities, is a key environmental, safety and health (ES&H) concern. The existing infrastructure will add considerably to the overhead costs of research due to increased maintenance and operating costs as these facilities continue to age. The Liquid Gaseous Waste Treatment System (LGWTS) Reengineering Project is a UT-Battelle, LLC (UT-B) Operations Improvement Program (OIP) project that was undertaken to develop a plan for upgrading the ORNL liquid and gaseous waste systems to support ORNL's research mission.

  20. BINARIES MIGRATING IN A GASEOUS DISK: WHERE ARE THE GALACTIC CENTER BINARIES?

    SciTech Connect (OSTI)

    Baruteau, C.; Lin, D. N. C.; Cuadra, J. E-mail: lin@ucolick.org

    2011-01-01

    The massive stars in the Galactic center inner arcsecond share analogous properties with the so-called Hot Jupiters. Most of these young stars have highly eccentric orbits and were probably not formed in situ. It has been proposed that these stars acquired their current orbits from the tidal disruption of compact massive binaries scattered toward the proximity of the central supermassive black hole. Assuming a binary star formed in a thin gaseous disk beyond 0.1 pc from the central object, we investigate the relevance of disk-satellite interactions to harden the binding energy of the binary, and to drive its inward migration. A massive, equal-mass binary star is found to become more tightly wound as it migrates inward toward the central black hole. The migration timescale is very similar to that of a single-star satellite of the same mass. The binary's hardening is caused by the formation of spiral tails lagging the stars inside the binary's Hill radius. We show that the hardening timescale is mostly determined by the mass of gas inside the binary's Hill radius and that it is much shorter than the migration timescale. We discuss some implications of the binary's hardening process. When the more massive (primary) components of close binaries eject most their mass through supernova explosion, their secondary stars may attain a range of eccentricities and inclinations. Such processes may provide an alternative unified scenario for the origin of the kinematic properties of the central cluster and S-stars in the Galactic center as well as the high-velocity stars in the Galactic halo.

  1. U.S., Ohio Approve Portsmouth Gaseous Diffusion Plant Site D&D Plans |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy , Ohio Approve Portsmouth Gaseous Diffusion Plant Site D&D Plans U.S., Ohio Approve Portsmouth Gaseous Diffusion Plant Site D&D Plans July 30, 2015 - 3:00pm Addthis The Portsmouth Site’s large process buildings and other facilities are shown here. The Portsmouth Site's large process buildings and other facilities are shown here. PIKETON, Ohio - The Ohio Environmental Protection Agency (Ohio EPA) and DOE have agreed to a plan to demolish the massive, iconic

  2. ,"U.S. Natural Gas Plant Liquids Production, Gaseous Equivalent (Bcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production, Gaseous Equivalent (Bcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Plant Liquids Production, Gaseous Equivalent (Bcf)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  3. The Mailbox Computer System for the IAEA verification experiment on HEU downlending at the Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Aronson, A.L.; Gordon, D.M.

    2000-07-31

    IN APRIL 1996, THE UNITED STATES (US) ADDED THE PORTSMOUTH GASEOUS DIFFUSION PLANT TO THE LIST OF FACILITIES ELIGIBLE FOR THE APPLICATION OF INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA) SAFEGUARDS. AT THAT TIME, THE US PROPOSED THAT THE IAEA CARRY OUT A ''VERIFICATION EXPERIMENT'' AT THE PLANT WITH RESPECT TO DOOWNBLENDING OF ABOUT 13 METRIC TONS OF HIGHLY ENRICHED URANIUM (HEU) IN THE FORM OF URANIUM HEXAFLUROIDE (UF6). DURING THE PERIOD DECEMBER 1997 THROUGH JULY 1998, THE IAEA CARRIED OUT THE REQUESTED VERIFICATION EXPERIMENT. THE VERIFICATION APPROACH USED FOR THIS EXPERIMENT INCLUDED, AMONG OTHER MEASURES, THE ENTRY OF PROCESS-OPERATIONAL DATA BY THE FACILITY OPERATOR ON A NEAR-REAL-TIME BASIS INTO A ''MAILBOX'' COMPUTER LOCATED WITHIN A TAMPER-INDICATING ENCLOSURE SEALED BY THE IAEA.

  4. Inorganic Metal Fluorite Materials as Novel Adsorbents for Gaseous...

    Office of Scientific and Technical Information (OSTI)

    Type: Conference Resource Relation: Conference: International high level radioacvtive waste management conference held April 28 - May 2, 2013 in Albuquerque, NM.; Related...

  5. Detection of illicit HEU production in gaseous centrifuge enrichment plants using neutron counting techniques on product cylinders

    SciTech Connect (OSTI)

    Freeman, Corey R; Geist, William H

    2010-01-01

    Innovative and novel safeguards approaches are needed for nuclear energy to meet global energy needs without the threat of nuclear weapons proliferation. Part of these efforts will include creating verification techniques that can monitor uranium enrichment facilities for illicit production of highly-enriched uranium (HEU). Passive nondestructive assay (NDA) techniques will be critical in preventing illicit HEU production because NDA offers the possibility of continuous and unattended monitoring capabilities with limited impact on facility operations. Gaseous centrifuge enrichment plants (GCEP) are commonly used to produce low-enriched uranium (LEU) for reactor fuel. In a GCEP, gaseous UF{sub 6} spins at high velocities in centrifuges to separate the molecules containing {sup 238}U from those containing the lighter {sup 235}U. Unfortunately, the process for creating LEU is inherently the same as HEU, creating a proliferation concern. Insuring that GCEPs are producing declared enrichments poses many difficult challenges. In a GCEP, large cascade halls operating thousands of centrifuges work together to enrich the uranium which makes effective monitoring of the cascade hall economically prohibitive and invasive to plant operations. However, the enriched uranium exiting the cascade hall fills product cylinders where the UF{sub 6} gas sublimes and condenses for easier storage and transportation. These product cylinders hold large quantities of enriched uranium, offering a strong signal for NDA measurement. Neutrons have a large penetrability through materials making their use advantageous compared to gamma techniques where the signal is easily attenuated. One proposed technique for detecting HEU production in a GCEP is using neutron coincidence counting at the product cylinder take off stations. This paper discusses findings from Monte Carlo N-Particle eXtended (MCNPX) code simulations that examine the feasibility of such a detector.

  6. PROBING THE GASEOUS DISK OF T Tau N WITH CN 5-4 LINES

    SciTech Connect (OSTI)

    Podio, L.; Codella, C.; Kamp, I.; Meijerink, R.; Spaans, M.; Nisini, B.; Aresu, G.; Brittain, S.; Cabrit, S.; Dougados, C.; Thi, W.-F.; Sandell, G.; White, G. J.; Woitke, P.

    2014-03-10

    We present spectrally resolved observations of the young multiple system T Tau in atomic and molecular lines obtained with the Heterodyne Instrument for the Far Infrared on board Herschel. While CO, H{sub 2}O, [C II], and SO lines trace the envelope and the outflowing gas up to velocities of 33 km s{sup –1} with respect to systemic, the CN 5-4 hyperfine structure lines at 566.7, 566.9 GHz show a narrow double-peaked profile centered at systemic velocity, consistent with an origin in the outer region of the compact disk of T Tau N. Disk modeling of the T Tau N disk with the thermo-chemical code ProDiMo produces CN line fluxes and profiles consistent with the observed ones and constrain the size of the gaseous disk (R{sub out}=110{sub −20}{sup +10} AU) and its inclination (i = 25°± 5°). The model indicates that the CN lines originate in a disk upper layer at 40-110 AU from the star, which is irradiated by the stellar UV field and heated up to temperatures of 50-700 K. With respect to previously observed CN 2-1 millimeter lines, the CN 5-4 lines appear to be less affected by envelope emission, due to their larger critical density and excitation temperature. Hence, high-J CN lines are a unique confusion-free tracer of embedded disks, such as the disk of T Tau N.

  7. Gamma radiological surveys of the Oak Ridge Reservation, Paducah Gaseous Diffusion Plant, and Portsmouth Gaseous Diffusion Plant, 1990-1993, and overview of data processing and analysis by the Environmental Restoration Remote Sensing Program, Fiscal Year 1995

    SciTech Connect (OSTI)

    Smyre, J.L.; Moll, B.W.; King, A.L.

    1996-06-01

    Three gamma radiological surveys have been conducted under auspices of the ER Remote Sensing Program: (1) Oak Ridge Reservation (ORR) (1992), (2) Clinch River (1992), and (3) Portsmouth Gaseous Diffusion Plant (PORTS) (1993). In addition, the Remote Sensing Program has acquired the results of earlier surveys at Paducah Gaseous Diffusion Plant (PGDP) (1990) and PORTS (1990). These radiological surveys provide data for characterization and long-term monitoring of U.S. Department of Energy (DOE) contamination areas since many of the radioactive materials processed or handled on the ORR, PGDP, and PORTS are direct gamma radiation emitters or have gamma emitting daughter radionuclides. High resolution airborne gamma radiation surveys require a helicopter outfitted with one or two detector pods, a computer-based data acquisition system, and an accurate navigational positioning system for relating collected data to ground location. Sensors measure the ground-level gamma energy spectrum in the 38 to 3,026 KeV range. Analysis can provide gamma emission strength in counts per second for either gross or total man-made gamma emissions. Gross count gamma radiation includes natural background radiation from terrestrial sources (radionuclides present in small amounts in the earth`s soil and bedrock), from radon gas, and from cosmic rays from outer space as well as radiation from man-made radionuclides. Man-made count gamma data include only the portion of the gross count that can be directly attributed to gamma rays from man-made radionuclides. Interpretation of the gamma energy spectra can make possible the determination of which specific radioisotopes contribute to the observed man-made gamma radiation, either as direct or as indirect (i.e., daughter) gamma energy from specific radionuclides (e.g., cesium-137, cobalt-60, uranium-238).

  8. Real Time Demonstration Project XRF Performance Evaluation Report for Paducah Gaseous Diffusion Plant AOC 492

    SciTech Connect (OSTI)

    Johnson, Robert L

    2008-04-03

    This activity was undertaken to demonstrate the applicability of market-available XRF instruments to quantify metal concentrations relative to background and risk-based action and no action levels in Paducah Gaseous Diffusion Plant (PGDP) soils. As such, the analysis below demonstrates the capabilities of the instruments relative to soil characterization applications at the PGDP.

  9. Method of absorbing UF.sub.6 from gaseous mixtures in alkamine absorbents

    DOE Patents [OSTI]

    Lafferty, Robert H.; Smiley, Seymour H.; Radimer, Kenneth J.

    1976-04-06

    A method of recovering uranium hexafluoride from gaseous mixtures employing as an absorbent a liquid composition at least one of the components of which is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2.

  10. Environmental Restoration Site-Specific Plan for the Portsmouth Gaseous Diffusion Plant, FY 93

    SciTech Connect (OSTI)

    Not Available

    1993-01-15

    The purpose of this Site-Specific Plan (SSP) is to describe past, present, and future activities undertaken to implement Environmental Restoration and Waste Management goals at the Portsmouth Gaseous Diffusion Plant (PORTS). The SSP is presented in sections emphasizing Environmental Restoration description of activities, resources, and milestones.

  11. Synthesis of thin films and materials utilizing a gaseous catalyst

    DOE Patents [OSTI]

    Morse, Daniel E; Schwenzer, Birgit; Gomm, John R; Roth, Kristian M; Heiken, Brandon; Brutchey, Richard

    2013-10-29

    A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.

  12. Safeguards Verification Measurements using Laser Ablation, Absorbance Ratio Spectrometry in Gaseous Centrifuge Enrichment Plants

    SciTech Connect (OSTI)

    Anheier, Norman C.; Cannon, Bret D.; Qiao, Hong; Phillips, Jon R.

    2012-07-01

    Laser Ablation Absorbance Ratio Spectrometry (LAARS) is a new verification measurement technology under development at the US Department of Energy’s (DOE) Pacific Northwest National Laboratory (PNNL). LAARS uses three lasers to ablate and then measure the relative isotopic abundance of uranium compounds. An ablation laser is tightly focused on uranium-bearing solids producing a small plume containing uranium atoms. Two collinear wavelength-tuned spectrometry lasers transit through the plume and the absorbance of U-235 and U-238 isotopes are measured to determine U-235 enrichment. The measurement has high relative precision and detection limits approaching the femtogram range for uranium. It is independent of chemical form and degree of dilution with nuisance dust and other materials. High speed sample scanning and pinpoint characterization allow measurements on millions of particles/hour to detect and analyze the enrichment of trace uranium in samples. The spectrometer is assembled using commercially available components at comparatively low cost, and features a compact and low power design. Future designs can be engineered for reliable, autonomous deployment within an industrial plant environment. Two specific applications of the spectrometer are under development: 1) automated unattended aerosol sampling and analysis and 2) on-site small sample destructive assay measurement. The two applications propose game-changing technological advances in gaseous centrifuge enrichment plant (GCEP) safeguards verification. The aerosol measurement instrument, LAARS-environmental sampling (ES), collects aerosol particles from the plant environment in a purpose-built rotating drum impactor and then uses LAARS-ES to quickly scan the surface of the impactor to measure the enrichments of the captured particles. The current approach to plant misuse detection involves swipe sampling and offsite analysis. Though this approach is very robust it generally requires several months to

  13. Gaseous fission product management for molten salt reactors and vented fuel systems

    SciTech Connect (OSTI)

    Messenger, S. J.; Forsberg, C.; Massie, M.

    2012-07-01

    Fission gas disposal is one of the unresolved difficulties for Molten Salt Reactors (MSRs) and advanced reactors with vented fuel systems. As these systems operate, they produce many radioactive isotopes of xenon and krypton (e.g. {sup 135}Xe t{sub 1/2} = 9.14 hours and {sup 85}Kr t{sub 1/2}= 10.73 years). Removing these gases proves vital to the success of such reactor designs for two reasons. First, the gases act as large neutron sinks which decrease reactivity and must be counterbalanced by increasing fuel loading. Second, for MSRs, inert fission product gases naturally separate quickly from high temperature salts, thus creating high vapor pressure which poses safety concerns. For advanced reactors with solid vented fuel, the gases are allowed to escape into an off-gas system and thus must be managed. Because of time delays in transport of fission product gases in vented fuel systems, some of the shorter-lived radionuclides will decay away thereby reducing the fission gas source term relative to an MSR. To calculate the fission gas source term of a typical molten salt reactor, we modeled a 1000 MWe graphite moderated thorium MSR similar to that detailed in Mathieu et al. [1]. The fuel salt used in these calculations was LiF (78 mole percent) - (HN)F 4 (22 mole percent) with a heavy nuclide composition of 3.86% {sup 233}U and 96.14% {sup 232}Th by mass. Before we can remove the fission product gases produced by this reactor configuration, we must first develop an appropriate storage mechanism. The gases could be stored in pressurized containers but then one must be concerned about bottle failure. Methods to trap noble gases in matrices are expensive and complex. Alternatively, there are direct storage/disposal options: direct injection into the Earth or injecting a grout-based product into the Earth. Advances in drilling technologies, hydro fracture technologies, and methods for the sequestration of carbon dioxide from fossil fuel plants are creating new options

  14. Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 19, 2013 Manufacturing sector energy use and energy intensity down since 2002 Total energy consumption in the manufacturing sector decreased by 17 percent from 2002 to 2010, according to data released today by the U.S. Energy Information Administration. Manufacturing gross output decreased by only 3 percent over the same period. Taken together, these data indicate a significant decline in the amount of energy used per unit of gross manufacturing output. The significant decline in energy

  15. In situ carbonyl extraction of Ni from gaseous diffusion cells

    SciTech Connect (OSTI)

    Visnapuu, A. [USBM Salt Lake Research Center, Salt Lake City, UT (United States); Hollenberg, G.W. [Battelle Pacific Northwest Lab., Richland, WA (United States); Bundy, R.D. [Battelle Memorial Institute, Oak Ridge, TN (United States)

    1995-12-31

    This paper discusses the use of carbonyl processing technology for recovery of nickel from uranium isotope separation diffusion cells, and potential applications to recover nickel, iron, chromium, cobalt, and other carbonyl forming metals from nuclear waste while reducing the volume of the high level residue for more economic disposal. Nickel powder was carbonylated under static and dynamic conditions using only carbon monoxide to determine if the nickel powder would react rapidly enough to require no promoter. Nickel to Ni(CO){sub 4} conversion was realized in all cases and nickel metal was vapor deposited in the thermal decomposer, but the conversion rates in all cases the reaction were too slow for practical recovery. Addition of hydrogen sulfide gas as a promoter increased the conversion rate more than 500-fold over conversion with no promoter. Test summaries are provided in the paper; results indicate that promoter activated carbonylation is a viable approach for recovery of nickel from uranium isotope diffusion cells.

  16. Breached cylinder incident at the Portsmouth gaseous diffusion plant

    SciTech Connect (OSTI)

    Boelens, R.A.

    1991-12-31

    On June 16, 1990, during an inspection of valves on partially depleted product storage cylinders, a 14-ton partially depleted product cylinder was discovered breached. The cylinder had been placed in long-term storage in 1977 on the top row of Portsmouth`s (two rows high) storage area. The breach was observed when an inspector noticed a pile of green material along side of the cylinder. The breach was estimated to be approximately 8- inches wide and 16-inches long, and ran under the first stiffening ring of the cylinder. During the continuing inspection of the storage area, a second 14-ton product cylinder was discovered breached. This cylinder was stacked on the bottom row in the storage area in 1986. This breach was also located adjacent to a stiffening ring. This paper will discuss the contributing factors of the breaching of the cylinders, the immediate response, subsequent actions in support of the investigation, and corrective actions.

  17. Long-range global warming impact of gaseous diffusion plant operation

    SciTech Connect (OSTI)

    Trowbridge, L.D.

    1992-09-01

    The DOE gaseous diffusion plant complex makes extensive use of CFC-114 as a primary coolant. As this material is on the Montreal Protocol list of materials scheduled for production curtailment, a substitute must be found. In addition to physical cooling properties, the gaseous diffusion application imposes the unique requirement of chemical inertness to fluorinating agents. This has narrowed the selection of a near-term substitute to two fully fluorinated material, FC-318 and FC-3110, which are likely to be strong, long-lived greenhouse gases. In this document, calculations are presented showing, for a number of plausible scenarios of diffusion plant operation and coolant replacement strategy, the future course of coolant use, greenhouse gas emissions (including coolant and power-related indirect CO{sub 2} emissions), and the consequent global temperature impacts of these scenarios.

  18. Natural phenomena hazards evaluation of equipment and piping of Gaseous Diffusion Plant Uranium Enrichment Facility

    SciTech Connect (OSTI)

    Singhal, M.K.; Kincaid, J.H.; Hammond, C.R.; Stockdale, B.I.; Walls, J.C.; Brock, W.R.; Denton, D.R.

    1995-12-31

    In support of the Gaseous Diffusion Plant Safety Analysis Report Upgrade program (GDP SARUP), a natural phenomena hazards evaluation was performed for the main process equipment and piping in the uranium enrichment buildings at Paducah and Portsmouth gaseous diffusion plants. In order to reduce the cost of rigorous analyses, the evaluation methodology utilized a graded approach based on an experience data base collected by SQUG/EPRI that contains information on the performance of industrial equipment and piping during past earthquakes. This method consisted of a screening walkthrough of the facility in combination with the use of engineering judgment and simple calculations. By using these screenings combined with evaluations that contain decreasing conservatism, reductions in the time and cost of the analyses were significant. A team of experienced seismic engineers who were trained in the use of the DOE SQUG/EPRI Walkdown Screening Material was essential to the success of this natural phenomena hazards evaluation.

  19. Process and system for removing sulfur from sulfur-containing gaseous streams

    DOE Patents [OSTI]

    Basu, Arunabha; Meyer, Howard S.; Lynn, Scott; Leppin, Dennis; Wangerow, James R.

    2012-08-14

    A multi-stage UCSRP process and system for removal of sulfur from a gaseous stream in which the gaseous stream, which contains a first amount of H.sub.2S, is provided to a first stage UCSRP reactor vessel operating in an excess SO.sub.2 mode at a first amount of SO.sub.2, producing an effluent gas having a reduced amount of SO.sub.2, and in which the effluent gas is provided to a second stage UCSRP reactor vessel operating in an excess H.sub.2S mode, producing a product gas having an amount of H.sub.2S less than said first amount of H.sub.2S.

  20. Energy and materials flows in the production of liquid and gaseous oxygen

    SciTech Connect (OSTI)

    Shen, S.; Wolsky, A.M.

    1980-08-01

    Liquid and gaseous oxygen is produced in an energy-intensive air separation processo that also generates nitrogen. More than 65% of the cost of oxygen is attributable to energy costs. Energy use and materials flows are analyzed for various air separation methods. Effective approaches to energy and material conservation in air separation plants include efficient removal of contaminants (carbon dioxide and water), centralization of air products user-industries so that large air separation plants are cost-effective and the energy use in transportation is minimized, and increased production of nitrogen. Air separation plants can produce more than three times more nitrogen than oxygen, but present markets demand, at most, only 1.5 times more. Full utlization of liquid and gaseous nitrogen should be encouraged, so that the wasted separation energy is minimized. There are potential markets for nitrogen in, for example, cryogenic separation of metallic and plastic wastes, cryogenic particle size reduction, and production of ammonia for fertilizer.

  1. Flow, Mixing and Combustion of Transient Turbulent Gaseous Jets in Confined

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cylindrical Geometries | Argonne Leadership Computing Facility Flow, Mixing and Combustion of Transient Turbulent Gaseous Jets in Confined Cylindrical Geometries PI Name: Christos Frouzakis PI Email: frouzakis@lav.mavt.ethz.ch Institution: Swiss Federal Institute of Technology Zurich (ETHZ) Allocation Program: ESP Year: 2015 Research Domain: Engineering Tier 2 Code Development Project Numerical Methods/Algorithms Direct numerical simulations for this project will be based on the open source

  2. Nuclear criticality safety evaluation of Spray Booth Operations in X-705, Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Sheaffer, M.K.; Keeton, S.C.

    1993-09-20

    This report evaluates nuclear criticality safety for Spray Booth Operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current procedures and related hardware/equipment is presented. Control parameters relevant to nuclear criticality safety are explained, and a consolidated listing of administrative controls and safety systems is developed. Based on compliance with DOE Orders and MMES practices, the overall operation is evaluated, and recommendations for enhanced safety are suggested.

  3. OSTIblog Articles in the gaseous diffusion Topic | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information gaseous diffusion Topic The Manhattan Project -- Its Operations by Mary Schorn 29 Nov, 2012 in Science Communications 4236 ManhattanProjectMap320.jpg The Manhattan Project -- Its Operations Read more about 4236 Major operations for the Manhattan Engineer District (Manhattan Project) took place in remote site locations in the states of Tennessee, New Mexico, and Washington, with additional research being conducted in university laboratories at

  4. Environmental Restoration Site-Specific Plan for the Paducah Gaseous Diffusion Plant, FY 93

    SciTech Connect (OSTI)

    Not Available

    1993-01-15

    This report provides an overview of the major Environmental Restoration (ER) concerns at Paducah Gaseous Diffusion Plant (PGDP). The identified solid waste management units at PGDP are listed. In the Department of Energy (DOE) Five Year Plan development process, one or more waste management units are addressed in a series of activity data sheets (ADSs) which identify planned scope, schedule, and cost objectives that are representative of the current state of planned technical development for individual or multiple sites.

  5. METHOD FOR THE RECOVERY AND PURIFICATION OF GASEOUS UF$sub 6$ FROM GASEOUS MIXTURES AND UF$sub 7$NO AND UF$sub 7$NO$sub 2$ PRODUCTS PRODUCED THEREBY

    DOE Patents [OSTI]

    Ogle, P.R. Jr.

    1962-06-16

    A method is given for recovering uranium hexafluoride from a gaseous mixture containing said uranium hexafluoride and extraneous gaseous impurities. The method comprises reacting said mixture with a nitrogen oxyfluoride at a temperature in the range - 100 to 50 deg C to thereby form a solid compound having the empirical formula UF/sub 7/N(O)/sub x/ where x is a number from 1 to 2. (AEC)

  6. Fuel age impacts on gaseous fission product capture during separations

    SciTech Connect (OSTI)

    Jubin, Robert T.; Soelberg, Nicolas R.; Strachan, Denis M.; Ilas, G.

    2012-09-21

    As a result of fuel reprocessing, volatile radionuclides will be released from the facility stack if no processes are put in place to remove them. The radionuclides that are of concern in this document are 3H, 14C, 85Kr, and 129 Rosnick 2007 I. The question we attempt to answer is how efficient must this removal process be for each of these radionuclides? To answer this question, we examine the three regulations that may impact the degree to which these radionuclides must be reduced before process gases can be released from the facility. These regulations are 40 CFR 61 (EPA 2010a), 40 CFR 190(EPA 2010b), and 10 CFR 20 (NRC 2012), and they apply to the total radonuclide release and to the dose to a particular organ – the thyroid. Because these doses can be divided amongst all the radionuclides in different ways and even within the four radionuclides in question, several cases are studied. These cases consider for the four analyzed radionuclides inventories produced for three fuel types—pressurized water reactor uranium oxide (PWR UOX), pressurized water reactor mixed oxide (PWR MOX), and advanced high-temperature gascooled reactor (AHTGR)—several burnup values and time out of reactor extending to 200 y. Doses to the maximum exposed individual (MEI) are calculated with the EPA code CAP-88 ( , 1992). Two dose cases are considered. The first case, perhaps unrealistic, assumes that all of the allowable dose is assigned to the volatile radionuclides. In lieu of this, for the second case a value of 10% of the allowable dose is arbitrarily selected to be assigned to the volatile radionuclides. The required decontamination factors (DFs) are calculated for both of these cases, including the case for the thyroid dose for which 14C and 129I are the main contributors. However, for completeness, for one fuel type and burnup, additional cases are provided, allowing 25% and 50% of the allowable dose to be assigned to the volatile radionuclides. Because 3H and 85Kr have

  7. EA-0767: Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct and operate a solid waste landfill within the boundary at the U.S. Department of Energy's Portsmouth Gaseous Diffusion plant...

  8. Preparation of high purity phosphorus

    DOE Patents [OSTI]

    Rupp, Arthur F.; Woo, David V.

    1981-01-01

    High purity phosphorus and phosphorus compounds are prepared by first reacting H.sub.3 PO.sub.4 with a lead compound such as PbO to form Pb.sub.3 (PO.sub.4).sub.2. The Pb.sub.3 (PO.sub.4).sub.2 is reduced with H.sub.2 at a temperature sufficient to form gaseous phosphorus which can be recovered as a high purity phosphorus product. Phosphorus compounds can be easily prepared by reacting the phosphorus product with gaseous reactants. For example, the phosphorus product is reacted with gaseous Cl.sub.2 to form PCl.sub.5. PCl.sub.5 is reduced to PCl.sub.3 by contacting it in the gaseous phase with solid elemental phosphorus. POCl.sub.3 can be prepared by contacting PCl.sub.5 in the gaseous phase with solid P.sub.2 O.sub.5. The general process is particularly suitable for the preparation of radiophosphorus compounds.

  9. Gas separation process using membranes with permeate sweep to remove CO.sub.2 from gaseous fuel combustion exhaust

    DOE Patents [OSTI]

    Wijmans Johannes G.; Merkel, Timothy C.; Baker, Richard W.

    2012-05-15

    A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.

  10. TREATMENT OF GASEOUS EFFLUENTS ISSUED FROM RECYCLING – A REVIEW OF THE CURRENT PRACTICES AND PROSPECTIVE IMPROVEMENTS

    SciTech Connect (OSTI)

    Patricia Paviet-Hartmann; William Kerlin; Steven Bakhtiar

    2010-11-01

    The objectives of gaseous waste management for the recycling of nuclear used fuel is to reduce by best practical means (ALARA) and below regulatory limits, the quantity of activity discharged to the environment. The industrial PUREX process recovers the fissile material U(VI) and Pu(IV) to re-use them for the fabrication of new fuel elements e.g. recycling plutonium as a Mixed Oxide (MOX) fuel or recycling uranium for new enrichment for Pressurized Water Reactor (PWR). Meanwhile the separation of the waste (activation and fission product) is performed as a function of their pollution in order to store and avoid any potential danger and release towards the biosphere. Raffinate, that remains after the extraction step and which contains mostly all fission products and minor actinides is vitrified, the glass package being stored temporarily at the recycling plant site. Hulls and end pieces coming from PWR recycled fuel are compacted by means of a press leading to a volume reduced to 1/5th of initial volume. An organic waste treatment step will recycle the solvent, mainly tri-butyl phosphate (TBP) and some of its hydrolysis and radiolytic degradation products such as dibutyl phosphate (HDPB) and monobutyl phosphate (H2MBP). Although most scientific and technological development work focused on high level waste streams, a considerable effort is still under way in the area of intermediate and low level waste management. Current industrial practices for the treatment of gaseous effluents focusing essentially on Iodine-129 and Krypton-85 will be reviewed along with the development of novel technologies to extract, condition, and store these fission products. As an example, the current industrial practice is to discharge Kr-85, a radioactive gas, entirely to the atmosphere after dilution, but for the large recycling facilities envisioned in the near future, several techniques such as 1) cryogenic distillation and selective absorption in solvents, 2) adsorption on activated

  11. Photocatalytic degradation of gaseous toluene over TiO{sub 2}-SiO{sub 2} composite nanotubes synthesized by sol-gel with template technique

    SciTech Connect (OSTI)

    Zou, Xuejun [State Key Laboratory of Fine Chemical and Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian, 116024 (China)] [State Key Laboratory of Fine Chemical and Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian, 116024 (China); Li, Xinyong, E-mail: xyli@dlut.edu.cn [State Key Laboratory of Fine Chemical and Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian, 116024 (China) [State Key Laboratory of Fine Chemical and Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian, 116024 (China); Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia); Qu, Zhenping; Zhao, Qidong; Shi, Yong; Chen, Yongying [State Key Laboratory of Fine Chemical and Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian, 116024 (China)] [State Key Laboratory of Fine Chemical and Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian, 116024 (China); Tade, Moses [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia)] [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia); Liu, Shaomin, E-mail: shaomin.liu@curtin.edu.au [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia)] [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia)

    2012-02-15

    Graphical abstract: TiO{sub 2}-SiO{sub 2} nanotubes (b) were fabricated by sol-gel method using ZnO nanowires (a) as template. Highlights: Black-Right-Pointing-Pointer A simple method to prepare TiO{sub 2}-SiO{sub 2} nanotubes for photocatalytic toluene removal. Black-Right-Pointing-Pointer The TiO{sub 2}-SiO{sub 2} nanotubes have a small blue shift and higher absorption intensity. Black-Right-Pointing-Pointer The TiO{sub 2}-SiO{sub 2} nanotubes have an enhanced photoactivity in degrading gaseous toluene. -- Abstract: TiO{sub 2}-SiO{sub 2} composite nanotubes were successfully synthesized by a facile sol-gel technique utilizing ZnO nanowires as template. The nanotubes were well characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, N{sub 2} adsorption-desorption analysis and UV-vis diffuse reflectance spectroscopy. The nanotubular TiO{sub 2}-SiO{sub 2} composite photocatalysts showed diameter of 300-325 nm, fine mesoporous structure and high specific surface area. The results indicated that the degradation efficiency of gaseous toluene could get 65% after 4 h reaction using the TiO{sub 2}-SiO{sub 2} composite as the photocatalyst under UV light illumination, which was higher than that of P25.

  12. Investigation of gas-phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping

    SciTech Connect (OSTI)

    Bundy, R.D.; Munday, E.B.

    1991-01-01

    Construction of the gaseous diffusion plants (GDPs) was begun during World War 2 to produce enriched uranium for defense purposes. These plants, which utilized UF{sub 6} gas, were used primarily for this purpose through 1964. From 1959 through 1968, production shifted primarily to uranium enrichment to supply the nuclear power industry. Additional UF{sub 6}-handling facilities were built in feed and fuel-processing plants associated with the uranium enrichment process. Two of the five process buildings at Oak ridge were shut down in 1964. Uranium enrichment activities at Oak Ridge were discontinued altogether in 1985. In 1987, the Department of Energy (DOE) decided to proceed with a permanent shutdown of the Oak Ridge Gaseous Diffusion Plant (ORGDP). DOE intends to begin decommissioning and decontamination (D D) of ORGDP early in the next century. The remaining two GDPs are expected to be shut down during the next 10 to 40 years and will also require D D, as will the other UF{sub 6}-handling facilities. This paper presents an investigation of gas- phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping using powerful fluorinating reagents that convert nonvolatile uranium compounds to volatile UF{sub 6}. These reagents include ClF{sub 3}, F{sub 2}, and other compounds. The scope of D D at the GDPs, previous work of gas-phase decontamination, four concepts for using gas-phase decontamination, plans for further study of gas-phase decontamination, and the current status of this work are discussed. 13 refs., 15 figs.

  13. Determination of the response function for the Portsmouth Gaseous Diffusion Plant criticality accident alarm system neutron detectors

    SciTech Connect (OSTI)

    Tayloe, R.W. Jr.; Brown, A.S.; Dobelbower, M.C.; Woollard, J.E.

    1997-03-01

    Neutron-sensitive radiation detectors are used in the Portsmouth Gaseous Diffusion Plant`s (PORTS) criticality accident alarm system (CAAS). The CAAS is composed of numerous detectors, electronics, and logic units. It uses a telemetry system to sound building evacuation horns and to provide remote alarm status in a central control facility. The ANSI Standard for a CAAS uses a free-in-air dose rate to define the detection criteria for a minimum accident-of-concern. Previously, the free-in-air absorbed dose rate from neutrons was used for determining the areal coverge of criticality detection within PORTS buildings handling fissile materials. However, the free-in-air dose rate does not accurately reflect the response of the neutron detectors in use at PORTS. Because the cost of placing additional CAAS detectors in areas of questionable coverage (based on a free-in-air absorbed dose rate) is high, the actual response function for the CAAS neutron detectors was determined. This report, which is organized into three major sections, discusses how the actual response function for the PORTS CAAS neutron detectors was determined. The CAAS neutron detectors are described in Section 2. The model of the detector system developed to facilitate calculation of the response function is discussed in Section 3. The results of the calculations, including confirmatory measurements with neutron sources, are given in Section 4.

  14. Mechanistic study of the isotopic-exchange reaction between gaseous hydrogen and palladium hydride powder

    SciTech Connect (OSTI)

    Outka, D.A.; Foltz, G.W. (Sandia National Labs., Livermore, CA (USA))

    1991-07-01

    A detailed mechanism for the isotopic-exchange reaction between gaseous hydrogen and solid palladium hydride is developed which extends previous model for this reaction by specifically including surface reactions. The modeling indicates that there are two surface-related processes that contribute to the overall rate of exchange: the desorption of hydrogen from the surface and the exchange between surface hydrogen and bulk hydrogen. This conclusion is based upon measurements examining the effect of small concentrations of carbon monoxide were helpful in elucidating the mechanism. Carbon monoxide reversibly inhibits certain steps in the exchange; this slows the overall rate of exchange and changes the distribution of products from the reactor.

  15. Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report

    SciTech Connect (OSTI)

    1980-10-01

    This document is arranged in three volumes and reports on progress in the Liquefied Gaseous Fuels (LGF) Safety and Environmental Control Assessment Program made in fiscal Year (FY)-1979 and early FY-1980. Volume 3 contains reports from 6 government contractors on LPG, anhydrous ammonia, and hydrogen energy systems. Report subjects include: simultaneous boiling and spreading of liquefied petroleum gas (LPG) on water; LPG safety research; state-of-the-art of release prevention and control technology in the LPG industry; ammonia: an introductory assessment of safety and environmental control information; ammonia as a fuel, and hydrogen safety and environmental control assessment.

  16. 2013 GASEOUS IONS GORDON RESEARCH CONFERENCE, FEBRUARY 24 - MARCH 1, 2013

    SciTech Connect (OSTI)

    Williams, Evan

    2013-03-01

    The Gaseous Ions: Structures, Energetics and Reactions Gordon Research Conference will focus on ions and their interactions with molecules, surfaces, electrons, and light. The long-standing goal of our community is to develop new strategies for capturing complex molecular architectures as gas phase ions where they can be isolated, characterized and manipulated with great sensitivity. Emergent areas of interest include catalytic mechanisms, cryogenic processing of ions extracted from solution, ion fragmentation mechanisms, and new methods for ion formation and structural characterization. The conference will cover theoretical and experimental advances on systems ranging from model studies at the molecular scale to preparation of nanomaterials and characterization of large biological molecules.

  17. Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant

    Office of Environmental Management (EM)

    OH EM Project: On-Site Disposal Facility ETR Report Date: February 2008 ETR-12 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Why DOE-EM Did This Review The On-Site Waste Disposal Facility (OSWDF) is proposed for long-term containment of contaminated materials from the planned Decontamination and Decommissioning (D&D) activities at the

  18. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    1995-10-01

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal.

  19. Measurement of the electron antineutrino mass from the beta spectrum of gaseous tritium

    SciTech Connect (OSTI)

    Knapp, D.A.

    1986-12-01

    A measurement has been made of the mass of the electron antineutrino using the beta spectrum from a source of gaseous molecular tritium, and an upper limit of 36 eV/c/sup 2/ has been set on this mass. This measurement is the first upper limit on neutrino mass that does not rely on assumptions about the atomic configuration after the beta decay, and it has significantly smaller systematic errors associated with it than do previous measurements. 130 refs., 83 figs., 8 tabs.

  20. Paducah Gaseous Diffusion Plant Draft Paducah Environmental Assessment for Potential Land and Facilities Transfers

    Broader source: Energy.gov [DOE]

    DOE is evaluating the potential conveyance (lease, easement, and/or title transfer) of real property that may be determined to be excessed, underutilized or unneeded at the Paducah Gaseous Diffusion Plant (PGDP). After appropriate agency reviews, DOE could transfer PGDP real property to one or more entities for a range of economic development and/or recreational uses. DOEs potential action is designed to reduce the footprint of the site and the cost for maintenance of the site, providing opportunities for beneficial reuse. DOE prepared this Draft Environmental Assessment (EA) to analyze the potential environmental consequences associated with potential land and facilities transfers.

  1. Nuclear criticality safety evaluation of large cylinder cleaning operations in X-705, Portsmouth Gaseous diffusion Plant

    SciTech Connect (OSTI)

    Sheaffer, M.K.; Keeton, S.C.; Lutz, H.F.

    1995-06-01

    This report evaluates nuclear criticality safety for large cylinder cleaning operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current cleaning procedures and required hardware/equipment is presented, and documentation for large cylinder cleaning operations is identified and described. Control parameters, design features, administrative controls, and safety systems relevant to nuclear criticality are discussed individually, followed by an overall assessment based on the Double Contingency Principle. Recommendations for enhanced safety are suggested, and issues for increased efficiency are presented.

  2. Replacement of chlorofluorocarbons (CFCs) at the DOE gaseous diffusion plants: An assessment of global impacts

    SciTech Connect (OSTI)

    Socolof, M.L.; Saylor, R.E.; McCold, L.N.

    1994-06-01

    The US Department of Energy (DOE) formerly operated two gaseous diffusion plants (GDPs) for enriching uranium and maintained a third shutdown GDP. These plants maintain a large inventory of dichlorotetrafluorethane (CFC-114), a cholorofluorocarbon (CFC), as a coolant. The paper evaluates the global impacts of four alternatives to modify GDP coolant system operations for a three-year period beginning in 1996. Interim modification of GDP coolant system operations has the potential to reduce stratospheric ozone depletion from GDP coolant releases while a permanent solution is studied.

  3. APPLICATION OF THE LASAGNA{trademark} SOIL REMEDIATION TECHNOLOGY AT THE DOE PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect (OSTI)

    Swift, Barry D.; Tarantino, Joseph J., P. E.

    2003-02-27

    The Paducah Gaseous Diffusion Plant (PGDP), owned by the Department of Energy (DOE), has been enriching uranium since the early 1950s. The enrichment process involves electrical and mechanical components that require periodic cleaning. The primary cleaning agent was trichloroethene (TCE) until the late 1980s. Historical documentation indicates that a mixture of TCE and dry ice were used at PGDP for testing the integrity of steel cylinders, which stored depleted uranium. TCE and dry ice were contained in a below-ground pit and used during the integrity testing. TCE seeped from the pit and contaminated the surrounding soil. The Lasagna{trademark} technology was identified in the Record of Decision (ROD) as the selected alternative for remediation of the cylinder testing site. A public-private consortium formed in 1992 (including DOE, the U.S. Environmental Protection Agency, and the Kentucky Department for Environmental Protection, Monsanto, DuPont, and General Electric) developed the Lasagna{trademark} technology. This innovative technology employs electrokinetics to remediate soil contaminated with organics and is especially suited to sites with low permeability soils. This technology uses direct current to move water through the soil faster and more uniformly than hydraulic methods. Electrokinetics moves contaminants in soil pore water through treatment zones comprised of iron filings, where the contaminants are decomposed to basic chemical compounds such as ethane. After three years of development in the laboratory, the consortium field tested the Lasagna{trademark} process in several phases. CDM installed and operated Phase I, the trial installation and field test of a 150-square-foot area selected for a 120-day run in 1995. Approximately 98 percent of the TCE was removed. CDM then installed and operated the next phase (IIa), a year-long test on a 600-square-foot site. Completed in July 1997, this test removed 75 percent of the total volume of TCE down to a

  4. Project plan for the background soils project for the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    1995-09-01

    The Background Soils Project for the Paducah Gaseous Diffusion Plant (BSPP) will determine the background concentration levels of selected naturally occurring metals, other inorganics, and radionuclides in soils from uncontaminated areas in proximity to the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The data will be used for comparison with characterization and compliance data for soils, with significant differences being indicative of contamination. All data collected as part of this project will be in addition to other background databases established for the PGDP. The BSPP will address the variability of surface and near-surface concentration levels with respect to (1) soil taxonomical types (series) and (2) soil sampling depths within a specific soil profile. The BSPP will also address the variability of concentration levels in deeper geologic formations by collecting samples of geologic materials. The BSPP will establish a database, with recommendations on how to use the data for contaminated site assessment, and provide data to estimate the potential human and health and ecological risk associated with background level concentrations of potentially hazardous constituents. BSPP data will be used or applied as follows.

  5. Site-specific earthquake response analysis for Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Final report

    SciTech Connect (OSTI)

    Sykora, D.W.; Davis, J.J.

    1993-08-01

    The Paducah Gaseous Diffusion Plant (PGDP), owned by the US Department of Energy (DOE) and operated under contract by Martin Marietta Energy systems, Inc., is located southwest of Paducah, Kentucky. An aerial photograph and an oblique sketch of the plant are shown in Figures 1 and 2, respectively. The fenced portion of the plant consists of 748 acres. This plant was constructed in the 1950`s and is one of only two gaseous diffusion plants in operation in the United States; the other is located near Portsmouth, Ohio. The facilities at PGDP are currently being evaluated for safety in response to natural seismic hazards. Design and evaluation guidelines to evaluate the effects of earthquakes and other natural hazards on DOE facilities follow probabilistic hazard models that have been outlined by Kennedy et al. (1990). Criteria also established by Kennedy et al. (1990) classify diffusion plants as ``moderate hazard`` facilities. The US Army Engineer Waterways Experiment Station (WES) was tasked to calculate the site response using site-specific design earthquake records developed by others and the results of previous geotechnical investigations. In all, six earthquake records at three hazard levels and four individual and one average soil columns were used.

  6. The Radiochemical Analysis of Gaseous Samples (RAGS) Apparatus for Nuclear Diagnostics at the National Ignition Facility

    SciTech Connect (OSTI)

    Shaughnessy, D A; Velsko, C A; Jedlovec, D R; Yeamans, C B; Moody, K J; Tereshatov, E; Stoeffl, W; Riddle, A

    2012-05-11

    The RAGS (Radiochemical Analysis of Gaseous Samples) diagnostic apparatus was recently installed at the National Ignition Facility. Following a NIF shot, RAGS is used to pump the gas load from the NIF chamber for purification and isolation of the noble gases. After collection, the activated gaseous species are counted via gamma spectroscopy for measurement of the capsule areal density and fuel-ablator mix. Collection efficiency was determined by injecting a known amount of {sup 135}Xe into the NIF chamber, which was then collected with RAGS. Commissioning was performed with an exploding pusher capsule filled with isotopically enriched {sup 124}Xe and {sup 126}Xe added to the DT gas fill. Activated xenon species were recovered post-shot and counted via gamma spectroscopy. Results from the collection and commissioning tests are presented. The performance of RAGS allows us to establish a noble gas collection method for measurement of noble gas species produced via neutron and charged particle reactions in a NIF capsule.

  7. Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    The Assistant Secretary for Environment has responsibility for identifying, characterizing, and ameliorating the environmental, health, and safety issues and public concerns associated with commercial operation of specific energy systems. The need for developing a safety and environmental control assessment for liquefied gaseous fuels was identified by the Environmental and Safety Engineering Division as a result of discussions with various governmental, industry, and academic persons having expertise with respect to the particular materials involved: liquefied natural gas, liquefied petroleum gas, hydrogen, and anhydrous ammonia. This document is arranged in three volumes and reports on progress in the Liquefied Gaseous Fuels (LGF) Safety and Environmental Control Assessment Program made in Fiscal Year (FY)-1979 and early FY-1980. Volume 1 (Executive Summary) describes the background, purpose and organization of the LGF Program and contains summaries of the 25 reports presented in Volumes 2 and 3. Annotated bibliographies on Liquefied Natural Gas (LNG) Safety and Environmental Control Research and on Fire Safety and Hazards of Liquefied Petroleum Gas (LPG) are included in Volume 1.

  8. Type B Accident Investigation of the July 12, 2007, Forklift and Pedestrian Accident at the Paducah Gaseous Diffusion Plant, Portsmouth/Paducah Project Office

    Broader source: Energy.gov [DOE]

    On July 12, 2007, an employee at the Paducah Gaseous Diffusion Plant (PGDP) was walking alone during her scheduled lunch period.

  9. Olefins from High Yield Autothermal Reforming Process

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2012-03-06

    The autothermal reforming method employs an improved dehydrogenation process for olefin production, utilizing platinum based dehydrogenation catalysts in the presence of oxygen. The autothermal process requires no external energy input following ignition and produces high conversions and yields from the gaseous hydrocarbon feeds. Autothermal reforming is an effective solution that meets the high demands of the chemical market industry by producing high yields...

  10. Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels

    DOE Patents [OSTI]

    Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K

    2014-12-02

    A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.

  11. Reassessment of liquefaction potential and estimation of earthquake- induced settlements at Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Final report

    SciTech Connect (OSTI)

    Sykora, D.W.; Yule, D.E.

    1996-04-01

    This report documents a reassessment of liquefaction potential and estimation of earthquake-induced settlements for the U.S. Department of Energy (DOE), Paducah Gaseous Diffusion Plant (PGDP), located southwest of Paducah, KY. The U.S. Army Engineer Waterways Experiment Station (WES) was authorized to conduct this study from FY91 to FY94 by the DOE, Oak Ridge Operations (ORO), Oak Ridge, TN, through Inter- Agency Agreement (IAG) No. DE-AI05-91OR21971. The study was conducted under the Gaseous Diffusion Plant Safety Analysis Report (GDP SAR) Program.

  12. Three-electrode low pressure discharge apparatus and method for uniform ionization of gaseous media. [CO/sub 2/ laser oscillator and pulse smoother

    DOE Patents [OSTI]

    McLellan, E.J.

    1980-10-17

    Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode and cathode to below breakdown voltage using a dc voltage source. An array of resistors or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO/sub 2/ laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.

  13. Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves

    DOE Patents [OSTI]

    Efthimion, Philip C.; Helfritch, Dennis J.

    1989-11-28

    An apparatus and method for creating high temperature plasmas for enhanced chemical processing of gaseous fluids, toxic chemicals, and the like, at a wide range of pressures, especially at atmospheric and high pressures includes an electro-magnetic resonator cavity, preferably a reentrant cavity, and a wave guiding structure which connects an electro-magnetic source to the cavity. The cavity includes an intake port and an exhaust port, each having apertures in the conductive walls of the cavity sufficient for the intake of the gaseous fluids and for the discharge of the processed gaseous fluids. The apertures are sufficiently small to prevent the leakage of the electro-magnetic radiation from the cavity. Gaseous fluid flowing from the direction of the electro-magnetic source through the guiding wave structure and into the cavity acts on the plasma to push it away from the guiding wave structure and the electro-magnetic source. The gaseous fluid flow confines the high temperature plasma inside the cavity and allows complete chemical processing of the gaseous fluids at a wide range of pressures.

  14. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1990 to November 1992

    SciTech Connect (OSTI)

    Kszos, L.A.

    1994-03-01

    On September 23, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Lab (ORNL) added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in identifying those effluents with the potential for adversely affecting instream fauna, assessing the ecological health of receiving streams, guiding plans for remediation, and protecting human health. In September 1992, a renewed permit was issued which requires toxicity monitoring of continuous and intermittent outfalls on a quarterly basis. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities. This report includes ESD/ORNL activities occurring from December 1990 to November 1992.

  15. Report on the Biological Monitoring Program at Paducah Gaseous Diffusion Plant December 1992--December 1993

    SciTech Connect (OSTI)

    Kszos, L.A.; Hinzman, R.L.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1995-06-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The goals of BMP are to demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, characterize potential health and environmental impacts, document the effects of pollution abatement facilities on stream biota, and recommend any program improvements that would increase effluent treatability. The BMP for PGDP consists of three major tasks: effluent and ambient toxicity monitoring, bioaccumulation studies, and ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1992 to December 1993, although activities conducted outside this time period are included as appropriate.

  16. Paducah Gaseous Diffusion Plant Annual Site Environmental Report summary for 1993

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    This report contains summaries of the environmental programs at Paducah Gaseous Diffusion Plant, environmental monitoring and the results, and the impact of operations on the environment and the public for 1993. The environmental monitoring program at Paducah includes effluent monitoring and environmental surveillance. Effluent monitoring is measurement of releases as they occur. Contaminants are released through either airborne emissions or liquids discharged from the plant. These releases occur as part of normal site operations, such as cooling water discharged from the uranium enrichment cascade operations or airborne releases from ventilation systems. In the event of system failure, this monitoring provides timely warning so that corrective action can be taken before releases reach an unsafe level. Environmental surveillance tracks the dispersion of materials into the environment after they have been released. This involves the collection of samples from various media, such as water, soil, vegetation, and food crops, and the analysis of these samples for certain radionuclides, chemicals, and metals.

  17. Seismically-induced soil amplification at the DOE Paducah Gaseous Diffusion Plant site

    SciTech Connect (OSTI)

    Sykora, D.W.; Haynes, M.E. . Geotechnical Lab.); Brock, W.R.; Hunt, R.J.; Shaffer, K.E. )

    1991-01-01

    A site-specific earthquake site response (soil amplification) study is being conducted for the Department of Energy (DOE), Paducah Gaseous Diffusion Plant (PGDP). This study is pursuant to an upgraded Final Safety Analysis Report in accordance with requirements specified by DOE. The seismic hazard at PGDP is dominated by the New Madrid Seismic Zone. Site-specific synthetic earthquake records developed by others were applied independently to four soil columns with heights above baserock of about 325 ft. The results for the 1000-year earthquake event indicate that the site period is between 1.0 and 1.5 sec. Incident shear waves are amplified at periods of motion greater than 0.15 sec. The peak free-field horizontal acceleration, occurring at very low periods, is 0.28 g. 13 refs., 13 figs.

  18. Local drainage analyses of the Paducah and Portsmouth Gaseous Diffusion Plants during an extreme storm

    SciTech Connect (OSTI)

    Johnson, R.O.; Wang, J.C.; Lee, D.W.

    1993-11-01

    Local drainage analyses have been performed for the Paducah and Portsmouth Gaseous Diffusion Plants during an extreme storm having an approximate 10,000-yr recurrence interval. This review discusses the methods utilized to accomplish the analyses in accordance with US Department of Energy (DOE) design and evaluation guidelines, and summarizes trends, results, generalizations, and uncertainties applicable to other DOE facilities. Results indicate that some culverts may be undersized, and that the storm sewer system cannot drain the influx of precipitation from the base of buildings. Roofs have not been designed to sustain ponding when the primary drainage system is clogged. Some underground tunnels, building entrances, and ground level air intakes may require waterproofing.

  19. Portsmouth Gaseous Diffusion Plant Annual Site Environmental Report summary for 1993

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    This report contains summaries of the environmental programs at Paducah Gaseous Diffusion Plant, environmental monitoring and the results, and the impact of operations on the environment and the public for 1993. The environmental monitoring program at Paducah includes effluent monitoring and environmental surveillance. Effluent monitoring is measurement of releases as they occur. Contaminants are released through either airborne emissions or liquids discharged from the plant. These releases occur as part of normal site operations, such as cooling water discharged from the uranium enrichment cascade operations or airborne releases from ventilation systems. In the event of system failure, this monitoring provides timely warning so that corrective action can be taken before releases reach an unsafe level. Environmental surveillance tracks the dispersion of materials into the environment after they have been released. This involves the collection of samples from various media, such as water, soil, vegetation, and food crops, and the analysis of these samples for certain radionuclides, chemicals, and metals.

  20. Apparatus for recovering gaseous hydrocarbons from hydrocarbon-containing solid hydrates

    DOE Patents [OSTI]

    Elliott, Guy R. B. (Los Alamos, NM); Barraclough, Bruce L. (Santa Fe, NM); Vanderborgh, Nicholas E. (Los Alamos, NM)

    1984-01-01

    A method and apparatus are provided for producing gaseous hydrocarbons from formations comprising solid hydrocarbon hydrates located under either a body of land or a body of water. The vast natural resources of such hydrocarbon hydrates can thus now be economically mined. Relatively warm brine or water is brought down from an elevation above that of the hydrates through a portion of the apparatus and passes in contact with the hydrates, thus melting them. The liquid then continues up another portion of the apparatus, carrying entrained hydrocarbon vapors in the form of bubbles, which can easily be separated from the liquid. After a short startup procedure, the process and apparatus are substantially self-powered.

  1. Liquefied gaseous fuels safety and environmental control assessment program: third status report

    SciTech Connect (OSTI)

    Not Available

    1982-03-01

    This Status Report contains contributions from all contractors currently participating in the DOE Liquefied Gaseous Fuels (LG) Safety and Environmental Control Assessment Program and is presented in two principal sections. Section I is an Executive Summary of work done by all program participants. Section II is a presentation of fourteen individual reports (A through N) on specific LGF Program activities. The emphasis of Section II is on research conducted by Lawrence Livermore National Laboratory (Reports A through M). Report N, an annotated bibliography of literature related to LNG safety and environmental control, was prepared by Pacific Northwest Laboratory (PNL) as part of its LGF Safety Studies Project. Other organizations who contributed to this Status Report are Aerojet Energy Conversion Company; Applied Technology Corporation; Arthur D. Little, Incorporated; C/sub v/ International, Incorporated; Institute of Gas Technology; and Massachusetts Institute of Technology. Separate abstracts have been prepared for Reports A through N for inclusion in the Energy Data Base.

  2. Composition, apparatus, and process, for sorption of gaseous compounds of group II-VII elements

    DOE Patents [OSTI]

    Tom, Glenn M.; McManus, James V.; Luxon, Bruce A.

    1991-08-06

    Scavenger compositions are disclosed, which have utility for effecting the sorptive removal of hazardous gases containing Group II-VII elements of the Periodic Table, such as are widely encountered in the manufacture of semiconducting materials and semiconductor devices. Gas sorption processes including the contacting of Group II-VII gaseous compounds with such scavenger compositions are likewise disclosed, together with critical space velocity contacting conditions pertaining thereto. Further described are gas contacting apparatus, including mesh structures which may be deployed in gas contacting vessels containing such scavenger compositions, to prevent solids from being introduced to or discharged from the contacting vessel in the gas stream undergoing treatment. A reticulate heat transfer structure also is disclosed, for dampening localized exothermic reaction fronts when gas mixtures comprising Group II-VII constituents are contacted with the scavenger compositions in bulk sorption contacting vessels according to the invention.

  3. Study of technetium uptake in vegetation in the vicinity of the Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Acox, T.A.

    1982-01-01

    Technetium-99 was measured in vegetation and soil collected on and near the Portsmouth Gaseous Diffusion Plant to obtain an estimate of the soil-to-vegetation concentration factors. The concentration factors appear to be lognormally distributed with a geometric mean of 3.4 (Bq/kg dry wt. tissue per Bq/kg dry wt. soil) and a geometric standard deviation of 4.7. A dose commitment was calculated using a hypothetical 3.7 x 10/sup 10/ Bq Tc-99/year release and the actual CY-1981 concentration release of Tc-99. The radiological significance of Tc-99 in the terrestial food chain is substantially less than previously believed.

  4. Absorption spectrum and solar photodissociation of gaseous nitrous acid in the actinic wavelength region

    SciTech Connect (OSTI)

    Vasudev, R. )

    1990-11-01

    The absorption cross section of gaseous nitrous acid (HONO) in the actinic wavelength region ({lambda} {ge} 290 nm) of the solar radiation is mapped through laser photodissociation experiments, HONO is photodissociated by a tunable ultraviolet beam, and the OH product is monitored through fluorescence induced by a frequency-double dye laser. The absorption of HONO is mapped by scanning the photolysis wavelength. Since this technique yields relative cross-sections, the authors calibrate the measurements with previous measurements of absolute cross-section at 354 nm (because there is reasonable agreement among previous measurements at this wavelength). The present experimental approach is insensitive to the presence of NO{sub 2}, which apparently contributed to inaccuracies in some of the previous conventional measurements on HONO absorption.

  5. A probabilistic safety analysis of UF{sub 6} handling at the Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Boyd, G.J.; Lewis, S.R.; Summitt, R.L.

    1991-12-31

    A probabilistic safety study of UF{sub 6} handling activities at the Portsmouth Gaseous Diffusion Plant has recently been completed. The analysis provides a unique perspective on the safety of UF{sub 6} handling activities. The estimated release frequencies provide an understanding of current risks, and the examination of individual contributors yields a ranking of important plant features and operations. Aside from the probabilistic results, however, there is an even more important benefit derived from a systematic modeling of all operations. The integrated approach employed in the analysis allows the interrelationships among the equipment and the required operations to be explored in depth. This paper summarizes the methods used in the study and provides an overview of some of the technical insights that were obtained. Specific areas of possible improvement in operations are described.

  6. Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals

    DOE Patents [OSTI]

    Hobson, D.O.; Alexeff, I.; Sikka, V.K.

    1987-08-10

    Method and apparatus for removal of nonelectrically-conducting gaseous, liquid, and particulate contaminants from molten metal compositions by applying a force thereto. The force (commonly referred to as the Lorentz Force) exerted by simultaneous application of an electric field and a magnetic field on a molten conductor causes an increase, in the same direction as the force, in the apparent specific gravity thereof, but does not affect the nonconducting materials. This difference in apparent densities cause the nonconducting materials to ''float'' in the opposite direction from the Lorentz Force at a rapid rate. Means are further provided for removal of the contaminants and prevention of stirring due to rotational forces generated by the applied fields. 6 figs.

  7. Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals

    DOE Patents [OSTI]

    Hobson, David O.; Alexeff, Igor; Sikka, Vinod K.

    1988-01-01

    Method and apparatus for removal of nonelectrically-conducting gaseous, liquid, and particulate contaminants from molten metal compositions by applying a force thereto. The force (commonly referred to as the Lorentz Force) exerted by simultaneous application of an electric field and a magnetic field on a molten conductor causes an increase, in the same direction as the force, in the apparent specific gravity thereof, but does not affect the nonconducting materials. This difference in apparent densities cause the nonconducting materials to "float" in the opposite direction from the Lorentz Force at a rapid rate. Means are further provided for removal of the contaminants and prevention of stirring due to rotational forces generated by the applied fields.

  8. Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report

    SciTech Connect (OSTI)

    1980-10-01

    Volume 2 consists of 19 reports describing technical effort performed by Government Contractors in the area of LNG Safety and Environmental Control. Report topics are: simulation of LNG vapor spread and dispersion by finite element methods; modeling of negatively buoyant vapor cloud dispersion; effect of humidity on the energy budget of a liquefied natural gas (LNG) vapor cloud; LNG fire and explosion phenomena research evaluation; modeling of laminar flames in mixtures of vaporized liquefied natural gas (LNG) and air; chemical kinetics in LNG detonations; effects of cellular structure on the behavior of gaseous detonation waves under transient conditions; computer simulation of combustion and fluid dynamics in two and three dimensions; LNG release prevention and control; the feasibility of methods and systems for reducing LNG tanker fire hazards; safety assessment of gelled LNG; and a four band differential radiometer for monitoring LNG vapors.

  9. Surfactant-enhanced aquifer remediation at the Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Jackson, R.E.; Londergan, J.T.; Pickens, J.F.

    1995-10-01

    Many DOE facilities are situated in areas of sand and gravel which have become polluted with dense, non-aqueous phase liquids or DNAPLs, such as chlorinated solvents, from the various industrial operations at these facilities. The presence of such DNAPLs in sand and gravel aquifers is now recognized as the principal factor in the failure of standard ground-water remediation methods. The principal objective of this study, as stated in the Statement of Work of the contract (DE-AC21-92MC29111), is to demonstrate that multi-component DNAPLs can be readily solubilized in sand and gravel aquifers by dilute surfactant solutions. The specific objectives of the contract are: to identify dilute surfactants or blends of surfactants in the laboratory that will efficiently extract multi-component DNAPLs from sand and gravel aquifers by micellar solubilization (Phase 1); 2. to test the efficacy of the identified surfactants or blends of surfactants to solubilize in situ perchloroethylene (PCE) and trichloroethylene (TCE) DNAPLs by the injection and the subsequent extraction through an existing well or wells at a government-owned contaminated site (Phase 1); and 3. to demonstrate the full-scale operation of this remedial technology at a government-owned contaminated site (Phase 2). Specific objective number 1 has been completed and reported to DOE. However, the results of the test referred to in specific objective number 2, conducted at Paducah Gaseous Diffusion Plant in 1994, were inconclusive. Following this first test, it was decided by DOE and INTERA to move the test site elsewhere due to difficulties with obtaining core samples of the sand and gravel aquifer containing the DNAPL and with ascertaining the location of the DNAPL relative to the injection well. The solubilization test at the Portsmouth Gaseous Diffusion Plant (PORTS) will constitute the second test of Phase 1 of this contract.

  10. Photo-oxidation of gaseous ethanol on photocatalyst prepared by acid leaching of titanium oxide/hydroxyapatite composite

    SciTech Connect (OSTI)

    Ono, Y.; Rachi, T.; Yokouchi, M.; Kamimoto, Y.; Nakajima, A.; Okada, K.

    2013-06-01

    Highlights: ► Photocatalyst powder was prepared by acid leaching of TiO{sub 2}/apatite composite. ► The photocatalytic activity was evaluated from in situ FT-IR study using ethanol. ► Apatite in the composite had positive effect for the photo-oxidation of ethanol. ► The enhanced oxidation rate was explained by the difference in deactivation rate. - Abstract: Highly active photocatalysts were synthesized by leaching of heat-treated titanium dioxide (TiO{sub 2})/hydroxyapatite (HAp) powder with hydrochloric acid at 0.25, 0.50, 0.75 mol/l, and their photocatalytic activities were evaluated from in situ Fourier transform infrared (FT-IR) study of photo-oxidation of gaseous ethanol. By changing the acid concentration, the TiO{sub 2}/HAp composite had different atomic ratios of Ca/Ti (0.0–2.8) and P/Ti (0.3–2.1). It was found that phosphate group remained on the surface of TiO{sub 2} particle even in the sample treated with concentrated acid (0.75 mol/l). These acid-treated samples showed higher rates for ethanol photo-oxidation than the commercial TiO{sub 2} powder, Degussa P25. The highest rate was obtained in the TiO{sub 2}/HAp composite treated with the dilute (0.25 mol/l) acid in spite of its low content of TiO{sub 2} photocatalyst. This enhanced photocatalytic activity was attributed to the result that the deactivation with repeated injections of ethanol gas was suppressed in the TiO{sub 2}/HAp composites compared with the TiO{sub 2} powders.

  11. Unattended Monitoring of HEU Production in Gaseous Centrifuge Enrichment Plants using Automated Aerosol Collection and Laser-based Enrichment Assay

    SciTech Connect (OSTI)

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-08-11

    Nuclear power is enjoying rapid growth as government energy policies and public demand shift toward low carbon energy production. Pivotal to the global nuclear power renaissance is the development and deployment of robust safeguards instrumentation that allows the limited resources of the IAEA to keep pace with the expansion of the nuclear fuel cycle. Undeclared production of highly enriched uranium (HEU) remains a primary proliferation concern for modern gaseous centrifuge enrichment plants (GCEPs), due to their massive separative work unit (SWU) processing power and comparably short cascade equilibrium timescale. The Pacific Northwest National Laboratory is developing an unattended safeguards instrument, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely detection of HEU production within a GCEP. This approach is based on laser vaporization of aerosol particulates, followed by laser spectroscopy to characterize the uranium enrichment level. Our prior investigation demonstrated single-shot detection sensitivity approaching the femtogram range and relative isotope ratio uncertainty better than 10% using gadolinium as a surrogate for uranium. In this paper we present measurement results on standard samples containing traces of depleted, natural, and low enriched uranium, as well as measurements on aerodynamic size uranium particles mixed in background materials (e.g., dust, minerals, soils). Improvements and optimizations in the detection electronics, signal timing, calibration, and laser alignment have lead to significant improvements in detection sensitivity and enrichment accuracy, contributing to an overall reduction in the false alarm probability. The sample substrate media was also found to play a significant role in facilitating laser-induced vaporization and the production of energetic plasma conditions, resulting in ablation optimization and further improvements in the isotope abundance sensitivity.

  12. Compensation for phase mismatch of high harmonics by the group-velocity mismatch

    SciTech Connect (OSTI)

    Kulagin, I A; Kim, V V; Usmanov, T

    2011-09-30

    A mechanism providing an essential enhancement of the conversion efficiency of a single high harmonic in gaseous media is first proposed using an appropriate change in the phase mismatch and group-velocity mismatch in the vicinity of resonance.

  13. Uranium isotope exchange between gaseous UF{sub 6} and solid UF{sub 5}

    SciTech Connect (OSTI)

    Yato, Yumio; Kishimoto, Yoichiro; Sasao, Nobuyuki; Suto, Osamu; Funasaka, Hideyuki

    1996-08-01

    Based on a collision model, a new rate equation is derived for uranium isotope exchange between gaseous UF{sub 6} and solid UF{sub 5} by considering the number of UF{sub 5} molecules on the solid surface to be dependent on time. The reaction parameters included in the equation are determined from the experimental data and compared with the previous ones. A remarkable agreement is found between the particle sizes of UF{sub 5} estimated from the reaction parameter and from the direct observation with an electron microscope. The rate equation given in this work fully satisfies the related mass conservation and furthermore includes explicitly the terms related to the UF{sub 6} density and the mean size of UF{sub 5} particles, both of which are considered to cause an important effect on the reaction. This remarkable feature facilitates the simulation studies on this reaction under various conditions. The long term behavior of a simulated exchange reaction is studied under the condition considered to be close to that in a recovery zone of the MLIS process. The result indicates that the reaction is virtually limited to the solid surface under this conditions and thus the depletion of {sup 235}UF{sub 5} concentration averaged over the whole UF{sub 5} particles is not significant even after 200 h of the exchange reaction.

  14. Environmental Survey preliminary report, Oak Ridge Gaseous Diffusion Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy's (DOE) Oak Ridge Gaseous Diffusion Plant (ORGDP) conducted March 14 through 25, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental risk associated with ORGDP. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ORGDP, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during is on-site activities. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory (INEL). When completed, the results will be incorporated into the ORGDP Survey findings for in inclusion into the Environmental Survey Summary Report. 120 refs., 41 figs., 74 tabs.

  15. Modeling of temporal behavior of isotopic exchange between gaseous hydrogen and palladium hydride power

    SciTech Connect (OSTI)

    Melius, C F; Foltz, G W

    1987-01-01

    A parametric rate-equation model is described which depicts the time dependent behavior of the isotopic exchange process occurring between the solid and gas phases in gaseous hydrogen (deuterium) flows through packed-powder palladium deuteride (hydride) beds. The exchange mechanism is assumed to be rate-limited by processes taking place on the surface of the powder. The fundamental kinetic parameter of the model is the isotopic exchange probability, p, which is the probability that an isotopic exchange event occurs during a collision of a gas phase atom with the surface. Isotope effects between the gas and solid phases are explicitly included in terms of the isotope separation factor, ..cap alpha... Results of the model are compared with recent experimental measurements of isotope exchange in the ..beta..-phase hydrogen/palladium system and, using a literature value of ..cap alpha.. = 2.4, a good description of the experimental data is obtained for p approx. 10/sup -7/. In view of the importance of the isotope effects in the hydrogen/palladium system and the range of ..cap alpha.. values reported for the ..beta..-phase in the literature, the sensitivity of the model results to a variation in the value of ..cap alpha.. is examined.

  16. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1993 to December 1994

    SciTech Connect (OSTI)

    Kszos, L.A.

    1996-05-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The PGDP BMP was implemented in 1987 by the University of Kentucky. Research staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) served as reviewers and advisers to the University of Kentucky. Beginning in fall 1991, ESD added data collection and report preparation to its responsibilities for the PGDP BMP. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, (3) document the effects of pollution abatement facilities on stream biota, and (4) recommend any program improvements that would increase effluent treatability. In September 1992, a renewed Kentucky Pollutant Discharge Elimination System (KPDES) permit was issued to PGDP. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1993 to December 1994, although activities conducted outside this time period are included as appropriate.

  17. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant, January--December 1996

    SciTech Connect (OSTI)

    Kszos, L.A.; Konetsky, B.K.; Peterson, M.J.; Petrie, R.B.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1997-06-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous diffusion Plant (PGDP). The PGDP BMP was conducted by the University of Kentucky Between 1987 and 1992 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 to present. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, and (3) document the effects of pollution abatement facilities on stream. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report focuses on ESD activities occurring from January 1996 to December 1996, although activities conducted outside this time period are included as appropriate.

  18. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant, January--December 1997

    SciTech Connect (OSTI)

    Kszos, L.A.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.

    1998-03-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). A plan for the biological monitoring of the receiving streams was implemented in 1987 and consisted of ecological surveys, toxicity monitoring of effluents and receiving streams, evaluation of bioaccumulation of trace contaminants in biota, and supplemental chemical characterization of effluents. Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in (1) identifying those effluents with the potential for adversely affecting instream fauna, (2) assessing the ecological health of receiving streams, and (3) guiding plans for remediation and protecting human health. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of benthic macroinvertebrate communities and fish. With the exception of the benthic macroinvertebrate community surveys, this report focuses on activities from January to December 1997.

  19. Paducah Gaseous Diffusion Plant proposed pilot pump-and-treat project. Final report

    SciTech Connect (OSTI)

    Bodenstein, G.W.; Bonczek, R.R.; Early, T.O.; Huff, D.D.; Jones, K.S.; Nickelson, M.D.; Rightmire, C.T.

    1994-01-01

    On March 23, 1992, R.C. Sleeman of the Department of Energy, Oak Ridge Operations Office requested that a Groundwater Corrective Actions Team be assembled to evaluate the technical merit of and the need to implement a proposed groundwater pump-and-treat demonstration project for the Northwest contaminant plume at the Paducah Gaseous Diffusion Plant. In addition to other suggestions, the Team recommended that further characterization data be obtained for the plume. In the Fall of 1993 additional, temporary well points were installed so that groundwater samples from the shallow groundwater system and the Regional Gravel Aquifer (RGA) could be obtained to provide a three-dimensional view of groundwater contamination in the region of the plume. The results indicate that pure-phase DNAPL (trichloroethylene [TCE]) probably are present in the source area of the plume and extend in depth to the base of the RGA. Because the DNAPL likely will represent a source of a dissolved phase plume for decades it is essential that source containment take place. The Team recommends that although effective hydraulic containment can be achieved, other alternatives should be considered. For example, recent advances in emplacing low permeability barrier walls to depths of 100 to 150 ft make it possible to consider encirclement of the source of the Northwest plume.

  20. Determination of operating limits for radionuclides for a proposed landfill at Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Wang, J.C.; Lee, D.W.; Ketelle, R.H.; Lee, R.R.; Kocher, D.C.

    1994-05-24

    The operating limits for radionuclides in sanitary and industrial wastes were determined for a proposed landfill at the Paducah Gaseous Diffusion Plant (PGDP), Kentucky. These limits, which may be very small but nonzero, are not mandated by law or regulation but are needed for rational operation. The approach was based on analyses of the potential contamination of groundwater at the plant boundary and the potential exposure to radioactivity of an intruder at the landfill after closure. The groundwater analysis includes (1) a source model describing the disposal of waste and the release of radionuclides from waste to the groundwater, (2) site-specific groundwater flow and contaminant transport calculations, and (3) calculations of operating limits from the dose limit and conversion factors. The intruder analysis includes pathways through ingestion of contaminated vegetables and soil, external exposure to contaminated soil, and inhalation of suspended activity from contaminated soil particles. In both analyses, a limit on annual effective dose equivalent of 4 mrem (0.04 mSv) was adopted. The intended application of the results is to refine the radiological monitoring standards employed by the PGDP Health Physics personnel to determine what constitutes radioactive wastes, with concurrence of the Commonwealth of Kentucky.

  1. Operating limit study for the proposed solid waste landfill at Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Lee, D.W.; Wang, J.C.; Kocher, D.C.

    1995-06-01

    A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) would accept wastes generated during normal operations that are identified as non-radioactive. These wastes may include small amounts of radioactive material from incidental contamination during plant operations. A site-specific analysis of the new solid waste landfill is presented to determine a proposed operating limit that will allow for waste disposal operations to occur such that protection of public health and the environment from the presence of incidentally contaminated waste materials can be assured. Performance objectives for disposal were defined from existing regulatory guidance to establish reasonable dose limits for protection of public health and the environment. Waste concentration limits were determined consistent with these performance objectives for the protection of off-site individuals and inadvertent intruders who might be directly exposed to disposed wastes. Exposures of off-site individuals were estimated using a conservative, site-specific model of the groundwater transport of contamination from the wastes. Direct intrusion was analyzed using an agricultural homesteader scenario. The most limiting concentrations from direct intrusion or groundwater transport were used to establish the concentration limits for radionuclides likely to be present in PGDP wastes.

  2. Statistics for the Relative Detectability of Chemicals in Weak Gaseous Plumes in LWIR Hyperspectral Imagery

    SciTech Connect (OSTI)

    Metoyer, Candace N.; Walsh, Stephen J.; Tardiff, Mark F.; Chilton, Lawrence

    2008-10-30

    The detection and identification of weak gaseous plumes using thermal imaging data is complicated by many factors. These include variability due to atmosphere, ground and plume temperature, and background clutter. This paper presents an analysis of one formulation of the physics-based model that describes the at-sensor observed radiance. The motivating question for the analyses performed in this paper is as follows. Given a set of backgrounds, is there a way to predict the background over which the probability of detecting a given chemical will be the highest? Two statistics were developed to address this question. These statistics incorporate data from the long-wave infrared band to predict the background over which chemical detectability will be the highest. These statistics can be computed prior to data collection. As a preliminary exploration into the predictive ability of these statistics, analyses were performed on synthetic hyperspectral images. Each image contained one chemical (either carbon tetrachloride or ammonia) spread across six distinct background types. The statistics were used to generate predictions for the background ranks. Then, the predicted ranks were compared to the empirical ranks obtained from the analyses of the synthetic images. For the simplified images under consideration, the predicted and empirical ranks showed a promising amount of agreement. One statistic accurately predicted the best and worst background for detection in all of the images. Future work may include explorations of more complicated plume ingredients, background types, and noise structures.

  3. An Aerial Radiological Survey of the Portsmouth Gaseous Diffusion Plant and Surrounding Area, Portsmouth, Ohio

    SciTech Connect (OSTI)

    Namdoo Moon

    2007-12-01

    An aerial radiological survey was conducted over the 16 square-mile (~41 square-kilometer) area surrounding the Portsmouth Gaseous Diffusion Plant. The survey was performed in August 2007 utilizing a large array of helicopter mounted sodium iodide detectors. The purpose of the survey was to update the previous radiological survey levels of the environment and surrounding areas of the plant. A search for a missing radium-226 source was also performed. Implied exposure rates, man-made activity, and excess bismuth-214 activity, as calculated from the aerial data are presented in the form of isopleth maps superimposed on imagery of the surveyed area. Ground level and implied aerial exposure rates for nine specific locations are compared. Detected radioisotopes and their associated gamma ray exposure rates were consistent with those expected from normal background emitters. At specific plant locations described in the report, man-made activity was consistent with the operational histories of the location. There was no spectral activity that would indicate the presence of the lost source.

  4. Replacement of chlorofluorocarbons at the DOE gaseous diffusion plants: An assessment of global impacts

    SciTech Connect (OSTI)

    Socolof, M.L.; McCold, L.N.; Saylor, R.E.

    1997-01-01

    Three gaseous diffusion plants (GDPs) for enriching uranium maintain a large inventory of chlorofluorocarbon-114 (CFC-114) as a coolant. To address the continued use of CFC-114, an ozone-depleting substance, the US Department of Energy (DOE) considered introducing perfluorocarbons (PFCs) by the end of 1995. These PFCs would not contribute to stratospheric ozone depletion but would be larger contributors to global warming than would CFC-114. The paper reports the results of an assessment of the global impacts of four alternatives for modifying GDP coolant system operations over a three-year period beginning in 1996. The overall contribution of GDP coolant releases to impacts on ozone depletion and global warming were quantified by parameters referred to as ozone-depletion impact and global-warming impact. The analysis showed that these parameters could be used as surrogates for predicting global impacts to all resources and could provide a framework for assessing environmental impacts of a permanent coolant replacement, eliminating the need for subsequent resource-specific analyses.

  5. Activities to support the liquefied gaseous fuels spill test facility program. Final report

    SciTech Connect (OSTI)

    Sheesley, D.; King, S.B.; Routh, T.

    1997-03-01

    Approximately a hundred years ago the petrochemical industry was in its infancy, while the chemical industry was already well established. Today, both of these industries, which are almost indistinguishable, are a substantial part of the makeup of the U.S. economy and the lifestyle we enjoy. It is difficult to identify a single segment of our daily lives that isn`t affected by these industries and the products or services they make available for our use. Their survival and continued function in a competitive world market are necessary to maintain our current standard of living. The occurrence of accidents in these industries has two obvious effects: (1) the loss of product during the accident and future productivity because of loss of a portion of a facility or transport medium, and (2) the potential loss of life or injury to individuals, whether workers, emergency responders, or members of the general public. A great deal of work has been conducted at the Liquefied Gaseous Fuels Spill test Facility (LGFSTF) on hazardous spills. WRI has conducted accident investigations as well as provided information on the research results via the internet and bibliographies.

  6. FCC046: A CANDIDATE GASEOUS POLAR RING DWARF ELLIPTICAL GALAXY IN THE FORNAX CLUSTER

    SciTech Connect (OSTI)

    De Rijcke, S.; Buyle, P.; Koleva, M.

    2013-06-20

    FCC046 is a Fornax Cluster dwarf elliptical galaxy. Optical observations have shown that this galaxy, besides an old and metal-poor stellar population, also contains a very young centrally concentrated population and is actively forming stars, albeit at a very low level. Here, we report on 21 cm observations of FCC046 with the Australia Telescope Compact Array which we conducted in the course of a small survey of Fornax Cluster early-type dwarf galaxies. We have discovered a {approx}10{sup 7} M{sub Sun} H I cloud surrounding FCC046. We show that the presence of this significant gas reservoir offers a concise explanation for this galaxy's optical morphological and kinematical properties. Surprisingly, the H I gas, as evidenced by its morphology and its rotational motion around the galaxy's optical major axis, is kinematically decoupled from the galaxy's stellar body. This is the first time such a ring of gaseous material in minor-axis rotation is discovered around a dwarf galaxy.

  7. PAndAS IN THE MIST: THE STELLAR AND GASEOUS MASS WITHIN THE HALOS OF M31 AND M33

    SciTech Connect (OSTI)

    Lewis, Geraint F.; Braun, Robert; McConnachie, Alan W.; Irwin, Michael J.; Chapman, Scott C.; Ibata, Rodrigo A.; Martin, Nicolas F.; Ferguson, Annette M. N.; Fardal, Mark; Dubinski, John; Widrow, Larry; Mackey, A. Dougal; Babul, Arif; Tanvir, Nial R.; Rich, Michael

    2013-01-20

    Large-scale surveys of the prominent members of the Local Group have provided compelling evidence for the hierarchical formation of massive galaxies, revealing a wealth of substructure that is thought to be the debris from ancient and ongoing accretion events. In this paper, we compare two extant surveys of the M31-M33 subgroup of galaxies: the Pan-Andromeda Archaeological Survey of the stellar structure, and a combination of observations of the H I gaseous content, detected at 21 cm. Our key finding is a marked lack of spatial correlation between these two components on all scales, with only a few potential overlaps between stars and gas. The paucity of spatial correlation significantly restricts the analysis of kinematic correlations, although there does appear to be H I kinematically associated with the Giant Stellar Stream where it passes the disk of M31. These results demonstrate that different processes must significantly influence the dynamical evolution of the stellar and H I components of substructures, such as ram pressure driving gas away from a purely gravitational path. Detailed modeling of the offset between the stellar and gaseous substructures will provide a determination of the properties of the gaseous halos of M31 and M33.

  8. Method for selectively removing fluorine and fluorine-containing contaminants from gaseous UF/sub 6/. [ClF/sub 3/

    DOE Patents [OSTI]

    Jones, R.L.; Otey, M.G.; Perkins, R.W.

    1980-11-24

    This invention is a method for effecting preferential removal and immobilization of certain gaseous contaminants from gaseous UF/sub 6/. The contaminants include fluorine and fluorides which are more reactive with CaCO/sub 3/ than is UF/sub 6/. The method comprises contacting the contaminant-carrying UF/sub 6/ with particulate CaCO/sub 3/ at a temperature effecting reaction of the contaminant and the CaCO/sub 3/.

  9. Modifying woody plants for efficient conversion to liquid and gaseous fuels

    SciTech Connect (OSTI)

    Dinus, R.J.; Dimmel, D.R.; Feirer, R.P.; Johnson, M.A.; Malcolm, E.W. )

    1990-07-01

    The Short Rotation Woody Crop Program (SRWCP), Department of Energy, is developing woody plant species as sources of renewable energy. Much progress has been made in identifying useful species, and testing site adaptability, stand densities, coppicing abilities, rotation lengths, and harvesting systems. Conventional plant breeding and intensive cultural practices have been used to increase above-ground biomass yields. Given these and foreseeable accomplishments, program leaders are now shifting attention to prospects for altering biomass physical and chemical characteristics, and to ways for improving the efficiency with which biomass can be converted to gaseous and liquid fuels. This report provides a review and synthesis of literature concerning the quantity and quality of such characteristics and constituents, and opportunities for manipulating them via conventional selection and breeding and/or molecular biology. Species now used by SRWCP are emphasized, with supporting information drawn from others as needed. Little information was found on silver maple (Acer saccharinum), but general comparisons (Isenberg 1981) suggest composition and behavior similar to those of the other species. Where possible, conclusions concerning means for and feasibility of manipulation are given, along with expected impacts on conversion efficiency. Information is also provided on relationships to other traits, genotype X environment interactions, and potential trade-offs or limitations. Biomass productivity per se is not addressed, except in terms of effects that may by caused by changes in constituent quality and/or quantity. Such effects are noted to the extent they are known or can be estimated. Likely impacts of changes, however effected, on suitability or other uses, e.g., pulp and paper manufacture, are notes. 311 refs., 4 figs., 9 tabs.

  10. Proposed sale of radioactively contaminated nickel ingots located at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    1995-10-01

    The U.S. Department of Energy (DOE) proposes to sell 8,500 radioactively contaminated nickel ingots (9.350 short tons), currently in open storage at the Paducah Gaseous Diffusion Plant (PGDP), to Scientific Ecology Group, Inc. (SEG) for decontamination and resale on the international market. SEG would take ownership of the ingots when they are loaded for transport by truck to its facility in Oak Ridge, Tennessee. SEG would receive approximately 200 short tons per month over approximately 48 months (an average of 180 ingots per month). The nickel decontamination process specified in SEG`s technical proposal is considered the best available technology and has been demonstrated in prototype at SEG. The resultant metal for resale would have contamination levels between 0.3 and 20 becquerel per gram (Bq/g). The health hazards associated with release of the decontaminated nickel are minimal. The activity concentration of the end product would be further reduced when the nickel is combined with other metals to make stainless steel. Low-level radioactive waste from the SEG decontamination process, estimated to be approximately 382 m{sup 3} (12,730 ft), would be shipped to a licensed commercial or DOE disposal facility. If the waste were packaged in 0.23 m{sup 3}-(7.5 ft{sup 3}-) capacity drums, approximately 1,500 to 1,900 drums would be transported over the 48-month contract period. Impacts from the construction of decontamination facilities and the selected site are minimal.

  11. Inorganic soil and groundwater chemistry near Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    Moore, G.K.

    1995-03-01

    Near-surface soils, boreholes, and sediments near the Paducah Gaseous Diffusion Plant (PGDP) were sampled in 1989-91 as were monitoring wells, TVA wells, and privately-owned wells. Most wells were sampled two or three times. The resulting chemical analyses have been published in previous reports and have been previously described (CH2M HILL 1991, 1992; Clausen et al. 1992). The two reports by CH2M HILL are controversial, however, because, the concentrations of some constituents were reported to exceed background levels or drinking water standards and because both on-site (within the perimeter fence at PGDP) and off-site pollution was reported to have occurred. The groundwater samples upon which these interpretations were based may not be representative, however. The CH2M HILL findings are discussed in the report. The purpose of this report is to characterize the inorganic chemistry of groundwater and soils near PGDP, using data from the CH2M HILL reports (1991, 1992), and to determine whether or not any contamination has occurred. The scope is limited to analysis and interpretation of data in the CH2M HILL reports because previous interpretations of these data may not be valid, because samples were collected in a relatively short period of time at several hundred locations, and because the chemical analyses are nearly complete. Recent water samples from the same wells were not considered because the characterization of inorganic chemistry for groundwater and soil requirements only one representative sample and an accurate analysis from each location.

  12. Ground penetrating radar surveys over an alluvial DNAPL site, Paducah Gaseous Diffusion Plant, Kentucky

    SciTech Connect (OSTI)

    Carpenter, P.J. |; Doll, W.E.; Phillips, B.E.

    1994-09-01

    Ground penetrating radar (GPR) surveys were used to map shallow sands and gravels which are DNAPL migration pathways at the Paducah Gaseous Diffusion Plant in western Kentucky. The sands and gravels occur as paleochannel deposits, at depths of 17-25 ft, embedded in Pleistocene lacustrine clays. More than 30 GPR profiles were completed over the Drop Test Area (DTA) to map the top and base of the paleochannel deposits, and to assess their lateral continuity. A bistatic radar system was used with antenna frequencies of 25 and 50 MHz. An average velocity of 0.25 ft/ns for silty and clayey materials above the paleochannel deposits was established from radar walkaway tests, profiles over culverts of known depth, and comparison of radar sections with borings. In the south portion of the DTA, strong reflections corresponded to the water table at approximately 9-10 ft, the top of the paleochannel deposits at approximately 18 ft, and to gravel horizons within these deposits. The base of these deposits was not visible on the radar sections. Depth estimates for the top of the paleochannel deposits (from 50 records) were accurate to within 2 ft across the southern portion of the DTA. Continuity of these sands and gravels could not be assessed due to interference from air-wave reflections and lateral changes in signal penetration depth. However, the sands and gravels appear to extend across the entire southern portion of the DTA, at depths as shallow as 17 ft. Ringing, air-wave reflections and diffractions from powerlines, vehicles, well casings, and metal equipment severly degraded GPR profiles in the northern portion of the DTA; depths computed from reflection times (where visible) were accurate to within 4 ft in this area. The paleochannel deposits are deeper to the north and northeast where DNAPL has apparently pooled (DNAPL was not directly imaged by the GPR, however). Existing hydrogeological models of the DTA will be revised.

  13. Evaluation of aqueous degreasers versus chlorinated solvents at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Gunn, D.

    1988-10-31

    Spent chlorinated solvents are produced mainly as a result of degreasing operations at several Paducah Gaseous Diffusion Plant (PGDP) locations. This waste is a listed hazardous waste under Resource Conservation and Recovery Act (RCRA) regulations (40 CFR 261). In addition, some of the solvents become contaminated with uranium which classifies the waste as a mixed waste for which no disposal method is currently available. Due to health and environmental concerns and the desire to minimize mixed and hazardous waste generation, degreasing operations in the plant were delineated and alternate nonhazardous solvents were evaluated for their suitability for replacing the chlorinated solvents. Metal cleanliness testing of eight aqueous degreasers using ultrasonic cleaning and immersion with agitation, and vapor degreasing with trichloroethylene (TCE) and 1,1,1-trichloroethane (TC-ane) was performed. Soils such as dust, fingerprints, lube oil, water-soluble oil, silicone grease, and petroleum-based grease were removed from Monel, copper, mild steel, aluminum, and phosphor bronze. Cleanliness was determined by estimating the surface energy of metal coupons before and after cleaning. A Kepner-Tregoe (KT) decision analysis was utilized to determine the three best multipurpose degreasers for the plant. Additional testing was performed on the top three selected degreasers to evaluate corrosive effects of the cleaning solutions (general surface corrosion and pitting), and to determine the compatability of any residual contamination with process gases. Corrosion testing was performed in an electrochemical corrosion tester. Cleaned coupons were exposed to uranium hexafluoride, fluorine, and chlorine trifluoride. In addition, metal cleanliness testing was conducted to evaluate the cleaning efficiency of parts cleaned in the field.

  14. Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    Becker, D.L.; Lindquist, M.R.

    1993-03-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of enriched uranium hexafluoride (UF[sub 6]). Uranium hexafluoride enriched greater than 1.0 wt percent [sup 235]U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF[sub 6] cylinders/overpacks (Reference 3). Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF[sub 6] packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a tram of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the review is documented in Reference 4.

  15. Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    Becker, D.L.; Lindquist, M.R.

    1993-03-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of enriched uranium hexafluoride (UF{sub 6}). Uranium hexafluoride enriched greater than 1.0 wt percent {sup 235}U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF{sub 6} cylinders/overpacks (Reference 3). Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF{sub 6} packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a tram of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the review is documented in Reference 4.

  16. Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio. Revision 1

    SciTech Connect (OSTI)

    Becker, D.L.; Green, D.J.; Lindquist, M.R.

    1993-07-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio, is operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy-Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of uranium hexafluoride (UF{sub 6}). Uranium hexafluoride enriched uranium than 1.0 wt percent {sup 235}U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF{sub 6} cylinders/overpacks. Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF{sub 6} packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a team of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the is documented in Reference 4.

  17. TIME-DEPENDENT PHOTOIONIZATION OF GASEOUS NEBULAE: THE PURE HYDROGEN CASE

    SciTech Connect (OSTI)

    Garcia, J.; Elhoussieny, E. E.; Bautista, M. A.; Kallman, T. R. E-mail: manuel.bautista@wmich.edu E-mail: timothy.r.kallman@nasa.gov

    2013-09-20

    We study the problem of time-dependent photoionization of low density gaseous nebulae subjected to sudden changes in the intensity of ionizing radiation. To this end, we write a computer code that solves the full time-dependent energy balance, ionization balance, and radiation transfer equations in a self-consistent fashion for a simplified pure hydrogen case. It is shown that changes in the ionizing radiation yield ionization/thermal fronts that propagate through the cloud, but the propagation times and response times to such fronts vary widely and nonlinearly from the illuminated face of the cloud to the ionization front (IF). IF/thermal fronts are often supersonic, and in slabs initially in pressure equilibrium such fronts yield large pressure imbalances that are likely to produce important dynamical effects in the cloud. Further, we studied the case of periodic variations in the ionizing flux. It is found that the physical conditions of the plasma have complex behaviors that differ from any steady-state solution. Moreover, even the time average of ionization and temperature is different from any steady-state case. This time average is characterized by overionization and a broader IF with respect to the steady-state solution for a mean value of the radiation flux. Around the time average of physical conditions there is a large dispersion in instantaneous conditions, particularly across the IF, which increases with the period of radiation flux variations. Moreover, the variations in physical conditions are asynchronous along the slab due to the combination of nonlinear propagation times for thermal fronts/IFs and equilibration times.

  18. Application of the electromagnetic borehole flowmeter and evaluation of previous pumping tests at Paducah Gaseous Diffusion Plant. Final report, June 15, 1992--August 31, 1992

    SciTech Connect (OSTI)

    Young, S.C.; Julian, S.C.; Neton, M.J.

    1993-01-01

    Multi-well pumping tests have been concluded at wells MW79, MW108, and PW1 at the Paducah Gaseous Diffusion Plant (PGDP) to determine the hydraulic properties of the Regional Gravel Aquifer (RGA). Soil cores suggest that the RGA consists of a thin sandy facies (2 to 6 feet) at the top of a thicker (> 10 feet) gravelly facies. Previous analyses have not considered any permeability contrast between the two facies. To assess the accuracy of this assumption, TVA personnel conducted borehole flowmeter tests at wells MW108 and PW1. Well MW79 could not be tested. The high K sand unit is probably 10 times more permeable than comparable zone in the gravelly portion of the RGA. Previous analyses of the three multi-well aquifer tests do not use the same conceptual aquifer model. Data analysis for one pumping test assumed that leakance was significant. Data analysis for another pumping test assumed that a geologic boundary was significant. By collectively analyzing all three tests with the borehole flowmeter results, the inconsistency among the three pumping tests can be explained. Disparity exists because each pumping test had a different placement of observation wells relative to the high K zone delineating by flowmeter testing.

  19. Design of an Unattended Environmental Aerosol Sampling and Analysis System for Gaseous Centrifuge Enrichment Plants

    SciTech Connect (OSTI)

    Anheier, Norman C.; Munley, John T.; Alexander, M. L.

    2011-07-19

    The resources of the IAEA continue to be challenged by the rapid, worldwide expansion of nuclear energy production. Gaseous centrifuge enrichment plants (GCEPs) represent an especially formidable dilemma to the application of safeguard measures, as the size and enrichment capacity of GCEPs continue to escalate. During the early part of the 1990's, the IAEA began to lay the foundation to strengthen and make cost-effective its future safeguard regime. Measures under Part II of 'Programme 93+2' specifically sanctioned access to nuclear fuel production facilities and environmental sampling by IAEA inspectors. Today, the Additional Protocol grants inspection and environmental sample collection authority to IAEA inspectors at GCEPs during announced and low frequency unannounced (LFUA) inspections. During inspections, IAEA inspectors collect environmental swipe samples that are then shipped offsite to an analytical laboratory for enrichment assay. This approach has proven to be an effective deterrence to GCEP misuse, but this method has never achieved the timeliness of detection goals set forth by IAEA. Furthermore it is questionable whether the IAEA will have the resources to even maintain pace with the expansive production capacity of the modern GCEP, let alone improve the timeliness in reaching current safeguards conclusions. New safeguards propositions, outside of familiar mainstream safeguard measures, may therefore be required that counteract the changing landscape of nuclear energy fuel production. A new concept is proposed that offers rapid, cost effective GCEP misuse detection, without increasing LFUA inspection access or introducing intrusive access demands on GCEP operations. Our approach is based on continuous onsite aerosol collection and laser enrichment analysis. This approach mitigates many of the constraints imposed by the LFUA protocol, reduces the demand for onsite sample collection and offsite analysis, and overcomes current limitations associated with

  20. High-emission cold cathode

    DOE Patents [OSTI]

    Mancebo, L.

    1974-01-29

    A field-emission cathode having a multitude of field emission points for emitting a copious stream of electrons when subjected to a high field is described. The cathode is constructed by compressing a multitude of tungsten strips alternately arranged with molybdenum strips and copper ribbons or compressing alternately arranged copper plated tungsten and molybdenum strips, heating the arrangement to braze the tungsten and molybdenum strips together with the copper, machining and grinding the exposed strip edges of one side of the brazed arrangement to obtain a precisely planar surface, etching a portion of the molybdenum and copper to leave the edges of the tungsten strips protruding for electron emission, and subjecting the protruding edges of the tungsten strips to a high electric field to degas and roughen the surface to pnovide a large number of emitting points. The resulting structure is particularly useful as a cathode in a transversely excited gaseous laser where the cathode is mounted in a vacuum chamber for emitting electrons under the influence of a high electric field between the cathode and an extractor grid. The electrons pass through the extractor grid, a thin window in the wall of the laser chamber and into the laser chamber which is filled with a gaseous mixture of helium, nitrogen, and carbon dioxide. A second grid is mounted on the gaseous side of the window. The electrons pass into the laser chamber under the influence of a second electric field between the second grid and an anode in the laser chamber to raise selected gas atoms of the gaseous mixture to appropriately excited states so that a subsequent coherent light beam passing through the mixture transversely to the electron stream through windows in opposite ends of the laser chamber stimulates the excited atoms to amplify the beam. (Official Gazette)

  1. TECHNICAL EVALUATION OF TEMPORAL GROUNDWATER MONITORING VARIABILITY IN MW66 AND NEARBY WELLS, PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect (OSTI)

    Looney, B.; Eddy-Dilek, C.

    2012-08-28

    Evaluation of disposal records, soil data, and spatial/temporal groundwater data from the Paducah Gaseous Diffusion Plant (PGDP) Solid Waste Management Unit (SWMU) 7 indicate that the peak contaminant concentrations measured in monitoring well (MW) 66 result from the influence of the regional PGDP NW Plume, and does not support the presence of significant vertical transport from local contaminant sources in SWMU 7. This updated evaluation supports the 2006 conceptualization which suggested the high and low concentrations in MW66 represent different flow conditions (i.e., local versus regional influences). Incorporation of the additional lines of evidence from data collected since 2006 provide the basis to link high contaminant concentrations in MW66 (peaks) to the regional 'Northwest Plume' and to the upgradient source, specifically, the C400 Building Area. The conceptual model was further refined to demonstrate that groundwater and the various contaminant plumes respond to complex site conditions in predictable ways. This type of conceptualization bounds the expected system behavior and supports development of environmental cleanup strategies, providing a basis to support decisions even if it is not feasible to completely characterize all of the 'complexities' present in the system. We recommend that the site carefully consider the potential impacts to groundwater and contaminant plume migration as they plan and implement onsite production operations, remediation efforts, and reconfiguration activities. For example, this conceptual model suggests that rerouting drainage water, constructing ponds or basin, reconfiguring cooling water systems, capping sites, decommissioning buildings, fixing (or not fixing) water leaks, and other similar actions will potentially have a 'direct' impact on the groundwater contaminant plumes. Our conclusion that the peak concentrations in MW66 are linked to the regional PGDP NW Plume does not imply that there TCE is not present in SWMU

  2. Health risk from earthquake caused releases of UF{sub 6} at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Brown, N.W; Lu, S.; Chen, J.C.; Roehnelt, R.; Lombardi, D.

    1998-05-01

    The health risk to the public and workers from potential exposure to the toxic materials from earthquake caused releases of uranium hexafluoride from the Paducah gaseous Diffusion Plant are evaluated. The results of the study show that the health risk from earthquake caused releases is small, and probably less than risks associated with the transportation of hydrogen fluoride and other similar chemicals used by industry. The probability of more than 30 people experiencing health consequences (injuries) from earthquake damage is less than 4xlO{sup 4}/yr.

  3. Method of preparing and utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream

    DOE Patents [OSTI]

    Berry, David A; Shekhawat, Dushyant; Smith, Mark; Haynes, Daniel

    2013-07-16

    The disclosure relates to a method of utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream with a mitigation of carbon accumulation. The system is comprised of a catalytically active phase deposited onto an oxygen conducting phase, with or without supplemental support. The catalytically active phase has a specified crystal structure where at least one catalytically active metal is a cation within the crystal structure and coordinated with oxygen atoms within the crystal structure. The catalyst system employs an optimum coverage ratio for a given set of oxidation conditions, based on a specified hydrocarbon conversion and a carbon deposition limit. Specific embodiments of the catalyst system are disclosed.

  4. High efficiency photoionization detector

    DOE Patents [OSTI]

    Anderson, David F.

    1984-01-01

    A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36.+-.0.02 eV, and a vapor pressure of 0.35 torr at 20.degree. C.

  5. High efficiency photoionization detector

    DOE Patents [OSTI]

    Anderson, D.F.

    1984-01-31

    A high efficiency photoionization detector is described using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 [+-] 0.02 eV, and a vapor pressure of 0.35 torr at 20 C. 6 figs.

  6. The Radiochemical Analysis of Gaseous Samples (RAGS) apparatus for nuclear diagnostics at the National Ignition Facility (invited)

    SciTech Connect (OSTI)

    Shaughnessy, D. A.; Velsko, C. A.; Jedlovec, D. R.; Yeamans, C. B.; Moody, K. J.; Tereshatov, E.; Stoeffl, W.; Riddle, A.

    2012-10-15

    The Radiochemical Analysis of Gaseous Samples (RAGS) diagnostic apparatus was recently installed at the National Ignition Facility (NIF). Following a NIF shot, RAGS is used to pump the gas load from the NIF chamber for purification and isolation of the noble gases. After collection, the activated gaseous species are counted via gamma spectroscopy for measurement of the capsule areal density and fuel-ablator mix. Collection efficiency was determined by injecting a known amount of {sup 135}Xe into the NIF chamber, which was then collected with RAGS. Commissioning was performed with an exploding pusher capsule filled with isotopically enriched {sup 124}Xe and {sup 126}Xe added to the DT gas fill. Activated xenon species were recovered post-shot and counted via gamma spectroscopy. Results from the collection and commissioning tests are presented. The performance of RAGS allows us to establish a noble gas collection method for measurement of noble gas species produced via neutron and charged particle reactions in a NIF capsule.

  7. Safetygram #9- Liquid Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

  8. Magnetic roller gas gate employing transonic sweep gas flow to isolate regions of differing gaseous composition or pressure

    DOE Patents [OSTI]

    Doehler, Joachim

    1994-12-20

    Disclosed herein is an improved gas gate for interconnecting regions of differing gaseous composition and/or pressure. The gas gate includes a narrow, elongated passageway through which substrate material is adapted to move between said regions and inlet means for introducing a flow of non-contaminating sweep gas into a central portion of said passageway. The gas gate is characterized in that the height of the passageway and the flow rate of the sweep gas therethrough provides for transonic flow of the sweep gas between the inlet means and at least one of the two interconnected regions, thereby effectively isolating one region, characterized by one composition and pressure, from another region, having a differing composition and/or pressure, by decreasing the mean-free-path length between collisions of diffusing species within the transonic flow region. The gas gate preferably includes a manifold at the juncture point where the gas inlet means and the passageway interconnect.

  9. Apparatus and method for generating continuous wave 16 .mu.m laser radiation using gaseous CF.sub.4

    DOE Patents [OSTI]

    Telle, John M.

    1986-01-01

    Apparatus and method for generating continuous wave 16 .mu.m laser radiation using gaseous CF.sub.4. Laser radiation at 16 .mu.m has been observed in a cooled static cell containing low pressure CF.sub.4 optically pumped by an approximately 3 W output power cw CO.sub.2 laser. The laser cavity employed was a multiple-pass off-axis-path two spherical mirror ring resonator. Unidirectional CF.sub.4 laser output power at 615 cm.sup.-1 exceeded 2 mW. Computer calculations indicate that for modest pump powers of about 40 W, approximately 1 W of emitted laser radiation at 16 .mu.m might be obtained.

  10. Apparatus and method for generating continuous wave 16. mu. m laser radiation using gaseous CF/sub 4/

    DOE Patents [OSTI]

    Telle, J.M.

    1984-05-01

    Apparatus and method for generating continuous wave 16 ..mu..m laser radiation using gaseous CF/sub 4/. Laser radiation at 16 ..mu..m has been observed in a cooled static cell containing low pressure CF/sub 4/ optically pumped by an approximately 3 W output power c-w CO/sub 2/ laser. The laser cavity employed was a multiple-pass off-axis-path two spherical mirror ring resonator. Unidirectional CF/sub 4/ laser output power at 615 cm/sup -1/ exceeded 2 mW. Computer calculations indicate that for modest pump powers of about 40 W, approximately 1 W of emitted laser radiation at 16 ..mu..m might be obtained.

  11. An interim report to the manager of the Paducah Gaseous Diffusion Plant from the Paducah Environmental Advisory Committee

    SciTech Connect (OSTI)

    Jackson, G.D.

    1987-10-01

    The Paducah Environmental Advisory Committee was formed as: (1) an outgrowth of other Environmental Advisory Committees already in existence at Oak Ridge and other Martin Marietta Energy Systems plants; (2) a result of public concern following significant nuclear incidents at Bhopal and Chernobyl; (3) a result of the new direction and commitment of the management of the Paducah Gaseous Diffusion Plant following contract acquisition by Martin Marietta Energy Systems; and (4) a means of reducing and/or preventing local and/or public concern regarding the activities of and potential risks created by PGDP. This report discusses the following issues and concerns of the Committee arrived at through a series of meetings: (1) groundwater monitoring; (2) long-range tails storage; C-404, scrap yrads, and PCB and TCE cleanup; nuclear criticality plan and alarm systems; documentation of historical data regarding hazardous waste burial grounds; dosimeter badges; and asbestos handling and removal.

  12. One-dimensional numerical fluid dynamics model of the spreading of liquefied gaseous fuel (LGF) on water

    SciTech Connect (OSTI)

    Stein, W.; Ermak, D.L.

    1980-11-04

    A computer model has been developed to simulate the spreading of an evaporating liquefied gaseous fuel that has been spilled on the surface of a denser liquid. This would correspond, for example, to the spreading of liquefied natural gas spilled onto water. The model is based on the one-dimensional, time-dependent equations of conservation of mass and momentum, with the assumption that the pool of liquid fuel spreads in a radially symmetric manner. It includes the effects of vaporization, shear at the fuel-liquid interface, and buoyancy due to the density difference between the fuel and the liquid onto which it is spilled. Both instantaneous and continuous spills of finite volume are treated. The height and spreading velocity of the pool of spilled fuel are calculated as functions of time and radius by numerically solving the conservation equations with a finite difference method. Output of the calculations is presented in both tabular and graphical form.

  13. One-dimensional numerical fluid dynamics model of the spreading of liquefied gaseous fuel (LGF) on water

    SciTech Connect (OSTI)

    Stein, W.; Ermak, D.L.

    1981-01-01

    A computer model has been developed to simulate the spreading of an evaporating liquefied gaseous fuel that has been spilled on the surface of a denser liquid. This would correspond, for example, to the spreading of liquefied natural gas spilled onto water. The model is based on the one-dimensional, time-dependent equations of conservation of mass and momentum, with the assumption that the pool of liquid fuel spreads in a radially symmetric manner. It includes the effects of vaporization, shear at the fuel-liquid interface, and buoyancy due to the density difference between the fuel and the liquid onto which it is spilled. Both instantaneous and continuous spills of finite volume are treated. The height and spreading velocity of the pool of spilled fuel are calculated as functions of time and radius by numerically solving the conservation equations with a finite difference method.Output of the calculations is presented in both tabular and graphical form.

  14. Method and apparatus for treating gaseous effluents from waste treatment systems

    DOE Patents [OSTI]

    Flannery, Philip A.; Kujawa, Stephan T.

    2000-01-01

    Effluents from a waste treatment operation are incinerated and oxidized by passing the gases through an inductively coupled plasmas arc torch. The effluents are transformed into plasma within the torch. At extremely high plasma temperatures, the effluents quickly oxidize. The process results in high temperature oxidation of the gases without addition of any mass flow for introduction of energy.

  15. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: Explicit modeling of SOA formation from alkane and alkene oxidation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    La, Y. S.; Camredon, M.; Ziemann, P. J.; Valorso, R.; Matsunaga, A.; Lannuque, V.; Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.

    2016-02-08

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool, which explicitly represents SOA formation and gas–wall partitioning. The model was compared with 41 smog chambermore » experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas–wall mass transfer, the vapor pressure of the species and the duration of the experiments. Furthermore, this work suggests that SOA yields inferred from chamber experiments could be underestimated up a factor of 2 due to the loss of organic vapors to chamber walls.« less

  16. The importance of SO{sub 2} and SO{sub 3} for sulphation of gaseous KCl - An experimental investigation in a biomass fired CFB boiler

    SciTech Connect (OSTI)

    Kassman, Haakan; Baefver, Linda; Aamand, Lars-Erik

    2010-09-15

    This paper is based on results obtained during co-combustion of wood pellets and straw in a 12 MW circulating fluidised bed (CFB) boiler. Elemental sulphur (S) and ammonium sulphate ((NH{sub 4}){sub 2}SO{sub 4}) were used as additives to convert the alkali chlorides (mainly KCl) to less corrosive alkali sulphates. Their performance was then evaluated using several measurement tools including, IACM (on-line measurements of gaseous alkali chlorides), a low-pressure impactor (particle size distribution and chemical composition of extracted fly ash particles), and deposit probes (chemical composition in deposits collected). The importance of the presence of either SO{sub 2} or SO{sub 3} for gas phase sulphation of KCl is also discussed. Ammonium sulphate performed significantly better than elemental sulphur. A more efficient sulphation of gaseous KCl was achieved with (NH{sub 4}){sub 2}SO{sub 4} even when the S/Cl molar ratio was less than half compared to sulphur. Thus the presence of gaseous SO{sub 3} is of greater importance than that of SO{sub 2} for the sulphation of gaseous KCl. (author)

  17. Dispersion of UO{sub 2}F{sub 2} aerosol and HF vapor in the operating floor during winter ventilation at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Kim, S.H.; Chen, N.C.J.; Taleyarkhan, R.P.; Keith, K.D.; Schmidt, R.W.; Carter, J.C.

    1996-12-30

    The gaseous diffusion process is currently employed at two plants in the US: the Paducah Gaseous Diffusion Plant and the Portsmouth Gaseous Diffusion Plant. As part of a facility-wide safety evaluation, a postulated design basis accident involving large line-rupture induced releases of uranium hexafluoride (UF{sub 6}) into the process building of a gaseous diffusion plant (GDP) is evaluated. When UF{sub 6} is released into the atmosphere, it undergoes an exothermic chemical reaction with moisture (H{sub 2}O) in the air to form vaporized hydrogen fluoride (HF) and aerosolized uranyl fluoride (UO{sub 2}F{sub 2}). These reactants disperse in the process building and transport through the building ventilation system. The ventilation system draws outside air into the process building, distributes it evenly throughout the building, and discharges it to the atmosphere at an elevated temperature. Since air is recirculated from the cell floor area to the operating floor, issues concerning in-building worker safety and evacuation need to be addressed. Therefore, the objective of this study is to evaluate the transport of HF vapor and UO{sub 2}F{sub 2} aerosols throughout the operating floor area following B-line break accident in the cell floor area.

  18. Type B Accident Investigation of the August 22, 2000, Injury Resulting From Violent Exothermic Chemical Reaction at the Portsmouth Gaseous Diffusion Plant, X-701B Site

    Broader source: Energy.gov [DOE]

    On August 22, 2000, an accident occurred at the U. S. Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS) located in Piketon, Ohio. An employee of the IT Corporation (IT) working on an Environmental Management (EM) Technology Deployment Project received serious burns from a violent chemical reaction.

  19. Stationary High-Pressure Hydrogen Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stationary High-Pressure Hydrogen Storage Zhili Feng Oak Ridge National Laboratory 2 Managed by UT-Battelle for the U.S. Department of Energy Technology Gap Analysis for Bulk Storage in Hydrogen Infrastructure Gaseous Hydrogen Delivery Pathway * Bulk storage in hydrogen delivery infrastructure * * Needed at central production plants, geologic storage sites, terminals, and refueling sites * Important to provide surge capacity for hourly, daily, and seasonal demand variations Technical challenges

  20. High temperature measuring device

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  1. Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas

    SciTech Connect (OSTI)

    Wijmans, Johannes G; Baker, Richard W; Merkel, Timothy C

    2014-10-07

    The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.

  2. Summary - Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant

    Office of Environmental Management (EM)

    Calcine The Id materi Dec. 2 Press additiv form w those project anticip 2012 a CD-1 a selecte Level ( assess Eleme assign prepar The as below achiev * R * Ba * C The Ele Site: I roject: C Report Date: ited States Prelim Why DOE e HIP Treatment daho high-level al designated t 2009) to underg (HIP) process. ves, converts th with durability a of borosilicate t is currently in pates Critical D authorizing the approval, it is t ed technology (TRL) of 4 or h sment was to id ents (CTEs) of t n the TRLs

  3. Prediction of external corrosion for steel cylinders at the Paducah Gaseous Diffusion Plant: Application of an empirical method

    SciTech Connect (OSTI)

    Lyon, B.F.

    1996-02-01

    During the summer of 1995, ultrasonic wall thickness data were collected for 100 steel cylinders containing depleted uranium (DU) hexafluoride located at Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The cylinders were selected for measurement to assess the condition of the more vulnerable portion of the cylinder inventory at PGDP. The purpose of this report is to apply the method used in Lyon to estimate the effects of corrosion for larger unsampled populations as a function of time. The scope of this report is limited and is not intended to represent the final analyses of available data. Future efforts will include continuing analyses of available data to investigate defensible deviations from the conservative assumptions made to date. For each cylinder population considered, two basic types of analyses were conducted: (1) estimates were made of the number of cylinders as a function of time that will have a minimum wall thickness of either 0 mils (1 mil = 0.00 1 in.) or 250 mils and (2) the current minimum wall thickness distributions across cylinders were estimated for each cylinder population considered. Additional analyses were also performed investigating comparisons of the results for F and G yards with the results presented in Lyon (1995).

  4. Effect of long duration UV irradiation on diamondlike carbon surfaces in the presence of a hydrocarbon gaseous atmosphere

    SciTech Connect (OSTI)

    Riedo, A.; Wahlstroem, P.; Scheer, J. A.; Wurz, P.; Tulej, M.

    2010-12-01

    Measurements of the effect of long duration UV irradiation (up to 2905 min) of flight quality diamondlike carbon charge state conversion surfaces for application in space research in the presence of a hydrocarbon atmosphere were done. An isopropanol atmosphere was used for simulating the hydrocarbon gaseous environment for an instrument on a satellite in space. Charge state conversion surfaces are used in neutral particle sensing instruments where neutral atoms have to be ionized prior to the analysis. A narrow-band (126{+-}5 nm) discharge lamp and a broad-band deuterium lamp (112-370 nm) were used as sources of UV radiation. The UV irradiation of a surface results in the desorption of some volatiles present on the surface and the decomposition of others. Desorption of volatiles, mostly water, is observed for both UV sources. The decomposition of the hydrocarbons and the subsequent build-up of a hydrocarbonaceous layer is only observed for the broad-band UV lamp, which is more representative for the space environment. Unfortunately, the hydrocarbonaceous layer cannot be removed thermally, i.e., it is permanent, and causes a degradation of the performance of the charge state conversion surfaces. With the present measurements we can quantify the UV influence at which the degradation of the conversion surfaces becomes noticeable.

  5. Characterization of gaseous species in scanning atmospheric rf plasma with transmission infrared spectroscopy

    SciTech Connect (OSTI)

    Kim, Seong H.; Kim, Jeong Hoon; Kang, Bang-Kwon

    2008-01-15

    A scanning atmospheric radio-frequency (rf) plasma was analyzed with transmission infrared (IR) spectroscopy. The IR analyses were made for the plasmas used for hydrophobic coating deposition and superhydrophobic coating deposition processes. Since the rf plasma was generated in a small open space with a high gas flow rate in ambient air, the density of gas-phase molecules was very high and the plasma-generated reactive species seemed to undergo various reactions in the gas phase. So, the transmission IR spectra of the scanning atmospheric rf plasma were dominated by gas-phase reaction products, rather than plasma-generated intermediate species. In the CH{sub 4}/He plasma used for hydrophobic coating deposition, C{sub 2}H{sub 6}, C{sub 2}H{sub 2}, and a small amount of C{sub 2}H{sub 4} as well as CO were detected in transmission IR. The intensities of these peaks increased as the rf power increased. The CO formation is due to the activation of oxygen and water in the air. In the CF{sub 4}/H{sub 2}/He plasma used for deposition of superhydrophobic coatings, C{sub 2}F{sub 6}, CF{sub 3}H, COF{sub 2}, and HF were mainly detected. When the H{sub 2}/CF{sub 4} ratio was {approx}0.5, the consumption of CF{sub 4} was the highest. As the H{sub 2}/CF{sub 4} ratio increased higher, the C{sub 2}F{sub 6} production was suppressed while the CF{sub 3}H peak grew and the formation of CH{sub 4} were detected. In both CH{sub 4}/He and CF{sub 4}/H{sub 2}/He plasma systems, the undissociated feed gas molecules seem to be highly excited vibrationally and rotationally. The information on plasma-generated reactive species and their reactions was deduced from the distribution of these gas-phase reaction products.

  6. Particulate and gaseous organic receptor modeling for the southern California Air Quality Study. Final report

    SciTech Connect (OSTI)

    Watson, J.G.; Chow, J.G.; Lu, Z.; Gertler, A.W.

    1993-11-01

    The Chemical Mass Balance (CMB) receptor model was applied to the chemically-speciated diurnal particulate matter samples and volatile organic compound (VOC) acquired during the summer and fall campaigns of the Southern California Air Quality Study (SCAQS). Source profiles applicable to the Los Angeles area were used to apportion PM[sub (2.5)] and PM[sub (10)] to primary paved road dust, primary construction dust, primary motor vehicle exhaust, primary marine aerosol, secondary ammonium nitrate, and secondary ammonium sulfate. Nonmethane hydrocarbon was apportioned to motor vehicle exhaust, liquid fuel, gasoline vapor, gas leaks, architectural and industrial coatings, and biogenic emissions. Suspended dust was the major contributor to PM(10) during the summer, while secondary ammonium nitrate and primary motor vehicle exhaust contributions were high in the fall. Motor vehicle exhaust was the major contributor to nonmethane hydrocarbons, ranging from 30% to 70% of the total.

  7. Gaseous Laser Targets and Optical Dignostics for Studying Compressible Turbulent Hydrodynamic Instabilities

    SciTech Connect (OSTI)

    Edwards, M J; Hansen, J; Miles, A R; Froula, D; Gregori, G; Glenzer, S; Edens, A; Dittmire, T

    2005-02-08

    The possibility of studying compressible turbulent flows using gas targets driven by high power lasers and diagnosed with optical techniques is investigated. The potential advantage over typical laser experiments that use solid targets and x-ray diagnostics is more detailed information over a larger range of spatial scales. An experimental system is described to study shock - jet interactions at high Mach number. This consists of a mini-chamber full of nitrogen at a pressure {approx} 1 atms. The mini-chamber is situated inside a much larger vacuum chamber. An intense laser pulse ({approx}100J in {approx} 5ns) is focused on to a thin {approx} 0.3{micro}m thick silicon nitride window at one end of the mini-chamber. The window acts both as a vacuum barrier, and laser entrance hole. The ''explosion'' caused by the deposition of the laser energy just inside the window drives a strong blast wave out into the nitrogen atmosphere. The spherical shock expands and interacts with a jet of xenon introduced though the top of the mini-chamber. The Mach number of the interaction is controlled by the separation of the jet from the explosion. The resulting flow is visualized using an optical schlieren system using a pulsed laser source at a wavelength of 0.53 {micro}m. The technical path leading up to the design of this experiment is presented, and future prospects briefly considered. Lack of laser time in the final year of the project severely limited experimental results obtained using the new apparatus.

  8. Process and apparatus for changing the energy of charged particles contained in a gaseous medium

    SciTech Connect (OSTI)

    Fenn, J. B.; Whitehouse, C.; Yamashita, M.

    1985-09-17

    A method of changing the energy of charged particles contained in a gas comprises allowing the gas to flow into a region of reduced pressure through a tube like member so that viscous forces exerted on the charged particles by the flowing gas molecules determine the kinetic energy of the charged particles. A potential gradient is maintained along the length of the tube so that the potential energy of the charged particles is changed as they pass through the tube. At the end of the tube a free jet expansion occurs so that the kinetic energy of the charged particles is no longer determined by the flowing gas, so that they can be accelerated to any desired kinetic energy by means of another potential gradient. The invention can be used to interface any high pressure ion source to a magnetic sector mass spectrometer, or to permit the operation of an electrospray ion source with an earthed inlet capillary with either a quadrupole or a magnetic sector mass spectrometer.

  9. Collection of solid and gaseous samples to diagnose inertial confinement fusion implosions

    SciTech Connect (OSTI)

    Stoyer, M. A.; Velsko, C. A.; Spears, B. K.; Hicks, D. G.; Hudson, G. B.; Sangster, T. C.; Freeman, C. G.

    2012-02-15

    Collection of representative samples of debris following inertial confinement fusion implosions in order to diagnose implosion conditions and efficacy is a challenging endeavor because of the unique conditions within the target chamber such as unconverted laser light, intense pulse of x-rays, physical chunks of debris, and other ablative effects. We present collection of gas samples following an implosion for the first time. High collection fractions for noble gases were achieved. We also present collection of solid debris samples on flat plate collectors. Geometrical collection efficiencies for Au hohlraum material were achieved and collection of capsule debris (Be and Cu) was also observed. Asymmetric debris distributions were observed for Au and Be samples. Collection of Be capsule debris was higher for solid collectors viewing the capsule through the laser entrance hole in the hohlraum than for solid collectors viewing the capsule around the waist of the hohlraum. Collection of Au hohlraum material showed the opposite pattern: more Au debris was collected around the waist than through the laser entrance hole. The solid debris collectors were not optimized for minimal Cu backgrounds, which limited the conclusions about the symmetry of the Cu debris. The quality of the data limited conclusions on chemical fractionation effects within the burning, expanding, and then cooling plasma.

  10. Stellar and gaseous nuclear disks observed in nearby (U)LIRGs

    SciTech Connect (OSTI)

    Medling, Anne M.; U, Vivian; Guedes, Javiera; Max, Claire E.; Holden, Bradford; Mayer, Lucio; Roškar, Rok; Armus, Lee; Sanders, David E-mail: max@ucolick.org

    2014-03-20

    We present near-infrared integral field spectroscopy of the central kiloparsec of 17 nearby luminous and ultra-luminous infrared galaxies undergoing major mergers. These observations were taken with OSIRIS assisted by the Keck I and II Adaptive Optics systems, providing spatial resolutions of a few tens of parsecs. The resulting kinematic maps reveal gas disks in at least 16 out of 19 nuclei and stellar disks in 11 out of 11 nuclei observed in these galaxy merger systems. In our late-stages mergers, these disks are young (stellar ages <30 Myr) and likely formed as gas disks that became unstable to star formation during the merger. On average, these disks have effective radii of a few hundred parsecs, masses between 10{sup 8} and 10{sup 10} M {sub ☉}, and v/σ between 1 and 5. These disks are similar to those created in high-resolution hydrodynamical simulations of gas-rich galaxy mergers, and favor short coalescence times for binary black holes. The few galaxies in our sample in earlier stages of mergers have disks that are larger (r {sub eff} ∼ 200-1800 pc) and are likely remnants of the galactic disks that have not yet been completely disrupted by the merger.

  11. Laser utilizing a gaseous lasing medium and method for operating the same

    DOE Patents [OSTI]

    Zerr, Bruce A.

    1986-01-01

    The invention relates to an improvement in gas lasers and a method of operating the same. In one aspect, the invention is an improved method for operating a high-power gas laser. The improvement comprises introducing the gas lasing medium tangentially to the laser tube at a pressure establishing a forced vortex in the tube. The vortex defines an axially extending core region characterized by a low pressure and temperature relative to the gas inlet and the exterior of the vortex. An electrical discharge is established in the core region to initiate lasing of the gas. The gas discharge from the tube is passed through a diffuser. As in conventional gas lasers, firing results in a very abrupt increase in gas temperature and in severe disruption of the gas. However, the gas vortex almost immediately restores the gas to its pre-firing condition. That is, almost all of the waste heat is transferred radially to the laser wall, and the original gas-flow pattern is restored. As a result, the power output of the laser is increased significantly, and the laser firing repetition rate is markedly increased.

  12. Laser utilizing a gaseous lasing medium and method for operating the same

    DOE Patents [OSTI]

    Zerr, B.A.

    1983-10-18

    The invention relates to an improvement in gas lasers and a method of operating the same. In one aspect, the invention is an improved method for operating a high-power gas laser. The improvement comprises introducing the gas lasing medium tangentially to the laser tube at a pressure establishing a forced vortex in the tube. The vortex defines an axially extending core region characterized by a low pressure and temperature relative to the gas inlet and the exterior of the vortex. An electrical discharge is established in the core region to initiate lasing of the gas. The gas discharge from the tube is passed through a diffuser. As in conventional gas lasers, firing results in a very abrupt increase in gas temperature and in severe disruption of the gas. However, the gas vortex, almost immediately restores the gas to its prefiring condition. That is, almost all of the waste heat is transferred radially to the laser wall, and the original gas-flow pattern is restored. As a result, the power output of the laser is increased significantly, and the laser firing repetition rate is markedly increased.

  13. Method and apparatus for fast laser pulse detection using gaseous plasmas

    DOE Patents [OSTI]

    McLellan, Edward J.; Webb, John A.

    1984-01-01

    The method and device of the instant invention is a detector of pulsed laser radiation which utilizes the electromotive force generated by the plasma formed when such radiation is focused onto a surface (1). Measurements are made with a 10.6 .mu.m CO.sub.2 laser capable of producing peak intensities of 10.sup.13 W/cm.sup.2 when directed through a converging lens (2). Evacuated detector response to such laser intensity is 1 kV signal peak amplitude and subnanosecond risetimes into a 50.OMEGA. load (3). Detector performance is found to be greatly altered with the introduction of a background gas (4). For example, with one atmosphere of air, the detector produces prompt signals of the order of 1 V with subnanosecond response for pulse trains lasting 100 ns. With argon, krypton, or zenon at pressures of the order of 10 torr, the detector generates "trigger pulses" of about 250 V amplitude and 0.2 ns risetimes. Such detectors are quite robust when irradiated with high intensity laser radiation and are useful for qualitative laser beam monitoring.

  14. Method and apparatus for fast laser-pulse detection using gaseous plasmas

    DOE Patents [OSTI]

    McLellan, E.J.; Webb, J.A.

    1981-06-18

    The method and device of the instant invention is a detector of pulsed laser radiation which utilizes the electromotive force generated by the plasma formed when such radiation is focused onto a surface. Measurements are made with a 10.6 ..mu..m CO/sub 2/ laser capable of producing peak intensities of 10/sup 13/ W/cm/sup 2/ when directed through a converging lens. Evacuated detector response to such laser intensity if 1 kV signal peak amplitude and subnanosecond risetimes into a 50 ..cap omega.. load. Detector performance is found to be greatly altered with the introduction of a background gas. For example, with one atmosphere of air, the detector produces prompt signals of the order of 1 V with subnanosecond response for pulse trains lasting 100 ns. With argon, krypton, or zenon at pressures of the order of 10 torr, the detector generates trigger pulses of about 250 V amplitude and 0.2 ns risetimes. Such detectors are quite robust when irradiated with high intensity laser radiation and are useful for qualitative laser beam monitoring.

  15. DOE/EA-1927, Paducah Gaseous Diffusion Plant Final Environmental Assessment for Potential Land and Facilities Transfers, McCracken County, Kentucky

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paducah Gaseous Diffusion Plant Final Environmental Assessment for Potential Land and Facilities Transfers, McCracken County, Kentucky U.S. Department of Energy Portsmouth/Paducah Project Office December 2015 DOE/EA-1927 ACRONYMS AND ABBREVIATIONS CEQ Council on Environmental Quality CERCLA Comprehensive Environmental Response, Compensation, and Liability Act of 1980 CFR Code of Federal Regulations dBA A-weighted decibel DOE U.S. Department of Energy DUF 6 depleted uranium hexafluoride EA

  16. FLAMMABILITY CHARACTERISTICS OF COMBUSTIBLE GASES AND VAPORS

    Office of Scientific and Technical Information (OSTI)

    ... and Jon'es, Bureau of Mines Bull. 503 Smith and Linnett, JCS (London), 1953, pp. 37-43 ... Gas Dynamics Symp., 1955, Fuels 94. Setchkin, Nicholas P. pp. 139-150. 199. Smith, Marion ...

  17. FLAMMABILITY CHARACTERISTICS OF COMBUSTIBLE GASES AND VAPORS

    Office of Scientific and Technical Information (OSTI)

    Time delay before ignition of NPN in air a t 1,000 psig in the temperature range from 150" to 210" C - A . Logarithm of time delay before ignition of NPN in air at 1,000 psig ...

  18. Efficient photocatalytic degradation of gaseous formaldehyde by the TiO{sub 2}/tourmaline composites

    SciTech Connect (OSTI)

    Zhang, Gaoke Qin, Xi

    2013-10-15

    Graphical abstract: - Highlights: The TiO{sub 2}/tourmaline composites were prepared by a solgel method. The composites exhibited excellent photocatalytic activity and good stability. The physicochemical property of tourmaline may be favor for the degradation of HCHO. The mixed-phase of anatase and rutile TiO{sub 2} may be favor for the degradation of HCHO. - Abstract: The TiO{sub 2} supported tourmaline composites were prepared by a solgel method and used as a photocatalyst for the degradation of formaldehyde (HCHO). The composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), N{sub 2} adsorptiondesorption, Fourier transform infrared (FT-IR) spectroscopy and UVvis diffuse reflectance spectroscopy (UVvis DRS). The results indicate that the mixed-phase of anatase and rutile exists in the TiO{sub 2}/tourmaline composites. The specific surface area of the TiO{sub 2}/tourmaline composites is much higher than that of the pure TiO{sub 2}. The TiO{sub 2}/tourmaline composites exhibited excellent photocatalytic activity for the degradation of HCHO, which was 6 times higher than that of the pure TiO{sub 2}. Moreover, the excellent photocatalytic activity of the composites was fully maintained after five photocatalytic cycles, which may be attributed to the physicochemical property of tourmaline and the mixed-phase of anatase and rutile in the TiO{sub 2}/tourmaline composites.

  19. High-Flux Microchannel Solar Receiver

    Broader source: Energy.gov [DOE]

    This fact sheet describes a high-flux, microchannel solar receiver project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Oregon State University, is working to demonstrate a microchannel-based solar receiver capable of absorbing high solar flux, while using a variety of liquid and gaseous working fluids. High-flux microchannel receivers have the potential to dramatically reduce the size and cost of a solar receiver by minimizing re-radiation and convective losses.

  20. Synthesis of high molecular weight PEO using non-metal initiators...

    Office of Scientific and Technical Information (OSTI)

    The method involves a metal free initiator system, thus avoiding dangerous, flammable ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 37 ...

  1. Ammonia Solubility in High Concentration Salt Solutions

    SciTech Connect (OSTI)

    HEDENGREN, D.C.

    2000-02-01

    Solubility data for ammonia in water and various dilute solutions are abundant in the literature. However, there is a noticeable lack of ammonia solubility data for high salt, basic solutions of various mixtures of salts including those found in many of the Hanford Washington underground waste tanks. As a result, models based on solubility data for dilute salt solutions have been used to extrapolate to high salt solutions. These significant extrapolations need to be checked against actual laboratory data. Some indirect vapor measurements have been made. A more direct approach is to determine the ratio of solubility of ammonia in water to its solubility in high salt solutions. In various experiments, pairs of solutions, one of which is water and the other a high salt solution, are allowed to come to equilibrium with a common ammonia vapor pressure. The ratio of concentrations of ammonia in the two solutions is equal to the ratio of the respective ammonia solubilities (Henry's Law constants) at a given temperature. This information can then be used to refine the models that predict vapor space compositions of ammonia. Ammonia at Hanford is of concern because of its toxicity in the environment and its contribution to the flammability of vapor space gas mixtures in waste tanks.

  2. About 900 High School Students, Educators Attend Third Annual DOE Science Alliance

    Broader source: Energy.gov [DOE]

    PIKETON, OH – The U.S. Department of Energy (DOE) welcomed about 900 high school juniors and educators for its third annual Science Alliance, a science fair that took place September 25-26, 2012, at the Portsmouth Gaseous Diffusion Plant.

  3. Improved gaseous leak detector

    DOE Patents [OSTI]

    Juravic, F.E. Jr.

    1983-10-06

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the nonlinear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  4. Gaseous leak detector

    DOE Patents [OSTI]

    Juravic, Jr., Frank E.

    1988-01-01

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the non linear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  5. Particulate and Gaseous Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Recent research in the MFC has focused on char-NOx formation and reburn (Figure 2), NOx formation during oxy-fuel combustion of pulverized coal, and ultrafine particulate matter ...

  6. Fiber Bulk Gaseous Carriers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles * Learning from experience ... world experience EG, a system approach to impact and ... (State Fire Marshalls) * Business model not well understood ...

  7. NGPL Production, Gaseous Equivalent

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado-Kansas 13 2014-2014 Colorado-Utah 34 2014-2014 Florida 0 0 0 0 233 1968-2014 Florida-Florida 233 2014-2014 Gulf of Mexico 0 0 87,478 70,292 75,648 2007-2014 Gulf of ...

  8. Intermittently-fed high-pressure gasifier process

    DOE Patents [OSTI]

    Bailey, John M.; Zadoks, Abraham L.

    1993-11-30

    An improved gasifier adapted for gasifying a predetermined charge of non-gaseous fuel into fuel gas. Each charge of non-gaseous fuel, which may have optional conditioning materials added to it, is intermittently fed to a gasifier chamber where each charge is partially burned with high-pressure air supplied thereto. High-pressure and temperature fuel gas is produced which is cleansed prior to passing out of the gasifier chamber. After gasification of the charge of fuel is is ended, the gasifier chamber is vented. The residue of the burned charge in the gasifier chamber is removed, along with the contaminated or reacted conditioning materials, and replaced by a fresh charge. The subject invention provides a feasible way of continuously fueling an internal combustion engine with gasified fuel and is compact enough to be practical for even mobile applications.

  9. Intermittently-fed high-pressure gasifier process

    DOE Patents [OSTI]

    Bailey, J.M.; Zadoks, A.L.

    1993-11-30

    An improved gasifier is described which is adapted for gasifying a predetermined charge of non-gaseous fuel into fuel gas. Each charge of non-gaseous fuel, which may have optional conditioning materials added to it, is intermittently fed to a gasifier chamber where each charge is partially burned with high-pressure air supplied thereto. High-pressure and temperature fuel gas is produced which is cleansed prior to passing out of the gasifier chamber. After gasification of the charge of fuel is ended, the gasifier chamber is vented. The residue of the burned charge in the gasifier chamber is removed, along with the contaminated or reacted conditioning materials, and replaced by a fresh charge. The subject invention provides a feasible way of continuously fueling an internal combustion engine with gasified fuel and is compact enough to be practical for even mobile applications. 3 figures.

  10. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Portsmouth Gaseous Diffusion Plant site

    SciTech Connect (OSTI)

    Marmer, G.J.; Dunn, C.P.; Filley, T.H.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. In the 1970s, the US Department of Energy (DOE) began investigating more efficient and cost-effective enrichment technologies. In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser isotope Separation (U-AVLIS) technology with the near-term goal to provide the necessary information to make a deployment decision by November 1992. Initial facility operation is anticipated for 1999. A programmatic document for use in screening DOE sites to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. The final evaluation, which included sensitivity studies, identified the Oak Ridge Gaseous Diffusion Plant (ORGDP) site, the Paducah Gaseous Diffusion Plant (PGDP) site, and the Portsmouth Gaseous Diffusion Plant (PORTS) site as having significant advantages over the other sites considered. This environmental site description (ESD) provides a detailed description of the PORTS site and vicinity suitable for use in an environmental impact statement (EIS). This report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during site visits. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use. Socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3.

  11. High energy chemical laser system

    DOE Patents [OSTI]

    Gregg, D.W.; Pearson, R.K.

    1975-12-23

    A high energy chemical laser system is described wherein explosive gaseous mixtures of a reducing agent providing hydrogen isotopes and interhalogen compounds are uniformly ignited by means of an electrical discharge, flash- photolysis or an electron beam. The resulting chemical explosion pumps a lasing chemical species, hydrogen fluoride or deuterium fluoride which is formed in the chemical reaction. The generated lasing pulse has light frequencies in the 3- micron range. Suitable interhalogen compounds include bromine trifluoride (BrF$sub 3$), bromine pentafluoride (BrF$sub 5$), chlorine monofluoride (ClF), chlorine trifluoride (ClF$sub 3$), chlorine pentafluoride (ClF$sub 5$), iodine pentafluoride (IF$sub 5$), and iodine heptafluoride (IF$sub 7$); and suitable reducing agents include hydrogen (H$sub 2$), hydrocarbons such as methane (CH$sub 4$), deuterium (D$sub 2$), and diborane (B$sub 2$H$sub 6$), as well as combinations of the gaseous compound and/or molecular mixtures of the reducing agent.

  12. Lessons-Learned from D and D Activities at the Five Gaseous Diffusion Buildings (K-25, K- 27, K-29, K-31 and K-33) East Tennessee Technology Park, Oak Ridge, TN - 13574

    SciTech Connect (OSTI)

    Kopotic, James D.; Ferri, Mark S.; Buttram, Claude

    2013-07-01

    The East Tennessee Technology Park (ETTP) is the site of five former gaseous diffusion plant (GDP) process buildings that were used to enrich uranium from 1945 to 1985. The process equipment in the original two buildings (K-25 and K-27) was used for the production of highly enriched uranium (HEU), while that in the three later buildings (K-29, K-31 and K-33) produced low enriched uranium (LEU). Equipment was contaminated primarily with uranium and to a lesser extent technetium (Tc). Decommissioning of the GDP process buildings has presented several unique challenges and produced many lessons-learned. Among these is the importance of good, up-front characterization in developing the best demolition approach. Also, chemical cleaning of process gas equipment and piping (PGE) prior to shutdown should be considered to minimize the amount of hold-up material that must be removed by demolition crews. Another lesson learned is to maintain shutdown buildings in a dry state to minimize structural degradation which can significantly complicate characterization, deactivation and demolition efforts. Perhaps the most important lesson learned is that decommissioning GDP process buildings is first and foremost a waste logistics challenge. Innovative solutions are required to effectively manage the sheer volume of waste generated from decontamination and demolition (D and D) of these enormous facilities. Finally, close coordination with Security is mandatory to effectively manage Special Nuclear Material (SNM) and classified equipment issues. (authors)

  13. System and process for capture of H.sub.2S from gaseous process streams and process for regeneration of the capture agent

    DOE Patents [OSTI]

    Heldenbrant, David J; Koech, Phillip K; Rainbolt, James E; Bearden, Mark D; Zheng, Feng

    2014-02-18

    A system and process are disclosed for selective removal and recovery of H.sub.2S from a gaseous volume, e.g., from natural gas. Anhydrous organic, sorbents chemically capture H.sub.2S gas to form hydrosulfide salts. Regeneration of the capture solvent involves addition of an anti-solvent that releases the captured H.sub.2S gas from the capture sorbent. The capture sorbent and anti-solvent are reactivated for reuse, e.g., by simple distillation.

  14. A strategy for resolving high-priority Hanford Site radioactive waste storage tank safety issues

    SciTech Connect (OSTI)

    Babad, H.; DeFigh-Price, C.; Fulton, J.C.

    1993-02-01

    High-activity radioactive waste has been stored in large underground storage tanks at the US Department of Energy`s (DOE) Hanford Site in Eastern Washington State since 1944. Since then, more than 227,000 m{sup 3} (60 Mgal) of waste have been accumulated in 177 tanks. These caustic wastes consist of many different chemicals. The waste forms include liquids, slurries, salt cakes, and sludges. A number of safety issues have been raised about these wastes, and resolution of these issues is a top priority of DOE. A Waste Tank Safety Program has been established to resolve these high-priority safety issues. This paper will deal with three of these issues. The issues described are the release of flammable vapors from single- and double-shell tanks, the existence of organic chemicals, and/or ferrocyanide ion-containing fuel-rich mixtures of nitrate and nitrite salts in single-shell tanks.

  15. High-temperature-measuring device

    DOE Patents [OSTI]

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  16. FTIR study of the photocatalytic degradation of gaseous benzene over UV-irradiated TiO{sub 2} nanoballs synthesized by hydrothermal treatment in alkaline solution

    SciTech Connect (OSTI)

    Zhu, Zhengru [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China)] [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China); Li, Xinyong, E-mail: xyli@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China)] [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China); Zhao, Qidong; Qu, Zhenping; Hou, Yang; Zhao, Ling [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China)] [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China); Liu, Shaomin [Department of Chemical Engineering, Curtin University of Technology, Perth, WA 6845 (Australia)] [Department of Chemical Engineering, Curtin University of Technology, Perth, WA 6845 (Australia); Chen, Guohua [Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)] [Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2010-12-15

    In this study, photocatalysts of TiO{sub 2} nanoballs were obtained via a hydrothermal treating of commercial P25 in alkaline solution, and then characterized with SEM, XRD, BET and surface photovoltage spectroscopy techniques. The UV-assisted photodegradation of gaseous benzene over P25 and the prepared TiO{sub 2} nanoballs was monitored by an in situ infrared technique. The results demonstrated that the prepared TiO{sub 2} nanoballs in anatase form were more active than commercial P25 in photocatalytic oxidation of gaseous benzene. The promoted activity of the hydrothermal-treated TiO{sub 2} is attributed to the increasing specific surface area and larger band gap induced by the reduced crystallite size. The spectra of FTIR indicated that weakly adsorbed phenol was formed as the reaction progress. Hydroxyl groups on the surface of TiO{sub 2} nanoballs are able to react with photo-produced phenol, which is then retained on the catalyst surface leading to the progressive deactivation of the catalyst in the gas-solid system.

  17. Proof-of-principle demonstration of a virtual flow meter-based transducer for gaseous helium monitoring in particle accelerator cryogenics

    SciTech Connect (OSTI)

    Arpaia, P.; Blanco, E.; Inglese, V.; Pezzetti, M.; Serio, L.; Girone, M.; Piccinelli, F.

    2015-07-15

    A transducer based on a virtual flow meter is proposed for monitoring helium distribution and consumption in cryogenic systems for particle accelerators. The virtual flow meter allows technical and economical constraints, preventing installation of physical instruments in all the needed measurement points, to be overcome. Virtual flow meter performance for the alternative models of Samson [ http://www.samson.de (2015)] and Sereg-Schlumberger [ http://www.slb.com/ (2015)] is compared with the standard IEC 60534-2-1 [Industrial-process control valves—Part 2-1: Flow capacity—sizing equations for fluid flow under installed conditions (2011), https://webstore.iec.ch/publication/2461], for a large temperature range, for both gaseous and liquid helium phases, and for different pressure drops. Then, the calibration function of the transducer is derived. Finally, the experimental validation for the helium gaseous state on the test station for superconducting magnets in the laboratory SM18 [Pirotte et al., AIP Conf. Proc. 1573, 187 (2014)] at CERN is reported.

  18. Apparatus and method for removing particulate deposits from high temperature filters

    DOE Patents [OSTI]

    Nakaishi, Curtis V.; Holcombe, Norman T.; Micheli, Paul L.

    1992-01-01

    A combustion of a fuel-air mixture is used to provide a high-temperature and high-pressure pulse of gaseous combustion products for the back-flush cleaning of ceramic filter elements contained in a barrier filter system and utilized to separate particulates from particulate-laden process gases at high temperature and high pressure. The volume of gaseous combustion products provided by the combustion of the fuel-air mixture is preferably divided into a plurality of streams each passing through a sonic orifice and conveyed to the open end of each filter element as a high pressure pulse which passes through the filter elements and dislodges dust cake supported on a surface of the filter element.

  19. Evaluating high-temperature intumescent insulation materials under fire and blast conditions

    SciTech Connect (OSTI)

    Parker, A.J.

    1997-11-01

    This paper describes recent testing conducted to evaluate the performance of high-temperature intumescent materials under adverse fire and blast conditions. Results from fire performance evaluations currently protecting offshore oil platforms are presented. Extensive fire and blast qualification testing of epoxy-based intumescent materials has been conducted utilizing specially designed blast chambers, jet fire facilities, and laboratory furnaces. Blast chambers are capable of loading up to a 3 x 3-m insulated bulkhead assembly to a 2 bar over pressure and having a duration of approximately 250 millisecond generated by a controlled flammable vapor cloud explosion. The jet fire test exposes an insulated test specimen to a fire environment characterized by temperatures of approximately 1100 C, sonic gas velocities, and peak heat flux levels in excess of 300 kW/m{sup 2}.

  20. High Pressure Fuel Storage Cylinders Periodic Inspection and End of Life

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues | Department of Energy Fuel Storage Cylinders Periodic Inspection and End of Life Issues High Pressure Fuel Storage Cylinders Periodic Inspection and End of Life Issues These slides were presented at the Onboard Storage Tank Workshop on April 29, 2010. highpressure_fuelcylinders_ostw.pdf (1011.45 KB) More Documents & Publications Lessons Learned from Practical Field Experience with High Pressure Gaseous Fuels The Compelling Case for Natural Gas Vehicles U.S. Department of Energy

  1. Method for Synthesizing Extremeley High Temperature Melting Materials

    DOE Patents [OSTI]

    Saboungi, Marie-Louise and Glorieux, Benoit

    2005-11-22

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  2. Method for synthesizing extremely high-temperature melting materials

    DOE Patents [OSTI]

    Saboungi, Marie-Louise (Chicago, IL); Glorieux, Benoit (Perpignan, FR)

    2007-11-06

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as carbides and transition-metal, lanthanide and actinide oxides, using an aerodynamic levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  3. Method For Synthesizing Extremely High-Temperature Melting Materials

    DOE Patents [OSTI]

    Saboungi, Marie-Louise; Glorieux, Benoit

    2005-11-22

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  4. Novel Nonflammable Electrolytes for Secondary Magnesium Batteries and High Voltage Electrolytes for Electrochemcial Supercapacitors

    SciTech Connect (OSTI)

    Dr. Brian Dixon

    2008-12-30

    Magnesium has been used successfully in primary batteries, but its use in rechargeable cells has been stymied by the lack of suitable non-aqueous electrolyte that can conduct Mg+2 species, combined with poor stripping and plating properties. The development of a suitable cathode material for rechargeable magnesium batteries has also been a roadblock, but a nonflammable electrolyte is key. Likewise, the development of safe high voltage electrochemical supercapaitors has been stymied by the use of flammable solvents in the liquid electrolyte; to wit, acetonitrile. The purpose of the research conducted in this effort was to identify useful compositions of magnesium salts and polyphosphate solvents that would enable magnesium ions to be cycled within a secondary battery design. The polyphosphate solvents would provide the solvent for the magnesium salts while preventing the electrolyte from being flammable. This would enable these novel electrolytes to be considered as an alternative to THF-based electrolytes. In addition, we explored several of these solvents together with lithium slats for use as high voltage electrolytes for carbon-based electrochemical supercapacitors. The research was successful in that: 1) Magnesium imide dissolved in a phosphate ester solvent that contains a halogented phosphate ester appears to be the preferred electrolyte for a rechargeable Mg cell. 2) A combination of B-doped CNTs and vanadium phosphate appear to be the cathode of choice for a rechargeable Mg cell by virtue of higher voltage and better reversibility. 3) Magnesium alloys appear to perform better than pure magnesium when used in combination with the novel polyphosphate electrolytes. Also, this effort has established that Phoenix Innovation??s family of phosphonate/phosphate electrolytes together with specific lithium slats can be used in supercapacitor systems at voltages of greater than 10V.

  5. Integrated modeling of CO2 storage and leakage scenarios including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO2

    SciTech Connect (OSTI)

    Pruess, K.

    2011-05-15

    Storage of CO{sub 2} in saline aquifers is intended to be at supercritical pressure and temperature conditions, but CO{sub 2} leaking from a geologic storage reservoir and migrating toward the land surface (through faults, fractures, or improperly abandoned wells) would reach subcritical conditions at depths shallower than 500-750 m. At these and shallower depths, subcritical CO{sub 2} can form two-phase mixtures of liquid and gaseous CO{sub 2}, with significant latent heat effects during boiling and condensation. Additional strongly non-isothermal effects can arise from decompression of gas-like subcritical CO{sub 2}, the so-called Joule-Thomson effect. Integrated modeling of CO{sub 2} storage and leakage requires the ability to model non-isothermal flows of brine and CO{sub 2} at conditions that range from supercritical to subcritical, including three-phase flow of aqueous phase, and both liquid and gaseous CO{sub 2}. In this paper, we describe and demonstrate comprehensive simulation capabilities that can cope with all possible phase conditions in brine-CO{sub 2} systems. Our model formulation includes: (1) an accurate description of thermophysical properties of aqueous and CO{sub 2}-rich phases as functions of temperature, pressure, salinity and CO{sub 2} content, including the mutual dissolution of CO{sub 2} and H{sub 2}O; (2) transitions between super- and subcritical conditions, including phase change between liquid and gaseous CO{sub 2}; (3) one-, two-, and three-phase flow of brine-CO{sub 2} mixtures, including heat flow; (4) non-isothermal effects associated with phase change, mutual dissolution of CO{sub 2} and water, and (de-) compression effects; and (5) the effects of dissolved NaCl, and the possibility of precipitating solid halite, with associated porosity and permeability change. Applications to specific leakage scenarios demonstrate that the peculiar thermophysical properties of CO{sub 2} provide a potential for positive as well as negative

  6. Probe into Gaseous Pollution and Assessment of Air Quality Benefit under Sector Dependent Emission Control Strategies over Megacities in Yangtze River Delta, China

    SciTech Connect (OSTI)

    Dong, Xinyi; Gao, Yang; Fu, Joshua S.; Li, Juan; Huang, Kan; Zhuang, G.; Zhou, Ying

    2013-11-01

    On February 29th 2012, China published its new National Ambient Air Quality Standard (CH-NAAQS) aiming at revising the standards and measurements for both gaseous pollutants including ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), and also particle pollutants including PM10 and PM2.5. In order to understand the air pollution status regarding this new standard, the integrated MM5/CMAQ modeling system was applied over Yangtze River Delta (YRD) within this study to examine the criteria gaseous pollutants listed in the new CH-NAAQS. Sensitivity simulations were also conducted to assess the responses of gaseous pollutants under 8 different sector-dependent emission reduction scenarios in order to evaluate the potential control strategies. 2006 was selected as the simulation year in order to review the air quality condition at the beginning of China’s 11th Five-Year-Plan (FYP, from 2006 to 2010), and also compared with air quality status in 2010 as the end of 11th FYP to probe into the effectiveness of the national emission control efforts. Base case simulation showed distinct seasonal variation for gaseous pollutants: SO2, and NO2 were found to have higher surface concentrations in winter while O3 was found to have higher concentrations in spring and summer than other seasons. According to the analyses focused on 3 megacities within YRD, Shanghai, Nanjing, and Hangzhou, we found different air quality conditions among the cities: NO2 was the primary pollutant that having the largest number of days exceeding the CH-NAAQS daily standard (80 μg/m3) in Shanghai (59 days) and Nanjing (27 days); SO2 was the primary pollutant with maximum number of days exceeding daily air quality standard (150 μg/m3) in Hangzhou (28 days), while O3 exceeding the daily maximum 8-hour standard (160 μg/m3) for relatively fewer days in all the three cities (9 days in Shanghai, 14 days in Nanjing, and 11 days in Hangzhou). Simulation results from predefined potential applicable

  7. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 2, Industrial liquid waste processing, industrial gaseous waste processing

    SciTech Connect (OSTI)

    Lee, V.E. [ed.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarize the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Individual reports are indexed separately.

  8. In situ synthesis of TiH{sub 2} layer on metallic titanium foil through gaseous hydrogen free acid-hydrothermal method

    SciTech Connect (OSTI)

    Ren, Na; Wang, Guancong; Liu, Hong; Ohachi, Tadashi

    2014-02-01

    Graphical abstract: The reaction mechanism for in situ synthesizing TiH{sub 2} layer on titanium foil by a gaseous hydrogen free acid-hydrothermal methodology. - Highlights: • A dense TiH{sub 2} layer is synthesized by a hydrogen free acid-hydrothermal method. • Hydrogen in a TiH{sub 2} layer synthesized can release at low temperature. • During the dehydrogenation process, there is no any intermediate phase forming. • We report a method of low-cost, low-risk and convenience toward productive TiH{sub 2}. - Abstract: A novel strategy for synthesis of TiH{sub 2} layer on surface of metallic titanium by using an acid-hydrothermal method was proposed. During the synthesis process, no any elemental hydrogen was involved. X-ray powder diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy results confirmed that a TiH{sub 2} layer of 20 μm thickness on a Ti foil surface can be formed in situ by an interface reaction of metallic titanium with sulfuric acid solution, hydrochloric acid, or phosphoric acid, which is a hydrogen self-storage process. By tuning reaction parameters, for example, concentration of acid, composition and morphology of TiH{sub 2}-Ti hybrid materials can be adjusted. The TiH{sub 2} layer on a metallic titanium surface can be decompounded completely heated below 400 °C. This convenient, safe and low-cost method is a promising gaseous hydrogen free approach for the synthesis of hydride-based hydrogen storage materials.

  9. Effects of gaseous NH{sub 3} and SO{sub 2} on the concentration profiles of PCDD/F in flyash under post-combustion zone conditions

    SciTech Connect (OSTI)

    Hajizadeh, Yaghoub; Onwudili, Jude A.; Williams, Paul T.

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Influence of NH{sub 3} and SO{sub 2} on 2378-PCDD/F in flyash and flue gases was investigated. Black-Right-Pointing-Pointer NH{sub 3} decreased the concentration of PCDD and PCDF by 34-75% in the flyash. Black-Right-Pointing-Pointer NH{sub 3} decreased the concentration of PCDD and PCDF by 21-40% from the flue gases. Black-Right-Pointing-Pointer SO{sub 2} led to 99% PCDD and 93% PCDF reductions in the flyash. Black-Right-Pointing-Pointer SO{sub 2} led to 89% PCDD and 76% PCDF reductions in the flue gases. - Abstract: The influence of gaseous ammonia and sulphur dioxide on the formation of 2378-substituted PCDD/F on a reference flyash from a municipal waste incinerator has been investigated using a laboratory scale fixed-bed reactor. The reference flyash samples (BCR-490) was reacted under a simulated flue gas stream at temperatures of 225 and 375 Degree-Sign C for 96 h. The experiments were carried out in two series: first with simulated flue gas alone, and then with injection of NH{sub 3} or SO{sub 2} gas into the flue gas just before the reactor inlet. It was found that the injection of gaseous ammonia into the flue gas could decrease the concentration of both PCDD and PCDF by 34-75% from the solid phase and by 21-40% from the gas phase. Converting the results to I-TEQ values, it could reduce the total I-TEQ values of PCDD and PCDF in the sum of the flyash and exhaust flue gas by 42-75% and 24-57% respectively. The application of SO{sub 2} led to 99% and 93% reductions in the PCDD and PCDF average congener concentrations, respectively in the solid phase. In the gas phase, the total reductions were 89% and 76% for PCDD and PCDF, respectively. Moreover, addition of SO{sub 2} reduced the total I-TEQ value of PCDD and PCDF in the flyash and exhaust flue gas together by 60-86% and 72-82% respectively. Sulphur dioxide was more effective than ammonia in suppressing PCDD/F formation in flyash under the conditions investigated.

  10. Nonlinear polarization response of a gaseous medium in the regime of atom stabilization in a strong radiation field

    SciTech Connect (OSTI)

    Volkova, E. A.; Popov, A. M. Tikhonova, O. V.

    2013-03-15

    The nonlinear polarization response of a quantum system modeling a silver atom in the field of high-intensity radiation in the IR and UV spectral ranges has been studied by direct numerical integration of a nonstationary Schroedinger equation. The domains of applicability of perturbation theory and polarization expansion in powers of the field intensity are determined. The contribution of excited atoms and electrons in a continuum to the atomic polarization response at the field frequency, which arises due to the radiation-induced excitation and photoionization processes, is analyzed. Features of the nonlinear response to an external field under conditions of atom stabilization are considered.

  11. Photoelectron spectroscopy and theoretical studies of gaseous uranium hexachlorides in different oxidation states: UCl{sub 6}{sup q?} (q = 02)

    SciTech Connect (OSTI)

    Su, Jing; Dau, Phuong D.; Huang, Dao-Ling; Wang, Lai-Sheng; Liu, Hong-Tao; Wei, Fan; Schwarz, W. H. E.; Li, Jun

    2015-04-07

    Uranium chlorides are important in actinide chemistry and nuclear industries, but their chemical bonding and many physical and chemical properties are not well understood yet. Here, we report the first experimental observation of two gaseous uranium hexachloride anions, UCl{sub 6}{sup ?} and UCl{sub 6}{sup 2?}, which are probed by photoelectron spectroscopy in conjunction with quantum chemistry calculations. The electron affinity of UCl{sub 6} is measured for the first time as +5.3 eV; its second electron affinity is measured to be +0.60 eV from the photoelectron spectra of UCl{sub 6}{sup 2?}. We observe that the detachment cross sections of the 5f electrons are extremely weak in the visible and UV energy ranges. It is found that the one-electron one-determinental molecular orbital picture and Koopmans theorem break down for the strongly internally correlated U-5f{sup 2} valence shell of tetravalent U{sup +4} in UCl{sub 6}{sup 2?}. The calculated adiabatic and vertical electron detachment energies from ab initio calculations agree well with the experimental observations. Electronic structure and chemical bonding in the uranium hexachloride species UCl{sub 6}{sup 2?} to UCl{sub 6} are discussed as a function of the oxidation state of U.

  12. Thermal discharges from Paducah Gaseous Diffusion Plant outfalls: Impacts on stream temperatures and fauna of Little Bayou and Big Bayou Creeks

    SciTech Connect (OSTI)

    Roy, W.K.; Ryon, M.G.; Hinzman, R.L.

    1996-03-01

    The development of a biological monitoring plan for the receiving streams of the Paducah Gaseous Diffusion Plant (PGDP) began in the late 1980s, because of an Agreed Order (AO) issued in September 1987 by the Kentucky Division of Water (KDOW). Five years later, in September 1992, more stringent effluent limitations were imposed upon the PGDP operations when the KDOW reissued Kentucky Pollutant Discharge Elimination System permit No. KY 0004049. This action prompted the US Department of Energy (DOE) to request a stay of certain limits contained in the permit. An AO is being negotiated between KDOW, the US Enrichment Corporation (USEC), and DOE that will require that several studies be conducted, including this stream temperature evaluation study, in an effort to establish permit limitations. All issues associated with this AO have been resolved, and the AO is currently being signed by all parties involved. The proposed effluent temperature limit is 89 F (31.7 C) as a mean monthly temperature. In the interim, temperatures are not to exceed 95 F (35 C) as a monthly mean or 100 F (37.8 C) as a daily maximum. This study includes detailed monitoring of instream temperatures, benthic macroinvertebrate communities, fish communities, and a laboratory study of thermal tolerances.

  13. Thermal Discharges from Paducah Gaseous Diffusion Plant Outfalls: Impacts on Stream Temperatures and Fauna of Little Bayou and Big Bayou Creeks

    SciTech Connect (OSTI)

    Roy, W.K.

    1999-01-01

    The development of a biological monitoring plan for the receiving streams of the Paducah Gaseous Diffusion Plant (PGDP) began in the late 1980s, because of an Agreed Order (AO) issued in September 1987 by the Kentucky Division of Water (KDOW). Five years later, in September 1992, more stringent effluent limitations were imposed upon the PGDP operations when the KDOW reissued Kentucky Pollutant Discharge Elimination System permit No. KY 0004049. This action prompted the US Department of Energy (DOE) to request a stay of certain limits contained in the permit. An AO is being negotiated between KDOW, the United States Enrichment Corporation (USEC), and DOE that will require that several studies be conducted, including this stream temperature evaluation study, in an effort to establish permit limitations. All issues associated with this AO have been resolved, and the AO is currently being signed by all parties involved. The proposed effluent temperature limit is 89 F (31.7C) as a mean monthly temperature. In the interim, temperatures are not to exceed 95 F (35 C) as a monthly mean or 100 F (37.8 C) as a daily maximum. This study includes detailed monitoring of instream temperatures, benthic macroinvertebrate communities, fish communities, and a laboratory study of thermal tolerances.

  14. Applicable or relevant and appropriate requirements (ARARs) for remedial actions at the Paducah Gaseous Diffusion Plant: A compendium of environmental laws and guidance. Environmental Restoration Program

    SciTech Connect (OSTI)

    Etnier, E.L.; Eaton, L.A.

    1992-03-01

    Section 121 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 specifies that remedial actions for cleanup of hazardous substances found at sites placed on the National Priorities List (NPL) by the US Environmental Protection Agency (EPA) must comply with applicable or relevant and appropriate requirements (ARARs) or standards under federal and state environmental laws. To date, the US Department of Energy (DOE) Paducah Gaseous Diffusion Plant (PGDP) has not been on the NPL. Although DOE and EPA have entered into an Administrative Consent Order (ACO), the prime regulatory authority for cleanup at PGDP will be the Resource Conservation and Recovery Act (RCRA). This report supplies a preliminary list of available federal and state ARARs that might be considered for remedial response at PGDP in the event that the plant becomes included on the NPL or the ACO is modified to include CERCLA cleanup. A description of the terms ``applicable`` and ``relevant and appropriate`` is provided, as well as definitions of chemical-, location-, and action-specific ARARS. ARARs promulgated by the federal government and by the state of Kentucky are listed in tables. In addition, the major provisions of RCRA, the Safe Drinking Water Act, the Clean Water Act, the Clean Air Act, and other acts, as they apply to hazardous and radioactive waste cleanup, are discussed.

  15. Applicable or relevant and appropriate requirements (ARARs) for remedial actions at the Paducah Gaseous Diffusion Plant: A compendium of environmental laws and guidance

    SciTech Connect (OSTI)

    Etnier, E.L.; Eaton, L.A. )

    1992-03-01

    Section 121 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 specifies that remedial actions for cleanup of hazardous substances found at sites placed on the National Priorities List (NPL) by the US Environmental Protection Agency (EPA) must comply with applicable or relevant and appropriate requirements (ARARs) or standards under federal and state environmental laws. To date, the US Department of Energy (DOE) Paducah Gaseous Diffusion Plant (PGDP) has not been on the NPL. Although DOE and EPA have entered into an Administrative Consent Order (ACO), the prime regulatory authority for cleanup at PGDP will be the Resource Conservation and Recovery Act (RCRA). This report supplies a preliminary list of available federal and state ARARs that might be considered for remedial response at PGDP in the event that the plant becomes included on the NPL or the ACO is modified to include CERCLA cleanup. A description of the terms applicable'' and relevant and appropriate'' is provided, as well as definitions of chemical-, location-, and action-specific ARARS. ARARs promulgated by the federal government and by the state of Kentucky are listed in tables. In addition, the major provisions of RCRA, the Safe Drinking Water Act, the Clean Water Act, the Clean Air Act, and other acts, as they apply to hazardous and radioactive waste cleanup, are discussed.

  16. Field evaluation of a horizontal well recirculation system for groundwater treatment: Field demonstration at X-701B Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    Korte, N.; Muck, M.; Kearl, P.; Siegrist, R.; Schlosser, R.; Zutman, J.; Houk, T.

    1998-08-01

    This report describes the field-scale demonstration performed as part of the project, In Situ Treatment of Mixed Contaminants in Groundwater. This project was a 3{1/2} year effort comprised of laboratory work performed at Oak Ridge National Laboratory and fieldwork performed at the US Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS). The overall goal of the project was to evaluate in situ treatment of groundwater using horizontal recirculation coupled with treatment modules. Specifically, horizontal recirculation was tested because of its application to thin, interbedded aquifer zones. Mixed contaminants were targeted because of their prominence at DOE sites and because they cannot be treated with conventional methods. The project involved several research elements, including treatment process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and full-scale testing at a contaminated site. This report presents the results of the work at the contaminated site, X-701B at PORTS. Groundwater contamination at X-701B consists of trichloroethene (TCE) (concentrations up to 1800 mg/L) and technetium-998 (Tc{sup 99}) (activities up to 926 pCi/L).

  17. Improved estimates of separation distances to prevent unacceptable damage to nuclear power plant structures from hydrogen detonation for gaseous hydrogen storage. Technical report

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This report provides new estimates of separation distances for nuclear power plant gaseous hydrogen storage facilities. Unacceptable damage to plant structures from hydrogen detonations will be prevented by having hydrogen storage facilities meet separation distance criteria recommended in this report. The revised standoff distances are based on improved calculations on hydrogen gas cloud detonations and structural analysis of reinforced concrete structures. Also, the results presented in this study do not depend upon equivalencing a hydrogen detonation to an equivalent TNT detonation. The static and stagnation pressures, wave velocity, and the shock wave impulse delivered to wall surfaces were computed for several different size hydrogen explosions. Separation distance equations were developed and were used to compute the minimum separation distance for six different wall cases and for seven detonating volumes (from 1.59 to 79.67 lbm of hydrogen). These improved calculation results were compared to previous calculations. The ratio between the separation distance predicted in this report versus that predicted for hydrogen detonation in previous calculations varies from 0 to approximately 4. Thus, the separation distances results from the previous calculations can be either overconservative or unconservative depending upon the set of hydrogen detonation parameters that are used. Consequently, it is concluded that the hydrogen-to-TNT detonation equivalency utilized in previous calculations should no longer be used.

  18. Method and apparatus of cryogenic cooling for high temperature superconductor devices

    DOE Patents [OSTI]

    Yuan, Xing; Mine, Susumu

    2005-02-15

    A method and apparatus for providing cryogenic cooling to HTS devices, in particular those that are used in high-voltage electric power applications. The method involves pressurizing liquid cryogen to above one atmospheric pressure to improve its dielectric strength, while sub-cooling the liquid cryogen to below its saturation temperature in order to improve the performance of the HTS components of the device. An apparatus utilizing such a cooling method consists of a vessel that contains a pressurized gaseous cryogen region and a sub-cooled liquid cryogen bath, a liquid cryogen heating coupled with a gaseous cryogen venting scheme to maintain the pressure of the cryogen to a value in a range that corresponds to optimum dielectric strength of the liquid cryogen, and a cooling system that maintains the liquid cryogen at a temperature below its boiling point to improve the performance of HTS materials used in the device.

  19. Enzymatically active high-flux selectively gas-permeable membranes

    DOE Patents [OSTI]

    Jiang, Ying-Bing; Cecchi, Joseph L.; Rempe, Susan; FU, Yaqin; Brinker, C. Jeffrey

    2016-01-26

    An ultra-thin, catalyzed liquid transport medium-based membrane structure fabricated with a porous supporting substrate may be used for separating an object species such as a carbon dioxide object species. Carbon dioxide flux through this membrane structures may be several orders of magnitude higher than traditional polymer membranes with a high selectivity to carbon dioxide. Other gases such as molecular oxygen, molecular hydrogen, and other species including non-gaseous species, for example ionic materials, may be separated using variations to the membrane discussed.

  20. Electron beam enhanced surface modification for making highly resolved structures

    DOE Patents [OSTI]

    Pitts, J.R.

    1984-10-10

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  1. Electron beam enhanced surface modification for making highly resolved structures

    DOE Patents [OSTI]

    Pitts, John R.

    1986-01-01

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  2. Explosion bomb measurements of ethanol-air laminar gaseous flame characteristics at pressures up to 1.4 MPa

    SciTech Connect (OSTI)

    Bradley, D.; Lawes, M.; Mansour, M.S. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2009-07-15

    The principal burning characteristics of a laminar flame comprise the fuel vapour pressure, the laminar burning velocity, ignition delay times, Markstein numbers for strain rate and curvature, the stretch rates for the onset of flame instabilities and of flame extinction for different mixtures. With the exception of ignition delay times, measurements of these are reported and discussed for ethanol-air mixtures. The measurements were in a spherical explosion bomb, with central ignition, in the regime of a developed stable, flame between that of an under or over-driven ignition and that of an unstable flame. Pressures ranged from 0.1 to 1.4 MPa, temperatures from 300 to 393 K, and equivalence ratios were between 0.7 and 1.5. It was important to ensure the relatively large volume of ethanol in rich mixtures at high pressures was fully evaporated. The maximum pressure for the measurements was the highest compatible with the maximum safe working pressure of the bomb. Many of the flames soon became unstable, due to Darrieus-Landau and thermo-diffusive instabilities. This effect increased with pressure and the flame wrinkling arising from the instabilities enhanced the flame speed. Both the critical Peclet number and the, more rational, associated critical Karlovitz stretch factor were evaluated at the onset of the instability. With increasing pressure, the onset of flame instability occurred earlier. The measured values of burning velocity are expressed in terms of their variations with temperature and pressure, and these are compared with those obtained by other researchers. Some comparisons are made with the corresponding properties for iso-octane-air mixtures. (author)

  3. High efficiency proportional neutron detector with solid liner internal structures

    DOE Patents [OSTI]

    Kisner, Roger Allen; Holcomb, David Eugene; Brown, Gilbert M.

    2014-08-05

    A tube-style neutron detector, a panel-style neutron detector incorporating a plurality of tube-style neutron detectors, and a panel-style neutron detector including a plurality of anode wires are provided. A plurality of channels is provided in a neutron detector such that each channel has an inner surface of a coating layer including a neutron-absorbing material. A wire anode is provided at end of each channel so that electrons generated by a charged daughter particle generated by a neutron are collected to detect a neutron-matter interaction. Moderator units can be incorporated into a neutron detector to provide improved detection efficiencies and/or to determine neutron energy spectrum. Gas-based proportional response from the neutron detectors can be employed for special nuclear material (SNM) detection. This neutron detector can provide similar performance to .sup.3He-based detectors without requiring .sup.3He and without containing toxic, flammable, or high-pressure materials.

  4. Assessment of chemical vulnerabilities in the Hanford high-level waste tanks

    SciTech Connect (OSTI)

    Meacham, J.E.

    1996-02-15

    The purpose of this report is to summarize results of relevant data (tank farm and laboratory) and analysis related to potential chemical vulnerabilities of the Hanford Site waste tanks. Potential chemical safety vulnerabilities examined include spontaneous runaway reactions, condensed phase waste combustibility, and tank headspace flammability. The major conclusions of the report are the following: Spontaneous runaway reactions are not credible; condensed phase combustion is not likely; and periodic releases of flammable gas can be mitigated by interim stabilization.

  5. Photocatalytic degradation of gaseous toluene over hollow spindle-like ?-Fe{sub 2}O{sub 3} loaded with Ag

    SciTech Connect (OSTI)

    Li, Hong [State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China) [State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Department of Basic, Dalian Naval Academy, Dalian 116018 (China); Zhao, Qidong [State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China)] [State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Li, Xinyong, E-mail: xyli@dlut.edu.cn [State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China) [State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia); Shi, Yong [State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China)] [State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Zhu, Zhengru [Research Center of Hydrology and Engineering, Academy of City and Environment, Liaoning Normal University, Dalian 116029 (China)] [Research Center of Hydrology and Engineering, Academy of City and Environment, Liaoning Normal University, Dalian 116029 (China); Tade, Moses [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia)] [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia); Liu, Shaomin, E-mail: shaomin.liu@curtin.edu.au [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia)] [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia)

    2012-06-15

    Highlights: ? Hollow ?-Fe{sub 2}O{sub 3} spindle-shaped microparticles were prepared for Ag support. ? The hollow ?-Fe{sub 2}O{sub 3} and Ag/?-Fe{sub 2}O{sub 3} materials were used to degrade gaseous toluene. ? Complete degradation of toluene occurred on the Ag/?-Fe{sub 2}O{sub 3} surface. -- Abstract: In this work, hollow spindle-like ?-Fe{sub 2}O{sub 3} nanoparticles were synthesized by a hydrothermal route. The Ag/?-Fe{sub 2}O{sub 3} catalyst was prepared based on the spindle-shaped ?-Fe{sub 2}O{sub 3} with CTAB as the surfactant, which showed excellent photoelectric property and photocatalytic activity. The structural properties of these samples were systematically investigated by X-ray powder diffraction, scanning electronic microscopy, transmission electronic microscopy, energy-dispersive X-ray spectra, and UVVis diffuse reflectance spectroscopy techniques. The photo-induced charge separation in the samples was demonstrated by surface photovoltage measurement. The photocatalytic performances of the Ag/?-Fe{sub 2}O{sub 3} and ?-Fe{sub 2}O{sub 3} samples were comparatively studied in the degradation of toluene under xenon lamp irradiation by in situ FTIR spectroscopy. Benzaldehyde and benzoic acid species could be observed on the ?-Fe{sub 2}O{sub 3} surface rather than Ag/?-Fe{sub 2}O{sub 3} surface. The results indicate that the Ag/?-Fe{sub 2}O{sub 3} sample exhibited higher photocatalytic efficiency.

  6. RCRA Facility Investigation Plan K-1004 Area Lab Drain and the K-1007-B Pond - Oak Ridge Gaseous Diffusion Plant - Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    ORGDP, Martin Marietta Energy Systems Inc.

    1988-12-01

    Within the confines of the Oak Ridge Gaseous Diffusion Plant (ORGDP) are hazardous waste treatment, storage, and disposal facilities; some are in operation while others are no longer in use. these solid waste management units (SWMUs) are subject to assessment by the US Environmental Protection Agency (EPA). The RCRA Facility Investigation (RFI) Plans are scheduled to be submitted for all units during calendar years 1987 and 1988. The RFI Plan - General Document (K/HS-132) includes information applicable to all the ORGDP SMWUs and serves as a reference document for the site-specific RFI plans. This document is the site-specific RFI Plan for the K-1004 Area Lab Drain (ALD) and the K-1007-B Pond. This plan is based upon requirements described in the draft document, RFI Guidance, Vols. I-IV, December 1987 (EPA 530/SW-87-001). This unit is regulated by Section 3004(u) of the 1984 Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation Recovery Act (RCRA). Contained within this document are geographical, historical, operational, geological, and hydrological data specific to the K-1004 ALD and the K-1007-B Pond. The potential for release of contamination through the various media to receptors is addressed. A sampling plan is proposed to further determine the extent (if any) of release of contamination to the surrounding environment. Included are health and safety procedures to be followed when implementing the sampling plan. Quality control (QC) procedures for remedial action occurring on the Oak Ridge Reservation (ORR) are presented in 'The Environmental Surveillance Procedures Quality Control Program, Martin Marietta Energy Systems, Inc., (ESH/Sub/87-21706/1), and quality assurance (QA) guidelines for ORGDP investigations are contained in The K-25 Remedial Actions Program Quality Assurance Plan, K/HS-231.

  7. Assessment of the influences of groundwater colloids on the migration of technetium-99 at the Paducah Gaseous Diffusion Plant Site in Paducah, Kentucky

    SciTech Connect (OSTI)

    Gu, B.; McDonald, J.A.; McCarthy, J.F.; Clausen, J.L.

    1994-07-01

    This short report summarizes the influences of groundwater colloids on the migration/transport of {sup 99}Tc at the Paducah Gaseous Diffusion Plant (PGDP) site in Paducah, Kentucky. Limited data suggest that inorganic colloidal materials (e.g., aluminosilicate clay minerals) may not play a significant role in the retention and transport of Tc. Studies by size fractionation reveal that both Tc and natural organic matter (NOM) are largely present in the <3K fraction. The role of NOM on Tc retention and transport is not conclusive on the basis of this study. However, a literature review suggests that Tc is very likely associated with the groundwater organics. The presence of the organic matter could have increased the solubility and cotransport of Tc at the PGDP site. Further studies, applying such techniques as gel chromatography, size exclusion, and spectroscopy, may be useful to determine the association of organic matter with Tc. If Tc is associated with groundwater organics, appropriate protocols for removal of organic matter associated with Tc may be developed. Time and resources were limited so this study is not comprehensive with respect to the role of mobile organic and inorganic colloidal materials on Tc transport in subsurface soils. The redox conditions (DO) of groundwaters reported may not represent the true groundwater conditions, which could have influenced the association and dissociation of Tc with groundwater colloidal materials. Because Tc concentrations in the groundwater (on the order of nCi/L) at the PGDP site is much lower than the solubility of reduced Tc (IV) (on the order of {approximately}10{sup {minus}8} mol/L or parts per billion), regardless of the redox conditions, Tc will stay in solution phase as TC(IV) or Tc(VII). The mechanisms of adsorption/association vs precipitation must be understood under reduced and low Tc conditions so that strategic plans for remediation of Tc contaminated soils and groundwaters can be developed.

  8. Evaluation of high-efficiency gas-liquid contactors for natural gas processing. Semi-annual report, April--September 1994

    SciTech Connect (OSTI)

    1994-11-01

    Objective was to ensure reliable supply of high-quality natural gas by reducing the cost of treating subquality natural gas containing H{sub 2}O, CO{sub 2}, H{sub 2}S and/or trace quantities of other gaseous impurities by applying high-efficiency rotating and structured packing gas liquid contactors. The work included analysis of base case residence time, viscosity studies on low pressure rotary contactor system, and surface tension studies on the contactor.

  9. PUMP FOR GASEOUS WORKING FLUIDS

    DOE Patents [OSTI]

    Lipscomb, R.

    1948-12-14

    A gas pump having a substantially constant rate of flow and a relatively efficient punnping action is described. A number of flexible plates disposed longitudinally in and in contact with a duct are caused to oscillate transversly so as to produce wave-llke deformations of the plates. These deformations are mechanically produced by pushrods and an eccentric gearing arrangement, and are so synchronized that the waves travel from the inlet to the outlet of the duct, and, in so doing, move the gas by positive displacement.

  10. A TECHNICAL ASSESSMENT OF THE CURRENT WATER POLICY BOUNDARY AT U.S. DEPARTMENT OF ENERGY, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY

    SciTech Connect (OSTI)

    2012-12-13

    In 1988, groundwater contaminated with trichloroethene (TCE) and technetium-99 (Tc-99) was identified in samples collected from residential water wells withdrawing groundwater from the Regional Gravel Aquifer (RGA) north of the Paducah Gaseous Diffusion Plant (PGDP) facility. In response, the U.S. Department of Energy (DOE) provided temporary drinking water supplies to approximately 100 potentially affected residents by initially supplying bottled water, water tanks, and water-treatment systems, and then by extending municipal water lines, all at no cost, to those persons whose wells could be affected by contaminated groundwater. The Water Policy boundary was established in 1993. In the Policy, DOE agreed to pay the reasonable monthly cost of water for homes and businesses and, in exchange, many of the land owners signed license agreements committing to cease using the groundwater via rural water wells. In 2012, DOE requested that Oak Ridge Associated Universities (ORAU), managing contractor of Oak Ridge Institute for Science and Education (ORISE), provide an independent assessment of the quality and quantity of the existing groundwater monitoring data and determine if there is sufficient information to support a modification to the boundary of the current Water Policy. As a result of the assessment, ORAU concludes that sufficient groundwater monitoring data exists to determine that a shrinkage and/or shift of the plume(s) responsible for the initial development of this policy has occurred. Specifically, there is compelling evidence that the TCE plume is undergoing shrinkage due to natural attenuation and associated degradation. The plume shrinkage (and migration) has also been augmented in local areas where large volumes of groundwater were recovered by pump-and treat remedial systems along the eastern and western boundaries of the Northwest Plume, and in other areas where pump-and-treat systems have been deployed by DOE to remove source contaminants. The

  11. Dose Modeling Evaluations and Technical Support Document For the Authorized Limits Request for the DOE-Owned Property Outside the Limited Area, Paducah Gaseous Diffusion Plant Paducah, Kentucky

    SciTech Connect (OSTI)

    Boerner, A. J.; Maldonado, D. G.; Hansen, Tom

    2012-09-01

    Environmental assessments and remediation activities are being conducted by the U.S. Department of Energy (DOE) at the Paducah Gaseous Diffusion Plant (PGDP), Paducah, Kentucky. The Oak Ridge Institute for Science and Education (ORISE), a DOE prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct radiation dose modeling analyses and derive single radionuclide soil guidelines (soil guidelines) in support of the derivation of Authorized Limits (ALs) for 'DOE-Owned Property Outside the Limited Area' ('Property') at the PGDP. The ORISE evaluation specifically included the area identified by DOE restricted area postings (public use access restrictions) and areas licensed by DOE to the West Kentucky Wildlife Management Area (WKWMA). The licensed areas are available without restriction to the general public for a variety of (primarily) recreational uses. Relevant receptors impacting current and reasonably anticipated future use activities were evaluated. In support of soil guideline derivation, a Conceptual Site Model (CSM) was developed. The CSM listed radiation and contamination sources, release mechanisms, transport media, representative exposure pathways from residual radioactivity, and a total of three receptors (under present and future use scenarios). Plausible receptors included a Resident Farmer, Recreational User, and Wildlife Worker. single radionuclide soil guidelines (outputs specified by the software modeling code) were generated for three receptors and thirteen targeted radionuclides. These soil guidelines were based on satisfying the project dose constraints. For comparison, soil guidelines applicable to the basic radiation public dose limit of 100 mrem/yr were generated. Single radionuclide soil guidelines from the most limiting (restrictive) receptor based on a target dose constraint of 25 mrem/yr were then rounded and identified as the derived soil guidelines. An additional evaluation using the derived soil

  12. ENZYME ACTIVITY PROBE AND GEOCHEMICAL ASSESSMENT FOR POTENTIAL AEROBIC COMETABOLISM OF TRICHLOROETHENE IN GROUNDWATER OF THE NORTHWEST PLUME, PADUCAH GASEOUS DIFFUSION PLANT, KENTUCKY

    SciTech Connect (OSTI)

    Looney, B; M. Hope Lee, M; S. K. Hampson, S

    2008-06-27

    The overarching objective of the Paducah Gaseous Diffusion Plant (PGDP) enzyme activity probe (EAP) effort is to determine if aerobic cometabolism is contributing to the attenuation of trichloroethene (TCE) and other chlorinated solvents in the contaminated groundwater beneath PGDP. The site-specific objective for the EAP assessment is to identify if key metabolic pathways are present and expressed in the microbial community--namely the pathways that are responsible for degradation of methane and aromatic (e.g. toluene, benzene, phenol) substrates. The enzymes produced to degrade methane and aromatic compounds also break down TCE through a process known as cometabolism. EAPs directly measure if methane and/or aromatic enzyme production pathways are operating and, for the aromatic pathways, provide an estimate of the number of active organisms in the sampled groundwater. This study in the groundwater plumes at PGDP is a major part of a larger scientific effort being conducted by Interstate Technology and Regulatory Council (ITRC), U.S. Department of Energy (DOE) Office of Environmental Management (EM), Savannah River National Laboratory (SRNL), and North Wind Inc. in which EAPs are being applied to contaminated groundwater from diverse hydrogeologic and plume settings throughout the U.S. to help standardize their application as well as their interpretation. While EAP data provide key information to support the site specific objective for PGDP, several additional lines of evidence are being evaluated to increase confidence in the determination of the occurrence of biodegradation and the rate and sustainability of aerobic cometabolism. These complementary efforts include: (1) Examination of plume flowpaths and comparison of TCE behavior to 'conservative' tracers in the plume (e.g., {sup 99}Tc); (2) Evaluation of geochemical conditions throughout the plume; and (3) Evaluation of stable isotopes in the contaminants and their daughter products throughout the plume. If

  13. High Pressure Fuel Storage Cylinders Periodic Inspection and End of Life Issues

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6/2010 www.cleanvehicle.org 1 High Pressure Fuel Storage Cylinders Periodic Inspection and End of Life Issues DOE Vehicular Tank Workshop April 29, 2010 Douglas Horne, PE The Facts  High pressure Type 4 gaseous fuel tanks are now designed under standards that specify finite lifetimes of 15, 20 and 25 years based on specific design and testing (the HGV2 standard under development had a life as short as 10 years as an option)  It is unique within the transportation industry to have a

  14. Use Lower Flammable Limit Monitoring Equipment to Improve Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LFL monitoring equipment can improve the efficiency of the solvent removal process and ... drive on the exhaust system fan can improve process efficiency even further (damper ...

  15. Duct System Flammability and Air Sealing Fire Separation Assemblies...

    Office of Scientific and Technical Information (OSTI)

    Fire Separation Assemblies in the International Residential Code Rudd, A.; Prahl, D. 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; RESIDENTIAL BUILDINGS; AIRTIGHTNESS;...

  16. Duct System Flammability and Air Sealing Fire Separation Assemblies...

    Office of Scientific and Technical Information (OSTI)

    Technologies Office Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; RESIDENTIAL BUILDINGS; AIRTIGHTNESS;...

  17. Flammability Analysis For Actinide Oxides Packaged In 9975 Shipping Containers

    SciTech Connect (OSTI)

    Laurinat, James E.; Askew, Neal M.; Hensel, Steve J.

    2013-03-21

    Packaging options are evaluated for compliance with safety requirements for shipment of mixed actinide oxides packaged in a 9975 Primary Containment Vessel (PCV). Radiolytic gas generation rates, PCV internal gas pressures, and shipping windows (times to reach unacceptable gas compositions or pressures after closure of the PCV) are calculated for shipment of a 9975 PCV containing a plastic bottle filled with plutonium and uranium oxides with a selected isotopic composition. G-values for radiolytic hydrogen generation from adsorbed moisture are estimated from the results of gas generation tests for plutonium oxide and uranium oxide doped with curium-244. The radiolytic generation of hydrogen from the plastic bottle is calculated using a geometric model for alpha particle deposition in the bottle wall. The temperature of the PCV during shipment is estimated from the results of finite element heat transfer analyses.

  18. Impact Of Melter Internal Design On Off-Gas Flammability

    SciTech Connect (OSTI)

    Choi, A. S.; Lee, S. Y.

    2012-05-30

    The purpose of this study was to: (1) identify the more dominant design parameters that can serve as the quantitative measure of how prototypic a given melter is, (2) run the existing DWPF models to simulate the data collected using both DWPF and non-DWPF melter configurations, (3) confirm the validity of the selected design parameters by determining if the agreement between the model predictions and data is reasonably good in light of the design and operating conditions employed in each data set, and (4) run Computational Fluid Dynamics (CFD) simulations to gain new insights into how fluid mixing is affected by the configuration of melter internals and to further apply the new insights to explaining, for example, why the agreement is not good.

  19. Advanced bioreactor systems for gaseous substrates: Conversion of synthesis gas to liquid fuels and removal of SO{sub X} and NO{sub X} from coal combustion gases

    SciTech Connect (OSTI)

    Selvaraj, P.T.; Kaufman, E.N.

    1996-06-01

    The purpose of this research program is the development and demonstration of a new generation of gaseous substrate based bioreactors for the production of liquid fuels from coal synthesis gas and the removal of NO{sub x} and SO{sub x} species from combustion flue gas. This R&D program is a joint effort between the staff of the Bioprocessing Research and Development Center (BRDC) of ORNL and the staff of Bioengineering Resources, Inc. (BRI) under a Cooperative Research and Development Agreement (CRADA). The Federal Coordinating Council for Science, Engineering, and Technology report entitled {open_quotes}Biotechnology for the 21st Century{close_quotes} and the recent Energy Policy Act of 1992 emphasizes research, development, and demonstration of the conversion of coal to gaseous and liquid fuels and the control of sulfur and nitrogen oxides in effluent streams. This R&D program presents an innovative approach to the use of bioprocessing concepts that will have utility in both of these identified areas.

  20. Process for producing enriched uranium having a {sup 235}U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOE Patents [OSTI]

    Horton, J.A.; Hayden, H.W. Jr.

    1995-05-30

    An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.

  1. Process for producing enriched uranium having a .sup.235 U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOE Patents [OSTI]

    Horton, James A.; Hayden, Jr., Howard W.

    1995-01-01

    An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.

  2. Apparatus and method for combusting low quality fuel

    DOE Patents [OSTI]

    Brushwood, John Samuel; Pillsbury, Paul; Foote, John; Heilos, Andreas

    2003-11-04

    A gas turbine (12) capable of combusting a low quality gaseous fuel having a ratio of flammability limits less than 2, or a heat value below 100 BTU/SCF. A high quality fuel is burned simultaneously with the low quality fuel to eliminate instability in the combustion flame. A sensor (46) is used to monitor at least one parameter of the flame indicative of instability. A controller (50) having the sensor signal (48) as input is programmed to control the relative flow rates of the low quality and high quality fuels. When instability is detected, the flow rate of high quality fuel is automatically increased in relation to the flow rate of low quality fuel to restore stability.

  3. Planar high density sodium battery

    DOE Patents [OSTI]

    Lemmon, John P.; Meinhardt, Kerry D.

    2016-03-01

    A method of making a molten sodium battery is disclosed. A first metallic interconnect frame having a first interconnect vent hole is provided. A second metallic interconnect frame having a second interconnect vent hole is also provided. An electrolyte plate having a cathode vent hole and an anode vent hole is interposed between the metallic interconnect frames. The metallic interconnect frames and the electrolyte plate are sealed thereby forming gaseous communication between an anode chamber through the anode vent hole and gaseous communication between a cathode chamber through the cathode vent hole.

  4. Fluidizable zinc titanate materials with high chemical reactivity and attrition resistance

    DOE Patents [OSTI]

    Gupta, R.P.; Gangwal, S.K.; Jain, S.C.

    1993-10-19

    Highly durable and chemically reactive zinc titanate materials are prepared in a particle size range of 50 to 400 [mu]m suitable for a fluidized-bed reactor for removing reduced sulfur species in a gaseous form by granulating a mixture of fine zinc oxide and titanium oxide with inorganic and organic binders and by optional additions of small amounts of activators such as CoO and MoO[sub 3]; and then indurating it at 800 to 900 C for a time sufficient to produce attrition-resistant granules.

  5. Fluidizable zinc titanate materials with high chemical reactivity and attrition resistance

    DOE Patents [OSTI]

    Gupta, Raghubir P.; Gangwal, Santosh K.; Jain, Suresh C.

    1993-01-01

    Highly durable and chemically reactive zinc titanate materials are prepared in a particle size range of 50 to 400 .mu.m suitable for a fluidized-bed reactor for removing reduced sulfur species in a gaseous form by granulating a mixture of fine zinc oxide and titanium oxide with inorganic and organic binders and by optional additions of small amounts of activators such as CoO and MoO.sub.3 ; and then indurating it at 800.degree. to 900.degree. C. for a time sufficient to produce attrition-resistant granules.

  6. Method of high purity silane preparation

    DOE Patents [OSTI]

    Tsuo, Y. Simon; Belov, Eugene P.; Gerlivanov, Vadim G.; Zadde, Vitali V.; Kleschevnikova, Solomonida I.; Korneev, Nikolai N.; Lebedev, Eugene N.; Pinov, Akhsarbek B.; Ryabenko, Eugene A.; Strebkov, Dmitry S.; Chernyshev, Eugene A.

    2000-01-01

    A process for the preparation of high purity silane, suitable for forming thin layer silicon structures in various semiconductor devices and high purity poly- and single crystal silicon for a variety of applications, is provided. Synthesis of high-purity silane starts with a temperature assisted reaction of metallurgical silicon with alcohol in the presence of a catalyst. Alcoxysilanes formed in the silicon-alcohol reaction are separated from other products and purified. Simultaneous reduction and oxidation of alcoxysilanes produces gaseous silane and liquid secondary products, including, active part of a catalyst, tetra-alcoxysilanes, and impurity compounds having silicon-hydrogen bonds. Silane is purified by an impurity adsorption technique. Unreacted alcohol is extracted and returned to the reaction with silicon. Concentrated mixture of alcoxysilanes undergoes simultaneous oxidation and reduction in the presence of a catalyst at the temperature -20.degree. C. to +40.degree. C. during 1 to 50 hours. Tetra-alcoxysilane extracted from liquid products of simultaneous oxidation and reduction reaction is directed to a complete hydrolysis. Complete hydrolysis of tetra-alcoxysilane results in formation of industrial silica sol and alcohol. Alcohol is dehydrated by tetra-alcoxysilane and returned to the reaction with silicon.

  7. ECO2M: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2, Including Super- and Sub-Critical Conditions, and Phase Change Between Liquid and Gaseous CO2

    SciTech Connect (OSTI)

    Pruess, K.

    2011-04-01

    ECO2M is a fluid property module for the TOUGH2 simulator (Version 2.0) that was designed for applications to geologic storage of CO{sub 2} in saline aquifers. It includes a comprehensive description of the thermodynamics and thermophysical properties of H{sub 2}O - NaCl - CO{sub 2} mixtures, that reproduces fluid properties largely within experimental error for temperature, pressure and salinity conditions in the range of 10 C {le} T {le} 110 C, P {le} 600 bar, and salinity from zero up to full halite saturation. The fluid property correlations used in ECO2M are identical to the earlier ECO2N fluid property package, but whereas ECO2N could represent only a single CO{sub 2}-rich phase, ECO2M can describe all possible phase conditions for brine-CO{sub 2} mixtures, including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO{sub 2}. This allows for seamless modeling of CO{sub 2} storage and leakage. Flow processes can be modeled isothermally or non-isothermally, and phase conditions represented may include a single (aqueous or CO{sub 2}-rich) phase, as well as two-and three-phase mixtures of aqueous, liquid CO{sub 2} and gaseous CO{sub 2} phases. Fluid phases may appear or disappear in the course of a simulation, and solid salt may precipitate or dissolve. TOUGH2/ECO2M is upwardly compatible with ECO2N and accepts ECO2N-style inputs. This report gives technical specifications of ECO2M and includes instructions for preparing input data. Code applications are illustrated by means of several sample problems, including problems that had been previously solved with TOUGH2/ECO2N.

  8. Position Paper for High Moisture Content Waste

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Background Portsmouth Background Portsmouth Site construction - The location in Piketon, Ohio, was chosen in August 1952 to complement the federal government's gaseous diffusion program. Portsmouth Site construction - The location in Piketon, Ohio, was chosen in August 1952 to complement the federal government's gaseous diffusion program. Construction of the site quickly began in 1952. The effort was impressive, and when completed, included nearly 23,000 construction workers logging 69 million

  9. Advanced Diagnostics for High Pressure Spray Combustion.

    SciTech Connect (OSTI)

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  10. Report on the Effect the Low Enriched Uranium Delivered Under the Highly Enriched Uranium Agreement Between the Government of the United States and the Government of the Russian Federation has on the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report on the Effect the Low Enriched Uranium Delivered Under the Highly Enriched Uranium Agreement Between the Government of the United States of America and the Government of the Russian Federation has on the Domestic Uranium Mining, Conversion, and Enrichment Industries and the Operation of the Gaseous Diffusion Plant 2008 Information Date: December 31, 2008 1 Introduction The Agreement Between the Government of the United States of America and the Government of the Russian Federation

  11. Test results of the Phase 1 Test Plan

    SciTech Connect (OSTI)

    Hey, B.E.

    1995-03-01

    Radioactive waste materials in underground high level waste (HLW) storage tanks at the Hanford Site evolve gaseous mixtures at varying rates. In order to verify the flammability of these gases and the mechanisms by which they are produced, it is necessary to sample material from these tanks in such a way as to preserve the gas phase of the material for analysis. Careful laboratory studies could then be performed on these samples which would allow judgement to be made of the hazard level of the storage tank. The Retained Gas Sampler (RGS) system is such a sampling method. A multidisciplinary team developed and issued a plan to obtain waste tank core samples for gas phase analysis. This plan contained the basic idea and function of the RGS system. Different organizations assumed responsibility of various aspects of the RGS program which they were most qualified to develop.

  12. High PRF high current switch

    DOE Patents [OSTI]

    Moran, Stuart L.; Hutcherson, R. Kenneth

    1990-03-27

    A triggerable, high voltage, high current, spark gap switch for use in pu power systems. The device comprises a pair of electrodes in a high pressure hydrogen environment that is triggered by introducing an arc between one electrode and a trigger pin. Unusually high repetition rates may be obtained by undervolting the switch, i.e., operating the trigger at voltages much below the self-breakdown voltage of the device.

  13. Utilizing environmental friendly iron as a substitution element in spinel structured cathode materials for safer high energy lithium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Enyuan; Bak, Seong -Min; Liu, Yijin; Liu, Jue; Yu, Xiqian; Zhou, Yong -Ning; Zhou, Jigang; Khalifah, Peter; Ariyoshi, Kingo; Nam, Kyung -Wan; et al

    2015-12-03

    Suppressing oxygen release from lithium ion battery cathodes during heating is a critical issue for the improvement of the battery safety characteristics because oxygen can exothermically react with the flammable electrolyte and cause thermal runaway. Previous studies have shown that oxygen release can be reduced by the migration of transition metal cations from octahedral sites to tetrahedral sites during heating. Such site-preferred migration is determined by the electronic structure of cations. In addition, taking advantage of the unique electronic structure of the environmental friendly Fe, this is selected as substitution element in a high energy density material LiNi0.5Mn1.5O4 to improvemore » the thermal stability. The optimized LiNi0.33Mn1.33Fe0.33O4 material shows significantly improved thermal stability compared with the unsubstituted one, demonstrated by no observed oxygen release at temperatures as high as 500°C. Due to the electrochemical contribution of Fe, the high energy density feature of LiNi0.5Mn1.5O4 is well preserved.« less

  14. Utilizing environmental friendly iron as a substitution element in spinel structured cathode materials for safer high energy lithium-ion batteries

    SciTech Connect (OSTI)

    Hu, Enyuan; Bak, Seong -Min; Liu, Yijin; Liu, Jue; Yu, Xiqian; Zhou, Yong -Ning; Zhou, Jigang; Khalifah, Peter; Ariyoshi, Kingo; Nam, Kyung -Wan; Yang, Xiao -Qing

    2015-12-03

    Suppressing oxygen release from lithium ion battery cathodes during heating is a critical issue for the improvement of the battery safety characteristics because oxygen can exothermically react with the flammable electrolyte and cause thermal runaway. Previous studies have shown that oxygen release can be reduced by the migration of transition metal cations from octahedral sites to tetrahedral sites during heating. Such site-preferred migration is determined by the electronic structure of cations. In addition, taking advantage of the unique electronic structure of the environmental friendly Fe, this is selected as substitution element in a high energy density material LiNi0.5Mn1.5O4 to improve the thermal stability. The optimized LiNi0.33Mn1.33Fe0.33O4 material shows significantly improved thermal stability compared with the unsubstituted one, demonstrated by no observed oxygen release at temperatures as high as 500°C. Due to the electrochemical contribution of Fe, the high energy density feature of LiNi0.5Mn1.5O4 is well preserved.

  15. Refurbishment of uranium hexafluoride cylinder storage yards C-745-K, L, M, N, and P and construction of a new uranium hexafluoride cylinder storage yard (C-745-T) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    1996-07-01

    The Paducah Gaseous Diffusion Plant (PGDP) is a uranium enrichment facility owned by the US Department of Energy (DOE). A residual of the uranium enrichment process is depleted uranium hexafluoride (UF6). Depleted UF6, a solid at ambient temperature, is stored in 32,200 steel cylinders that hold a maximum of 14 tons each. Storage conditions are suboptimal and have resulted in accelerated corrosion of cylinders, increasing the potential for a release of hazardous substances. Consequently, the DOE is proposing refurbishment of certain existing yards and construction of a new storage yard. This environmental assessment (EA) evaluates the impacts of the proposed action and no action and considers alternate sites for the proposed new storage yard. The proposed action includes (1) renovating five existing cylinder yards; (2) constructing a new UF6 storage yard; handling and onsite transport of cylinders among existing yards to accommodate construction; and (4) after refurbishment and construction, restacking of cylinders to meet spacing and inspection requirements. Based on the results of the analysis reported in the EA, DOE has determined that the proposed action is not a major Federal action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969. Therefore, DOE is issuing a Finding of No Significant Impact. Additionally, it is reported in this EA that the loss of less than one acre of wetlands at the proposed project site would not be a significant adverse impact.

  16. INDEPENDENT TECHNICAL REVIEW OF THE FOCUSED FEASIBILITY STUDY AND PROPOSED PLAN FOR DESIGNATED SOLID WASTE MANAGEMENT UNITS CONTRIBUTING TO THE SOUTHWEST GROUNDWATER PLUME AT THE PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect (OSTI)

    Looney, B.; Eddy-Dilek, C.; Amidon, M.; Rossabi, J.; Stewart, L.

    2011-05-31

    The U. S. Department of Energy (DOE) is currently developing a Proposed Plan (PP) for remediation of designated sources of chlorinated solvents that contribute contamination to the Southwest (SW) Groundwater Plume at the Paducah Gaseous Diffusion Plant (PGDP), in Paducah, KY. The principal contaminants in the SW Plume are trichloroethene (TCE) and other volatile organic compounds (VOCs); these industrial solvents were used and disposed in various facilities and locations at PGDP. In the SW plume area, residual TCE sources are primarily in the fine-grained sediments of the Upper Continental Recharge System (UCRS), a partially saturated zone that delivers contaminants downward into the coarse-grained Regional Gravel Aquifer (RGA). The RGA serves as the significant lateral groundwater transport pathway for the plume. In the SW Plume area, the four main contributing TCE source units are: (1) Solid Waste Management Unit (SWMU) 1 / Oil Landfarm; (2) C-720 Building TCE Northeast Spill Site (SWMU 211A); (3) C-720 Building TCE Southeast Spill Site (SWMU 211B); and (4) C-747 Contaminated Burial Yard (SWMU 4). The PP presents the Preferred Alternatives for remediation of VOCs in the UCRS at the Oil Landfarm and the C-720 Building spill sites. The basis for the PP is documented in a Focused Feasibility Study (FFS) (DOE, 2011) and a Site Investigation Report (SI) (DOE, 2007). The SW plume is currently within the boundaries of PGDP (i.e., does not extend off-site). Nonetheless, reasonable mitigation of the multiple contaminant sources contributing to the SW plume is one of the necessary components identified in the PGDP End State Vision (DOE, 2005). Because of the importance of the proposed actions DOE assembled an Independent Technical Review (ITR) team to provide input and assistance in finalizing the PP.

  17. Low-temperature conversion of high-moisture biomass: Topical report, January 1984--January 1988

    SciTech Connect (OSTI)

    Sealock, L.J. Jr.; Elliott, D.C.; Butner, R.S.; Neuenschwander, G.G.

    1988-10-01

    Pacific Northwest Laboratory (PNL) is developing a low-temperature, catalytic process that converts high-moisture biomass feedstocks and other wet organic substances to useful gaseous and liquid fuels. The advantage of this process is that it works without the need for drying or dewatering the feedstock. Conventional thermal gasification processes, which require temperatures above 750/degree/C and air or oxygen for combustion to supply reaction heat, generally cannot utilize feedstocks with moisture contents above 50 wt %, as the conversion efficiency is greatly reduced as a result of the drying step. For this reason, anaerobic digestion or other bioconversion processes traditionally have been used for gasification of high-moisture feedstocks. However, these processes suffer from slow reaction rates and incomplete carbon conversion. 50 refs., 21 figs., 22 tabs.

  18. Final Report- High Flux Microchannel Receiver Development with Adaptive Flow Control

    Broader source: Energy.gov [DOE]

    This project is focused on the demonstration of a microchannelbased solar receiver (MSR). The MSR concept consists of using a modular arrangement of arrayed microchannels to heat a working fluid in a concentrating solar receiver, allowing a much higher solar flux on the receiver and consequently a significant reduction in thermal losses, size, and cost. Others have shown that the ability to operate with a high incident flux is the key to improving receiver efficiency, allowing the use of high temperature heat transfer fluids, which in turn improve the energy conversion efficiency of the power block. We are developing two design concepts, one using typical liquid heat transfer fluids such as molten salts and the second using gaseous heat transfer fluids such as supercritical CO2 (sCO2). In each case the objective of the project is a laboratory demonstration of the technology that if successful will move the technology to a TRL 3.

  19. Calibration grooming and alignment for LDUA High Resolution Stereoscopic Video Camera System (HRSVS)

    SciTech Connect (OSTI)

    Pardini, A.F.

    1998-01-27

    The High Resolution Stereoscopic Video Camera System (HRSVS) was designed by the Savannah River Technology Center (SRTC) to provide routine and troubleshooting views of tank interiors during characterization and remediation phases of underground storage tank (UST) processing. The HRSVS is a dual color camera system designed to provide stereo viewing of the interior of the tanks including the tank wall in a Class 1, Division 1, flammable atmosphere. The HRSVS was designed with a modular philosophy for easy maintenance and configuration modifications. During operation of the system with the LDUA, the control of the camera system will be performed by the LDUA supervisory data acquisition system (SDAS). Video and control status 1458 will be displayed on monitors within the LDUA control center. All control functions are accessible from the front panel of the control box located within the Operations Control Trailer (OCT). The LDUA will provide all positioning functions within the waste tank for the end effector. Various electronic measurement instruments will be used to perform CG and A activities. The instruments may include a digital volt meter, oscilloscope, signal generator, and other electronic repair equipment. None of these instruments will need to be calibrated beyond what comes from the manufacturer. During CG and A a temperature indicating device will be used to measure the temperature of the outside of the HRSVS from initial startup until the temperature has stabilized. This device will not need to be in calibration during CG and A but will have to have a current calibration sticker from the Standards Laboratory during any acceptance testing. This sensor will not need to be in calibration during CG and A but will have to have a current calibration sticker from the Standards Laboratory during any acceptance testing.

  20. Portsmouth Gaseous Diffusion Plant Director's Final Findings...

    Office of Environmental Management (EM)

    3745-59- 50. * Establish milestones and target dates for approved STP. ESTABLISHING ... federal fiscal years. * Non-enforceable target dates will be established for the ...

  1. First gaseous boronization during pulsed discharge cleaning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... An o-carborane 'oven' consists of a container typically loaded with 7 g of o-carborane powder, an elbow-shape nipple, a gas shut-off valve, and a gate valve to the MST main ...

  2. Independent Oversight Review, Portsmouth Gaseous Diffusion Plant...

    Office of Environmental Management (EM)

    The contractor at PORTS is Fluor-Babcock & Wilcox Portsmouth (FBP). The HSS Office of Safety and Emergency Management Evaluations performed the onsite portion of the Independent ...

  3. Portsmouth Gaseous Diffusion Plant Director's Final Findings...

    Office of Environmental Management (EM)

    water monitoring and surveillance and maintenance activities Parties DOE; Bechtel Jacobs ... water monitoring and surveillance and maintenance activities at PORTS. * Recognize that a ...

  4. SEPARATION OF RUTHENIUM COMPOUNDS FROM GASEOUS MIXTURES

    DOE Patents [OSTI]

    Newby, B.J.; Hanson, D.A.; May, C.E.

    1960-12-13

    A process is given for removing RuO/sub 4/ from waste calcination off- gases by adsorption on silica gel, preferably of from 70 to 80 deg C. The RuO/sub 4/ can be eluted from the silica gel with water of a temperature between 60 and 70 deg C.

  5. Apparatus for recovering gaseous hydrocarbons from hydrocarbon...

    Office of Scientific and Technical Information (OSTI)

    Authors: Elliott, Guy R. B. 1 ; Barraclough, Bruce L. 2 ; Vanderborgh, Nicholas E. 1 + Show Author Affiliations (Los Alamos, NM) (Santa Fe, NM) Publication Date: 1984-01-01 ...

  6. Gaseous trace impurity analyzer and method

    DOE Patents [OSTI]

    Edwards, Jr., David (Bellport, NY); Schneider, William (Setauket, NY)

    1980-01-01

    Simple apparatus for analyzing trace impurities in a gas, such as helium or hydrogen, comprises means for drawing a measured volume of the gas as sample into a heated zone. A segregable portion of the zone is then chilled to condense trace impurities in the gas in the chilled portion. The gas sample is evacuated from the heated zone including the chilled portion. Finally, the chilled portion is warmed to vaporize the condensed impurities in the order of their boiling points. As the temperature of the chilled portion rises, pressure will develop in the evacuated, heated zone by the vaporization of an impurity. The temperature at which the pressure increase occurs identifies that impurity and the pressure increase attained until the vaporization of the next impurity causes a further pressure increase is a measure of the quantity of the preceding impurity.

  7. Pulsating catalytic combustion of gaseous fuels

    SciTech Connect (OSTI)

    Gal-Ed, R.

    1988-01-01

    This study investigated the feasibility of operating catalytic combustors under pulsating conditions and the circumstances under which acoustic pulsations increase the combustion efficiencies and output of catalytic combustors. An experimental catalytic combustor was developed, and a theoretical model of acoustic motions in non-isothermal, low match number, duct flow was used to predict the acoustic behavior of the combustor. The effects of pulsations were determined by comparing temperature and species concentration data measured during operation with pulsations at different frequencies and pressure amplitudes to similar data measured during non-pulsating combustion. Experiments conducted with lean mixtures of methane or propane with air revealed that acoustic pulsations affected the temperature distribution along the combustor at flow Reynolds numbers less than 17,500. Excitation of pulsations during methane combustion caused shifts in the location of the combustion, and sometimes the onset of extinction of gas phase reactions. This occurred when several catalyst segments were located in the combustion section between an upstream pressure node and a downstream velocity node, defined here as an in phase location. Propane mixtures were used to investigate possible improvements in combustor's performance. Burning propane mixtures on a single catalyst segment at an in phase location showed that the excitation of acoustic pulsations increased the combustion efficiency by 10 to 50%. The changes in the operation of catalytic combustors caused by acoustic waves are explained by acoustic streaming. When the catalyst surfaces are at an in phase location, rotational flows caused by acoustic streaming enhance the reactants and products diffusion rate to and from the catalyst surfaces, respectively, improving combustion efficiency.

  8. Portsmouth Gaseous Diffusion Plant Director's Final Findings...

    Office of Environmental Management (EM)

    ... The Ohio EPA agrees, subject to the Ohio Public Records Law, ORC Section 149.43, not to release confidential budget information to any other person or entity prior to submission by ...

  9. NGPL Production, Gaseous Equivalent at Processing Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    NA 2012-2012 Colorado 53,590 67,607 82,637 90,801 81,943 1967-2012 Florida 22 0 0 0 0 1968-2012 Illinois 42 31 345 1,043 0 1967-2012 Indiana 0 0 0 0 0 1979-2012 Kansas 28,302...

  10. CARS diagnostics of the burning of H{sub 2} - O{sub 2} and CH{sub 4} - O{sub 2} mixtures at high temperatures and pressures

    SciTech Connect (OSTI)

    Vereshchagin, K A; Smirnov, Valery V; Stel'makh, O M; Fabelinskii, V I

    2012-01-31

    Coherent anti-Stokes Raman scattering (CARS) spectroscopy is used to determine the parameters of gaseous combustion products of hydrogen and hydrocarbon fuels with oxygen at high temperatures and pressures. The methodical aspects of CARS thermometry, which are related to the optimal choice of molecules (diagnostic references) and specific features of their spectra, dependent on temperature and pressure, are analysed. Burning is modelled under the conditions similar to those of real spacecraft propulsion systems using a specially designed laboratory combustion chamber, operating in the pulse-periodic regime at high temperatures (to 3500 K) and pressures (to 20 MPa) of combustion products. (nonlinear optical phenomena)

  11. High e

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    e ne rgy data s am ple ● NuMI beam events provide an useful calibration sample ● Collected over 70K candidates before shutdown The highest energy events are prim arily from kaon decays. Two sam ples at high energy provide normalization and shape inform ation for kaon backgrounds to oscillation analysis: ● ν e events passing oscillation event selection cuts ● ν µ induced CCQE, CCπ+events Reconstructed neutrino energy EνQE(GeV) ν from other particles ν from pions ν from Kaons -

  12. Composition for use in high-temperature hydrogen-fluorine environments and method for making the composition

    DOE Patents [OSTI]

    Kovach, L.; Holcombe, C.E.

    1980-08-22

    The present invention relates to a composition particularly suitable for use as structural components subject to high-temperature environments containing gaseous hydrogen and fluorine. The composition of the present invention consists essentially of lanthanum hexaboride-molybdenum diboride with dispersed silicon. The composition is formed by hot pressing a powder mixture of lanthanum hexaboride as the major constituent and molybdenum disilicide. This composition exhibits substantial resistance to thermal shock and corrosion in environments containing hydrogen and fluorine gases at material surface temperatures up to about 1850/sup 0/K. Upon exposure of the hot-pressed composition to high-temperature environments containing fluorine gases, a highly protective layer of lanthanum trifluoride containing dispersed molybdenum is formed on exposed surfaces of the composition.

  13. Composition for use in high-temperature hydrogen-fluorine environments and method for making the composition

    DOE Patents [OSTI]

    Kovach, Louis; Holcombe, Cressie E.

    1982-01-01

    The present invention relates to a composition particularly suitable for as structural components subject to high-temperature environments containing gaseous hydrogen and fluorine. The composition of the present invention consists essentially of lanthanum hexaboride-molybdenum diboride with dispersed silicon. The composition is formed by hot pressing a powder mixture of lanthanum hexaboride as the major constituent and molybdenum disilicide. This composition exhibits substantial resistance to thermal shock and corrosion in environments containing hydrogen and fluorine gases at material surface temperatures up to about 1850.degree. K. Upon exposure of the hot-pressed composition to high-temperature environments containing fluorine gases, a highly protective layer of lanthanum trifluoride containing dispersed molybdenum is formed on exposed surfaces of the composition.

  14. Interfacial tension in high-pressure carbon dioxide mixtures

    SciTech Connect (OSTI)

    Chun, B.S.; Wilkinson, G.T.

    1995-12-01

    High-pressure interfacial- and surface-tension phenomena govern the migration and recovery of oil and gas from hydrocarbon reservoirs. The phenomena are of particular relevance to phase separation and mass transfer in light hydrocarbon fractionation plants and in propane deasphalting in lubricating oil refining. Interfacial tensions of carbon dioxide-water-alcohol mixtures were measured at temperatures in the range 5--71 C and pressures 0.1--18.6 MPa, using the capillary rise method. The alcohols were methanol (0.136 mf), ethanol (to 0.523 mf), and isopropyl alcohol (to 0.226 mf). Interfacial tension (IFT) decreased linearly with both temperature and pressure din the low-pressure range (gaseous CO{sub 2}) but was largely independent of pressure at high pressure (liquid or supercritical CO{sub 2}). There was a zone in the vicinity of the critical pressure of CO{sub 2}-as much as 20 C below and 10 C above the carbon dioxide critical temperature--where IFT became small. This is attributed to the formation of a second CO{sub 2}-rich phase. The isotherms exhibited a crossover pressure near 3 MPa for all systems examined.

  15. Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel

    DOE Patents [OSTI]

    Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

    2012-11-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  16. Vortex combustor for low NOx emissions when burning lean premixed high hydrogen content fuel

    DOE Patents [OSTI]

    Steele, Robert C.; Edmonds, Ryan G.; Williams, Joseph T.; Baldwin, Stephen P.

    2009-10-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  17. Break-up of Pt catalyst surfaces by high CO coverage

    SciTech Connect (OSTI)

    Tao, Feng; Dag, Sefa; Wang, Lin-Wang; Liu, Zhi; Butcher, Derek; Bluhm, Henrik; Salmeron, Miquel; Somorjai, Gabor

    2009-09-16

    Stepped Platinum surfaces were found to undergo extensive and reversible restructuring when exposed to CO at pressures above 0.1 Torr. This radically new and previously unknown restructuring phenomenon, has important implications for Pt based catalytic reactions. Novel Scanning Tunneling Microscopy and Photoelectron Spectroscopy techniques operating under gaseous environments near ambient pressure and temperature revealed that as the CO surface coverage approaches 100percent, the originally flat terraces of stepped Pt crystals break up into nanometer size clusters. At room temperature the crystal surface reverts to its initial flat morphology after pumping away the gas phase CO. Density Functional Theory energy calculations provide a rationale for the observations whereby the creation of increased concentrations of low coordination Pt sites at the edges of the formed nanoclusters relieves the strong CO-CO repulsion in the highly compressed adsorbate film.

  18. Carbon doped GaN buffer layer using propane for high electron mobility transistor applications: Growth and device results

    SciTech Connect (OSTI)

    Li, X.; Nilsson, D.; Danielsson, Ö.; Pedersen, H.; Janzén, E.; Forsberg, U.; Bergsten, J.; Rorsman, N.

    2015-12-28

    The creation of a semi insulating (SI) buffer layer in AlGaN/GaN High Electron Mobility Transistor (HEMT) devices is crucial for preventing a current path beneath the two-dimensional electron gas (2DEG). In this investigation, we evaluate the use of a gaseous carbon gas precursor, propane, for creating a SI GaN buffer layer in a HEMT structure. The carbon doped profile, using propane gas, is a two stepped profile with a high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) epitaxial layer closest to the substrate and a lower doped layer (3 × 10{sup 16 }cm{sup −3}) closest to the 2DEG channel. Secondary Ion Mass Spectrometry measurement shows a uniform incorporation versus depth, and no memory effect from carbon doping can be seen. The high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) does not influence the surface morphology, and a roughness root-mean-square value of 0.43 nm is obtained from Atomic Force Microscopy. High resolution X-ray diffraction measurements show very sharp peaks and no structural degradation can be seen related to the heavy carbon doped layer. HEMTs are fabricated and show an extremely low drain induced barrier lowering value of 0.1 mV/V, demonstrating an excellent buffer isolation. The carbon doped GaN buffer layer using propane gas is compared to samples using carbon from the trimethylgallium molecule, showing equally low leakage currents, demonstrating the capability of growing highly resistive buffer layers using a gaseous carbon source.

  19. Process for CO.sub.2 capture using zeolites from high pressure and moderate temperature gas streams

    DOE Patents [OSTI]

    Siriwardane, Ranjani V.; Stevens, Robert W.

    2012-03-06

    A method for separating CO.sub.2 from a gas stream comprised of CO.sub.2 and other gaseous constituents using a zeolite sorbent in a swing-adsorption process, producing a high temperature CO.sub.2 stream at a higher CO.sub.2 pressure than the input gas stream. The method utilizes CO.sub.2 desorption in a CO.sub.2 atmosphere and effectively integrates heat transfers for optimizes overall efficiency. H.sub.2O adsorption does not preclude effective operation of the sorbent. The cycle may be incorporated in an IGCC for efficient pre-combustion CO.sub.2 capture. A particular application operates on shifted syngas at a temperature exceeding 200.degree. C. and produces a dry CO.sub.2 stream at low temperature and high CO.sub.2 pressure, greatly reducing any compression energy requirements which may be subsequently required.

  20. Laser sustained discharge nozzle apparatus for the production of an intense beam of high kinetic energy atomic species

    DOE Patents [OSTI]

    Cross, Jon B.; Cremers, David A.

    1988-01-01

    Laser sustained discharge apparatus for the production of intense beams of high kinetic energy atomic species. A portion of the plasma resulting from a laser sustained continuous optical discharge which generates energetic atomic species from a gaseous source thereof is expanded through a nozzle into a region of low pressure. The expanded plasma contains a significant concentration of the high kinetic energy atomic species which may be used to investigate the interaction of surfaces therewith. In particular, O-atoms having velocities in excess of 3.5 km/s can be generated for the purpose of studying their interaction with materials in order to develop protective materials for spacecraft which are exposed to such energetic O-atoms during operation in low earth orbit.

  1. Laser sustained discharge nozzle apparatus for the production of an intense beam of high kinetic energy atomic species

    DOE Patents [OSTI]

    Cross, J.B.; Cremers, D.A.

    1986-01-10

    Laser sustained discharge apparatus for the production of intense beams of high kinetic energy atomic species is described. A portion of the plasma resulting from a laser sustained continuous optical discharge which generates energetic atomic species from a gaseous source thereof is expanded through a nozzle into a region of low pressure. The expanded plasma contains a significant concentration of the high kinetic energy atomic species which may be used to investigate the interaction of surfaces therewith. In particular, O-atoms having velocities in excess of 3.5 km/s can be generated for the purpose of studying their interaction with materials in order to develop protective materials for spacecraft which are exposed to such energetic O-atoms during operation in low earth orbit.

  2. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Energy Physics High Energy Physics Investigating the field of high energy physics ... Through the Office of High Energy Physics (HEP), Los Alamos conducts research in particle ...

  3. High Temperature Fluoride Salt Test Loop

    SciTech Connect (OSTI)

    Aaron, Adam M.; Cunningham, Richard Burns; Fugate, David L.; Holcomb, David Eugene; Kisner, Roger A.; Peretz, Fred J.; Robb, Kevin R.; Wilson, Dane F.; Yoder, Jr, Graydon L.

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  4. MICROMEGAS: High rate and radiation hardness results

    SciTech Connect (OSTI)

    Puill, G.; Derre, J.; Giomataris, Y.; Rebourgeard, P.

    1999-12-01

    In this report, the authors present results of gain studies using various gas mixtures in a novel structure of gaseous detector called MICROMEGAS which is under development at Saclay. The authors in particular studied the maximum of gain achievable with MICROMEGAS before the discharge. They tried various gas mixtures (Argon, Neon, CF{sub 4}) with various proportions of quencher (Isobutane, Cyclohexane, DME). They also studied the radiation hardness of MICROMEGAS using Argon-Isobutane and CF{sub 4}-Isobutane mixtures.

  5. Record of Decision for Savannah River Site High-Level Waste Tank Closure Environmental Impact Statement (DOE/EIS-0303)(August 19, 2002)

    Office of Environmental Management (EM)

    Record Number Attend EM's Science Alliance Record Number Attend EM's Science Alliance October 30, 2013 - 12:00pm Addthis A record 1,200 students and educators visited EM’s Portsmouth Gaseous Diffusion Plant for the fourth annual Science Alliance. A record 1,200 students and educators visited EM's Portsmouth Gaseous Diffusion Plant for the fourth annual Science Alliance. PIKETON, Ohio - More than 1,200 students and educators from 23 southern Ohio schools visited EM's Portsmouth Gaseous

  6. Effect of Corrosion Film Composition and Structure on the Corrosion Kinetics of Ni-Cr-Fe Alloys in High Temperature Water

    SciTech Connect (OSTI)

    P.M. Rosecrans; N. Lewis; D.J. Duquette

    2002-02-27

    Nickel alloys such as Alloy 600 undergo Stress Corrosion Cracking (SCC) in pure water at temperatures between about 260 C and the critical point. Increasing the level of Cr in Ni-Fe-Cr alloys increases SCC resistance in aerated and deaerated water. The mechanism is not understood. The effect of Cr composition on oxide microstructure and corrosion kinetics of Ni-Fe-Cr alloys was determined experimentally, to evaluate whether the anodic dissolution model for SCC can account for the effect of Cr on SCC. The alloy corrosion rate and corrosion product oxide microstructure is strongly influenced by the Cr composition. Corrosion kinetics are parabolic and influenced by chromium concentration, with the parabolic constant first increasing then decreasing as Cr increases from 5 to 39%. Surface analyses using Analytical Electron microscopy (AEM) and Auger Electron Spectroscopy (AES) show that the corrosion product film that forms initially on all alloys exposed to high purity high temperature water is a nickel rich oxide. With time, the amount of chromium in the oxide film increases and corrosion proceeds toward the formation of the more thermodynamically stable spinel or hexagonal Cr-rich oxides, similar to high temperature gaseous oxidation. Due to the slower diffusion kinetics at the temperatures of water corrosion compared to those in high temperature gaseous oxidation, however, the films remain as a mixture of NiO, mixed Ni, Fe and Cr spinels, NiCrO{sub 3} and FeCrO{sub 3}. As the amount of Cr in the film increases and the nature of the film changes from NiO to spinel or hexagonal oxides, cation diffusion through the films slows, slowing the corrosion rate. These observations are qualitatively consistent with an anodic dissolution SCC mechanism. However, parametric modeling of the SCC growth process, applying available creep, oxide rupture strain and corrosion kinetics data, indicates that the anodic dissolution mechanism accounts for only a fraction of the effect of Cr

  7. An assessment of the flammability and explosion potential of transuranic waste

    SciTech Connect (OSTI)

    Silva, M.

    1991-06-01

    The explosion potential of transuranic (TRU) waste, destined for the Waste Isolation Pilot (WIPP), was recently examined in EEG-45. That investigation focused on the volatile organic compounds (VOCs) in the waste, particularly acetone, and concluded that an explosion due to the VOCs was unlikely. Recent evidence raises serious concerns about drums containing mixed radioactive hazardous waste bound for the WIPP. Static electricity generated by the plastic bags represents a potential ignition source for other fuels, such as methane gas or hydrogen gas, during transportation and during the test phase. The potential danger of explosion due to hydrogen gas or methane gas generation has not yet been resolved. This report investigates that potential hazard and examines documented ignitions, fires, explosions and incidents of overpressurization of containers at generating and storage sites planning to send transuranic waste to the WIPP for disposal. 68 refs., 6 figs.

  8. WAPD-SC-545 HYDROGEN FLAMMABILITY DATA AND APPLICATION TO PWR

    Office of Scientific and Technical Information (OSTI)

    ... are 77 and 5 vo Hp respectively, whereas at 100 psig and 300F the upper and lower ... mixture at one atm is composed of steam, the limits coincide at about 10 hydrogen. ...

  9. Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency

    SciTech Connect (OSTI)

    Not Available

    2007-10-01

    This is one in a series of tip sheets to help manufacturers optimize their industrial process heating systems.

  10. Test Protocol Document, Hydrogen Safety Sensor Testing; Phase I: Non-Flammable Mixtures

    SciTech Connect (OSTI)

    Burgess, R.; Blake, C.; Tracy, C. E.

    2008-09-01

    This test protocol document includes an overview of hydrogen sensor technologies, test hardware requrements, and an outline of potential testing.

  11. WAPD-SC-545 HYDROGEN FLAMMABILITY DATA AND APPLICATION TO PWR

    Office of Scientific and Technical Information (OSTI)

    CONTRACT A T - I M - G E N - H BETTIS PLANT PITTSBURGH, PENNSYLVANIA Operated for the ... e t y of the P W R Reactor Plant ( S h i p p i n g p o r t Atomic Power S t a t i o n ) . ...

  12. Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code

    SciTech Connect (OSTI)

    Rudd, A.; Prahl, D.

    2014-12-01

    IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

  13. Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code

    SciTech Connect (OSTI)

    Rudd, A.; Prahl, D.

    2014-12-01

    IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are (1) the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and (2) the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

  14. Combustion of Shock-Dispersed Flake Aluminum - High-Speed Visualization

    SciTech Connect (OSTI)

    Neuwald, P; Reichenbach, H; Kuhl, A

    2006-06-19

    Charges of 0.5 g PETN were used to disperse 1 g of flake aluminum in a rectangular test chamber of 4 liter inner volume and inner dimensions of approximately 10 cm x 10 cm x 40 cm. The subsequent combustion of the flake aluminum with the ambient air in the chamber gave rise to a highly luminous flame. The evolution of the luminous region was studied by means of high-speed cinematography. The high-speed camera is responsive to a broad spectral range in the visible and near infra-red. For a number of tests this response range was narrowed down by means of a band-pass filter with a center wavelength of 488 nm and a half-width of 23 nm. The corresponding images were expected to have a stronger temperature dependence than images obtained without the filter, thus providing better capability to highlight hot-spots. Emission in the range of the pass-band of the filter can be due to continuous thermal radiation from hot Al and Al{sub 2}O{sub 3} particles or to molecular band emission from gaseous AlO. A time-resolving spectrometer was improvised to inspect this topic. The results suggest that AlO emission occurs, but that the continuous spectrum is the dominating effect in our experiments.

  15. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap

    SciTech Connect (OSTI)

    Nikolaev, A. G.; Savkin, K. P.; Oks, E. M.; Vizir, A. V.; Yushkov, G. Yu.; Vodopyanov, A. V.; Izotov, I. V.; Mansfeld, D. A.

    2012-02-15

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent ''minimum-B'' structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap - axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 {mu}s) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  16. Proceedings of the 5th International Symposium on Gas Cleaning at High Temperatures

    SciTech Connect (OSTI)

    2002-09-20

    Papers are presented under the following headings: particulate cleanup applications; bed filters and safeguard devices; particulate cleanup fundamentals; filter materials and performance; catalytic filters; sorbent development and H2S removal; sorbents for removal of other contaminants; and gaseous pollutants.

  17. High efficiency and high concentration in photovoltaics

    SciTech Connect (OSTI)

    Yamaguchi, Masafumi; Luque, A.

    1999-10-01

    In this paper, the authors present the state-of-the-art of multijunction solar cells and the future prospects of this technology. Their use in terrestrial applications will likely be for concentrators operating at very high concentrations. Some trends are also discussed and the authors present a cost calculation showing that highly efficient cells under very high concentration would be able to produce electricity at costs competitive with electricity generation costs for some utilities.

  18. DOE - Fossil Energy: A Brief Introduction to Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane is highly flammable and burns almost completely. There is no ash and very little air pollution. Natural gas provides one-fifth of all the energy used in the United States. ...

  19. High Performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPC INL Logo Home High-Performance Computing INL's high-performance computing center provides general use scientific computing capabilities to support the lab's efforts in advanced...

  20. Measurements of charge and light in pure high pressure Xe towards the study of Xe+TMA mixtures with dark matter directionality sensitivity and supra-intrinsic energy resolution for 0νββ decay searches

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Oliveira, C. A.B.; Gehman, V.; Goldschmidt, A.; Nygren, D.; Renner, J.

    2015-03-24

    Trimethylamine (TMA) may improve the energy resolution of gaseous xenon based detectors for 0νββ decay searches through the reduction of the Fano factor by the Penning effect. This molecule may also be the key for sensing directionality of nuclear recoils induced by Weakly Interacting Massive Particles (WIMPs) in monolithic massive (ton-scale) detectors, without the need of track imaging, by making use of columnar recombination. Nuclear recoil directionality may be the path for a definite discovery of the WIMP nature of Dark Matter. An ionization chamber has been constructed and operated to explore the properties of high pressure gaseous Xe +more » TMA mixtures for particle detection in rare-event experiments. The ionization, scintillation and electroluminescence (EL) signals are measured as function of pressure and electric field. We present results for pure xenon at pressures up to 8 bar. This work has been carried out within the context of the NEXT collaboration.« less

  1. Measurements of charge and light in pure high pressure Xe towards the study of Xe+TMA mixtures with dark matter directionality sensitivity and supra-intrinsic energy resolution for 0νββ decay searches

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Oliveira, C. A.B.; Gehman, V.; Goldschmidt, A.; Nygren, D.; Renner, J.

    2015-03-24

    Trimethylamine (TMA) may improve the energy resolution of gaseous xenon based detectors for 0νββ decay searches through the reduction of the Fano factor by the Penning effect. This molecule may also be the key for sensing directionality of nuclear recoils induced by Weakly Interacting Massive Particles (WIMPs) in monolithic massive (ton-scale) detectors, without the need of track imaging, by making use of columnar recombination. Nuclear recoil directionality may be the path for a definite discovery of the WIMP nature of Dark Matter. An ionization chamber has been constructed and operated to explore the properties of high pressure gaseous Xe +more »TMA mixtures for particle detection in rare-event experiments. The ionization, scintillation and electroluminescence (EL) signals are measured as function of pressure and electric field. We present results for pure xenon at pressures up to 8 bar. This work has been carried out within the context of the NEXT collaboration.« less

  2. High voltage fault current limiter having immersed phase coils

    DOE Patents [OSTI]

    Darmann, Francis Anthony

    2014-04-22

    A fault current limiter including: a ferromagnetic circuit formed from a ferromagnetic material and including at least a first limb, and a second limb; a saturation mechanism surrounding a limb for magnetically saturating the ferromagnetic material; a phase coil wound around a second limb; a dielectric fluid surrounding the phase coil; a gaseous atmosphere surrounding the saturation mechanism.

  3. High pressure, high current, low inductance, high reliability sealed terminals

    DOE Patents [OSTI]

    Hsu, John S [Oak Ridge, TN; McKeever, John W [Oak Ridge, TN

    2010-03-23

    The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

  4. RADIOLYTIC HYDROGEN GENERATION INSAVANNAH RIVER SITE (SRS) HIGH LEVEL WASTETANKS COMPARISON OF SRS AND HANFORDMODELING PREDICTIONS

    SciTech Connect (OSTI)

    Crawford, C; Ned Bibler, N

    2009-04-15

    In the high level waste tanks at the Savannah River Site (SRS), hydrogen is produced continuously by interaction of the radiation in the tank with water in the waste. Consequently, the vapor spaces of the tanks are purged to prevent the accumulation of H{sub 2} and possible formation of a flammable mixture in a tank. Personnel at SRS have developed an empirical model to predict the rate of H{sub 2} formation in a tank. The basis of this model is the prediction of the G value for H{sub 2} production. This G value is the number of H{sub 2} molecules produced per 100 eV of radiolytic energy absorbed by the waste. Based on experimental studies it was found that the G value for H{sub 2} production from beta radiation and from gamma radiation were essentially equal. The G value for H{sub 2} production from alpha radiation was somewhat higher. Thus, the model has two equations, one for beta/gamma radiation and one for alpha radiation. Experimental studies have also indicated that both G values are decreased by the presence of nitrate and nitrite ions in the waste. These are the main scavengers for the precursors of H{sub 2} in the waste; thus the equations that were developed predict G values for hydrogen production as a function of the concentrations of these two ions in waste. Knowing the beta/gamma and alpha heat loads in the waste allows one to predict the total generation rate for hydrogen in a tank. With this prediction a ventilation rate can be established for each tank to ensure that a flammable mixture is not formed in the vapor space in a tank. Recently personnel at Hanford have developed a slightly different model for predicting hydrogen G values. Their model includes the same precursor for H{sub 2} as the SRS model but also includes an additional precursor not in the SRS model. Including the second precursor for H{sub 2} leads to different empirical equations for predicting the G values for H{sub 2} as a function of the nitrate and nitrite concentrations in

  5. High strength and high toughness steel

    DOE Patents [OSTI]

    Parker, Earl R.; Zackay, Victor F.

    1979-01-01

    A structural steel which possess both high strength and high toughness and has particular application of cryogenic uses. The steel is produced by the utilization of thermally induced phase transformation following heating in a three-phase field in iron-rich alloys of the Fe-Ni-Ti system, with a preferred composition of 12% nickel, 0.5% titanium, the remainder being iron.

  6. High strength, high ductility low carbon steel

    DOE Patents [OSTI]

    Koo, Jayoung; Thomas, Gareth

    1978-01-01

    A high strength, high ductility low carbon steel consisting essentially of iron, 0.05-0.15 wt% carbon, and 1-3 wt% silicon. Minor amounts of other constituents may be present. The steel is characterized by a duplex ferrite-martensite microstructure in a fibrous morphology. The microstructure is developed by heat treatment consisting of initial austenitizing treatment followed by annealing in the (.alpha. + .gamma.) range with intermediate quenching.

  7. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    SciTech Connect (OSTI)

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Oliveira, C. A.B.; Nygren, D.

    2015-03-24

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase offers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at the 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.

  8. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Oliveira, C. A.B.; Nygren, D.

    2015-03-24

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase offers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at themore » 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.« less

  9. High-temperature-staged fluidized-bed combustion (HITS), bench scale experimental test program conducted during 1980. Final report

    SciTech Connect (OSTI)

    Anderson, R E; Jassowski, D M; Newton, R A; Rudnicki, M L

    1981-04-01

    An experimental program was conducted to evaluate the process feasibility of the first stage of the HITS two-stage coal combustion system. Tests were run in a small (12-in. ID) fluidized bed facility at the Energy Engineering Laboratory, Aerojet Energy Conversion Company, Sacramento, California. The first stage reactor was run with low (0.70%) and high (4.06%) sulfur coals with ash fusion temperatures of 2450/sup 0/ and 2220/sup 0/F, respectively. Limestone was used to scavenge the sulfur. The produced low-Btu gas was burned in a combustor. Bed temperature and inlet gas percent oxygen were varied in the course of testing. Key results are summarized as follows: the process was stable and readily controllable, and generated a free-flowing char product using coals with low (2220/sup 0/F) and high (2450/sup 0/F) ash fusion temperatures at bed temperatures of at least 1700/sup 0/ and 1800/sup 0/F, respectively; the gaseous product was found to have a total heating value of about 120 Btu/SCF at 1350/sup 0/F, and the practicality of cleaning the hot product gas and delivering it to the combustor was demonstrated; sulfur capture efficiencies above 80% were demonstrated for both low and high sulfur coals with a calcium/sulfur mole ratio of approximately two; gasification rates of about 5,000 SCF/ft/sup 2/-hr were obtained for coal input rates ranging from 40 to 135 lbm/hr, as required to maintain the desired bed temperatures; and the gaseous product yielded combustion temperatures in excess of 3000/sup 0/F when burned with preheated (900/sup 0/F) air. The above test results support the promise of the HITS system to provide a practical means of converting high sulfur coal to a clean gas for industrial applications. Sulfur capture, gas heating value, and gas production rate are all in the range required for an effective system. Planning is underway for additional testing of the system in the 12-in. fluid bed facility, including demonstration of the second stage char burnup

  10. An innovative demonstration of high power density in a compact MHD (magnetohydrodynamic) generator

    SciTech Connect (OSTI)

    Schmidt, H.J.; Lineberry, J.T.; Chapman, J.N.

    1990-06-01

    The present program was conducted by the University of Tennessee Space Institute (UTSI). It was by its nature a high risk experimental program to demonstrate the feasibility of high power density operation in a laboratory scale combustion driven MHD generator. Maximization of specific energy was not a consideration for the present program, but the results have implications in this regard by virtue of high energy fuel used. The power density is the ratio of the electrical energy output to the internal volume of the generator channel. The MHD process is a volumetric process and the power density is therefore a direct measure of the compactness of the system. Specific energy, is the ratio of the electrical energy output to consumable energy used for its production. The two parameters are conceptually interrelated. To achieve high power density and implied commensurate low system volume and weight, it was necessary to use an energetic fuel. The high energy fuel of choice was a mixture of powdered aluminum and carbon seeded with potassium carbonate and burned with gaseous oxygen. The solid fuel was burned in a hybrid combustion scheme wherein the fuel was cast within a cylindrical combustor in analogy with a solid propellant rocket motor. Experimental data is limited to gross channel output current and voltage, magnetic field strength, fuel and oxidizer flow rates, flow train external temperatures and combustor pressure. Similarly, while instantaneous oxidizer flow rates were measured, only average fuel consumption based on pre and post test component weights and dimensions was possible. 4 refs., 60 figs., 9 tabs.

  11. High School Internship Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High School Internship Program High School Internship Program Point your career towards Los Alamos Lab: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. Contact Program Manager Scott Robbins Student Programs (505) 667-3639 Email Program Coordinator Brenda Montoya Student Programs (505) 667-4866 Email Opportunities for Northern New Mexico high school seniors The High School Internship Program provides qualified

  12. High Explosives Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration | (NNSA) High Explosives Application Facility A Livermore scientist uses a laser spectroscopic method with a diamond anvil DOE/NNSA has identified LLNL's High Explosives Applications Facility (HEAF) as the complex-wide "Center of Excellence" for High-Explosives Research and Development. In this capacity, HEAF is a source of subject matter expertise for high explosives and other energetic materials. Its mission is to provide this expertise to serve multiple government

  13. High power microwave generator

    DOE Patents [OSTI]

    Ekdahl, Carl A.

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  14. High power microwave generator

    DOE Patents [OSTI]

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  15. Method of fabricating free-form, high-aspect ratio components for high-current, high-speed microelectrics

    DOE Patents [OSTI]

    Maxwell, James L; Rose, Chris R; Black, Marcie R; Springer, Robert W

    2014-03-11

    Microelectronic structures and devices, and method of fabricating a three-dimensional microelectronic structure is provided, comprising passing a first precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures to enhance formation of a first portion of said three-dimensional microelectronic structure; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said first portion of a selected three-dimensional microelectronic structure is formed from said first precursor material; positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs; passing a second precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures whereby a second portion of said three-dimensional microelectronic structure formation is enhanced; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said second portion of a selected three-dimensional microelectronic structure is formed from said second precursor material; and, positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs.

  16. High performance systems

    SciTech Connect (OSTI)

    Vigil, M.B.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  17. High power, high beam quality regenerative amplifier

    DOE Patents [OSTI]

    Hackel, L.A.; Dane, C.B.

    1993-08-24

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  18. High power, high beam quality regenerative amplifier

    DOE Patents [OSTI]

    Hackel, Lloyd A.; Dane, Clifford B.

    1993-01-01

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  19. High Tech Halloween

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Tech Halloween High Tech Halloween WHEN: Oct 30, 2015 4:00 PM - 6:30 PM WHERE: Bradbury Science Museum 1350 Central Avenue, Los Alamos, New Mexico, 87544 USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login High Tech Halloween Event Description High-Tech Halloween is the Bradbury Science Museum's contribution to Downtown Los Alamos' annual Trick-or-Treat on MainStreet event taking place the Friday before Halloween. At this year's High-Tech Halloween, you

  20. Low Cost, High Temperature, High Ripple Current DC Bus Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost, High Temperature, High Ripple Current DC Bus Capacitors Low Cost, High Temperature, High Ripple Current DC Bus Capacitors 2010 DOE Vehicle Technologies and Hydrogen...