National Library of Energy BETA

Sample records for highly efficient catalyst

  1. Transmural Catalysis - High Efficiency Catalyst Systems for NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Presentation ...

  2. Selective ammonia slip catalyst enabling highly efficient NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    slip catalyst enabling highly efficient NOx removal requirements of the future Selective ammonia slip catalyst enabling highly efficient NOx removal requirements of the future A ...

  3. Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and SCR | Department of Energy Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_atkinson.pdf (327.1 KB) More Documents & Publications Reductant Utilization in a LNT + SCR System Lean NOx Trap

  4. Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts investigation of potential synergies of low emission advanced combustion techniques and advanced lean exhaust catalytic aftertreatment. deer08_parks.pdf (718 KB) More Documents & Publications Measurement and Characterization of Lean NOx Adsorber Regeneration and Desulfation and Controlling NOx from Multi-mode High

  5. Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network

    SciTech Connect (OSTI)

    Shui, Jianglan; Chen, Chen; Grabstanowicz, Lauren; Zhao, Dan; Liu, Di -Jia

    2015-08-25

    Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report here a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electrospinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A∙cm-3 at 0.9 V or 450 A∙cm-3 extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed.

  6. Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shui, Jianglan; Chen, Chen; Grabstanowicz, Lauren; Zhao, Dan; Liu, Di -Jia

    2015-08-25

    Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report heremore » a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electrospinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A∙cm-3 at 0.9 V or 450 A∙cm-3 extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed.« less

  7. Selective ammonia slip catalyst enabling highly efficient NOx removal requirements of the future

    Broader source: Energy.gov [DOE]

    A low precious metal loading ammonia-slip catalyst was developed that is able to oxidize the ammonia that slips past the SCR catalyst to nitrogen.

  8. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: ...

  9. High Impact Technology Catalyst | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings » High Impact Technology Catalyst High Impact Technology Catalyst High impact technologies (HITs) are cost-effective, underutilized energy-efficient commercial building technologies. Through the High Impact Technology Catalyst program, initiated in 2014, the U.S. Department of Energy (DOE) identifies and guides HITs through their early market introduction phases, ultimately leading them to the broader market through partnerships with the commercial buildings industry via

  10. Process and apparatus for split feed of spent catalyst to high...

    Office of Scientific and Technical Information (OSTI)

    Title: Process and apparatus for split feed of spent catalyst to high efficiency catalyst regenerator This patent describes a fluidized catalytic cracking process for catalytic ...

  11. The generation of efficient supported (Heterogeneous) olefin metathesis catalysts

    SciTech Connect (OSTI)

    Grubbs, Robert H

    2013-04-05

    Over the past decade, a new family of homogeneous metathesis catalysts has been developed that will tolerate most organic functionalities as well as water and air. These homogeneous catalysts are finding numerous applications in the pharmaceutical industry as well as in the production of functional polymers. In addition the catalysts are being used to convert seed oils into products that can substitute for those that are now made from petroleum products. Seed oils are unsaturated, contain double bonds, and are a ready source of linear hydrocarbon fragments that are specifically functionalized. To increase the number of applications in the area of biomaterial conversion to petrol chemicals, the activity and efficiency of the catalysts need to be as high as possible. The higher the efficiency of the catalysts, the lower the cost of the conversion and a larger number of practical applications become available. Active supported catalysts were prepared and tested in the conversion of seed oils and other important starting materials. The outcome of the work was successful and the technology has been transferred to a commercial operation to develop viable applications of the discovered systems. A biorefinery that converts seed oils is under construction in Indonesia. The catalysts developed in this study will be considered for the next generation of operations.

  12. Highly Dispersed Metal Catalyst - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Advanced Materials Advanced Materials Find More Like This Return to Search Highly Dispersed Metal Catalyst Method for full dispersion of active metals into a high surface area of support to promote efficiency Savannah River National Laboratory Contact SRNL About This Technology Dr. X. Steve Xiao, Fellow Engineer, Savannah River National Laboratory Dr. X. Steve Xiao, Fellow Engineer, Savannah River National Laboratory Technology Marketing Summary

  13. Synergies of High-Efficiency Clean Combustion and Lean NOx Trap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts investigation of potential ...

  14. High Impact Technology Catalyst: Technology Deployment Strategies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: Technology Deployment Strategies to serve as an overview of the HIT Catalyst program activities, including a summary of the selection process undertaken to identify, evaluate and prioritize the current HITs, descriptions of the technologies and markets for each HIT, and plans for deployment. High

  15. High Impact Technology (HIT) Catalyst

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact Technology (HIT) Catalyst Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, Alliance Laundry Systems, NREL Commercial ...

  16. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Resolution Electron Microscopy for Catalyst Characterization Ultra-High Resolution Electron Microscopy for Catalyst Characterization 2011 DOE Hydrogen and Fuel Cells Program, ...

  17. Ultra-high Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization 2009 DOE Hydrogen Program and Vehicle ...

  18. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pm029allard2010p.pdf More Documents & Publications Ultra-High Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst...

  19. High Impact Technology Catalyst Industry Roundtable

    Broader source: Energy.gov [DOE]

    Please join the Department of Energy Commercial Buildings Integration Program for an Industry Roundtable discussion on the High Impact Technology Catalyst. The Roundtable will be part of the BTO...

  20. High-Activity Dealloyed Catalysts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activity Dealloyed Catalysts 2010 DOE Hydrogen Program Fuel Cell Project Kick-Off Frederick T. Wagner General Motors Research & Development Electrochemical Energy Research Lab Honeoye Falls, NY September 28, 2010 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 * Project start date: 1 Sept 2010 * Project end date: 31 Aug 2013 * Percent complete: 0% * Barriers addressed - B. Cost * Decrease required loading of precious metals including

  1. HIGH EFFICIENCY SYNGAS GENERATION

    SciTech Connect (OSTI)

    Robert J. Copeland; Yevgenia Gershanovich; Brian Windecker

    2005-02-01

    This project investigated an efficient and low cost method of auto-thermally reforming natural gas to hydrogen and carbon monoxide. Reforming is the highest cost step in producing products such as methanol and Fisher Tropsch liquids (i.e., gas to liquids); and reducing the cost of reforming is the key to reducing the cost of these products. Steam reforming is expensive because of the high cost of the high nickel alloy reforming tubes (i.e., indirectly fired reforming tubes). Conventional auto-thermal or Partial Oxidation (POX) reforming minimizes the size and cost of the reformers and provides a near optimum mixture of CO and hydrogen. However POX requires pure oxygen, which consumes power and significantly increases the cost to reforming. Our high efficiency process extracts oxygen from low-pressure air with novel oxygen sorbent and transfers the oxygen to a nickel-catalyzed reformer. The syngas is generated at process pressure (typically 20 to 40 bar) without nitrogen dilution and has a 1CO to 2H{sub 2} ratio that is near optimum for the subsequent production of Fisher-Tropsch liquid to liquids and other chemicals (i.e., Gas to Liquids, GTL). Our high process efficiency comes from the way we transfer the oxygen into the reformer. All of the components of the process, except for the oxygen sorbent, are commonly used in commercial practice. A process based on a longlived, regenerable, oxygen transfer sorbent could substantially reduce the cost of natural gas reforming to syngas. Lower cost syngas (CO + 2H{sub 2}) that is the feedstock for GTL would reduce the cost of GTL and for other commercial applications (e.g., methanol, other organic chemicals). The vast gas resources of Alaska's North Slope (ANS) offer more than 22 Tcf of gas and GTL production in this application alone, and could account for as much as 300,000 to 700,000 bpd for 20 to 30+ years. We developed a new sorbent, which is an essential part of the High Efficiency Oxygen Process (HOP). We tested the

  2. Catalyst for Improving the Combustion Efficiency of Petroleum Fuels in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engines | Department of Energy for Improving the Combustion Efficiency of Petroleum Fuels in Diesel Engines Catalyst for Improving the Combustion Efficiency of Petroleum Fuels in Diesel Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_hirs.pdf (123.91 KB) More Documents & Publications Greenpower Trap Mufflerl System BILIWG: Consistent "Figures of Merit" (Presentation) GNEP Element:Demonstrate More

  3. Highly Dispersed Alloy Cathode Catalyst for Durability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HIGHLY DISPERSED ALLOY CATHODE CATALYST FOR DURABILITY T. D. Jarvi UTC Power Corporation This presentation does not contain any proprietary or confidential information HIGHLY DISPERSED ALLOY CATALYST Objectives of project Characteristic DOE 2010 Target Pt group metal Total Content 0.50 g/kW rated Pt group metal Total Loading 0.30 mg PGM/cm 2 Durability with cycling <80 o C; >80 o C 5000 h; 2000 h Electrochemical Area Loss < 40 % Mass Activity at 900 mV RHE (IR-Free) 0.44 A/mg Pt

  4. High-Activity Dealloyed Catalysts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Activity Dealloyed Catalysts High-Activity Dealloyed Catalysts These slides were presented at the 2010 New Fuel Cell Projects Meeting on September 28, 2010. 5_gm_catalysts_wagner.pdf (1.14 MB) More Documents & Publications DOE's Fuel Cell Catalyst R&D Activities Development of Ultra-low Platinum Alloy Cathode Catalyst for PEM Fuel Cells Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction

  5. Efficient Pt catalysts for polymer electrolyte fuel cells

    SciTech Connect (OSTI)

    Fournier, J.; Gaubert, G.; Tilquin, J.Y.

    1996-12-31

    Commercialization of polymer electrolyte fuel cells (PEFCs) requires an important decrease in their production cost. Cost reduction for the electrodes principally concerns the decrease in the amount of Pt catalyst necessary for the functioning of the PEFC without affecting cell performance. The first PEFCs used in the Gemini Space Program had a loading of 4-10 mg pt/cm{sup 2}. The cost of the electrodes was drastically reduced when pure colloidal Pt was replaced by Pt supported on carbon (Pt/C) with a Pt content of 0.4 Mg/cm{sup 2}. Since the occurrence of that breakthrough, many studies have been aimed at further lowering the Pt loading. Today, the lowest loadings reported for oxygen reduction are of the order of 0.05 mg pt/cm{sup 2}. The carbon support of commercial catalysts is Vulcan XC-72 from Cabot, a carbon black with a specific area of 254 m{sup 2}/g. Graphites with specific areas ranging from 20 to 305 m{sup 2}/g are now available from Lonza. The first aim of the present study was to determine the catalytic properties for 02 reduction of Pt supported on these high specific area graphites. The second aim was to use Pt inclusion synthesis on these high area graphites, and to measure the catalytic performances of these materials. Lastly, this same Pt-inclusion synthesis was extended even for use with Vulcan and Black Pearls as substrates (two carbon blacks from Cabot). All these catalysts have been labelled Pt-included materials to distinguish them from the Pt-supported ones. It will be shown that the reduced Pt content Pt-included materials obtained with high specific area substrates a are excellent catalysts for oxygen reduction, especially at high currents. Therefore, Pt inclusion synthesis appears to be a new method to decrease the cathodic Pt loading.

  6. Highly Dispersed Alloy Catalyst for Durability

    SciTech Connect (OSTI)

    Vivek S. Murthi , Elise Izzo, Wu Bi, Sandra Guerrero and Lesia Protsailo

    2013-01-08

    Achieving DOE's stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them with existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.

  7. Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gong, Yongji; Fei, Huilong; Zou, Xiaolong; Zhou, Wu; Yang, Shubin; Ye, Gonglan; Liu, Zheng; Peng, Zhiwei; Lou, Jun; Vajtai, Robert; et al

    2015-02-02

    Here, we show that nanoribbons of boron- and nitrogen-substituted graphene can be used as efficient electrocatalysts for the oxygen reduction reaction (ORR). Optimally doped graphene nanoribbons made into three-dimensional porous constructs exhibit the highest onset and half-wave potentials among the reported metal-free catalysts for this reaction and show superior performance compared to commercial Pt/C catalyst. Moreover, this catalyst possesses high kinetic current density and four-electron transfer pathway with low hydrogen peroxide yield during the reaction. Finally, first-principles calculations suggest that such excellent electrocatalytic properties originate from the abundant edges of boron- and nitrogen-codoped graphene nanoribbons, which significantly reduce the energymore » barriers of the rate-determining steps of the ORR reaction.« less

  8. Rejuvenation and reuse of high-activity catalyst for hydroprocessing high metals residua

    SciTech Connect (OSTI)

    Hildebrandt, S.J.; Koseoglu, R.O.; Duddy, J.E.; Sherwood, D.E.

    1993-12-31

    In the 1980`s, Hydrocarbon Research, Inc. (HRI) developed a new catalyst processing technology for recovery and reuse of spent catalysts from hydroprocessing of petroleum residua in the H-Oil Process. Recently, HRI and Texaco have applied Catalyst Rejuvenation Technology to a new high-activity H-Oil catalyst developed by Texaco. This paper will discuss the application of Catalyst Rejuvenation to the high activity Texaco catalyst when processing a high metals vacuum residuum.

  9. Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient Oxygen-Evolving Catalysts

    SciTech Connect (OSTI)

    Jiao, Feng; Frei, Heinz

    2009-01-01

    The development of integrated artificial photosynthetic systems for the direct conversion of carbon dioxide and water to fuel depends on the availability of efficient and robust catalysts for the chemical transformations. Catalysts need to exhibit turnover frequency (TOF) and density (hence size) commensurate with the solar flux at ground level (1000Wm2, airmass (AM) 1.5)[1]to avoid wasting of incidentsolar photons. For example, a catalyst with a TOF of 100 s1 requires a density of one catalytic site per square nanometer. Catalysts with lower rates or taking up a larger space will require a high-surface-area, nanostructured support that affords tens to hundreds of catalytic sites per square nanometer. Furthermore, catalysts need to operate close to the thermodynamic potential of the redox reaction so that amaximum fraction of the solar photon energy is converted to chemical energy. Stability considerations favor all-inorganic oxide materials, as does avoidance of harsh reaction conditions of pH value or temperature.

  10. Highly Dispersed Alloy Cathode Catalyst for Durability | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Dispersed Alloy Cathode Catalyst for Durability Highly Dispersed Alloy Cathode Catalyst for Durability This presentation, which focuses on alloy cathode catalysts, was given by T. D. Jarvi of UTC Power at a February 2007 meeting on new fuel cell projects. new_fc_jarvi_utc.pdf (576 KB) More Documents & Publications PEM Fuel Cell Technology, Key Research Needs and Approaches (Presentation) PBI-Phosphoric Acid Based Membrane Electrode Assemblies: Status Update Development of

  11. High efficiency incandescent lighting

    DOE Patents [OSTI]

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  12. High Efficiency, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-03-31

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous

  13. Identification of Catalysts and Materials for a High-Energy Density Biochemical Fuel Cell: Cooperative Research and Development Final Report, CRADA Number CRD-09-345

    SciTech Connect (OSTI)

    Ghirardi, M.; Svedruzic, D.

    2013-07-01

    The proposed research attempted to identify novel biochemical catalysts, catalyst support materials, high-efficiency electron transfer agents between catalyst active sites and electrodes, and solid-phase electrolytes in order to maximize the current density of biochemical fuel cells that utilize various alcohols as substrates.

  14. Microwave and Beam Activation of Nanostructured Catalysts for Environmentally Friendly, Energy Efficient Heavy Crude Oil Processing

    SciTech Connect (OSTI)

    2009-03-01

    This factsheet describes a study whose goal is initial evaluation and development of energy efficient processes which take advantage of the benefits offered by nanostructured catalysts which can be activated by microwave, RF, or radiation beams.

  15. High efficiency photoionization detector

    DOE Patents [OSTI]

    Anderson, David F.

    1984-01-01

    A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36.+-.0.02 eV, and a vapor pressure of 0.35 torr at 20.degree. C.

  16. High efficiency photoionization detector

    DOE Patents [OSTI]

    Anderson, D.F.

    1984-01-31

    A high efficiency photoionization detector is described using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 [+-] 0.02 eV, and a vapor pressure of 0.35 torr at 20 C. 6 figs.

  17. Highly Dispersed Alloy Cathode Catalyst for Durability | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Part of a 100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 3utc.pdf More Documents & Publications Highly Dispersed Alloy Cathode Catalyst ...

  18. High performance, high durability non-precious metal fuel cell catalysts

    DOE Patents [OSTI]

    Wood, Thomas E.; Atanasoski, Radoslav; Schmoeckel, Alison K.

    2016-03-15

    This invention relates to non-precious metal fuel cell cathode catalysts, fuel cells that contain these catalysts, and methods of making the same. The fuel cell cathode catalysts are highly nitrogenated carbon materials that can contain a transition metal. The highly nitrogenated carbon materials can be supported on a nanoparticle substrate.

  19. Ultra-High Resolution Electron Microscopy for Catalyst Characterization |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy lm034_rohatgi_2011_o.pdf (1.05 MB) More Documents & Publications Vehicle Technologies Office: 2010 Lightweight Materials R&D Annual Progress Report Nanostructured Materials by Machining 2011 Annual Progress Report for Lightweighting Materials Department of Energy

    pm029_allard_2011_p.pdf (2.39 MB) More Documents & Publications Ultra-High Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst

  20. High-efficiency CARM

    SciTech Connect (OSTI)

    Bratman, V.L.; Kol`chugin, B.D.; Samsonov, S.V.; Volkov, A.B.

    1995-12-31

    The Cyclotron Autoresonance Maser (CARM) is a well-known variety of FEMs. Unlike the ubitron in which electrons move in a periodical undulator field, in the CARM the particles move along helical trajectories in a uniform magnetic field. Since it is much simpler to generate strong homogeneous magnetic fields than periodical ones for a relatively low electron energy ({Brit_pounds}{le}1-3 MeV) the period of particles` trajectories in the CARM can be sufficiently smaller than in the undulator in which, moreover, the field decreases rapidly in the transverse direction. In spite of this evident advantage, the number of papers on CARM is an order less than on ubitron, which is apparently caused by the low (not more than 10 %) CARM efficiency in experiments. At the same time, ubitrons operating in two rather complicated regimes-trapping and adiabatic deceleration of particles and combined undulator and reversed guiding fields - yielded efficiencies of 34 % and 27 %, respectively. The aim of this work is to demonstrate that high efficiency can be reached even for a simplest version of the CARM. In order to reduce sensitivity to an axial velocity spread of particles, a short interaction length where electrons underwent only 4-5 cyclotron oscillations was used in this work. Like experiments, a narrow anode outlet of a field-emission electron gun cut out the {open_quotes}most rectilinear{close_quotes} near-axis part of the electron beam. Additionally, magnetic field of a small correcting coil compensated spurious electron oscillations pumped by the anode aperture. A kicker in the form of a sloping to the axis frame with current provided a control value of rotary velocity at a small additional velocity spread. A simple cavity consisting of a cylindrical waveguide section restricted by a cut-off waveguide on the cathode side and by a Bragg reflector on the collector side was used as the CARM-oscillator microwave system.

  1. High Efficiency Integrated Package

    SciTech Connect (OSTI)

    Ibbetson, James

    2013-09-15

    Solid-state lighting based on LEDs has emerged as a superior alternative to inefficient conventional lighting, particularly incandescent. LED lighting can lead to 80 percent energy savings; can last 50,000 hours – 2-50 times longer than most bulbs; and contains no toxic lead or mercury. However, to enable mass adoption, particularly at the consumer level, the cost of LED luminaires must be reduced by an order of magnitude while achieving superior efficiency, light quality and lifetime. To become viable, energy-efficient replacement solutions must deliver system efficacies of ≥ 100 lumens per watt (LPW) with excellent color rendering (CRI > 85) at a cost that enables payback cycles of two years or less for commercial applications. This development will enable significant site energy savings as it targets commercial and retail lighting applications that are most sensitive to the lifetime operating costs with their extended operating hours per day. If costs are reduced substantially, dramatic energy savings can be realized by replacing incandescent lighting in the residential market as well. In light of these challenges, Cree proposed to develop a multi-chip integrated LED package with an output of > 1000 lumens of warm white light operating at an efficacy of at least 128 LPW with a CRI > 85. This product will serve as the light engine for replacement lamps and luminaires. At the end of the proposed program, this integrated package was to be used in a proof-of-concept lamp prototype to demonstrate the component’s viability in a common form factor. During this project Cree SBTC developed an efficient, compact warm-white LED package with an integrated remote color down-converter. Via a combination of intensive optical, electrical, and thermal optimization, a package design was obtained that met nearly all project goals. This package emitted 1295 lm under instant-on, room-temperature testing conditions, with an efficacy of 128.4 lm/W at a color temperature of ~2873

  2. Computationally Efficient Modeling of High-Efficiency Clean Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines Computationally Efficient Modeling of High-Efficiency Clean Combustion ...

  3. High Efficiency Recoil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Recoil Spectrometer for Superheavy Element Factory Super H eavy N uclei 2 015, C ollege S ta8on, T exas, M arch 3 1 - A pril 0 2, 2 015 G. Chubarian T exas A &M U niversity, C yclotron I ns7tute Signal / Noise Efficiency Super H eavy N uclei 2 015, C ollege S ta8on, T exas, M arch 3 1 - A pril 0 2, 2 015 Peter J . T win a nd F rancis B eck --- Eurogam P roject (late 8 0's) Signal Number of Events Energy Resolution Time Resolution Space Resolution etc. Noise Background Counts and

  4. Enabling High Efficiency Ethanol Engines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Ethanol Engines (VSSP 12) Presented by Robert Wagner Oak Ridge National ... advantage of the unique properties of ethanol and ethanol-gasoline blends.. 3 Managed ...

  5. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Freakley, Simon J.; He, Qian; Harrhy, Jonathan H.; Lu, Li; Crole, David A.; Morgan, David J.; Ntainjua, Edwin N.; Edwards, Jennifer K.; Carley, Albert F.; Borisevich, Albina Y.; et al

    2016-02-25

    The direct synthesis of hydrogen peroxide (H2O2 ) from H2 and O2 represents a potentially atom-efficient alternative to the current industrial indirect process. We show that the addition of tin to palladium catalysts coupled with an appropriate heat treatment cycle switches off the sequential hydrogenation and decomposition reactions, enabling selectivities of >95% toward H2O2 . This effect arises from a tin oxide surface layer that encapsulates small Pd-rich particles while leaving larger Pd-Sn alloy particles exposed. In conclusion, we show that this effect is a general feature for oxide-supported Pd catalysts containing an appropriate second metal oxide component, and wemore » set out the design principles for producing high-selectivity Pd-based catalysts for direct H2O2 production that do not contain gold.« less

  6. High efficiency gas burner

    DOE Patents [OSTI]

    Schuetz, Mark A.

    1983-01-01

    A burner assembly provides for 100% premixing of fuel and air by drawing the air into at least one high velocity stream of fuel without power assist. Specifically, the nozzle assembly for injecting the fuel into a throat comprises a plurality of nozzles in a generally circular array. Preferably, swirl is imparted to the air/fuel mixture by angling the nozzles. The diffuser comprises a conical primary diffuser followed by a cusp diffuser.

  7. Improving Catalyst Efficiency in Bio-Based Hydrocarbon Fuels; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This article investigates upgrading biomass pyrolysis vapors to form hydrocarbon fuels and chemicals using catalysts with different concentrations of acid sites. It shows that greater separation of acid sites makes catalysts more efficient at producing hydrocarbon fuels and chemicals. The conversion of biomass into liquid transportation fuels has attracted significant attention because of depleting fossil fuel reserves and environmental concerns resulting from the use of fossil fuels. Biomass is a renewable resource, which is abundant worldwide and can potentially be exploited to produce transportation fuels that are less damaging to the environment. This renewable resource consists of cellulose (40–50%), hemicellulose (25–35%), and lignin (16–33%) biopolymers in addition to smaller quantities of inorganic materials such as silica and alkali and alkaline earth metals (calcium and potassium). Fast pyrolysis is an attractive thermochemical technology for converting biomass into precursors for hydrocarbon fuels because it produces up to 75 wt% bio-oil,1 which can be upgraded to feedstocks and/or blendstocks for further refining to finished fuels. Bio-oil that has not been upgraded has limited applications because of the presence of oxygen-containing functional groups, derived from cellulose, hemicellulose and lignin, which gives rise to high acidity, high viscosity, low heating value, immiscibility with hydrocarbons and aging during storage. Ex situ catalytic vapor phase upgrading is a promising approach for improving the properties of bio-oil. The goal of this process is to reject oxygen and produce a bio-oil with improved properties for subsequent downstream conversion to hydrocarbons.

  8. CATALYSTS FOR HIGH CETANE ETHERS AS DIESEL FUELS

    SciTech Connect (OSTI)

    Kamil Klier; Richard G. Herman; James G.C. Shen; Qisheng Ma

    2000-08-31

    A novel 1,2-ethanediol, bis(hydrogen sulfate), disodium salt precursor-based solid acid catalyst with a zirconia substrate was synthesized and demonstrated to have significantly enhanced activity and high selectivity in producing methyl isobutyl ether (MIBE) or isobutene from methanol-isobutanol mixtures. The precursor salt was synthesized and provided by Dr. T. H. Kalantar of the M.E. Pruitt Research Center, Dow Chemical Co., Midland, MI 48674. Molecular modeling of the catalyst synthesis steps and of the alcohol coupling reaction is being carried out. A representation of the methyl transfer from the surface activated methanol molecule (left) to the activated oxygen of the isobutanol molecule (right) to form an ether linkage to yield MIBE is shown.

  9. High surface area ThO/sub 2/ catalyst

    DOE Patents [OSTI]

    Colmenares, C.A.; Somorjai, G.A.; Maj, J.J.

    1983-06-21

    A ThO/sub 2/ catalyst having a high surface area of about 80 to 125m/sup 2//g is synthesized. The compound is synthesized by simultaneously mixing an aqueous solution of ThNO/sub 3/(NO/sub 3/)/sub 4/.4H/sub 2/O with an aqueous solution of Na/sub 2/CO/sub 3/.H/sub 2/O, to produce a solution and solid ThOCO/sub 3/. The solid ThOCO/sub 3/ is separated from the solution, and then calcined at a temperature of about 225 to 300/sup 0/C for about 40 to 55 hours to produce ThO/sub 2/. The ThO/sub 2/ catalyst produced includes Na present as a substitutional cation in an amount equal to about 5 to 10 at. %.

  10. Enhanced High Temperature Performance of NOx Reduction Catalyst Materials

    SciTech Connect (OSTI)

    Gao, Feng; Kim, Do Heui; Luo, Jinyong; Muntean, George G.; Peden, Charles HF; Howden, Ken; Currier, Neal; Kamasamudram, Krishna; Kumar, Ashok; Li, Junhui; Stafford, Randy; Yezerets, Aleksey; Castagnola, Mario; Chen, Hai Ying; Hess, Howard ..

    2012-12-31

    Two primary NOx after-treatment technologies have been recognized as the most promising approaches for meeting stringent NOx emission standards for diesel vehicles within the Environmental Protection Agencys (EPAs) 2007/2010 mandated limits, NOx Storage Reduction (NSR) and NH3 selective catalytic reduction (SCR); both are, in fact being commercialized for this application. However, in looking forward to 2015 and beyond with expected more stringent regulations, the continued viability of the NSR technology for controlling NOx emissions from lean-burn engines such as diesels will require at least two specific, significant and inter-related improvements. First, it is important to reduce system costs by, for example, minimizing the precious metal content while maintaining, even improving, performance and long-term stability. A second critical need for future NSR systems, as well as for NH3 SCR, will be significantly improved higher and lower temperature performance and stability. Furthermore, these critically needed improvements will contribute significantly to minimizing the impacts to fuel economy of incorporating these after-treatment technologies on lean-burn vehicles. To meet these objectives will require, at a minimum an improved scientific understanding of the following things: i) the various roles for the precious and coinage metals used in these catalysts; ii) the mechanisms for these various roles; iii) the effects of high temperatures on the active metal performance in their various roles; iv) mechanisms for higher temperature NOx storage performance for modified and/or alternative storage materials; v) the interactions between the precious metals and the storage materials in both optimum NOx storage performance and long term stability; vi) the sulfur adsorption and regeneration mechanisms for NOx reduction materials; vii) materials degradation mechanisms in CHA-based NH3 SCR catalysts. The objective of this CRADA project between PNNL and Cummins, Inc. is

  11. Reducing fischer-tropsch catalyst attrition losses in high agitation reaction systems

    DOE Patents [OSTI]

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2001-01-01

    A method for reducing catalyst attrition losses in hydrocarbon synthesis processes conducted in high agitation reaction systems; a method of producing an attrition-resistant catalyst; a catalyst produced by such method; a method of producing an attrition-resistant catalyst support; and a catalyst support produced by such method. The inventive method of reducing catalyst attrition losses comprises the step of reacting a synthesis gas in a high agitation reaction system in the presence of a catalyst. In one aspect, the catalyst preferably comprises a .gamma.-alumina support including an amount of titanium effective for increasing the attrition resistance of the catalyst. In another aspect, the catalyst preferably comprises a .gamma.-alumina support which has been treated, after calcination, with an acidic, aqueous solution. The acidic aqueous solution preferably has a pH of not more than about 5. In another aspect, the catalyst preferably comprises cobalt on a .gamma.-alumina support wherein the cobalt has been applied to the .gamma.-alumina support by totally aqueous, incipient wetness-type impregnation. In another aspect, the catalyst preferably comprises cobalt on a .gamma.-alumina support with an amount of a lanthana promoter effective for increasing the attrition resistance of the catalyst. In another aspect, the catalyst preferably comprises a .gamma.-alumina support produced from boehmite having a crystallite size, in the 021 plane, in the range of from about 30 to about 55 .ANG.ngstrons. In another aspect, the inventive method of producing an attrition-resistant catalyst comprises the step of treating a .gamma.-alumina support, after calcination of and before adding catalytic material to the support, with an acidic solution effective for increasing the attrition resistance of the catalyst. In another aspect, the inventive method of producing an attrition-resistant catalyst support comprises the step of treating calcined .gamma.-alumina with an acidic, aqueous

  12. High Efficiency Engine Technologies Program

    SciTech Connect (OSTI)

    Rich Kruiswyk

    2010-07-13

    Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in

  13. High efficiency and high concentration in photovoltaics

    SciTech Connect (OSTI)

    Yamaguchi, Masafumi; Luque, A.

    1999-10-01

    In this paper, the authors present the state-of-the-art of multijunction solar cells and the future prospects of this technology. Their use in terrestrial applications will likely be for concentrators operating at very high concentrations. Some trends are also discussed and the authors present a cost calculation showing that highly efficient cells under very high concentration would be able to produce electricity at costs competitive with electricity generation costs for some utilities.

  14. Enabling High Efficiency Ethanol Engines

    SciTech Connect (OSTI)

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

  15. Ultra-high Resolution Electron Microscopy for Catalyst Characterization |

    Broader source: Energy.gov (indexed) [DOE]

    Catalysts | Department of Energy This presentation demonstrates how nano-array catalysts have excellent robustness, use ultra-low amounts of PGM, and can be tuned for optimum performance. deer12_guo.pdf (3.95 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Metal Oxide Nano-Array Catalysts for Low Temperature Diesel Oxidation Vehicle Technologies Office Merit Review 2016: Metal Oxide Nano-Array Catalysts for Low Temperature Diesel Oxidation

  16. "Tuning" microalgae for high photosynthesis efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Tuning" Microalgae For High Photosynthesis Efficiency "Tuning" microalgae for high photosynthesis efficiency Los Alamos scientist Richard Sayre and his team of researchers have...

  17. Highly Efficient Solar Thermochemical Reaction Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highly Efficient, Solar Thermochemical Reaction Systems (2014 R&D 100 Award Winner) U.S. ...andfuelcells.energy.gov HIGHLY EFFICIENT, SOLAR THERMOCHEMICAL REACTION SYSTEMS Robert S ...

  18. High Efficiency Room Air Conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  19. Efficient Conversion of CO2 to CO Using Tin and Other Inexpensive and Easily Prepared Post-Transition Metal Catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Medina-Ramos, Jonnathan; Pupillo, Rachel C.; Keane, Thomas P.; DiMeglio, John L.; Rosenthal, Joel

    2015-02-19

    The development of affordable electrocatalysts that can drive the reduction of CO2 to CO with high selectivity, efficiency, and large current densities is a critical step on the path to production of liquid carbon-based fuels. In this work, we show that inexpensive triflate salts of Sn2+, Pb2+, Bi3+, and Sb3+ can be used as precursors for the electrodeposition of CO2 reduction cathode materials from MeCN solutions, providing a general and facile electrodeposition strategy, which streamlines catalyst synthesis. The ability of these four platforms to drive the formation of CO from CO2 in the presence of [BMIM]OTf was probed. The electrochemicallymore » prepared Sn and Bi catalysts proved to be highly active, selective, and robust platforms for CO evolution, with partial current densities of jCO = 5-8 mA/cm2 at applied overpotentials of η < 250 mV. By contrast, the electrodeposited Pb and Sb catalysts do not promote rapid CO generation with the same level of selectivity. The Pb material is only ~10% as active as the Sn and Bi systems at an applied potential of E = -1.95 V and is rapidly passivated during catalysis. The Sb-comprised cathode material shows no activity for conversion of CO2 to CO under analogous conditions. When taken together, this work demonstrates that 1,3-dialkylimidazoliums can promote CO production, but only when used in combination with an appropriately chosen electrocatalyst material. More broadly, these results suggest that the interactions between CO2, the imidazolium promoter, and the cathode surface are all critical to the observed catalysis.« less

  20. Highly Active and Selective Metal-modified Zeolite Catalysts...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Active and Selective Metal-modified Zeolite Catalysts for Low Temperature Conversion of Methanol and Dimethyl Ether to Gasoline-range Branched Hydrocarbons National Renewable...

  1. High-efficiency photovoltaic cells

    DOE Patents [OSTI]

    Yang, H.T.; Zehr, S.W.

    1982-06-21

    High efficiency solar converters comprised of a two cell, non-lattice matched, monolithic stacked semiconductor configuration using optimum pairs of cells having bandgaps in the range 1.6 to 1.7 eV and 0.95 to 1.1 eV, and a method of fabrication thereof, are disclosed. The high band gap subcells are fabricated using metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) to produce the required AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap subcells are similarly fabricated from AlGa(As)Sb compositions by LPE, MBE or MOCVD. These subcells are then coupled to form a monolithic structure by an appropriate bonding technique which also forms the required transparent intercell ohmic contact (IOC) between the two subcells. Improved ohmic contacts to the high bandgap semiconductor structure can be formed by vacuum evaporating to suitable metal or semiconductor materials which react during laser annealing to form a low bandgap semiconductor which provides a low contact resistance structure.

  2. Development of Highly Selective Oxidation Catalysts by Atomic Layer Deposition

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose goal is to use Atomic Layer Deposition to construct nanostructured catalysts to improve the effectiveness of oxidative dehydrogenation of alkanes. More effective catalysts could enable higher specific conversion rates and result in drastic energy savings - up to 25 trillion Btu per year by 2020.

  3. High Efficiency Engine Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies High Efficiency Engine Technologies The energy wasted in combustion process is a huge untapped resource and the recovery or conversion of this energy into useful power is a huge opportunity. deer09_nelson_2.pdf (285.08 KB) More Documents & Publications Innovative Approaches to Improving Engine Efficiency Overview of High-Efficiency Engine Technologies High Engine Efficiency at 2010 Emissions

  4. High efficiency laser spectrum conditioner

    DOE Patents [OSTI]

    Greiner, Norman R.

    1980-01-01

    A high efficiency laser spectrum conditioner for generating a collinear parallel output beam containing a predetermined set of frequencies from a multifrequency laser. A diffraction grating and spherical mirror are used in combination, to disperse the various frequencies of the input laser beam and direct these frequencies along various parallel lines spatially separated from one another to an apertured mask. Selection of the desired frequencies is accomplished by placement of apertures at locations on the mask where the desired frequencies intersect the mask. A recollimated parallel output beam with the desired set of frequencies is subsequently generated utilizing a mirror and grating matched and geometrically aligned in the same manner as the input grating and mirror.

  5. Low-temperature CO oxidation over a ternary oxide catalyst with high resistance to hydrocarbon inhibition

    SciTech Connect (OSTI)

    Binder, Andrew J.; Toops, Todd J.; Unocic, Raymond R.; Parks, II, James E.; Dai, Sheng

    2015-09-11

    Platinum group metal (PGM) catalysts are the current standard for control of pollutants in automotive exhaust streams. Aside from their high cost, PGM catalysts struggle with CO oxidation at low temperatures (<200 °C) due to inhibition by hydrocarbons in exhaust streams. Here we present a ternary mixed oxide catalyst composed of copper oxide, cobalt oxide, and ceria (dubbed CCC) that outperforms synthesized and commercial PGM catalysts for CO oxidation in simulated exhaust streams while showing no signs of inhibition by propene. Diffuse reflectance IR (DRIFTS) and light-off data both indicate low interaction between propene and the CO oxidation active site on this catalyst, and a separation of adsorption sites is proposed as the cause of this inhibition resistance. In conclusion, this catalyst shows great potential as a low-cost component for low temperature exhaust streams that are expected to be a characteristic of future automotive systems.

  6. Low-temperature CO oxidation over a ternary oxide catalyst with high resistance to hydrocarbon inhibition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Binder, Andrew J.; Toops, Todd J.; Unocic, Raymond R.; Parks, II, James E.; Dai, Sheng

    2015-09-11

    Platinum group metal (PGM) catalysts are the current standard for control of pollutants in automotive exhaust streams. Aside from their high cost, PGM catalysts struggle with CO oxidation at low temperatures (<200 °C) due to inhibition by hydrocarbons in exhaust streams. Here we present a ternary mixed oxide catalyst composed of copper oxide, cobalt oxide, and ceria (dubbed CCC) that outperforms synthesized and commercial PGM catalysts for CO oxidation in simulated exhaust streams while showing no signs of inhibition by propene. Diffuse reflectance IR (DRIFTS) and light-off data both indicate low interaction between propene and the CO oxidation active sitemore » on this catalyst, and a separation of adsorption sites is proposed as the cause of this inhibition resistance. In conclusion, this catalyst shows great potential as a low-cost component for low temperature exhaust streams that are expected to be a characteristic of future automotive systems.« less

  7. High efficiency shale oil recovery

    SciTech Connect (OSTI)

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

  8. High-Efficiency Multijunction Photovoltaics | Center for Energy Efficient

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Efficiency Multijunction Photovoltaics This Task Group focuses on novel approaches to InGaN and multijunction photovoltaics for unprecedented high photovoltaic energy conversion efficiencies. This goal requires development of new techniques for the efficient simultaneous coupling of electrons and photons through the various junctions. Figure 1 shows a device architecture that is one of the goals of the project: a five-junction (5J) solar cell using a high-bandgap InGaN top junction

  9. Subnanometer platinum clusters highly active and selective catalysts for the oxidative dehydrogenation of propane.

    SciTech Connect (OSTI)

    Vajda, S; Pellin, M. J.; Greeley, J. P.; Marshall, C. L.; Curtiss, L. A.; Ballentine, G. A.; Elam, J. W.; Catillon-Mucherie, S.; Redfern, P. C.; Mehmood, F.; Zapol, P.; Yale Univ.

    2009-03-01

    Small clusters are known to possess reactivity not observed in their bulk analogues, which can make them attractive for catalysis. Their distinct catalytic properties are often hypothesized to result from the large fraction of under-coordinated surface atoms. Here, we show that size-preselected Pt{sub 8-10} clusters stabilized on high-surface-area supports are 40-100 times more active for the oxidative dehydrogenation of propane than previously studied platinum and vanadia catalysts, while at the same time maintaining high selectivity towards formation of propylene over by-products. Quantum chemical calculations indicate that under-coordination of the Pt atoms in the clusters is responsible for the surprisingly high reactivity compared with extended surfaces. We anticipate that these results will form the basis for development of a new class of catalysts by providing a route to bond-specific chemistry, ranging from energy-efficient and environmentally friendly synthesis strategies to the replacement of petrochemical feedstocks by abundant small alkanes.

  10. Nanostructured Thermoelectric Materials and High Efficiency Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanostructured Thermoelectric Materials and High Efficiency Power Generation Modules Home ... electrical conductivity and thermopower and, simultaneously, low thermal conductivity. ...

  11. High efficiency turbine blade coatings.

    SciTech Connect (OSTI)

    Youchison, Dennis L.; Gallis, Michail A.

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered

  12. Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation

    SciTech Connect (OSTI)

    Zhu, Jing; Zheng, Xin; Wang, Jie; Wu, Zexing; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wang, Deli

    2015-09-15

    Controlling the size, composition, and structure of bimetallic nanoparticles is of particular interest in the field of electrocatalysts for fuel cells. In the present work, structurally ordered nanoparticles with intermetallic phases of Pt3Zn and PtZn have been successfully synthesized via an impregnation reduction method, followed by post heat-treatment. The Pt3Zn and PtZn ordered intermetallic nanoparticles are well dispersed on a carbon support with ultrasmall mean particle sizes of ~5 nm and ~3 nm in diameter, respectively, which are credited to the evaporation of the zinc element at high temperature. These catalysts are less susceptible to CO poisoning relative to Pt/C and exhibited enhanced catalytic activity and stability toward formic acid electrooxidation. The mass activities of the as-prepared catalysts were approximately 2 to 3 times that of commercial Pt at 0.5 V (vs. RHE). As a result, this facile synthetic strategy is scalable for mass production of catalytic materials.

  13. Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Jing; Zheng, Xin; Wang, Jie; Wu, Zexing; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wang, Deli

    2015-09-15

    Controlling the size, composition, and structure of bimetallic nanoparticles is of particular interest in the field of electrocatalysts for fuel cells. In the present work, structurally ordered nanoparticles with intermetallic phases of Pt3Zn and PtZn have been successfully synthesized via an impregnation reduction method, followed by post heat-treatment. The Pt3Zn and PtZn ordered intermetallic nanoparticles are well dispersed on a carbon support with ultrasmall mean particle sizes of ~5 nm and ~3 nm in diameter, respectively, which are credited to the evaporation of the zinc element at high temperature. These catalysts are less susceptible to CO poisoning relative to Pt/Cmore » and exhibited enhanced catalytic activity and stability toward formic acid electrooxidation. The mass activities of the as-prepared catalysts were approximately 2 to 3 times that of commercial Pt at 0.5 V (vs. RHE). As a result, this facile synthetic strategy is scalable for mass production of catalytic materials.« less

  14. High Energy Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  15. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOE Patents [OSTI]

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2002-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime, high frequency, high power bursts of low-duty factor microwaves sufficient to generate a plasma discharge and passing a gas to be treated through the discharge so as to cause dissociative reduction of the exhaust gases and enhanced catalyst reactivity through application of the pulsed microwave fields directly to the catalyst material sufficient to cause a polarizability catastrophe and enhanced heating of the metal crystallite particles of the catalyst, and in the presence or absence of the plasma. The invention also includes a reactor for aftertreatment of exhaust gases.

  16. Highly Efficient Selective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol over Gold Supported on Zinc Oxide Materials

    SciTech Connect (OSTI)

    Chen, Hangning; Cullen, David A.; Larese, J. Z.

    2015-11-30

    We used Au/ZnO catalysts for liquid-phase selective hydrogenation of cinnamaldehyde to cinnamyl alcohol and compared with Au/Fe2O3 catalysts. To investigate the influence of the support on the hydrogenation activity and selectivity, three different Au/ZnO catalysts were synthesized, including Au/rod-tetrapod ZnO, Au/porous ZnO, and Au/ZnO-CP prepared using a coprecipitation method. Moreover, the influence of calcination temperature was also systematically investigated in this study. The characterization of Au/ZnO catalysts was performed using ICP, N2 adsorption/desorption isotherms, X-ray diffraction, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy. Among all the supported Au catalysts prepared in this study, Au/ZnO-CP exhibits both the highest hydrogenation activity and selectivity. Using a 1.5% Au/ZnO-CP catalyst, 100% selectivity could be achieved with 94.9% conversion. Finally, we find that the Au particle (size and shape), the ZnO support (size and surface texture) and the interaction between Au and ZnO are three important parameters for achieving a highly efficient Au/ZnO catalyst.

  17. Highly Efficient Selective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol over Gold Supported on Zinc Oxide Materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Hangning; Cullen, David A.; Larese, J. Z.

    2015-11-30

    We used Au/ZnO catalysts for liquid-phase selective hydrogenation of cinnamaldehyde to cinnamyl alcohol and compared with Au/Fe2O3 catalysts. To investigate the influence of the support on the hydrogenation activity and selectivity, three different Au/ZnO catalysts were synthesized, including Au/rod-tetrapod ZnO, Au/porous ZnO, and Au/ZnO-CP prepared using a coprecipitation method. Moreover, the influence of calcination temperature was also systematically investigated in this study. The characterization of Au/ZnO catalysts was performed using ICP, N2 adsorption/desorption isotherms, X-ray diffraction, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy. Among all the supported Au catalysts prepared in this study, Au/ZnO-CP exhibits both the highest hydrogenationmore » activity and selectivity. Using a 1.5% Au/ZnO-CP catalyst, 100% selectivity could be achieved with 94.9% conversion. Finally, we find that the Au particle (size and shape), the ZnO support (size and surface texture) and the interaction between Au and ZnO are three important parameters for achieving a highly efficient Au/ZnO catalyst.« less

  18. Commercial Buildings High Impact Technology (HIT) Catalyst Overview — 2016 BTO Peer Review

    Broader source: Energy.gov [DOE]

    This presentation at the 2016 Peer Review provided an overview of the Building Technologies Office’s Commercial Buildings High Impact Technology (HIT) Catalyst Program. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs.

  19. Commercial Buildings High Impact Technology (HIT) Catalyst — 2016 BTO Peer Review

    Broader source: Energy.gov [DOE]

    This presentation at the 2016 Peer Review provided an overview of the Building Technologies Office’s Commercial Buildings High Impact Technology (HIT) Catalyst Program. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs.

  20. Webinar: Highly Efficient Solar Thermochemical Reaction Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Highly Efficient Solar Thermochemical Reaction Systems Webinar: Highly Efficient Solar Thermochemical Reaction Systems Below is the text version of the webinar titled "Highly Efficient Solar Thermochemical Reaction Systems," originally presented on January 13, 2015. In addition to this text version of the audio, you can access the presentation slides. Amit Talapatra: Hello, everyone, and thanks for joining today's webinar. Today's webinar is being recorded, so

  1. Highly Efficient Solar Thermochemical Reaction Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highly Efficient, Solar Thermochemical Reaction Systems (2014 R&D 100 Award Winner) U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov HIGHLY EFFICIENT, SOLAR THERMOCHEMICAL REACTION SYSTEMS Robert S Wegeng, PI FCTO Webinar 2014 R&D 100 Award Winning Technology January 13, 2015 HIGHLY EFFICIENT, SOLAR THERMOCHEMICAL REACTION SYSTEMS Robert S Wegeng, PI FCTO Webinar January 13,

  2. Highly Efficient Solar Thermochemical Reaction Systems

    Broader source: Energy.gov [DOE]

    Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Highly Efficient Solar Thermochemical Reaction Systems" held on January 13, 2015.

  3. Efficient high density train operations

    DOE Patents [OSTI]

    Gordon, Susanna P.; Evans, John A.

    2001-01-01

    The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference. During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.

  4. Promising Technology: High-Efficiency Rooftop Units

    Broader source: Energy.gov [DOE]

    High-efficiency rooftop air conditioning units (RTUs) can significantly reduce heating, cooling, and ventilation energy consumption. High efficiency RTUs incorporate variable speed controls to minimize fan and compressor energy while capturing and reusing heat, cold, and humidity from a building’s exhaust air.

  5. Pt monolayer shell on nitrided alloy core — A path to highly stable oxygen reduction catalyst

    SciTech Connect (OSTI)

    Hu, Jue; Kuttiyiel, Kurian A.; Sasaki, Kotaro; Su, Dong; Yang, Tae -Hyun; Park, Gu -Gon; Zhang, Chengxu; Chen, Guangyu; Adzic, Radoslav R.

    2015-07-22

    The inadequate activity and stability of Pt as a cathode catalyst under the severe operation conditions are the critical problems facing the application of the proton exchange membrane fuel cell (PEMFC). Here we report on a novel route to synthesize highly active and stable oxygen reduction catalysts by depositing Pt monolayer on a nitrided alloy core. The prepared PtMLPdNiN/C catalyst retains 89% of the initial electrochemical surface area after 50,000 cycles between potentials 0.6 and 1.0 V. By correlating electron energy-loss spectroscopy and X-ray absorption spectroscopy analyses with electrochemical measurements, we found that the significant improvement of stability of the PtMLPdNiN/C catalyst is caused by nitrogen doping while reducing the total precious metal loading.

  6. Pt monolayer shell on nitrided alloy core — A path to highly stable oxygen reduction catalyst

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Jue; Kuttiyiel, Kurian A.; Sasaki, Kotaro; Su, Dong; Yang, Tae -Hyun; Park, Gu -Gon; Zhang, Chengxu; Chen, Guangyu; Adzic, Radoslav R.

    2015-07-22

    The inadequate activity and stability of Pt as a cathode catalyst under the severe operation conditions are the critical problems facing the application of the proton exchange membrane fuel cell (PEMFC). Here we report on a novel route to synthesize highly active and stable oxygen reduction catalysts by depositing Pt monolayer on a nitrided alloy core. The prepared PtMLPdNiN/C catalyst retains 89% of the initial electrochemical surface area after 50,000 cycles between potentials 0.6 and 1.0 V. By correlating electron energy-loss spectroscopy and X-ray absorption spectroscopy analyses with electrochemical measurements, we found that the significant improvement of stability of themore » PtMLPdNiN/C catalyst is caused by nitrogen doping while reducing the total precious metal loading.« less

  7. Multicolor, High Efficiency, Nanotextured LEDs

    SciTech Connect (OSTI)

    Jung Han; Arto Nurmikko

    2011-09-30

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and green for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) heteroepitaxy of nitrogen-polar LEDs on sapphire, (ii) heteroepitaxy of semipolar (11{bar 2}2) green LEDs on sapphire, (iii) synthesis of quantum-dot loaded nanoporous GaN that emits white light without phosphor conversion, (iv) demonstration of the highest quality semipolar (11{bar 2}2) GaN on sapphire using orientation-controlled epitaxy, (v) synthesis of nanoscale GaN and InGaN medium, and (vi) development of a novel liftoff process for manufacturing GaN thin-film vertical LEDs. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  8. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Qi; Hutchings, Gregory S.; Yu, Weiting; Zhou, Yang; Forest, Robert V.; Tao, Runzhe; Rosen, Jonathan; Yonemoto, Bryan T.; Cao, Zeyuan; Zheng, Haimei; et al

    2015-03-16

    One of the key components of carbon dioxide-free hydrogen production is a robust and efficient non-precious metal catalyst for the hydrogen evolution reaction. We report that a hierarchical nanoporous copper-titanium bimetallic electrocatalyst is able to produce hydrogen from water under a mild overpotential at more than twice the rate of state-of-the- art carbon-supported platinum catalyst. Although both copper and titanium are known to be poor hydrogen evolution catalysts, the combination of these two elements creates unique copper-copper-titanium hollow sites, which have a hydrogen-binding energy very similar to that of platinum, resulting in an exceptional hydrogen evolution activity. Moreover, the hierarchicalmore » porosity of the nanoporous-copper titanium catalyst also contributes to its high hydrogen evolution activity, because it provides a large-surface area for electrocatalytic hydrogen evolution, and improves the mass transport properties. Moreover, the catalyst is self-supported, eliminating the overpotential associated with the catalyst/support interface.« less

  9. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution

    SciTech Connect (OSTI)

    Lu, Qi; Hutchings, Gregory S.; Yu, Weiting; Zhou, Yang; Forest, Robert V.; Tao, Runzhe; Rosen, Jonathan; Yonemoto, Bryan T.; Cao, Zeyuan; Zheng, Haimei; Xiao, John Q.; Jiao, Feng; Chen, Jingguang G.

    2015-03-16

    One of the key components of carbon dioxide-free hydrogen production is a robust and efficient non-precious metal catalyst for the hydrogen evolution reaction. We report that a hierarchical nanoporous copper-titanium bimetallic electrocatalyst is able to produce hydrogen from water under a mild overpotential at more than twice the rate of state-of-the- art carbon-supported platinum catalyst. Although both copper and titanium are known to be poor hydrogen evolution catalysts, the combination of these two elements creates unique copper-copper-titanium hollow sites, which have a hydrogen-binding energy very similar to that of platinum, resulting in an exceptional hydrogen evolution activity. Moreover, the hierarchical porosity of the nanoporous-copper titanium catalyst also contributes to its high hydrogen evolution activity, because it provides a large-surface area for electrocatalytic hydrogen evolution, and improves the mass transport properties. Moreover, the catalyst is self-supported, eliminating the overpotential associated with the catalyst/support interface.

  10. Supported metal catalysts for alcohol/sugar alcohol steam reforming

    SciTech Connect (OSTI)

    Davidson, Stephen; Zhang, He; Sun, Junming; Wang, Yong

    2014-08-21

    Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

  11. Liberty Utilities Iowa High Efficiency Equipment Rebate

    Broader source: Energy.gov [DOE]

    Liberty Utilities offers a rebate to its Iowa residential and small business customers for the purchase of high efficiency ENERGY STAR natural gas home heating and water heating equipment....

  12. Webinar: Highly Efficient Solar Thermochemical Reaction Systems

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar titled "Highly Efficient Solar Thermochemical Reaction Systems" on Tuesday, January 13, from 12:00 to 1:00 p.m. Eastern Standard Time.

  13. Fe-porphyrin-based metal–organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hod, Idan; Sampson, Matthew D.; Deria, Pravas; Kubiak, Clifford P.; Farha, Omar K.; Hupp, Joseph T.

    2015-09-18

    Realization of heterogeneous electrochemical CO2-to-fuel conversion via molecular catalysis under high-flux conditions requires the assembly of large quantities of reactant-accessible catalysts on conductive surfaces. As a proof of principle, we demonstrate that electrophoretic deposition of thin films of an appropriately chosen metal–organic framework (MOF) material is an effective method for immobilizing the needed quantity of catalyst. For electrocatalytic CO2 reduction, we used a material that contains functionalized Fe-porphyrins as catalytically competent, redox-conductive linkers. The approach yields a high effective surface coverage of electrochemically addressable catalytic sites (~1015 sites/cm2). The chemical products of the reduction, obtained with ~100% Faradaic efficiency, aremore » mixtures of CO and H2. The results validate the strategy of using MOF chemistry to obtain porous, electrode-immobilized, networks of molecular catalysts having competency for energy-relevant electrochemical reactions.« less

  14. High-Throughput Program for the Discovery of NOx Reduction Catalysts |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Throughput Program for the Discovery of NOx Reduction Catalysts High-Throughput Program for the Discovery of NOx Reduction Catalysts 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: General Motors Corporation 2004_deer_blint.pdf (357.96 KB) More Documents & Publications WA_02_042_GENERAL_MOTORS_POWER_TRAIN_DIV_Waiver_of_Domestic_.pdf Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Lean-NOx

  15. Tunable Catalysts - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lifetimes, Berkeley Lab Tunable Catalysts, made with affordable metals, utilize graphene to electrically tune the converting rate efficacy and efficiency of catalysts....

  16. Enhanced photocatalytic efficiency of NiS/TiO{sub 2} composite catalysts using sunset yellow, an azo dye under day light illumination

    SciTech Connect (OSTI)

    Rajamanickam, D.; Dhatshanamurthi, P.; Shanthi, M.

    2015-01-15

    Highlights: • NiS/TiO{sub 2} was successfully synthesized by sol–gel method. • This new method of preparation gives a homogeneous dispersion of NiS on TiO{sub 2}. • Degradation activity of NiS/TiO{sub 2} is found to be more efficient than other catalysts. • Addition of oxidants enhances the degradation efficiency significantly. • COD measurements reveal the complete mineralization of dye molecules. • The catalyst is found to be reusable. - Abstract: To improve the solar light induced photocatalytic application performances of TiO{sub 2}, in this study, the NiS modified TiO{sub 2} composite photocatalysts with various ratios of NiS to TiO{sub 2} were prepared by sol–gel method. The catalyst was characterized by X-ray diffraction (XRD), high resolution scanning electron microscope (HR-SEM), high resolution transmission electron microscope (HR-TEM), energy dispersive spectra (EDS), diffuse reflectance spectra (DRS), photoluminescence spectra (PL), X-ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller (B–E–T) surface area measurement methods. The photocatalytic activity of NiS/TiO{sub 2} was investigated for the degradation of sunset yellow (SY) in aqueous solution using solar light. The NiS/TiO{sub 2} is found to be more efficient than prepared TiO{sub 2} and TiO{sub 2}–P25 at pH 7 for the mineralization of SY. The effects of operational parameters such as the amount of photocatalyst, dye concentration and initial pH on photo mineralization of SY have been analyzed. The degradation was strongly enhanced in the presence of oxidants such as H{sub 3}K{sub 5}O{sub 18}S{sub 4} (Oxone), KIO{sub 4}, and KBrO{sub 3}. The mineralization of SY has been identified by COD measurements. The catalyst is found to be reusable.

  17. Enabling High Efficiency Clean Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enabling High Efficiency Clean Combustion 2009 DOE Hydrogen Program and Vehicle ... for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency ...

  18. Technology Development for Light Duty High Efficient Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications ...

  19. Catalyst specificities in high pressure hydroprocessing of pyrolysis and gasification tars

    SciTech Connect (OSTI)

    Soltes, E.J.; Lin, S.C.K.; Sheu, Y.H.E.

    1987-04-01

    Over a period of several years, the Department of Forest Science at Texas A and M University has been conducting studies in the hydroprocessing (catalytic high pressure hydrotreating or hydrodeoxygenation accompanied by hydrocracking) of pyrolytic tars produced in biomass pyrolysis and gasification. Upgrading through hydroprocessing results in good yields of volatile hydrocarbon and phenolic products. This paper compares the performance of twenty different catalysts selected for hydroprocessing of a pine pyrolysis oil, describes the use of noble metal catalysts with tars produced from nine different biomass feedstocks (oil from pine pyrolysis and the tars from pine wood chip, pine plywood trim, pecan shell, peanut shell, sugarcane bagasse, corncob, rice hull, and cottonseed hull gasification), and compares the use of several catalysts in a trickle bed reactor for kinetic studies of the hyroprocessing reaction.

  20. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mistry, Hemma; Varela, Ana Sofia; Bonifacio, Cecile S.; Zegkinoglou, Ioannis; Sinev, Ilya; Choi, Yong-Wook; Kisslinger, Kim; Stach, Eric A.; Yang, Judith C.; Strasser, Peter; et al

    2016-06-30

    There is an urgent need to develop technologies that use renewable energy to convert waste products such as carbon dioxide into hydrocarbon fuels. Carbon dioxide can be electrochemically reduced to hydrocarbons over copper catalysts, although higher efficiency is required. We have developed oxidized copper catalysts displaying lower overpotentials for carbon dioxide electroreduction and record selectivity towards ethylene (60%) through facile and tunable plasma treatments. Herein we provide insight into the improved performance of these catalysts by combining electrochemical measurements with microscopic and spectroscopic characterization techniques. Operando X-ray absorption spectroscopy and cross-sectional scanning transmission electron microscopy show that copper oxides aremore » surprisingly resistant to reduction and copper+ species remain on the surface during the reaction. Furthermore, our results demonstrate that the roughness of oxide-derived copper catalysts plays only a partial role in determining the catalytic performance, while the presence of copper+ is key for lowering the onset potential and enhancing ethylene selectivity.« less

  1. High Efficiency Cold Climate Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Cold Climate Heat Pump 2014 Building Technologies Office Peer Review Bo Shen, shenb@ornl.gov Oak Ridge National Laboratory High Efficiency Cold Climate Heat Pump -(CCHP) CRADA Project Summary Timeline: Start date: 01-Oct-2010 Planned end date: 30-Sep-2015 Key Milestones (single-stage) 1. Equipment modeling and EnergyPlus simulation report - March/2013 2. Lab prototype fabricated and installed - Dec/2013 3. Meet 77% capacity at-13°F vs. 47°F; COP=4.1 at 47°F - March/2014

  2. Measure Guideline: High Efficiency Natural Gas Furnaces

    SciTech Connect (OSTI)

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  3. Measure Guideline. High Efficiency Natural Gas Furnaces

    SciTech Connect (OSTI)

    Brand, L.; Rose, W.

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  4. Development of High Efficiency White Oleds Using Thermally Activated

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-19_lee.pdf (1.44 MB) More Documents & Publications Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems Delayed Fluorescence

  5. High efficiency novel window air conditioner

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  6. High efficiency novel window air conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-07-24

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  7. High efficiency novel window air conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  8. Efficient Conversion of CO2 to CO Using Tin and Other Inexpensive and Easily Prepared Post-Transition Metal Catalysts

    SciTech Connect (OSTI)

    Medina-Ramos, Jonnathan; Pupillo, Rachel C.; Keane, Thomas P.; DiMeglio, John L.; Rosenthal, Joel

    2015-02-19

    The development of affordable electrocatalysts that can drive the reduction of CO2 to CO with high selectivity, efficiency, and large current densities is a critical step on the path to production of liquid carbon-based fuels. In this work, we show that inexpensive triflate salts of Sn2+, Pb2+, Bi3+, and Sb3+ can be used as precursors for the electrodeposition of CO2 reduction cathode materials from MeCN solutions, providing a general and facile electrodeposition strategy, which streamlines catalyst synthesis. The ability of these four platforms to drive the formation of CO from CO2 in the presence of [BMIM]OTf was probed. The electrochemically prepared Sn and Bi catalysts proved to be highly active, selective, and robust platforms for CO evolution, with partial current densities of jCO = 5-8 mA/cm2 at applied overpotentials of η < 250 mV. By contrast, the electrodeposited Pb and Sb catalysts do not promote rapid CO generation with the same level of selectivity. The Pb material is only ~10% as active as the Sn and Bi systems at an applied potential of E = -1.95 V and is rapidly passivated during catalysis. The Sb-comprised cathode material shows no activity for conversion of CO2 to CO under analogous conditions. When taken together, this work demonstrates that 1,3-dialkylimidazoliums can promote CO production, but only when used in combination with an appropriately chosen electrocatalyst material. More broadly, these results suggest that the interactions between CO2, the imidazolium promoter, and the cathode surface are all critical to the observed catalysis.

  9. Implications of Low Particulate Matter Emissions on System Fuel Efficiency for High Efficiency Clean Combustion

    SciTech Connect (OSTI)

    Parks, II, James E; Prikhodko, Vitaly Y

    2009-01-01

    Advanced diesel combustion regimes such as High Efficiency Clean Combustion (HECC) offer the benefits of reduced engine out NOX and particulate matter (PM) emissions. Lower PM emissions during advanced combustion reduce the demand on diesel particulate filters (DPFs) and can, thereby, reduce the fuel penalty associated with DPF regeneration. In this study, a SiC DPF was loaded and regenerated on a 1.7-liter 4-cylinder diesel engine operated in conventional and advanced combustion modes at different speed and load conditions. A diesel oxidation catalyst (DOC) and a lean NOX trap (LNT) were also installed in the exhaust stream. Five steady-state speed and load conditions were weighted to estimate Federal Test Procedure (FTP) fuel efficiency. The DPF was loaded using lean-rich cycling with frequencies that resulted in similar levels of NOX emissions downstream of the LNT. The pressure drop across the DPF was measured at a standard point (1500 rpm, 5.0 bar) before and after loading, and a P rise rate was determined for comparison between conventional and advanced combustion modes. Higher PM emissions in conventional combustion resulted in a higher rate of backpressure rise across the DPF at all of the load points leading to more frequent DPF regenerations and higher fuel penalty. The fuel penalty during conventional combustion was 4.2% compared with 3.1% for a mixture of conventional and advanced modes.

  10. High Efficiency Modular Chemical Processes (HEMCP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - ADVANCED MANUFACTURING OFFICE High Efficiency Modular Chemical Processes (HEMCP) Modular Process Intensification Framework for R&D Targets Advanced Manufacturing Office September 27, 2014 Dickson Ozokwelu, Technology Manager Presentation Outline 1. What is Process Intensification? 2. DOE's !pproach to Process Intensification 3. Opportunity for Cross-Cutting High-Impact Research 4. Goals of the Process Intensification Institute 5. Addressing the 5 EERE Core Questions 2 | Advanced

  11. Low Cost, High Efficiency Tandem Silicon Solar Cells and LEDs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Energy Efficiency Building Energy ... Return to Search Low Cost, High Efficiency Tandem Silicon Solar Cells and LEDs ... gaps will lead to efficient power conversion. ...

  12. High Efficiency Solar Integrated Roof Membrane Product

    SciTech Connect (OSTI)

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  13. High-Temperature High-Efficiency Solar Thermoelectric Generators

    SciTech Connect (OSTI)

    Baranowski, LL; Warren, EL; Toberer, ES

    2014-03-01

    Inspired by recent high-efficiency thermoelectric modules, we consider thermoelectrics for terrestrial applications in concentrated solar thermoelectric generators (STEGs). The STEG is modeled as two subsystems: a TEG, and a solar absorber that efficiently captures the concentrated sunlight and limits radiative losses from the system. The TEG subsystem is modeled using thermoelectric compatibility theory; this model does not constrain the material properties to be constant with temperature. Considering a three-stage TEG based on current record modules, this model suggests that 18% efficiency could be experimentally expected with a temperature gradient of 1000A degrees C to 100A degrees C. Achieving 15% overall STEG efficiency thus requires an absorber efficiency above 85%, and we consider two methods to achieve this: solar-selective absorbers and thermally insulating cavities. When the TEG and absorber subsystem models are combined, we expect that the STEG modeled here could achieve 15% efficiency with optical concentration between 250 and 300 suns.

  14. Better Enzymes for Carbon Capture: Low-Cost Biological Catalyst to Enable Efficient Carbon Dioxide Capture

    SciTech Connect (OSTI)

    2010-07-01

    IMPACCT Project: Codexis is developing new and efficient forms of enzymes known as carbonic anhydrases to absorb CO2 more rapidly and under challenging conditions found in the gas exhaust of coal-fired power plants. Carbonic anhydrases are common and are among the fastest enzymes, but they are not robust enough to withstand the harsh environment found in the power plant exhaust steams. In this project, Codexis will be using proprietary technology to improve the enzymes’ ability to withstand high temperatures and large swings in chemical composition. The project aims to develop a carbon-capture process that uses less energy and less equipment than existing approaches. This would reduce the cost of retrofitting today’s coal-fired power plants.

  15. High efficiency, low cost scrubber upgrades

    SciTech Connect (OSTI)

    Klingspor, J.S.; Walters, M.

    1998-07-01

    ABB introduced the LS-2 technology; a limestone based wet FGD system, which is capable of producing high purity gypsum from low grade limestone, in late 1995. Drawing from 30,000 MWe of worldwide wet FGD experience, ABB has incorporated several innovations in the new system designed to reduce the overall cost of SO{sub 2} compliance. Collectively, these improvements are referred to as LS-2. The improvements include a compact high efficiency absorber, a simple dry grinding system, a closed coupled flue gas reheat system, and a tightly integrated dewatering system. The compact absorber includes features such a high velocity spray zone, significantly improved gas-liquid contact system, compact reaction tank, and a high velocity mist eliminator. The LS-2 system is being demonstrated at Ohio Edison's Niles Plant at the 130 MWe level, and this turnkey installation was designed and erected in a 20-month period. At Niles, all of the gypsum is sold to a local wallboard manufacturer. Many of the features included in the LS-2 design and demonstrated at Niles can be used to improve the efficiency and operation of existing systems including open spray towers and tray towers. The SO{sub 2} removal efficiency can be significantly improved by installing the high efficiency LS-2 style spray header design and the unique wall rings. The absorber bypass can be eliminated or reduced by including the LS-2 style high velocity mist eliminator. Also, the LS-2 style spray header design combined with wall rings allow for an increase in absorber gas velocity at a maintained or improved performance without the need for costly upgrades of the absorber recycle pumps. the first upgrade using LS-2 technology was done at CPA's Coal Creek Station (2{times}545 MWe). The experience form the scrubber upgrade at Coal Creek is discussed along with operating results.

  16. High Efficiency Low Emission Refrigeration System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Low Emission Refrigeration System 2014 Building Technologies Office Peer Review Brian Fricke, frickeba@ornl.gov Oak Ridge National Laboratory Project Summary Timeline: Start date: 1 October 2011 Planned end date: 30 September 2016 Key Milestones 1. Evaluate System Design Strategies; March 2013 2. Develop Prototype System; March 2013 3. Fabricate Prototype System; March 2014 Budget: Total DOE $ to date: $700k Total future DOE $: $1,000k Target Market/Audience: The primary market

  17. Novel Materials for High Efficiency Direct Methanol Fuel Cells...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials for High Efficiency Direct Methanol Fuel Cells Novel Materials for High Efficiency Direct Methanol Fuel Cells Presented at the Department of Energy Fuel Cell Projects ...

  18. Tailored Materials for High Efficiency CIDI Engines (Caterpillar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency CIDI Engines (Caterpillar CRADA) Tailored Materials for High Efficiency CIDI Engines (Caterpillar CRADA) 2009 DOE Hydrogen Program and Vehicle Technologies Program ...

  19. Progress toward Development of a High-Efficiency Zonal Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    toward Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Progress toward Development of a High-Efficiency Zonal Thermoelectric HVAC ...

  20. Los Alamos develops new technique for growing high-efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technique for growing high-efficiency perovskite ... growth of highly efficient and reproducible solar cells from large-area ... clean global energy solutions for the ...

  1. Advanced Combustion Technology to Enable High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Enable High Efficiency Clean Combustion Advanced Combustion Technology to Enable High Efficiency Clean Combustion Summary of advanced combustion research at Cummins ...

  2. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Applied low temperature combustion to the Navistar ...

  3. Syngas Enhanced High Efficiency Low Temperature Combustion for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines A significant ...

  4. Technology Development for High Efficiency Clean Diesel Engines...

    Broader source: Energy.gov (indexed) [DOE]

    (455.27 KB) More Documents & Publications High Efficient Clean Combustion for SuperTruck Advanced Diesel Engine Technology Development for HECC Enabling High Efficiency ...

  5. Glass-like thermal conductivity in high efficiency thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermal conductivity in high efficiency thermoelectric materials Glass-like thermal conductivity in high efficiency thermoelectric materials Discusses strategies to design ...

  6. High-Efficiency Window Air Conditioners - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Window Air Conditioners - Building America Top Innovation High-Efficiency Window Air Conditioners - Building America Top Innovation This photo shows a window air ...

  7. 2008 Annual Merit Review Results Summary - 8. High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8. High Efficiency Clean Combustion and Enabling Technologies 2008 Annual Merit Review Results Summary - 8. High Efficiency Clean Combustion and Enabling Technologies DOE Vehicle ...

  8. Test Program for High Efficiency Gas Turbine Exhaust Diffuser...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Test Program for High Efficiency Gas Turbine Exhaust Diffuser Citation Details In-Document Search Title: Test Program for High Efficiency Gas Turbine Exhaust ...

  9. Enabling High Efficiency Ethanol Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enabling High Efficiency Ethanol Engines Enabling High Efficiency Ethanol Engines 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ...

  10. Materials-Enabled High-Efficiency Diesel Engines (CRADA with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines (CRADA with Caterpillar) Materials-Enabled High-Efficiency Diesel Engines (CRADA ... More Documents & Publications Materials-Enabled High-Efficiency Diesel Engines ...

  11. Enabling High Efficiency Ethanol Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enabling High Efficiency Ethanol Engines Enabling High Efficiency Ethanol Engines 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

  12. New Residential Water Heater Concept Promises High Efficiency...

    Energy Savers [EERE]

    Residential Water Heater Concept Promises High Efficiency, Lower Cost New Residential Water Heater Concept Promises High Efficiency, Lower Cost August 17, 2016 - 2:20pm Addthis A ...

  13. Low-Temperature Combustion Demonstrator for High-Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for High-Efficiency Clean Combustion Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

  14. White LED with High Package Extraction Efficiency (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: White LED with High Package Extraction Efficiency Citation Details In-Document Search Title: White LED with High Package Extraction Efficiency The goal of this ...

  15. High Efficiency Microturbine with Integral Heat Recovery - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 Capstone Turbine...

  16. Challenging Conventional Wisdom: A Clean and Highly Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenging Conventional Wisdom: A Clean and Highly Efficient Opposed-Piston Two-Stroke Engine Challenging Conventional Wisdom: A Clean and Highly Efficient Opposed-Piston ...

  17. Electrical and Thermal Transport Optimization of High Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Work on ...

  18. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bu, Lingzheng; Ding, Jiabao; Yao, Jianlin; Huang, Xiaoqing; Guo, Shaojun; Zhang, Xu; Lu, Gang; Su, Dong; Zhu, Xing; Guo, Jun

    2015-10-13

    The production of inorganic nanoparticles (NPs) with precise control over structures has always been a central target in various fields of chemistry and physics because the properties of NPs can be desirably manipulated by their structure.[1-4] There has been an intense search for high-performance noble metal NP catalysts particular for Pt.[5-9] Precious platinum (Pt) NPs are active catalysts for various heterogeneous reactions and show particularly superior performance in both the anodic oxidation reaction and the cathodic ORR in the fuel cells, but their rare content and high cost largely impede the practical application.[10-12] A potential strategy to address this tremendousmore » challenge is alloying Pt NPs with the transition metals (TM).[13-16]« less

  19. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts

    SciTech Connect (OSTI)

    Bu, Lingzheng; Ding, Jiabao; Yao, Jianlin; Huang, Xiaoqing; Guo, Shaojun; Zhang, Xu; Lu, Gang; Su, Dong; Zhu, Xing; Guo, Jun

    2015-10-13

    The production of inorganic nanoparticles (NPs) with precise control over structures has always been a central target in various fields of chemistry and physics because the properties of NPs can be desirably manipulated by their structure.[1-4] There has been an intense search for high-performance noble metal NP catalysts particular for Pt.[5-9] Precious platinum (Pt) NPs are active catalysts for various heterogeneous reactions and show particularly superior performance in both the anodic oxidation reaction and the cathodic ORR in the fuel cells, but their rare content and high cost largely impede the practical application.[10-12] A potential strategy to address this tremendous challenge is alloying Pt NPs with the transition metals (TM).[13-16]

  20. High Efficiency Colloidal Quantum Dot Phosphors

    SciTech Connect (OSTI)

    Kahen, Keith

    2013-12-31

    The project showed that non-Cd containing, InP-based nanocrystals (semiconductor materials with dimensions of ~6 nm) have high potential for enabling next-generation, nanocrystal-based, on chip phosphors for solid state lighting. Typical nanocrystals fall short of the requirements for on chip phosphors due to their loss of quantum efficiency under the operating conditions of LEDs, such as, high temperature (up to 150 C) and high optical flux (up to 200 W/cm2). The InP-based nanocrystals invented during this project maintain high quantum efficiency (>80%) in polymer-based films under these operating conditions for emission wavelengths ranging from ~530 to 620 nm. These nanocrystals also show other desirable attributes, such as, lack of blinking (a common problem with nanocrystals which limits their performance) and no increase in the emission spectral width from room to 150 C (emitters with narrower spectral widths enable higher efficiency LEDs). Prior to these nanocrystals, no nanocrystal system (regardless of nanocrystal type) showed this collection of properties; in fact, other nanocrystal systems are typically limited to showing only one desirable trait (such as high temperature stability) but being deficient in other properties (such as high flux stability). The project showed that one can reproducibly obtain these properties by generating a novel compositional structure inside of the nanomaterials; in addition, the project formulated an initial theoretical framework linking the compositional structure to the list of high performance optical properties. Over the course of the project, the synthetic methodology for producing the novel composition was evolved to enable the synthesis of these nanomaterials at a cost approximately equal to that required for forming typical conventional nanocrystals. Given the above results, the last major remaining step prior to scale up of the nanomaterials is to limit the oxidation of these materials during the tens of

  1. Overview of High-Efficiency Engine Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Engine Technologies Overview of High-Efficiency Engine Technologies Perspective on past and current status, and future directions in heavy- and light-duty diesel engines deer11_eckerle.pdf (2.51 MB) More Documents & Publications Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction Innovative Approaches to Improving Engine Efficiency Enabling High Efficiency Clean Combustion

  2. Sulfide catalysts for reducing SO2 to elemental sulfur

    DOE Patents [OSTI]

    Jin, Yun; Yu, Qiquan; Chang, Shih-Ger

    2001-01-01

    A highly efficient sulfide catalyst for reducing sulfur dioxide to elemental sulfur, which maximizes the selectivity of elemental sulfur over byproducts and has a high conversion efficiency. Various feed stream contaminants, such as water vapor are well tolerated. Additionally, hydrogen, carbon monoxide, or hydrogen sulfides can be employed as the reducing gases while maintaining high conversion efficiency. This allows a much wider range of uses and higher level of feed stream contaminants than prior art catalysts.

  3. High Quantum Efficiency OLED Lighting Systems

    SciTech Connect (OSTI)

    Shiang, Joseph

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  4. Highly dispersed catalysts for coal liquefaction. Phase 1 final report, August 23--November 22, 1994

    SciTech Connect (OSTI)

    Hirschon, A.S.; Wilson, R.B.; Ghaly, O.

    1995-03-22

    The ultimate goal of this project is to develop novel processes for making the conversion of coal into distillable liquids competitive to that of petroleum products in the range of $25/bbl. The objectives of Phase 1 were to determine the utility of new precursors to highly dispersed catalysts for use of syngas atmospheres in coal liquefaction, and to estimate the effect of such implementation on the cost of the final product. The project is divided into three technical tasks. Tasks 1 and 2 are the analyses and liquefaction experiments, respectively, and Task 3 deals with the economic effects of using these methods during coal liquefaction. Results are presented on the following: Analytical Support--screening tests and second-stage conversions; Laboratory-Scale Operations--catalysts, coal conversion in synthetic solvents, Black Thunder screening studies, and two-stage liquefaction experiments; and Technical and economic Assessment--commercial liquefaction plant description, liquefaction plant cost; and economic analysis.

  5. High surface area ThO.sub.2 catalyst and method of preparing it

    DOE Patents [OSTI]

    Colmenares, Carlos A. (Alamo, CA); Somorjai, Gabor A. (Berkeley, CA); Maj, Joseph J. (Walnut Creek, CA)

    1985-01-01

    A ThO.sub.2 catalyst having a high surface area of about 80-125 m.sup.2 /g is synthesized. The compound is synthesized by simultaneously mixing an aqueous solution of ThNO.sub.3 (NO.sub.3).sub.4.4H.sub.2 O with an aqueous solution of Na.sub.2 CO.sub.3.H.sub.2 O, to produce a solution and solid ThOCO.sub.3. The solid ThOCO.sub.3 is separated from the solution, and then calcined at a temperature of about 225.degree.-300.degree. C. for about 40-55 hours to produce ThO.sub.2. The ThO.sub.2 catalyst produced includes Na present as a substitutional cation in an amount equal to about 5-10 atom percent.

  6. Path to High Efficiency Gasoline Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Path to High Efficiency Gasoline Engine Path to High Efficiency Gasoline Engine Path to High Efficiency Gasoline Engine deer10_johansson.pdf (4.97 MB) More Documents & Publications Partially Premixed Combustion High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control Advanced Lean-Burn DI Spark Ignition Fuels Research

  7. High Efficiency Microturbine with Integral Heat Recovery

    SciTech Connect (OSTI)

    2010-10-01

    Fact sheet: this project will develop a clean, cost-effective 370 kW microturbine with 42% net electrical efficiency and 85% total CHP efficiency.

  8. Charge Trapping in High Efficiency Alternating Copolymers: Implications in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Photovoltaic Device Efficiency | ANSER Center | Argonne-Northwestern National Laboratory Charge Trapping in High Efficiency Alternating Copolymers: Implications in Organic Photovoltaic Device Efficiency Home > Research > ANSER Research Highlights > Charge Trapping in High Efficiency Alternating Copolymers: Implications in Organic Photovoltaic Device Efficiency

  9. The effect of fuel sulfur level on the HC, CO and NOX conversion efficiencies of PD/RH, PT/RH, PD-only and tri-metal catalysts

    SciTech Connect (OSTI)

    DiCircco, D.M.; Adamczyk, A.A.; Patel, K.S.

    1995-12-31

    Due to additional requirements imposed by the 1990 amendments to the Clean Air Act, automotive emissions systems must perform at high efficiencies for 100,000 miles. However, fuels containing sulfur, can reduce the efficiency of many modern catalyst formulations. Additionally, the Northeast Ozone Transport Commission (OTC) has petitioned the US Environmental Protection Agency (EPA) to require region-wide adaptation of the California Low-Emission Vehicle standards without the application of California`s reformulated gasoline program which is necessary to keep the level of fuel sulfur low. As will be seen, this will result in reduced catalyst activity in the OTC, since typical gasolines contain sulfur levels which vary considerably. Gasolines containing 50ppmS and 500ppmS only represent the 10th and 75th percentile of US commercial summer fuels. As will be shown, these high levels of fuel sulfur will lower the performance of high activity catalyst formulations and may make compliance with LEV/ULEV emissions levels extremely difficult if not impossible without the adaptation of low-sulfur fuels.

  10. High Efficiency, Illumination Quality OLEDs for Lighting

    SciTech Connect (OSTI)

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In

  11. Technology Development for High Efficiency Clean Diesel Engines and a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathway to 50% Thermal Efficiency | Department of Energy High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Cost reduction is a key area of emphasis for the Cummins 2nd Generation ORC WHR System. deer09_stanton.pdf (455.27 KB) More Documents & Publications High Efficient Clean Combustion for SuperTruck Advanced Diesel Engine Technology Development for HECC

  12. Fuel Reformation: Catalyst Requirements in Microchannel Architectures

    SciTech Connect (OSTI)

    King, David L.; Brooks, Kriston P.; Fischer, Christopher M.; Pederson, Larry R.; Rawlings, Gregg C.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Wegeng, Robert S.; Whyatt, Greg A.

    2005-09-06

    Microchannel reactors have unique capabilities for onboard hydrocarbon fuel processing, due to their ability to provide process intensification through high heat and mass transfer, leading to smaller and more efficient reactors. The catalyst requirements in microchannel devices are demanding, requiring high activity, very low deactivation rates, and strong adherence to engineered substrate. Each unit operation benefits from microchannel architecture: the steam reforming reactor removes heat transfer limitations, allowing the catalyst to operate at elevated temperatures at the kinetic limit; the water gas shift reactor uses unique temperature control to reduce catalyst volume requirements; the PROX reactor provides high CO conversion and minimizes H2 oxidation through effective control of reactor temperature.

  13. Unregulated Emissions from High-Efficiency Clean Combustion Modes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). ...

  14. Advanced High Efficiency Clean Diesel Combustion with Low Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion ...

  15. High Efficiency Engine Systems Development and Evaluation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Engine Systems Development and Evaluation High Efficiency Engine Systems Development and Evaluation 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies ...

  16. Development of a High-Efficiency Zonal Thermoelectric HVAC System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on ...

  17. Technology and System Level Demonstration of Highly Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement...

  18. High Efficiency Full Expansion (FEx) Engine for Automotive Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Full Expansion (FEx) Engine for Automotive Applications High Efficiency Full Expansion (FEx) Engine for Automotive Applications Large increases in engine thermal efficiency result ...

  19. Highly Effective Pt-Based Water-Gas Shift Catalysts by Surface Modification with Alkali Hydroxide Salts

    SciTech Connect (OSTI)

    Kusche, Matthias; Bustillo, Karen; Agel, Friederike; Wasserscheid, Peter

    2015-01-29

    Here, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid film of alkali hydroxide forms on the alumina surface, which increases the availability of H2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H2O partial pressures. In conclusion, TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5wt%.

  20. Highly Effective Pt-Based Water-Gas Shift Catalysts by Surface Modification with Alkali Hydroxide Salts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kusche, Matthias; Bustillo, Karen; Agel, Friederike; Wasserscheid, Peter

    2015-01-29

    Here, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid filmmore » of alkali hydroxide forms on the alumina surface, which increases the availability of H2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H2O partial pressures. In conclusion, TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5wt%.« less

  1. Highly Dispersed Pseudo-Homogeneous and Heterogeneous Catalysts Synthesized via Inverse Micelle Solutions for the Liquefaction of Coal

    SciTech Connect (OSTI)

    Hampden-Smith, M.; Kawola, J.S.; Martino, A.; Sault, A.G.; Yamanaka, S.A.

    1999-01-05

    The mission of this project was to use inverse micelle solutions to synthesize nanometer sized metal particles and test the particles as catalysts in the liquefaction of coal and other related reactions. The initial focus of the project was the synthesis of iron based materials in pseudo-homogeneous form. The frost three chapters discuss the synthesis, characterization, and catalyst testing in coal liquefaction and model coal liquefaction reactions of iron based pseudo-homogeneous materials. Later, we became interested in highly dispersed catalysts for coprocessing of coal and plastic waste. Bifunctional catalysts . to hydrogenate the coal and depolymerize the plastic waste are ideal. We began studying, based on our previously devised synthesis strategies, the synthesis of heterogeneous catalysts with a bifunctional nature. In chapter 4, we discuss the fundamental principles in heterogeneous catalysis synthesis with inverse micelle solutions. In chapter 5, we extend the synthesis of chapter 4 to practical systems and use the materials in catalyst testing. Finally in chapter 6, we return to iron and coal liquefaction now studied with the heterogeneous catalysts.

  2. High efficiency Brayton cycles using LNG

    SciTech Connect (OSTI)

    Morrow, Charles W.

    2006-04-18

    A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

  3. Tailored Materials for High Efficiency CIDI Engines

    SciTech Connect (OSTI)

    Grant, G.J.; Jana, S.

    2012-03-30

    The overall goal of the project, Tailored Materials for High Efficiency Compression Ignition Direct Injection (CIDI) Engines, is to enable the implementation of new combustion strategies, such as homogeneous charge compression ignition (HCCI), that have the potential to significantly increase the energy efficiency of current diesel engines and decrease fuel consumption and environmental emissions. These strategies, however, are increasing the demands on conventional engine materials, either from increases in peak cylinder pressure (PCP) or from increases in the temperature of operation. The specific objective of this project is to investigate the application of a new material processing technology, friction stir processing (FSP), to improve the thermal and mechanical properties of engine components. The concept is to modify the surfaces of conventional, low-cost engine materials. The project focused primarily on FSP in aluminum materials that are compositional analogs to the typical piston and head alloys seen in small- to mid-sized CIDI engines. Investigations have been primarily of two types over the duration of this project: (1) FSP of a cast hypoeutectic Al-Si-Mg (A356/357) alloy with no introduction of any new components, and (2) FSP of Al-Cu-Ni alloys (Alloy 339) by physically stirring-in various quantities of carbon nanotubes/nanofibers or carbon fibers. Experimental work to date on aluminum systems has shown significant increases in fatigue lifetime and stress-level performance in aluminum-silicon alloys using friction processing alone, but work to demonstrate the addition of carbon nanotubes and fibers into aluminum substrates has shown mixed results due primarily to the difficulty in achieving porosity-free, homogeneous distributions of the particulate. A limited effort to understand the effects of FSP on steel materials was also undertaken during the course of this project. Processed regions were created in high-strength, low-alloyed steels up to 0.5 in

  4. WO3 and HPA based system for ultra high stability Innovation for Our Energy Future ultra-activity and of Pt catalysts in PEMFC cathodes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WO 3 and HPA based system for ultra high activity and stability of Innovation for Our Energy Future ultra-high activity and stability of Pt catalysts in PEMFC cathodes 2010 DOE Hydrogen Program Fuel Cell Project Kick-Off Venue: Washington D.C. Presenter: John Turner Organization: NREL Date: Sept 28th, 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. "This presentation

  5. High-resolution transmission electron microscopy study of carbon deposited on the NiO/MgO solid solution catalysts

    SciTech Connect (OSTI)

    Hu, Y.H.; Ruckenstein, E.

    1999-05-15

    The carbon deposition due to the CH{sub 4} decomposition at 790 C over NiO/MgO catalysts was investigated by high-resolution transmission electron microscopy. While no deposits could be detected over the catalysts with a NiO content smaller than 9.1 wt%, they were detected over the catalysts with NiO contents of 23 and 50 wt%. The carbon deposits are composed of platelets located at distances of about 0.34 nm, corresponding to the graphitic carbon. Various structures of the deposited carbon were observed: (a) carbon consisting of platelets parallel to the surface of the particle, which covers a catalyst particle, (b) nanotubes composed of platelets parallel to their axis, and (c) carbon vortexes consisting of platelets parallel to their axis.

  6. High Engine Efficiency at 2010 Emissions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Efficiency at 2010 Emissions High Engine Efficiency at 2010 Emissions 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_nelson.pdf (903.78 KB) More Documents & Publications Achieving High Efficiency at 2010 Emissions Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency

  7. High efficiency stoichiometric internal combustion engine system

    DOE Patents [OSTI]

    Winsor, Richard Edward; Chase, Scott Allen

    2009-06-02

    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  8. "Tuning" microalgae for high photosynthesis efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efficiencies. This makes them attractive candidates for producing green chemical feedstocks and biofuels, particularly oil-based aviation fuels. However, there...

  9. High-Efficiency Solar Cogeneration with Thermophotovoltaic &...

    Broader source: Energy.gov (indexed) [DOE]

    targeted 'Solar Cogeneration' technologies to maximize energy generation & energy efficiency from the building's solar insolation resources. Project presents a novel, low-cost...

  10. Multi-petascale highly efficient parallel supercomputer

    DOE Patents [OSTI]

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen -Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Smith, Brian; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng

    2015-07-14

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.

  11. High efficiency, radiation-hard solar cells

    SciTech Connect (OSTI)

    Ager III, J.W.; Walukiewicz, W.

    2004-10-22

    The direct gap of the In{sub 1-x}Ga{sub x}N alloy system extends continuously from InN (0.7 eV, in the near IR) to GaN (3.4 eV, in the mid-ultraviolet). This opens the intriguing possibility of using this single ternary alloy system in single or multi-junction (MJ) solar cells of the type used for space-based surveillance satellites. To evaluate the suitability of In{sub 1-x}Ga{sub x}N as a material for space applications, high quality thin films were grown with molecular beam epitaxy and extensive damage testing with electron, proton, and alpha particle radiation was performed. Using the room temperature photoluminescence intensity as a indirect measure of minority carrier lifetime, it is shown that In{sub 1-x}Ga{sub x}N retains its optoelectronic properties at radiation damage doses at least 2 orders of magnitude higher than the damage thresholds of the materials (GaAs and GaInP) currently used in high efficiency MJ cells. This indicates that the In{sub 1-x}Ga{sub x}N is well-suited for the future development of ultra radiation-hard optoelectronics. Critical issues affecting development of solar cells using this material system were addressed. The presence of an electron-rich surface layer in InN and In{sub 1-x}Ga{sub x}N (0 < x < 0.63) was investigated; it was shown that this is a less significant effect at large x. Evidence of p-type activity below the surface in Mg-doped InN was obtained; this is a significant step toward achieving photovoltaic action and, ultimately, a solar cell using this material.

  12. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1 High-Efficiency Receivers for...

  13. Energy-Efficient Melting and Direct Delivery of High Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum itmdelivery.pdf (572.12 ...

  14. Development of High-Efficiency Clean Combustion Engines Designs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Clean Combustion Engines Designs for SI and CI Engines Development of High-Efficiency Clean Combustion Engines Designs for SI and CI Engines 2010 DOE Vehicle...

  15. Development of a New Generation, High Efficiency PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Part of a 100 million fuel cell ...

  16. Simulation of High Efficiency Clean Combustion Engines and Detailed...

    Broader source: Energy.gov (indexed) [DOE]

    ongoing work exploring fuel chemistry, analysis of and improving simulation methodologies for high efficiency clean combustion regimes, and computational performance ...

  17. High Efficiency Organic Light Emitting Devices for Lighting

    SciTech Connect (OSTI)

    So, Franky; Tansu, Nelson; Gilchrist, James

    2013-06-30

    Incorporate internal scattering layers and microlens arrays in high efficiency OLED to achieve up to 70% EQE.

  18. Energy Efficiency Opportunities in Federal High Performance Computing...

    Broader source: Energy.gov (indexed) [DOE]

    Efficiency Opportunities in Federal High Performance Computing Data Centers Prepared for .........9 EEMs for HPC Data Centers ......

  19. High-Efficiency Engine Technologies Session Introduction | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy High-Efficiency Engine Technologies Session Introduction High-Efficiency Engine Technologies Session Introduction Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10_rotz.pdf (2.26 MB) More Documents & Publications Increased Engine Efficiency via Advancements in Engine Combustion Systems Super Truck -- 50% Improvement In Class 8 Freight Efficiency Vehicle Technologies Office Merit

  20. Fe-porphyrin-based metal–organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2

    SciTech Connect (OSTI)

    Hod, Idan; Sampson, Matthew D.; Deria, Pravas; Kubiak, Clifford P.; Farha, Omar K.; Hupp, Joseph T.

    2015-09-18

    Realization of heterogeneous electrochemical CO2-to-fuel conversion via molecular catalysis under high-flux conditions requires the assembly of large quantities of reactant-accessible catalysts on conductive surfaces. As a proof of principle, we demonstrate that electrophoretic deposition of thin films of an appropriately chosen metal–organic framework (MOF) material is an effective method for immobilizing the needed quantity of catalyst. For electrocatalytic CO2 reduction, we used a material that contains functionalized Fe-porphyrins as catalytically competent, redox-conductive linkers. The approach yields a high effective surface coverage of electrochemically addressable catalytic sites (~1015 sites/cm2). The chemical products of the reduction, obtained with ~100% Faradaic efficiency, are mixtures of CO and H2. The results validate the strategy of using MOF chemistry to obtain porous, electrode-immobilized, networks of molecular catalysts having competency for energy-relevant electrochemical reactions.

  1. Wiremesh Substrates for Enhanced Particulate Oxidation and Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Improvement of Urea SCR Performance Using Wiremesh Thermolysis Mixer Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR ...

  2. Energy Efficiency Opportunities in Federal High Performance Computing Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Centers | Department of Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Case study describes an outline of energy efficiency opportunities in federal high-performance computing data centers. Download the case study. (1.05 MB) More Documents & Publications Case Study: Opportunities to Improve Energy Efficiency in Three Federal Data Centers Case Study: Innovative Energy

  3. Hydroprocessing catalysts

    SciTech Connect (OSTI)

    Alafandi, H.; Stamires, D.

    1980-04-15

    This invention relates to a hydroprocessing catalyst particularly useful in hydrocracking comprising a low sodium faujasite zeolite produced by a high pressure exchange of Na cations with a solution of an ammonium salt as a substrate for incorporation of a hydrogenating metal compound.

  4. Evaluation of Mo catalyst precursors for hydrotreating coal derived liquids

    SciTech Connect (OSTI)

    Anderson, R.K.; Gibb, D.R.; Kimber, G.M.; Derbyshire, F.J.

    1997-04-01

    Numerous studies have examined the use of dispersed catalysts for promoting the dissolution of coal and upgrading high-boiling and residual liquids. Catalysts have been added in various forms, including oil soluble organometallics and carbonyls, with industrial interest for application to a spectrum of residual feedstocks, and demonstration in coal liquefaction at the pilot plant scale. Dispersed catalysts offer certain advantages over supported catalysts for hydroprocessing such feedstocks. Because of their large molecular size, many of the feed constituents cannot access the internal pore structure of supported catalysts, and hence upgrading must proceed by an indirect process, probably involving H-transfer via lower molecular weight species. Another major deficiency of supported catalysts is their susceptibility to deactivation by reactions which cause the deposition of carbon and metals. Dispersed catalysts can overcome the first of these obstacles and may be less susceptible to deactivation. At the same time, there are also difficulties in the utilization of dispersed catalysts. These include: attaining and maintaining adequate dispersion; and converting the precursor to the active phase. Moreover, the effective catalyst metals, such as Mo, are expensive and their application is only economically viable if they can be used at very low concentrations or efficiently recycled. In direct coal liquefaction, the presence of mineral matter and undissolved coal in the products of coal solubilization mean that a solids separation step is necessary and, inevitably, catalyst will be removed with the reject stream. This program studied the effectiveness of dispersed Mo catalysts for hydroprocessing solids-free residual coal liquids.

  5. Finding the Next Big Thing(s) in Building Energy Efficiency: HIT Catalyst and the Technology Demo Program

    Broader source: Energy.gov [DOE]

    Learn how the Department prioritizes high impact technologies (HITs) to advance energy efficiency. Hear from a Better Buildings program participant who is working with Department staff to test promising technologies in buildings. Learn what they are finding and how you can get involved.

  6. Energy efficiency indicators for high electric-load buildings

    SciTech Connect (OSTI)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  7. High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2016

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2016 High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2016 Capstone Turbine Corporation, in collaboration with Oak Ridge National Laboratory and NASA Glenn Research Center, developed a clean, cost-effective 370 kW microturbine with 42% net electrical efficiency and 85% total CHP efficiency. The microturbine technology maximizes usable exhaust energy and achieves ultra-low

  8. Technology Development for Light Duty High Efficient Diesel Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications through technical advances in system optimization. deer09_stanton.pdf (1.7 MB) More Documents & Publications Light Duty Efficient Clean Combustion Advanced Diesel Engine Technology Development for HECC Effects of Biomass Fuels on Engine & System Out Emissions for Short Term Endurance

  9. High Efficiency Engine Systems Development and Evaluation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Systems Development and Evaluation High Efficiency Engine Systems Development and Evaluation 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace017_briggs_2011_o.pdf (1.15 MB) More Documents & Publications Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones Identification and Evaluation of Near-term Opportunities for Efficiency Improvement High Efficiency Engine Systems Development

  10. Oxidation catalyst

    DOE Patents [OSTI]

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  11. Better Buildings Challenge Webinar- Fall Tech Trends: Promising New Products from DOE's High Impact Technologies Catalyst Program

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Better Buildings Challenge is hosting a webinar covering the new and innovative technologies that are making headlines this fall. Hear about the latest from DOE's High Impact Technology Catalyst program, including an update on micro-Combined Heat and Power demonstrations.

  12. Combustion Targets for Low Emissions and High Efficiency | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Targets for Low Emissions and High Efficiency Combustion Targets for Low Emissions and High Efficiency 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_ryan.pdf (1.01 MB) More Documents & Publications Diesel Engine Alternatives An Experimental Investigation of Low Octane Gasoline in Diesel Engines SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines

  13. Recent Progress in the Development of High Efficiency Thermoelectrics |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy in the Development of High Efficiency Thermoelectrics Recent Progress in the Development of High Efficiency Thermoelectrics 2003_deer_bass.pdf (992.67 KB) More Documents & Publications High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation Quantum Well Thermoelectrics and Waste Heat Recovery Scale Up of Si/Si0.8GE0.2 and B4C/B9C Superlattices for Harvesting of Waste Heat in Diesel Engines

  14. High Efficiency Particulate Air (HEPA) Filter Test Facility (FTF) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High Efficiency Particulate Air (HEPA) Filter Test Facility (FTF) High Efficiency Particulate Air (HEPA) Filter Test Facility (FTF) DOE-STD-3020-2015 Specification for HEPA Filters Used by DOE Contractors The purpose of this standard is to establish specifications and quality assurance (QA) requirements for the procurement, packaging, shipping and storage of high efficiency particulate air (HEPA) filters. DOE-STD-3025-2007 Quality Assurance Inspection and Testing of HEPA

  15. Vehicle Technologies Office: Materials for High-Efficiency Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy High-Efficiency Combustion Engines Vehicle Technologies Office: Materials for High-Efficiency Combustion Engines The Vehicle Technologies Office (VTO) is supporting work to improve the efficiency of advanced internal combustion engines for automotive, light trucks, and heavy-truck applications by 25% to 50%. However, many of these combustion strategies require high operating temperatures and pressures that exceed current materials' abilities to reliably operate

  16. High Efficiency Low-Cost Perovskite Solar Cell Modules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Efficiency, Low-Cost Perovskite Solar Cell Modules High Efficiency, Low-Cost Perovskite Solar Cell Modules Perovskite solar cells have the ability to greatly increase the adoption of solar power technology: * Low cost - as much as 75% less than current Si solar cells * High efficiency - equal to and possibly slightly greater than Si solar cell technology * Realization of solar panels for grid- based electricity generation * Increased adoption of solar cell technology across the world

  17. Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines A significant potential exists for clean diesel combustion by recouping exhaust energy to generate syngas either with a dedicated reformer or in-cylinder fuel reforming. p-10_hou.pdf (155.5 KB) More Documents & Publications Adaptive PCCI with Variable Orifice Injector for Low Cost High Efficiency

  18. Integrated Solar Thermochemical Reaction System for High Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of Electricity | Department of Energy Integrated Solar Thermochemical Reaction System for High Efficiency Production of Electricity Integrated Solar Thermochemical Reaction System for High Efficiency Production of Electricity This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. csp_review_meeting_042313_wegeng.pdf (2.22 MB) More Documents & Publications Highly Efficient Solar

  19. High Efficiency Clean Combustion Engine Designs for Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program and Vehicle Technologies ...

  20. Development of Enabling Technologies for High Efficiency, Low...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Enabling Technologies for High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines 2009 DOE Hydrogen Program and Vehicle Technologies ...

  1. Design of Bulk Nanocomposites as High Efficiency Thermoelectric...

    Office of Science (SC) Website

    Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials Energy Frontier ... News & Events Publications History Contact BES Home 04.27.12 Design of Bulk Nanocomposites ...

  2. Enabling High Efficiency Clean Combustion with Micro-Variable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Combustion with Micro-Variable Circular-Orifice (MVCO) Fuel Injector and Adaptive PCCI Enabling High Efficiency Clean Combustion with Micro-Variable Circular-Orifice (MVCO) ...

  3. High-efficiency, monolithic, multi-bandgap, tandem photovoltaic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles ... High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters United ...

  4. Advanced CFD Models for High Efficiency Compression Ignition Engines

    Broader source: Energy.gov [DOE]

    Advanced CFD models for high efficiency compression-ignition engines can be used to show how turbulence-chemistry interactions influence autoignition and combustion.

  5. Developments in High Efficiency Engine Technologies and an Introductio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Provides overview of high efficiency engine technologies and introduces a dedicated exhaust gas recirculation concept where EGR production and gas stream is separate from the rest ...

  6. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Broader source: Energy.gov (indexed) [DOE]

    Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion Impact of Variable Valve Timing on Low Temperature Combustion Multicylinder Diesel Engine Design for ...

  7. High-efficiency Low Global-Warming Potential (GWP) Compressor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Technologies (BENEFIT) - 2015, DE-FOA-0001166 Project Objective United Technologies Research Center (UTRC) proposes to demonstrate a high-efficiency compressor design ...

  8. High Efficiency Microturbine with Integral Heat Recovery - Presentatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Presentation by Capstone Turbine Corporation, June 2011 High Efficiency Microturbine with Integral Heat Recovery - Presentation by Capstone Turbine Corporation, June 2011 ...

  9. Technology and System Level Demonstration of Highly Efficient...

    Broader source: Energy.gov (indexed) [DOE]

    Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Vehicle Technologies Office Merit Review 2014: Technology and System Level Demonstration of ...

  10. Technology and System Level Demonstration of Highly Efficient...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Technology and System Level Demonstration of ...

  11. Energy Savings Potential and Opportunities for High-Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    iii Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment Prepared for: U.S. Department of Energy Office of ...

  12. High Efficiency Combustion and Controls | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion and Controls High Efficiency Combustion and Controls 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010...

  13. High Efficiency Microturbine with Integral Heat Recovery - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 Capstone Turbine Corporation, in collaboration with Oak Ridge National Laboratory and NASA Glenn ...

  14. High Efficiency Solar Fuels Reactor Concept | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Fuels Reactor Concept High Efficiency Solar Fuels Reactor Concept This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held ...

  15. Novel Materials for High Efficiency Direct Methanol Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number: Arkema Inc. (1281) This presentation does not contain any proprietary, confidential, or otherwise restricted information Novel Materials for High Efficiency Direct Methanol ...

  16. High Efficiency Thermal Energy Storage System for CSP | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Thermal Energy Storage System for CSP High Efficiency Thermal Energy Storage System for CSP This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. csp_review_meeting_042413_singh.pdf (1.63 MB) More Documents & Publications High Efficiency Thermal Energy Storage System for CSP - FY13 Q1 High-Efficiency Thermal Energy Storage System for CSP - FY13 Q3 High-Efficiency Thermal Energy Storage

  17. High Efficiency Motors for Refrigerated Open Display Cases

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Motors for Refrigerated Open Display Cases 2015 Building Technologies Office Peer Review PJ Piper, pjpiper@qmpower.com CEO, QM Power, Inc. Project Summary Timeline: ...

  18. HIGH EFFICIENCY SYNGAS GENERATION (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    HIGH EFFICIENCY SYNGAS GENERATION Citation Details ... Conventional auto-thermal or Partial Oxidation (POX) ... However POX requires pure oxygen, which consumes power and ...

  19. A Natural Gas, High Compression Ratio, High Efficiency ICRE

    Broader source: Energy.gov [DOE]

    Using natural gas and gasoline modeling, indications are that a free piston-floating stroke engine configuration can realize engine efficiency greater than 60 percent.

  20. Advanced Combustion Technology to Enable High Efficiency Clean Combustion |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technology to Enable High Efficiency Clean Combustion Advanced Combustion Technology to Enable High Efficiency Clean Combustion Summary of advanced combustion research at Cummins to explore strategies for fuel economy improvements (PCCI and HECC) and redced engine-out NOx emissions. deer08_stanton.pdf (1.23 MB) More Documents & Publications Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions with Improved Thermal Efficiency Development of Enabling

  1. Analyses Guided Optimization of Wide Range and High Efficiency Turbocharger

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compressor | Department of Energy Analyses Guided Optimization of Wide Range and High Efficiency Turbocharger Compressor Analyses Guided Optimization of Wide Range and High Efficiency Turbocharger Compressor Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10_sun.pdf (999.91 KB) More Documents & Publications Advanced boost system development for diesel HCCI/LTC applications Optimization of a

  2. Cummins SuperTruck Program - Technology Demonstration of Highly Efficient

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean, Diesel Powered Class 8 Trucks | Department of Energy Demonstration of Highly Efficient Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology Demonstration of Highly Efficient Clean, Diesel Powered Class 8 Trucks Low temperature combustion at part load combined with diffusion controlled combustion at higher loads, and robust control system dynamically adjusting engine operation, maximize engine efficiency while meeting tailpipe emissions standards

  3. DOE's Launch of High-Efficiency Thermiekectrics Projects | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Launch of High-Efficiency Thermiekectrics Projects DOE's Launch of High-Efficiency Thermiekectrics Projects 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: U.S. Department of Energy, EERE 2004_deer_fairbanks2.pdf (1.53 MB) More Documents & Publications Inorganic-Organic Hybrid Thermoelectrics Inorganic-Organic Hybrid Thermoelectrics The 60% Efficient Diesel Engine: Probably, Possible, Or Just a Fantasy?

  4. High-Resolution Structure of the Photosynthetic Mn4Ca Catalyst from X-ray Spectroscopy

    SciTech Connect (OSTI)

    Yachandra, Vittal; Yano, Junko; Kern, Jan; Pushkar, Yulia; Sauer, Kenneth; Glatzel, Pieter; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K.

    2007-08-01

    The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, are described. Issues of X-ray damage especially at the metal sites in the Mn4Ca cluster are discussed. The structure of the Mn4Ca catalyst at high-resolution which has so far eluded attempts of determination by X-ray diffraction, EXAFS and other spectroscopic techniques has been addressed using polarized EXAFS techniques applied to oriented PS II membrane preparations and PS II single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and K? emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.

  5. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOE Patents [OSTI]

    Angelici, Robert J.; Gao, Hanrong

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.

  6. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOE Patents [OSTI]

    Angelici, R.J.; Gao, H.

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilication, olefin oxidation, isomerization, hydrocyanidation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical. 2 figs.

  7. Hydroprocessing of solvent-refined coal: catalyst-screening results

    SciTech Connect (OSTI)

    Stiegel, G.J.; Tischer, R.E.; Polinski, L.M.

    1982-03-01

    This report presents the results of screening four catalysts for hydroprocessing a 50 wt% mixture of SRC-I in a prehydrogenated creosote oil using a continuous flow unit. All catalysts employed were nickel-molybdates with varying properties. Reaction conditions were 2000 psi, 8 SCFH of hydrogen, volume hourly space velocity of 0.6 to 1.0 cc of SRC-I/hr/cc of catalyst, and 48 hours at 750/sup 0/F followed by 72 hours at 780/sup 0/F. The results indicate that the Shell 324 catalyst is best for hydrogenation of the feedstock but only marginally better than CB 81-44 for denitrogenation. The CB 81-44 catalyst may be slightly better than Shell 324 for the conversion of the +850/sup 0/F fraction of the feedstock. Desulfurization was uniformly high for all catalysts. Catalysts with a bimodal pore size distribution (i.e., SMR7-6137(1)) appear to be better for denitrogenation than unimodal catalysts (i.e., SMR7-6137(4)) containing the same metals loading. Unimodal catalysts (i.e., Shell 324) with higher metals loadings are comparable to bimodal catalysts (i.e., CB 81-44) containing less metals. The results indicate that pore size distribution and metals loading are important parameters for high activity. Catalysts with a unimodal pore volume distribution are capable of being restored to their original state, while bimodal ones experience a loss in surface area and pore volume and an increase in pellet density. This is attributed to the more efficient use of the interior surface area of the catalyst, which results in higher accumulation of coke and metals. Since coke can be removed via controlled oxidation, the irreversible loss is due to the higher concentrations of metals in the catalyst.

  8. Highly aligned vertical GaN nanowires using submonolayer metal catalysts

    DOE Patents [OSTI]

    Wang, George T.; Li, Qiming; Creighton, J. Randall

    2010-06-29

    A method for forming vertically oriented, crystallographically aligned nanowires (nanocolumns) using monolayer or submonolayer quantities of metal atoms to form uniformly sized metal islands that serve as catalysts for MOCVD growth of Group III nitride nanowires.

  9. DOE Catalyst Demo Day

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy is organizing Catalyst Demo Day at the Franklin Institute in Philadelphia to showcase the next big startups in building energy efficiency and solar energy. Demo Day...

  10. Zirconium Catalyst Follows a Low Energy Pathway for Carbon-Nitrogen Bond

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Formation | The Ames Laboratory Zirconium Catalyst Follows a Low Energy Pathway for Carbon-Nitrogen Bond Formation Chemists have synthesized a highly selective and highly efficient zirconium catalyst that makes new carbon-nitrogen bonds by adding a nitrogen-hydrogen bond to a carbon-carbon double bond. Nitrogen-containing chemicals are important as agrichemicals, pharmaceuticals, and specialty chemicals. These zirconium catalysts are expected to show greater tolerance to other functionality

  11. Zirconium Catalyst Follows a Low Energy Pathway for Carbon-Nitrogen Bond

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Formation | The Ames Laboratory Zirconium Catalyst Follows a Low Energy Pathway for Carbon-Nitrogen Bond Formation Chemists have synthesized a highly selective and highly efficient zirconium catalyst that makes new carbon-nitrogen bonds by adding a nitrogen-hydrogen bond to a carbon-carbon double bond. Nitrogen-containing chemicals are important as agrichemicals, pharmaceuticals, and specialty chemicals. These zirconium catalysts are expected to show greater tolerance to other functionality

  12. Compact and highly efficient laser pump cavity

    DOE Patents [OSTI]

    Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  13. A highly-active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Wen; Hu, Enyuan; Jiang, Hong; Xiang, Yingjie; Weng, Zhe; Li, Min; Fan, Qi; Yu, Xiqian; Altman, Eric I.; Wang, Hailiang

    2016-02-19

    Rational design and controlled synthesis of hybrid structures comprising multiple components with distinctive functionalities are an intriguing and challenging approach to materials development for important energy applications like electrocatalytic hydrogen production, where there is a great need for cost effective, active and durable catalyst materials to replace the precious platinum. Here we report a structure design and sequential synthesis of a highly active and stable hydrogen evolution electrocatalyst material based on pyrite-structured cobalt phosphosulfide nanoparticles grown on carbon nanotubes. The three synthetic steps in turn render electrical conductivity, catalytic activity and stability to the material. The hybrid material exhibits superiormore » activity for hydrogen evolution, achieving current densities of 10 mA cm–2 and 100 mA cm–2 at overpotentials of 48 mV and 109 mV, respectively. Lastly, phosphorus substitution is crucial for the chemical stability and catalytic durability of the material, the molecular origins of which are uncovered by X-ray absorption spectroscopy and computational simulation.« less

  14. Highly-basic large-pore zeolite catalysts for NOx reduction at low temperatures

    DOE Patents [OSTI]

    Penetrante, Bernardino M.; Brusasco, Raymond M.; Merritt, Bernard T.; Vogtlin, George E.

    2004-02-03

    A high-surface-area (greater than 600 m2/g), large-pore (pore size diameter greater than 6.5 angstroms), basic zeolite having a structure such as an alkali metal cation-exchanged Y-zeolite is employed to convert NO.sub.x contained in an oxygen-rich engine exhaust to N.sub.2 and O.sub.2. Preferably, the invention relates to a two-stage method and apparatus for NO.sub.x reduction in an oxygen-rich engine exhaust such as diesel engine exhaust that includes a plasma oxidative stage and a selective reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and added hydrocarbons. The second stage employs a lean-NO.sub.x catalyst including the basic zeolite at relatively low temperatures to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O.

  15. High Efficiency Microturbine with Integral Heat Recovery | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy High Efficiency Microturbine with Integral Heat Recovery High Efficiency Microturbine with Integral Heat Recovery Introduction The U.S. economic market potential for distributed generation is significant. This market, however, remains mostly untapped in the commercial and small industrial buildings that are well suited for microturbines. Gas turbines have many advantages, including high power density, light weight, clean emissions, fuel flexibility, low vibration, low maintenance,

  16. Technology and System Level Demonstration of Highly Efficient and Clean,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Powered Class 8 Trucks | Department of Energy and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt081_vss_newhouse_2011_o.pdf (3.64 MB) More Documents & Publications Technology and System Level Demonstration of Highly

  17. Heavy Duty HCCI Development Activities - DOE High Efficiency Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion (HECC) | Department of Energy Heavy Duty HCCI Development Activities - DOE High Efficiency Clean Combustion (HECC) Heavy Duty HCCI Development Activities - DOE High Efficiency Clean Combustion (HECC) Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_duffy.pdf (33.12 MB) More Documents & Publications Development of Enabling Technologies for High

  18. High Efficiency Multiple-Junction Solar Cells - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search High Efficiency Multiple-Junction Solar Cells Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (937 KB) Technology Marketing SummarySingle junction solar cells have limited efficiency and fail to extract maximum energy from photons outside of a specific spectral region. Higher efficiency and optical to electrical energy conversion is achieved by stacking

  19. Stabilization void-fill encapsulation high-efficiency particulate filters

    SciTech Connect (OSTI)

    Alexander, R.G.; Stewart, W.E.; Phillips, S.J.; Serkowski, M.M.; England, J.L.; Boynton, H.C.

    1994-05-01

    This report discusses high-efficiency particulate air (HEPA) filter systems that which are contaminated with radionuclides are part of the nuclear fuel processing systems conducted by the US Department of Energy (DOE) and require replacement and safe and efficient disposal for plant safety. Two K-3 HEPA filters were removed from service, placed burial boxes, buried, and safely and efficiently stabilized remotely which reduced radiation exposure to personnel and the environment.

  20. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles This fact sheet describes a project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Brayton Energy, aims to develop and demonstrate a low-cost, high-efficiency solar receiver that is compatible with s-CO2 cycles and modern thermal storage subsystems. Supercritical CO2 Brayton-cycle

  1. Ultra-high-performance core–shell structured Ru@Pt/C catalyst prepared by a facile pulse electrochemical deposition method

    SciTech Connect (OSTI)

    Chen, Dan; Li, Yuexia; Liao, Shijun; Su, Dong; Song, Huiyu; Li, Yingwei; Yang, Lijun; Li, Can

    2015-08-03

    Core–shell structured catalysts, made by placing either a monolayer or a thin layer of a noble metal on relatively cheap core-metal nanoparticles, are fascinating and promising fuel cell catalysts due to their high utilization of noble metals. Here, we report our development of a core–shell structured catalyst, Ru@Pt/C, generated by a novel and facile pulse electrochemical deposition (PED) approach. We demonstrate that compared with a commercial Pt/C catalyst, this novel catalyst achieves over four times higher mass activity towards the anodic oxidation of methanol, and 3.6 times higher mass activity towards the cathodic reduction of oxygen. Importantly, we find that the intrinsic activity of Pt in this Ru@Pt/C catalyst is doubled due to the formation of the core–shell structure. The catalyst also shows superior stability: even after 2000 scans, it still retains up to 90% of the peak current. As a result, our findings demonstrate that this novel PED approach is a promising method for preparing high-performance core–shell catalysts for fuel cell applications.

  2. Ultra-high-performance core–shell structured Ru@Pt/C catalyst prepared by a facile pulse electrochemical deposition method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Dan; Li, Yuexia; Liao, Shijun; Su, Dong; Song, Huiyu; Li, Yingwei; Yang, Lijun; Li, Can

    2015-08-03

    Core–shell structured catalysts, made by placing either a monolayer or a thin layer of a noble metal on relatively cheap core-metal nanoparticles, are fascinating and promising fuel cell catalysts due to their high utilization of noble metals. Here, we report our development of a core–shell structured catalyst, Ru@Pt/C, generated by a novel and facile pulse electrochemical deposition (PED) approach. We demonstrate that compared with a commercial Pt/C catalyst, this novel catalyst achieves over four times higher mass activity towards the anodic oxidation of methanol, and 3.6 times higher mass activity towards the cathodic reduction of oxygen. Importantly, we find thatmore » the intrinsic activity of Pt in this Ru@Pt/C catalyst is doubled due to the formation of the core–shell structure. The catalyst also shows superior stability: even after 2000 scans, it still retains up to 90% of the peak current. As a result, our findings demonstrate that this novel PED approach is a promising method for preparing high-performance core–shell catalysts for fuel cell applications.« less

  3. Development of the High Efficiency X1 Rotary Diesel Engine |...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications DEER 2007 ACES Status Report Poster: P-23 Effectiveness of a Diesel Oxidation Catalyst (DOC) to control CO and hydrocarbon emissions from Reactivity ...

  4. High-performance, low Pt content catalysts for the electroreduction of oxygen in polymer-electrolyte fuel cells

    SciTech Connect (OSTI)

    Fournier, J.; Faubert, G.; Tilquin, J.Y.; Cote, R.; Guay, D.; Dodelet, J.P.

    1997-01-01

    Pt-included and Pt-supported catalysts have been synthesized using graphite and carbon black supports of various specific areas. The graphites are KS6 (20 m{sup 2}/g), HS100 (110 m{sup 2}/g), and HS300 (305 m{sup 2}/g) from Lonza, and the carbon blacks are Vulcan (254 m{sup 2}/g) and Black Pearls (1475 m{sup 2}/g) from Cabot. The Pt-included and Pt-supported catalysts were used at the cathode of a H{sub 2}/O{sub 2} fuel cell, and their polarization curves were compared to each other and to those of various Pt-supported catalysts from E-TEK. In the high current region of interest to fuel cell developers, it is shown that Pt-supported catalysts perform better than Pt-included ones when the specific area of the support is small. The contrary is true when the specific area of the support is large. The best catalysts are HS300-Pti [8.3 weight percent (w/o) Pt included in HS300 graphite] and Vu-Pti (6.1 w/o Pt included in Vulcan XC-72R). These catalysts display very high mass and specific activities for O{sub 2} reduction. Furthermore, the iR-corrected polarization curves of both HS300-Pti (with a Pt loading of 0.110 mg/cm{sup 2}) and Vu-Pti (with a Pt loading of 0.070 mg/cm{sup 2}) cross at high current the polarization curve of the electrode prepared with E-TEK20 (20 w/o of supported Pt, with a Pt loading of 0.287 mg/cm{sup 2}). Pt inclusion in graphite or carbon black is therefore an interesting way of reducing the Pt loading of fuel cell cathodes without lowering electrochemical performance. HS300-Pti have been characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. These analyses indicate that they both contain metallic Pt and Pt(II and IV) oxides and/or hydroxides.

  5. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012. progressreportsunshotbraytonfy12q4.pdf More Documents & Publications High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1...

  6. Advanced CFD Models for High Efficiency Compression Ignition...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced CFD models for high efficiency compression-ignition engines can be used to show how turbulence-chemistry interactions influence autoignition and combustion. p-19raja.pdf ...

  7. City of High Point Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The City of High Point offers the Hometown Green Program to help customers reduce energy use. Under this program, rebates are available for newly constructed energy efficient homes, heat pumps, and...

  8. III-V High-Efficiency Multijunction Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for III-V High-Efficiency Multijunction Photovoltaics at the National Center for Photovoltaics.

  9. Webinar January 13: Highly Efficient Solar Thermochemical Reaction Systems

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar entitled "Highly Efficient Solar Thermochemical Reaction Systems" on Tuesday, January 13, from 12:00 to 1:00 p.m. Eastern Standard Time.

  10. Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07zhang.pdf (927.55 KB) More Documents & Publications High Efficiency ...

  11. Field Demonstration of High Efficiency Gas Heaters | Department...

    Broader source: Energy.gov (indexed) [DOE]

    This report discusses a field demonstration to analyze the energy savings for one of these ... Louis, MO. Field Demonstration of High Efficiency Gas Heaters (2.28 MB) More Documents & ...

  12. Utilization of Common Automotive Three-Way NO{sub x} Reduction Catalyst for Managing Off- Gas from Thermal Treatment of High-Nitrate Waste - 13094

    SciTech Connect (OSTI)

    Foster, Adam L.; Ki Song, P.E.

    2013-07-01

    Studsvik's Thermal Organic Reduction (THOR) steam reforming process has been tested and proven to effectively treat radioactive and hazardous wastes streams with high nitrate contents to produce dry, stable mineral products, while providing high conversion (>98%) of nitrates and nitrites directly to nitrogen gas. However, increased NO{sub x} reduction may be desired for some waste streams under certain regulatory frameworks. In order to enhance the NO{sub x} reduction performance of the THOR process, a common Three-Way catalytic NO{sub x} reduction unit was installed in the process gas piping of a recently completed Engineering Scale Technology Demonstration (ESTD). The catalytic DeNO{sub x} unit was located downstream of the main THOR process vessel, and it was designed to catalyze the reduction of residual NO{sub x} to nitrogen gas via the oxidation of the hydrogen, carbon monoxide, and volatile organic compounds that are inherent to the THOR process gas. There was no need for auxiliary injection of a reducing gas, such as ammonia. The unit consisted of four monolith type catalyst sections positioned in series with a gas mixing section located between each catalyst section. The process gas was monitored for NO{sub x} concentration upstream and downstream of the catalytic DeNO{sub x} unit. Conversion efficiencies ranged from 91% to 97% across the catalytic unit, depending on the composition of the inlet gas. Higher concentrations of hydrogen and carbon monoxide in the THOR process gas increased the NO{sub x} reduction capability of the catalytic DeNO{sub x} unit. The NO{sub x} destruction performance of THOR process in combination with the Three-Way catalytic unit resulted in overall system NO{sub x} reduction efficiencies of greater than 99.9% with an average NO{sub x} reduction efficiency of 99.94% for the entire demonstration program. This allowed the NO{sub x} concentration in the ESTD exhaust gas to be maintained at less than 40 parts per million (ppm), dry

  13. Novel Materials for High Efficiency Direct Methanol Fuel Cells | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Materials for High Efficiency Direct Methanol Fuel Cells Novel Materials for High Efficiency Direct Methanol Fuel Cells Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 roger_arkema_kickoff.pdf (394.12 KB) More Documents & Publications Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Advance Patent Waiver W(A)2010-028 Durable, Low Cost, Improved Fuel Cell Membranes

  14. Technology and System Level Demonstration of Highly Efficient and Clean,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Powered Class 8 Trucks | Department of Energy 3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt081_vss_damon_2013_o.pdf (5.05 MB) More Documents & Publications Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Vehicle Technologies Office Merit Review 2014: Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8

  15. Technology and System Level Demonstration of Highly Efficient and Clean,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Powered Class 8 Trucks | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt081_vss_newhouse_2012_o.pdf (5.28 MB) More Documents & Publications Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Vehicle Technologies Office Merit Review 2014: Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8

  16. Dilute Clean Diesel Combustion Achieves Low Emissions and High Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    While Avoiding Control Problems of HCCI | Department of Energy Dilute Clean Diesel Combustion Achieves Low Emissions and High Efficiency While Avoiding Control Problems of HCCI Dilute Clean Diesel Combustion Achieves Low Emissions and High Efficiency While Avoiding Control Problems of HCCI 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_mueller.pdf (572.11 KB) More Documents & Publications Multicylinder Diesel Engine Design for HCCI Operation

  17. High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel

    Broader source: Energy.gov (indexed) [DOE]

    Engines | Department of Energy 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ace_35_patton.pdf (970.31 KB) More Documents & Publications High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines Development of High-Efficiency Clean Combustion Engines Designs for SI and CI Engines Expanding Robust HCCI Operation (Delphi CRADA)

  18. Process development for high-efficiency silicon solar cells

    SciTech Connect (OSTI)

    Gee, J.M.; Basore, P.A.; Buck, M.E.; Ruby, D.S.; Schubert, W.K.; Silva, B.L.; Tingley, J.W.

    1991-01-01

    Fabrication of high-efficiency silicon solar cells in an industrial environment requires a different optimization than in a laboratory environment. Strategies are presented for process development of high-efficiency silicon solar cells, with a goal of simplifying technology transfer into an industrial setting. The strategies emphasize the use of statistical experimental design for process optimization, and the use of baseline processes and cells for process monitoring and quality control. 8 refs.

  19. 2008 Annual Merit Review Results Summary - 8. High Efficiency Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion and Enabling Technologies | Department of Energy 8. High Efficiency Clean Combustion and Enabling Technologies 2008 Annual Merit Review Results Summary - 8. High Efficiency Clean Combustion and Enabling Technologies DOE Vehicle Technologies Annual Merit Review 2008_merit_review_8.pdf (1.24 MB) More Documents & Publications 2008 Annual Merit Review Results Summary - 5. Advanced Power Electronics 2008 Annual Merit Review Results Summary - 14. Vehicle Systems and Simulation 2008

  20. Polycrystalline silicon passivated tunneling contacts for high efficiency

    Office of Scientific and Technical Information (OSTI)

    silicon solar cells (Journal Article) | SciTech Connect Journal Article: Polycrystalline silicon passivated tunneling contacts for high efficiency silicon solar cells Citation Details In-Document Search Title: Polycrystalline silicon passivated tunneling contacts for high efficiency silicon solar cells Authors: Nemeth, Bill ; Young, David L. ; Page, Matthew R. ; LaSalvia, Vincenzo ; Johnston, Steve ; Reedy, Robert ; Stradins, Paul Publication Date: 2016-03-01 OSTI Identifier: 1247961 Report

  1. CBEA High-Efficiency Parking Structure Lighting Specification | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy CBEA High-Efficiency Parking Structure Lighting Specification CBEA High-Efficiency Parking Structure Lighting Specification A Commercial Building Energy Alliance Project, Version 1.1. Released 2/15/2012. creea_parking_structure_spec.pdf (245.84 KB) More Documents & Publications CBEA LED Site Lighting Specification - Version 1.3, Released 2/15/2012 LED T8 Replacement Lamps Model Specification for LED Roadway Luminaires, V2.0

  2. Global climate change: Mitigation opportunities high efficiency large chiller technology

    SciTech Connect (OSTI)

    Stanga, M.V.

    1997-12-31

    This paper, comprised of presentation viewgraphs, examines the impact of high efficiency large chiller technology on world electricity consumption and carbon dioxide emissions. Background data are summarized, and sample calculations are presented. Calculations show that presently available high energy efficiency chiller technology has the ability to substantially reduce energy consumption from large chillers. If this technology is widely implemented on a global basis, it could reduce carbon dioxide emissions by 65 million tons by 2010.

  3. Recent developments in high-efficiency PV cells

    SciTech Connect (OSTI)

    Deb, S.

    2000-05-22

    Enormous progress has been made in recent years on a number of photovoltaic (PV) materials and devices in terms of conversion efficiencies. Ultrahigh-efficiency (>30{percent}) PV cells have been fabricated from gallium arsenide (GaAs) and its ternary alloys such as gallium indium phosphide (GaInP{sub 2}). The high-efficiency GaAs-based solar cells are being produced on a commercial scale, particularly for space applications. Efficiencies in the range of 18{percent} to 24{percent} have been achieved in traditional silicon-based devices fabricated from both multicrystalline and single-crystal materials. Major advances in efficiency have also been made on various thin-film solar cells based on amorphous silicon (aSi:H), copper gallium indium diselenide (CIGS), and cadmium telluride materials. This paper gives a brief overview of the recent progress in PV cell efficiencies based on these materials and devices.

  4. Cr-free Fe-based metal oxide catalysts for high temperature water gas shift reaction of fuel processor using LPG

    SciTech Connect (OSTI)

    lee, Joon Y.; Lee, Dae-Won; Lee, Kwan Young; Wang, Yong

    2009-08-15

    The goal of this study was to identify the most suitable chromium-free iron-based catalysts for the HTS (high temperature shift) reaction of a fuel processor using LPG. Hexavalent chromium (Cr6+) in the commercial HTS catalyst has been regarded as hazardous material. We selected Ni and Co as the substitution for chromium in the Fe-based HTS catalyst and investigated the HTS activities of these Crfree catalysts at LPG reformate condition. Cr-free Fe-based catalysts which contain Ni, Zn, or Co instead of Cr were prepared by coprecipitation method and the performance of the catalysts in HTS was evaluated under gas mixture conditions (42% H2, 10% CO, 37% H2O, 8% CO2, and 3% CH4; R (reduction factor): about 1.2) similar to the gases from steam reforming of LPG (100% conversion at steam/carbon ratio = 3), which is higher than R (under 1) of typically studied LNG reformate condition. Among the prepared Cr-free Febased catalysts, the 5 wt%-Co/Fe/20 wt%-Ni and 5 wt%-Zn/Fe/20 wt%-Ni catalysts showed good catalytic activity under this reaction condition simulating LPG reformate gas.

  5. "Tuning" microalgae for high photosynthesis efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Tuning" Microalgae For High Photosynthesis Efficiency "Tuning" microalgae for high photosynthesis efficiency Los Alamos scientist Richard Sayre and his team of researchers have recently developed more efficient microalgae. March 25, 2013 Shown here is a model for light absorption and use by algae as a function of antenna size. Shown here is a model for light absorption and use by algae as a function of antenna size. The team's work in this area is reported in a paper

  6. "Tuning" microalgae for high photosynthesis efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Tuning" Microalgae For High Photosynthesis Efficiency "Tuning" microalgae for high photosynthesis efficiency Los Alamos scientist Richard Sayre and his team of researchers have recently developed more efficient microalgae. March 25, 2013 Shown here is a model for light absorption and use by algae as a function of antenna size. Shown here is a model for light absorption and use by algae as a function of antenna size. The team's work in this area is reported in a paper

  7. Unregulated Emissions from High-Efficiency Clean Combustion Modes -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORNL-FEERC | Department of Energy Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_storey.pdf (304.57 KB) More Documents &

  8. Lean NOx Traps - Microstructural Studies of Real World and Model Catalysts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Traps - Microstructural Studies of Real World and Model Catalysts Lean NOx Traps - Microstructural Studies of Real World and Model Catalysts 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_narula.pdf (143.66 KB) More Documents & Publications Vehicle Technologies Office Merit Review 2016: Next Generation Three-Way Catalysts for Future, Highly Efficient Gasoline Engines Low Temperature Emission Control Pre-Competitive

  9. A versatile elevated-pressure reactor combined with an ultrahigh vacuum surface setup for efficient testing of model and powder catalysts under clean gas-phase conditions

    SciTech Connect (OSTI)

    Morfin, Franck; Piccolo, Laurent

    2013-09-15

    A small-volume reaction cell for catalytic or photocatalytic testing of solid materials at pressures up to 1000 Torr has been coupled to a surface-science setup used for standard sample preparation and characterization under ultrahigh vacuum (UHV). The reactor and sample holder designs allow easy sample transfer from/to the UHV chamber, and investigation of both planar and small amounts of powder catalysts under the same conditions. The sample is heated with an infrared laser beam and its temperature is measured with a compact pyrometer. Combined in a regulation loop, this system ensures fast and accurate temperature control as well as clean heating. The reaction products are automatically sampled and analyzed by mass spectrometry and/or gas chromatography (GC). Unlike previous systems, our GC apparatus does not use a recirculation loop and allows working in clean conditions at pressures as low as 1 Torr while detecting partial pressures smaller than 10{sup ?4} Torr. The efficiency and versatility of the reactor are demonstrated in the study of two catalytic systems: butadiene hydrogenation on Pd(100) and CO oxidation over an AuRh/TiO{sub 2} powder catalyst.

  10. High-Efficiency Nitride-Based Photonic Crystal Light Sources

    Broader source: Energy.gov [DOE]

    The University of California Santa Barbara (UCSB) is maximizing the efficiency of a white LED by enhancing the external quantum efficiency using photonic crystals to extract light that would normally be confined in a conventional structure. Ultimate efficiency can only be achieved by looking at the internal structure of light. To do this, UCSB is focusing on maximizing the light extraction efficiency and total light output from light engines driven by Gallium Nitride (GaN)-based LEDs. The challenge is to engineer large overlap (interaction) between modes and photonic crystals. The project is focused on achieving high extraction efficiency in LEDs, controlled directionality of emitted light, integrated design of vertical device structure, and nanoscale patterning of lateral structure.

  11. High Efficiency Adsorption Chillers: High Efficiency Adsorption Cooling Using Metal Organic Heat Carriers

    SciTech Connect (OSTI)

    2010-10-01

    BEETIT Project: PNNL is incorporating significant improvements in materials that adsorb liquids or gases to design more efficient adsorption chillers. An adsorption chiller is a type of air conditioner that is powered by heat, solar or waste heat, or combustion of natural gas. Unlike typical chillers, this type has few moving parts and uses almost no electricity to operate. PNNL is designing adsorbent materials at the molecular level with at least 3 times higher refrigerant capacity and up to 20 times faster kinetics than adsorbents used in current chillers. By using the new adsorbent, PNNL is able to create a chiller that is significantly smaller, has twice the energy efficiency, and lower costs for materials and assembly time compared to conventional adsorption chillers.

  12. Hierarchically structured catalysts for cascade and selective steam reforming/hydrodeoxygenation reactions

    SciTech Connect (OSTI)

    Sun, Junming; Karim, Ayman M.; Li, Xiaohong S.; Rainbolt, James E.; Kovarik, Libor; Shin, Yongsoon; Wang, Yong

    2015-09-29

    We report a hierarchically structured catalyst with steam reforming and hydrodeoxygenation functionalities being deposited in the micropores and macropores, respectively. The catalyst is highly efficient to upgrade the pyrolysis vapors of pine forest product residual, resulting in a dramatically decreased acid content and increased hydrocarbon yield without external H2 supply.

  13. High Efficiency Full Expansion (FEx) Engine for Automotive Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Full Expansion (FEx) Engine for Automotive Applications High Efficiency Full Expansion (FEx) Engine for Automotive Applications Large increases in engine thermal efficiency result from a new method of large reductions in both heat energy normally lost to the cooling medium and in heat energy in the exhaust system. p-18_taylor.pdf (46.48 KB) More Documents & Publications Two-Stroke Engines: New Frontier in Engine Efficiency Two-Stroke Uniflow Turbo-Compound IC Engine

  14. DOE FACT SHEET: Transition to High Efficiency Space Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FACT SHEET: Transition to High Efficiency Space Heating Overview The City of Seattle was recognized as a Climate Action Champion (CAC) by The White House and the Department of Energy (DOE) in December 2014. In 2015, DOE released a Notice of Technical Assistance (NOTA) to provide CACs with additional opportunities for financial and technical assistance to support and advance their greenhouse gas emissions reduction and climate resilience objectives. DOE's Office of Energy Efficiency and Renewable

  15. High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    converters - Energy Innovation Portal High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Matching a semiconductor's bandgap to incident photon energy is a well-known method to achieve the most efficient photovoltaic devices. Since solar radiation consists of a wide range of wavelengths, having one semiconductor with a single bandgap to absorb all solar radiation

  16. Development of Highly Reactive Nanometer Fe-Based Catalysts for Coal Liquefaction

    SciTech Connect (OSTI)

    Franz, James A.; Linehan, John C.; Matson, Dean W.; Smurthwaite, Tricia D.; Bekhazi, Jacky; Alnajjar, Mikhail S.

    2008-03-01

    This paper describes research involving the liquefaction of coal and the removal of oxygen from coal product constituents. Subbituminous Coal and early stage coal liquefaction products contain a substantial fraction of hydroxy-substituted aromatic hydrocarbons (phenols). An important reaction for upgrading of coal-derived organic materials is to remove oxygen groups. This paper describes the hydro-deoxygenation of naphthols and the liquefaction of subbituminous Wyodak coal using a catalyst prepared by in-situ sulfidation of nanometer scale 6-line iron ferrihydrite. The FeS catalyst enables the conversion of naphthol in substantial yields to tetralin and naphthalene at 400 degrees C in 9,10-dihydrophenanthrene. The kinetics and procedures to observe coal liquefaction and hydro-deoxygenation, and the effects of in-situ sulfidation on conversion kinetics are described.

  17. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    SciTech Connect (OSTI)

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  18. Challenging Conventional Wisdom: A Clean and Highly Efficient

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opposed-Piston Two-Stroke Engine | Department of Energy Challenging Conventional Wisdom: A Clean and Highly Efficient Opposed-Piston Two-Stroke Engine Challenging Conventional Wisdom: A Clean and Highly Efficient Opposed-Piston Two-Stroke Engine Measured indicated TE values of an opposed-piston, two-stroke engine are all near or exceeding 50%fuel; engine-out emissions levels are well within range, with modern aftertreatment systems, of 2010 EPA levels. p-11_wahl.pdf (353.65 KB) More

  19. High efficiency III-nitride light-emitting diodes

    DOE Patents [OSTI]

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  20. Investigation of beat-waves generation with high efficiency

    SciTech Connect (OSTI)

    Song, W.; Shi, Y. C.; Deng, Y. Q.; Zhu, X. X.; Zhang, Z. Q.; Hu, X. G.

    2013-10-21

    A method for generating high power beating radio-frequency wave with high conversion efficiency is proposed. Based on Cherenkov radiation, two longitudinal resonant modes are excited simultaneously and interacted with intense electron beam synchronously. An experiment was carried out and beat-waves with an average power of about 2.3 GW, frequencies of 9.29 GHz and 10.31 GHz, and efficiency of about 40% were obtained. Through controlling the electron energy, the amplitude proportions of the two resonant modes are altered, and different beat-wave patterns are formed.

  1. High Efficiency Engine Systems Development and Evaluation | Department of

    Broader source: Energy.gov (indexed) [DOE]

    High Efficiency Cold Climate Heat Pump 2014 Building Technologies Office Peer Review Bo Shen, shenb@ornl.gov Oak Ridge National Laboratory High Efficiency Cold Climate Heat Pump -(CCHP) CRADA Project Summary Timeline: Start date: 01-Oct-2010 Planned end date: 30-Sep-2015 Key Milestones (single-stage) 1. Equipment modeling and EnergyPlus simulation report - March/2013 2. Lab prototype fabricated and installed - Dec/2013 3. Meet 77% capacity at-13°F vs. 47°F; COP=4.1 at 47°F - March/2014

  2. High Thermal Efficiency and Low Emissions with Supercritical Gasoline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection-Ignition in a Light Duty Engine | Department of Energy High Thermal Efficiency and Low Emissions with Supercritical Gasoline Injection-Ignition in a Light Duty Engine High Thermal Efficiency and Low Emissions with Supercritical Gasoline Injection-Ignition in a Light Duty Engine A novel fuel injector has been developed and tested that addresses the technical challenges of LTC, HCCI, gasoline PPC, and RCCI by reducing complexity and cost. p-16_zoldak.pdf (698.09 KB) More Documents

  3. Highly active non-PGM catalysts prepared from metal organic frameworks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barkholtz, Heather M.; Chong, Lina; Kaiser, Zachary B.; Xu, Tao; Liu, Di -Jia

    2015-06-11

    Finding inexpensive alternatives to platinum group metals (PGMs) is essential for reducing the cost of proton exchange membrane fuel cells (PEMFCs). Numerous materials have been investigated as potential replacements of Pt, of which the transition metal and nitrogen-doped carbon composites (TM/Nx/C) prepared from iron doped zeolitic imidazolate frameworks (ZIFs) are among the most active ones in catalyzing the oxygen reduction reaction based on recent studies. In this report, we demonstrate that the catalytic activity of ZIF-based TM/Nx/C composites can be substantially improved through optimization of synthesis and post-treatment processing conditions. Ultimately, oxygen reduction reaction (ORR) electrocatalytic activity must be demonstratedmore » in membrane-electrode assemblies (MEAs) of fuel cells. The process of preparing MEAs using ZIF-based non-PGM electrocatalysts involves many additional factors which may influence the overall catalytic activity at the fuel cell level. Evaluation of parameters such as catalyst loading and perfluorosulfonic acid ionomer to catalyst ratio were optimized. Our overall efforts to optimize both the catalyst and MEA construction process have yielded impressive ORR activity when tested in a fuel cell system.« less

  4. Highly active non-PGM catalysts prepared from metal organic frameworks

    SciTech Connect (OSTI)

    Barkholtz, Heather M.; Chong, Lina; Kaiser, Zachary B.; Xu, Tao; Liu, Di -Jia

    2015-06-11

    Finding inexpensive alternatives to platinum group metals (PGMs) is essential for reducing the cost of proton exchange membrane fuel cells (PEMFCs). Numerous materials have been investigated as potential replacements of Pt, of which the transition metal and nitrogen-doped carbon composites (TM/Nx/C) prepared from iron doped zeolitic imidazolate frameworks (ZIFs) are among the most active ones in catalyzing the oxygen reduction reaction based on recent studies. In this report, we demonstrate that the catalytic activity of ZIF-based TM/Nx/C composites can be substantially improved through optimization of synthesis and post-treatment processing conditions. Ultimately, oxygen reduction reaction (ORR) electrocatalytic activity must be demonstrated in membrane-electrode assemblies (MEAs) of fuel cells. The process of preparing MEAs using ZIF-based non-PGM electrocatalysts involves many additional factors which may influence the overall catalytic activity at the fuel cell level. Evaluation of parameters such as catalyst loading and perfluorosulfonic acid ionomer to catalyst ratio were optimized. Our overall efforts to optimize both the catalyst and MEA construction process have yielded impressive ORR activity when tested in a fuel cell system.

  5. High extraction efficiency ultraviolet light-emitting diode

    DOE Patents [OSTI]

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  6. Platinum-ruthenium nanotubes and platinum-ruthenium coated copper nanowires as efficient catalysts for electro-oxidation of methanol

    SciTech Connect (OSTI)

    Zheng, Jie; Cullen, David A.; Forest, Robert V.; Wittkopf, Jarrid A.; Zhuang, Zhongbin; Zheng, Whenchao; Chen, Jingguang G.; Yan, Yushan

    2015-01-15

    The sluggish kinetics of methanol oxidation reaction (MOR) is a major barrier to the commercialization of direct methanol fuel cells (DMFCs). In this study, we report a facile synthesis of platinum–ruthenium nanotubes (PtRuNTs) and platinum–ruthenium-coated copper nanowires (PtRu/CuNWs) by galvanic displacement reaction using copper nanowires as a template. The PtRu compositional effect on MOR is investigated; the optimum Pt/Ru bulk atomic ratio is about 4 and surface atomic ratio about 1 for both PtRuNTs and PtRu/CuNWs. Enhanced specific MOR activities are observed on both PtRuNTs and PtRu/CuNWs compared with the benchmark commercial carbon-supported PtRu catalyst (PtRu/C, Hispec 12100). Finally, x-ray photoelectron spectroscopy (XPS) reveals a larger extent of electron transfer from Ru to Pt on PtRu/CuNWs, which may lead to a modification of the d-band center of Pt and consequently a weaker bonding of CO (the poisoning intermediate) on Pt and a higher MOR activity on PtRu/CuNWs.

  7. Platinum-ruthenium nanotubes and platinum-ruthenium coated copper nanowires as efficient catalysts for electro-oxidation of methanol

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Jie; Cullen, David A.; Forest, Robert V.; Wittkopf, Jarrid A.; Zhuang, Zhongbin; Zheng, Whenchao; Chen, Jingguang G.; Yan, Yushan

    2015-01-15

    The sluggish kinetics of methanol oxidation reaction (MOR) is a major barrier to the commercialization of direct methanol fuel cells (DMFCs). In this study, we report a facile synthesis of platinum–ruthenium nanotubes (PtRuNTs) and platinum–ruthenium-coated copper nanowires (PtRu/CuNWs) by galvanic displacement reaction using copper nanowires as a template. The PtRu compositional effect on MOR is investigated; the optimum Pt/Ru bulk atomic ratio is about 4 and surface atomic ratio about 1 for both PtRuNTs and PtRu/CuNWs. Enhanced specific MOR activities are observed on both PtRuNTs and PtRu/CuNWs compared with the benchmark commercial carbon-supported PtRu catalyst (PtRu/C, Hispec 12100). Finally, x-raymore » photoelectron spectroscopy (XPS) reveals a larger extent of electron transfer from Ru to Pt on PtRu/CuNWs, which may lead to a modification of the d-band center of Pt and consequently a weaker bonding of CO (the poisoning intermediate) on Pt and a higher MOR activity on PtRu/CuNWs.« less

  8. Bandgap Engineering in High-Efficiency Multijunction Concentrator Cells

    SciTech Connect (OSTI)

    King, R. R.; Sherif, R. A.; Kinsey, G. S.; Kurtz, S.; Fetzer, C. M.; Edmondson, K. M.; Law, D. C.; Cotal, H. L.; Krut, D. D.; Ermer, J. H.; Karam, N. H.

    2005-08-01

    This paper discusses semiconductor device research paths under investigation with the aim of reaching the milestone efficiency of 40%. A cost analysis shows that achieving very high cell efficiencies is crucial for the realization of cost-effective photovoltaics, because of the strongly leveraging effect of efficiency on module packaging and balance-of systems costs. Lattice-matched (LM) GaInP/ GaInAs/ Ge 3-junction cells have achieved the highest independently confirmed efficiency at 175 suns, 25?C, of 37.3% under the standard AM1.5D, low-AOD terrestrial spectrum. Lattice-mismatched, or metamorphic (MM), materials offer still higher potential efficiencies, if the crystal quality can be maintained. Theoretical efficiencies well over 50% are possible for a MM GaInP/ 1.17-eV GaInAs/ Ge 3-junction cell limited by radiative recombination at 500 suns. The bandgap - open circuit voltage offset, (Eg/q) - Voc, is used as a valuable theoretical and experimental tool to characterize multijunction cells with subcell bandgaps ranging from 0.7 to 2.1 eV. Experimental results are presented for prototype 6-junction cells employing an active {approx}1.1-eV dilute nitride GaInNAs subcell, with active-area efficiency greater than 23% and over 5.3 V open-circuit voltage under the 1-sun AM0 space spectrum. Such cell designs have theoretical efficiencies under the terrestrial spectrum at 500 suns concentration exceeding 55% efficiency, even for lattice-matched designs.

  9. High-quantum efficiency, long-lived luminescing refractory oxides

    DOE Patents [OSTI]

    Chen, Yok; Gonzalez, Roberto; Summers, Geoffrey P.

    1984-01-01

    A crystal having a high-quantum efficiency and a long period of luminescence is formed of an oxide selected from the group consisting of magnesium oxide and calcium oxide and possessing a concentration ratio of H.sup.- ions to F centers in the range of about 0.05 to about 10.

  10. High-quantum efficiency, long-lived luminescing refractory oxides

    DOE Patents [OSTI]

    Chen, Y.; Gonzalez, R.; Summers, G.P.

    A crystal having a high-quantum efficiency and a long period of luminescence is formed of MgO or CaO and possessing a concentration ratio of H/sup -/ ions to F centers in the range of about 0.05 to about 10.

  11. Basic studies of 3-5 high efficiency cell components

    SciTech Connect (OSTI)

    Lundstrom, M.S.; Melloch, M.R.; Pierret, R.F.; Carpenter, M.S.; Chuang, H.L.; Dodd, P.E.; Keshavarzi, A.; Klausmeier-Brown, M.E.; Lush, G.B.; Stellwag, T.B. )

    1993-01-01

    This project's objective is to improve our understanding of the generation, recombination, and transport of carriers within III-V homo- and heterostructures. The research itself consists of fabricating and characterizing solar cell building blocks'' such as junctions and heterojunctions as well as basic measurements of material parameters. A significant effort is also being directed at characterizing loss mechanisms in high-quality, III-V solar cells fabricated in industrial research laboratories throughout the United States. The project's goal is to use our understanding of the device physics of high-efficiency cell components to maximize cell efficiency. A related goal is the demonstration of new cell structures fabricated by molecular beam epitaxy (MBE). The development of measurement techniques and characterization methodologies is also a project objective. This report describes our progress during the fifth and final year of the project. During the past five years, we've teamed a great deal about heavy doping effects in p[sup +] and n[sup +] GaAs and have explored their implications for solar cells. We have developed an understanding of the dominant recombination losses in present-day, high-efficiency cells. We've learned to appreciated the importance of recombination at the perimeter of the cell and have developed techniques for chemically passivating such edges. Finally, we've demonstrated that films grown by molecular beam epitaxy are suitable for high-efficiency cell research.

  12. Super Boiler: First Generation, Ultra-High Efficiency Firetube Boiler

    SciTech Connect (OSTI)

    2006-06-01

    This factsheet describes a research project whose goal is to develop and demonstrate a first-generation ultra-high-efficiency, ultra-low emissions, compact gas-fired package boiler (Super Boiler), and formulate a long-range RD&D plan for advanced boiler technology out to the year 2020.

  13. Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency of High Order Spectral Element Methods on Petascale Architectures Maxwell Hutchinson 1 , Alexander Heinecke 2 , Hans Pabst 3 , Greg Henry 4 , Matteo Parsani 5 , and David Keyes 5 1 Department of Physics, University of Chicago, Chicago IL, USA 2 Intel Corporation, Santa Clara CA, USA 3 Intel Semiconductor AG, Zurich, Switzerland 4 Intel Corporation, Hillsboro OR, USA 5 Extreme Computing Research Center, KAUST, Thuwal, 23955, KSA Abstract. High order methods for the solution of PDEs

  14. Research on stable, high-efficiency amorphous silicon multijunction modules

    SciTech Connect (OSTI)

    Guha, S. )

    1991-12-01

    This report describes research to improve the understanding of amorphous silicon alloys and other relevant non-semiconductor materials for use in high-efficiency, large-area multijunction modules. The research produced an average subcell initial efficiency of 8.8% over a 1-ft{sup 2} area using same-band-gap, dual-junction cells deposited over a ZnO/AlSi back reflector. An initial efficiency of 9.6% was achieved using a ZnO/Ag back reflector over smaller substrates. A sputtering machine will be built to deposit a ZnO/Ag back reflector over a 1-ft{sup 2} area so that a higher efficiency can also be obtained on larger substrates. Calculations have been performed to optimize the grid pattern, bus bars, and cell interconnects on modules. With our present state of technology, we expect a difference of about 6% between the aperture-area and active-area efficiencies of modules. Preliminary experiments show a difference of about 8%. We can now predict the performance of single-junction cells after long-term light exposure at 50{degree}C by exposing cells to short-term intense light at different temperatures. We find that single-junction cells deposited on a ZnO/Ag back reflector show the highest stabilized efficiency when the thickness of the intrinsic layers is about 2000 {angstrom}. 8 refs.

  15. Ultra-Compact High-Efficiency Luminaire for General Illumination

    SciTech Connect (OSTI)

    Ted Lowes

    2012-04-08

    Cree has developed a new ultra-compact light emitting diode (LED) luminaire capable of providing high efficacy with excellent color quality that can lead to significant energy savings in today??s commercial and retail applications. This success was based on an integrated development effort tailoring the LED component characteristics, optics, thermal management and driver design for the small footprint to achieve an overall system efficiency of ? 70%. A new LED component was designed to provide high brightness and efficacy in a form factor that allowed for a small directional beam with a luminaire housing design able to dissipate the heat effectively using a small physical envelope. A very compact, 90% efficient driver was developed to meet the system performance while not taking away any thermal mass from the heat sink. A 91% efficient secondary optics was designed to maximize efficiency while providing a smooth beam. The reliability of the new LED component was robust under accelerated testing conditions. Luminaires were assembled integrating the novel LED component, secondary optics, heat sink and driver technology to demonstrate the system improvement. Cree has successfully completed this project by developing an ultra-compact LED luminaire that provided 380 lumens at a correlated color temperature (CCT) of 2822 K and color rendering index (CRI) of 94 with an efficacy of 94 lumens per watt (LPW) when operating at 4 W input power (steady state) with an overall system efficiency of 81%. At a higher input power of 9 Watts, the lamp provided 658 lumens at 71 LPW.

  16. Modeling Study of SCR/PGM Interactions in NH3 Slip Catalysts | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Study of SCR/PGM Interactions in NH3 Slip Catalysts Modeling Study of SCR/PGM Interactions in NH3 Slip Catalysts The focus of this research is on the optimization of NH3 slip catalyst performance by simulating the behavior of different SCR/PGM configurations. p-19_nova.pdf (250.42 KB) More Documents & Publications Experimental and Modelling Study of the Effect of Diffusional Limitations on the NH3 SCR Activity Selective ammonia slip catalyst enabling highly efficient NOx

  17. High Efficiency LED Lamp for Solid-State Lighting

    SciTech Connect (OSTI)

    James Ibbetson

    2006-12-31

    This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

  18. A Perspective on the Future of High Efficiency Engines

    SciTech Connect (OSTI)

    Wagner, Robert M; Curran, Scott; Green Jr, Johney Boyd

    2013-01-01

    New fuel economy standards and emissions regulations are accelerating the development of new engine technologies, sensors, and on-board computing. These developments will enable unprecedented engine control, which will in turn enable real-world implementations of low temperature combustion, high-speed controls, and other high efficiency engine technologies. With this expanded flexibility in engine design and control, the challenge will now be the exponential increase in the design and calibration space and the need for the development of new simulations, optimization methods, and self-learning control methodologies. This manuscript provides historical and future perspectives on the opportunities and challenges of this unparalleled technology growth on the next generation of high efficiency engines.

  19. High Quality Down Lighting Luminaire with 73% Overall System Efficiency

    SciTech Connect (OSTI)

    Robert Harrison; Steven C. Allen; Joseph Bernier; Robert Harrison

    2010-08-31

    This report summarizes work to develop a high flux, high efficiency LED-based downlight at OSRAM SYLVANIA under US Department of Energy contract DE-FC26-08NT01582. A new high power LED and electronic driver were developed for these downlights. The LED achieved 100 lumens per watt efficacy and 1700 lumen flux output at a correlated color temperature of 3500K. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.99, and total harmonic distortion <10%. Two styles of downlights using the LED and driver were shown to exceed the project targets for steady-state luminous efficacy and flux of 70 lumens per watt and 1300 lumens, respectively. Compared to similar existing downlights using compact fluorescent or LED sources, these downlights had much higher efficacy at nearly the same luminous flux.

  20. Vehicle Technologies Office Merit Review 2015: High-Efficiency High-Density

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GaN-Based 6.6kW Bidirectional On-Board Charger for PEVs | Department of Energy High-Efficiency High-Density GaN-Based 6.6kW Bidirectional On-Board Charger for PEVs Vehicle Technologies Office Merit Review 2015: High-Efficiency High-Density GaN-Based 6.6kW Bidirectional On-Board Charger for PEVs Presentation given by Delta Products Corporation at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high-efficiency

  1. ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    K. Jothimurugesan; James G. Goodwin, Jr.; Santosh K. Gangwal

    1999-10-01

    Fischer-Tropsch (FT) synthesis to convert syngas (CO + H{sub 2}) derived from natural gas or coal to liquid fuels and wax is a well-established technology. For low H{sub 2} to CO ratio syngas produced from CO{sub 2} reforming of natural gas or from gasification of coal, the use of Fe catalysts is attractive because of their high water gas shift activity in addition to their high FT activity. Fe catalysts are also attractive due to their low cost and low methane selectivity. Because of the highly exothermic nature of the FT reaction, there has been a recent move away from fixed-bed reactors toward the development of slurry bubble column reactors (SBCRs) that employ 30 to 90 {micro}m catalyst particles suspended in a waxy liquid for efficient heat removal. However, the use of FeFT catalysts in an SBCR has been problematic due to severe catalyst attrition resulting in fines that plug the filter employed to separate the catalyst from the waxy product. Fe catalysts can undergo attrition in SBCRs not only due to vigorous movement and collisions but also due to phase changes that occur during activation and reaction.

  2. Palladium was supported on superparamagnetic nanoparticles: A magnetically recoverable catalyst for Heck reaction

    SciTech Connect (OSTI)

    Zhang, Fengwei; Niu, Jianrui; Wang, Haibo; Yang, Honglei; Jin, Jun; Liu, Na; Zhang, Yubin; Li, Rong; Ma, Jiantai

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Palladium-based heterogeneous catalyst was prepared facilely via the co-precipitation method. Black-Right-Pointing-Pointer The particles are nearly spherical in shape with an average size of 20 {+-} 1.0 nm. Black-Right-Pointing-Pointer The developed magnetic catalyst showed high activity for Heck reaction. Black-Right-Pointing-Pointer The catalyst was easily recovered from the reaction mixture with external magnetic field. Black-Right-Pointing-Pointer The catalytic efficiency for Heck reaction remains unaltered even after 6 repeated cycles. -- Abstract: A novel and high-performance palladium-based catalyst for Heck reaction was prepared easily by the co-precipitation method. The catalyst was characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS) and atomic absorption spectrophotometry (AAS). The catalyst afforded a fast conversion of the 4-bromonitrobenzene to 4-nitrostilbene at a catalyst loading of 5 mol%, and the efficiency of the catalyst remains unaltered even after 6 repeated cycles. The excellent catalytic performance of the Pd/Fe{sub 3}O{sub 4} catalyst might be attributed to the enhanced synergistic effect between Pd nanoparticles and magnetite.

  3. Advanced Klystrons for High Efficiency Accelerator Systems - Final Report

    SciTech Connect (OSTI)

    Read, Michael; Ives, Robert Lawrence

    2014-03-26

    This program explored tailoring of RF pulses used to drive accelerator cavities. Simulations indicated that properly shaping the pulse risetime to match accelerator cavity characteristics reduced reflected power and increased total efficiency. Tailoring the pulse requires a high power, gridded, klystron to shape the risetime while also controlling the beam current. The Phase I program generated a preliminary design of a gridded electron gun for a klystron producing 5-10 MW of RF power. This required design of a segmented cathode using Controlled Porosity Reservoir cathodes to limit power deposition on the grid. The program was successful in computationally designing a gun producing a high quality electron beam with grid control. Additional analysis of pulse tailoring indicated that technique would only be useful for cavity drive pulses that were less than approximately 2-3 times the risetime. Otherwise, the efficiency gained during the risetime of the pulse became insignificant when considering the efficiency over the entire pulse. Consequently, it was determined that a Phase II program would not provide sufficient return to justify the cost. Never the less, other applications for a high power gridded gun are currently being pursued. This klystron, for example, would facilitate development inverse Comptom x-ray sources by providing a high repetition rate (10 -100 kHz) RF source.

  4. High-efficiency solar cell and method for fabrication

    DOE Patents [OSTI]

    Hou, H.Q.; Reinhardt, K.C.

    1999-08-31

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.

  5. High-efficiency solar cell and method for fabrication

    DOE Patents [OSTI]

    Hou, Hong Q.; Reinhardt, Kitt C.

    1999-01-01

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).

  6. Test Program for High Efficiency Gas Turbine Exhaust Diffuser

    SciTech Connect (OSTI)

    Norris, Thomas R.

    2009-12-31

    This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of “strutlets” to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

  7. High-efficiency silicon heterojunction solar cells: Status and perspectives

    SciTech Connect (OSTI)

    De Wolf, S.

    2015-04-27

    Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups are reporting devices with conversion efficiencies well over 20 % on n-type wafers, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short- wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long-wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metalisation grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical transport requirements. The

  8. High-efficiency silicon heterojunction solar cells: Status and perspectives

    SciTech Connect (OSTI)

    De Wolf, S.; Geissbuehler, J.; Loper, P.; Martin de Nicholas, S.; Seif, J.; Tomasi, A.; Ballif, C.

    2015-05-11

    Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups are reporting devices with conversion efficiencies well over 20 % on both-sides contacted n-type cells, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short-wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long- wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metallization grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical

  9. High resolution PET breast imager with improved detection efficiency

    DOE Patents [OSTI]

    Majewski, Stanislaw

    2010-06-08

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  10. High-Efficiency Solar Cell Concepts: Physics, Materials, and Devices

    SciTech Connect (OSTI)

    Mascarenhas, A.; Francoeur, S.; Seong, M. J.; Fluegel, B.; Zhang, Y.; Wanlass, M. W.

    2005-01-01

    Over the past three decades, significant progress has been made in the area of high-efficiency multijunction solar cells, with the effort primarily directed at current-matched solar cells in tandem. The key materials issues here have been obtaining semiconductors with the required bandgaps for sequential absorption of light in the solar spectrum and that are lattice matched to readily available substrates. The GaInP/GaAs/Ge cell is a striking example of success achieved in this area. Recently, several new approaches for high-efficiency solar cell design have emerged, that involve novel methods for tailoring alloy bandgaps, as well as alternate technologies for hetero-epitaxy of III-V's on Si. The advantages and difficulties expected to be encountered with each approach will be discussed, addressing both the materials issues and device physics whilst contrasting them with other fourth-generation solar cell concepts.

  11. Blanket options for high-efficiency fusion power

    SciTech Connect (OSTI)

    Usher, J L; Lazareth, O W; Fillo, J A; Horn, F L; Powell, J R

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500/sup 0/C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO/sub 2/ interior (cooled by argon) utilizing Li/sub 2/O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230/sup 0/C leading to an overall efficiency estimate of 55 to 60% for this reference case.

  12. Modelling and fabrication of high-efficiency silicon solar cells

    SciTech Connect (OSTI)

    Rohatgi, A.; Smith, A.W.; Salami, J.

    1991-10-01

    This report covers the research conducted on modelling and development of high-efficiency silicon solar cells during the period May 1989 to August 1990. First, considerable effort was devoted toward developing a ray-tracing program for the photovoltaic community to quantify and optimize surface texturing for solar cells. Second, attempts were made to develop a hydrodynamic model for device simulation. Such a model is somewhat slower than drift-diffusion type models like PC-1D, but it can account for more physical phenomena in the device, such as hot carrier effects, temperature gradients, thermal diffusion, and lattice heat flow. In addition, Fermi-Dirac statistics have been incorporated into the model to deal with heavy doping effects more accurately. Third and final component of the research includes development of silicon cell fabrication capabilities and fabrication of high-efficiency silicon cells. 84 refs., 46 figs., 10 tabs.

  13. Method and Apparatus for High-Efficiency Direct Contact Condensation -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Geothermal Geothermal Find More Like This Return to Search Method and Apparatus for High-Efficiency Direct Contact Condensation National Renewable Energy Laboratory Contact NREL About This Technology Publications: PDF Document Publication White Paper (925 KB) Technology Marketing Summary Geothermal resources, the steam and water that lie below the earth's surface, have the potential to supply vast amounts of clean energy. But continuing to produce geothermal power

  14. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    SciTech Connect (OSTI)

    Grillo, Vincenzo; Mafakheri, Erfan; Frabboni, Stefano

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  15. Project Profile: High-Efficiency Receivers for Supercritical Carbon Dioxide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cycles | Department of Energy Receivers for Supercritical Carbon Dioxide Cycles Project Profile: High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles Brayton logo --This project is inactive -- Brayton Energy, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is building and testing a new solar receiver that uses supercritical carbon dioxide (s-CO2) as the heat-transfer fluid. The research team is designing the receiver to withstand higher operating temperatures

  16. Measure Guideline: High-Efficiency Natural Gas Furnaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Efficiency Natural Gas Furnaces L. Brand and W. Rose Partnership for Advanced Residential Retrofit October 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors or affiliates makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,

  17. Highly Efficient Multigap Solar Cell Materials - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highly Efficient Multigap Solar Cell Materials Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Yu, K. M., Walukeiwicz, W., Wu J., Shan, W., Beeman, J. W., Scarpulla, M. A., Dubon, O. D., Becla, P. "Diluted II-VI Oxide Semiconductors with Multiple Band Gaps," Physical Review Letters, Vo. 91, No. 24, Dec. 12, 2003. (178 KB) Technology Marketing Summary Scientists at Berkeley Lab have invented multiband gap semiconducting

  18. Highly Efficient, Scalable Microbial Fuel Cell - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Biomass and Biofuels Biomass and Biofuels Advanced Materials Advanced Materials Find More Like This Return to Search Highly Efficient, Scalable Microbial Fuel Cell University of Colorado Contact CU About This Technology Publications: PDF Document Publication CU2773D (Microbial Fuel Cell) Marketing Summary (129 KB) Technology Marketing Summary With present day environmental and energy concerns rising, the development of environmentally friendly energy

  19. OSRAM SYLVANIA Develops High-Efficiency LED Troffer Replacement

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, OSRAM SYLVANIA is developing a high-efficiency LED 2'x2' troffer replacement that is expected to be commercially available in the spring of 2012 and to be cost-competitive with existing troffers of that size. It is projected to have a light output of up to 4,000 lumens, an efficacy of more than 100 lm/W, and a CCT of 3500K.

  20. High Efficiency Fuel Reactivity Controlled Compression Ignition Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Fuel Reactivity Controlled Compression Ignition Combustion High Efficiency Fuel Reactivity Controlled Compression Ignition Combustion An optimized dual-fuel PCCI concept, RCCI, is proposed. deer10_reitz.pdf (960.46 KB) More Documents & Publications Effect of Compression Ratio and Piston Geometry on RCCI load limit Optimization of Advanced Diesel Engine Combustion Strategies Comparison of Conventional Diesel and Reactivity Controlled Compression Ignition (RCCI)

  1. Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Emission Treatment Catalyst | Department of Energy Emission Treatment Catalyst Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies of Emission Treatment Catalyst Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-08_narula.pdf (495.8 KB) More Documents & Publications Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies of Oxidation Catalyst for

  2. Fuel Cell/Turbine Ultra High Efficiency Power System

    SciTech Connect (OSTI)

    Hossein, Ghezel-Ayagh

    2001-11-06

    FuelCell Energy, INC. (FCE) is currently involved in the design of ultra high efficiency power plants under a cooperative agreement (DE-FC26-00NT40) managed by the National Energy Technology Laboratory (NETL) as part of the DOE's Vision 21 program. Under this project, FCE is developing a fuel cell/turbine hybrid system that integrates the atmospheric pressure Direct FuelCell{reg_sign} (DFC{reg_sign}) with an unfired Brayton cycle utilizing indirect heat recovery from the power plant. Features of the DFC/T{trademark} system include: high efficiency, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, no pressurization of the fuel cell, independent operating pressure of the fuel cell and turbine, and potential cost competitiveness with existing combined cycle power plants at much smaller sizes. Objectives of the Vision 21 Program include developing power plants that will generate electricity with net efficiencies approaching 75 percent (with natural gas), while producing sulfur and nitrogen oxide emissions of less than 0.01 lb/million BTU. These goals are significant improvements over conventional power plants, which are 35-60 percent efficient and produce emissions of 0.07 to 0.3 lb/million BTU of sulfur and nitrogen oxides. The nitrogen oxide and sulfur emissions from the DFC/T system are anticipated to be better than the Vision 21 goals due to the non-combustion features of the DFC/T power plant. The expected high efficiency of the DFC/T will also result in a 40-50 percent reduction in carbon dioxide emissions compared to conventional power plants. To date, the R&D efforts have resulted in significant progress including proof-of-concept tests of a sub-scale power plant built around a state-of-the-art DFC stack integrated with a modified Capstone Model 330 Microturbine. The objectives of this effort are to investigate the integration aspects of the fuel cell and turbine and to obtain design information and operational data that will

  3. High-Efficiency Absorber for Damping the Transverse Wake Fields

    SciTech Connect (OSTI)

    Novokhatski, A.; Seeman, J.; Weathersby, S.; /SLAC

    2007-02-28

    Transverse wake fields generated by intense beams may propagate long distances in the vacuum chamber and dissipate power in different shielded elements such as bellows, vacuum valves or vacuum pumps. Induced heating in these elements may be high enough to deteriorate vacuum conditions. We have developed a broadband water-cooled bellows-absorber to capture and damp these harmful transverse fields without impacting the longitudinal beam impedance. Experimental results at the PEP-II SLAC B-factory demonstrate high efficiency of this device. This absorber may be useful in other machines like synchrotron light sources or International Linear Collider.

  4. Catalysts for emerging energy applications

    SciTech Connect (OSTI)

    Bruce C. Gates; George W. Huber; Christopher L. Marshall; Phillip N. Ross; Jeffrey Siirola; Yong Wang

    2008-04-15

    Catalysis is the essential technology for chemical transformation, including production of fuels from the fossil resources petroleum, natural gas, and coal. Typical catalysts for these conversions are robust porous solids incorporating metals, metal oxides, and/or metal sulfides. As efforts are stepping up to replace fossil fuels with biomass, new catalysts for the conversion of the components of biomass will be needed. Although the catalysts for biomass conversion might be substantially different from those used in the conversion of fossil feedstocks, the latter catalysts are a starting point in today's research. Major challenges lie ahead in the discovery of efficient biomass conversion catalysts, as well as in the discovery of catalysts for conversion of CO{sub 2} and possibly water into liquid fuels. 16 refs., 6 figs., 1 tab.

  5. Fuels and Combustion Strategies for High-Efficiency Clean-Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Strategies for High-Efficiency Clean-Combustion Engines Fuels and Combustion Strategies for High-Efficiency Clean-Combustion Engines 2012 DOE Hydrogen and Fuel Cells ...

  6. NASA's Marshall Space Flight Center Saves Water with High-Efficiency...

    Energy Savers [EERE]

    NASA's Marshall Space Flight Center Saves Water with High-Efficiency Toilet and Urinal Program NASA's Marshall Space Flight Center Saves Water with High-Efficiency Toilet and ...

  7. IN-PLANT TESTING OF HIGH-EFFICIENCY HYDRAULIC SEPARATORS

    SciTech Connect (OSTI)

    G.H. Luttrell; R.Q. Honaker; R.C. Bratton; T.C. Westerfield; J.N. Kohmuench

    2006-05-22

    Hydraulic separators are commonly used for particle size classification and gravity concentration of minerals and coal. Unfortunately, the efficiency of these processes can be quite low due to poor equipment design and variations in feed consistency. To help alleviate these problems, an industry-driven R&D program has been undertaken to develop a new generation of hydraulic separators that are more efficient and less costly to operate and maintain. These units, which are commercially called the CrossFlow separator and HydroFloat separator, have the potential to improve performance (separation efficiency and throughput) and reduce operating costs (power consumption, water and reagent usage). In Phase I of this project, laboratory and pilot-scale test units were evaluated at various industrial sites in both the coal and mineral industries. Based on promising results obtained from Phase I, full-scale prototypes were purchased and installed by a major U.S. phosphate producer and a large eastern U.S. coal company. The test data obtained from these sites demonstrate that significant performance improvements can be realized through the application of these high-efficiency separators.

  8. In-Plant Testing of High-Efficiency Hydraulic Separators

    SciTech Connect (OSTI)

    G. H. Luttrell; R. Q. Honaker; R. C. Bratton; T. C. Westerfield; J. N. Kohmuench

    2006-06-30

    Hydraulic separators are commonly used for particle size classification and gravity concentration of minerals and coal. Unfortunately, the efficiency of these processes can be quite low due to poor equipment design and variations in feed consistency. To help alleviate these problems, an industry-driven R&D program has been undertaken to develop a new generation of hydraulic separators that are more efficient and less costly to operate and maintain. These units, which are commercially called the CrossFlow separator and HydroFloat separator, have the potential to improve performance (separation efficiency and throughput) and reduce operating costs (power consumption, water and reagent usage). In Phase I of this project, laboratory and pilot-scale test units were evaluated at various industrial sites in both the coal and mineral industries. Based on promising results obtained from Phase I, full-scale prototypes were purchased and installed by a major U.S. phosphate producer and a large eastern U.S. coal company. The test data obtained from these sites demonstrate that significant performance improvements can be realized through the application of these high-efficiency separators.

  9. Epoxidation catalyst and process

    DOE Patents [OSTI]

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  10. Aluminium doped ceriazirconia supported palladium-alumina catalyst with high oxygen storage capacity and CO oxidation activity

    SciTech Connect (OSTI)

    Dong, Qiang; Yin, Shu Guo, Chongshen; Wu, Xiaoyong; Kimura, Takeshi; Sato, Tsugio

    2013-12-15

    Graphical abstract: Ce{sub 0.5}Zr{sub 0.3}Al{sub 0.2}O{sub 1.9}/Pd/?-Al{sub 2}O{sub 3} possessed high OSC and CO oxidation activity at low temperature. - Highlights: A new OSC material of Ce{sub 0.5}Zr{sub 0.3}Al{sub 0.2}O{sub 1.9}/Pd/?-Al{sub 2}O{sub 3} is prepared via a mechanochemical method. Ce{sub 0.5}Zr{sub 0.3}Al{sub 0.2}O{sub 1.9}/Pd/?-Al{sub 2}O{sub 3} showed high OSC even after calcination at 1000 C for 20 h. Ce{sub 0.5}Zr{sub 0.3}Al{sub 0.2}O{sub 1.9}/Pd/?-Al{sub 2}O{sub 3} exhibited the highest CO oxidation activity at low temperature correlates with enhanced OSC. - Abstract: The Ce{sub 0.5}Zr{sub 0.3}Al{sub 0.2}O{sub 1.9}/Pd-?-Al{sub 2}O{sub 3} catalyst prepared by a mechanochemical route and calcined at 1000 C for 20 h in air atmosphere to evaluate the thermal stability. The prepared Ce{sub 0.5}Zr{sub 0.3}Al{sub 0.2}O{sub 1.9}/Pd-?-Al{sub 2}O{sub 3} catalyst was characterized for the oxygen storage capacity (OSC) and CO oxidation activity in automotive catalysis. For the characterization, X-ray diffraction, transmission electron microscopy and the BrunauerEmmetTeller (BET) technique were employed. The OSC values of all samples were measured at 600 C using thermogravimetric-differential thermal analysis. Ce{sub 0.5}Zr{sub 0.3}Al{sub 0.2}O{sub 1.9}/Pd-?-Al{sub 2}O{sub 3} catalyst calcined at 1000 C for 20 h with a BET surface area of 41 m{sup 2} g{sup ?1} exhibited the considerably high OSC of 583 ?mol-O g{sup ?1} and good OSC performance stability. The same synthesis route was employed for the preparation of the CeO{sub 2}/Pd-?-Al{sub 2}O{sub 3} and Ce{sub 0.5}Zr{sub 0.5}O{sub 2}/Pd-?-Al{sub 2}O{sub 3} for comparison.

  11. HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM

    SciTech Connect (OSTI)

    J.L. Justice

    1999-03-25

    This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

  12. Oxyhydrochlorination catalyst

    DOE Patents [OSTI]

    Taylor, Charles E.; Noceti, Richard P.

    1992-01-01

    An improved catalyst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HCl and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  13. Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics

    SciTech Connect (OSTI)

    Klier, Kamil; Herman, Richard G

    2005-11-30

    This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Brnsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. The latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e.g. diisopropylether with

  14. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    catalysts for maximum selectivity and efficiency in a wide range of chemical processes. ... The measurements generated chemical contour maps for the species present. Quantitative ...

  15. Catalysts for Fischer-Tropsch

    SciTech Connect (OSTI)

    Srivastava, R.D. ); Rao, V.U.S.; Cinquegrane, G.; Stiegel, G.J. )

    1990-02-01

    The slurry-phase Fischer-Tropsch (F-T) process has attracted considerable attention recently. The process can make liquid fuels by reacting hydrogen-lean synthesis gas produced from modern energy-efficient gasifiers. continuing assessment of Fischer-Tropsch Synthesis (FTS) has a high priority within an indirect liquefaction program, a part of the liquid fuels program sponsored by the U.S. Department of Energy (DOE) and executed by the Pittsburgh Energy Technology Center (PETC). Funding for the indirect liquefaction program in 1990:0090 is anticipated to be about $8.5 million compared to $6.6 million in 1989 and a like amount in the year before. The studies within the program are conducted by industry, universities, national laboratories and in-house PETC research and development. This article reviews preparation and properties of iron-based catalysts, including recent patent activities and in-depth process analysis of slurry-phase FTS. The review provides an analysis of Fischer-Tropsch catalyst research and development trends and describes options to increase selectivity for iron-based catalysts in a slurry phase.

  16. Fabrication of Organic-inorganic Perovskites for Highly Efficient Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells and Light Emitting Diodes | MIT-Harvard Center for Excitonics Fabrication of Organic-inorganic Perovskites for Highly Efficient Solar Cells and Light Emitting Diodes January 19, 2016 at 4:30pm/36-428 Sandeep Pathak Oxford University Pathak The unprecedented worldwide interest in organic-inorganic lead halide-based perovskite (HC(NH2)2PbX3 or CH3NH3PbX3) solar cells is rooted in its solution process-ability at low temperature as well as its extraordinary device performance. Perovskite

  17. High-Efficiency Parking Lighting in Federal Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Parking Lighting in Federal Facilities FEdEraL EnErgy ManagEMEnt PrograM MC Realty Group Saving Energy and Money with the IRS MC Realty Group, LLC, won a 2014 LEEP Award for cutting energy use by 76% at the Internal Revenue Service (IRS) Facility Parking Garage in Kansas City, Missouri. MC Realty replaced 1,500 metal halide fxtures with an equal number of T8 fuorescent fxtures in the fve-story parking structure to cut energy use by 2 million kilowatt-hours (kWh) annually, which

  18. Catalyst rejuvenation technology and economics

    SciTech Connect (OSTI)

    Duddy, J.E.; Hildebrandt, S.J.; Koseoglu, R.O.

    1995-12-31

    One of the major factors in the economics of residue hydroprocessing is the cost of catalyst. Catalyst replacement cost in Hydrocarbon Research, Inc.`s (HRI) H-Oil{reg_sign} Process is set by a number of factors, including the feedrate, processing objectives, and feedstock type. At a given level of process performance, the catalyst replacement rate is primarily set by the rate of catalyst deactivation resulting from contaminant metals in the feedstock depositing on the catalyst surface. This is especially true as the metals content of the feedstock increases. In the recent years, interest in processing high metals feedstock has increased. For example, HRI has recently designed a new H-Oil{reg_sign} Process unit for PEMEX in Mexico, where the metals content of the design feedstock is in excess of 700 wppm. Regeneration of used hydroprocessing catalysts, through controlled oxidation of the coke deposited on the catalyst, is a common practice in the refining industry. Activity can be restored to almost fresh catalyst activity level when the primary contaminant is coke. If there is a significant amount of metal contaminants on the catalyst, regeneration alone is not effective in restoring catalyst activity. Oxidation is unable to remove contaminant metals. HRI has developed and patented a washing procedure to remove the contaminant metals. A dilute acid wash (to remove metals), in conjunction with conventional regeneration (to remove coke), can restore high levels of catalyst activity of spent catalysts with high levels of metal contaminants. The combination of acid washing and controlled oxidation forms the basis of HRI`s Catalyst Rejuvenation Technology.

  19. A High Efficiency PSOFC/ATS-Gas Turbine Power System

    SciTech Connect (OSTI)

    W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2001-02-01

    A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

  20. Analysis of highly-efficient electric residential HPWHs

    SciTech Connect (OSTI)

    Baxter, Van D; Murphy, Richard W; Rice, C Keith; Shen, Bo; Gao, Zhiming

    2011-09-01

    A scoping level analysis was conducted to identify electric HPWH concepts that have the potential to achieve or exceed 30% source energy savings compared to a gas tankless water heater (GTWH) representative of the type represented in version 0.9.5.2 beta of the BEopt software developed by the National Renewable Energy Laboratory. The analysis was limited to evaluation of options to improve the energy efficiency of electric HPWH product designs currently on the market in the US. The report first defines the baseline GTWH system and determines its efficiency (source-energy-based adjusted or derated EF of ~0.71). High efficiency components (compressors, pumps, fans, heat exchangers, etc.) were identified and applied to current US HPWH products and analyzed to determine the viability of reaching the target EF. The target site-based energy factor (EF) required for an electric HPWH necessary to provide 30% source energy savings compared to the GTWH baseline unit is then determined to be ~3.19.

  1. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect (OSTI)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil

  2. Positional control of catalyst nanoparticles for the synthesis...

    Office of Scientific and Technical Information (OSTI)

    Positional control of catalyst nanoparticles for the synthesis of high density carbon nanofiber arrays Citation Details In-Document Search Title: Positional control of catalyst ...

  3. Development of Ultra-low Platinum Alloy Cathode Catalyst for...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications DOE's Fuel Cell Catalyst R&D Activities 2006 Alkaline Membrane Fuel Cell Workshop Final Report Highly Dispersed Alloy Cathode Catalyst for ...

  4. High Efficiency Microturbine with Integral Heat Recovery- Fact Sheet, 2014

    Broader source: Energy.gov [DOE]

    Fact sheet: this project will develop a clean, cost-effective 370 kW microturbine with 42% net electrical efficiency and 85% total CHP efficiency

  5. Energy Efficiency Opportunities in Federal High Performance Computing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case Study: Opportunities to Improve Energy Efficiency in Three Federal Data Centers Case Study: Innovative Energy Efficiency Approaches in NOAA's Environmental Security Computing ...

  6. High-Efficiency Solar Thermochemical Reactor for Hydrogen Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Solar Thermochemical Reactor for Hydrogen Production - Sandia Energy Energy ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  7. In-Plant Testing of High-Efficiency Hydraulic Separators

    SciTech Connect (OSTI)

    G. H. Luttrell; R. Q. Honaker; R. C. Bratton; T. C. Westerfield; J. N. Kohmuench

    2004-07-20

    The mineral processing industry has commonly utilized hydraulic separators throughout history for classification and gravity concentration of various minerals. More commonly referred to as hindered-bed or fluidized-bed separators, these units make use of differential particle settling rates to segregate particles according to shape, size, and/or density. As with any equipment, there are inefficiencies associated with its operation, which prompted an industry driven research program to further evaluate two novel high-efficiency hindered bed separators. These units, which are commercially called the CrossFlow separator and HydroFloat separator, have the potential to improve performance (separation efficiency and throughput) and reduce operating costs (power consumption, water and reagent usage). This report describes the results of Phase I activities (laboratory and pilot-scale tests) conducted with the CrossFlow and HydroFloat separators at several locations in the minerals and coal industries. Details of the testing programs (equipment setup, shakedown testing and detailed testing) associated with four coal plants and two phosphate plants are summarized in this work. In most of these applications, the high-efficiency units proved to provide a higher quality product at reduced costs when compared against the performance of conventional separators. Based on promising results obtained from Phase I, full-scale prototypes will be purchased by several mining companies for use in Phase II of this project. Two of the prototype units, which will be constructed by Eriez Manufacturing, are expected to be installed by a major U.S. phosphate producer and a large eastern U.S. coal company. Negotiations are also underway to purchase and install additional prototype units by a mineral sands producer and a second phosphate producer. The data obtained from the full-scale evaluations will be used to further promote commercialization and industrial applications of these innovative

  8. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    SciTech Connect (OSTI)

    Clifton B. Higdon III

    2011-01-07

    Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for

  9. High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

    SciTech Connect (OSTI)

    2011-01-31

    This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustion and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well

  10. Capture and isotopic exchange method for water and hydrogen isotopes on zeolite catalysts up to technical scale for pre-study of processing highly tritiated water

    SciTech Connect (OSTI)

    Michling, R.; Braun, A.; Cristescu, I.; Dittrich, H.; Gramlich, N.; Lohr, N.; Glugla, M.; Shu, W.; Willms, S.

    2015-03-15

    Highly tritiated water (HTW) may be generated at ITER by various processes and, due to the excessive radio toxicity, the self-radiolysis and the exceedingly corrosive property of HTW, a potential hazard is associated with its storage and process. Therefore, the capture and exchange method for HTW utilizing Molecular Sieve Beds (MSB) was investigated in view of adsorption capacity, isotopic exchange performance and process parameters. For the MSB, different types of zeolite were selected. All zeolite materials were additionally coated with platinum. The following work comprised the selection of the most efficient zeolite candidate based on detailed parametric studies during the H{sub 2}/D{sub 2}O laboratory scale exchange experiments (about 25 g zeolite per bed) at the Tritium Laboratory Karlsruhe (TLK). For the zeolite, characterization analytical techniques such as Infrared Spectroscopy, Thermogravimetry and online mass spectrometry were implemented. Followed by further investigation of the selected zeolite catalyst under full technical operation, a MSB (about 22 kg zeolite) was processed with hydrogen flow rates up to 60 mol*h{sup -1} and deuterated water loads up to 1.6 kg in view of later ITER processing of arising HTW. (authors)

  11. Oxidation State Optimization for Maximum Efficiency of NOx Adsorber...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Optimization for Maximum Efficiency of NOx Adsorber Catalysts Oxidation State Optimization for Maximum Efficiency of NOx Adsorber Catalysts Presentation given at the 16th ...

  12. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  13. High Efficient Clean Combustion for SuperTruck | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficient Clean Combustion for SuperTruck High Efficient Clean Combustion for SuperTruck Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10_stanton.pdf (1.76 MB) More Documents & Publications Supertruck technologies for 55% thermal efficiency and 68% freight efficiency Cummins SuperTruck Program - Technology Demonstration of Highly Efficient Clean, Diesel Powered Class 8 Trucks Technology

  14. Photo-oxidation catalysts

    DOE Patents [OSTI]

    Pitts, J. Roland; Liu, Ping; Smith, R. Davis

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  15. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, Ajeet; Chen, Zhizhang; Doshi, Parag

    1996-01-01

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

  16. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, A.; Doshi, P.; Tate, J.K.; Mejia, J.; Chen, Z.

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime {tau} and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime {tau} and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO{sub x}. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure. 28 figs.

  17. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, Ajeet; Doshi, Parag; Tate, John Keith; Mejia, Jose; Chen, Zhizhang

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.

  18. Highly Efficient Small Form Factor LED Retrofit Lamp

    SciTech Connect (OSTI)

    Steven Allen; Fred Palmer; Ming Li

    2011-09-11

    This report summarizes work to develop a high efficiency LED-based MR16 lamp downlight at OSRAM SYLVANIA under US Department of Energy contract DE-EE0000611. A new multichip LED package, electronic driver, and reflector optic were developed for these lamps. At steady-state, the lamp luminous flux was 409 lumens (lm), luminous efficacy of 87 lumens per watt (LPW), CRI (Ra) of 87, and R9 of 85 at a correlated color temperature (CCT) of 3285K. The LED alone achieved 120 lumens per watt efficacy and 600 lumen flux output at 25 C. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.90 at a power of only 5 watts. Compared to similar existing MR16 lamps using LED sources, these lamps had much higher efficacy and color quality. The objective of this work was to demonstrate a LED-based MR16 retrofit lamp for replacement of 35W halogen MR16 lamps having (1) luminous flux of 500 lumens, (2) luminous efficacy of 100 lumens per watt, (3) beam angle less than 40{sup o} and center beam candlepower of at least 1000 candelas, and (4) excellent color quality.

  19. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    SciTech Connect (OSTI)

    2008-06-30

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized

  20. Highly efficient and controllable method to fabricate ultrafine metallic nanostructures

    SciTech Connect (OSTI)

    Cai, Hongbing; Zhang, Kun; Pan, Nan E-mail: xpwang@ustc.edu.cn; Luo, Yi; Wang, Xiaoping E-mail: xpwang@ustc.edu.cn; Yu, Xinxin; Tian, Yangchao

    2015-11-15

    We report a highly efficient, controllable and scalable method to fabricate various ultrafine metallic nanostructures in this paper. The method starts with the negative poly-methyl-methacrylate (PMMA) resist pattern with line-width superior to 20 nm, which is obtained from overexposing of the conventionally positive PMMA under a low energy electron beam. The pattern is further shrunk to sub-10 nm line-width through reactive ion etching. Using the patter as a mask, we can fabricate various ultrafine metallic nanostructures with the line-width even less than 10 nm. This ion tailored mask lithography (ITML) method enriches the top-down fabrication strategy and provides potential opportunity for studying quantum effects in a variety of materials.

  1. Efficient binning for bitmap indices on high-cardinality attributes

    SciTech Connect (OSTI)

    Rotem, Doron; Stockinger, Kurt; Wu, Kesheng

    2004-11-17

    Bitmap indexing is a common technique for indexing high-dimensional data in data warehouses and scientific applications. Though efficient for low-cardinality attributes, query processing can be rather costly for high-cardinality attributes due to the large storage requirements for the bitmap indices. Binning is a common technique for reducing storage costs of bitmap indices. This technique partitions the attribute values into a number of ranges, called bins, and uses bitmap vectors to represent bins (attribute ranges) rather than distinct values. Although binning may reduce storage costs, it may increase the access costs of queries that do not fall on exact bin boundaries (edge bins). For this kind of queries the original data values associated with edge bins must be accessed, in order to check them against the query constraints.In this paper we study the problem of finding optimal locations for the bin boundaries in order to minimize these access costs subject to storage constraints. We propose a dynamic programming algorithm for optimal partitioning of attribute values into bins that takes into account query access patterns as well as data distribution statistics. Mathematical analysis and experiments on real life data sets show that the optimal partitioning achieved by this algorithm can lead to a significant improvement in the access costs of bitmap indexing systems for high-cardinality attributes.

  2. Preparation, catalysis, and characterization of highly dispersed molybdenum sulfide catalysts supported on a NaY zeolite

    SciTech Connect (OSTI)

    Okamoto, Yasuaki; Katsuyama, Hiromoto [Osaka Univ., Toyonaka, Osaka (Japan)] [Osaka Univ., Toyonaka, Osaka (Japan)

    1996-06-01

    The structure and dispersion of the molybdenum sulfides supported on a NaY zeolite were studied using XAFS techniques. It was found that molybdenum sulfide species prepared by sulfiding vapor deposited Mo(CO){sub 6} or by sulfiding molybdenum oxide dimer species encaged in the zeolite are highly dispersed and thermally stabilized against sintering or restructuring. These molybdenum species are formed via molybdenum sulfide dimer species as an intermediate. On the other hand, with the molybdenum sulfide catalysts prepared by an impregnation method, the sulfidation of molybdenum oxides was incomplete. The molybdenum oxide species are suggested to be mainly located in the zeolite cavities after calcination, forming isolated molybdenum oxides in tetrahedral configurations. The molybdenum sulfide species prepared from Mo(CO){sub 6} showed much higher catalytic activities for thiophene hydrodesulfurization and butadiene hydrogenation than the molybdenum sulfides prepared by the impregnation, in conformity with a higher dispersion and higher fraction of the molybdenum sulfide species. It is demonstrated that in combination with metal carbonyl techniques, zeolite supports are very suitable for the preparation of highly dispersed molybdenum sulfides at a high Mo loading.

  3. Volume 1, 1st Edition, Multiscale Tailoring of Highly Active and Stable Nanocomposite Catalysts, Final Technical Report

    SciTech Connect (OSTI)

    Veser, Goetz

    2009-08-31

    Nanomaterials have gained much attention as catalysts since the discovery of exceptional CO oxidation activity of nanoscale gold by Haruta. However, many studies avoid testing nanomaterials at the high-temperatures relevant to reactions of interest for the production of clean energy (T > 700C). The generally poor thermal stability of catalytically active noble metals has thus far prevented significant progress in this area. We have recently overcome the poor thermal stability of nanoparticles by synthesizing a platinum barium-hexaaluminate (Pt-BHA) nanocomposite which combines the high activity of noble metal nanoparticles with the thermal stability of hexaaluminates. This Pt-BHA nanocomposite demonstrates excellent activity, selectivity, and long-term stability in CPOM. Pt-BHA is anchored onto a variety of support structures in order to improve the accessibility, safety, and reactivity of the nanocatalyst. Silica felts prove to be particularly amenable to this supporting procedure, with the resulting supported nanocatalyst proving to be as active and stable for CPOM as its unsupported counterpart. Various pre-treatment conditions are evaluated to determine their effectiveness in removing residual surfactant from the active nanoscale platinum particles. The size of these particles is measured across a wide temperature range, and the resulting plateau of stability from 600-900C can be linked to a particle caging effect due to the structure of the supporting ceramic framework. The nanocomposites are used to catalyze the combustion of a dilute methane stream, and the results indicate enhanced activity for both Pt-BHA as well as ceria-doped BHA, as well as an absence of internal mass transfer limitations at the conditions tested. In water-gas shift reaction, nanocomposite Pt-BHA shows stability during prolonged WGS reaction and no signs of deactivation during start-up/shut-down of the reactor. The chemical and thermal stability, low molecular weight, and wealth of

  4. High-Efficiency Window Air Conditioners- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Top Innovation profile highlights research into making window air conditioners much more energy efficient, and recommendations for homeowners about how to improve the operating efficiency of their units.

  5. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    SciTech Connect (OSTI)

    Chunshan Song; Schobert, H.H.; Parfitt, D.P.

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  6. High-Efficiency, Wide-Band Three-Phase Rectifiers and Adaptive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency, Wide-Band Three-Phase Rectifiers and Adaptive Rectifier Management High-Efficiency, Wide-Band Three-Phase Rectifiers and Adaptive Rectifier Management Higher-Efficiency...

  7. High-efficiency photovoltaics based on semiconductor nanostructures

    SciTech Connect (OSTI)

    Yu, Paul K.L.; Yu, Edward T.; Wang, Deli

    2011-10-31

    The objective of this project was to exploit a variety of semiconductor nanostructures, specifically semiconductor quantum wells, quantum dots, and nanowires, to achieve high power conversion efficiency in photovoltaic devices. In a thin-film device geometry, the objectives were to design, fabricate, and characterize quantum-well and quantum-dot solar cells in which scattering from metallic and/or dielectric nanostructures was employed to direct incident photons into lateral, optically confined paths within a thin (~1-3um or less) device structure. Fundamental issues concerning nonequilibrium carrier escape from quantum-confined structures, removal of thin-film devices from an epitaxial growth substrate, and coherent light trapping in thin-film photovoltaic devices were investigated. In a nanowire device geometry, the initial objectives were to engineer vertical nanowire arrays to optimize optical confinement within the nanowires, and to extend this approach to core-shell heterostructures to achieve broadspectrum absorption while maintaining high opencircuit voltages. Subsequent work extended this approach to include fabrication of nanowire photovoltaic structures on low-cost substrates.

  8. Graphene Oxide Interlayers for Robust, High-Efficiency Organic Photovoltaics

    SciTech Connect (OSTI)

    Murray, Ian P.; Lou, Sylvia J.; Cote, Laura J.; Loser, Stephen; Kadleck, Cameron J.; Xu, Tao; Szarko, Jodi M.; Rolczynski, Brian S.; Johns, James E.; Huang, Jiaxing; Yu, Luping; Chen, Lin X.; Marks, Tobin J.; Hersam, Mark C.

    2012-02-07

    Organic photovoltaic (OPV) materials have recently garnered significant attention as enablers of high power conversion efficiency (PCE), low-cost, mechanically flexible solar cells. Nevertheless, further understanding-based materials developments will be required to achieve full commercial viability. In particular, the performance and durability of many current generation OPVs are limited by poorly understood interfacial phenomena. Careful analysis of typical OPV architectures reveals that the standard electron-blocking layer, poly-3,4-ethylenedioxy-thiophene:poly(styrene sulfonate) (PEDOT:PSS), is likely a major factor limiting the device durability and possibly performance. Here we report that a single layer of electronically tuned graphene oxide is an effective replacement for PEDOT:PSS and that it significantly enhances device durability while concurrently templating a performance-optimal active layer {pi}-stacked face-on microstructure. Such OPVs based on graphene oxide exhibit PCEs as high as 7.5% while providing a 5x enhancement in thermal aging lifetime and a 20x enhancement in humid ambient lifetime versus analogous PEDOT:PSS-based devices.

  9. High Efficiency, Ultra-Low Emission, Integrated Process Heater System

    SciTech Connect (OSTI)

    Mason, Howard; Boral, Anindya; Chhotray, San; Martin, Matthew

    2006-06-19

    The team of TIAX LLC, ExxonMobil Research and Engineering Company, and Callidus Technologies, LLC conducted a six-year program to develop an ultra-low emission process heater burner and an advanced high efficiency heater design. This project addresses the critical need of process heater operators for reliable, economical emission reduction technologies to comply with stringent emission regulations, and for heater design alternatives that reduce process heater energy requirements without significant cost increase. The key project targets were NOx emissions of 10 ppm (@ 3% O2), and a heater thermal efficiency of 95 percent. The ultra low NOx burner was developed through a series of pilot-scale and field tests combined with computational fluid dynamic modeling to arrive at simultaneous low emissions and suitable flame shape and stability. Pilot scale tests were run at TIAX, at the 2 MMBtu/hr scale, and at Callidus at 8 MMBtu/hr. The full scale burner was installed on a 14 burner atmospheric pipestill furnace at an ExxonMobil refinery. A variety of burner configurations, gas tips and flame stabilizers were tested to determine the lowest emissions with acceptable flame shape and stability. The resulting NOx emissions were 22 ppm on average. Starting in 2001, Callidus commercialized the original ultra low NOx burner and made subsequent design improvements in a series of commercial burners evolving from the original concept and/or development. Emissions in the field with the ultra low-NOx burner over a broad spectrum of heater applications have varied from 5 ppm to 30 ppm depending on heater geometry, heater service, fuel and firing capacity. To date, 1550 of the original burners, and 2500 of subsequent generation burners have been sold by Callidus. The advanced heater design was developed by parametric evaluations of a variety of furnace and combustion air preheater configurations and technologies for enhancing convective and radiative heat transfer. The design evolution

  10. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    DOE Patents [OSTI]

    Vajda, Stefan; Pellin, Michael J.; Elam, Jeffrey W.; Marshall, Christopher L.; Winans, Randall A.; Meiwes-Broer, Karl-Heinz

    2012-03-27

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  11. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    DOE Patents [OSTI]

    Vajda, Stefan , Pellin, Michael J.; Elam, Jeffrey W.; Marshall, Christopher L.; Winans, Randall A.; Meiwes-Broer, Karl-Heinz

    2012-04-03

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  12. Rational Catalyst Design Applied to Development of Advanced Oxidation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts for Diesel Emission Control | Department of Energy Rational Catalyst Design Applied to Development of Advanced Oxidation Catalysts for Diesel Emission Control Rational Catalyst Design Applied to Development of Advanced Oxidation Catalysts for Diesel Emission Control Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and

  13. Accelerated deployment of nanostructured hydrotreating catalysts. Final CRADA Report.

    SciTech Connect (OSTI)

    Libera, J.A.; Snyder, S.W.; Mane, A.; Elam, J.W.; Cronauer, D.C.; Muntean, J.A.; Wu, T.; Miller, J.T.

    2012-08-27

    Nanomanufacturing offers an opportunity to create domestic jobs and facilitate economic growth. In response to this need, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy issued a Research Call to develop nanomanufacturing capabilities at the National Laboratories. High performance catalysts represent a unique opportunity to deploy nanomanufacturing technologies. Re-refining of used lube oil offers an opportunity to create manufacturing jobs and decrease dependence on imported petroleum. Improved catalysts are required to produce a better quality product, decrease environmental impact, extend catalyst life, and improve overall economics of lube oil re-refining. Argonne National Laboratory (Argonne) in cooperation with Universal Lubricants, Inc. (ULI) and Chemical Engineering Partners (CEP) have carried out a Cooperative Research and Development Agreement (CRADA) to prepare nanostructured hydrotreating catalysts using atomic layer deposition (ALD) to exhibit superior performance for the re-refining of used lube oil. We investigated the upgrading of recycled lube oil by hydrogenation using commercial, synthetically-modified commercial catalysts, and synthesized catalysts. A down-flow (trickle bed) catalytic unit was used for the hydrogenation experiments. In addition to carrying out elemental analyses of the various feed and product fractions, characterization was undertaken using H{sup 1} and C{sup 13} NMR. Initially commercial were evaluated. Second these commercial catalysts were promoted with precious metals using atomic layer deposition (ALD). Performance improvements were observed that declined with catalyst aging. An alternate approach was undertaken to deeply upgrade ULI product oils. Using a synthesized catalyst, much lower hydrogenation temperatures were required than commercial catalysts. Other performance improvements were also observed. The resulting lube oil fractions were of high purity even at low reaction severity. The

  14. Mixed Alcohol Synthesis Catalyst Screening

    SciTech Connect (OSTI)

    Gerber, Mark A.; White, James F.; Stevens, Don J.

    2007-09-03

    National Renewable Energy Laboratory (NREL) and Pacific Northwest National Laboratory (PNNL) are conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). PNNL is tasked with obtaining commercially available or preparing promising mixed-alcohol catalysts and screening them in a laboratory-scale reactor system. Commercially available catalysts and the most promising experimental catalysts are provided to NREL for testing using a slipstream from a pilot-scale biomass gasifier. From the standpoint of producing C2+ alcohols as the major product, it appears that the rhodium catalyst is the best choice in terms of both selectivity and space-time yield (STY). However, unless the rhodium catalyst can be improved to provide minimally acceptable STYs for commercial operation, mixed alcohol synthesis will involve significant production of other liquid coproducts. The modified Fischer-Tropsch catalyst shows the most promise for providing both an acceptable selectivity to C2+ alcohols and total liquid STY. However, further optimization of the Fischer-Tropsch catalysts to improve selectivity to higher alcohols is highly desired. Selection of a preferred catalyst will likely entail a decision on the preferred coproduct slate. No other catalysts tested appear amenable to the significant improvements needed for acceptable STYs.

  15. Designing and optimizing highly efficient grating for high-brightness laser based on spectral beam combining

    SciTech Connect (OSTI)

    Yang, Ying-Ying E-mail: yangyy@semi.ac.cn; Zhao, Ya-Ping; Wang, Li-Rong; Zhang, Ling; Lin, Xue-Chun E-mail: yangyy@semi.ac.cn

    2015-03-14

    A highly efficient nano-periodical grating is theoretically investigated for spectral beam combining (SBC) and is experimentally implemented for attaining high-brightness laser from a diode laser array. The rigorous coupled-wave analysis with the S matrix method is employed to optimize the parameters of the grating. According the optimized parameters, the grating is fabricated and plays a key role in SBC cavity. The diffraction efficiency of this grating is optimized to 95% for the output laser which is emitted from the diode laser array. The beam parameter product of 3.8 mm mrad of the diode laser array after SBC is achieved at the output power of 46.3 W. The optical-to-optical efficiency of SBC cavity is measured to be 93.5% at the maximum operating current in the experiment.

  16. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    SciTech Connect (OSTI)

    Ojeda, William de

    2010-07-31

    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally

  17. Nano Catalysts for Diesel Engine Emission Remediation

    SciTech Connect (OSTI)

    Narula, Chaitanya Kumar; Yang, Xiaofan; Debusk, Melanie Moses; Mullins, David R; Mahurin, Shannon Mark; Wu, Zili

    2012-06-01

    The objective of this project was to develop durable zeolite nanocatalysts with broader operating temperature windows to treat diesel engine emissions to enable diesel engine based equipment and vehicles to meet future regulatory requirements. A second objective was to improve hydrothermal durability of zeolite catalysts to at least 675 C. The results presented in this report show that we have successfully achieved both objectives. Since it is accepted that the first step in NO{sub x} conversion under SCR (selective catalytic reduction) conditions involves NO oxidation to NO{sub 2}, we reasoned that catalyst modification that can enhance NO oxidation at low-temperatures should facilitate NO{sub x} reduction at low temperatures. Considering that Cu-ZSM-5 is a more efficient catalyst than Fe-ZSM-5 at low-temperature, we chose to modify Cu-ZSM-5. It is important to point out that the poor low-temperature efficiency of Fe-ZSM-5 has been shown to be due to selective absorption of NH{sub 3} at low-temperatures rather than poor NO oxidation activity. In view of this, we also reasoned that an increased electron density on copper in Cu-ZSM-5 would inhibit any bonding with NH{sub 3} at low-temperatures. In addition to modified Cu-ZSM-5, we synthesized a series of new heterobimetallic zeolites, by incorporating a secondary metal cation M (Sc{sup 3+}, Fe{sup 3+}, In{sup 3+}, and La{sup 3+}) in Cu exchanged ZSM-5, zeolite-beta, and SSZ-13 zeolites under carefully controlled experimental conditions. Characterization by diffuse-reflectance ultra-violet-visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS) and electron paramagnetic resonance spectroscopy (EPR) does not permit conclusive structural determination but supports the proposal that M{sup 3+} has been incorporated in the vicinity of Cu(II). The protocols for degreening catalysts, testing under various operating conditions, and accelerated aging

  18. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOE Patents [OSTI]

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2001-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime (about 40 ps), high frequency (about 5G hz), high power bursts of low-duty factor microwaves sufficient to generate a dielectric barrier discharge and passing a gas to treated through the discharge so as to cause dissociative reduction of the exhaust gases. The invention also includes a reactor for generating the non-thermal plasma.

  19. Hydroprocessing catalyst

    SciTech Connect (OSTI)

    Clark, F.T.; Hensley, A.L. Jr.; Kukes, S.G.; Arters, D.C.

    1993-06-22

    A hydroprocessing catalyst is described comprising at least one hydrogenation metal selected from the group consisting of the Group VIB metals and the Group VIII metals deposited on an inorganic oxide support, said catalyst being characterized by a surface area of greater than about 220 m[sup 2]/g, a pore volume of 0.23-0.30 cc/g in pores greater than about 600 Angstroms, an average pore radius of about 30-70 Angstroms in pores less than about 600 Angstroms, and an incremental pore volume curve with a maximum at about 25-50 Angstroms radius.

  20. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brayton Energy's supercritical carbon dioxide (s-CO 2 ) solar receiver has the potential to significantly improve reliability, increase efficiency, and reduce costs of CSP systems. ...

  1. Enabling the Next Generation of High Efficiency Engines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Discusses challenges and opportunities for next generation internal combustion engines, and developments for further pushing the limits of engine efficiency and vehicle fuel economy

  2. Missouri Gas Energy (MGE)- Residential High Efficiency Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Missouri Gas Energy (MGE), a division of Laclede Gas Company, offers various rebates to residential customers for investing in energy efficient equipment and appliances. All individually metered...

  3. High Efficiency Microturbine Leads to Increased Market Share...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    supported microturbine research and development for a combined heat and power system that led to the commercialization of that product. Capstone increased electrical efficiency of...

  4. Building America Top Innovations 2013 Profile … High-Efficiency...

    Energy Savers [EERE]

    Comprehensive performance tests lead to affordable methods for increasing the energy efficiency of window air conditioners. Window air conditioners are an inexpensive, portable ...

  5. Carrier Selective, Passivated Contacts for High Efficiency Silicon...

    Office of Scientific and Technical Information (OSTI)

    ... Research Org: National Renewable Energy Lab. (NREL), Golden, CO (United States) Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy Solar Energy Technologies ...

  6. Carrier Selective, Passivated Contacts for High Efficiency Silicon...

    Office of Scientific and Technical Information (OSTI)

    Research Org: National Renewable Energy Lab. (NREL), Golden, CO (United States) Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy Solar Energy Technologies ...

  7. Department of Energy Lauds Highly Efficient Industrial Technology...

    Energy Savers [EERE]

    ... As part of the Administration's continued efforts to increase energy efficiency, DOE regularly works with manufacturers through its Save Energy Now assessments, where energy-saving ...

  8. Field Demonstration of High-Efficiency Ultra-Low-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Alliance Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy By: Rebecca Legett, Navigant Consulting, Inc....

  9. DOE FACT SHEET: Transition to High Efficiency Space Heating

    Broader source: Energy.gov (indexed) [DOE]

    and climate resilience objectives. DOE's Office of Energy Efficiency and Renewable Energy (EERE) released this NOTA with the goal of strengthening Champions' resilience to extreme ...

  10. High Efficiency Microturbine Leads to Increased Market Share

    Broader source: Energy.gov [DOE]

    EERE-supported microturbine research and development for a device that increased electrical efficiency of the unit from about 17%-22% to 33%.

  11. High efficiency proportional neutron detector with solid liner internal structures

    DOE Patents [OSTI]

    Kisner, Roger Allen; Holcomb, David Eugene; Brown, Gilbert M.

    2014-08-05

    A tube-style neutron detector, a panel-style neutron detector incorporating a plurality of tube-style neutron detectors, and a panel-style neutron detector including a plurality of anode wires are provided. A plurality of channels is provided in a neutron detector such that each channel has an inner surface of a coating layer including a neutron-absorbing material. A wire anode is provided at end of each channel so that electrons generated by a charged daughter particle generated by a neutron are collected to detect a neutron-matter interaction. Moderator units can be incorporated into a neutron detector to provide improved detection efficiencies and/or to determine neutron energy spectrum. Gas-based proportional response from the neutron detectors can be employed for special nuclear material (SNM) detection. This neutron detector can provide similar performance to .sup.3He-based detectors without requiring .sup.3He and without containing toxic, flammable, or high-pressure materials.

  12. High efficient ZnO nanowalnuts photocatalyst: A case study

    SciTech Connect (OSTI)

    Yan, Feng; Zhang, Siwen; Liu, Yang; Liu, Hongfeng; Qu, Fengyu; Cai, Xue; Wu, Xiang

    2014-11-15

    Highlights: • Walnut-like ZnO nanostructures are synthesized through a facile hydrothermal method. • Morphologies and microstructures of the as-obtained ZnO products were investigated. • The photocatalytic results demonstrate that methyl orange (MO) aqueous solution can be degraded over 97% after 45 min under UV light irradiation. - Abstract: Walnut-like ZnO nanostructures are successfully synthesized through a facile hydrothermal method. The structure and morphology of the as-synthesized products were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The photocatalytic properties of ZnO nanowalnuts are investigated by photodegradating several organic dyes, such as Congo red (CR), methyl orange (MO) and eosin red aqueous solutions under UV irradiation, respectively. The results demonstrate that methyl orange (MO) aqueous solution can be degraded over 97% after 45 min under UV light irradiation. In addition, eosin red and Congo red (CR) aqueous solution degradation experiments are also conducted in the same condition, respectively. It showed that ZnO nanowalnuts represent high photocatalytic activities with a degradation efficiency of 87% for CR with 115 min of irradiation and 97% for eosin red with 55 min of irradiation. The reported ZnO products may be promising candidates as the photocatalysts in waste water treatment.

  13. Research on stable, high-efficiency amorphous silicon multijunction modules

    SciTech Connect (OSTI)

    Ghosh, M.; DelCueto, J.: Kampas, F.; Xi, J. )

    1993-02-01

    This report describes results from the first phase of a three-phase contract for the development of stable, high-efficiency, same-band-gap, amorphous silicon (a-Si) multijunction photovoltaic (PV) modules. The program involved improving the properties of individual layers of semiconductor and non-semiconductor materials and small-area single-junction and multijunction devices, as well as the multijunction modules. The semiconductor materials research was performed on a-Si p, i, and n layers, and on microcrystalline silicon n layers. These were deposited using plasma-enhanced chemical vapor deposition. The non-semiconductor materials studied were tin oxide, for use as a transparent-conducting-oxide (TCO), and zinc oxide, for use as a back reflector and as a buffer layer between the TCO and the semiconductor layers. Tin oxide was deposited using atmospheric-pressure chemical vapor deposition. Zinc oxide was deposited using magnetron sputtering. The research indicated that the major challenge in the fabrication of a-Si multijunction PV modules is the contact between the two p-i-n cells. A structure that has low optical absorption but that also facilitates the recombination of electrons from the first p-i-n structure with holes from the second p-i-n structure is required. Non-semiconductor layers and a-Si semiconductor layers were tested without achieving the desired result.

  14. Metal-Oxo Catalysts for Generating Hydrogen from Water - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Metal-Oxo Catalysts for Generating Hydrogen from Water Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryScientists at Berkeley Lab have developed an inexpensive, highly efficient catalyst that can be used in the electrolysis of water to generate H2-a source of clean fuel, a reducing agent for metal ores, and a reactant used to produce hydrochloric acid

  15. Microsoft PowerPoint - 15.1130_Jeff Baker_Final Ultra-High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    130Jeff BakerFinal Ultra-High Efficiency Commercial Buildings Microsoft PowerPoint - 15.1130Jeff BakerFinal Ultra-High Efficiency Commercial Buildings PDF icon Microsoft...

  16. High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines 2010 DOE Vehicle ...

  17. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Nanoscale Chemical Imaging of a Working Catalyst Print Wednesday, 28 January 2009 00:00 The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support,

  18. Pyrochem Catalysts for Diesel Fuel Reforming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pyrochem Catalysts for Diesel Fuel Reforming Success Story Converting heavy hydrocarbons, such as diesel and coal-based fuels, into hydrogen-rich synthesis gas is a necessary step for fuel cells and other applications. The high sulfur and aromatic content of these fuels poses a major technical challenge since these components can deactivate reforming catalysts. Taking on this challenge, NETL researchers invented a novel fuel-reforming catalyst that overcomes limitations of current catalysts by

  19. Advanced Nanomaterials for High-Efficiency Solar Cells

    SciTech Connect (OSTI)

    Chen, Junhong

    2013-11-29

    Energy supply has arguably become one of the most important problems facing humankind. The exponential demand for energy is evidenced by dwindling fossil fuel supplies and record-high oil and gas prices due to global population growth and economic development. This energy shortage has significant implications to the future of our society, in addition to the greenhouse gas emission burden due to consumption of fossil fuels. Solar energy seems to be the most viable choice to meet our clean energy demand given its large scale and clean/renewable nature. However, existing methods to convert sun light into electricity are not efficient enough to become a practical alternative to fossil fuels. This DOE project aims to develop advanced hybrid nanomaterials consisting of semiconductor nanoparticles (quantum dots or QDs) supported on graphene for cost-effective solar cells with improved conversion efficiency for harvesting abundant, renewable, clean solar energy to relieve our global energy challenge. Expected outcomes of the project include new methods for low-cost manufacturing of hybrid nanostructures, systematic understanding of their properties that can be tailored for desired applications, and novel photovoltaic cells. Through this project, we have successfully synthesized a number of novel nanomaterials, including vertically-oriented graphene (VG) sheets, three-dimensional (3D) carbon nanostructures comprising few-layer graphene (FLG) sheets inherently connected with CNTs through sp{sup 2} carbons, crumpled graphene (CG)-nanocrystal hybrids, CdSe nanoparticles (NPs), CdS NPs, nanohybrids of metal nitride decorated on nitrogen-doped graphene (NG), QD-carbon nanotube (CNT) and QD-VG-CNT structures, TiO{sub 2}-CdS NPs, and reduced graphene oxide (RGO)-SnO{sub 2} NPs. We further assembled CdSe NPs onto graphene sheets and investigated physical and electronic interactions between CdSe NPs and the graphene. Finally we have demonstrated various applications of these

  20. Ultra-High Efficiency Industrial Steam Generation R&D Opportunities

    SciTech Connect (OSTI)

    none,

    2005-01-01

    The workshop report outlines the R&D priorities for the next generation of ultra-high efficiency boilers.

  1. Development of an Innovative, High-Efficiency Radon Fan | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy an Innovative, High-Efficiency Radon Fan Development of an Innovative, High-Efficiency Radon Fan Mechanical Solutions Inc. will use the latest modeling techniques, in combination with decades of experience and market leader Fantech, to produce a high-efficiency radon fan design. Source: Mechanical Solutions Inc. Mechanical Solutions Inc. will use the latest modeling techniques, in combination with decades of experience and market leader Fantech, to produce a high-efficiency radon fan

  2. EVALUATION OF A LOW FRICTION - HIGH EFFICIENCY ROLLER BEARING ENGINE

    SciTech Connect (OSTI)

    Kolarik, Robert V. II; Shattuck, Charles W.; Copper, Anthony P.

    2009-06-30

    This Low Friction (High Efficiency Roller Bearing) Engine (LFE) report presents the work done by The Timken Company to conduct a technology demonstration of the benefits of replacing hydrodynamic bearings with roller bearings in the crankshaft and camshaft assemblies of an internal combustion engine for the purpose of collecting data sufficient to prove merit. The engines in the present study have been more extensively converted to roller bearings than any previous studies (40 needle roller bearings per engine) to gain understanding of the full potential of application of bearing technology. The project plan called for comparative testing of a production vehicle which was already respected for having demonstrated low engine friction levels with a rollerized version of that engine. Testing was to include industry standard tests for friction, emissions and fuel efficiency conducted on instrumented dynamometers. Additional tests for fuel efficiency, cold start resistance and other measures of performance were to be made in the actual vehicle. Comparative measurements of noise, vibration and harshness (NVH), were planned, although any work to mitigate the suspected higher NVH level in the rollerized engine was beyond the scope of this project. Timken selected the Toyota Avalon with a 3.5L V-6 engine as the test vehicle. In an attempt to minimize cost and fabrication time, a ‘made-from’ approach was proposed in which as many parts as possible would be used or modified from production parts to create the rollerized engine. Timken commissioned its test partner, FEV Engine Technology, to do a feasibility study in which they confirmed that using such an approach was possible to meet the required dimensional restrictions and tolerances. In designing the roller bearing systems for the crank and cam trains, Timken utilized as many production engine parts as possible. The crankshafts were produced from production line forgings, which use Timken steel, modified with special

  3. Aerogel derived catalysts

    SciTech Connect (OSTI)

    Reynolds, J. G., LLNL

    1996-12-11

    Aerogels area class of colloidal materials which have high surface areas and abundant mesoporous structure. SiO{sub 2} aerogels show unique physical, optical and structural properties. When catalytic metals are incorporated in the aerogel framework, the potential exists for new and very effective catalysts for industrial processes. Three applications of these metal-containing SiO{sub 2} aerogels as catalysts are briefly reviewed in this paper--NO{sub x} reduction, volatile organic compound destruction, and partial oxidation of methane.

  4. Catalyst activator

    DOE Patents [OSTI]

    McAdon, Mark H.; Nickias, Peter N.; Marks, Tobin J.; Schwartz, David J.

    2001-01-01

    A catalyst activator particularly adapted for use in the activation of metal complexes of metals of Group 3-10 for polymerization of ethylenically unsaturated polymerizable monomers, especially olefins, comprising two Group 13 metal or metalloid atoms and a ligand structure including at least one bridging group connecting ligands on the two Group 13 metal or metalloid atoms.

  5. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer ... High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines High ...

  6. Webinar January 13: Highly Efficient Solar Thermochemical Reaction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency, converting methane and water into syngas-a mix of hydrogen and carbon monoxide-and the technology received an R&D 100 Award in 2014. As the solar energy is stored...

  7. Analyses Guided Optimization of Wide Range and High Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10sun.pdf (999.91 KB) More ...

  8. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. ... Supercritical CO2 Brayton-cycle engines have the potential to increase conversion efficiency to more ...

  9. Break-up of Pt catalyst surfaces by high CO coverage

    SciTech Connect (OSTI)

    Tao, Feng; Dag, Sefa; Wang, Lin-Wang; Liu, Zhi; Butcher, Derek; Bluhm, Henrik; Salmeron, Miquel; Somorjai, Gabor

    2009-09-16

    Stepped Platinum surfaces were found to undergo extensive and reversible restructuring when exposed to CO at pressures above 0.1 Torr. This radically new and previously unknown restructuring phenomenon, has important implications for Pt based catalytic reactions. Novel Scanning Tunneling Microscopy and Photoelectron Spectroscopy techniques operating under gaseous environments near ambient pressure and temperature revealed that as the CO surface coverage approaches 100percent, the originally flat terraces of stepped Pt crystals break up into nanometer size clusters. At room temperature the crystal surface reverts to its initial flat morphology after pumping away the gas phase CO. Density Functional Theory energy calculations provide a rationale for the observations whereby the creation of increased concentrations of low coordination Pt sites at the edges of the formed nanoclusters relieves the strong CO-CO repulsion in the highly compressed adsorbate film.

  10. Approach towards high efficiency polycrystalline silicon solar cells

    SciTech Connect (OSTI)

    Rohatgi, A.; Sana, P.; Chen, Z.; Salami, J. )

    1992-12-01

    A combination of theoretical modelling, gettering and passivation, and cell fabrication is presented in this paper to provide guidelines for improving efficiency of polycrystalline solar cells. Theoretical modelling was performed to show that grain boundary barrier height decreases and carrier diffusion length increases with illumination level ([le]50 suns) in those polycrystalline materials where grain boundary dominates the recombination. Model calculations show that the efficiency spread due to grain boundary defect density ([ital N][sub [ital st

  11. The carburization of transition metal molybdates (MxMoO?, M= Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO? hydrogenation

    SciTech Connect (OSTI)

    Rodriguez, Jose A.; Xu, Wenqian; Ramirez, Pedro J.; Stachiola, Dario; Brito, Joaquin L.

    2015-05-06

    A new approach has been tested for the preparation of metal/Mo?C catalysts using mixed-metal oxide molybdates as precursors. Synchrotron-based in situ time-resolved X-ray diffraction was used to study the reduction and carburization processes of Cu?(MoO?)?(OH)?, a-NiMoO? and CoMoO?nH?O by thermal treatment under mixtures of hydrogen and methane. In all cases, the final product was ?-Mo?C and a metal phase (Cu, Ni, or Co), but the transition sequence varied with the different metals, and it could be related to the reduction potential of the Cu?, Ni? and Co? cations inside each molybdate. The synthesized Cu/Mo?C, Ni/Mo?C and Co/Mo?C catalysts were highly active for the hydrogenation of CO?. The metal/Mo?C systems exhibited large variations in the selectivity towards methanol, methane and CnH?n?? (n > 2) hydrocarbons depending on the nature of the supported metal and its ability to cleave C-O bonds. Cu/Mo?C displayed a high selectivity for CO and methanol production. Ni/Mo?C and Co/Mo?C were the most active catalysts for the activation and full decomposition of CO?, showing high selectivity for the production of methane (Ni case) and CnH?n?? (n > 2) hydrocarbons (Co case).

  12. All-metal metamaterial slow-wave structure for high-power sources with high efficiency

    SciTech Connect (OSTI)

    Wang, Yanshuai; Duan, Zhaoyun Tang, Xianfeng; Wang, Zhanliang; Zhang, Yabin; Gong, Yubin; Feng, Jinjun

    2015-10-12

    In this paper, we have proposed a metamaterial (MTM) which is suitable for the compact high-power vacuum electron devices. For example, an S-band slow-wave structure (SWS) based on the all-metal MTMs has been studied by both simulation and experiment. The results show that this MTM SWS is very helpful to miniaturize the high-power vacuum electron devices and largely improve the output power and the electronic efficiency. The simulation model of an S-band MTM backward wave oscillator (BWO) is built, and the particle-in-cell simulated results are presented here: a 2.454 GHz signal is generated and its peak output power is 4.0 MW with a higher electronic efficiency of 31.5% relative to the conventional BWOs.

  13. Deactivation of methanol synthesis catalysts

    SciTech Connect (OSTI)

    Roberts, G.W.; Brown, D.M.; Hsiung, T.H.; Lewnard, J.J. (Air Products and Chemicals, Inc., Allentown, PA (United States))

    1993-08-01

    A novel methanol synthesis process, the liquid-phase methanol (LPMEOH) process, has been developed and scaled up to a nominal 380 kg/h (10 ton/day) pilot plant. The process is based on a gas-sparged slurry reactor instead of a conventional, fixed-bed reactor. The use of slurry reactors, which are essentially gradientless, greatly facilitated the interpretation and quantification of catalyst deactivation phenomena. With a poison-free, CO-rich feedstream, the rate of deactivation of the Cu/ZnO catalyst increased rapidly with temperature. At constant temperature, in the absence of poisons, the decline with time in the rate constant for methanol synthesis correlated with the loss of BET surface area. Iron carbonyl, nickel carbonyl, and carbonyl sulfide are severe and highly specific poisons for methanol-synthesis catalyst. There was a linear relationship between the catalyst activity loss and the concentration of metal or sulfur on the catalyst.

  14. SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10_alger.pdf (1.16 MB) More Documents & Publications Developments in High Efficiency Engine Technologies and an Introduction to SwRI's Dedicated EGR Concept Development

  15. High Bandgap III-V Alloys for High Efficiency Optoelectronics - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal 130221326 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search High Bandgap

  16. DEVELOPMENT OF ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    SciTech Connect (OSTI)

    Adeyinka A. Adeyiga

    2003-12-01

    Fischer-Tropsch (FT) synthesis to convert syngas (CO + H{sub 2}) derived from natural gas or coal to liquid fuels and wax is a well-established technology. For low H{sub 2} to CO ratio syngas produced from CO{sub 2} reforming of natural gas or from gasification of coal, the use of Fe catalysts is attractive because of their high water gas shift activity in addition to their high FT activity. Fe catalysts are also attractive due to their low cost and low methane selectivity. Because of the highly exothermic nature of the FT reaction, there has been a recent move away from fixed-bed reactors toward the development of slurry bubble column reactors (SBCRs) that employ 30 to 90 {micro}m catalyst particles suspended in a waxy liquid for efficient heat removal. However, the use of Fe FT catalysts in an SBCR has been problematic due to severe catalyst attrition resulting in fines that plug the filter employed to separate the catalyst from the waxy product. Fe catalysts can undergo attrition in SBCRs not only due to vigorous movement and collisions but also due to phase changes that occur during activation and reaction. The objectives of this research were to develop a better understanding of the parameters affecting attrition of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. The catalysts were prepared by co-precipitation, followed by binder addition and spray drying at 250 C in a 1 m diameter, 2 m tall spray dryer. The binder silica content was varied from 0 to 20 wt %. The results show that use of small amounts of precipitated SiO{sub 2} alone in spray-dried Fe catalysts can result in good attrition resistance. All catalysts investigated with SiO{sub 2} wt% {le} 12 produced fines less than 10 wt% during the jet cup attrition test, making them suitable for long-term use in a slurry bubble column reactor. Thus, concentration rather than type of SiO{sub 2

  17. Combined Heat and Power Systems Technology Development and Demonstration 370 kW High Efficiency Microturbine

    SciTech Connect (OSTI)

    none,

    2015-10-14

    commercialization. The low pressure spool design activity focused on an aeropath derivative of the current C200 engine. The aeropath derivative included changes to the compressor section —compressor and inducer — and to the turbine nozzle. The increased power also necessitated a larger, more powerful generator and generator controller to support the increased power requirements. These two major design changes were completed by utilizing both advanced 3D modeling and computational fluid dynamics modelling. After design, modeling, and analysis, the decision was made to acquire and integrate the components for testing. The second task of Phase I was to integrate and test the components of the low pressure spool to validate power and efficiency. Acquisition of the components for the low pressure spool was completed utilizing Capstone’s current supplier base. Utilization of Capstone’s supply base for integration of the test article would allow — if the decision was made —expedited commercialization of the product. After integration of the engine components, the engine was tested and evaluated for performance and emissions. Test data analysis confirmed that the engine met all power and efficiency requirements and did so while maintaining CARB level emissions. The emissions were met without the use of any post processing or catalyst. After testing was completed, the DOE authorized — via a milestone review — proceeding to Phase II: the development of the integrated C370 engine. The C370 high pressure spool design activity required significant changes to the C65 engine architecture. The engine required a high power density generator, completely redesigned compressor stage, turbine section, recuperator, controls architecture, and intercooler stage asThe two most critical design challenges were the turbine section (the nozzle and turbine) and the controls architecture. The design and analysis of all of the components was completed and integrated into a system model. The system

  18. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.; Ndione, P. F.

    2015-05-01

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from themore » receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiency (ηsel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies ηsel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.« less

  19. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    SciTech Connect (OSTI)

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.; Ndione, P. F.

    2015-05-01

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from the receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650C to 1000C. Selective efficiency (?sel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies ?sel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000C in environments of nitrogen and forming gas.

  20. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    SciTech Connect (OSTI)

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.; Ndione, P. F.

    2015-05-01

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from the receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiencysel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies ηsel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.

  1. High-Efficiency, Commercial Ready CdTe Solar Cells

    SciTech Connect (OSTI)

    Sites, James R.

    2015-11-19

    Colorado State’s F-PACE project explored several ways to increase the efficiency of CdTe solar cells and to better understand the device physics of those cells under study. Increases in voltage, current, and fill factor resulted in efficiencies above 17%. The three project tasks and additional studies are described in detail in the final report. Most cells studied were fabricated at Colorado State using an industry-compatible single-vacuum closed-space-sublimation (CSS) chamber for deposition of the key semiconductor layers. Additionally, some cells were supplied by First Solar for comparison purposes, and a small number of modules were supplied by Abound Solar.

  2. High Efficiency Clean Combustion for Heavy-Duty Engine | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Innovative dual mode combustion strategy enabled by variable fuel injection offers emission reduction and efficiency improvement advantages. deer08_zhang.pdf (1.34 MB) More Documents & Publications Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions Heavy Truck Engine Development & HECC Enabling High Efficiency Clean Combustion

  3. Highly efficient 6-stroke engine cycle with water injection

    DOE Patents [OSTI]

    Szybist, James P; Conklin, James C

    2012-10-23

    A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.

  4. High efficiency thin-film multiple-gap photovoltaic device

    DOE Patents [OSTI]

    Dalal, Vikram L.

    1983-01-01

    A photovoltaic device includes at least two solar cells made from Group IV elements or their alloys in the amorphous state mounted on a substrate. The outermost or first cell has a larger bandgap than the second cell. Various techniques are utilized to improve the efficiency of the device.

  5. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalystes to Poisons form High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    SciTech Connect (OSTI)

    Burton Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Janet ChakkamadathilMohandas; Wilson Shafer

    2009-09-30

    There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations.

  6. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    SciTech Connect (OSTI)

    Burton Davis; Gary Jacobs; Wenping Ma; Dennis Sparks; Khalid Azzam; Janet Chakkamadathil Mohandas; Wilson Shafer; Venkat Ramana Rao Pendyala

    2011-09-30

    There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations. In the second and third years, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H

  7. Oxygen Reduction at Very Low Overpotential on Nanoporous Ag Catalysts

    SciTech Connect (OSTI)

    Zhou, Yang; Lu, Qi; Zhuang, Zhongbin; Hutchings, Gregory S.; Kattel, Shyam; Yan, Yushan; Chen, Jingguang G.; Xiao, John Q.; Jiao, Feng

    2015-05-07

    Here we report a monolithic nanoporous Ag (np-Ag) material, synthesized using the dealloying method, as high-performance catalysts for ORR in alkaline media. As shown in Scheme 1, when there is insufficient potential input, the O2 molecules are more likely to rebound off from a planar electrode surface (i.e. bulk polycrystalline metal, films made from nanoparticles or nanowires) before they could be reduced. In contrast, they are more likely to be trapped inside the monolithic nanoporous structure, contacting with catalytic surface for multiple time, which greatly enhances the chance for them to be fully reduced. As a result, the np-Ag catalyst is able to achieve an equivalent or better ORR performance than the state-of the-art Pt/C catalyst at low overpotentials, which is most desired in electrochemical energy applications for maximizing efficiency.

  8. High-Efficiency and Stable White Organic Light-Emitting Diode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency and Stable White Organic Light-Emitting Diode Using a Single Emitter High-Efficiency and Stable White Organic Light-Emitting Diode Using a Single Emitter Lead Performer: ...

  9. Webinar: Award-Winning LEEP Campaign Sites Demonstrate Big Savings in High Efficiency Parking Lighting

    Broader source: Energy.gov [DOE]

    The Lighting Energy Efficiency in Parking (LEEP) Campaign is saving nearly 45 million kilowatt-hours and $4 million annually by upgrading its partners to high efficiency lighting in over 500,000 parking spaces.

  10. Autothermal reforming catalyst having perovskite structure

    DOE Patents [OSTI]

    Krumpel, Michael; Liu, Di-Jia

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  11. High Impact Technology Catalyst

    Broader source: Energy.gov [DOE]

    Lead Performers: -- Argonne National Laboratory (ANL) – Lemont, IL -- Lawrence Berkeley National Laboratory (LBNL) – Berkeley, CA -- National Renewable Energy Laboratory (NREL) – Golden, CO -- Oak Ridge National Laboratory (ORNL) – Oak Ridge, TN -- Pacific Northwest National Laboratory (PNNL) – Richland, WA

  12. Project Profile: High-Efficiency Thermal Energy Storage System for CSP |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Efficiency Thermal Energy Storage System for CSP Project Profile: High-Efficiency Thermal Energy Storage System for CSP -- This project is inactive -- ANL logo Argonne National Laboratory and project partner Ohio Aerospace Institute, under the National Laboratory R&D competitive funding opportunity, will design, develop, and test a prototype high-temperature and high-efficiency thermal energy storage (TES) system with rapid charging and discharging times. By

  13. Thermal Strategies for High Efficiency Thermoelectric Power Generation |

    Broader source: Energy.gov (indexed) [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_crane.pdf (64.03 KB) More Documents & Publications Phase 1 of the Advanced Collaborative Emissions Study (ACES): Highlights of Project Finding Engine Tests of an Active PM Filter Regeneration System Integrated Engine and Aftertreatment

  14. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    SciTech Connect (OSTI)

    Singer, Brett C.; Tschudi, William F.

    2009-09-08

    This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

  15. Quantum Dot Solar Cells: High Efficiency through Multiple Exciton Generation

    SciTech Connect (OSTI)

    Hanna, M. C.; Ellingson, R. J.; Beard, M.; Yu, P.; Micic, O. I.; Nozik, A. J.; c.

    2005-01-01

    Impact ionization is a process in which absorbed photons in semiconductors that are at least twice the bandgap can produce multiple electron-hole pairs. For single-bandgap photovoltaic devices, this effect produces greatly enhanced theoretical thermodynamic conversion efficiencies that range from 45-85%, depending upon solar concentration, the cell temperature, and the number of electron-hole pairs produced per photon. For quantum dots (QDs), electron-hole pairs exist as excitons. We have observed astoundingly efficient multiple exciton generation (MEG) in QDs of PbSe (bulk Eg = 0.28 eV), ranging in diameter from 3.9 to 5.7nm (Eg = 0.73, 0.82, and 0.91 eV, respectively). The effective masses of electron and holes are about equal in PbSe, and the onset for efficient MEG occurs at about three times the QD HOMO-LUMO transition (its ''bandgap''). The quantum yield rises quickly after the onset and reaches 300% at 4 x Eg (3.64 eV) for the smallest QD; this means that every QD in the sample produces three electron-hole pairs/photon.

  16. Combined UHV/high-pressure catalysis setup for depth-resolved near-surface spectroscopic characterization and catalytic testing of model catalysts

    SciTech Connect (OSTI)

    Mayr, Lukas; Kltzer, Bernhard; Penner, Simon; Rameshan, Raffael; Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin ; Rameshan, Christoph; Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/BC/01, 1060 Vienna

    2014-05-15

    An ultra-high vacuum (UHV) setup for real and inverse model catalyst preparation, depth-resolved near-surface spectroscopic characterization, and quantification of catalytic activity and selectivity under technologically relevant conditions is described. Due to the all-quartz reactor attached directly to the UHV-chamber, transfer of the catalyst for in situ testing without intermediate contact to the ambient is possible. The design of the UHV-compatible re-circulating batch reactor setup allows the study of reaction kinetics under close to technically relevant catalytic conditions up to 1273 K without contact to metallic surfaces except those of the catalyst itself. With the attached differentially pumped exchangeable evaporators and the quartz-microbalance thickness monitoring equipment, a reproducible, versatile, and standardised sample preparation is possible. For three-dimensional near-surface sample characterization, the system is equipped with a hemispherical analyser for X-ray photoelectron spectroscopy (XPS), electron-beam or X-ray-excited Auger-electron spectroscopy, and low-energy ion scattering measurements. Due the dedicated geometry of the X-ray gun (54.7, magic angle) and the rotatable sample holder, depth analysis by angle-resolved XPS measurements can be performed. Thus, by the combination of characterisation methods with different information depths, a detailed three-dimensional picture of the electronic and geometric structure of the model catalyst can be obtained. To demonstrate the capability of the described system, comparative results for depth-resolved sample characterization and catalytic testing in methanol steam reforming on PdGa and PdZn near-surface intermetallic phases are shown.

  17. Solion ion source for high-efficiency, high-throughput solar cell manufacturing

    SciTech Connect (OSTI)

    Koo, John Binns, Brant; Miller, Timothy; Krause, Stephen; Skinner, Wesley; Mullin, James

    2014-02-15

    In this paper, we introduce the Solion ion source for high-throughput solar cell doping. As the source power is increased to enable higher throughput, negative effects degrade the lifetime of the plasma chamber and the extraction electrodes. In order to improve efficiency, we have explored a wide range of electron energies and determined the conditions which best suit production. To extend the lifetime of the source we have developed an in situ cleaning method using only existing hardware. With these combinations, source life-times of >200 h for phosphorous and >100 h for boron ion beams have been achieved while maintaining 1100 cell-per-hour production.

  18. Advanced Cathode Catalysts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Cathode Catalysts and Supports for PEM Fuel Cells CARISMA: A Networking Project for High Temperature PEMFC MEA Activities in Europe Catalysis Working Group Kick-Off ...

  19. Characterization of Catalysts for Aftertreatment and Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Aftertreatment and Biomass-derived Fuels: Success Stories from the High Temperature Materials Laboratory (HTML) User Program Characterization of Catalysts for Aftertreatment...

  20. Efficient CO2 Fixation Pathways: Energy Plant: High Efficiency Photosynthetic Organisms

    SciTech Connect (OSTI)

    2012-01-01

    PETRO Project: UCLA is redesigning the carbon fixation pathways of plants to make them more efficient at capturing the energy in sunlight. Carbon fixation is the key process that plants use to convert carbon dioxide (CO2) from the atmosphere into higher energy molecules (such as sugars) using energy from the sun. UCLA is addressing the inefficiency of the process through an alternative biochemical pathway that uses 50% less energy than the pathway used by all land plants. In addition, instead of producing sugars, UCLA’s designer pathway will produce pyruvate, the precursor of choice for a wide variety of liquid fuels. Theoretically, the new biochemical pathway will allow a plant to capture 200% as much CO2 using the same amount of light. The pathways will first be tested on model photosynthetic organisms and later incorporated into other plants, thus dramatically improving the productivity of both food and fuel crops.

  1. Fabrication and analysis of high efficiency multicrystalline silicon solar cells

    SciTech Connect (OSTI)

    Rohatgi, A.; Sana, P.; Cai, L.; Doolittle, W.A.; Kamra, S.; Doshi, P.; Krygowski, T.; Crotty, G.

    1996-01-01

    A detailed investigation of quality enhancement techniques, such as plasma enhanced chemical vapor deposition (PECVD) of SiO{sub 2}/SiN coating, forming gas anneal (FGA) and Al gettering was conducted to improve the performance of cells fabricated on several promising multicrystalline silicon (mcs) materials. A large amount of hydrogen and positive charge in the PECVD SiN antireflection (AR) coating play an important role in passivating surface and bulk defects in silicon. Appropriate post-PECVD deposition anneal was found to be important in maximizing the benefit from PECVD AR coating. Low temperature anneal at 350{degree}C/20 min improves the short wavelength response due to surface passivation along with some increase in the long wavelength response due to bulk defect passivation in certain mcs materials. Post-PECVD rapid thermal anneals (RTA) in the range of 350 to 750{degree}C significantly improve the long wavelength response of certain materials such as EFG silicon. However, this comes at the expense of short wavelength response due to increased absorption in the SiN film. Electron beam induced current (EBIC) measurements revealed significant increase in the intragrain response of these cells after post-PECVD anneal. Al gettering of mcs showed a significant improvement in bulk lifetime and cell efficiency. Forming gas anneal, after phosphorus and Al diffusions, resulted in additional improvements in bulk lifetime in certain materials due to hydrogen passivation. Cells fabricated on cast mcs from Osaka Titanium Corporation (OTC) and Crystal Systems gave cell efficiencies in the range of 17 to 18{percent}. Without the appropriate gettering and passivation techniques these materials give cell efficiencies in the range of 14.5 to 15.5{percent}. {copyright} {ital 1996 American Institute of Physics.}

  2. Current-matched high-efficiency, multijunction monolithic solar cells

    DOE Patents [OSTI]

    Olson, Jerry M.; Kurtz, Sarah R.

    1993-01-01

    The efficiency of a two-junction (cascade) tandem photovoltaic device is improved by adjusting (decreasing) the top cell thickness to achieve current matching. An example of the invention was fabricated out of Ga.sub.0.52 In.sub.0.48 P and GaAs. Additional lattice-matched systems to which the invention pertains include Al.sub.x Ga.sub.1-x /GaAS (x= 0.3-0.4), GaAs/Ge and Ga.sub.y In.sub.l-y P/Ga.sub.y+0.5 In.sub.0.5-y As (0

  3. High-efficiency solar cells using HEM silicon

    SciTech Connect (OSTI)

    Khattak, C.P.; Schmid, F.; Schubert, W.K.

    1994-12-31

    Developments in Heat Exchanger Method (HEM) technology for production of multicrystalline silicon ingot production have led to growth of larger ingots (55 cm square cross section) with lower costs and reliability in production. A single reusable crucible has been used to produce 18 multicrystalline 33 cm square cross section 40 kg ingots, and capability to produce 44 cm ingots has been demonstrated. Large area solar cells of 16.3% (42 cm{sup 2}) and 15.3% (100 cm{sup 2}) efficiency have been produced without optimization of the material production and the solar cell processing.

  4. Highly Active and Stable MgAl2O4 Supported Rh and Ir Catalysts for Methane Steam Reforming: A Combined Experimental and Theoretical Study

    SciTech Connect (OSTI)

    Mei, Donghai; Glezakou, Vassiliki Alexandra; Lebarbier, Vanessa MC; Kovarik, Libor; Wan, Haiying; Albrecht, Karl O.; Gerber, Mark A.; Rousseau, Roger J.; Dagle, Robert A.

    2014-07-01

    In this work we present a combined experimental and theoretical investigation of stable MgAl2O4 spinel-supported Rh and Ir catalysts for the steam methane reforming (SMR) reaction. Firstly, catalytic performance for a series of noble metal catalysts supported on MgAl2O4 spinel was evaluated for SMR at 600-850°C. Turnover rate at 850°C follows the order: Pd > Pt > Ir > Rh > Ru > Ni. However, Rh and Ir were found to have the best combination of activity and stability for methane steam reforming in the presence of simulated biomass-derived syngas. It was found that highly dispersed ~2 nm Rh and ~1 nm Ir clusters were formed on the MgAl2O4 spinel support. Scanning Transition Electron Microscopy (STEM) images show that excellent dispersion was maintained even under challenging high temperature conditions (e.g. at 850°C in the presence of steam) while Ir and Rh catalysts supported on Al2O3 were observed to sinter at increased rates under the same conditions. These observations were further confirmed by ab initio molecular dynamics (AIMD) simulations which find that ~1 nm Rh and Ir particles (50-atom cluster) bind strongly to the MgAl2O4 surfaces via a redox process leading to a strong metal-support interaction, thus helping anchor the metal clusters and reduce the tendency to sinter. Density functional theory (DFT) calculations suggest that these supported smaller Rh and Ir particles have a lower work function than larger more bulk-like ones, which enables them to activate both water and methane more effectively than larger particles, yet have a minimal influence on the relative stability of coke precursors. In addition, theoretical mechanistic studies were used to probe the relationship between structure and reactivity. Consistent with the experimental observations, our theoretical modeling results also suggest that the small spinel-supported Ir particle catalyst is more active than the counterpart of Rh catalyst for SMR. This work was financially supported by the

  5. High Thermal Efficiency and Low Emissions with Supercritical...

    Broader source: Energy.gov (indexed) [DOE]

    Gasoline Injection-Ignition in a Light Duty Engine An Experimental Investigation of Low Octane Gasoline in Diesel Engines Low Temperature Combustion Demonstrator for High ...

  6. High-Power Batteries | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Batteries Our goal is to develop and apply a new biologically inspired, low cost, ... exceptionally high power and stability as anodes and cathodes for lithium ion batteries. ...

  7. NASA's Marshall Space Flight Center Saves Water with High-Efficiency Toilet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Urinal Program | Department of Energy NASA's Marshall Space Flight Center Saves Water with High-Efficiency Toilet and Urinal Program NASA's Marshall Space Flight Center Saves Water with High-Efficiency Toilet and Urinal Program NASA's Marshall Space Flight Center Saves Water with High-Efficiency Toilet and Urinal Program Case study details Marshall Space Flight Center's innovative replacement program for toilets and urinals by researching appropriate fixtures, demonstrating technologies,

  8. Los Alamos develops new technique for growing high-efficiency perovskite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar cells Los Alamos develops new technique for growing high-efficiency perovskite solar cells Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Los Alamos develops new technique for growing high-efficiency perovskite solar cells Researchers reveal a new solution-based hot-casting technique that allows growth of highly efficient and reproducible solar cells from large-area perovskite crystals. March 1, 2015

  9. Los Alamos develops new technique for growing high-efficiency perovskite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar cells Growing high-efficiency perovskite solar cells Los Alamos develops new technique for growing high-efficiency perovskite solar cells Researchers reveal a new solution-based hot-casting technique that allows growth of highly efficient and reproducible solar cells from large-area perovskite crystals. January 29, 2015 Scientists Aditya Mohite, left, and Wanyi Nie are perfecting a crystal production technique to improve perovskite crystal production for solar cells at Los Alamos

  10. High Efficiency Clean Combustion for Heavy-Duty Engine | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Explore advancements in engine combustion systems using high-efficiency clean combustion (HECC) techniques to minimize engine-out emissions while optimizing fuel economy. deer09_zhang.pdf (656.54 KB) More Documents & Publications Heavy Truck Engine Development & HECC High Efficiency Clean Combustion for Heavy-Duty Engine Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions

  11. Integrated process and dual-function catalyst for olefin epoxidation

    DOE Patents [OSTI]

    Zhou, Bing (Cranbury, NJ); Rueter, Michael (Plymouth Meeting, PA)

    2003-01-01

    The invention discloses a dual-functional catalyst composition and an integrated process for production of olefin epoxides including propylene oxide by catalytic reaction of hydrogen peroxide from hydrogen and oxygen with olefin feeds such as propylene. The epoxides and hydrogen peroxide are preferably produced simultaneously in situ. The dual-functional catalyst comprises noble metal crystallites with dimensions on the nanometer scale (on the order of <1 nm to 10 nm), specially dispersed on titanium silicalite substrate particles. The dual functional catalyst catalyzes both the direct reaction of hydrogen and oxygen to generate hydrogen peroxide intermediate on the noble metal catalyst surface and the reaction of the hydrogen peroxide intermediate with the propylene feed to generate propylene oxide product. Combining both these functions in a single catalyst provides a very efficient integrated process operable below the flammability limits of hydrogen and highly selective for the production of hydrogen peroxide to produce olefin oxides such as propylene oxide without formation of undesired co-products.

  12. New results of development on high efficiency high gradient superconducting rf cavities

    SciTech Connect (OSTI)

    Geng, Rongli; Li, Z.; Hao, K.; Liu, K.-X.; Zhao, H.-Y.; Adolphsen, C.

    2015-09-01

    We report on the latest results of development on high efficiency high gradient superconducting radio frequency (SRF) cavities. Several 1-cell cavities made of large-grain niobium (Nb) were built, processed and tested. Two of these cavities are of the Low Surface Field (LSF) shape. Series of tests were carried out following controlled thermal cycling. Experiments toward zero-field cooling were carried out. The best experimentally achieved results are Eacc = 41 MV/m at Q0 = 6.5×1010 at 1.4 K by a 1-cell 1.3 GHz large-grain Nb TTF shape cavity and Eacc = 49 MV/m at Q0 = 1.5×1010 at 1.8 K by a 1-cell 1.5 GHz large-grain Nb CEBAF upgrade low-loss shape cavity.

  13. Correlating High Power Conversion Efficiency of PTB7:PC71BM Inverted...

    Office of Scientific and Technical Information (OSTI)

    Cells with Nanoscale Structures Prev Next Title: Correlating High Power Conversion Efficiency of PTB7:PC71BM Inverted Organic Solar Cells with Nanoscale Structures ...

  14. Scientists Confirm Robustness of Key Component in Ultra-High-Efficiency Solar Cell (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Scientists developed and tested a new, stable 1-eV metamorphic junction for a high efficiency multijunction III-V solar cell for CPV application.

  15. Simulation of High Efficiency Clean Combustion Engines and Detailed Chemical Kinetic Mechanisms Development

    Broader source: Energy.gov [DOE]

    Discusses ongoing work exploring fuel chemistry, analysis of and improving simulation methodologies for high efficiency clean combustion regimes, and computational performance

  16. Multi-scale framework for the accelerated design of high-efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multi-scale framework for the accelerated design of high-efficiency organic photovoltaic cells Organic and hybrid organicinorganic solar cells (OSC) offer a promising low-cost...

  17. High Efficiency CdTe Ink-Based Solar Cells Using Nanocrystals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL researchers create a solution-processable "ink" to produce high-efficiency solar cells using low temperature and simple processing. Colloidal nanocrystals (NCs) provide a ...

  18. Overview oi the DOE High Efficiency Engine Technologies R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy oi the DOE High Efficiency Engine Technologies R&D Overview oi the DOE High Efficiency Engine Technologies R&D 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ace00c_gravel_2010_o.pdf (1.47 MB) More Documents & Publications Overview of the DOE High Efficiency Engine Technologies R&D Overview of the DOE High Efficiency Engine Technologies R&D Overview of the Advanced Combustion

  19. New Class of Multi-Bandgap High-Efficiency Photovoltaics Enabled...

    Office of Scientific and Technical Information (OSTI)

    New Class of Multi-Bandgap High-Efficiency Photovoltaics Enabled by Broadband Diffractive Optics Citation Details In-Document Search Title: New Class of Multi-Bandgap ...

  20. Vehicle Technologies Office Merit Review 2014: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

  1. Vehicle Technologies Office Merit Review 2015: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

  2. High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power...

    Broader source: Energy.gov (indexed) [DOE]

    Development of an Underamor 1-kW Thermoelectric Generator Waste Heat Recovery System for Military Vehicles Recent Progress in the Development of High Efficiency Thermoelectrics ...

  3. DOE Zero Energy Ready Home Low Load High Efficiency HVAC Webinar (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the DOE Zero Energy Ready Home webinar, Low Load High Efficiency HVAC, presented in May 2014.

  4. Field Demonstration of High Efficiency Ultra-Low-Temperature Laboratory Freezers

    Office of Energy Efficiency and Renewable Energy (EERE)

    Ultra-low temperature laboratory freezers (ULTs) are some of the most energy-intensive pieces of equipment in a scientific research laboratory, yet there are several barriers to user acceptance and adoption of high-efficiency ULTs. One significant barrier is a relative lack of information on ULT efficiency to help purchasers make informed decisions with respect to efficient products.

  5. High-Efficiency Solar Cells for Large-Scale Electricity Generation

    SciTech Connect (OSTI)

    Kurtz, S.; Olson, J.; Geisz, J.; Friedman, D.; McMahon, W.; Ptak, A.; Wanlass, M.; Kibbler, A.; Kramer, C.; Bertness, K.; Ward, S.; Duda, A.; Young, M.; Carapella, J.; Steiner, M.

    2008-09-26

    One strategy for helping the solar industry to grow faster is to use very high efficiency cells under concentrating optics. By using lenses or mirrors to concentrate the light, very small solar cells can be used, reducing the amount of semiconductor material and allowing use of higher efficiency cells, which are now >40% efficient.

  6. High-efficiency neutron detectors and methods of making same

    DOE Patents [OSTI]

    McGregor, Douglas S.; Klann, Raymond

    2007-01-16

    Neutron detectors, advanced detector process techniques and advanced compound film designs have greatly increased neutron-detection efficiency. One embodiment of the detectors utilizes a semiconductor wafer with a matrix of spaced cavities filled with one or more types of neutron reactive material such as 10B or 6LiF. The cavities are etched into both the front and back surfaces of the device such that the cavities from one side surround the cavities from the other side. The cavities may be etched via holes or etched slots or trenches. In another embodiment, the cavities are different-sized and the smaller cavities extend into the wafer from the lower surfaces of the larger cavities. In a third embodiment, multiple layers of different neutron-responsive material are formed on one or more sides of the wafer. The new devices operate at room temperature, are compact, rugged, and reliable in design.

  7. High-efficiency spectral purity filter for EUV lithography

    DOE Patents [OSTI]

    Chapman, Henry N.

    2006-05-23

    An asymmetric-cut multilayer diffracts EUV light. A multilayer cut at an angle has the same properties as a blazed grating, and has been demonstrated to have near-perfect performance. Instead of having to nano-fabricate a grating structure with imperfections no greater than several tens of nanometers, a thick multilayer is grown on a substrate and then cut at an inclined angle using coarse and inexpensive methods. Effective grating periods can be produced this way that are 10 to 100 times smaller than those produced today, and the diffraction efficiency of these asymmetric multilayers is higher than conventional gratings. Besides their ease of manufacture, the use of an asymmetric multilayer as a spectral purity filter does not require that the design of an EUV optical system be modified in any way, unlike the proposed use of blazed gratings for such systems.

  8. ZERH Webinar: Part 1- High Performance Plus Ultra Efficient Equals...

    Energy Savers [EERE]

    Can a home be truly affordable if low-income owners have to manage unnecessarily high expenses for energy, maintenance, and respiratory health? And is a home truly affordable if ...

  9. Activity and Stability of Nanoscale Oxygen Reduction Catalysts

    SciTech Connect (OSTI)

    Shao-Horn, Yang

    2015-07-28

    Design of highly active and stable nanoscale catalysts for electro-oxidation of small organic molecules is of great importance to the development of efficient fuel cells. The amount and instability of Pt-based catalysts in the cathode limits the cost, efficiency and lifetime of proton exchange membrane fuel cells. We developed a microscopic understanding of the factors governing activity and stability in Pt and PtM alloys. Experimental efforts were focused on probing the size and shape dependence of ORR activity of Pt-based nanoparticles supported on carbon nanotubes. A microscopic understanding of the activity was achieved by correlating voltammetry and rotating ring disk electrodes to surface atomic and electronic structures, which were elucidated predominantly by high-resolution transmission electron microscopy (HRTEM), Scanning transmission electron microscopy energy dispersive X-ray Spectroscopy (STEM-EDS) and synchrotron X-ray absorption spectroscopy (XAS).

  10. Tethered catalysts for the hydration of carbon dioxide

    DOE Patents [OSTI]

    Valdez, Carlos A; Satcher, Jr., Joe H; Aines, Roger D; Wong, Sergio E; Baker, Sarah E; Lightstone, Felice C; Stolaroff, Joshuah K

    2014-11-04

    A system is provided that substantially increases the efficiency of CO.sub.2 capture and removal by positioning a catalyst within an optimal distance from the air-liquid interface. The catalyst is positioned within the layer determined to be the highest concentration of carbon dioxide. A hydrophobic tether is attached to the catalyst and the hydrophobic tether modulates the position of the catalyst within the liquid layer containing the highest concentration of carbon dioxide.

  11. Catalysts for cleaner combustion of coal, wood and briquettes sulfur dioxide reduction options for low emission sources

    SciTech Connect (OSTI)

    Smith, P.V.

    1995-12-31

    Coal fired, low emission sources are a major factor in the air quality problems facing eastern European cities. These sources include: stoker-fired boilers which feed district heating systems and also meet local industrial steam demand, hand-fired boilers which provide heat for one building or a small group of buildings, and masonary tile stoves which heat individual rooms. Global Environmental Systems is marketing through Global Environmental Systems of Polane, Inc. catalysts to improve the combustion of coal, wood or fuel oils in these combustion systems. PCCL-II Combustion Catalysts promotes more complete combustion, reduces or eliminates slag formations, soot, corrosion and some air pollution emissions and is especially effective on high sulfur-high vanadium residual oils. Glo-Klen is a semi-dry powder continuous acting catalyst that is injected directly into the furnace of boilers by operating personnel. It is a multi-purpose catalyst that is a furnace combustion catalyst that saves fuel by increasing combustion efficiency, a cleaner of heat transfer surfaces that saves additional fuel by increasing the absorption of heat, a corrosion-inhibiting catalyst that reduces costly corrosion damage and an air pollution reducing catalyst that reduces air pollution type stack emissions. The reduction of sulfur dioxides from coal or oil-fired boilers of the hand fired stoker design and larger, can be controlled by the induction of the Glo-Klen combustion catalyst and either hydrated lime or pulverized limestone.

  12. Influence of Ceria on the NOx Storage/Reduction Behavior of Lean NOx Trap Catalysts

    SciTech Connect (OSTI)

    Ji, Yaying; Choi, Jae-Soon; Toops, Todd J; Crocker, Dr. Mark; Naseri, Mojghan

    2008-01-01

    The effect of La2O3-stabilized ceria incorporation on the functioning of fully formulated lean NOx trap catalysts was investigated. Monolithic catalysts were prepared, corresponding to loadings of 0, 50 and 100 g CeO2/L, together with a catalyst containing 100 g/L of ceria-zirconia (Ce0.7Zr0.3O2). Loadings of the other main components (Pt, Rh and BaO) were held constant. Catalyst evaluation was performed on a bench flow reactor under simulated diesel exhaust conditions, employing NOx storage/reduction cycles. NOx storage efficiency in the temperature range 150-350 C was observed to increase with ceria loading, resulting in higher NOx conversion levels. At 150 C, high rich phase NOx slip was observed for all of the catalysts, resulting from an imbalance in the rates of nitrate decomposition and NOx reduction. Optimal NOx conversion was obtained in the range 250-350 C for all the catalysts, while at 450 C high rich phase NOx slip from the most highly loaded ceria-containing catalyst resulted in lower NOx conversion than for the ceria-free formulation. N2O was the major NOx reduction product at 150 C over all of the catalysts, although low NOx conversion levels limited the N2O yield. At higher temperatures N2 was the main product of NOx reduction, although NH3 formation was also observed. Selectivity to NH3 decreased with increasing ceria loading, indicating that NH3 is consumed by reaction with stored oxygen in the rear of the catalyst.

  13. New Developments in Titania-Based Catalysts for Selective Catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SCR Application Volatility of Vanadia from Vanadia-Based SCR Catalysts under Accelerated Aging Conditions Progress on Acidic Zirconia Mixed Oxides for Efficient NH3-SCR Catalysis

  14. Development of Optimal Catalyst Designs and Operating Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency in Nox reduction. PDF icon p-06harold.pdf More Documents & Publications Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in ...

  15. The carburization of transition metal molybdates (MxMoO₄, M= Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO₂ hydrogenation

    SciTech Connect (OSTI)

    Rodriguez, Jose A.; Xu, Wenqian; Ramirez, Pedro J.; Stachiola, Dario; Brito, Joaquin L.

    2015-05-06

    A new approach has been tested for the preparation of metal/Mo₂C catalysts using mixed-metal oxide molybdates as precursors. Synchrotron-based in situ time-resolved X-ray diffraction was used to study the reduction and carburization processes of Cu₃(MoO₄)₂(OH)₂, a-NiMoO₄ and CoMoO₄•nH₂O by thermal treatment under mixtures of hydrogen and methane. In all cases, the final product was β-Mo₂C and a metal phase (Cu, Ni, or Co), but the transition sequence varied with the different metals, and it could be related to the reduction potential of the Cu²⁺, Ni²⁺ and Co²⁺ cations inside each molybdate. The synthesized Cu/Mo₂C, Ni/Mo₂C and Co/Mo₂C catalysts were highly active for the hydrogenation of CO₂. The metal/Mo₂C systems exhibited large variations in the selectivity towards methanol, methane and CnH₂n₊₂ (n > 2) hydrocarbons depending on the nature of the supported metal and its ability to cleave C-O bonds. Cu/Mo₂C displayed a high selectivity for CO and methanol production. Ni/Mo₂C and Co/Mo₂C were the most active catalysts for the activation and full decomposition of CO₂, showing high selectivity for the production of methane (Ni case) and CnH₂n₊₂ (n > 2) hydrocarbons (Co case).

  16. New Residential Water Heater Concept Promises High Efficiency, Lower Cost |

    Energy Savers [EERE]

    Students Plan Solar Energy Project New Mexico Students Plan Solar Energy Project July 14, 2010 - 5:07pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? New Mexico received $4.5 million through State Energy Program Recovery Act Grant Los Lunas High School received $300,000 to build solar energy system Renewable energy to save school $20,000 a year Engineering students at Los Lunas High School in New Mexico put their knowledge to work by scoping

  17. Clay complexes support HDS catalyst.

    SciTech Connect (OSTI)

    Marshall, C. L.; Carrado, K.; Chemical Engineering

    2000-01-01

    Hydroprocessing represents a crucial component of petroleum refining operations both in terms of environmental and economic considerations. Regulations concerning maximum amount of sulfur content of gasoline and emissions of sulfur-oxide compounds upon combustion are becoming more and more stringent. One 1994-2000 focus of Argonne National Laboratory (ANL) has been the development of catalysts for hydrodesulfurization (HDS). Typical HDS catalysts are comprised of Co-Mo sulfides or Ni-Mo sulfides on an alumina support. Modification of the pore structure of the support has generated great attention among researchers. Most desulfurization test reactions have used dibenzothiophene (DBT) as the model compound to test various configurations of support material with Co-Mo-S and Ni-Mo-S catalysts. In this testing, the desired product would be biphenyl and hydrogen sulfide (H{sub 2}S). A competing reaction creates cyclohexylbenzene by saturating one aromatic ring prior to desulfurization. Ring saturation requires more costly hydrogen and is not desirable. Fortunately, a more effective catalyst for adding hydrogen at the sulfur site with hydrogenating the aromatic rings has been found. However, this has only been tested on DBT. HDS uses various types of catalysts to add hydrogen to reduce unwanted sulfur compounds. Typically this requires expensive, high-pressure, high-temperature equipment to produce the environmentally friendly low-sulfur fuels. ANL scientists identified several new desulfurization catalysts with improved HDS activity and selectivity. From these new catalysts, it may be possible to achieve HDS processing at lower temperature and pressure. The catalysts used for HDS at ANL are various clay complexes. Natural clays have a history of use in the hydroprocessing industry since they are abundant and inexpensive. ANL's approach is to create synthetic organo-clay complexes (SOCC). An advantage of SOCCs is that the pore size and distribution can be controlled by

  18. Adaptive PCCI with Variable Orifice Injector for Low Cost High Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Diesels | Department of Energy Adaptive PCCI with Variable Orifice Injector for Low Cost High Efficiency Clean Diesels Adaptive PCCI with Variable Orifice Injector for Low Cost High Efficiency Clean Diesels Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_hou.pdf (175.38 KB)

  19. Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion can be enabled by a micro-variable circular orifice, dual mode PCCI, dew film combustion, and a novel combustion chamber design deer09_hou.pdf (158.26 KB) More Documents & Publications Adaptive PCCI with Variable Orifice Injector for Low Cost High Efficiency Clean Diesels Enabling

  20. EERE Success Story-High Efficiency Microturbine Leads to Increased Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Share | Department of Energy High Efficiency Microturbine Leads to Increased Market Share EERE Success Story-High Efficiency Microturbine Leads to Increased Market Share April 18, 2013 - 12:00am Addthis Partnering with Capstone Turbine Corporation of Chatsworth, EERE supported microturbine research and development for a combined heat and power system that led to the commercialization of that product. Capstone increased electrical efficiency of the unit from about 17%-22% to 33%, and it has

  1. Progress toward Development of a High-Efficiency Zonal Thermoelectric HVAC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System for Automotive Applications | Department of Energy toward Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Progress toward Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10_maranville.pdf (598.71 KB) More Documents & Publications Thermoelectric

  2. Power efficiency for very high temperature solar thermal cavity receivers

    DOE Patents [OSTI]

    McDougal, Allan R.; Hale, Robert R.

    1984-01-01

    This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positioned in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts infrared radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatures are attained.

  3. The carburization of transition metal molybdates (MxMoO₄, M= Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO₂ hydrogenation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rodriguez, Jose A.; Xu, Wenqian; Ramirez, Pedro J.; Stachiola, Dario; Brito, Joaquin L.

    2015-05-06

    A new approach has been tested for the preparation of metal/Mo₂C catalysts using mixed-metal oxide molybdates as precursors. Synchrotron-based in situ time-resolved X-ray diffraction was used to study the reduction and carburization processes of Cu₃(MoO₄)₂(OH)₂, a-NiMoO₄ and CoMoO₄•nH₂O by thermal treatment under mixtures of hydrogen and methane. In all cases, the final product was β-Mo₂C and a metal phase (Cu, Ni, or Co), but the transition sequence varied with the different metals, and it could be related to the reduction potential of the Cu²⁺, Ni²⁺ and Co²⁺ cations inside each molybdate. The synthesized Cu/Mo₂C, Ni/Mo₂C and Co/Mo₂C catalysts were highlymore » active for the hydrogenation of CO₂. The metal/Mo₂C systems exhibited large variations in the selectivity towards methanol, methane and CnH₂n₊₂ (n > 2) hydrocarbons depending on the nature of the supported metal and its ability to cleave C-O bonds. Cu/Mo₂C displayed a high selectivity for CO and methanol production. Ni/Mo₂C and Co/Mo₂C were the most active catalysts for the activation and full decomposition of CO₂, showing high selectivity for the production of methane (Ni case) and CnH₂n₊₂ (n > 2) hydrocarbons (Co case).« less

  4. Novel catalysts for the environmentally friendly synthesis of methyl methacrylate

    SciTech Connect (OSTI)

    Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Colberg, R.D.

    1997-11-01

    The development of a process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas can alleviate the environmental hazards associated with the current commercial MMA technology, the acetone cyanohydrin (ACH) process. A three-step syngas-based process consisted of synthesis of a propionic acid, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) to form MMA. The first two steps, propionic acid synthesis and condensation, are discussed here. The low-temperature, low-pressure process for single-step hydrocarbonylation of ethylene to propionic acid is carried out using a homogeneous iodine-promoted Mo(CO){sub 6} catalyst at pressures (30--70 atm) and temperatures (150--200 C) lower than those reported for other catalysts. Mechanistic investigations suggest that catalysis is initiated by a rate-limiting CO dissociation from Mo(CO){sub 6}. This dissociation appears to be followed by an inner electron-transfer process of an I atom from EtI to the coordinately unsaturated Mo(CO){sub 5}. This homogeneous catalyst for propionate synthesis represents the first case of an efficient carbonylation process based on Cr group metals. The condensation of formaldehyde with propionic acid is carried out by acid-base bifunctional catalysts. As a result of screening over 80 catalytic materials, group V metals supported on an amorphous silica are found to be most effective. A 20% Nb/SiO{sub 2} catalyst appears to be the most active and stable catalyst thus far. Preliminary relations among the reaction yield and catalyst properties indicate that a high surface area and a low overall surface acidity (<50 = mol of NH{sub 3}/g), with a high proportion of the acidity being weak (<350 C desorption of NH{sub 3}), are desirable. Long-term deactivation of V-Si-P, Nb-Si, and Ta-Si catalysts suggests that carbon deposition is the primary cause for activity decay, and the catalyst activity is partially restorable by oxidative regeneration.

  5. High-Tech Means High-Efficiency: The Business Case for EnergyManagement in High-Tech Industries

    SciTech Connect (OSTI)

    Shanshoian, Gary; Blazek, Michele; Naughton, Phil; Seese, RobertS.; Mills, Evan; Tschudi, William

    2005-11-15

    In the race to apply new technologies in ''high-tech'' facilities such as data centers, laboratories, and clean rooms, much emphasis has been placed on improving service, building capacity, and increasing speed. These facilities are socially and economically important, as part of the critical infrastructure for pharmaceuticals,electronics, communications, and many other sectors. With a singular focus on throughput, some important design issues can be overlooked, such as the energy efficiency of individual equipment (e.g., lasers, routers and switches) as well as the integration of high-tech equipment into the power distribution system and the building envelope. Among technology-based businesses, improving energy efficiency presents an often untapped opportunity to increase profits, enhance process control,maximize asset value, improve the work place environment, and manage a variety of business risks. Oddly enough, the adoption of energy efficiency improvements in this sector lags behind many others. As a result, millions of dollars are left on the table with each year ofoperation.

  6. A High Efficiency Rare Earth-Free Orange Emitting Phosphor

    SciTech Connect (OSTI)

    Polikarpov, Evgueni; Catalini, David; Padmaperuma, Asanga B.; Das, Partha; Lemmon, Teresa L.; Arey, Bruce W.; Fernandez, Carlos A.

    2015-04-01

    This work reports the synthesis at relatively low temperatures of a highly emissive AlN:Mn2+ emitter. Though the AlN matrix shows an emission peak at a similar position to the emission peak observed for AlN:Mn product, the Mn-containing species generates red emission by a different mechanism, which was supported by the emission life time studies. The PLQY of the AlN:Mn emitter was measured to be 82%, the highest ever reported on a RE free-based phosphor.

  7. Vehicle Technologies Office Merit Review 2016: Next Generation Three-Way Catalysts for Future, Highly Efficient Gasoline Engines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Ford at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Propulsion Materials

  8. Electrochemical catalyst recovery method

    SciTech Connect (OSTI)

    Silva, Laura J.; Bray, Lane A.

    1995-01-01

    A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.

  9. Electrochemical catalyst recovery method

    DOE Patents [OSTI]

    Silva, L.J.; Bray, L.A.

    1995-05-30

    A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.

  10. Metal/metal oxide doped oxide catalysts having high deNOx selectivity for lean NOx exhaust aftertreatment systems

    DOE Patents [OSTI]

    Park, Paul W.

    2004-03-16

    A lean NOx catalyst and method of preparing the same is disclosed. The lean NOx catalyst includes a ceramic substrate, an oxide support material, preferably .gamma.-alumina, deposited on the substrate and a metal promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium, cerium, vanadium, oxides thereof, and combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between about 80 to 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  11. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  12. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  13. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  14. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  15. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  16. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  17. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  18. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  19. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  20. Catalyst and process for hydroprocessing heavy oils

    SciTech Connect (OSTI)

    Audeh, C.A.; Yan, T.Y.

    1984-09-04

    Disclosed is a catalyst and process for making same wherein sepiolite is ion exchanged with a Group Ib, IIb, IIIb, IVb, Vb, or VIIa metal, impregnated with VIa metal and exchanged with a magnesium salt with intervening processing steps of calcining. The catalyst composition is useful in removing metals and hydroprocessing of hydrocarbon feedstocks. The catalyst can also be mixed with a high silica/alumina ratio zeolite such as sodium ZSM-5 zeolite.