National Library of Energy BETA

Sample records for highest actual demand

  1. How are flat demand charges based on the highest peak over the...

    Open Energy Info (EERE)

    How are flat demand charges based on the highest peak over the past 12 months designated in the database (LADWP does this) Home > Groups > Utility Rate Submitted by Marcroper on 11...

  2. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Form EIA-411, ""Coordinated Bulk Power Supply and Demand Program Report.""" " ","Form EIA-411 for 2008" ,"Released: February 2010" ,"Next Update: October 2010" ,"Table 3d. ...

  3. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, " ,"2005 and Projected 2006 through 2010 " ,"(Megawatts and 2005 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  4. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    6" ,"Released: February 7, 2008" ,"Next Update: October 2008" ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Megawatts and 2006 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  5. A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data

    SciTech Connect (OSTI)

    Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen

    2013-05-01

    Buildings consume more than one third of the world?s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: 1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the weather impact is greater for buildings in colder climates than warmer climates; 4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small

  6. Highest-Resolution Ribosome Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    factors. Two structures of the intact ribosome from the common bacterium Escherichia coli, determined by a Berkeley-Berlin collaboration to a resolution of 3.5 , the highest...

  7. Highest-Resolution Ribosome Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highest-Resolution Ribosome Structure Highest-Resolution Ribosome Structure Print Wednesday, 26 April 2006 00:00 The last step in converting the genetic information stored in DNA into the major functional parts of cells is protein biosynthesis. Protein synthesis occurs on the ribosome, a cellular factory found in all forms of life. In contrast to most cellular machines, the ribosome contains a functional core of RNA that is enhanced by ribosomal proteins and accessory factors. Two structures of

  8. Highest-Resolution Ribosome Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highest-Resolution Ribosome Structure Print The last step in converting the genetic information stored in DNA into the major functional parts of cells is protein biosynthesis. Protein synthesis occurs on the ribosome, a cellular factory found in all forms of life. In contrast to most cellular machines, the ribosome contains a functional core of RNA that is enhanced by ribosomal proteins and accessory factors. Two structures of the intact ribosome from the common bacterium Escherichia coli,

  9. U.S. gasoline consumption highest in 8 years

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. gasoline consumption highest in 8 years U.S. gasoline consumption this year is expected to be at the highest level since the record fuel demand seen back in 2007 as lower gasoline prices and more people finding jobs means more sales at the gasoline pump. In its new monthly forecast, the U.S. Energy Information Administration said gasoline consumption increased by 2.7% during the first eight months of 2015 and should rise by an average of 190,000 barrels per day this year to 9.1 million

  10. Demand Reduction

    Broader source: Energy.gov [DOE]

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  11. Distribute The Highest Selected Textual Recommendation (DTHSTR)

    Energy Science and Technology Software Center (OSTI)

    2012-05-01

    The DTHSTR computer code uses a set of documents as seed documents to recommend documents of interest from a large, target set of documents. The computer code provides results that show the highest recommended documents as well as the terms in common between the recommend document and the corresponding seed document that is most similar.

  12. Demand Response

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response Assessment for Eastern Interconnection Youngsun Baek, Stanton W. Hadley, Rocio Martinez, Gbadebo Oladosu, Alexander M. Smith, Fran Li, Paul Leiby and Russell Lee ...

  13. Fact #936: August 1, 2016 California Had the Highest Concentration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 1, 2016 California Had the Highest Concentration of Plug-in Vehicles Relative to Population in 2015 Fact 936: August 1, 2016 California Had the Highest Concentration of ...

  14. Savannah River Site Manager Jack Craig Wins Highest Civil Service...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savannah River Site Manager Jack Craig Wins Highest Civil Service Award Savannah River Site Manager Jack Craig Wins Highest Civil Service Award December 29, 2015 - 1:00pm Addthis ...

  15. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  16. REMEDIATE AND RESTORE GROUNDWATER TO HIGHEST BENEFICIAL USE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REMEDIATE AND RESTORE GROUNDWATER TO HIGHEST BENEFICIAL USE ■ Groundwater is to be cleaned up and restored to the highest bene cial use.* ■ Restoration should be within a reasonable time frame, commensurate with risk and Tri-Party Agreement timelines. ■ Ongoing groundwater remediation activities and review processes should be fully funded. ■ Technology development should continually be pursued to remediate and restore groundwater to highest bene cial use.* ■ The public and tribes must

  17. ORISE: Nuclear engineering degrees at highest ranges since 1980s

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rates for nuclear engineering candidates are still at highest ranges reported since 1980s Report also shows shifts in career opportunities beyond graduation in nuclear utilities ...

  18. NETL Researcher Selected to Receive Nation's Highest Award for...

    Energy Savers [EERE]

    The PECASE award is the highest honor the U.S. government can bestow on scientists or engineers in the early stages of their research careers. Dr. Ohodnicki was selected for his ...

  19. NETL Researcher Selected to Receive Nation's Highest Award for Young

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researcher Selected to Receive Nation's Highest Award for Young Scientists Pittsburgh, Pa.-Dr. Paul R. Ohodnicki, a materials scientist at the National Energy Technology Laboratory (NETL), has been named by President Obama as a recipient of the Presidential Early Career Award for Scientists and Engineers (PECASE). The PECASE award is the highest honor the U.S. government can bestow on scientists or engineers in the early stages of their research careers. Dr. Ohodnicki was selected for his

  20. Workers Complete Highest Hazard Demolition Preparations at Hanford Site |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Highest Hazard Demolition Preparations at Hanford Site Workers Complete Highest Hazard Demolition Preparations at Hanford Site July 28, 2016 - 1:20pm Addthis Employees in the Americium Recovery Facility remove piping. Employees in the Americium Recovery Facility remove piping. A rendering of the PFP complex. Demolition will start with the 236-Z (Plutonium Reclamation Facility) in green, progress to 242-Z (Americium Recovery Facility) in red, to 234-5Z (main processing

  1. New Mexico Environment Department Presents WIPP Its Highest Recognition for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Excellence | Department of Energy Environment Department Presents WIPP Its Highest Recognition for Environmental Excellence New Mexico Environment Department Presents WIPP Its Highest Recognition for Environmental Excellence April 30, 2013 - 12:00pm Addthis Media Contact Deb Gill, (575) 234-7270 U.S. DOE Carlsbad Field Office www.wipp.energy.gov CARLSBAD, N.M., April 30, 2013 - The U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) was recognized by the New

  2. NREL Theorist Recognized for Highest Citation Impact - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theorist Recognized for Highest Citation Impact October 5, 2004 Golden, Colo. - Dr. Alex Zunger, Research Fellow at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), is a co-author of one of the 100 physics papers that has the highest citation impact over the past 110 years according to a recent analysis of manuscripts that have appeared in the journal Physical Review from 1893 to 2003. Zunger's work with co-author J.P. Perdew on "Self-interaction Correction

  3. Meet the world's highest-performance single-molecule diode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meet the world's highest-performance single-molecule diode Click to share on Facebook (Opens in new window) Click to share on Twitter (Opens in new window) Click to share on Reddit (Opens in new window) Click to share on Pinterest (Opens in new window) This is the world's highest-performance single-molecule diode using a combination of gold electrodes and an ionic solution. (Image: Latha Venkataraman, Columbia University) More » Nanotubes that Assemble Themselves Discover a new way to look at

  4. Highest-weight representations of Brocherd`s algebras

    SciTech Connect (OSTI)

    Slansky, R.

    1997-01-01

    General features of highest-weight representations of Borcherd`s algebras are described. to show their typical features, several representations of Borcherd`s extensions of finite-dimensional algebras are analyzed. Then the example of the extension of affine- su(2) to a Borcherd`s algebra is examined. These algebras provide a natural way to extend a Kac-Moody algebra to include the hamiltonian and number-changing operators in a generalized symmetry structure.

  5. Three NNSA researchers receive President's highest early-career STEM

    National Nuclear Security Administration (NNSA)

    award | National Nuclear Security Administration | (NNSA) Three NNSA researchers receive President's highest early-career STEM award Thursday, May 5, 2016 - 10:35am Secretary of Energy Ernest Moniz, left, and NNSA Administrator Frank Klotz, right, join physicist Tammy Ma as she celebrates receiving a PECASE award for her work with the National Ignition Facility. Yesterday Secretary of Energy Ernest Moniz hosted a special ceremony honoring DOE's 13 recipients of the 2016 Presidential Early

  6. ORISE: Nuclear engineering degrees at highest ranges since 1980s

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORISE report shows graduation, enrollment rates for nuclear engineering candidates are still at highest ranges reported since 1980s Report also shows shifts in career opportunities beyond graduation in nuclear utilities FOR IMMEDIATE RELEASE Nov. 2, 2011 FY12-04 OAK RIDGE, Tenn.-After a one-year decline, the number of graduate and undergraduate nuclear engineering degrees earned in the United States bounced back in 2010. A recent report from the Oak Ridge Institute for Science and Education

  7. How People Actually Use Thermostats

    SciTech Connect (OSTI)

    Meier, Alan; Aragon, Cecilia; Hurwitz, Becky; Mujumdar, Dhawal; Peffer, Therese; Perry, Daniel; Pritoni, Marco

    2010-08-15

    Residential thermostats have been a key element in controlling heating and cooling systems for over sixty years. However, today's modern programmable thermostats (PTs) are complicated and difficult for users to understand, leading to errors in operation and wasted energy. Four separate tests of usability were conducted in preparation for a larger study. These tests included personal interviews, an on-line survey, photographing actual thermostat settings, and measurements of ability to accomplish four tasks related to effective use of a PT. The interviews revealed that many occupants used the PT as an on-off switch and most demonstrated little knowledge of how to operate it. The on-line survey found that 89% of the respondents rarely or never used the PT to set a weekday or weekend program. The photographic survey (in low income homes) found that only 30% of the PTs were actually programmed. In the usability test, we found that we could quantify the difference in usability of two PTs as measured in time to accomplish tasks. Users accomplished the tasks in consistently shorter times with the touchscreen unit than with buttons. None of these studies are representative of the entire population of users but, together, they illustrate the importance of improving user interfaces in PTs.

  8. FERC sees huge potential for demand response

    SciTech Connect (OSTI)

    2010-04-15

    The FERC study concludes that U.S. peak demand can be reduced by as much as 188 GW -- roughly 20 percent -- under the most aggressive scenario. More moderate -- and realistic -- scenarios produce smaller but still significant reductions in peak demand. The FERC report is quick to point out that these are estimates of the potential, not projections of what could actually be achieved. The main varieties of demand response programs include interruptible tariffs, direct load control (DLC), and a number of pricing schemes.

  9. Demand Response | Department of Energy

    Energy Savers [EERE]

    Technology Development Smart Grid Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the ...

  10. Cross-sector Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  11. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  12. Demand Response Analysis Tool

    Energy Science and Technology Software Center (OSTI)

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be usedmore » by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.« less

  13. Demand Response Analysis Tool

    SciTech Connect (OSTI)

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be used by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.

  14. Could Material Defects Actually Improve Solar Cells?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Could Material Defects Actually Improve Solar Cells? Could Material Defects Actually Improve Solar Cells? March 21, 2016 Contact: Kathy Kincade, kkincade@lbl.gov, +1 510 495 2124 NRELsolarcell Scientists at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) are using supercomputers to study what may seem paradoxical: certain defects in silicon solar cells may actually improve their performance. The findings, published January 11, 2016 in Applied Physics Letters,

  15. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Contract: DE-FE0004001 Demand Dispatch- ... ISO Independent System Operators LMP Locational Marginal Price MW Mega-watt MWh ... today My generator may come on and off ...

  16. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you...

  17. Residential Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in-home displays with controllable home area network capabilities and thermal storage devices for home heating. Goals and objectives: Reduce the City's NCP demand above...

  18. Strategies for Demand Response in Commercial Buildings

    SciTech Connect (OSTI)

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-06-20

    This paper describes strategies that can be used in commercial buildings to temporarily reduce electric load in response to electric grid emergencies in which supplies are limited or in response to high prices that would be incurred if these strategies were not employed. The demand response strategies discussed herein are based on the results of three years of automated demand response field tests in which 28 commercial facilities with an occupied area totaling over 11 million ft{sup 2} were tested. Although the demand response events in the field tests were initiated remotely and performed automatically, the strategies used could also be initiated by on-site building operators and performed manually, if desired. While energy efficiency measures can be used during normal building operations, demand response measures are transient; they are employed to produce a temporary reduction in demand. Demand response strategies achieve reductions in electric demand by temporarily reducing the level of service in facilities. Heating ventilating and air conditioning (HVAC) and lighting are the systems most commonly adjusted for demand response in commercial buildings. The goal of demand response strategies is to meet the electric shed savings targets while minimizing any negative impacts on the occupants of the buildings or the processes that they perform. Occupant complaints were minimal in the field tests. In some cases, ''reductions'' in service level actually improved occupant comfort or productivity. In other cases, permanent improvements in efficiency were discovered through the planning and implementation of ''temporary'' demand response strategies. The DR strategies that are available to a given facility are based on factors such as the type of HVAC, lighting and energy management and control systems (EMCS) installed at the site.

  19. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    which oversees electric reliability. * NERC Regional names may be found on the EIA web page for electric reliability. " ," * Regional name and function has changed from ...

  20. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Administration, Form EIA-411, ""Coordinated Bulk Power Supply Program Report.""" ,"Form EIA-411 for 2005" ,"Released: September 26, 2007" ,"Next Update: October 2007" ,"Table 3d. ...

  1. Demand Response- Policy

    Broader source: Energy.gov [DOE]

    Demand response is an electricity tariff or program established to motivate changes in electric use by end-use customers, designed to induce lower electricity use typically at times of high market prices or when grid reliability is jeopardized.

  2. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demand Dispatch-Intelligent Demand for a More Efficient Grid 10 August 2011 DOE/NETL- DE-FE0004001 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Prepared by: National Energy Technology Laboratory Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal

  3. Demand Response Dispatch Tool

    SciTech Connect (OSTI)

    2012-08-31

    The Demand Response (DR) Dispatch Tool uses price profiles to dispatch demand response resources and create load modifying profiles. These annual profiles are used as inputs to production cost models and regional planning tools (e.g., PROMOD). The tool has been effectively implemented in transmission planning studies conducted by the Western Electricity Coordinating Council via its Transmission Expansion Planning and Policy Committee. The DR Dispatch Tool can properly model the dispatch of DR resources for both reliability and economic conditions.

  4. Demand Response Dispatch Tool

    Energy Science and Technology Software Center (OSTI)

    2012-08-31

    The Demand Response (DR) Dispatch Tool uses price profiles to dispatch demand response resources and create load modifying profiles. These annual profiles are used as inputs to production cost models and regional planning tools (e.g., PROMOD). The tool has been effectively implemented in transmission planning studies conducted by the Western Electricity Coordinating Council via its Transmission Expansion Planning and Policy Committee. The DR Dispatch Tool can properly model the dispatch of DR resources for bothmore » reliability and economic conditions.« less

  5. Demand Response | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. Demand response programs are being used by electric system planners and operators as resource options for balancing supply and demand. Such programs can lower the cost of electricity in

  6. Demand Charges | Open Energy Information

    Open Energy Info (EERE)

    Demand Charges Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleDemandCharges&oldid488967" Feedback Contact needs updating Image needs...

  7. Mirant: Summary of Monitored SO2 Concentrations During Periods of Highest

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact | Department of Energy Mirant: Summary of Monitored SO2 Concentrations During Periods of Highest Impact Mirant: Summary of Monitored SO2 Concentrations During Periods of Highest Impact Docket No. EO-05-01: Tables showing a summary of monitored SO2 concentrations during periods of highest impact as well as ERMOD modeling results for SO2 scenarios. Mirant: Summary of Monitored SO2 Concentrations During Periods of Highest Impact (285.92 KB) More Documents & Publications Answer of

  8. travel-demand-modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Travel Demand Modeling for a Small sized MPO Using TRANSIMS Mohammad Sharif Ullah Champaign County Regional Planning Commission 1776 E Washington Street, Urbana, IL 61802 Phone: 217 328 3313 Ext 124 Email: This email address is being protected from spambots. You need JavaScript enabled to view it. List of Authors ================ Mohammad Sharif Ullah, Senior Transportation Engineer, CCRPC, Urbana, IL Asadur Rahman, PhD student, IIT, Chicago, IL Rita Morocoima-Black, Planning & Comm.

  9. Greater fuel diversity needed to meet growing US electricity demand

    SciTech Connect (OSTI)

    Burt, B.; Mullins, S.

    2008-01-15

    Electricity demand is growing in the USA. One way to manage the uncertainty is to diversity fuel sources. Fuel sources include coal, natural gas, nuclear and renewable energy sources. Tables show actual and planned generation projects by fuel types. 1 fig., 2 tabs.

  10. FY 2013 Real Property Deferred, Actual, and Required Maintenance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2013 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2013 DARM ...

  11. FY 2012 Real Property Deferred, Actual, and Required Maintenance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2012 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2012 DARM ...

  12. Table 13. Coal Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",999,1021,1041,1051,1056,1066,1073,1081,1087,1098,1107,1122,1121,1128,1143,1173,1201,1223 "AEO 1995",,1006,1010,1011,1016,1017,1021,1027,1033,1040,1051,1066,1076,1083,1090,1108,1122,1137 "AEO

  13. Table 22. Energy Intensity, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Intensity, Projected vs. Actual" "Projected" " (quadrillion Btu / $Billion 2005 Chained GDP)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",10.89145253,10.73335719,10.63428655,10.48440125,10.33479508,10.20669515,10.06546105,9.94541493,9.822393757,9.707148466,9.595465524,9.499032573,9.390723436,9.29474735,9.185496812,9.096176848,9.007677565,8.928276581 "AEO

  14. Demand Response Quick Assessment Tool

    Energy Science and Technology Software Center (OSTI)

    2008-12-01

    DRQAT (Demand Response Quick Assessment Tool) is the tool for assessing demand response saving potentials for large commercial buildings. This tool is based on EnergyPlus simulations of prototypical buildings and HVAC equipment. The opportunities for demand reduction and cost savings with building demand responsive controls vary tremendously with building type and location. The assessment tools will predict the energy and demand savings, the economic savings, and the thermal comfor impact for various demand responsive strategies.more » Users of the tools will be asked to enter the basic building information such as types, square footage, building envelope, orientation, utility schedule, etc. The assessment tools will then use the prototypical simulation models to calculate the energy and demand reduction potential under certain demand responsive strategies, such as precooling, zonal temperature set up, and chilled water loop and air loop set points adjustment.« less

  15. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect (OSTI)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is

  16. Fact #936: August 1, 2016 California Had the Highest Concentration of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in Vehicles Relative to Population in 2015 | Department of Energy 6: August 1, 2016 California Had the Highest Concentration of Plug-in Vehicles Relative to Population in 2015 Fact #936: August 1, 2016 California Had the Highest Concentration of Plug-in Vehicles Relative to Population in 2015 SUBSCRIBE to the Fact of the Week In 2015, there were five states with more than two plug-in vehicles (PEVs) registered per 1,000 people. California had the highest concentration of PEVs with 4.68

  17. Highest Risk Components Safely Removed From K-27 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highest Risk Components Safely Removed From K-27 Highest Risk Components Safely Removed From K-27 February 26, 2013 - 12:00pm Addthis Oak Ridge, Tenn. - Oak Ridge's EM contractor URS | CH2M Oak Ridge, LLC (UCOR) has removed the highest risk components remaining in the East Tennessee Technology Park's (ETTP) K-27 building, with the successful crane removal of six components known as NaF traps. The K-27 building is sister to the mile-long K-25 gaseous diffusion process building, which is now

  18. Nominate An Inspirational STEM Teacher for the Nation’s Highest Honors

    Broader source: Energy.gov [DOE]

    Nominations are now open for the nation’s highest honors for K-12 mathematics and science teachers. The Presidential Awards for Excellence in Mathematics and Science Teaching, or PAEMST, have been...

  19. Graphene-based Electrode Leads to Highest Capacity Lithium-Air...

    Office of Science (SC) Website

    Graphene-based Electrode Leads to Highest Capacity Lithium-Air Batteries New approach to ... The Impact This study developed a new self-assembly approach to obtain 3-dimensional (3D) ...

  20. Savannah River Site Manager Jack Craig Wins Highest Civil Service Award

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – DOE Savannah River Operations Office Manager Jack Craig recently received the nation’s highest civil service recognition, the Presidential Rank of Distinguished Executive award.

  1. Demand Response Programs, 6. edition

    SciTech Connect (OSTI)

    2007-10-15

    The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

  2. Demand Response Research Center and Open Automated Demand Response

    Broader source: Energy.gov (indexed) [DOE]

    ... Capacity Bidding Real- Dme Pricing Demand Response Opportunities: Advance Notice and Duration of Response End Use Type Modulate OnOff Max. Response Time HVAC Chiller ...

  3. New Energy Star Initiative Recognizes Cutting-Edge Products with Highest

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency | Department of Energy Star Initiative Recognizes Cutting-Edge Products with Highest Energy Efficiency New Energy Star Initiative Recognizes Cutting-Edge Products with Highest Energy Efficiency July 14, 2011 - 12:00am Addthis WASHINGTON - The U.S. Environmental Protection Agency (EPA) and U.S. Department of Energy (DOE) today are announcing for the first time products recognized as the most energy-efficient in their categories among those that have earned the Energy Star

  4. Caustic-Side Solvent Extraction: Prediction of Cesium Extraction for Actual Wastes and Actual Waste Simulants

    SciTech Connect (OSTI)

    Delmau, L.H.; Haverlock, T.J.; Sloop, F.V., Jr.; Moyer, B.A.

    2003-02-01

    This report presents the work that followed the CSSX model development completed in FY2002. The developed cesium and potassium extraction model was based on extraction data obtained from simple aqueous media. It was tested to ensure the validity of the prediction for the cesium extraction from actual waste. Compositions of the actual tank waste were obtained from the Savannah River Site personnel and were used to prepare defined simulants and to predict cesium distribution ratios using the model. It was therefore possible to compare the cesium distribution ratios obtained from the actual waste, the simulant, and the predicted values. It was determined that the predicted values agree with the measured values for the simulants. Predicted values also agreed, with three exceptions, with measured values for the tank wastes. Discrepancies were attributed in part to the uncertainty in the cation/anion balance in the actual waste composition, but likely more so to the uncertainty in the potassium concentration in the waste, given the demonstrated large competing effect of this metal on cesium extraction. It was demonstrated that the upper limit for the potassium concentration in the feed ought to not exceed 0.05 M in order to maintain suitable cesium distribution ratios.

  5. Demand Response Technology Roadmap A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    meetings and workshops convened to develop content for the Demand Response Technology Roadmap. The project team has developed this companion document in the interest of providing...

  6. DemandDirect | Open Energy Information

    Open Energy Info (EERE)

    DemandDirect Place: Woodbury, Connecticut Zip: 6798 Sector: Efficiency, Renewable Energy, Services Product: DemandDirect provides demand response, energy efficiency, load...

  7. Industrial demand side management: A status report

    SciTech Connect (OSTI)

    Hopkins, M.F.; Conger, R.L.; Foley, T.J.

    1995-05-01

    This report provides an overview of and rationale for industrial demand side management (DSM) programs. Benefits and barriers are described, and data from the Manufacturing Energy Consumption Survey are used to estimate potential energy savings in kilowatt hours. The report presents types and examples of programs and explores elements of successful programs. Two in-depth case studies (from Boise Cascade and Eli Lilly and Company) illustrate two types of effective DSM programs. Interviews with staff from state public utility commissions indicate the current thinking about the status and future of industrial DSM programs. A comprehensive bibliography is included, technical assistance programs are listed and described, and a methodology for evaluating potential or actual savings from projects is delineated.

  8. China, India demand cushions prices

    SciTech Connect (OSTI)

    Boyle, M.

    2006-11-15

    Despite the hopes of coal consumers, coal prices did not plummet in 2006 as demand stayed firm. China and India's growing economies, coupled with solid supply-demand fundamentals in North America and Europe, and highly volatile prices for alternatives are likely to keep physical coal prices from wide swings in the coming year.

  9. Paying for demand-side response at the wholesale level

    SciTech Connect (OSTI)

    Falk, Jonathan

    2010-11-15

    The recent FERC Notice of Public Rulemaking regarding the payment to demand-side resources in wholesale markets has engendered a great deal of comments including FERC's obligation to ensure just and reasonable rates in the wholesale market and criteria for what FERC should do (on grounds of economic efficiency) without any real focus on what that commitment would really mean if FERC actually pursued it. (author)

  10. CEBAF Beam Goes Over the Hump Highest-Energy Beam Ever Delivered at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab | Jefferson Lab Beam Goes Over the Hump Highest-Energy Beam Ever Delivered at Jefferson Lab CEBAF Beam Goes Over the Hump Highest-Energy Beam Ever Delivered at Jefferson Lab Late in the evening on May 7, Jefferson Lab staff successfully threaded the electron beam up the new beamline toward Hall D for the first time Late in the evening on May 7, Jefferson Lab staff successfully threaded the electron beam up the new beamline toward Hall D for the first time. NEWPORT NEWS, VA, May

  11. Demand Response for Ancillary Services

    SciTech Connect (OSTI)

    Alkadi, Nasr E; Starke, Michael R

    2013-01-01

    Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

  12. Automated Demand Response and Commissioning

    SciTech Connect (OSTI)

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-04-01

    This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

  13. FY 2012 Real Property Deferred, Actual, and Required Maintenance Reporting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirement | Department of Energy Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2012 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2012 DARM Transmittal Letter and Attachment Final.pdf (406.93 KB) More Documents & Publications FY 2013 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement Real Property Maintenance Reporting Requirement Memorandum (July 13, 2010)

  14. National Action Plan on Demand Response

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 ACTUAL FORECAST National Action Plan on Demand Response the feDeRal eneRgy RegulatoRy commission staff 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 National Action Plan on Demand Response THE FEDERAL ENERGY REGULATORY COMMISSION

  15. Honeywell Demonstrates Automated Demand Response Benefits for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers Honeywell Demonstrates Automated Demand Response Benefits for Utility, ...

  16. NETL Researcher Selected to Receive Nation’s Highest Award for Young Scientists

    Broader source: Energy.gov [DOE]

    Dr. Paul R. Ohodnicki, a materials scientist at the National Energy Technology Laboratory (NETL), has been named by President Obama as a recipient of the Presidential Early Career Award for Scientist and Engineers (PECASE). The PECASE award is the highest honor the U.S. government can bestow on scientists or engineers in the early stages of their research careers.

  17. NETL-Regional University Alliance Researcher to Receive Nation’s Highest Award for Young Scientists

    Broader source: Energy.gov [DOE]

    Dr. Brian Anderson, a research fellow of the NETL-Regional University Alliance and associate professor of chemical engineering at West Virginia University, was recognized during a special event at U.S. Department of Energy Headquarters April 14 for receiving the highest honor the U.S. government can bestow on an outstanding scientist in the early stages of his research career.

  18. Northwest Open Automated Demand Response Technology Demonstration Project

    SciTech Connect (OSTI)

    Kiliccote, Sila; Dudley, Junqiao Han; Piette, Mary Ann

    2009-08-01

    Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) performed a technology demonstration and evaluation for Bonneville Power Administration (BPA) in Seattle City Light's (SCL) service territory. This report summarizes the process and results of deploying open automated demand response (OpenADR) in Seattle area with winter morning peaking commercial buildings. The field tests were designed to evaluate the feasibility of deploying fully automated demand response (DR) in four to six sites in the winter and the savings from various building systems. The project started in November of 2008 and lasted 6 months. The methodology for the study included site recruitment, control strategy development, automation system deployment and enhancements, and evaluation of sites participation in DR test events. LBNL subcontracted McKinstry and Akuacom for this project. McKinstry assisted with recruitment, site survey collection, strategy development and overall participant and control vendor management. Akuacom established a new server and enhanced its operations to allow for scheduling winter morning day-of and day-ahead events. Each site signed a Memorandum of Agreement with SCL. SCL offered each site $3,000 for agreeing to participate in the study and an additional $1,000 for each event they participated. Each facility and their control vendor worked with LBNL and McKinstry to select and implement control strategies for DR and developed their automation based on the existing Internet connectivity and building control system. Once the DR strategies were programmed, McKinstry commissioned them before actual test events. McKinstry worked with LBNL to identify control points that can be archived at each facility. For each site LBNL collected meter data and trend logs from the energy management and control system. The communication system allowed the sites to receive day-ahead as well as day-of DR test event signals. Measurement of DR was

  19. Demand Response for Ancillary Services

    Office of Energy Efficiency and Renewable Energy (EERE)

    Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and implement a methodology to construct detailed temporal and spatial representations of demand response resources and to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to assess economic value of the realizable potential of demand response for ancillary services.

  20. Demand Response- Policy: More Information

    Broader source: Energy.gov [DOE]

    OE's commitment to ensuring non-wires options to modernize the nation's electricity delivery system includes ongoing support of a number of national and regional activities in support of demand response.

  1. Residential Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

  2. Industrial Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

  3. "Interconnection","NERC Regional Assesment Area","Net Internal Demand[1] -- Winter"

    U.S. Energy Information Administration (EIA) Indexed Site

    B Winter net internal demand, capacity resources, and capacity margins by North American Electric Reliability Corporation" "Region, 2001/2002-2014/2015 actual, 2015-2017 projected" "megawatts and percent" "Interconnection","NERC Regional Assesment Area","Net Internal Demand[1] -- Winter" ,,"Actual",,,,,,,,,,,,,,,"Projected" ,,"2001/ 2002","2002/ 2003","2003/ 2004","2004/

  4. Drivers of Future Energy Demand

    U.S. Energy Information Administration (EIA) Indexed Site

    Drivers of Future Energy Demand in China Asian Energy Demand Outlook 2014 EIA Energy Conference July 14, 2014 Valerie J. Karplus MIT Sloan School of Management 2 www.china.org.cn www.flickr.com www.wikimedia.org globalchange.mit.edu Global Climate Change Human Development Local Pollution Industrial Development & Resource Needs How to balance? 0 500 1000 1500 2000 2500 3000 3500 4000 1981 1991 2001 2011 Non-material Sectors/Other Construction Commercial consumption Residential consumption

  5. Demand Response Spinning Reserve Demonstration

    SciTech Connect (OSTI)

    Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

    2007-05-01

    The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

  6. Indications of negative evolution for the sources of the highest energy cosmic rays

    SciTech Connect (OSTI)

    Taylor, Andrew M.; Ahlers, Markus; Hooper, Dan

    2015-09-14

    Using recent measurements of the spectrum and chemical composition of the highest energy cosmic rays, we consider the sources of these particles. We find that these data strongly prefer models in which the sources of the ultra-high-energy cosmic rays inject predominantly intermediate mass nuclei, with comparatively few protons or heavy nuclei, such as iron or silicon. If the number density of sources per comoving volume does not evolve with redshift, the injected spectrum must be very hard (α≃1) in order to fit the spectrum observed from Earth. Such a hard spectral index would be surprising and difficult to accommodate theoretically. In contrast, much softer spectral indices, consistent with the predictions of Fermi acceleration (α≃2), are favored in models with negative source evolution. Furthermore with this theoretical bias, these observations thus favor models in which the sources of the highest energy cosmic rays are preferentially located within the low-redshift universe.

  7. Indications of negative evolution for the sources of the highest energy cosmic rays

    SciTech Connect (OSTI)

    Taylor, Andrew M.; Ahlers, Markus; Hooper, Dan

    2015-09-14

    Using recent measurements of the spectrum and chemical composition of the highest energy cosmic rays, we consider the sources of these particles. We find that these data strongly prefer models in which the sources of the ultra-high-energy cosmic rays inject predominantly intermediate mass nuclei, with comparatively few protons or heavy nuclei, such as iron or silicon. If the number density of sources per comoving volume does not evolve with redshift, the injected spectrum must be very hard (??1) in order to fit the spectrum observed from Earth. Such a hard spectral index would be surprising and difficult to accommodate theoretically. In contrast, much softer spectral indices, consistent with the predictions of Fermi acceleration (??2), are favored in models with negative source evolution. Furthermore with this theoretical bias, these observations thus favor models in which the sources of the highest energy cosmic rays are preferentially located within the low-redshift universe.

  8. Second highest-ranking U.S. military officer gets classified briefings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. military officer gets classified briefings Second highest-ranking U.S. military officer gets classified briefings Winnefield was at Los Alamos to receive a wide variety of classified briefings that covered the broad spectrum of national security science at the Lab. November 17, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable

  9. FY 2013 Real Property Deferred, Actual, and Required Maintenance Reporting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirement | Department of Energy Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2013 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY 2013 DARM Transmittal Letter and Attachment Final.pdf (541.36 KB) More Documents & Publications FY 2012 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement FY_09_DM_RM_AM_Reporting_Memo_and_attachment_072009.pdf Real Property Maintenance Reporting Requirement

  10. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2008 and Projected 2009 through 2013 " ,"(Megawatts and 2008 ...

  11. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2009 and Projected 2010 through 2014 " ,"(Megawatts and 2009 ...

  12. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Megawatts and 2006 ...

  13. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2007 and Projected 2008 through 2012 " ,"(Megawatts and 2007 ...

  14. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2007 and Projected 2008 through 2012 " ,"(Megawatts and 2007 ...

  15. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Megawatts and 2006 ...

  16. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, " ,"2005 and Projected 2006 through 2010 " ,"(Megawatts and 2005 Base ...

  17. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2009 and Projected 2010 through 2014 " ,"(Megawatts and 2009 ...

  18. Table 14a. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Average Electricity Prices, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars, cents per kilowatt-hour in ""dollar year"" specific to each AEO)" ...

  19. Dramatic Demand Reduction In The Desert Southwest

    SciTech Connect (OSTI)

    Boehm, Robert; Hsieh, Sean; Lee, Joon; Baghzouz, Yahia; Cross, Andrew; Chatterjee, Sarah

    2015-07-06

    adjusting settings. In a sense the customer can choose between greater comfort and greater money savings during demand response circumstances. Finally a battery application was to be considered. Initially it was thought that a large battery (probably a sodium-sulfur type) would be installed. However, after the contract was awarded, it was determined that a single, centrally-located battery system would not be appropriate for many reasons, including that with the build out plan there would not be any location to put it. The price had risen substantially since the budget for the project was put together. Also, that type of battery has to be kept hot all the time, but its use was only sought for summer operation. Hence, individual house batteries would be used, and these are discussed at the end of this report. Many aspects of the energy use for climate control in selected houses were monitored before residents moved in. This was done both to understand the magnitude of the energy flows but also to have data that could be compared to the computer simulations. The latter would be used to evaluate various aspects of our plan. It was found that good agreement existed between actual energy use and computed energy use. Hence, various studies were performed via simulations. Performance simulations showed the impact on peak energy usage between a code built house of same size and shape compared to the Villa Trieste homes with and without the PV arrays on the latter. Computations were also used to understand the effect of varying orientations of the houses in this typical housing development, including the effect of PV electrical generation. Energy conservation features of the Villa Trieste homes decreased the energy use during peak times (as well as all others), but the resulting decreased peak occurred at about the same time as the code-built houses. Consideration of the PV generation decreases the grid energy use further during daylight hours, but did not extend long enough many

  20. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  1. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  2. Indications of negative evolution for the sources of the highest energy cosmic rays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Taylor, Andrew M.; Ahlers, Markus; Hooper, Dan

    2015-09-14

    Using recent measurements of the spectrum and chemical composition of the highest energy cosmic rays, we consider the sources of these particles. We find that these data strongly prefer models in which the sources of the ultra-high-energy cosmic rays inject predominantly intermediate mass nuclei, with comparatively few protons or heavy nuclei, such as iron or silicon. If the number density of sources per comoving volume does not evolve with redshift, the injected spectrum must be very hard (α≃1) in order to fit the spectrum observed from Earth. Such a hard spectral index would be surprising and difficult to accommodate theoretically.more » In contrast, much softer spectral indices, consistent with the predictions of Fermi acceleration (α≃2), are favored in models with negative source evolution. Furthermore with this theoretical bias, these observations thus favor models in which the sources of the highest energy cosmic rays are preferentially located within the low-redshift universe.« less

  3. EIA projections of coal supply and demand

    SciTech Connect (OSTI)

    Klein, D.E.

    1989-10-23

    Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion.

  4. Fact #936: August 1, 2016 California Had the Highest Concentration of Plug-in Vehicles Relative to Population in 2015

    Broader source: Energy.gov [DOE]

    Excel file and dataset for California Had the Highest Concentration of Plug-in Vehicles Relative to Population in 2015

  5. Marketing & Driving Demand: Social Media Tools & Strategies ...

    Office of Environmental Management (EM)

    Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 (Text Version) Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 (Text...

  6. Generating Demand for Multifamily Building Upgrades | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generating Demand for Multifamily Building Upgrades Generating Demand for Multifamily Building Upgrades Better Buildings Residential Network Peer Exchange Call Series: Generating...

  7. Demand Management Institute (DMI) | Open Energy Information

    Open Energy Info (EERE)

    Demand Management Institute (DMI) Jump to: navigation, search Name: Demand Management Institute (DMI) Address: 35 Walnut Street Place: Wellesley, Massachusetts Zip: 02481 Region:...

  8. Generating Demand for Multifamily Building Upgrades | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generating Demand for Multifamily Building Upgrades Generating Demand for Multifamily Building Upgrades Better Buildings Residential Network Peer Exchange Call Series: Generating ...

  9. Projecting Electricity Demand in 2050

    SciTech Connect (OSTI)

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael C. W.

    2014-07-01

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% - 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  10. Promising Technology: Demand Control Ventilation

    Broader source: Energy.gov [DOE]

    Demand control ventilation (DCV) measures carbon dioxide concentrations in return air or other strategies to measure occupancy, and accurately matches the ventilation requirement. This system reduces ventilation when spaces are vacant or at lower than peak occupancy. When ventilation is reduced, energy savings are accrued because it is not necessary to heat, cool, or dehumidify as much outside air.

  11. Commercial Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

  12. Defect-induced discriminative modulation of the highest occupied molecular orbital energies of graphene

    SciTech Connect (OSTI)

    Yuan, Wenjuan E-mail: luojunkink@126.com; Yang, Hongping; Zhu, Jing; Luo, Jun E-mail: luojunkink@126.com

    2015-11-15

    Defects are capable of modulating various properties of graphene, and thus controlling defects is useful in the development of graphene-based devices. Here we present first-principles calculations, which reveal a new avenue for defect engineering of graphene: the modulation by defects on the highest occupied molecular orbital (HOMO) energy of a charged monolayer graphene quantum dot (GQD) is discriminative. When the charge of a GQD increases its HOMO energy also increases. Importantly, when the GQD contains one particular class of defects its HOMO energy is sometimes higher and sometimes lower than that of the corresponding GQD without any defects, but when the GQD contains another class of defects its HOMO energy is always higher or lower than that of the corresponding intact GQD as its excess charge reaches a critical value. This discriminative modulation could allow defect engineering to control secondary electron ejection in graphene, leading to a new way to develop graphene-based devices.

  13. Correlation of the highest energy cosmic rays with nearby extragalactic objects

    SciTech Connect (OSTI)

    Abraham, J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez, C.; Alvarez-Muniz, J.; Ambrosio, M.; /Balseiro Inst., San Carlos de Bariloche /Buenos Aires, CONICET /CNEA, Buenos Aires /Pierre Auger Observ. /La Plata U. /Natl. Tech. U., San Rafael /Adelaide U. /Catholic U. of Bolivia, La Paz /Bolivia U. /Rio de Janeiro, CBPF /Sao Paulo U.

    2007-11-01

    Using data collected at the Pierre Auger Observatory during the past 3.7 years, we demonstrate that there is a correlation between the arrival directions of cosmic rays with energy above {approx} 6 x 10{sup 19} eV and the positions of active galactic nuclei (AGN) lying within {approx} 75 Mpc. We reject the hypothesis of an isotropic distribution of these cosmic rays at over 99% confidence level from a prescribed a priori test. The correlation we observe is compatible with the hypothesis that the highest energy particles originate from nearby extragalactic sources whose flux has not been significantly reduced by interaction with the cosmic background radiation. AGN or objects having a similar spatial distribution are possible sources.

  14. The alchemy of demand response: turning demand into supply

    SciTech Connect (OSTI)

    Rochlin, Cliff

    2009-11-15

    Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

  15. Addressing Energy Demand through Demand Response. International Experiences and Practices

    SciTech Connect (OSTI)

    Shen, Bo; Ghatikar, Girish; Ni, Chun Chun; Dudley, Junqiao; Martin, Phil; Wikler, Greg

    2012-06-01

    Demand response (DR) is a load management tool which provides a cost-effective alternative to traditional supply-side solutions to address the growing demand during times of peak electrical load. According to the US Department of Energy (DOE), demand response reflects “changes in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized.” 1 The California Energy Commission (CEC) defines DR as “a reduction in customers’ electricity consumption over a given time interval relative to what would otherwise occur in response to a price signal, other financial incentives, or a reliability signal.” 2 This latter definition is perhaps most reflective of how DR is understood and implemented today in countries such as the US, Canada, and Australia where DR is primarily a dispatchable resource responding to signals from utilities, grid operators, and/or load aggregators (or DR providers).

  16. Regression Models for Demand Reduction based on Cluster Analysis of Load Profiles

    SciTech Connect (OSTI)

    Yamaguchi, Nobuyuki; Han, Junqiao; Ghatikar, Girish; Piette, Mary Ann; Asano, Hiroshi; Kiliccote, Sila

    2009-06-28

    This paper provides new regression models for demand reduction of Demand Response programs for the purpose of ex ante evaluation of the programs and screening for recruiting customer enrollment into the programs. The proposed regression models employ load sensitivity to outside air temperature and representative load pattern derived from cluster analysis of customer baseline load as explanatory variables. The proposed models examined their performances from the viewpoint of validity of explanatory variables and fitness of regressions, using actual load profile data of Pacific Gas and Electric Company's commercial and industrial customers who participated in the 2008 Critical Peak Pricing program including Manual and Automated Demand Response.

  17. Examining Future Global Energy Demand

    U.S. Energy Information Administration (EIA) Indexed Site

    Examining Future Global Transportation Energy Demand For EIA Energy Conference July 11, 2016 | Washington, DC By John Maples Outline * Model overview - Passenger travel - Freight travel - Energy consumption for 16 regions: * USA, Canada, Mexico/Chile, OECD Europe, Japan, S. Korea, Australia/New Zealand * Russia, Non-OECD Europe/Eurasia, China, India, Non-OECD Asia, Middle East, Africa, Brazil, Other South/Central * IEO2016 Reference case transportation projections * Preliminary scenario results

  18. Table 5. Domestic Crude Oil Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Crude Oil Production, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,201...

  19. Table 16. Total Energy Consumption, Projected vs. Actual Projected

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6. Total Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 ...

  20. Table 9. Natural Gas Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Production, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2...

  1. Table 10. Natural Gas Net Imports, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Net Imports, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,...

  2. "Table 7b. Natural Gas Price, Electric Power Sector, Actual...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Natural Gas Price, Electric Power Sector, Actual vs. Projected" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,200...

  3. Table 8. Total Natural Gas Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 19.87 20.21 20.64 20.99 ...

  4. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Average Electricity Prices, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars, cents per kilowatt-hour)" ,1993,1994,1995,1996,1997,1998,1999,2000,200...

  5. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Average Electricity Prices, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars, cents per kilowatt-hour) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 ...

  6. Retail Demand Response in Southwest Power Pool

    SciTech Connect (OSTI)

    Bharvirkar, Ranjit; Heffner, Grayson; Goldman, Charles

    2009-01-30

    among SPP members. For these entities, investment in DR is often driven by the need to reduce summer peak demand that is used to set demand charges for each distribution cooperative. o About 65-70percent of the interruptible/curtailable tariffs and DLC programs are routinely triggered based on market conditions, not just for system emergencies. Approximately, 53percent of the DR resources are available with less than two hours advance notice and 447 MW can be dispatched with less than thirty minutes notice. o Most legacy DR programs offered a reservation payment ($/kW) for participation; incentive payment levels ranged from $0.40 to $8.30/kW-month for interruptible rate tariffs and $0.30 to $4.60/kW-month for DLC programs. A few interruptible programs offered incentive payments which were explicitly linkedto actual load reductions during events; payments ranged from 2 to 40 cents/kWh for load curtailed.

  7. The highest redshift quasar at z = 7.085: A radio-quiet source

    SciTech Connect (OSTI)

    Momjian, E.; Carilli, C. L.; Walter, F.; Venemans, B. E-mail: ccarilli@nrao.edu E-mail: venemans@mpia.de

    2014-01-01

    We present 1-2 GHz Very Large Array A-configuration continuum observations on the highest redshift quasar known to date, the z = 7.085 quasar ULAS J112001.48+064124.3. The results show no radio continuum emission at the optical position of the quasar or its vicinity at a level of ?3? or 23.1 ?Jy beam{sup 1}. This 3? limit corresponds to a rest-frame 1.4 GHz luminosity density limit of L {sub ?,} {sub 1.4} {sub GHz} < 1.76 10{sup 24} W Hz{sup 1} for a spectral index of ? = 0, and L {sub ?,} {sub 1.4} {sub GHz} < 1.42 10{sup 25} W Hz{sup 1} for a spectral index of ? = 1. The rest-frame 1.4 GHz luminosity limits are L {sub rad} < 6.43 10{sup 6} L {sub ?} and L {sub rad} < 5.20 10{sup 7} L {sub ?} for ? = 0 and ? = 1, respectively. The derived limits for the ratio of the rest-frame 1.4 GHz luminosity density to the B-band optical luminosity density are R{sub 1.4}{sup ?}<0.53 and <4.30 for the above noted spectral indices, respectively. Given our upper limits on the radio continuum emission and the radio-to-optical luminosity ratio, we conclude that this quasar is radio-quiet and located at the low end of the radio-quiet distribution of high-redshift (z ? 6) quasars.

  8. SEARCHING FOR THE HIGHEST REDSHIFT SOURCES IN 250-500 {mu}m SUBMILLIMETER SURVEYS

    SciTech Connect (OSTI)

    Pope, Alexandra; Chary, Ranga-Ram

    2010-06-01

    We explore a technique for identifying the highest redshift (z>4) sources in Herschel/SPIRE and BLAST submillimeter surveys by localizing the position of the far-infrared dust peak. Just as Spitzer/IRAC was used to identify stellar 'bump' sources, the far-IR peak is also a redshift indicator; although the latter also depends on the average dust temperature. We demonstrate the wide range of allowable redshifts for a reasonable range of dust temperatures and show that it is impossible to constraint the redshift of individual objects using solely the position of the far-IR peak. By fitting spectral energy distribution models to simulated Herschel/SPIRE photometry we show the utility of radio and/or far-infrared data in breaking this degeneracy. With prior knowledge of the dust temperature distribution it is possible to obtain statistical samples of high redshift submillimeter galaxy (SMG) candidates. We apply this technique to the BLAST survey of ECDFS to constrain the number of dusty galaxies at z>4. We find 8 {+-} 2 galaxies with flux density ratios of S {sub 500}>S {sub 350}; this sets an upper limit of 17 {+-} 4 deg{sup -2} if we assume all are at z>4. This is <35 % of all 500 {mu}m-selected galaxies down to S {sub 500}>45 mJy (L {sub IR}>2 x 10{sup 13} L {sub sun} for z>4). Modeling with conventional temperature and redshift distributions estimates the percentage of these 500 {mu}m peak galaxies at z>4 to be between 10% and 85%. Our results are consistent with other estimates of the number density of very high redshift SMGs and follow the decline in the star formation rate density at z>4.

  9. STEO December 2012 - coal demand

    U.S. Energy Information Administration (EIA) Indexed Site

    coal demand seen below 1 billion tons in 2012 for fourth year in a row Coal consumption by U.S. power plants to generate electricity is expected to fall below 1 billion tons in 2012 for the fourth year in a row. Domestic coal consumption is on track to total 829 million tons this year. That's the lowest level since 1992, according to the U.S. Energy Information Administration's new monthly energy forecast. Utilities and power plant operators are choosing to burn more lower-priced natural gas

  10. Demand Response Valuation Frameworks Paper

    SciTech Connect (OSTI)

    Heffner, Grayson

    2009-02-01

    While there is general agreement that demand response (DR) is a valued component in a utility resource plan, there is a lack of consensus regarding how to value DR. Establishing the value of DR is a prerequisite to determining how much and what types of DR should be implemented, to which customers DR should be targeted, and a key determinant that drives the development of economically viable DR consumer technology. Most approaches for quantifying the value of DR focus on changes in utility system revenue requirements based on resource plans with and without DR. This ''utility centric'' approach does not assign any value to DR impacts that lower energy and capacity prices, improve reliability, lower system and network operating costs, produce better air quality, and provide improved customer choice and control. Proper valuation of these benefits requires a different basis for monetization. The review concludes that no single methodology today adequately captures the wide range of benefits and value potentially attributed to DR. To provide a more comprehensive valuation approach, current methods such as the Standard Practice Method (SPM) will most likely have to be supplemented with one or more alternative benefit-valuation approaches. This report provides an updated perspective on the DR valuation framework. It includes an introduction and four chapters that address the key elements of demand response valuation, a comprehensive literature review, and specific research recommendations.

  11. Chinese Oil Demand: Steep Incline Ahead

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Chinese Oil Demand: Steep Incline Ahead Malcolm Shealy Alacritas, Inc. April 7, 2008 Oil Demand: China, India, Japan, South Korea 0 2 4 6 8 1995 2000 2005 2010 Million BarrelsDay ...

  12. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    none,

    2010-01-01

    Summarizes existing research and discusses current practices, opportunities, and barriers to coordinating energy efficiency and demand response programs.

  13. Isotope Production in Light of Increasing Demand

    SciTech Connect (OSTI)

    Patton, B.

    2004-10-05

    This presentation is a part of the panel discussion on isotope production in light of increasing demand.

  14. Energy demand and population changes

    SciTech Connect (OSTI)

    Allen, E.L.; Edmonds, J.A.

    1980-12-01

    Since World War II, US energy demand has grown more rapidly than population, so that per capita consumption of energy was about 60% higher in 1978 than in 1947. Population growth and the expansion of per capita real incomes have led to a greater use of energy. The aging of the US population is expected to increase per capita energy consumption, despite the increase in the proportion of persons over 65, who consume less energy than employed persons. The sharp decline in the population under 18 has led to an expansion in the relative proportion of population in the prime-labor-force age groups. Employed persons are heavy users of energy. The growth of the work force and GNP is largely attributable to the growing participation of females. Another important consequence of female employment is the growth in ownership of personal automobiles. A third factor pushing up labor-force growth is the steady influx of illegal aliens.

  15. Table 4. Total Petroleum Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Petroleum Consumption, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",6449.55,6566.35,6643,6723.3,6810.9,6880.25,6956.9,7059.1,7124.8,7205.1,7296.35,7376.65,7446,7522.65,7595.65,7665,7712.45,7774.5 "AEO

  16. Table 6. Petroleum Net Imports, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Net Imports, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",2934.6,3201.05,3361.65,3504,3657.3,3737.6,3879.95,3993.1,4098.95,4212.1,4303.35,4398.25,4474.9,4540.6,4584.4,4639.15,4668.35,4672 "AEO

  17. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    SciTech Connect (OSTI)

    HERTING, D.L.

    2007-04-13

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 2224 Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cesium-137 sulfate and sodium) were exceeded in all three of the flowsheet tests that were performed.

  18. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    SciTech Connect (OSTI)

    HERTING, D.L.

    2006-10-18

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 222-S Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cs-137 sulfate, and sodium) were exceeded in all three of the flowsheet tests that were performed.

  19. The Role of Demand Response in Default Service Pricing

    SciTech Connect (OSTI)

    Barbose, Galen; Goldman, Chuck; Neenan, Bernie

    2006-03-10

    Dynamic retail electricity pricing, especially real-time pricing (RTP), has been widely heralded as a panacea for providing much-needed demand response in electricity markets. However, in designing default service for competitive retail markets, demand response often appears to be an afterthought. But that may be changing as states that initiated customer choice in the past 5-7 years reach an important juncture in retail market design. Most states with retail choice established an initial transitional period, during which utilities were required to offer a default or ''standard offer'' generation service, often at a capped or otherwise administratively-determined rate. Many retail choice states have reached, or are nearing, the end of their transitional period and several states have adopted an RTP-type default service for large commercial and industrial (C&I) customers. Are these initiatives motivated by the desire to induce greater demand response, or is RTP being called upon to serve a different role in competitive markets? Surprisingly, we found that in most cases, the primary reason for adopting RTP as the default service was not to encourage demand response, but rather to advance policy objectives related to the development of competitive retail markets. However, we also find that, if efforts are made in its design and implementation, default RTP service can also provide a solid foundation for developing price responsive demand, creating an important link between wholesale and retail market transactions. This paper, which draws from a lengthier report, describes the experience to date with default RTP in the U.S., identifying findings related to its actual and potential role as an instrument for cultivating price responsive demand [1]. For each of the five states currently with default RTP, we conducted a detailed review of the regulatory proceedings leading to its adoption. To further understand the intentions and expectations of those involved in its design

  20. BPA, Energy Northwest launch demand response pilot

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA-Energy-Northwest-launch-demand-response-pilot Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand...

  1. Reducing Logistics Footprints and Replenishment Demands: Nano...

    Office of Scientific and Technical Information (OSTI)

    Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water Treatment Citation Details In-Document Search Title: Reducing Logistics ...

  2. Reducing Logistics Footprints and Replenishment Demands: Nano...

    Office of Scientific and Technical Information (OSTI)

    Water Treatment Citation Details In-Document Search Title: Reducing Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water ...

  3. Demand Response and Energy Storage Integration Study

    Broader source: Energy.gov [DOE]

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable...

  4. Geographically Based Hydrogen Demand and Infrastructure Rollout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rollout Scenario Analysis Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for ...

  5. Demand Response Performance and Communication Strategy: AHRI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Demand Response Performance and Communication Strategy: AHRI and CEE DOE Building Technologies Office Conference NREL, Golden, Colorado, May 1, 2014 | 2 A Growing Crisis: Peak ...

  6. Demand Response - Policy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    OE's mission includes assisting states and regions in developing policies that decrease demand on existing energy infrastructure. Appropriate cost-effective demandresponse ...

  7. Energy Efficiency, Demand Response, and Volttron

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY EFFICIENCY, DEMAND RESPONSE, AND VOLTTRON Presented by Justin Sipe SEEMINGLY SIMPLE STATEMENTS Utilities need more capacity to handle growth on the grid ...

  8. Demand Response (transactional control) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Demand Response (transactional control) Pacific Northwest ...

  9. Retail Demand Response in Southwest Power Pool

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LBNL-1470E Retail Demand Response in Southwest Power Pool Ranjit Bharvirkar, Grayson Heffner and Charles Goldman Lawrence Berkeley National Laboratory Environmental Energy ...

  10. Distributed Automated Demand Response - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Distributed Automated Demand Response Lawrence Livermore ...

  11. Integration of Demand Side Management, Distributed Generation...

    Open Energy Info (EERE)

    various aspects of demand response, distributed generation, smart grid and energy storage. Annex 9 is a list of pilot programs and case studies, with links to those...

  12. Demand Response in the ERCOT Markets

    SciTech Connect (OSTI)

    Patterson, Mark

    2011-10-25

    ERCOT grid serves 85% of Texas load over 40K+ miles transmission line. Demand response: voluntary load response, load resources, controllable load resources, and emergency interruptible load service.

  13. Marketing & Driving Demand Collaborative - Social Media Tools...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Using Social Media for Long-Term Branding Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 (Text Version) Generating ...

  14. Geographically Based Hydrogen Consumer Demand and Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis Final Report M. Melendez and A. Milbrandt Technical Report NRELTP-540-40373 October 2006 NREL is operated...

  15. Fabricate-on-Demand Vacuum Insulating Glazings

    Broader source: Energy.gov [DOE]

    PPG is working to design a fabricate-on-demand process to overcome the cost and supply chain issues preventing widespread adoption of vacuum insulating glazings (VIGs).

  16. Robust Unit Commitment Considering Uncertain Demand Response

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Guodong; Tomsovic, Kevin

    2014-09-28

    Although price responsive demand response has been widely accepted as playing an important role in the reliable and economic operation of power system, the real response from demand side can be highly uncertain due to limited understanding of consumers' response to pricing signals. To model the behavior of consumers, the price elasticity of demand has been explored and utilized in both research and real practice. However, the price elasticity of demand is not precisely known and may vary greatly with operating conditions and types of customers. To accommodate the uncertainty of demand response, alternative unit commitment methods robust to themore » uncertainty of the demand response require investigation. In this paper, a robust unit commitment model to minimize the generalized social cost is proposed for the optimal unit commitment decision taking into account uncertainty of the price elasticity of demand. By optimizing the worst case under proper robust level, the unit commitment solution of the proposed model is robust against all possible realizations of the modeled uncertain demand response. Numerical simulations on the IEEE Reliability Test System show the e ectiveness of the method. Finally, compared to unit commitment with deterministic price elasticity of demand, the proposed robust model can reduce the average Locational Marginal Prices (LMPs) as well as the price volatility.« less

  17. Robust Unit Commitment Considering Uncertain Demand Response

    SciTech Connect (OSTI)

    Liu, Guodong; Tomsovic, Kevin

    2014-09-28

    Although price responsive demand response has been widely accepted as playing an important role in the reliable and economic operation of power system, the real response from demand side can be highly uncertain due to limited understanding of consumers' response to pricing signals. To model the behavior of consumers, the price elasticity of demand has been explored and utilized in both research and real practice. However, the price elasticity of demand is not precisely known and may vary greatly with operating conditions and types of customers. To accommodate the uncertainty of demand response, alternative unit commitment methods robust to the uncertainty of the demand response require investigation. In this paper, a robust unit commitment model to minimize the generalized social cost is proposed for the optimal unit commitment decision taking into account uncertainty of the price elasticity of demand. By optimizing the worst case under proper robust level, the unit commitment solution of the proposed model is robust against all possible realizations of the modeled uncertain demand response. Numerical simulations on the IEEE Reliability Test System show the e ectiveness of the method. Finally, compared to unit commitment with deterministic price elasticity of demand, the proposed robust model can reduce the average Locational Marginal Prices (LMPs) as well as the price volatility.

  18. Impacts of Demand-Side Resources on Electric Transmission Planning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts of Demand-Side Resources on Electric Transmission Planning Will demand resources such as energy efficiency (EE), demand response (DR), and distributed generation (DG) have ...

  19. Table 12. Total Coal Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Coal Consumption, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",920,928,933,938,943,948,953,958,962,967,978,990,987,992,1006,1035,1061,1079 "AEO 1995",,935,940,941,947,948,951,954,958,963,971,984,992,996,1002,1013,1025,1039 "AEO

  20. Table 12. Total Coal Consumption, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Coal Consumption, Projected vs. Actual Projected (million short tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 920 928 933 938 943 948 953 958 962 967 978 990 987 992 1006 1035 1061 1079 AEO 1995 935 940 941 947 948 951 954 958 963 971 984 992 996 1002 1013 1025 1039 AEO 1996 937 942 954 962 983 990 1004 1017 1027 1033 1046 1067 1070 1071 1074 1082 1087 1094 1103 AEO 1997 948 970 987 1003 1017 1020 1025 1034 1041

  1. Table 13. Coal Production, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production, Projected vs. Actual Projected (million short tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 999 1021 1041 1051 1056 1066 1073 1081 1087 1098 1107 1122 1121 1128 1143 1173 1201 1223 AEO 1995 1006 1010 1011 1016 1017 1021 1027 1033 1040 1051 1066 1076 1083 1090 1108 1122 1137 AEO 1996 1037 1044 1041 1045 1061 1070 1086 1100 1112 1121 1135 1156 1161 1167 1173 1184 1190 1203 1215 AEO 1997 1028 1052 1072 1088

  2. Table 15. Total Electricity Sales, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electricity Sales, Projected vs. Actual" "Projected" " (billion kilowatt-hours)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",2843,2891,2928,2962,3004,3039,3071,3112,3148,3185,3228,3263,3298,3332,3371,3406,3433,3469 "AEO 1995",,2951,2967,2983,3026,3058,3085,3108,3134,3166,3204,3248,3285,3321,3357,3396,3433,3475 "AEO

  3. Table 15. Total Electricity Sales, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electricity Sales, Projected vs. Actual Projected (billion kilowatt-hours) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2843 2891 2928 2962 3004 3039 3071 3112 3148 3185 3228 3263 3298 3332 3371 3406 3433 3469 AEO 1995 2951 2967 2983 3026 3058 3085 3108 3134 3166 3204 3248 3285 3321 3357 3396 3433 3475 AEO 1996 2973 2998 3039 3074 3106 3137 3173 3215 3262 3317 3363 3409 3454 3505 3553 3604 3660 3722 3775 AEO 1997 3075

  4. Table 4. Total Petroleum Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Petroleum Consumption, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 6450 6566 6643 6723 6811 6880 6957 7059 7125 7205 7296 7377 7446 7523 7596 7665 7712 7775 AEO 1995 6398 6544 6555 6676 6745 6822 6888 6964 7048 7147 7245 7337 7406 7472 7537 7581 7621 AEO 1996 6490 6526 6607 6709 6782 6855 6942 7008 7085 7176 7260 7329 7384 7450 7501 7545 7581 7632 7676 AEO 1997 6636 6694

  5. Table 5. Domestic Crude Oil Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Crude Oil Production, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2508 2373 2256 2161 2088 2022 1953 1891 1851 1825 1799 1781 1767 1759 1778 1789 1807 1862 AEO 1995 2402 2307 2205 2095 2037 1967 1953 1924 1916 1905 1894 1883 1887 1887 1920 1945 1967 AEO 1996 2387 2310 2248 2172 2113 2062 2011 1978 1953 1938 1916 1920 1927 1949 1971 1986 2000 2018 2055 AEO 1997 2362 2307

  6. Table 6. Petroleum Net Imports, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Net Imports, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2935 3201 3362 3504 3657 3738 3880 3993 4099 4212 4303 4398 4475 4541 4584 4639 4668 4672 AEO 1995 2953 3157 3281 3489 3610 3741 3818 3920 4000 4103 4208 4303 4362 4420 4442 4460 4460 AEO 1996 3011 3106 3219 3398 3519 3679 3807 3891 3979 4070 4165 4212 4260 4289 4303 4322 4325 4347 4344 AEO 1997 3099 3245 3497

  7. Open Automated Demand Response Dynamic Pricing Technologies and Demonstration

    SciTech Connect (OSTI)

    Ghatikar, Girish; Mathieu, Johanna L.; Piette, Mary Ann; Koch, Ed; Hennage, Dan

    2010-08-02

    This study examines the use of OpenADR communications specification, related data models, technologies, and strategies to send dynamic prices (e.g., real time prices and peak prices) and Time of Use (TOU) rates to commercial and industrial electricity customers. OpenADR v1.0 is a Web services-based flexible, open information model that has been used in California utilities' commercial automated demand response programs since 2007. We find that data models can be used to send real time prices. These same data models can also be used to support peak pricing and TOU rates. We present a data model that can accommodate all three types of rates. For demonstration purposes, the data models were generated from California Independent System Operator's real-time wholesale market prices, and a California utility's dynamic prices and TOU rates. Customers can respond to dynamic prices by either using the actual prices, or prices can be mapped into"operation modes," which can act as inputs to control systems. We present several different methods for mapping actual prices. Some of these methods were implemented in demonstration projects. The study results demonstrate show that OpenADR allows interoperability with existing/future systems/technologies and can be used within related dynamic pricing activities within Smart Grid.

  8. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  9. Demand Response Opportunities in Industrial Refrigerated Warehouses in California

    SciTech Connect (OSTI)

    Goli, Sasank; McKane, Aimee; Olsen, Daniel

    2011-06-14

    Industrial refrigerated warehouses that implemented energy efficiency measures and have centralized control systems can be excellent candidates for Automated Demand Response (Auto-DR) due to equipment synergies, and receptivity of facility managers to strategies that control energy costs without disrupting facility operations. Auto-DR utilizes OpenADR protocol for continuous and open communication signals over internet, allowing facilities to automate their Demand Response (DR). Refrigerated warehouses were selected for research because: They have significant power demand especially during utility peak periods; most processes are not sensitive to short-term (2-4 hours) lower power and DR activities are often not disruptive to facility operations; the number of processes is limited and well understood; and past experience with some DR strategies successful in commercial buildings may apply to refrigerated warehouses. This paper presents an overview of the potential for load sheds and shifts from baseline electricity use in response to DR events, along with physical configurations and operating characteristics of refrigerated warehouses. Analysis of data from two case studies and nine facilities in Pacific Gas and Electric territory, confirmed the DR abilities inherent to refrigerated warehouses but showed significant variation across facilities. Further, while load from California's refrigerated warehouses in 2008 was 360 MW with estimated DR potential of 45-90 MW, actual achieved was much less due to low participation. Efforts to overcome barriers to increased participation may include, improved marketing and recruitment of potential DR sites, better alignment and emphasis on financial benefits of participation, and use of Auto-DR to increase consistency of participation.

  10. Table 16. Total Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",88.02,89.53,90.72,91.73,92.71,93.61,94.56,95.73,96.69,97.69,98.89,100,100.79,101.7,102.7,103.6,104.3,105.23 "AEO 1995",,89.21,89.98,90.57,91.91,92.98,93.84,94.61,95.3,96.19,97.18,98.38,99.37,100.3,101.2,102.1,102.9,103.88 "AEO

  11. Table 8. Total Natural Gas Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Natural Gas Consumption, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",19.87,20.21,20.64,20.99,21.2,21.42,21.6,21.99,22.37,22.63,22.95,23.22,23.58,23.82,24.09,24.13,24.02,24.14 "AEO 1995",,20.82,20.66,20.85,21.21,21.65,21.95,22.12,22.25,22.43,22.62,22.87,23.08,23.36,23.61,24.08,24.23,24.59 "AEO

  12. Electricity demand in a developing country. [Paraguay

    SciTech Connect (OSTI)

    Westley, G.D.

    1984-08-01

    This study analyzes the residential and commercial demand for electricity in ten regions in Paraguay for 1970-1977. Models that are both linear and nonlinear in the parameters are estimated. The nonlinear model takes advantage of prior information on the nature of the appliances being utilized and simultaneously deals with the demand discontinuities caused by appliance indivisibility. Three dynamic equations, including a novel cumulative adjustment model, all indicate rapid adjustment to desired appliance stock levels. Finally, the multiproduct surplus loss obtained from an estimated demand equation is used to measure the welfare cost of power outages. 15 references.

  13. Autonomous Demand Response for Primary Frequency Regulation

    SciTech Connect (OSTI)

    Donnelly, Matt; Trudnowski, Daniel J.; Mattix, S.; Dagle, Jeffery E.

    2012-02-28

    The research documented within this report examines the use of autonomous demand response to provide primary frequency response in an interconnected power grid. The work builds on previous studies in several key areas: it uses a large realistic model (i.e., the interconnection of the western United States and Canada); it establishes a set of metrics that can be used to assess the effectiveness of autonomous demand response; and it independently adjusts various parameters associated with using autonomous demand response to assess effectiveness and to examine possible threats or vulnerabilities associated with the technology.

  14. Diagnostics on Demand | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The "Diagnostics on Demand" Infectious Disease Test Kit Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new ...

  15. SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY

    Broader source: Energy.gov [DOE]

    As a city that experiences seasonal spikes in energy demand and accompanying energy bills, San Antonio, Texas, wanted to help homeowners and businesses reduce their energy use and save on energy...

  16. Volatile coal prices reflect supply, demand uncertainties

    SciTech Connect (OSTI)

    Ryan, M.

    2004-12-15

    Coal mine owners and investors say that supply and demand are now finally in balance. But coal consumers find that both spot tonnage and new contract coal come at a much higher price.

  17. Demand Response and Energy Storage Integration Study

    Office of Energy Efficiency and Renewable Energy (EERE)

    This study is a multi-national laboratory effort to assess the potential value of demand response and energy storage to electricity systems with different penetration levels of variable renewable...

  18. Global Energy: Supply, Demand, Consequences, Opportunities

    ScienceCinema (OSTI)

    Majumdar, Arun

    2010-01-08

    July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  19. Climate policy implications for agricultural water demand

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

    2013-03-01

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved

  20. Solar in Demand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Demand Solar in Demand June 15, 2012 - 10:23am Addthis Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? A new

  1. Measuring the capacity impacts of demand response

    SciTech Connect (OSTI)

    Earle, Robert; Kahn, Edward P.; Macan, Edo

    2009-07-15

    Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

  2. Ethanol Demand in United States Gasoline Production

    SciTech Connect (OSTI)

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  3. Table 10. Natural Gas Net Imports, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Net Imports, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2.02 2.40 2.66 2.74 2.81 2.85 2.89 2.93 2.95 2.97 3.00 3.16 3.31 3.50 3.57 3.63 3.74 3.85 AEO 1995 2.46 2.54 2.80 2.87 2.87 2.89 2.90 2.90 2.92 2.95 2.97 3.00 3.03 3.19 3.35 3.51 3.60 AEO 1996 2.56 2.75 2.85 2.88 2.93 2.98 3.02 3.06 3.07 3.09 3.12 3.17 3.23 3.29 3.37 3.46 3.56 3.68 3.79 AEO 1997 2.82 2.96

  4. Table 14a. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Average Electricity Prices, Projected vs. Actual Projected Price in Constant Dollars (constant dollars, cents per kilowatt-hour in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 6.80 6.80 6.90 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20 7.20 7.20 7.30 7.30 7.40 7.50 7.60 AEO 1995 1993 6.80 6.80 6.70 6.70 6.70 6.70 6.70 6.80 6.80 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20

  5. Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Commercial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.6 AEO 1995 6.9 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0 8.0 8.1 8.2 8.2 AEO 1997 7.4 7.4 7.4 7.5 7.5 7.6 7.7 7.7 7.8 7.8 7.9 7.9

  6. Table 22. Energy Intensity, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Intensity, Projected vs. Actual Projected (quadrillion Btu / $Billion 2005 Chained GDP) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 10.9 10.7 10.6 10.5 10.3 10.2 10.1 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0 8.9 AEO 1995 10.5 10.4 10.3 10.1 10.0 9.8 9.7 9.6 9.4 9.3 9.2 9.1 9.0 8.9 8.9 8.8 8.7 AEO 1996 10.4 10.3 10.1 10.0 9.8 9.7 9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.9 8.8 8.7 8.7 8.6 8.5 AEO 1997 10.0 9.9 9.8 9.7 9.6 9.5 9.4

  7. Table 9. Natural Gas Production, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Production, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 17.71 17.68 17.84 18.12 18.25 18.43 18.58 18.93 19.28 19.51 19.80 19.92 20.13 20.18 20.38 20.35 20.16 20.19 AEO 1995 18.28 17.98 17.92 18.21 18.63 18.92 19.08 19.20 19.36 19.52 19.75 19.94 20.17 20.28 20.60 20.59 20.88 AEO 1996 18.90 19.15 19.52 19.59 19.59 19.65 19.73 19.97 20.36 20.82 21.25 21.37 21.68

  8. Refrigerated Warehouse Demand Response Strategy Guide

    SciTech Connect (OSTI)

    Scott, Doug; Castillo, Rafael; Larson, Kyle; Dobbs, Brian; Olsen, Daniel

    2015-11-01

    This guide summarizes demand response measures that can be implemented in refrigerated warehouses. In an appendix, it also addresses related energy efficiency opportunities. Reducing overall grid demand during peak periods and energy consumption has benefits for facility operators, grid operators, utility companies, and society. State wide demand response potential for the refrigerated warehouse sector in California is estimated to be over 22.1 Megawatts. Two categories of demand response strategies are described in this guide: load shifting and load shedding. Load shifting can be accomplished via pre-cooling, capacity limiting, and battery charger load management. Load shedding can be achieved by lighting reduction, demand defrost and defrost termination, infiltration reduction, and shutting down miscellaneous equipment. Estimation of the costs and benefits of demand response participation yields simple payback periods of 2-4 years. To improve demand response performance, it’s suggested to install air curtains and another form of infiltration barrier, such as a rollup door, for the passageways. Further modifications to increase efficiency of the refrigeration unit are also analyzed. A larger condenser can maintain the minimum saturated condensing temperature (SCT) for more hours of the day. Lowering the SCT reduces the compressor lift, which results in an overall increase in refrigeration system capacity and energy efficiency. Another way of saving energy in refrigerated warehouses is eliminating the use of under-floor resistance heaters. A more energy efficient alternative to resistance heaters is to utilize the heat that is being rejected from the condenser through a heat exchanger. These energy efficiency measures improve efficiency either by reducing the required electric energy input for the refrigeration system, by helping to curtail the refrigeration load on the system, or by reducing both the load and required energy input.

  9. Wireless Demand Response Controls for HVAC Systems

    SciTech Connect (OSTI)

    Federspiel, Clifford

    2009-06-30

    The objectives of this scoping study were to develop and test control software and wireless hardware that could enable closed-loop, zone-temperature-based demand response in buildings that have either pneumatic controls or legacy digital controls that cannot be used as part of a demand response automation system. We designed a SOAP client that is compatible with the Demand Response Automation Server (DRAS) being used by the IOUs in California for their CPP program, design the DR control software, investigated the use of cellular routers for connecting to the DRAS, and tested the wireless DR system with an emulator running a calibrated model of a working building. The results show that the wireless DR system can shed approximately 1.5 Watts per design CFM on the design day in a hot, inland climate in California while keeping temperatures within the limits of ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy.

  10. Centralized and Decentralized Control for Demand Response

    SciTech Connect (OSTI)

    Lu, Shuai; Samaan, Nader A.; Diao, Ruisheng; Elizondo, Marcelo A.; Jin, Chunlian; Mayhorn, Ebony T.; Zhang, Yu; Kirkham, Harold

    2011-04-29

    Demand response has been recognized as an essential element of the smart grid. Frequency response, regulation and contingency reserve functions performed traditionally by generation resources are now starting to involve demand side resources. Additional benefits from demand response include peak reduction and load shifting, which will defer new infrastructure investment and improve generator operation efficiency. Technical approaches designed to realize these functionalities can be categorized into centralized control and decentralized control, depending on where the response decision is made. This paper discusses these two control philosophies and compares their relative advantages and disadvantages in terms of delay time, predictability, complexity, and reliability. A distribution system model with detailed household loads and controls is built to demonstrate the characteristics of the two approaches. The conclusion is that the promptness and reliability of decentralized control should be combined with the predictability and simplicity of centralized control to achieve the best performance of the smart grid.

  11. International Oil Supplies and Demands. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  12. International Oil Supplies and Demands. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  13. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect (OSTI)

    Coughlin, Katie

    2014-12-01

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  14. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    SciTech Connect (OSTI)

    Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

    2014-01-06

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits

  15. Demand Responsive Lighting: A Scoping Study

    SciTech Connect (OSTI)

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-03

    The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and

  16. Tankless Demand Water Heater Basics | Department of Energy

    Energy Savers [EERE]

    Water Heating Tankless Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the ...

  17. Washington: Sustainability Training for Realtors in High Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability Training for Realtors in High Demand Washington: Sustainability Training for Realtors in High Demand March 6, 2014 - 5:50pm Addthis Demand has been high for a free ...

  18. SGDP Report Now Available: Interoperability of Demand Response...

    Energy Savers [EERE]

    SGDP Report Now Available: Interoperability of Demand Response Resources Demonstration in NY (February 2015) SGDP Report Now Available: Interoperability of Demand Response ...

  19. Using Partnerships to Drive Demand and Provide Services in Communities...

    Energy Savers [EERE]

    Partnerships to Drive Demand and Provide Services in Communities Using Partnerships to Drive Demand and Provide Services in Communities Better Buildings Neighborhood Program ...

  20. Reducing Energy Demand in Buildings Through State Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in ... More Documents & Publications Technology Performance Exchange - 2013 BTO Peer Review ...

  1. Energy Upgrade California Drives Demand From Behind the Wheel...

    Energy Savers [EERE]

    Upgrade California Drives Demand From Behind the Wheel Energy Upgrade California Drives Demand From Behind the Wheel Photo of a trailer with the Energy Upgrade California logo and ...

  2. Can Automotive Battery Recycling Help Meet Lithium Demand? |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can Automotive Battery Recycling Help Meet Lithium Demand? Title Can Automotive Battery Recycling Help Meet Lithium Demand? Publication Type Presentation Year of Publication 2013...

  3. Structuring Rebate and Incentive Programs for Sustainable Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Structuring Rebate and Incentive Programs for Sustainable Demand Structuring Rebate and Incentive Programs for Sustainable Demand Better Buildings Neighborhood Program Peer...

  4. Using Mobile Applications to Generate Customer Demand | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Mobile Applications to Generate Customer Demand Using Mobile Applications to Generate Customer Demand Better Buildings Residential Network Peer Exchange Call Series: Using...

  5. Strategies for Marketing and Driving Demand for Commercial Financing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Marketing and Driving Demand for Commercial Financing Products Strategies for Marketing and Driving Demand for Commercial Financing Products Better Buildings Neighborhood ...

  6. Demand Response and Energy Storage Integration Study - Past Workshops...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response and Energy Storage Integration Study - Past Workshops Demand Response and Energy Storage Integration Study - Past Workshops The project was initiated and informed...

  7. FERC Presendation: Demand Response as Power System Resources...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FERC Presendation: Demand Response as Power System Resources, October 29, 2010 FERC Presendation: Demand Response as Power System Resources, October 29, 2010 Federal Energy ...

  8. Demand Response and Smart Metering Policy Actions Since the Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the ...

  9. Report: Impacts of Demand-Side Resources on Electric Transmission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This report assesses the relationship between high levels of demand-side resources (including end-use efficiency, demand response, and distributed generation) and investment in new ...

  10. National Action Plan on Demand Response, June 2010 | Department...

    Energy Savers [EERE]

    Action Plan on Demand Response, June 2010 National Action Plan on Demand Response, June 2010 The Federal Energy Regulatory Commission (FERC) is required to develop the National ...

  11. Retail Demand Response in Southwest Power Pool | Department of...

    Energy Savers [EERE]

    Retail Demand Response in Southwest Power Pool Retail Demand Response in Southwest Power Pool In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) ...

  12. Implementation Proposal for the National Action Plan on Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implementation Proposal for the National Action Plan on DemandResponse - July 2011 Implementation Proposal for the National Action Plan on Demand Response - July 2011 Report to ...

  13. SGDP Report: Interoperability of Demand Response Resources Demonstrati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SGDP Report: Interoperability of Demand Response Resources Demonstration in NY (February 2015) SGDP Report: Interoperability of Demand Response Resources Demonstration in NY ...

  14. A National Forum on Demand Response: Results on What Remains...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Forum on Demand Response: Results on What Remains to Be Done to Achieve Its Potential - Measurement and Verification Working Group A National Forum on Demand Response: ...

  15. Draft Chapter 3: Demand-Side Resources | Department of Energy

    Office of Environmental Management (EM)

    Demand-Side Resources Draft Chapter 3: Demand-Side Resources Utilities in many states have been implementing energy efficiency and load management programs (collectively called ...

  16. Agreement Template for Energy Conservation and Demand Side Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agreement Template for Energy Conservation and Demand Side Management Services Agreement Template for Energy Conservation and Demand Side Management Services Template agreement ...

  17. Estimating Costs and Efficiency of Storage, Demand, and Heat...

    Energy Savers [EERE]

    Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters A water heater's energy ...

  18. Estimating Costs and Efficiency of Storage, Demand, and Heat...

    Energy Savers [EERE]

    Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters A water heater's ...

  19. Sustainable Energy Resources for Consumers (SERC) - On-Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On-Demand Tankless Water Heaters Sustainable Energy Resources for Consumers (SERC) - On-Demand Tankless Water Heaters This presentation, aimed at Sustainable Energy Resources for ...

  20. Natural Gas Infrastructure Implications of Increased Demand from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Infrastructure Implications of Increased Demand from the Electric Sector Natural Gas Infrastructure Implications of Increased Demand from the Electric Sector This ...

  1. Natural Gas Infrastructure Implications of Increased Demand from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The Intermediate and High Demand Cases differ only in their underlying assumptions about coal-fired power plant retirements. In particular, the High Demand Case, which assumes ...

  2. Energy Demand (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Growth in U.S. energy use is linked to population growth through increases in demand for housing, commercial floorspace, transportation, manufacturing, and services. This affects not only the level of energy use, but also the mix of fuels and consumption by sector.

  3. Energy technologies and their impact on demand

    SciTech Connect (OSTI)

    Drucker, H.

    1995-06-01

    Despite the uncertainties, energy demand forecasts must be made to guide government policies and public and private-sector capital investment programs. Three principles can be identified in considering long-term energy prospects. First energy demand will continue to grow, driven by population growth, economic development, and the current low per capita energy consumption in developing countries. Second, energy technology advancements alone will not solve the problem. Energy-efficient technologies, renewable resource technologies, and advanced electric power technologies will all play a major role but will not be able to keep up with the growth in world energy demand. Third, environmental concerns will limit the energy technology choices. Increasing concern for environmental protection around the world will restrict primarily large, centralized energy supply facilities. The conclusion is that energy system diversity is the only solution. The energy system must be planned with consideration of both supply and demand technologies, must not rely on a single source of energy, must take advantage of all available technologies that are specially suited to unique local conditions, must be built with long-term perspectives, and must be able to adapt to change.

  4. Indianapolis Offers a Lesson on Driving Demand

    Broader source: Energy.gov [DOE]

    Successful program managers know that understanding the factors that drive homeowners to make upgrades is critical to the widespread adoption of energy efficiency. What better place to learn about driving demand for upgrades than in Indianapolis, America's most famous driving city?

  5. AMI Communication Requirements to Implement Demand-Response: Applicability of Hybrid Spread Spectrum Wireless

    SciTech Connect (OSTI)

    Hadley, Mark D.; Clements, Samuel L.; Carroll, Thomas E.

    2011-09-30

    While holistically defining the smart grid is a challenge, one area of interest is demand-response. In 2009, the Department of Energy announced over $4 billion in grant and project funding for the Smart Grid. A significant amount of this funding was allotted to utilities for cost sharing projects to deploy Smart Grid technologies, many of whom have deployed and are deploying advanced metering infrastructure (AMI). AMI is an enabler to increase the efficiency of utilities and the bulk power grid. The bulk electrical system is unique in that it produces electricity as it is consumed. Most other industries have a delay between generation and consumption. This aspect of the power grid means that there must be enough generation capacity to meet the highest demand whereas other industries could over produce during off-peak times. This requires significant investment in generation capacity to cover the few days a year of peak consumption. Since bulk electrical storage doesn't yet exist at scale another way to curb the need for new peak period generation is through demand-response; that is to incentivize consumers (demand) to curtail (respond) electrical usage during peak periods. Of the various methods proposed for enabling demand-response, this paper will focus on the communication requirements for creating an energy market using transactional controls. More specifically, the paper will focus on the communication requirements needed to send the peak period notices and receive the response back from the consumers.

  6. Site characterization of the highest-priority geologic formations for CO2 storage in Wyoming

    SciTech Connect (OSTI)

    Surdam, Ronald C.; Bentley, Ramsey; Campbell-Stone, Erin; Dahl, Shanna; Deiss, Allory; Ganshin, Yuri; Jiao, Zunsheng; Kaszuba, John; Mallick, Subhashis; McLaughlin, Fred; Myers, James; Quillinan, Scott

    2013-12-07

    This study, funded by U.S. Department of Energy National Energy Technology Laboratory award DE-FE0002142 along with the state of Wyoming, uses outcrop and core observations, a diverse electric log suite, a VSP survey, in-bore testing (DST, injection tests, and fluid sampling), a variety of rock/fluid analyses, and a wide range of seismic attributes derived from a 3-D seismic survey to thoroughly characterize the highest-potential storage reservoirs and confining layers at the premier CO2 geological storage site in Wyoming. An accurate site characterization was essential to assessing the following critical aspects of the storage site: (1) more accurately estimate the CO2 reservoir storage capacity (Madison Limestone and Weber Sandstone at the Rock Springs Uplift (RSU)), (2) evaluate the distribution, long-term integrity, and permanence of the confining layers, (3) manage CO2 injection pressures by removing formation fluids (brine production/treatment), and (4) evaluate potential utilization of the stored CO2

  7. Introducing On-demand in LCRC: Towards a Convergence of On-demand and Batch

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Allocation | Argonne Leadership Computing Facility Introducing On-demand in LCRC: Towards a Convergence of On-demand and Batch Resource Allocation Event Sponsor: CloudX Seminar Start Date: Aug 30 2016 - 12:00pm Building/Room: Building 240/Room 4301 Location: Argonne National Laboratory Speaker(s): Francis Liu The LCRC Pilot Project aims to explore a confluence of on-demand availability and environment management on one side, and batch scheduling on the other. The project seeks to

  8. The Demand Reduction Potential of Smart Appliances in U.S. Homes

    SciTech Connect (OSTI)

    Makhmalbaf, Atefe; Srivastava, Viraj; Parker, Graham B.

    2013-08-14

    The widespread deployment of demand respond (DR) enabled home appliances is expected to have significant reduction in the demand of electricity during peak hours. The work documented in this paper focuses on estimating the energy shift resulting from the installation of DR enabled smart appliances in the U.S. This estimation is based on analyzing the market for smart appliances and calculating the total energy demand that can potentially be shifted by DR control in appliances. Appliance operation is examined by considering their sub components individually to identify their energy consumptions and savings resulting from interrupting and shifting their load, e.g., by delaying the refrigerator defrost cycle. In addition to major residential appliances, residential pool pumps are also included in this study given their energy consumption profiles that make them favorable for DR applications. In the market analysis study documented in this paper, the U.S. Energy Information Administration's (EIA) Residential Energy Consumption Survey (RECS) and National Association of Home Builders (NAHB) databases are used to examine the expected life of an appliance, the number of appliances installed in homes constructed in 10 year intervals after 1940 and home owner income. Conclusions about the effectiveness of the smart appliances in reducing electrical demand have been drawn and a ranking of appliances in terms of their contribution to load shift is presented. E.g., it was concluded that DR enabled water heaters result in the maximum load shift; whereas, dishwashers have the highest user elasticity and hence the highest potential for load shifting through DR. This work is part of a larger effort to bring novel home energy management concepts and technologies to reduce energy consumption, reduce peak electricity demand, integrate renewables and storage technology, and change homeowner behavior to manage and consume less energy and potentially save consumer energy costs.

  9. Price-responsive demand management for a smart grid world

    SciTech Connect (OSTI)

    Chao, Hung-po

    2010-01-15

    Price-responsive demand is essential for the success of a smart grid. However, existing demand-response programs run the risk of causing inefficient price formation. This problem can be solved if each retail customer could establish a contract-based baseline through demand subscription before joining a demand-response program. (author)

  10. Local government involvement in long term resource planning for community energy systems. Demand side management

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    A program was developed to coordinate governmental, research, utility, and business energy savings efforts, and to evaluate future potential actions, based on actual field data obtained during the implementation of Phase I of the State Resource Plan. This has lead to the establishment of a state conservation and energy efficiency fund for the purpose of establishing a DSM Program. By taking a state wide perspective on resource planning, additional savings, including environmental benefits, can be achieved through further conservation and demand management. This effort has already blossomed into a state directive for DSM programs for the natural gas industry.

  11. Open Automated Demand Response Technologies for Dynamic Pricing and Smart Grid

    SciTech Connect (OSTI)

    Ghatikar, Girish; Mathieu, Johanna L.; Piette, Mary Ann; Kiliccote, Sila

    2010-06-02

    We present an Open Automated Demand Response Communications Specifications (OpenADR) data model capable of communicating real-time prices to electricity customers. We also show how the same data model could be used to for other types of dynamic pricing tariffs (including peak pricing tariffs, which are common throughout the United States). Customers participating in automated demand response programs with building control systems can respond to dynamic prices by using the actual prices as inputs to their control systems. Alternatively, prices can be mapped into"building operation modes," which can act as inputs to control systems. We present several different strategies customers could use to map prices to operation modes. Our results show that OpenADR can be used to communicate dynamic pricing within the Smart Grid and that OpenADR allows for interoperability with existing and future systems, technologies, and electricity markets.

  12. Home Network Technologies and Automating Demand Response

    SciTech Connect (OSTI)

    McParland, Charles

    2009-12-01

    Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated

  13. Demand for superpremium needle cokes on upswing

    SciTech Connect (OSTI)

    Acciarri, J.A.; Stockman, G.H. )

    1989-12-01

    The authors discuss how recent supply shortages of super-premium quality needle cokes, plus the expectation of increased shortfalls in the future, indicate that refiners should consider upgrading their operations to fill these demands. Calcined, super-premium needle cokes are currently selling for as much as $550/metric ton, fob producer, and increasing demand will continue the upward push of the past year. Needle coke, in its calcined form, is the major raw material in the manufacture of graphite electrodes. Used in steelmaking, graphite electrodes are the electrical conductors that supply the heat source, through arcing electrode column tips, to electric arc steel furnaces. Needle coke is commercially available in three grades - super premium, premium, and intermediate. Super premium is used to produce electrodes for the most severe electric arc furnace steelmaking applications, premium for electrodes destined to less severe operations, and intermediate for even less critical needs.

  14. Energy Efficiency, Demand Response, and Volttron

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY EFFICIENCY, DEMAND RESPONSE, AND VOLTTRON Presented by Justin Sipe      SEEMINGLY SIMPLE STATEMENTS Utilities need more capacity to handle growth on the grid Utilities need to balance the load on the grid for stability Business want lower their operating expenses. Business want remote control over their facilities How can bring these different users together to accomplish these goals Transformative Wave | 1012 Central Ave S Kent, WA 98032 |

  15. What is a High Electric Demand Day?

    Broader source: Energy.gov [DOE]

    This presentation by T. McNevin of the New Jersey Bureau of Air Quality Planning was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

  16. Implications of Low Electricity Demand Growth

    U.S. Energy Information Administration (EIA) Indexed Site

    2014 EIA Energy Conference July 14, 2014 | Washington, DC Jim Diefenderfer, Director, Office of Electricity, Coal, Nuclear, & Renewables Analysis U.S. Energy Information Administration Implications of low electricity demand growth Growth in electricity use slows, but still increases by 29% from 2012 to 2040 -2% 0% 2% 4% 6% 8% 10% 12% 14% 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 percent growth (3-year compounded annual growth rate) Source: EIA, Annual Energy Outlook 2014 Reference

  17. Grid Integration of Aggregated Demand Response, Part 2: Modeling Demand Response in a Production Cost Model

    SciTech Connect (OSTI)

    Hummon, Marissa; Palchak, David; Denholm, Paul; Jorgenson, Jennie; Olsen, Daniel J.; Kiliccote, Sila; Matson, Nance; Sohn, Michael; Rose, Cody; Dudley, Junqiao; Goli, Sasank; Ma, Ookie

    2013-12-01

    This report is one of a series stemming from the U.S. Department of Energy (DOE) Demand Response and Energy Storage Integration Study. This study is a multi-national-laboratory effort to assess the potential value of demand response (DR) and energy storage to electricity systems with different penetration levels of variable renewable resources and to improve our understanding of associatedmarkets and institutions. This report implements DR resources in the commercial production cost model PLEXOS.

  18. Grid Integration of Aggregated Demand Response, Part 2: Modeling Demand Response in a Production Cost Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration of Aggregated Demand Response, Part 2: Modeling Demand Response in a Production Cost Model Marissa Hummon, David Palchak, Paul Denholm, and Jennie Jorgenson National Renewable Energy Laboratory Daniel J. Olsen, Sila Kiliccote, Nance Matson, Michael Sohn, Cody Rose, Junqiao Dudley, and Sasank Goli Lawrence Berkeley National Laboratory Ookie Ma U.S. Department of Energy Technical Report NREL/TP-6A20-58492 December 2013 NREL is a national laboratory of the U.S. Department of Energy

  19. Modeling Framework and Validation of a Smart Grid and Demand Response System for Wind Power Integration

    SciTech Connect (OSTI)

    Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.; Chassin, David P.; Djilali, Ned

    2014-01-31

    Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generator and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.

  20. A hybrid inventory management system respondingto regular demand and surge demand

    SciTech Connect (OSTI)

    Mohammad S. Roni; Mingzhou Jin; Sandra D. Eksioglu

    2014-06-01

    This paper proposes a hybrid policy for a stochastic inventory system facing regular demand and surge demand. The combination of two different demand patterns can be observed in many areas, such as healthcare inventory and humanitarian supply chain management. The surge demand has a lower arrival rate but higher demand volume per arrival. The solution approach proposed in this paper incorporates the level crossing method and mixed integer programming technique to optimize the hybrid inventory policy with both regular orders and emergency orders. The level crossing method is applied to obtain the equilibrium distributions of inventory levels under a given policy. The model is further transformed into a mixed integer program to identify an optimal hybrid policy. A sensitivity analysis is conducted to investigate the impact of parameters on the optimal inventory policy and minimum cost. Numerical results clearly show the benefit of using the proposed hybrid inventory model. The model and solution approach could help healthcare providers or humanitarian logistics providers in managing their emergency supplies in responding to surge demands.

  1. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    Jaunary 2010" ,"Next Update: October 2010" ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2008 and Projected ...

  2. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2009 and Projected 2010 through 2014" ,"(Thousands of Megawatthours and ...

  3. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2008 through 2012 " ,"(Thousands of Megawatthours and ...

  4. ,"Table 1. Net Energy For Load, Actual and Projected by North...

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Thousands of Megawatthours and ...

  5. LNG demand, shipping will expand through 2010

    SciTech Connect (OSTI)

    True, W.R.

    1998-02-09

    The 1990s, especially the middle years, have witnessed a dramatic turnaround in the growth of liquefied-natural-gas demand which has tracked equally strong natural-gas demand growth. This trend was underscored late last year by several annual studies of world LNG demand and shipping. As 1998 began, however, economic turmoil in Asian financial markets has clouded near-term prospects for LNG in particular and all energy in general. But the extent of damage to energy markets is so far unclear. A study by US-based Institute of Gas Technology, Des Plaines, IL, reveals that LNG imports worldwide have climbed nearly 8%/year since 1980 and account for 25% of all natural gas traded internationally. In the mid-1970s, the share was only 5%. In 1996, the most recent year for which complete data are available, world LNG trade rose 7.7% to a record 92 billion cu m, outpacing the overall consumption for natural gas which increased 4.7% in 1996. By 2015, says the IGT study, natural-gas use would surpass coal as the world`s second most widely used fuel, after petroleum. Much of this growth will occur in the developing countries of Asia where gas use, before the current economic crisis began, was projected to grow 8%/year through 2015. Similar trends are reflected in another study of LNG trade released at year end 1997, this from Ocean Shipping Consultants Ltd., Surrey, U.K. The study was done too early, however, to consider the effects of the financial problems roiling Asia.

  6. Taxonomy for Modeling Demand Response Resources

    SciTech Connect (OSTI)

    Olsen, Daniel; Kiliccote, Sila; Sohn, Michael; Dunn, Laura; Piette, Mary, A

    2014-08-01

    Demand response resources are an important component of modern grid management strategies. Accurate characterizations of DR resources are needed to develop systems of optimally managed grid operations and to plan future investments in generation, transmission, and distribution. The DOE Demand Response and Energy Storage Integration Study (DRESIS) project researched the degree to which demand response (DR) and energy storage can provide grid flexibility and stability in the Western Interconnection. In this work, DR resources were integrated with traditional generators in grid forecasting tools, specifically a production cost model of the Western Interconnection. As part of this study, LBNL developed a modeling framework for characterizing resource availability and response attributes of DR resources consistent with the governing architecture of the simulation modeling platform. In this report, we identify and describe the following response attributes required to accurately characterize DR resources: allowable response frequency, maximum response duration, minimum time needed to achieve load changes, necessary pre- or re-charging of integrated energy storage, costs of enablement, magnitude of controlled resources, and alignment of availability. We describe a framework for modeling these response attributes, and apply this framework to characterize 13 DR resources including residential, commercial, and industrial end-uses. We group these end-uses into three broad categories based on their response capabilities, and define a taxonomy for classifying DR resources within these categories. The three categories of resources exhibit different capabilities and differ in value to the grid. Results from the production cost model of the Western Interconnection illustrate that minor differences in resource attributes can have significant impact on grid utilization of DR resources. The implications of these findings will be explored in future DR valuation studies.

  7. Demand-Side Response from Industrial Loads

    SciTech Connect (OSTI)

    Starke, Michael R; Alkadi, Nasr E; Letto, Daryl; Johnson, Brandon; Dowling, Kevin; George, Raoule; Khan, Saqib

    2013-01-01

    Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

  8. Coordination of Retail Demand Response with Midwest ISO Markets

    SciTech Connect (OSTI)

    Bharvirkar, Ranjit; Bharvirkar, Ranjit; Goldman, Charles; Heffner, Grayson; Sedano, Richard

    2008-05-27

    The Organization of Midwest ISO States (OMS) launched the Midwest Demand Resource Initiative (MWDRI) in 2007 to identify barriers to deploying demand response (DR) resources in the Midwest Independent System Operator (MISO) region and develop policies to overcome them. The MWDRI stakeholders decided that a useful initial activity would be to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating practices. This additional detail could then be used to assess any"seams issues" affecting coordination and integration of retail DR resources with MISO's wholesale markets. Working with state regulatory agencies, we conducted a detailed survey of existing DR programs, dynamic pricing tariffs, and their features in MISO states. Utilities were asked to provide information on advance notice requirements to customers, operational triggers used to call events (e.g. system emergencies, market conditions, local emergencies), use of these DR resources to meet planning reserves requirements, DR resource availability (e.g., seasonal, annual), participant incentive structures, and monitoring and verification (M&V) protocols. This report describes the results of this comprehensive survey and discusses policy implications for integrating legacy retail DR programs and dynamic pricing tariffs into organized wholesale markets. Survey responses from 37 MISO members and 4 non-members provided information on 141 DR programs and dynamic pricing tariffs with a peak load reduction potential of 4,727 MW of retail DR resource. Major findings of this study area:- About 72percent of available DR is from interruptible rate tariffs offered to large commercial and industrial customers, while direct load control (DLC) programs account for ~;;18percent. Almost 90percent of the DR resources included in this survey are provided by investor-owned utilities. - Approximately, 90percent of the DR resources are available with less than

  9. Economic Rebalancing and Electricity Demand in China

    SciTech Connect (OSTI)

    He, Gang; Lin, Jiang; Yuan, Alexandria

    2015-11-01

    Understanding the relationship between economic growth and electricity use is essential for power systems planning. This need is particularly acute now in China, as the Chinese economy is going through a transition to a more consumption and service oriented economy. This study uses 20 years of provincial data on gross domestic product (GDP) and electricity consumption to examine the relationship between these two factors. We observe a plateauing effect of electricity consumption in the richest provinces, as the electricity demand saturates and the economy develops and moves to a more service-based economy. There is a wide range of forecasts for electricity use in 2030, ranging from 5,308 to 8,292 kWh per capita, using different estimating functions, as well as in existing studies. It is therefore critical to examine more carefully the relationship between electricity use and economic development, as China transitions to a new growth phase that is likely to be less energy and resource intensive. The results of this study suggest that policymakers and power system planners in China should seriously re-evaluate power demand projections and the need for new generation capacity to avoid over-investment that could lead to stranded generation assets.

  10. East Coast blizzard cuts into gasoline demand, but home electricity demand rises

    U.S. Energy Information Administration (EIA) Indexed Site

    East Coast blizzard cuts into gasoline demand, but home electricity demand rises U.S. monthly gasoline consumption declined in January, as the big winter storm that shut down many East Coast cities kept people in their homes and off the road. In its new monthly forecast, the U.S. Energy Information Administration said monthly gasoline consumption dropped 230,000 barrels per day in January compared to year-ago levels and that marked the first year-over-year decline in monthly gasoline use since