National Library of Energy BETA

Sample records for higher minimum fuel

  1. A Vehicle Manufacturer's Perspective on Higher-Octane Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Manufacturer's Perspective on Higher-Octane Fuels Tom Leone, Ford Motor Company DOE "Biomass 2014" meeting Washington, D.C. July 29, 2014 2 Octane rating of fuel The octane ...

  2. California and Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher

    Broader source: Energy.gov [DOE]

    In an EERE-supported study with the Federal Transit Administration, the National Renewable Energy Laboratory has found the fuel economy of fuel cell powered buses to be up to 2.4 times higher than conventional buses.

  3. EERE Success Story—California and Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher

    Broader source: Energy.gov [DOE]

    In an EERE-supported study with the Federal Transit Administration, the National Renewable Energy Laboratory has found the fuel economy of fuel cell powered buses to be up to 2.4 times higher than conventional buses.

  4. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    SciTech Connect (OSTI)

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A. Ignatiev, V. V.; Subbotin, S. A. Tsibulskiy, V. F.

    2015-12-15

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  5. Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides

    SciTech Connect (OSTI)

    Chen, Xi [University of Texas at Austin] [University of Texas at Austin; Girard, S. N. [University of Wisconsin, Madison] [University of Wisconsin, Madison; Meng, F. [University of Wisconsin, Madison] [University of Wisconsin, Madison; Lara-Curzio, Edgar [ORNL] [ORNL; Jin, S [University of Wisconsin, Madison] [University of Wisconsin, Madison; Goodenough, J. B. [University of Texas at Austin] [University of Texas at Austin; Zhou, J. S. [University of Texas at Austin] [University of Texas at Austin; Shi, L [University of Texas at Austin] [University of Texas at Austin

    2014-01-01

    Higher manganese silicides (HMS) made of earth-abundant and non-toxic elements are regarded as promising p-type thermoelectric materials because their complex crystal structure results in low lattice thermal conductivity. It is shown here that the already low thermal conductivity of HMS can be reduced further to approach the minimum thermal conductivity via partial substitu- tion of Mn with heavier rhenium (Re) to increase point defect scattering. The solubility limit of Re in the obtained RexMn1 xSi1.8 is determined to be about x = 0.18. Elemental inhomogeneity and the formation of ReSi1.75 inclusions with 50 200 nm size are found within the HMS matrix. It is found that the power factor does not change markedly at low Re content of x 0.04 before it drops considerably at higher Re contents. Compared to pure HMS, the reduced lattice thermal conductivity in RexMn1 xSi1.8 results in a 25% increase of the peak figure of merit ZT to reach 0.57 0.08 at 800 K for x = 0.04. The suppressed thermal conductivity in the pure RexMn1 xSi1.8 can enable further investigations of the ZT limit of this system by exploring different impurity doping strategies to optimize the carrier concentration and power factor.

  6. EXTENDING SODIUM FAST REACTOR DRIVER FUEL USE TO HIGHER TEMPERATURES

    SciTech Connect (OSTI)

    Douglas L. Porter

    2011-02-01

    Calculations of potential sodium-cooled fast reactor fuel temperatures were performed to estimate the effects of increasing the outlet temperature of a given fast reactor design by increasing pin power, decreasing assembly flow, or increasing inlet temperature. Based upon experience in the U.S., both metal and mixed oxide (MOX) fuel types are discussed in terms of potential performance effects created by the increased operating temperatures. Assembly outlet temperatures of 600, 650 and 700 °C were used as goal temperatures. Fuel/cladding chemical interaction (FCCI) and fuel melting, as well as challenges to the mechanical integrity of the cladding material, were identified as the limiting phenomena. For example, starting with a recent 1000 MWth fast reactor design, raising the outlet temperature to 650 °C through pin power increase increased the MOX centerline temperature to more than 3300 °C and the metal fuel peak cladding temperature to more than 700 °C. These exceeded limitations to fuel performance; fuel melting was limiting for MOX and FCCI for metal fuel. Both could be alleviated by design ‘fixes’, such as using a barrier inside the cladding to minimize FCCI in the metal fuel, or using annular fuel in the case of MOX. Both would also require an advanced cladding material with improved stress rupture properties. While some of these are costly, the benefits of having a high-temperature reactor which can support hydrogen production, or other missions requiring high process heat may make the extra costs justified.

  7. A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels Tom Leone, Technical Expert, Powertrain Evaluation and Analysis, Ford Motor Company

  8. On feasibility of a closed nuclear power fuel cycle with minimum radioactivity

    SciTech Connect (OSTI)

    Andrianova, E. A.; Davidenko, V. D.; Tsibulskiy, V. F.

    2015-12-15

    Practical implementation of a closed nuclear fuel cycle implies solution of two main tasks. The first task is creation of environmentally acceptable operating conditions of the nuclear fuel cycle considering, first of all, high radioactivity of the involved materials. The second task is creation of effective and economically appropriate conditions of involving fertile isotopes in the fuel cycle. Creation of technologies for management of the high-level radioactivity of spent fuel reliable in terms of radiological protection seems to be the hardest problem.

  9. NREL Study: Hybrid Delivery Vans Show Nearly 20 Percent Higher Fuel Economy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - News Releases | NREL Study: Hybrid Delivery Vans Show Nearly 20 Percent Higher Fuel Economy September 28, 2012 The U.S. Department of Energy's (DOE)'s National Renewable Energy Laboratory (NREL) recently completed a performance evaluation report that showed significant fuel economy benefits of hybrid electric delivery vans compared to similar conventional vans. "During the on-road portion of our study, the hybrid vans demonstrated a 13 to 20 percent higher fuel economy than the

  10. Liquid Fuel From Renewable Electricity and Bacteria: Electro-Autotrophic Synthesis of Higher Alcohols

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: UCLA is utilizing renewable electricity to power direct liquid fuel production in genetically engineered Ralstonia eutropha bacteria. UCLA is using renewable electricity to convert carbon dioxide into formic acid, a liquid soluble compound that delivers both carbon and energy to the bacteria. The bacteria are genetically engineered to convert the formic acid into liquid fuel—in this case alcohols such as butanol. The electricity required for the process can be generated from sunlight, wind, or other renewable energy sources. In fact, UCLA’s electricity-to-fuel system could be a more efficient way to utilize these renewable energy sources considering the energy density of liquid fuel is much higher than the energy density of other renewable energy storage options, such as batteries.

  11. Fact #773: April 1, 2013 Fuel Economy Penalty at Higher Speeds

    Broader source: Energy.gov [DOE]

    Each vehicle reaches an optimal fuel economy at a different speed or range of speeds. A recent study by Oak Ridge National Laboratory illustrates that point with a wide range of data collected on...

  12. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  13. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  14. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Labeling Requirements Alternative fuel dispensers must be labeled with information to help consumers make informed decisions about fueling a vehicle, including the name of the fuel and the minimum percentage of the main component of the fuel. Labels may also list the percentage of other fuel components. This requirement applies to, but is not limited to, the following fuel types: methanol, denatured ethanol, and/or other alcohols; mixtures containing 85% or more by volume of

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Independence and Security Act of 2007 Enacted December 19, 2007 The Energy Independence and Security Act (EISA) of 2007 (Public Law 110-140) aims to improve vehicle fuel economy and reduce U.S. dependence on petroleum. EISA includes provisions to increase the supply of renewable alternative fuel sources by setting a mandatory Renewable Fuel Standard, which requires transportation fuel sold in the United States to contain a minimum of 36 billion gallons of renewable fuels annually by 2022. In

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Low Carbon Fuel Standard California's Low Carbon Fuel Standard (LCFS) Program requires a reduction in the carbon intensity of transportation fuels that are sold, supplied, or offered for sale in the state by a minimum of 10% by 2020. The California Air Resources Board (ARB) regulations require transportation fuel producers and importers to meet specified average carbon intensity requirements for fuel. In the regulations, carbon intensity reductions are based on reformulated gasoline mixed with

  18. Criticality safety evaluation report for FFTF 42% fuel assemblies

    SciTech Connect (OSTI)

    Richard, R.F.

    1997-10-28

    An FFTF tritium/isotope production mission will require a new fuel supply. The reference design core will use a mixed oxide fuel nominally enriched to 40 wt% Pu. This enrichment is significantly higher than that of the standard Driver Fuel Assemblies used in past operations. Consequently, criticality safety for handling and storage of this fuel must be addressed. The purpose of this document is to begin the process by determining the minimum critical number for these new fuel assemblies in water, sodium and air. This analysis is preliminary and further work can be done to refine the results reported here. Analysis was initially done using 45 wt 5 PuO. Additionally, a preliminary assessment is done concerning storage of these fuel assemblies in Interim Decay Storage (IDS), Fuel Storage Facility (FSF), and Core Component Containers/Interim Storage Casks (CCC/ISC).

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Fuel Sales Volume Goals The Wisconsin Legislature sets goals for minimum annual renewable fuel sales volumes based on annual renewable fuel volumes required under the federal Renewable Fuel Standard. On an annual basis, the Wisconsin Department of Agriculture, Trade and Consumer Protection (DATCP), in cooperation with the Department of Commerce, the Department of Revenue, and the Energy Office, must determine whether the annual goals for the previous year were met. If the goals were

  20. Nuclear Energy Research Initiative Project No. 02 103 Innovative Low Cost Approaches to Automating QA/QC of Fuel Particle Production Using On Line Nondestructive Methods for Higher Reliability Final Project Report

    SciTech Connect (OSTI)

    Ahmed, Salahuddin; Batishko, Charles R.; Flake, Matthew; Good, Morris S.; Mathews, Royce; Morra, Marino; Panetta, Paul D.; Pardini, Allan F.; Sandness, Gerald A.; Tucker, Brian J.; Weier, Dennis R.; Hockey, Ronald L.; Gray, Joseph N.; Saurwein, John J.; Bond, Leonard J.; Lowden, Richard A.; Miller, James H.

    2006-02-28

    This Nuclear Energy Research Initiative (NERI) project was tasked with exploring, adapting, developing and demonstrating innovative nondestructive test methods to automate nuclear coated particle fuel inspection so as to provide the United States (US) with necessary improved and economical Quality Assurance and Control (QA/QC) that is needed for the fuels for several reactor concepts being proposed for both near term deployment [DOE NE & NERAC, 2001] and Generation IV nuclear systems. Replacing present day QA/QC methods, done manually and in many cases destructively, with higher speed automated nondestructive methods will make fuel production for advanced reactors economically feasible. For successful deployment of next generation reactors that employ particle fuels, or fuels in the form of pebbles based on particles, extremely large numbers of fuel particles will require inspection at throughput rates that do not significantly impact the proposed manufacturing processes. The focus of the project is nondestructive examination (NDE) technologies that can be automated for production speeds and make either: (I) On Process Measurements or (II) In Line Measurements. The inspection technologies selected will enable particle “quality” qualification as a particle or group of particles passes a sensor. A multiple attribute dependent signature will be measured and used for qualification or process control decisions. A primary task for achieving this objective is to establish standard signatures for both good/acceptable particles and the most problematic types of defects using several nondestructive methods.

  1. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ethanol Fuel Blend Standard At least 85% of gasoline supplied to a retailer or sold in Hawaii must contain a minimum of 10% ethanol (E10), unless the Director determines that...

  2. EERE Success Story-California and Connecticut: National Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California and Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher EERE Success Story-California and Connecticut: National Fuel Cell Bus Programs Drive Fuel ...

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Fueling Station Regulations The Colorado Department of Labor and Employment, Division of Oil and Public Safety (Division), must create rules concerning retail hydrogen fueling stations. The rules must include information regarding inspections, specifications, shipment notification, record keeping, labeling of containers, use of meters or mechanical devices for measurement, submittal of installation plans, and minimum standards for the design, construction, location, installation, and

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel-Efficient Tire Program Development The California Energy Commission (CEC) must adopt and implement a state-wide Fuel-Efficient Tire Program that includes a consumer information and education program and minimum tire efficiency standards. The CEC must consult with the California Integrated Waste Management Board on the program's adoption, implementation, and regular review. (Reference California Public Resources Code 25770-2577

  5. Advanced Bio-based Jet Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approach * Biochemical conversion to Ethanol * Biochemical conversion to Advanced ...Costing and Raw Material Accounting Ethanol Yield Cost gal MFSP Minimum Fuel ...

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Infrastructure Tax Credit NOTE: This incentive originally expired on December 31, 2013, but was retroactively extended through December 31, 2016, by H.R. 2029. Fueling equipment for natural gas, liquefied petroleum gas (propane), liquefied hydrogen, electricity, E85, or diesel fuel blends containing a minimum of 20% biodiesel installed between January 1, 2015, and December 31, 2016, is eligible for a tax credit of 30% of the cost, not to exceed $30,000. Permitting and inspection

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Use Requirement All diesel-powered motor vehicles, light trucks, and equipment owned or leased by a state agency must operate using diesel fuel that contains a minimum of 2% biodiesel (B2). For the purpose of this requirement, biodiesel includes renewable diesel and other renewable, biodegradable mono alkyl ester combustible fuel derived from biomass. Waivers to the B2 requirement for state agency vehicles may be granted if the fuel is not available in certain geographic areas, the

  8. Program Evaluation: Minimum EERE Requirements

    Broader source: Energy.gov [DOE]

    The minimum requirements for EERE's in-progress peer reviews are described below. Given the diversity of EERE programs and activities, a great deal of flexibility is provided within these...

  9. Fuel Economy Standards for New Light Trucks (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    In March 2006, the National Highway Traffic Safety Administration (NHTSA) finalized Corporate Average Fuel Economy (CAFE) standards requiring higher fuel economy performance for light-duty trucks in model year (MY) 2008 through 2011. Unlike the proposed CAFE standards discussed in Annual Energy Outlook 2006, which would have established minimum fuel economy requirements by six footprint size classes, the final reformed CAFE standards specify a continuous mathematical function that determines minimum fuel economy requirements by vehicle footprint, defined as the wheelbase (the distance from the front axle to the center of the rear axle) times the average track width (the distance between the center lines of the tires) of the vehicle in square feet.

  10. Fuel flexible fuel injector

    DOE Patents [OSTI]

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  11. Higher Education

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Higher Education Higher Education Explore the multiple dimensions of a career at LANL: work with brilliant minds in an inclusive environment rich in intellectual...

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas and Propane Fuel Tax Any individual using or selling compressed natural gas (CNG), liquefied natural gas (LNG), or liquefied petroleum gas (propane) as a motor fuel must report fuel use and remit taxes due to the Kansas Department of Revenue on a monthly basis. The minimum tax imposed on CNG is $0.24 per gasoline gallon equivalent (GGE), LNG is $0.26 per GGE, and propane is $0.23 per gallon. The state imposes a tax rate of $0.24 per gallon on conventional motor fuel. Alternatively,

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Acquisition and Petroleum Reduction Requirements The California Department of General Services (DGS) is responsible for maintaining specifications and standards for passenger cars and light-duty trucks that are purchased or leased for state office, agency, and department use. These specifications include minimum vehicle emissions standards and encourage the purchase or lease of fuel-efficient and alternative fuel vehicles (AFVs). On an annual basis, DGS must compile information

  14. Higher Education | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education » For Students & Educators » Higher Education Higher Education Chemist working in a laboratory. Students considering or planning for a career in a hydrogen- or fuel-cell-related field can use the resources below to read about available career opportunities, college programs that emphasis hydrogen and fuel cell research, and energy-related educational opportunities such as scholarships and internships. College-Level Materials - Textbooks and other reading materials for

  15. GMTI radar minimum detectable velocity.

    SciTech Connect (OSTI)

    Richards, John Alfred

    2011-04-01

    Minimum detectable velocity (MDV) is a fundamental consideration for the design, implementation, and exploitation of ground moving-target indication (GMTI) radar imaging modes. All single-phase-center air-to-ground radars are characterized by an MDV, or a minimum radial velocity below which motion of a discrete nonstationary target is indistinguishable from the relative motion between the platform and the ground. Targets with radial velocities less than MDV are typically overwhelmed by endoclutter ground returns, and are thus not generally detectable. Targets with radial velocities greater than MDV typically produce distinct returns falling outside of the endoclutter ground returns, and are thus generally discernible using straightforward detection algorithms. This document provides a straightforward derivation of MDV for an air-to-ground single-phase-center GMTI radar operating in an arbitrary geometry.

  16. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Use Requirement West Virginia higher education governing boards must use alternative fuels to the maximum extent feasible. (Reference West Virginia Code 18B-5-9)...

  17. Dual nozzle single pump fuel injection system

    SciTech Connect (OSTI)

    Gonzalez, C.

    1992-02-25

    This patent describes an improvement in a fuel injection system in a stratified charge hybrid internal combustion engine including a main combustion chamber, a precombustion chamber connected with the main chamber, fuel injectors in the main combustion chamber and precombustion chamber which open at higher and lower pressure levels respectively to sequentially inject fuel into the prechamber and the main chamber, timed spark ignition means in the prechamber for ignition of the fuel-air mixture therein, and an engine driven and timed fuel injection pump having a variable output capacity that varies with power level position, the injection pump is supplied by a low pressure charging pump. The improvement comprises: a shuttle valve including a bore therein; a shuttle spool means positioned within the bore defining a prechamber supply chamber on one side thereof and a spool activation chamber on the opposite side thereof the spool means having a first and second position; biasing means urging the spool towards it first position with the spool actuation chamber at its minimum volume; first conduit means connecting charging pressure to the prechamber supply camber in the first position oil the spool means; second conduit means connecting the injection pump to spool actuation chamber; third conduit means connecting the spool actuating chamber with the main injector; forth conduit means connecting the prechamber supply chamber with the prechamber injector; the initial charge from the injection pump actuates the spool means from its fir to its second position.

  18. Higher Education

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education » Higher Education Higher Education Explore the multiple dimensions of a career at Los Alamos: work with brilliant minds in an inclusive environment rich in intellectual vitality and opportunities for growth. Contact Education Janelle Vigil-Maestas Community Partnerships Office (505) 665-4329 Email "The partnership between the Laboratory and regional colleges creates opportunities for students like me to attain challenging and rewarding careers." - Sherry Salas Bachicha

  19. HTGR Technology Family Assessment for a Range of Fuel Cycle Missions

    SciTech Connect (OSTI)

    Steven J. Piet; Samuel E. Bays; Nick Soelberg

    2010-08-01

    This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR “full recycle” service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the “pebble bed” approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R&D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in “limited separation” or “minimum fuel treatment” separation approaches motivates study of impurity-tolerant fuel fabrication. Several issues are outside the scope of this report, including the following: thorium fuel cycles, gas-cooled fast reactors, the reliability of TRISO-coated particles (billions in a reactor), and how soon any new reactor or fuel type could be licensed and then deployed and therefore impact fuel cycle performance measures.

  20. Minimum Day Time Load Calculation and Screening

    Office of Environmental Management (EM)

    ... and TOV requirements Battery storage ... Energy Planning Grid Technologies ... Planning System Planning Department Supplemental Review: 100% minimum load ...

  1. Fuel additives: Excluding aviation fuels. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-02-01

    The bibliography contains citations concerning compositions, applications and performance of additives in fuels. Evaluations and environmental testing of additives in automotive, diesel, and boiler fuels are discussed. Additive effects on air pollution control, combustion stability, fuel economy and fuel storage are presented. Aviation fuel additives are covered in a separate bibliography. (Contains a minimum of 231 citations and includes a subject term index and title list.)

  2. DIESEL FUEL LUBRICATION

    SciTech Connect (OSTI)

    Qu, Jun

    2012-01-01

    The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Agency Petroleum Reduction and Reporting Requirements Colorado state agencies and departments must reduce petroleum-based fuel consumption on a per vehicle basis and across the fleet. For non-exempt vehicles, the minimum annual reduction is 4% per vehicle, and at least 20% by Fiscal Year (FY) 2020 compared to a FY 2015 baseline. The exempt vehicle requirement is a minimum annual reduction of 2% per vehicle, and at least 10% by FY 2020. State agencies and departments must also achieve a

  4. Fuel Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production Market Transformation Fuel Cells Predictive Simulation of Engines ... Twitter Google + Vimeo Newsletter Signup SlideShare Fuel Options HomeCapabilitiesFuel ...

  5. Biomass fuel use in agriculture under alternative fuel prices

    SciTech Connect (OSTI)

    Bjornstad, D.J.; Hillsman, E.L.; Tepel, R.C.

    1984-11-01

    A linear programming model is used to analyze cost-competitiveness of biomass fuels in agricultural applications for the projected year 1990. With all else held constant, the prices of conventional fuels are increased and analytically compared to prices for biomass fuel products across a variety of end uses. Potential penetration of biomass fuels is measured as the share of each conventional fuel for which cost savings could be realized by substituting biomass fuels. This study examines the cost competitiveness of biomass fuels produced on farms, relative to conventional fuels (diesel, gasoline, natural gas, LPG, fuel oil, and electricity), as the prices of conventional fuels change. The study is targeted at the year 1990 and considers only fuel use in the agricultural sector. The method of analysis is to project fuel demands for ten farm operations in the year 1990 and to match these with biomass fuel substitutes from ten feedstock and nine process alternatives. In all, 61 feedstock/process combinations are possible. The matching of fuel demands and biomass fuels occurs in a linear programming model that seeks to meet fuel demands at minimum cost. Two types of biomass fuel facilities are considered, assuming a decentralized fuel distribution system. The first includes on-farm production units such as oil presses, low-Btu gasifiers, biogas digestors and direct combustion units. The second type of facility would be run by a farm co-operative. The primary data describing the biomass technologies are cost per unit output, where costs are calculated as first-year capital charges, plus al l allocable operating expenses, less any by-products of value. All costs assume commercial purchase of equipment. Homemade or makeshift installations are not considered. 1 reference.

  6. NREL: Transportation Research - Alternative Fuels Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alternative Fuels Characterization Find out about other biomass research projects at NREL. NREL alternative fuels projects help overcome technical barriers and expand markets for renewable, biodegradable vehicle fuels. These liquid fuels include higher-level ethanol blends, butanol, biodiesel, renewable diesel, other biomass-derived fuels, and natural gas. By studying the fuel chemistry as well as combustion and emissions impacts of alternative fuels, NREL helps improve engine efficiency, reduce

  7. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  8. Oxygen enhanced switching to combustion of lower rank fuels

    DOE Patents [OSTI]

    Kobayashi, Hisashi; Bool, III, Lawrence E.; Wu, Kuang Tsai

    2004-03-02

    A furnace that combusts fuel, such as coal, of a given minimum energy content to obtain a stated minimum amount of energy per unit of time is enabled to combust fuel having a lower energy content, while still obtaining at least the stated minimum energy generation rate, by replacing a small amount of the combustion air fed to the furnace by oxygen. The replacement of oxygen for combustion air also provides reduction in the generation of NOx.

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Requirement for School Buses Every school bus that is capable of operating on diesel fuel must be capable of operating using blends of at least 20% biodiesel (B20). At least 2% of the total volume of fuel purchased annually by local school districts statewide for use in diesel school buses must be a minimum of B20, to the extent that biodiesel blends are available and compatible with the technology of the vehicles and the equipment used. (Reference North Carolina General Statutes 115C-240 and

  10. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1994-12-31

    Opportunity fuels - fuels that can be converted to other forms of energy at lower cost than standard fossil fuels - are discussed in outline form. The type and source of fuels, types of fuels, combustability, methods of combustion, refinery wastes, petroleum coke, garbage fuels, wood wastes, tires, and economics are discussed.

  11. Thermal breeder fuel enrichment zoning

    DOE Patents [OSTI]

    Capossela, Harry J.; Dwyer, Joseph R.; Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.

    1992-01-01

    A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect.

  12. HEAT Loan Minimum Standards and Requirements

    Energy Savers [EERE]

    you must meet the following minimum standards listed below. * New natural gas or propane boilers must be at least 90% AFUE to be eligible. * New oil boilers must be at least...

  13. Minimum Day Time Load Calculation and Screening

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Minimum Daytime Load Calculation and Screening Page 1 of 30 Kristen Ardani, Dora Nakfuji, Anthony Hong, and Babak Enayati Page 1 of 30 [Speaker: Kristen Ardani] Cover Slide: Thank you everyone for joining us today for our DG interconnection collaborative informational webinar. Today we are going to talk about minimum day time load calculation and screening procedures and their role in the distributed PV interconnection process. We're going to hear from Babak Enayati of the Massachusetts

  14. Fuel pin

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  15. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  16. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-10-03

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  17. HTGR Technology Family Assessment for a Range of Fuel Cycle Missions

    SciTech Connect (OSTI)

    Steven J. Piet; Samuel E. Bays; Nick R. Soelberg

    2010-11-01

    This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR “full recycle” service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the “pebble bed” approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R&D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in “limited separation” or “minimum fuel treatment” separation approaches motivates study of impurity-tolerant fuel fabrication.

  18. Alternative Fuels Data Center: Fuel Prices

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel

  19. Energy Department Invests $10M Through the Fuel Cell Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    which is polymer electrolyte membrane fuel cells, selected projects include a higher risk, completely different approach-alkaline exchange membrane fuel cells-that can ...

  20. Departments of Energy, Defense Partner to Install Fuel Cell Backup...

    Energy Savers [EERE]

    Energy, Defense Partner to Install Fuel Cell Backup Power Units at Eight Military ... The primary challenge facing currently available fuel cells is the higher first cost ...

  1. Mechanical Analysis of High Power Internally Cooled Annular Fuel...

    Office of Scientific and Technical Information (OSTI)

    Title: Mechanical Analysis of High Power Internally Cooled Annular Fuel Annular fuel with internal flow is proposed to allow higher power density in pressurized water reactors. The ...

  2. BioGold Fuels Corporation | Open Energy Information

    Open Energy Info (EERE)

    through joint ventures a lower-cost, higher-output system for the production of diesel fuel derived from Municipal Solid Waste ("MSW"). References: BioGold Fuels...

  3. Improving Ethanol-Gasoline Blends by Addition of Higher Alcohols |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Ethanol-Gasoline Blends by Addition of Higher Alcohols Improving Ethanol-Gasoline Blends by Addition of Higher Alcohols Mixtures of ethanol, gasoline, and higher alcohols were evaluated to determine if they offer superior performance to ethanol/gasoline blends in meeting the Renewal Fuels Standard II. deer12_ickes.pdf (1.45 MB) More Documents & Publications Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Impact of ethanol and butanol as oxygenates on

  4. TESTING AND ACCEPTANCE OF FUEL PLATES FOR RERTR FUEL DEVELOPMENT EXPERIMENTS

    SciTech Connect (OSTI)

    J.M. Wight; G.A. Moore; S.C. Taylor

    2008-10-01

    This paper discusses how candidate fuel plates for RERTR Fuel Development experiments are examined and tested for acceptance prior to reactor insertion. These tests include destructive and nondestructive examinations (DE and NDE). The DE includes blister annealing for dispersion fuel plates, bend testing of adjacent cladding, and microscopic examination of archive fuel plates. The NDE includes Ultrasonic (UT) scanning and radiography. UT tests include an ultrasonic scan for areas of “debonds” and a high frequency ultrasonic scan to determine the "minimum cladding" over the fuel. Radiography inspections include identifying fuel outside of the maximum fuel zone and measurements and calculations for fuel density. Details of each test are provided and acceptance criteria are defined. These tests help to provide a high level of confidence the fuel plate will perform in the reactor without a breach in the cladding.

  5. Alternative Fuels Data Center: Emerging Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative

  6. Alternative Fuels Data Center: Biodiesel Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in

  7. Alternative Fuels Data Center: Electricity Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on

  8. Alternative Fuels Data Center: Ethanol Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this

  9. Alternative Fuels Data Center: Ethanol Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on

  10. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations

  11. Alternative Fuels Data Center: Propane Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on

  12. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  13. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Reformer Development Putting the 'Fuel' in Fuel Cells Subir Roychoudhury Precision Combustion, Inc. (PCI), North Haven, CT Shipboard Fuel Cell Workshop March 29, 2011 ...

  14. ITP Steel: Theoretical Minimum Energies to Produce Steel for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Theoretical Minimum Energies to Produce Steel for Selected Conditions, March 2000 ITP Steel: Theoretical Minimum Energies to Produce Steel for Selected Conditions, March 2000 ...

  15. Transportation Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels DOE would invest $52 million to fund a major fleet transformation at Idaho National Laboratory, along with the installation of nine fuel management systems, purchase of additional flex fuel cars and one E85 ethanol fueling station. Transportation projects, such as the acquisition of highly efficient and alternative-fuel vehicles, are not authorized by ESPC legislation. DOE has twice proportion of medium vehicles and three times as many heavy vehicles as compared to the Federal agency

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Education Grants Competitive grants are available through the Biodiesel Fuel Education Program (Section 9006) to educate governmental and private entities that operate vehicle fleets, the public, and other interested entities about the benefits of biodiesel use. Eligible applicants are non-profit organizations or institutes of higher education that have demonstrated knowledge of biodiesel fuel production, use, or distribution; and have demonstrated the ability to conduct educational

  17. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg

  18. Federal Fuel Cell Tax Incentives: An Investment in Clean and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Fuel Cell Tax Incentives; An investment in clean and efficient technologies On ... OWNER (Section 103) * Credit of 30% of the cost up to 3,000 per kW * Minimum 0.5 kW ...

  19. Improving Vehicle Fuel Efficiency Through Tire Design, Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To develop a new class of tires in the replacement market that improves fuel efficiency by a minimum of 3% and reduces overall tire weight by 20%. This presentation does...

  20. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1996-12-31

    The paper consists of viewgraphs from a conference presentation. A comparison is made of opportunity fuels, defined as fuels that can be converted to other forms of energy at lower cost than standard fossil fuels. Types of fuels for which some limited technical data is provided include petroleum coke, garbage, wood waste, and tires. Power plant economics and pollution concerns are listed for each fuel, and compared to coal and natural gas power plant costs. A detailed cost breakdown for different plant types is provided for use in base fuel pricing.

  1. Microcomposite Fuel Cell Membranes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microcomposite Fuel Cell Membranes Microcomposite Fuel Cell Membranes Summary of microcomposite fuel cell membrane work presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003 doe_hight_work_grp_mtg.pdf (340.31 KB) More Documents & Publications 2006 DOE Hydrogen Program Poly (p-phenylene Sulfonic Acid)s with Frozen-in Free Volume for use in High Temperature Fuel Cells Higher Temperature PEM Composite Systems for Fuel Cells Polyphenylene Sulfonic Acid: a

  2. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cell Manufacturing Photo of scientific equipment in laboratory setting. NREL's in-line diagnostics help industry identify defects in fuel cell components. This small-scale manufacturing line at NREL's Energy Systems Integration Facility can convey fuel cell component materials at speeds of 100 feet per minute. NREL's fuel cell manufacturing R&D focuses on improving quality-inspection practices for high-volume manufacturing processes to enable higher production volumes, increased reliability,

  3. Synthetic Fuel

    ScienceCinema (OSTI)

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2010-01-08

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  4. Minimum Day Time Load Calculation and Screening

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Minimum Day Time Load Calculation and Screening" Dora Nakafuji and Anthony Hong, Hawaiian Electric Co. Babak Enayati, DG Techincal Standards Review Group April 30, 2014 2 Speakers Babak Enayati Chair of Massachusetts DG Technical Standards Review Group Dora Nakafuji Director of Renewable Energy Planning Hawaiian Electric Company (HECO) Kristen Ardani Solar Analyst, (today's moderator) NREL Anthony Hong Director of Distribution Planning Hawaiian Electric Company (HECO) Standardization of

  5. Two variants of minimum discarded fill ordering

    SciTech Connect (OSTI)

    D'Azevedo, E.F. ); Forsyth, P.A.; Tang, Wei-Pai . Dept. of Computer Science)

    1991-01-01

    It is well known that the ordering of the unknowns can have a significant effect on the convergence of Preconditioned Conjugate Gradient (PCG) methods. There has been considerable experimental work on the effects of ordering for regular finite difference problems. In many cases, good results have been obtained with preconditioners based on diagonal, spiral or natural row orderings. However, for finite element problems having unstructured grids or grids generated by a local refinement approach, it is difficult to define many of the orderings for more regular problems. A recently proposed Minimum Discarded Fill (MDF) ordering technique is effective in finding high quality Incomplete LU (ILU) preconditioners, especially for problems arising from unstructured finite element grids. Testing indicates this algorithm can identify a rather complicated physical structure in an anisotropic problem and orders the unknowns in the preferred'' direction. The MDF technique may be viewed as the numerical analogue of the minimum deficiency algorithm in sparse matrix technology. At any stage of the partial elimination, the MDF technique chooses the next pivot node so as to minimize the amount of discarded fill. In this work, two efficient variants of the MDF technique are explored to produce cost-effective high-order ILU preconditioners. The Threshold MDF orderings combine MDF ideas with drop tolerance techniques to identify the sparsity pattern in the ILU preconditioners. These techniques identify an ordering that encourages fast decay of the entries in the ILU factorization. The Minimum Update Matrix (MUM) ordering technique is a simplification of the MDF ordering and is closely related to the minimum degree algorithm. The MUM ordering is especially for large problems arising from Navier-Stokes problems. Some interesting pictures of the orderings are presented using a visualization tool. 22 refs., 4 figs., 7 tabs.

  6. Minimum Day Time Load Calculation and Screening

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Generation Interconnection Collaborative (DGIC) "Minimum Day Time Load Calculation and Screening" Dora Nakafuji and Anthony Hong, Hawaiian Electric Co. Babak Enayati, DG Techincal Standards Review Group April 30, 2014 2 Speakers Babak Enayati Chair of Massachusetts DG Technical Standards Review Group Dora Nakafuji Director of Renewable Energy Planning Hawaiian Electric Company (HECO) Kristen Ardani Solar Analyst, (today's moderator) NREL Anthony Hong Director of

  7. Fact #684: July 18, 2011 Fuel Economy versus Fuel Savings | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4: July 18, 2011 Fuel Economy versus Fuel Savings Fact #684: July 18, 2011 Fuel Economy versus Fuel Savings An increase in fuel economy by 5 miles per gallon (mpg) does not translate to a constant fuel savings amount. Thus, trading a low-mpg car or truck for one with just slightly better mpg will save more fuel than trading a high-mpg car or truck for one that is even higher. For example, trading a truck that gets 15 mpg for a new one that gets 20 mpg will save 16.7 gallons of fuel

  8. Fuel Economy

    Broader source: Energy.gov [DOE]

    The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

  9. Sipping fuel and saving lives: increasing fuel economy withoutsacrificing safety

    SciTech Connect (OSTI)

    Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

    2007-06-11

    The public, automakers, and policymakers have long worried about trade-offs between increased fuel economy in motor vehicles and reduced safety. The conclusion of a broad group of experts on safety and fuel economy in the auto sector is that no trade-off is required. There are a wide variety of technologies and approaches available to advance vehicle fuel economy that have no effect on vehicle safety. Conversely, there are many technologies and approaches available to advance vehicle safety that are not detrimental to vehicle fuel economy. Congress is considering new policies to increase the fuel economy of new automobiles in order to reduce oil dependence and reduce greenhouse gas emissions. The findings reported here offer reassurance on an important dimension of that work: It is possible to significantly increase the fuel economy of motor vehicles without compromising their safety. Automobiles on the road today demonstrate that higher fuel economy and greater safety can co-exist. Some of the safest vehicles have higher fuel economy, while some of the least safe vehicles driven today--heavy, large trucks and SUVs--have the lowest fuel economy. At an October 3, 2006 workshop, leading researchers from national laboratories, academia, auto manufacturers, insurance research industry, consumer and environmental groups, material supply industries, and the federal government agreed that vehicles could be designed to simultaneously improve safety and fuel economy. The real question is not whether we can realize this goal, but the best path to get there. The experts' studies reveal important new conclusions about fuel economy and safety, including: (1) Vehicle fuel economy can be increased without affecting safety, and vice versa; (2) Reducing the weight and height of the heaviest SUVs and pickup trucks will simultaneously increase both their fuel economy and overall safety; and (3) Advanced materials can decouple size from mass, creating important new possibilities for

  10. Theoretical Minimum Energies to Produce Steel for Selected Conditions

    SciTech Connect (OSTI)

    Fruehan, R.J.; Fortini, O.; Paxton, H.W.; Brindle, R.

    2000-05-01

    The energy used to produce liquid steel in today's integrated and electric arc furnace (EAF) facilities is significantly higher than the theoretical minimum energy requirements. This study presents the absolute minimum energy required to produce steel from ore and mixtures of scrap and scrap alternatives. Additional cases in which the assumptions are changed to more closely approximate actual operating conditions are also analyzed. The results, summarized in Table E-1, should give insight into the theoretical and practical potentials for reducing steelmaking energy requirements. The energy values have also been converted to carbon dioxide (CO{sub 2}) emissions in order to indicate the potential for reduction in emissions of this greenhouse gas (Table E-2). The study showed that increasing scrap melting has the largest impact on energy consumption. However, scrap should be viewed as having ''invested'' energy since at one time it was produced by reducing ore. Increasing scrap melting in the BOF mayor may not decrease energy if the ''invested'' energy in scrap is considered.

  11. Energy and IAQ Implications of Alternative Minimum Ventilation Rates in California Retail and School Buildings

    SciTech Connect (OSTI)

    Dutton, Spencer M.; Fisk, William J.

    2015-01-01

    For a stand-alone retail building, a primary school, and a secondary school in each of the 16 California climate zones, the EnergyPlus building energy simulation model was used to estimate how minimum mechanical ventilation rates (VRs) affect energy use and indoor air concentrations of an indoor-generated contaminant. The modeling indicates large changes in heating energy use, but only moderate changes in total building energy use, as minimum VRs in the retail building are changed. For example, predicted state-wide heating energy consumption in the retail building decreases by more than 50% and total building energy consumption decreases by approximately 10% as the minimum VR decreases from the Title 24 requirement to no mechanical ventilation. The primary and secondary schools have notably higher internal heat gains than in the retail building models, resulting in significantly reduced demand for heating. The school heating energy use was correspondingly less sensitive to changes in the minimum VR. The modeling indicates that minimum VRs influence HVAC energy and total energy use in schools by only a few percent. For both the retail building and the school buildings, minimum VRs substantially affected the predicted annual-average indoor concentrations of an indoor generated contaminant, with larger effects in schools. The shape of the curves relating contaminant concentrations with VRs illustrate the importance of avoiding particularly low VRs.

  12. Multi-stage fuel cell system method and apparatus

    DOE Patents [OSTI]

    George, Thomas J.; Smith, William C.

    2000-01-01

    A high efficiency, multi-stage fuel cell system method and apparatus is provided. The fuel cell system is comprised of multiple fuel cell stages, whereby the temperatures of the fuel and oxidant gas streams and the percentage of fuel consumed in each stage are controlled to optimize fuel cell system efficiency. The stages are connected in a serial, flow-through arrangement such that the oxidant gas and fuel gas flowing through an upstream stage is conducted directly into the next adjacent downstream stage. The fuel cell stages are further arranged such that unspent fuel and oxidant laden gases too hot to continue within an upstream stage because of material constraints are conducted into a subsequent downstream stage which comprises a similar cell configuration, however, which is constructed from materials having a higher heat tolerance and designed to meet higher thermal demands. In addition, fuel is underutilized in each stage, resulting in a higher overall fuel cell system efficiency.

  13. Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications

    SciTech Connect (OSTI)

    Eteman, Shahrokh

    2013-06-30

    Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

  14. Development of Hydrothermal Liquefaction and Upgrading Technologies for Lipid-Extracted Algae Conversion to Liquid Fuels

    SciTech Connect (OSTI)

    Zhu, Yunhua; Albrecht, Karl O.; Elliott, Douglas C.; Hallen, Richard T.; Jones, Susanne B.

    2013-10-01

    Bench-scale tests were performed for lipid-extracted microalgae (LEA) conversion to liquid fuels via hydrotreating liquefaction (HTL) and upgrading processes. Process simulation and economic analysis for a large-scale LEA HTL and upgrading system were developed based on the best available test results. The system assumes an LEA feed rate of 608 dry metric ton/day and that the feedstock is converted to a crude HTL bio-oil and further upgraded via hydrotreating and hydrocracking to produce liquid hydrocarbon fuels, mainly alkanes. Performance and cost results demonstrate that HTL would be an effective option to convert LEA to liquid fuel. The liquid fuels annual yield was estimated to be 26.9 million gallon gasoline-equivalent and the overall energy efficiency at higher heating value basis was estimated to be 69.5%. The minimum fuel selling price (MFSP) was estimated to be $0.75/L with LEA feedstock price at $33.1 metric ton at dry basis and 10% internal rate of return. A sensitivity analysis indicated that the largest effects to production cost would come from the final products yields and the upgrading equipments cost. The impact of plant scale on MFSP was also investigated.

  15. Fuels Technologies

    Office of Environmental Management (EM)

    Displacement of petroleum n Approach n Example Project Accomplishments n Research Directions Fuels Technologies R&D Budget by Activities Major Activities FY 2007 ...

  16. Natural Gas: Lifting Mileage Higher and Higher | Department of...

    Office of Environmental Management (EM)

    reduce gasoline consumption, improve energy ... is then turned into electricity by the fuel cells to ... of fuel production, processing, transportation, and end use. ...

  17. HEAT Loan Minimum Standards and Requirements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HEAT Loan Minimum Standards and Requirements HEAT Loan Minimum Standards and Requirements Presents additional resources on loan standards and requirements from Elise Avers' presentation on HEAT Loan Minimum Standards and Requirements. Minimum Standards and Requirements (63.33 KB) More Documents & Publications Building America Best Practices Series Vol. 14: Energy Renovations - HVAC: A Guide for Contractors to Share with Homeowners STEP Financial Incentives Summary Energy Saver 101: Home

  18. DOE CYBER SECURITY EBK: MINIMUM CORE COMPETENCY TRAINING REQUIREMENTS |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy CYBER SECURITY EBK: MINIMUM CORE COMPETENCY TRAINING REQUIREMENTS DOE CYBER SECURITY EBK: MINIMUM CORE COMPETENCY TRAINING REQUIREMENTS puzzle-693870_960_720.jpg DOE CYBER SECURITY EBK: MINIMUM CORE COMPETENCY TRAINING REQUIREMENTS (78.26 KB) More Documents & Publications DOE CYBER SECURITY EBK: MINIMUM CORE COMPETENCY TRAINING REQUIREMENTS DOE CYBER SECURITY EBK: CORE COMPETENCY TRAINING REQUIREMENTS: CA Authorizing Official Designated Representative (AODR)

  19. Fuel Model | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Model This model informs analyses of the availability of transportation fuel in the event the fuel supply chain is disrupted. The portion of the fuel supply system...

  20. Fuel control for gas turbine with continuous pilot flame

    DOE Patents [OSTI]

    Swick, Robert M.

    1983-01-01

    An improved fuel control for a gas turbine engine having a continuous pilot flame and a fuel distribution system including a pump drawing fuel from a source and supplying a line to the main fuel nozzle of the engine, the improvement being a control loop between the pump outlet and the pump inlet to bypass fuel, an electronically controlled throttle valve to restrict flow in the control loop when main nozzle demand exists and to permit substantially unrestricted flow without main nozzle demand, a minimum flow valve in the control loop downstream of the throttle valve to maintain a minimum pressure in the loop ahead of the flow valve, a branch tube from the pilot flame nozzle to the control loop between the throttle valve and the minimum flow valve, an orifice in the branch tube, and a feedback tube from the branch tube downstream of the orifice to the minimum flow valve, the minimum flow valve being operative to maintain a substantially constant pressure differential across the orifice to maintain constant fuel flow to the pilot flame nozzle.

  1. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. apu2011_6_roychoudhury.pdf (4.83 MB) More Documents & Publications System Design - Lessons Learned, Generic Concepts, Characteristics & Impacts Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Fuel Cell Systems Annual Progress Report

  2. Minimum wear tube support hole design

    DOE Patents [OSTI]

    Glatthorn, Raymond H. (St. Petersburg, FL)

    1986-01-01

    A minimum-wear through-bore (16) is defined within a heat exchanger tube support plate (14) so as to have an hourglass configuration as determined by means of a constant radiused surface curvature (18) as defined by means of an external radius (R3), wherein the surface (18) extends between the upper surface (20) and lower surface (22) of the tube support plate (14). When a heat exchange tube (12) is disposed within the tube support plate (14) so as to pass through the through-bore (16), the heat exchange tube (12) is always in contact with a smoothly curved or radiused portion of the through-bore surface (16) whereby unacceptably excessive wear upon the heat exchange tube (12), as normally developed by means of sharp edges, lands, ridges, or the like conventionally part of the tube support plates, is eliminated or substantially reduced.

  3. Hydrogen and Fuel Cell Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education » For Students & Educators » Higher Education » Hydrogen and Fuel Cell Programs Hydrogen and Fuel Cell Programs The links below provide information about colleges and universities that offer courses and other activities related to hydrogen and fuel cells. Many of these institutions have departments, centers, laboratories, and instructors dedicated to hydrogen and fuel cell research. Colleges and Universities with Fuel Cell-Specific Courses or Research Programs - Fuel Cell 2000's

  4. Co-Optimization of Fuels and Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Co-Optimization of Fuels and Vehicles Co-Optimization of Fuels and Vehicles Plenary IV: Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines Co-Optimization of Fuels and Vehicles James E. Anderson, Technical Expert, Ford Motor Company anderson_bioenergy_2015.pdf (217.53 KB) More Documents & Publications A Vehicle Manufacturer's Perspective on Higher-Octane Fuels Co-Optima Stakeholder Listening Day Summary Report Vehicle Technologies Office Merit Review 2016: Overview of

  5. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  6. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  7. Antioxidants and stabilizers for lubricants and fuels. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-05-01

    The bibliography contains citations concerning the design, manufacture, and evaluation of antioxidants and stabilizers used in lubricants and fuels. The synthesis, stability, degradation, and storage life of lubricant and fuel additives are discussed. Additives used in jet engine, turbine, natural-gas, and coal-water fuels are examined. (Contains a minimum of 129 citations and includes a subject term index and title list.)

  8. Fuel injector

    DOE Patents [OSTI]

    Lambeth, Malcolm David Dick

    2001-02-27

    A fuel injector comprises first and second housing parts, the first housing part being located within a bore or recess formed in the second housing part, the housing parts defining therebetween an inlet chamber, a delivery chamber axially spaced from the inlet chamber, and a filtration flow path interconnecting the inlet and delivery chambers to remove particulate contaminants from the flow of fuel therebetween.

  9. Fuel cell-fuel cell hybrid system

    DOE Patents [OSTI]

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  10. Fuel Cells and Renewable Gaseous Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 3-C: Renewable Gaseous FuelsFuel Cells and Renewable Gaseous FuelsSarah Studer, ORISE Fellow—Fuel Cell Technologies Office, U.S. Department of Energy

  11. RECONDITIONING FUEL ELEMENTS

    DOE Patents [OSTI]

    Brandt, H.L.

    1962-02-20

    A process is given for decanning fuel elements that consist of a uranium core, an intermediate section either of bronze, silicon, Al-Si, and uranium silicide layers or of lead, Al-Si, and uranium silicide layers around said core, and an aluminum can bonded to said intermediate section. The aluminum can is dissolved in a solution of sodium hydroxide (9 to 20 wt%) and sodium nitrate (35 to 12 wt %), and the layers of the intermediate section are dissolved in a boiling sodium hydroxide solution of a minimum concentration of 50 wt%. (AEC) A method of selectively reducing plutonium oxides and the rare earth oxides but not uranium oxides is described which comprises placing the oxides in a molten solvent of zinc or cadmium and then adding metallic uranium as a reducing agent. (AEC)

  12. FUEL ELEMENT

    DOE Patents [OSTI]

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  13. Biodegradation of biodiesel fuels

    SciTech Connect (OSTI)

    Zhang, X.; Haws, R.; Wright, B.; Reese, D.; Moeller, G.; Peterson, C.

    1995-12-31

    Biodiesel fuel test substances Rape Ethyl Ester (REE), Rape Methyl Ester (RME), Neat Rape Oil (NR), Say Methyl Ester (SME), Soy Ethyl Ester (SEE), Neat Soy Oil (NS), and proportionate combinations of RME/diesel and REE/diesel were studied to test the biodegradability of the test substances in an aerobic aquatic environment using the EPA 560/6-82-003 Shake Flask Test Method. A concurrent analysis of Phillips D-2 Reference Diesel was also performed for comparison with a conventional fuel. The highest rates of percent CO{sub 2} evolution were seen in the esterified fuels, although no significant difference was noted between them. Ranges of percent CO{sub 2} evolution for esterified fuels were from 77% to 91%. The neat rape and neat soy oils exhibited 70% to 78% CO{sub 2} evolution. These rates were all significantly higher than those of the Phillips D-2 reference fuel which evolved from 7% to 26% of the organic carbon to CO{sub 2}. The test substances were examined for BOD{sub 5} and COD values as a relative measure of biodegradability. Water Accommodated Fraction (WAF) was experimentally derived and BOD{sub 5} and COD analyses were carried out with a diluted concentration at or below the WAF. The results of analysis at WAF were then converted to pure substance values. The pure substance BOD{sub 5} and COD values for test substances were then compared to a control substance, Phillips D-2 Reference fuel. No significant difference was noted for COD values between test substances and the control fuel. (p > 0.20). The D-2 control substance was significantly lower than all test substances for BCD, values at p << 0.01. RME was also significantly lower than REE (p < 0.05) and MS (p < 0.01) for BOD{sub 5} value.

  14. Fuel economizer

    SciTech Connect (OSTI)

    Zwierzelewski, V.F.

    1984-06-26

    A fuel economizer device for use with an internal combustion engine fitted with a carburetor is disclosed. The fuel economizer includes a plate member which is mounted between the carburetor and the intake portion of the intake manifold. The plate member further has at least one aperture formed therein. One tube is inserted through the at least one aperture in the plate member. The one tube extends longitudinally in the passage of the intake manifold from the intake portion toward the exit portion thereof. The one tube concentrates the mixture of fuel and air from the carburetor and conveys the mixture of fuel and air to a point adjacent but spaced away from the inlet port of the internal combustion engine.

  15. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of 175 per kW, and ...

  16. Minimum Efficiency Requirements Tables for Heating and Cooling Product

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categories | Department of Energy Minimum Efficiency Requirements Tables for Heating and Cooling Product Categories Minimum Efficiency Requirements Tables for Heating and Cooling Product Categories The Federal Energy Management Program (FEMP) created tables that mirror American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013 tables, which include minimum efficiency requirements for FEMP-designated and ENERGY STAR-qualified heating and cooling product

  17. Optimizing minimum free-energy crossing points in solution: Linear...

    Office of Scientific and Technical Information (OSTI)

    Optimizing minimum free-energy crossing points in solution: Linear-response free energyspin-flip density functional theory approach Citation Details In-Document Search Title:...

  18. Electrocatalysts for Alcohol Oxidation in Fuel Cells - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Electrocatalysts for Alcohol Oxidation in Fuel Cells Brookhaven National Laboratory Contact BNL About This Technology <p> Higher current indicates higher activity for catalyzing methanol oxidation in a fuel cell. Here the ternary electrocatalyst is comparable to the best commercially available catalyst for methanol oxidation.</p> Higher current indicates higher activity for catalyzing methanol oxidation in a fuel cell. Here the ternary electrocatalyst is comparable to the

  19. Conceptual design characteristics of a denatured molten-salt reactor with once-through fueling

    SciTech Connect (OSTI)

    Engel, J.R.; Bauman, H.F.; Dearing, J.F.; Grimes, W.R.; McCoy, H.E.; Rhoades, W.A.

    1980-07-01

    A study was made to examine the conceptual feasibility of a molten-salt power reactor fueled with denatured /sup 235/U and operated with a minimum of chemical processing. Because such a reactor would not have a positive breeding gain, reductions in the fuel conversion ratio were allowed in the design to achieve other potentially favorable characteristics for the reactor. A conceptual core design was developed in which the power density was low enough to allow a 30-year life expectancy of the moderator graphite with a fluence limit of 3 x 10/sup 26/ neutrons/m/sup 2/ (E > 50 keV). This reactor could be made critical with about 3450 kg of 20% enriched /sup 235/U and operated for 30 years with routine additions of denatured /sup 235/U and no chemical processing for removal of fission products. A review of the chemical considerations assoicated with the conceptual fuel cycle indicates that no substantial difficulties would be expected if the soluble fission products and higher actinides were allowed to remain in the fuel salt for the life of the plant.

  20. Higher Temperature PEM Composite Systems for Fuel Cells

    Broader source: Energy.gov [DOE]

    Presentation by Virginia Polytechnic Institute and State University to the High Temperature Membrane Working Group Meeting held in Honolulu, Hawaii October 8, 2004.

  1. Fuel injection for internal combustion engines. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The bibliography contains citations concerning research and development of fuel injection systems applied to internal combustion engines and turbines. Gasoline, diesel, synthetic fuels, and liquid gas systems are discussed relative to systems' variations and performances. Fuel injection atomization and combustion are considered in theory, and fuel injection relative to emission control is included. (Contains a minimum of 223 citations and includes a subject term index and title list.)

  2. Bulk characterization of (U, Pu) mixed carbide fuel for distribution of plutonium

    SciTech Connect (OSTI)

    Devi, K. V. Vrinda Khan, K. B.; Biju, K.; Kumar, Arun

    2015-06-24

    Homogeneous distribution of plutonium in (U, Pu) mixed fuels is important from fuel performance as well as reprocessing point of view. Radiation imaging and assay techniques are employed for the detection of Pu rich agglomerates in the fuel. A simulation study of radiation transport was carried out to analyse the technique of autoradiography so as to estimate the minimum detectability of Pu agglomerates in MC fuel with nominal PuC content of 70% using Monte Carlo simulations.

  3. Winters fuels report

    SciTech Connect (OSTI)

    1995-10-27

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

  4. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell ...

  5. Impact of High Burnup on PWR Spent Fuel Characteristics (Journal...

    Office of Scientific and Technical Information (OSTI)

    Reducing the burden of management of spent nuclear fuel is important to the future of nuclear energy. The impact of higher pressurized water reactor (PWR) fuel burnup is examined ...

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart

  7. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  8. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  9. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling

  10. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  11. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  12. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  13. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  14. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Transportation Fuel Standards The Oregon Department of Environmental Quality (DEQ) administers the Oregon Clean Fuels Program (Program), which requires fuel producers and ...

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle and Fueling Infrastructure Grants and Loans The Utah Clean Fuels and Vehicle Technology Grant and Loan Program, funded through the Clean Fuels and Vehicle Technology Fund, ...

  17. Theoretical minimum energies to produce steel for selected conditions

    SciTech Connect (OSTI)

    Fruehan, R. J.; Fortini, O.; Paxton, H. W.; Brindle, R.

    2000-03-01

    An ITP study has determined the theoretical minimum energy requirements for producing steel from ore, scrap, and direct reduced iron. Dr. Richard Fruehan's report, Theoretical Minimum Energies to Produce Steel for Selected Conditions, provides insight into the potential energy savings (and associated reductions in carbon dioxide emissions) for ironmaking, steelmaking, and rolling processes (PDF 459 KB).

  18. Fuel cell tubes and method of making same

    DOE Patents [OSTI]

    Borglum, Brian P.

    1999-11-30

    A method of manufacturing porous ceramic tubes for fuel cells with improved properties and higher manufacturing yield is disclosed. The method involves extruding a closed end fuel cell tube, such as an air electrode of a solid oxide fuel cell, in which the closed end also functions as the sintering support. The resultant fuel cell tube has a superior porosity distribution which allows improved diffusion of oxygen at the closed end of the tube during operation of the fuel cell. Because this region has the highest current density, performance enhancement and improved reliability of the fuel cell tube result. Furthermore, the higher manufacturing yield associated with the present method decreases the overall fuel cell cost. A method of manufacturing porous ceramic tubes for fuel cells with improved properties and higher manufacturing yield is disclosed. The method involves extruding a closed end fuel cell tube, such as an air electrode of a solid oxide fuel cell, in which the closed end also functions as the sintering support. The resultant fuel cell tube has a superior porosity distribution which allows improved diffusion of oxygen at the closed end of the tube during operation of the fuel cell. Because this region has the highest current density, performance enhancement and improved reliability of the fuel cell tube result. Furthermore, the higher manufacturing yield associated with the present method decreases the overall fuel cell cost.

  19. Fuel Cells & Alternative Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells & Alternative Fuels Fuel Cells & Alternative Fuels Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and ...

  20. Update on US High Density Fuel Fabrication Development

    SciTech Connect (OSTI)

    C.R. Clark; G.A. Moore; J.F. Jue; B.H. Park; N.P. Hallinan; D.M. Wachs; D.E. Burkes

    2007-03-01

    Second generation uranium molybdenum fuel has shown excellent in-reactor irradiation performance. This metallic fuel type is capable of being fabricated at much higher loadings than any presently used research reactor fuel. Due to the broad range of fuel types this alloy system encompasses—fuel powder to monolithic foil and binary fuel systems to multiple element additions—significant amounts of research and development have been conducted on the fabrication of these fuels. This paper presents an update of the US RERTR effort to develop fabrication techniques and the fabrication methods used for the RERTR-9A miniplate test.

  1. California Fuel Cell Partnership: Alternative Fuels Research...

    Broader source: Energy.gov (indexed) [DOE]

    This presentation by Chris White of the California Fuel Cell Partnership provides information about alternative fuels research. cafcpinitiativescall.pdf (133.97 KB) More ...

  2. Fuel Cells and Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office | 1 7/14/2015 Fuel Cells and Renewable Gaseous Fuels Bioenergy 2015: Renewable Gaseous Fuels Breakout Session Sarah Studer, PhD ORISE Fellow Fuel Cell Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy June 24, 2015 Washington, DC Fuel Cell Technologies Office | 2 7/14/2015 7/14/2015 DOE Hydrogen and Fuel Cells Program Integrated approach to widespread commercialization of H 2 and fuel cells Fuel Cell Cost Durability H 2 Cost

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Fuel Distributor and Vehicle Manufacturer Liability Protection Renewable fuel refiners, suppliers, terminals, wholesalers, distributors, retailers, and motor vehicle manufacturers and dealers are not liable for property damages related to a customer's purchase of renewable fuel, including blends, if the consumer selected the fuel for use. Motor fuel blended with any amount of renewable fuel will not be considered a defective product provided the fuel compiles with motor fuel quality

  4. Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure

  5. Alternative Fuels Data Center: Propane Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Propane Fueling Infrastructure

  6. Alternative Fuels Data Center: Filling CNG Fuel Tanks

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Filling CNG Fuel Tanks to someone by E-mail Share Alternative Fuels Data Center: Filling CNG Fuel Tanks on Facebook Tweet about Alternative Fuels Data Center: Filling CNG Fuel Tanks on Twitter Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Google Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Delicious Rank Alternative Fuels Data Center: Filling CNG Fuel Tanks on Digg Find More places to share Alternative Fuels Data Center: Filling CNG Fuel Tanks on

  7. Alternative Fuels Data Center: Natural Gas Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Basics on

  8. Alternative Fuels Data Center: Natural Gas Fuel Safety

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Safety to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Safety on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Safety on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Safety on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Safety on

  9. Internal combustion engine fuel feed

    SciTech Connect (OSTI)

    Cochard, P.; Guicherd, C.

    1980-02-19

    In a method and apparatus for controlling the fuel feed to a stratified-charge internal combustion engine, from idle up to the position corresponding with the maximum flow of air, the overall richness (Rg) of the combustible mixture is reduced by acting simultaneously upon the flow of fuel feeding the main chamber and upon the flow of fuel injected into the auxiliary chamber. For higher loads the maximum flow of air is kept constant and rg is increased by continuing to act upon both fuel flows. By keeping the richness of the mixture in the auxiliary chamber substantially constant, it is possible to obtain the best compromise between the performance of the engine and the emission of pollutant gases.

  10. Westinghouse VANTAGE+ fuel assembly to meet future PWR operating requirements

    SciTech Connect (OSTI)

    Doshi, P.K.; Chapin, D.L.; Scherpereel, L.R.

    1988-01-01

    Many utilities operating pressurized water reactors (PWRs) are implementing longer reload cycles. Westinghouse is addressing this trend with fuel products that increase fuel utilization through higher discharge burnups. Higher burnup helps to offset added enriched uranium costs necessary to enable the higher energy output of longer cycles. Current fuel products have burnup capabilities in the area of 40,000 MWd/tonne U or more. There are three main phenomena that must be addressed to achieve even higher burnup levels: accelerated cladding, waterside corrosion, and hydriding; increased fission gas production; and fuel rod growth. Long cycle lengths also require efficient burnable absorbers to control the excess reactivity associated with increased fuel enrichment while maintaining a low residual absorber penalty at the end of cycle. Westinghouse VANTAGE + PWR fuel incorporates features intended to enhance fuel performance at very high burnups, including advances in the three basic elements of the fuel assembly: fuel cladding, fuel rod, and fuel assembly skeleton. ZIRLO {sup TM} cladding, an advanced Zircaloy cladding that contains niobium, offers a significant improvement in corrosion resistance relative to Zircaloy-4. Another important Westinghouse PWR fuel feature that facilitates long cycles is the zirconium diboride integral fuel burnable absorber (ZrB{sub 2}IFBA).

  11. Nuclear fuel: a new market dynamic

    SciTech Connect (OSTI)

    Kee, Edward D.

    2007-12-15

    After almost 20 years of low nuclear fuel prices, buyers have come to expect that these low and stable nuclear fuel prices will continue. This conventional wisdom may not reflect the significant changes and higher prices that growing demand, and the end of secondary sources of uranium and enrichment, will bring. (author)

  12. Synthetic fuels

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    In January 1982, the Department of Energy guaranteed a loan for the construction and startup of the Great Plains project. On August 1, 1985, the partnership defaulted on the $1.54 billion loan, and DOE acquired control of, and then title to, the project. DOE continued to operate the plant, through the ANG Coal Gasification Company, and sell synthetic fuel. The DOE's ownership and divestiture of the plant is discussed.

  13. Minimum Velocity Required to Transport Solid Particles from the...

    Office of Scientific and Technical Information (OSTI)

    Required to Transport Solid Particles from the 2H-Evaporator to the Tank Farm Citation Details In-Document Search Title: Minimum Velocity Required to Transport Solid Particles ...

  14. Incorporate Minimum Efficiency Requirements for Heating and Cooling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Air-Conditioning Engineers (ASHRAE) 90.1-2013 minimum efficiency requirement tables. ... These ASHRAE 90.1-2013 Table 6.8.1-1 and Table 6.8.1-2 equipment types are excluded: ...

  15. Modeling an Application's Theoretical Minimum and Average Transactional Response Times

    SciTech Connect (OSTI)

    Paiz, Mary Rose

    2015-04-01

    The theoretical minimum transactional response time of an application serves as a ba- sis for the expected response time. The lower threshold for the minimum response time represents the minimum amount of time that the application should take to complete a transaction. Knowing the lower threshold is beneficial in detecting anomalies that are re- sults of unsuccessful transactions. On the converse, when an application's response time falls above an upper threshold, there is likely an anomaly in the application that is causing unusual performance issues in the transaction. This report explains how the non-stationary Generalized Extreme Value distribution is used to estimate the lower threshold of an ap- plication's daily minimum transactional response time. It also explains how the seasonal Autoregressive Integrated Moving Average time series model is used to estimate the upper threshold for an application's average transactional response time.

  16. NREL: State and Local Governments - Renewable Fuel Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to RFS effectiveness: Imposing stringency to require use of higher blends of ethanol or alternative fuels. Adopting an implementation plan that can ease measurement and...

  17. Engineered fuel: Renewable fuel of the future?

    SciTech Connect (OSTI)

    Tomczyk, L.

    1997-01-01

    The power generation and municipal solid waste management industries share an interest in the use of process engineered fuel (PEF) comprised mainly of paper and plastics as a supplement to conventional fuels. PEF is often burned in existing boilers, making PEF an alternative to traditional refuse derived fuels (RDF). This paper describes PEF facilities and makes a comparison of PEF and RDF fuels.

  18. Table 10.1 Nonswitchable Minimum and Maximum Consumption, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonswitchable Minimum and Maximum Consumption, 2002; " " Level: National and Regional Data;" " Row: Energy Sources;" " Column: Consumption Potential;" " Unit: Physical Units." ,,,,"RSE" ,"Actual","Minimum","Maximum","Row" "Energy Sources","Consumption","Consumption(a)","Consumption(b)","Factors" ,"Total United States" "RSE Column

  19. THE TURBULENT CASCADE AND PROTON HEATING IN THE SOLAR WIND DURING SOLAR MINIMUM

    SciTech Connect (OSTI)

    Coburn, Jesse T.; Smith, Charles W.; Vasquez, Bernard J.; Stawarz, Joshua E.; Forman, Miriam A. E-mail: Charles.Smith@unh.edu E-mail: Joshua.Stawarz@Colorado.edu

    2012-08-01

    The recently protracted solar minimum provided years of interplanetary data that were largely absent in any association with observed large-scale transient behavior on the Sun. With large-scale shear at 1 AU generally isolated to corotating interaction regions, it is reasonable to ask whether the solar wind is significantly turbulent at this time. We perform a series of third-moment analyses using data from the Advanced Composition Explorer. We show that the solar wind at 1 AU is just as turbulent as at any other time in the solar cycle. Specifically, the turbulent cascade of energy scales in the same manner proportional to the product of wind speed and temperature. Energy cascade rates during solar minimum average a factor of 2-4 higher than during solar maximum, but we contend that this is likely the result of having a different admixture of high-latitude sources.

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    High Occupancy Vehicle (HOV) Lane Exemption and Discount New Jersey Turnpike Authority (Authority) allows qualified hybrid electric vehicles to travel in the HOV lanes located between Interchange 11 and Interchange 14 on the New Jersey Turnpike. The Authority offers a 10% discount on off-peak New Jersey Turnpike and Garden State Parkway toll rates through NJ EZ-Pass for drivers of vehicles that have a fuel economy of 45 miles per gallon or higher and meet the California Super Ultra Low Emission

  1. Alternative Fuels Data Center: Fuel Cell Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Cell Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Fuel

  2. Alternative Fuels Data Center: Strategies to Conserve Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Strategies to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Strategies to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Strategies to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Strategies to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Strategies to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Strategies to Conserve Fuel on Digg Find More places to share Alternative Fuels Data Center:

  3. Alternative Fuels Data Center: Natural Gas Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Stations on Digg Find More places to share Alternative Fuels Data

  4. Alternative Fuels Data Center: Test Your Alternative Fuel IQ

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Test Your Alternative Fuel IQ to someone by E-mail Share Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Facebook Tweet about Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Twitter Bookmark Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Google Bookmark Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Delicious Rank Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Digg Find More places to share Alternative Fuels Data

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Local Examples Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Search Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of 85% or more of alcohol with gasoline; natural gas and liquid fuels domestically produced from natural gas; liquefied petroleum gas (propane); coal-derived liquid fuels; hydrogen; electricity; pure biodiesel (B100); fuels, other than alcohol, derived from biological materials; and P-Series fuels. In addition, the U.S.

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About the Data Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Summary Tables Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Truckstop Electrification Truck Stop Electrification Locator Locate

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Vehicle and Infrastructure Cash-Flow Evaluation Model VICE 2.0: Vehicle

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition and Specifications Alternative fuels include biofuel, ethanol, methanol, hydrogen, coal-derived liquid fuels, electricity, natural gas, propane gas, or a synthetic transportation fuel. Biofuel is defined as a renewable, biodegradable, combustible liquid or gaseous fuel derived from biomass or other renewable resources that can be used as transportation fuel, combustion fuel, or refinery feedstock and that meets ASTM specifications and federal quality requirements for

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives » Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  20. Flexible interconnects for fuel cell stacks

    DOE Patents [OSTI]

    Lenz, David J.; Chung, Brandon W.; Pham, Ai Quoc

    2004-11-09

    An interconnect that facilitates electrical connection and mechanical support with minimal mechanical stress for fuel cell stacks. The interconnects are flexible and provide mechanically robust fuel cell stacks with higher stack performance at lower cost. The flexible interconnects replace the prior rigid rib interconnects with flexible "fingers" or contact pads which will accommodate the imperfect flatness of the ceramic fuel cells. Also, the mechanical stress of stacked fuel cells will be smaller due to the flexibility of the fingers. The interconnects can be one-sided or double-sided.

  1. Aviation fuel additives. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The bibliography contains citations concerning research and development of aviation fuel additives and their effectiveness. Articles include studies on antioxidant, antimist, antistatic, lubricity, corrosion inhibition, and icing inhibition additives. Other applications are covered in investigations of additives for vulnerability reduction, thermal stability, and storage stability of aviation fuels. (Contains a minimum of 168 citations and includes a subject term index and title list.)

  2. Microbial fuel cell treatment of fuel process wastewater (Patent...

    Office of Scientific and Technical Information (OSTI)

    Microbial fuel cell treatment of fuel process wastewater Title: Microbial fuel cell treatment of fuel process wastewater The present invention is directed to a method for cleansing ...

  3. Microbial fuel cell treatment of fuel process wastewater (Patent...

    Office of Scientific and Technical Information (OSTI)

    Microbial fuel cell treatment of fuel process wastewater Title: Microbial fuel cell treatment of fuel process wastewater You are accessing a document from the Department of ...

  4. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)" held on June 24, 2014. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles ...

  5. Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Breakout Session 2: Frontiers and Horizons Session 2-B: ...

  6. Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Update: 2010 Fuel Cell Seminar and Exposition Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Presentation by Sunita Satyapal at the 2010 Fuel ...

  7. Fuel Station of the Future- Innovative Approach to Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in California Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in ...

  8. Fuel supply and control for turbocharged engines. (Latest citations from the Patent Bibliographic Database with Exemplary Claims). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The bibliography contains citations of selected patents concerning means for supplying a fuel air charge to turbocharged internal combustion engines. Adjustments and control techniques vary the fuel supply with changes in charge pressure and operating conditions. The citations generally refer to diesel and gasoline engines, but a few reference multi-fuels, such as alcohol and hydrogen additions to the primary fuel. (Contains a minimum of 137 citations and includes a subject term index and title list.)

  9. Higher Efficiency HVAC Motors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Higher Efficiency HVAC Motors 2016 Building Technologies Office Peer Review PJ Piper, pjpiper@qmpower.com CEO, QM Power, Inc. 2 Project Summary Timeline: Start date: 10/1/14 Planned end date: 9/30/16 Key Milestones 1. Target Application and Machine Specs; 2/13/15 2. Motor Design; 9/30/15 3. Build prototype; 3/31/16 4. Performance validation; 8/1/16 Budget: Total Project $ to Date: * DOE: $239,947 * Cost Share: $189,801 Total Project $: * DOE: $750,000 * Cost Share: $635,756 Key Partners: Project

  10. Biogas, compost and fuel cells

    SciTech Connect (OSTI)

    Wichert, B.; Wittrup, L.; Robel, R.

    1994-08-01

    A pilot project now under development in Folsom, California, incorporates an anaerobic digestion/aerobic composting process that could eventually supply enough biogas to a fuel cell. The Sacramento Municipal Utility District (SMUD) has two fuel cells in operation and is participating in the research project. Recently, the California Prison Industry Authority (PIA) began operating a processing facility at the Folsom prison, designed for 100 tons/day of mixed waste from the City of Folsom. The 35,000 square foot Correctional Resource Recovery Facility (CRRF) uses minimum security inmates from Folsom`s Return to Custody Facility to manually separate recyclables and compostable materials from the waste stream. The PIA will be using a new technology, high solids anaerobic digestion, to compost the organic fraction (representing approximately 60 to 70 percent of the waste stream). Construction began in June on a 40-foot wide by 120-foot long and 22-foot deep anaerobic digester. Once the vessel is operational in 1995, the composting process and the gradual breakdown of organic material will produce biogas, which SMUD hopes to use to power an adjacent two megawatt fuel cell. The electricity generated will serve SMUD customers, including the waste facility and nearby correctional institutions. 1 fig.

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Fuel Specifications The California Department of Food and Agriculture, Division of Measurement Standards (DMS) requires that hydrogen fuel used in internal combustion engines and fuel cells must meet the SAE International J2719 standard for hydrogen fuel quality. For more information, see the DMS Hydrogen Fuel News website. (Reference California Code of Regulations Title 4, Section 4180-4181

  12. Characterization plan for Fort St. Vrain and Peach Bottom graphite fuels

    SciTech Connect (OSTI)

    Maarschman, S.C.; Berting, F.M.; Clemmer, R.G.; Gilbert, E.R.; Guenther, R.J.; Morgan, W.C.; Sliva, P.

    1993-09-01

    Part of Fort St. Vrain (FSV) and most of the Peach Bottom (PB) reactor spent fuels are currently stored at INEL and may remain in storage for many years before disposal. Three disposal pathways have been proposed: intact disposal, fuels partially disassembled and the high-level waste fraction conditioned prior to disposal, and fuels completed disassembled and conditioned prior to disposal. Many options exist within each of these pathways. PNL evaluated the literature and other reference to develop a fuels characterization plan for these fuels. This plan provides guidance for the characteristics of the fuel which will be needed to pursue any of the storage or disposal pathways. It also provides a suggested fuels monitoring program for the current storage facilities. This report recommends a minimum of 7 fuel elements be characterized: PB Core 1 fuel: one Type II nonfailed element, one Type II failed element, and one Type III nonfailed element; PB Core 2 fuel: two Type II nonfailed fuel elements; and FSV fuel: at least two fuel blocks from regions of high temperature and fluence and long in-reactor performance (preferably at reactor end-of- life). Selection of PB fuel elements should focus on these between radial core position 8 and 14 and on compacts between compact numbers 10 and 20. Selection of FSV fuel elements should focus on these from Fuel Zones II and III, located in Core Layers 6, 7, and possibly 8.

  13. Minimum separation distances for natural gas pipeline and boilers in the 300 area, Hanford Site

    SciTech Connect (OSTI)

    Daling, P.M.; Graham, T.M.

    1997-08-01

    The U.S. Department of Energy (DOE) is proposing actions to reduce energy expenditures and improve energy system reliability at the 300 Area of the Hanford Site. These actions include replacing the centralized heating system with heating units for individual buildings or groups of buildings, constructing a new natural gas distribution system to provide a fuel source for many of these units, and constructing a central control building to operate and maintain the system. The individual heating units will include steam boilers that are to be housed in individual annex buildings located at some distance away from nearby 300 Area nuclear facilities. This analysis develops the basis for siting the package boilers and natural gas distribution systems to be used to supply steam to 300 Area nuclear facilities. The effects of four potential fire and explosion scenarios involving the boiler and natural gas pipeline were quantified to determine minimum separation distances that would reduce the risks to nearby nuclear facilities. The resulting minimum separation distances are shown in Table ES.1.

  14. Opportunities for portable Ballard Fuel Cells

    SciTech Connect (OSTI)

    Voss, H.H.; Huff, J.R.

    1996-12-31

    With the increasing proliferation and sophistication of portable electronic devices in both commercial and military markets, the need has arisen for small, lightweight power supplies that can provide increased operating life over those presently available. A solution to this power problem is the development of portable Ballard Fuel Cell power systems that operate with a hydrogen fuel source and air. Ballard has developed PEM fuel cell stacks and power systems in the 25 to 100 watt range for both of these markets. For military use, Ballard has teamed with Ball Corporation and Hydrogen Consultants, Inc. and has provided the Ballard Fuel Cell stack for an ambient PEM fuel cell power system for the DoD. The system provides power from idle to I 00 watts and has the capability of delivering overloads of 125 watts for short periods of time. The system is designed to operate over a wide range of temperature, relative humidity and altitude. Hydrogen is supplied as a compressed gas, metal hydride or chemical hydride packaged in a unit that is mated to the power/control unit. The hydrogen sources provide 1.5, 5 and 15 kWh of operation, respectively. The design of the fuel cell power system enables the unit to operate at 12 volts or 24 volts depending upon the equipment being used. For commercial applications, as with the military, fuel cell power sources in the 25 to 500 watt range will be competing with advanced batteries. Ambient PEM fuel cell designs and demonstrators are being developed at 25 watts and other low power levels. Goals are minimum stack volume and weight and greatly enhanced operating life with reasonable system weight and volume. This paper will discuss ambient PEM fuel cell designs and performance and operating parameters for a number of power levels in the multiwatt range.

  15. Alcohol fuels program technical review

    SciTech Connect (OSTI)

    1981-07-01

    The last issue of the Alcohol Fuels Process R/D Newsletter contained a work breakdown structure (WBS) of the SERI Alcohol Fuels Program that stressed the subcontracted portion of the program and discussed the SERI biotechnology in-house program. This issue shows the WBS for the in-house programs and contains highlights for the remaining in-house tasks, that is, methanol production research, alcohol utilization research, and membrane research. The methanol production research activity consists of two elements: development of a pressurized oxygen gasifier and synthesis of catalytic materials to more efficiently convert synthesis gas to methanol and higher alcohols. A report is included (Finegold et al. 1981) that details the experimental apparatus and recent results obtained from the gasifier. The catalysis research is principally directed toward producing novel organometallic compounds for use as a homogeneous catalyst. The utilization research is directed toward the development of novel engine systems that use pure alcohol for fuel. Reforming methanol and ethanol catalytically to produce H/sub 2/ and CO gas for use as a fuel offers performance and efficiency advantages over burning alcohol directly as fuel in an engine. An application of this approach is also detailed at the end of this section. Another area of utilization is the use of fuel cells in transportation. In-house researchers investigating alternate electrolyte systems are exploring the direct and indirect use of alcohols in fuel cells. A workshop is being organized to explore potential applications of fuel cells in the transportation sector. The membrane research group is equipping to evaluate alcohol/water separation membranes and is also establishing cost estimation and energy utilization figures for use in alcohol plant design.

  16. Alternative Fuels Data Center: CNG Vehicle Fueling Animation

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: CNG Vehicle Fueling Animation to someone by E-mail Share Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Facebook Tweet about Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Twitter Bookmark Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Google Bookmark Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Delicious Rank Alternative Fuels Data

  17. Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Maintenance to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Digg Find

  18. Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversions to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Digg Find More places to share Alternative Fuels

  19. Alternative Fuels Data Center: Biodiesel Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Digg Find More places to

  20. Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel

  1. Materials Approach to Fuel Efficient Tires

    SciTech Connect (OSTI)

    Votruba-Drzal, Peter; Kornish, Brian

    2015-06-30

    The objective of this project was to design, develop, and demonstrate fuel efficient and safety regulation compliant tire filler and barrier coating technologies that will improve overall fuel efficiency by at least 2%. The program developed and validated two complementary approaches to improving fuel efficiency through tire improvements. The first technology was a modified silica-based product that is 15% lower in cost and/or enables a 10% improvement in tread wear while maintaining the already demonstrated minimum of 2% improvement in average fuel efficiency. The second technology was a barrier coating with reduced oxygen transmission rate compared to the state-of-the-art halobutyl rubber inner liners that will provide extended placarded tire pressure retention at significantly reduced material usage. A lower-permeance, thinner inner liner coating which retains tire pressure was expected to deliver the additional 2% reduction in fleet fuel consumption. From the 2006 Transportation Research Board Report1, a 10 percent reduction in rolling resistance can reduce consumer fuel expenditures by 1 to 2 percent for typical vehicles. This savings is equivalent to 6 to 12 gallons per year. A 1 psi drop in inflation pressure increases the tire's rolling resistance by about 1.4 percent.

  2. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits, many alternative fuels such as biodiesel, ethanol, and natural gas have unique chemical properties that offer advantages to drivers. These properties can include higher octane ratings and cetane numbers than conventional petroleum-based fuels, which can help an engine run more smoothly.

  3. Engine combustion control via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2015-07-14

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  4. Engine combustion control via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  5. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  6. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  7. Modeling Constituent Redistribution in U-Pu-Zr Metallic Fuel Using the Advanced Fuel Performance Code BISON

    SciTech Connect (OSTI)

    Douglas Porter; Steve Hayes; Various

    2014-06-01

    The Advanced Fuels Campaign (AFC) metallic fuels currently being tested have higher zirconium and plutonium concentrations than those tested in the past in EBR reactors. Current metal fuel performance codes have limitations and deficiencies in predicting AFC fuel performance, particularly in the modeling of constituent distribution. No fully validated code exists due to sparse data and unknown modeling parameters. Our primary objective is to develop an initial analysis tool by incorporating state-of-the-art knowledge, constitutive models and properties of AFC metal fuels into the MOOSE/BISON (1) framework in order to analyze AFC metallic fuel tests.

  8. 2-D image segmentation using minimum spanning trees

    SciTech Connect (OSTI)

    Xu, Y.; Uberbacher, E.C.

    1995-09-01

    This paper presents a new algorithm for partitioning a gray-level image into connected homogeneous regions. The novelty of this algorithm lies in the fact that by constructing a minimum spanning tree representation of a gray-level image, it reduces a region partitioning problem to a minimum spanning tree partitioning problem, and hence reduces the computational complexity of the region partitioning problem. The tree-partitioning algorithm, in essence, partitions a minimum spanning tree into subtrees, representing different homogeneous regions, by minimizing the sum of variations of gray levels over all subtrees under the constraints that each subtree should have at least a specified number of nodes, and two adjacent subtrees should have significantly different average gray-levels. Two (faster) heuristic implementations are also given for large-scale region partitioning problems. Test results have shown that the segmentation results are satisfactory and insensitive to noise.

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biomass-based diesel is defined as a renewable transportation fuel, transportation fuel additive, heating oil, or jet fuel, such as biodiesel or non-ester renewable diesel, and ...

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Dispenser Labeling Requirement All equipment used to dispense motor fuel containing at least 1% ethanol or methanol must be clearly labeled to inform customers that the fuel contains ethanol or methanol. (Reference Texas Statutes, Agriculture Code 17.051

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas and Propane Vehicle License Fee Drivers using natural gas or propane to fuel a vehicle may pay an annual special use fuel license fee in lieu of the state fuel excise ...

  12. Fuel Fabrication Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cycle Research & Development Fuel Cycle Research & Development Fuel Cycle Research & Development The mission of the Fuel Cycle Research and Development (FCRD) program is to conduct research and development to help develop sustainable fuel cycles, as described in the Nuclear Energy Research and Development Roadmap. Sustainable fuel cycle options are those that improve uranium resource utilization, maximize energy generation, minimize waste generation, improve safety, and limit

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary Tables Key Federal Legislation The information below includes a brief chronology and

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Decal The state motor fuel tax does not apply to passenger vehicles, certain buses, or commercial vehicles that are powered by an alternative fuel, if they obtain an AFV decal. Owners or operators of such vehicles that also own or operate their own personal fueling stations are required to pay an annual alternative fuel decal fee, as listed below. Hybrid electric vehicles and motor vehicles licensed as historic vehicles are exempt from the alternative fuel decal

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Fuel Retailer Tax Incentive A licensed retail motor fuel dealer may receive a quarterly incentive for selling and dispensing renewable fuels, including biodiesel. A qualified motor fuel dealer is eligible for up to $0.065 for every gallon of renewable fuel sold and up to $0.03 for every gallon of biodiesel sold, if the required threshold percentage is met. The threshold is determined by calculating the percent of total gasoline sales that is renewable fuel or biodiesel. For renewable

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels Tax Exemption and Refund for Government Fleet Vehicles State excise tax does not apply to special fuels, including gaseous special fuels, when used in state or federal government owned vehicles. Special fuels include compressed and liquefied natural gas, liquefied petroleum gas (propane), hydrogen, and fuel suitable for use in diesel engines. In addition, state excise tax paid on special fuels used in state or federal government vehicles is subject to a refund, as long as the tax was

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Use and Fuel-Efficient Vehicle Requirements State-owned vehicle fleets must implement petroleum displacement plans to increase the use of alternative fuels and fuel-efficient vehicles. Reductions may be met by petroleum displaced through the use of biodiesel, ethanol, other alternative fuels, the use of hybrid electric vehicles, other fuel-efficient or low emission vehicles, or additional methods the North Carolina Division of Energy, Mineral and Land Resources approves.

  18. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petro- leum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numer- ous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mow- ers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to

  19. Ohio Fuel Cell Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Top 5 Fuel Cell States: Why Local Policies Mean Green Growth Jun 21 st , 2011 2 * Ohio Fuel Cell Initiative * Ohio Fuel Cell Coalition * Accomplishments * Ohio Successes Discussion Areas 3 Ohio's Fuel Cell Initiative * Announced on 5/9/02 * Part of Ohio Third Frontier Initiative * $85 million investment to date * Core focus areas: 1) Expand the state's research capabilities; 2) Participate in demonstration projects; and 3) Expand the fuel cell industry in Ohio 4 OHIO'S FUEL CELL INITIATIVE

  20. Theoretical solution of the minimum charge problem for gaseous detonations

    SciTech Connect (OSTI)

    Ostensen, R.W.

    1990-12-01

    A theoretical model was developed for the minimum charge to trigger a gaseous detonation in spherical geometry as a generalization of the Zeldovich model. Careful comparisons were made between the theoretical predictions and experimental data on the minimum charge to trigger detonations in propane-air mixtures. The predictions are an order of magnitude too high, and there is no apparent resolution to the discrepancy. A dynamic model, which takes into account the experimentally observed oscillations in the detonation zone, may be necessary for reliable predictions. 27 refs., 9 figs.

  1. Fuel processor for fuel cell power system

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  2. Effects of cooling time on a closed LWR fuel cycle

    SciTech Connect (OSTI)

    Arnold, R. P.; Forsberg, C. W.; Shwageraus, E.

    2012-07-01

    In this study, the effects of cooling time prior to reprocessing spent LWR fuel has on the reactor physics characteristics of a PWR fully loaded with homogeneously mixed U-Pu or U-TRU oxide (MOX) fuel is examined. A reactor physics analysis was completed using the CASM04e code. A void reactivity feedback coefficient analysis was also completed for an infinite lattice of fresh fuel assemblies. Some useful conclusions can be made regarding the effect that cooling time prior to reprocessing spent LWR fuel has on a closed homogeneous MOX fuel cycle. The computational analysis shows that it is more neutronically efficient to reprocess cooled spent fuel into homogeneous MOX fuel rods earlier rather than later as the fissile fuel content decreases with time. Also, the number of spent fuel rods needed to fabricate one MOX fuel rod increases as cooling time increases. In the case of TRU MOX fuel, with time, there is an economic tradeoff between fuel handling difficulty and higher throughput of fuel to be reprocessed. The void coefficient analysis shows that the void coefficient becomes progressively more restrictive on fuel Pu content with increasing spent fuel cooling time before reprocessing. (authors)

  3. A new look at maximum and minimum temperature trends for the globe

    SciTech Connect (OSTI)

    Easterling, D.R.; Peterson, T.C.; Karl, T.R.

    1997-11-01

    A number of recent studies have established that differential changes in daily maximum and minimum temperatures are occurring, resulting in changes in the diurnal temperature range (DTR) for many parts of the globe. Large-scale trends in the USA indicate that minimum temperatures are increasing at a faster rate than maximum temperatures, resulting in a narrowing in the DTR. This paper updates and extends the analysis of changes in the DTR in three ways: (1) by increasing the areal coverage to more than half the global landmass, (2) by addressing the issue of homogeneity of the data, and (3) by examining the potential effects of urban stations on the calculated trends. The update includes data for an additional 15% of the global land area and an extension of the analysis period used in a previous study. Homogeneity techniques were used on the data to adjust individual station data for undocumented discontinuities. Annual maximum and minimum temperature and DTR time series for the 1950-1993 period averaged over 54% of the total global land area are presented. The trend for the maximum temperature is 0.88 C/100 years, which is consistent with earlier findings. However, the trend for the minimum temperature is 1.86 C/100 years; this is less than found in previous analyses and leads to a smaller trend in the DTR. This finding is not surprising since much of the data added in this study are for tropical and sub-tropical regions where temperature trends are not expected to be as large as in higher latitude regions. The effect of urbanization on the global trends is found to be on the order of 0.1 C/100 years or less, which is consistent with previous investigations. 14 refs., 2 figs.

  4. Fuel Cell Bus Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ue Ce ec o o es o a Energy Efficiency & Renewable Energy Fuel Cell Bus Workshop Overview and Purp pose Dimitrios Papageorgopoulos Fuel Cell Technolog gies Prog gram DOE and DOT Joint Fuel Cell Bus Workshop, Washington DC DOE and DOT Joint Fuel Cell Bus Workshop, Washington DC June 7, 2010 June 7, 2010 Fuel Cells - Addressing Energy Challenges Energy Efficiency and Resource Diversity * Fuel cells offer a highly efficient way to use diverse fuels and energy sources Fuel cells offer a highly

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    fuel use. For these purposes, alternative fuels are natural gas, hydrogen, propane, or electricity used to operate a motor vehicle. (Reference Connecticut General Statutes 4a-59

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Vehicle (AFV) and Fueling Infrastructure Loans The Nebraska Energy Office administers the Dollar and Energy Saving Loan Program, which makes low-cost loans available for a ...

  7. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    License Fee Effective July 1, 2015, each alternative fuel supplier, refiner, distributor, terminal operator, importer or exporter of alternative fuel used in motor vehicles must...

  8. Fuel Tables.indd

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    F4: Fuel ethanol consumption estimates, 2014 State Commercial Industrial Transportation ... a In estimating the Btu consumption of fuel ethanol, the Btu content of denaturant ...

  9. Fuel Tables.indd

    Gasoline and Diesel Fuel Update (EIA)

    F2: Jet fuel consumption, price, and expenditure estimates, 2014 State Jet fuel a Consumption Prices Expenditures Thousand barrels Trillion Btu Dollars per million Btu Million ...

  10. Fuel Fabrication Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programs CONVERT Fuel Fabrication Development (CONVERT) The nation looks to our uranium-processing capabilities to optimize fabrication of a fuel, which will enable certain ...

  11. Fuel Tables.indd

    Gasoline and Diesel Fuel Update (EIA)

    F8: Distillate Fuel Oil Price and Expenditure Estimates, 2014 State Prices Expenditures ... Where shown, (s) Expenditure value less than 0.05. Notes: Distillate fuel oil estimates ...

  12. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alternative fuels are defined as methanol, ethanol, natural gas, liquefied petroleum gas (propane), coal-derived liquid fuels, hydrogen, electricity, biodiesel, renewable diesel,...

  13. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tax Exemptions and Reductions Propane, natural gas, electricity, and hydrogen, also known as special fuel, used to operate motor vehicles are exempt from state fuel taxes, but...

  14. Fuel Cells in Telecommunications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells Simply Powerful Fuel Cells in Telecommunications J. Blanchard December 2011 - ReliOn Overview Markets Backup, grid supplement, and off grid power systems for critical ...

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Blend Dispenser Requirement A retail motor fuel dispenser that dispenses fuel containing more than 10% ethanol by volume must be labeled with the capital letter "E" ...

  16. Spent Nuclear Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear & Uranium Glossary FAQS Overview Data Status of U.S. nuclear outages (interactive) Nuclear power plants Uranium & nuclear fuel Spent nuclear fuel All nuclear data ...

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Residential Compressed Natural Gas (CNG) Fueling Infrastructure Rebate The Nebraska Energy Office (NEO) offers rebates for qualified CNG fueling infrastructure that is installed at ...

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    For the purpose of the credit, alternative fuels vehicles include dedicated or bi-fuel natural gas, propane, and hydrogen vehicles. Through December 31, 2016, purchased or leased ...

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative fuel vehicles (AFVs) displaying the Virginia Clean Special Fuel license plate ... For HOV lanes serving the I-66 corridor, only registered vehicles displaying Clean Special ...

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Transportation Fuels for School Buses The Kentucky Department of Education (Department) must consider the use of clean transportation fuels in school buses as part of its ...

  1. FEED SYSTEM INNOVATION FOR GASIFICATION OF LOCALLY ECONOMICAL ALTERNATIVE FUELS (FIGLEAF)

    SciTech Connect (OSTI)

    Michael L. Swanson; Mark A. Musich; Darren D. Schmidt; Joseph K. Schultz

    2003-02-01

    ability of the gasifier to operate with alternative feedstocks at up to 80% moisture, a decision was made to investigate a pumping system for delivering the as-received fuel across the pressure boundary into the second stage of the gasifier. A high-pressure feed pump and fuel dispersion nozzles were tested for their ability to cross the pressure boundary and adequately disperse the sludge into the second stage of the gasifier. These results suggest that it is technically feasible to get the sludge dispersed to an appropriate size into the second stage of the gasifier although the recycle syngas pressure needed to disperse the sludge would be higher than originally desired. A preliminary design was prepared for a sludge-receiving, storage, and high-pressure feeding system at the Wabash River Plant. The installed capital costs were estimated at approximately $9.7 million, within an accuracy of {+-}10%. An economic analysis using DOE's IGCC Model, Version 3 spreadsheet indicates that in order to justify the additional capital cost of the system, Global Energy would have to receive a tipping fee of $12.40 per wet ton of municipal sludge delivered. This is based on operation with petroleum coke as the primary fuel. Similarly, with coal as the primary fuel, a minimum tipping of $16.70 would be required. The availability of delivered sludge from Indianapolis, Indiana, in this tipping-fee range is unlikely; however, given the higher treatment costs associated with sludge treatment in Chicago, Illinois, delivery of sludge from Chicago, given adequate rail access, might be economically viable.

  2. NUCLEAR REACTOR FUEL-BREEDER FUEL ELEMENT

    DOE Patents [OSTI]

    Currier, E.L. Jr.; Nicklas, J.H.

    1962-08-14

    A fuel-breeder fuel element was developed for a nuclear reactor wherein discrete particles of fissionable material are dispersed in a matrix of fertile breeder material. The fuel element combines the advantages of a dispersion type and a breeder-type. (AEC)

  3. Fuel Processors for PEM Fuel Cells

    SciTech Connect (OSTI)

    Levi T. Thompson

    2008-08-08

    Fuel cells are being developed to power cleaner, more fuel efficient automobiles. The fuel cell technology favored by many automobile manufacturers is PEM fuel cells operating with H2 from liquid fuels like gasoline and diesel. A key challenge to the commercialization of PEM fuel cell based powertrains is the lack of sufficiently small and inexpensive fuel processors. Improving the performance and cost of the fuel processor will require the development of better performing catalysts, new reactor designs and better integration of the various fuel processing components. These components and systems could also find use in natural gas fuel processing for stationary, distributed generation applications. Prototype fuel processors were produced, and evaluated against the Department of Energy technical targets. Significant advances were made by integrating low-cost microreactor systems, high activity catalysts, π-complexation adsorbents, and high efficiency microcombustor/microvaporizers developed at the University of Michigan. The microreactor system allowed (1) more efficient thermal coupling of the fuel processor operations thereby minimizing heat exchanger requirements, (2) improved catalyst performance due to optimal reactor temperature profiles and increased heat and mass transport rates, and (3) better cold-start and transient responses.

  4. Ethanol: farm and fuel issues

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    The current U.S. and world grain situations are described as well as adjustments which would be likely for fuel production of 1, 2 and 4 billion gallons of ethanol annually in the 1985-86 period. Predicted acreage shifts in corn, soybeans, wheat and the total of seven major crops are shown. The most likely effects on the feed grains markets both here and abroad are discussed. The value of corn for fuel both with and without the gasoline tax exemption is compared to the actual farm price expected if in the base case (1 billion gallons) real corn prices do not rise. In the higher 2 and 4 billion gallon cases, increases in the real cost of corn and its impact on food prices and the CPI are estimated. A theoretical maximum level of ethanol production recognizing market factors is discussed in terms of acreage, yield, corn production and the fuel ethanol available. Agricultural and other policy frameworks are discussed.

  5. Internal reforming fuel cell assembly with simplified fuel feed

    SciTech Connect (OSTI)

    Farooque, Mohammad; Novacco, Lawrence J.; Allen, Jeffrey P.

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  6. 21st Century Renewable Fuels, Energy, and Materials

    SciTech Connect (OSTI)

    Berry, K. Joel; Das, Susanta K.

    2012-11-29

    The objectives of this project were multi-fold: (i) conduct fundamental studies to develop a new class of high temperature PEM fuel cell material capable of conducting protons at elevated temperature (180°C), (ii) develop and fabricate a 5k We novel catalytic flat plate steam reforming process for extracting hydrogen from multi-fuels and integrate with high-temperature PEM fuel cell systems, (iii) research and develop improved oxygen permeable membranes for high power density lithium air battery with simple control systems and reduced cost, (iv) research on high energy yield agriculture bio-crop (Miscanthus) suitable for reformate fuel/alternative fuel with minimum impact on human food chain and develop a cost analysis and production model, and (v) develop math and science alternative energy educator program to include bio-energy and power.

  7. The"minimum information about an environmental sequence" (MIENS) specification

    SciTech Connect (OSTI)

    Yilmaz, P.; Kottmann, R.; Field, D.; Knight, R.; Cole, J.R.; Amaral-Zettler, L.; Gilbert, J.A.; Karsch-Mizrachi, I.; Johnston, A.; Cochrane, G.; Vaughan, R.; Hunter, C.; Park, J.; Morrison, N.; Rocca-Serra, P.; Sterk, P.; Arumugam, M.; Baumgartner, L.; Birren, B.W.; Blaser, M.J.; Bonazzi, V.; Bork, P.; Buttigieg, P. L.; Chain, P.; Costello, E.K.; Huot-Creasy, H.; Dawyndt, P.; DeSantis, T.; Fierer, N.; Fuhrman, J.; Gallery, R.E.; Gibbs, R.A.; Giglio, M.G.; Gil, I. San; Gonzalez, A.; Gordon, J.I.; Guralnick, R.; Hankeln, W.; Highlander, S.; Hugenholtz, P.; Jansson, J.; Kennedy, J.; Knights, D.; Koren, O.; Kuczynski, J.; Kyrpides, N.; Larsen, R.; Lauber, C.L.; Legg, T.; Ley, R.E.; Lozupone, C.A.; Ludwig, W.; Lyons, D.; Maguire, E.; Methe, B.A.; Meyer, F.; Nakieny, S.; Nelson, K.E.; Nemergut, D.; Neufeld, J.D.; Pace, N.R.; Palanisamy, G.; Peplies, J.; Peterson, J.; Petrosino, J.; Proctor, L.; Raes, J.; Ratnasingham, S.; Ravel, J.; Relman, D.A.; Assunta-Sansone, S.; Schriml, L.; Sodergren, E.; Spor, A.; Stombaugh, J.; Tiedje, J.M.; Ward, D.V.; Weinstock, G.M.; Wendel, D.; White, O.; Wikle, A.; Wortman, J.R.; Glockner, F.O.; Bushman, F.D.; Charlson, E.; Gevers, D.; Kelley, S.T.; Neubold, L.K.; Oliver, A.E.; Pruesse, E.; Quast, C.; Schloss, P.D.; Sinha, R.; Whitely, A.

    2010-10-15

    We present the Genomic Standards Consortium's (GSC) 'Minimum Information about an ENvironmental Sequence' (MIENS) standard for describing marker genes. Adoption of MIENS will enhance our ability to analyze natural genetic diversity across the Tree of Life as it is currently being documented by massive DNA sequencing efforts from myriad ecosystems in our ever-changing biosphere.

  8. Alternative Fuels Data Center: About the Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: About the Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center: About the Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center: About the Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center: About the Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center: About the Alternative Fuels Data

  9. Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Google Bookmark Alternative Fuels Data Center: Alternative Fuels and Advanced

  10. Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Efficient Driving Behaviors to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Efficient