Powered by Deep Web Technologies
Note: This page contains sample records for the topic "high-temperature syngas cleanup" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

High Temperature Syngas Cleanup Technology Scale-up  

NLE Websites -- All DOE Office Websites (Extended Search)

RECOVERY ACT: Scale-Up of RECOVERY ACT: Scale-Up of High-Temperature Syngas Cleanup Technology Background Coal gasification generates a synthesis gas (syngas)-predominantly a mixture of carbon monoxide (CO) and hydrogen (H 2 )-that can be used for chemical production of hydrogen, methanol, substitute natural gas (SNG), and many other industrial chemicals, or for electric power generation. Conventional integrated gasification combined cycle (IGCC) power plants use this syngas as a fuel for a combustion

2

NETL: Gasification - Recovery Act: High Temperature Syngas Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas Processing Systems Syngas Processing Systems Recovery Act: High Temperature Syngas Cleanup Technology Scale-Up and Demonstration Project Research Triangle Institute Project Number: FE0000489 Project Description Research Triangle Institute (RTI) is designing, building, and testing the Warm Temperature Desulfurization Process (WDP) at pre-commercial scale (50 megawatt electric equivalent [MWe]) to remove more than 99.9 percent of the sulfur from coal-derived synthesis gas (syngas). RTI is integrating this WDP technology with an activated methyl diethanolamine (aMDEA) solvent technology to separate 90% of the carbon dioxide (CO2) from shifted syngas. The Polk Power Station, an integrated gasification combined cycle (IGCC) power plant, will supply approximately 20% of its coal-derived syngas as a slipstream to feed into the pre-commercial scale technologies being scaled-up.

3

NETL: Gasification Systems - High Temperature Syngas Cleanup...  

NLE Websites -- All DOE Office Websites (Extended Search)

construct the project and sequester the CO2. The Polk Power Station, an integrated gasification combined cycle (IGCC) power plant, will supply a portion of its coal-derived syngas...

4

NETL: Gasification Systems - High Temperature Syngas Cleanup...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hornick, Tampa Electric Company, Ben Gardner, RTI International, presented at the Gasification Technologies Conference, San Francisco, CA Oct 9-12, 2011. Warm Gas Clean-up and...

5

EA-1867: Scale-up of High-Temperature Syngas Cleanup Technology, Polk  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Scale-up of High-Temperature Syngas Cleanup Technology, 7: Scale-up of High-Temperature Syngas Cleanup Technology, Polk County, Florida EA-1867: Scale-up of High-Temperature Syngas Cleanup Technology, Polk County, Florida Summary This EA evaluates the environmental impacts of a proposal to provide cost-shared funding to RTI International (RTI) for its proposed project to demonstrate the precommercial scale-up of RTI's high-temperature syngas cleanup and carbon capture and sequestration technologies. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download October 13, 2011 EA-1867: Finding of No Significant Impact RTI International Scale-Up of High-Temperature Syngas Cleanup and Carbon Capture and Sequestration Technologies, Polk County, Florida (October 2011)

6

NETL: Gasification - Recovery Act: High Temperature Syngas Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Background and Project Benefits Program Background and Project Benefits Gasification is used to convert a solid feedstock, such as coal, petcoke, or biomass, into a gaseous form, referred to as synthesis gas or syngas, which is primarily hydrogen and carbon monoxide. With gasification-based technologies, pollutants can be captured and disposed of or converted to useful products. Gasification can generate clean power by adding steam to the syngas in a water-gas-shift reactor to convert the carbon monoxide to carbon dioxide (CO2) and to produce additional hydrogen. The hydrogen and CO2 are separated-the hydrogen is used to make power and the CO2 is sent to storage, converted to useful products or used for EOR. In addition to efficiently producing electric power, a wide range of transportation fuels and chemicals can be produced from the cleaned syngas, thereby providing the flexibility needed to capitalize on the changing economic market. As a result, gasification provides a flexible technology option for using domestically available resources while meeting future environmental emission standards. Polygeneration plants that produce multiple products are uniquely possible with gasification technologies. The Gasification Systems program is developing technologies in three key areas to reduce the cost and increase the efficiency of producing syngas: (1) Feed Systems, (2) Gasifier Optimization and Plant Supporting Systems, and (3) Syngas Processing Systems.

7

High temperature electrolysis for syngas production  

DOE Patents (OSTI)

Syngas components hydrogen and carbon monoxide may be formed by the decomposition of carbon dioxide and water or steam by a solid-oxide electrolysis cell to form carbon monoxide and hydrogen, a portion of which may be reacted with carbon dioxide to form carbon monoxide. One or more of the components for the process, such as steam, energy, or electricity, may be provided using a nuclear power source.

Stoots, Carl M. (Idaho Falls, ID); O' Brien, James E. (Idaho Falls, ID); Herring, James Stephen (Idaho Falls, ID); Lessing, Paul A. (Idaho Falls, ID); Hawkes, Grant L. (Sugar City, ID); Hartvigsen, Joseph J. (Kaysville, UT)

2011-05-31T23:59:59.000Z

8

Trace-Metal Scavenging from Biomass Syngas with Novel High-Temperature Sorbents  

DOE Green Energy (OSTI)

Effective syngas cleanup is one of the remaining major technical challenges yet to be resolved and one that will provide the most benefit to the suite of bio-thermochemical process technologies. Beyond tars and acid gases, which are themselves a significant detriment to reforming catalysts and associated equipment, semi-volatile metals can also damage cleanup systems, catalysts, and contaminate the fungible products. Metals are a difficult challenge to deal with whether using hot-gas filtration or low-temperature processing. Even though most of the metal tends to condense before the barrier filter of hot-gas cleanup systems, some small percentage of the metal (large enough to damage syngas-reforming catalysts, the candle filters themselves, and gas turbine blades) does pass through these barrier filters along with the clean syngas. Low-temperature processing requires expensive measures to remove metals from the process stream. Significant costs are required to remove these metals and if they are not removed before contacting the catalyst, they will significantly reduce the life of the catalyst. One approach to solving the metals problem is to use high-temperature sorbents to capture all of the semi-volatile metals upstream of the barrier filter, which would prevent even small amounts of metal from passing through the filter with the clean syngas. High Temperature sorbents have already been developed that have been shown to be effective at capturing semi-volatile metals from vitiated combustion effluent, i.e., high-temperature flue gas. The objective on this project was to evaluate these same sorbents for their ability to scavenge metals from inert, reducing, and real syngas environments. Subsequently, it was the objective of this project to develop designer sorbents and an injection technology that would optimize the effectiveness of these sorbents at capturing metals from syngas, protecting the barrier filters from damage, and protecting the catalysts and other downstream equipment from damage. Finally, the high-temperature sorbent technology would be expanded to look at the role that these sorbents play in relation to tars and acid gases, which are the other significant pollutants within syngas. In addition to the technology development work described above, all of the information obtained in this work was to be incorporated into a syngas speciation model, which would allow direct prediction of transformations that occur in syngas as it passes from the gasifier and the sorbent-injection section and through the barrier filters. Unfortunately, Congressional budget cuts prevented most of this work from being accomplished. Hopefully, additional funds will be provided to this work in the future, which will allow its completion. However, at the halting point of this project, the following has been accomplished. A major initial objective of the project was accomplished, which was to determine whether or not high-temperature sorbents found to work within vitiated air might also work in an inert environment. Kaolinite, one of the sorbents previously investigated as a high-temperature sorbent for incinerators, was found to effectively capture potassium. In addition, while previous work on short-time (i.e., 1 to 2 seconds) dispersed-phase reactions found that sorbent utilization was limited to two metal oxide species captured for every one aluminosilicate crystal structure, the present investigation found that many times higher insoluble metal/sorbent capture ratios were obtained. This result not only suggests that small additions of sorbent might be highly effective, but the fact that the products were insoluble (in part due to the temperature of sorbent injection, i.e., < 1500 ?F) may be an indication that the products are unlikely to react with, corrode, or otherwise damage the candle-filter elements. There has been little work on the capture of potassium metal vapor by high-temperature sorbents, prior to this work. The fact that potassium can be effectively captured by kaolinite clay powder is a significant finding of th

Gale, Thomas K.; Walsh, Pete M.

2007-03-21T23:59:59.000Z

9

THE PRODUCTION OF SYNGAS VIA HIGH TEMPERATURE ELECTROLYSIS AND BIO-MASS GASIFICATION  

DOE Green Energy (OSTI)

A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to improve the hydrogen production efficiency of the steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon dioxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K.

M. G. McKellar; G. L. Hawkes; J. E. O'Brien

2008-11-01T23:59:59.000Z

10

Program on Technology Innovation: Thermodynamic Data to Support High-Temperature Syngas Quench Design  

Science Conference Proceedings (OSTI)

This report describes the development of a method for predicting water content in synthesis gas (syngas) quenched at high temperature by water. The method, generated by the National Institute of Standards and Technology (NIST), is presented in detail along with further analysis performed by EPRI.

2008-01-31T23:59:59.000Z

11

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Warm Gas Multicontaminant Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Description Integrated Gasification Combined Cycle (IGCC) technology offers a means to utilize coal -the most abundant fuel in the United States-to produce a host of products, ranging from electricity to value-added chemicals like transportation fuels and hydrogen, in an efficient, environmentally friendly manner. However, the overall cost (capital, operating,

12

HIGH-TEMPERATURE CO-ELECTROLYSIS OF H2O AND CO2 FOR SYNGAS PRODUCTION  

DOE Green Energy (OSTI)

Worldwide, the demand for light hydrocarbon fuels like gasoline and diesel oil is increasing. To satisfy this demand, oil companies have begun to utilize oil deposits of lower hydrogen content (an example is the Athabasca Oil Sands). Additionally, the higher contents of sulfur and nitrogen of these resources requires processes such as hydrotreating to meet environmental requirements. In the mean time, with the price of oil currently over $50 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas – hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. South Africa has used synfuels to power a significant number of their buses, trucks, and taxicabs. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to investigate the feasibility of producing syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. The syngas can then be used for synthetic fuel production. This program is a combination of experimental and computational activities. Since the solid oxide electrolyte material is a conductor of oxygen ions, CO can be produced by electrolyzing CO2 sequestered from some greenhouse gas-emitting process. Under certain conditions, however, CO can further electrolyze to produce carbon, which can then deposit on cell surfaces and reduce cell performance. The understanding of the co-electrolysis of steam and CO2 is also complicated by the competing water-gas shift reaction. Results of experiments and calculations to date of CO2 and CO2/H2O electrolysis will be presented and discussed. These will include electrolysis performance at various temperatures, gas mixtures, and electrical settings. Product gas compositions, as measured via a gas analyser, and their relationship to conversion efficiencies will be presented. These measurements will be compared to predictions obtained from chemical equilibrium computer codes. Better understanding of the feasibility of producing syngas using high-temperature electrolysis will initiate the systematic investigation of nuclear-powered synfuel production as a bridge to the future hydrogen economy and ultimate independence from foreign energy resources.

Stoots, C.M.

2006-11-01T23:59:59.000Z

13

PROCESS MODEL FOR THE PRODUCTION OF SYNGAS VIA HIGH TEMPERATURE CO-ELECTROLYSIS  

DOE Green Energy (OSTI)

A process model has been developed to evaluate the potential performance of a large-scale high-temperature coelectrolysis plant for the production of syngas from steam and carbon dioxide. The coelectrolysis process allows for direct electrochemical reduction of the steam – carbon dioxide gas mixture, yielding hydrogen and carbon monoxide, or syngas. The process model has been developed using the HYSYS systems analysis code. Using this code, a detailed process flowsheet has been defined that includes all the components that would be present in an actual plant such as pumps, compressors, heat exchangers, turbines, and the electrolyzer. Since the electrolyzer is not a standard HYSYS component, a custom one-dimensional coelectrolysis model was developed for incorporation into the overall HYSYS process flowsheet. The 1-D coelectrolysis model assumes local chemical equilibrium among the four process-gas species via the shift reaction. The electrolyzer model allows for the determination of coelectrolysis outlet temperature, composition (anode and cathode sides), mean Nernst potential, operating voltage and electrolyzer power based on specified inlet gas flow rates, heat loss or gain, current density, and cell area-specific resistance. The one-dimensional electrolyzer model was validated by comparison with results obtained from a fully 3-D computational fluid dynamics model developed using FLUENT, and by comparison to experimental data. This paper provides representative results obtained from the HYSYS flowsheet model for a 300 MW coelectrolysis plant, coupled to a high-temperature gas-cooled nuclear reactor. The coelectrolysis process, coupled to a nuclear reactor, provides a means of recycling carbon dioxide back into a useful liquid fuel. If the carbon dioxide source is based on biomass, the entire process would be climate neutral.

M. G. McKellar; J. E. O'Brien; C. M. Stoots; G. L. Hawkes

2007-11-01T23:59:59.000Z

14

Parametric Study Of Large-Scale Production Of Syngas Via High Temperature Co-Electrolysis  

DOE Green Energy (OSTI)

A process model has been developed to evaluate the potential performance of a largescale high-temperature co-electrolysis plant for the production of syngas from steam and carbon dioxide. The co-electrolysis process allows for direct electrochemical reduction of the steam – carbon dioxide gas mixture, yielding hydrogen and carbon monoxide, or syngas. The process model has been developed using the Honeywell UniSim systems analysis code. Using this code, a detailed process flow sheet has been defined that includes all the components that would be present in an actual plant such as pumps, compressors, heat exchangers, turbines, and the electrolyzer. Since the electrolyzer is not a standard UniSim component, a custom one-dimensional co-electrolysis model was developed for incorporation into the overall UniSim process flow sheet. The one dimensional co-electrolysis model assumes local chemical equilibrium among the four process-gas species via the gas shift reaction. The electrolyzer model allows for the determination of co-electrolysis outlet temperature, composition (anode and cathode sides); mean Nernst potential, operating voltage and electrolyzer power based on specified inlet gas flow rates, heat loss or gain, current density, and cell area-specific resistance. The one-dimensional electrolyzer model was validated by comparison with results obtained from a fully three dimensional computational fluid dynamics model developed using FLUENT, and by comparison to experimental data. This paper provides representative results obtained from the UniSim flow sheet model for a 300 MW co-electrolysis plant, coupled to a high-temperature gas-cooled nuclear reactor. The coelectrolysis process, coupled to a nuclear reactor, provides a means of recycling carbon dioxide back into a useful liquid fuel. If the carbon dioxide source is based on biomass, the overall process, from production through utilization, would be climate neutral.

J. E. O'Brien; M. G. McKellar; C. M. Stoots; J. S. Herring; G. L. Hawkes

2007-11-01T23:59:59.000Z

15

Idaho National Laboratory Experimental Research In High Temperature Electrolysis For Hydrogen And Syngas Production  

DOE Green Energy (OSTI)

The Idaho National Laboratory (Idaho Falls, Idaho, USA), in collaboration with Ceramatec, Inc. (Salt Lake City, Utah, USA), is actively researching the application of solid oxide fuel cell technology as electrolyzers for large scale hydrogen and syngas production. This technology relies upon electricity and high temperature heat to chemically reduce a steam or steam / CO2 feedstock. Single button cell tests, multi-cell stack, as well as multi-stack testing has been conducted. Stack testing used 10 x 10 cm cells (8 x 8 cm active area) supplied by Ceramatec and ranged from 10 cell short stacks to 240 cell modules. Tests were conducted either in a bench-scale test apparatus or in a newly developed 5 kW Integrated Laboratory Scale (ILS) test facility. Gas composition, operating voltage, and operating temperature were varied during testing. The tests were heavily instrumented, and outlet gas compositions were monitored with a gas chromatograph. The ILS facility is currently being expanded to ~15 kW testing capacity (H2 production rate based upon lower heating value).

Carl M. Stoots; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

2008-09-01T23:59:59.000Z

16

A High Temperature Planar Solid Oxide Fuel Cell Operating on Phosphine Contaminated Coal Syngas.  

E-Print Network (OSTI)

??Solid oxide fuel cells that operate on phosphine contaminated coal syngas are subject to performance degradation due to alterations of the anode microstructure. Theoretical investigations… (more)

De Silva, Kandaudage Channa R.

2011-01-01T23:59:59.000Z

17

Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Gasification Technologies contacts Gary J. stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Jenny tennant Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4830 jenny.tennant@netl.doe.gov Howard Meyer Principal Project Manager Gas Technology Institute 1700 South Mount Prospect Road Des Plaines, IL 60018 847-768-0955 howard.meyer@gastechnology.org Development of an IntegrateD multI-ContamInant removal proCess applIeD to Warm syngas Cleanup Description The U.S. has more coal than any other country, and through gasification this coal can be converted into electricity, liquid fuels, chemicals or hydrogen. However,

18

Development of an Integrated Multicontaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

an Integrated an Integrated Multicontaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems Background The U.S. has more coal than any other country, and it can be converted through gasification into electricity, liquid fuels, chemicals, or hydrogen. However, for coal gasification to become sufficiently competitive to benefit the U.S. economy and help reduce our dependence on foreign fuels, gasification costs must be reduced

19

HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY – SYSTEM SIMULATION AND ECONOMICS  

DOE Green Energy (OSTI)

A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

2009-05-01T23:59:59.000Z

20

Manganese and Ceria Sorbents for High Temperature Sulfur Removal from Biomass-Derived Syngas -- The Impact of Steam on Capacity and Sorption Mode  

Science Conference Proceedings (OSTI)

Syngas derived from biomass and coal gasification for fuel synthesis or electricity generation contains sulfur species that are detrimental to downstream catalysts or turbine operation. Sulfur removal in high temperature, high steam conditions has been known to be challenging, but experimental reports on methods to tackle the problem are not often reported. We have developed sorbents that can remove hydrogen sulfide from syngas at high temperature (700 C), both in dry and high steam conditions. The syngas composition chosen for our experiments is derived from statistical analysis of the gasification products of wood under a large variety of conditions. The two sorbents, Cu-ceria and manganese-based, were tested in a variety of conditions. In syngas containing steam, the capacity of the sorbents is much lower, and the impact of the sorbent in lowering H{sub 2}S levels is only evident in low space velocities. Spectroscopic characterization and thermodynamic consideration of the experimental results suggest that in syngas containing 45% steam, the removal of H{sub 2}S is primarily via surface chemisorptions. For the Cu-ceria sorbent, analysis of the amount of H{sub 2}S retained by the sorbent in dry syngas suggests both copper and ceria play a role in H{sub 2}S removal. For the manganese-based sorbent, in dry conditions, there is a solid state transformation of the sorbent, primarily into the sulfide form.

Cheah, S.; Parent, Y. O.; Jablonski, W. S.; Vinzant, T.; Olstad, J. L.

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature syngas cleanup" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology  

DOE Green Energy (OSTI)

This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

Nexant Inc.

2006-05-01T23:59:59.000Z

22

Development of hollow fiber catalytic membrane reactors for high temperature gas cleanup  

DOE Green Energy (OSTI)

The technology employed in the Integrated Gasification Combined Cycle (IGCC) permits burning coals with a wide range of sulfur concentrations. Emissions from the process should be reduced by an order of magnitude below stringent federal air quality regulations for coal-fired plants. The maximum thermal efficiency of this type of process can be achieved by removing sulfur and particulates from the high temperature gas. The objective of this project was to develop economically and technically viable catalytic membrane reactors for high temperature, high pressure gaseous contaminant control in IGCC systems. These catalytic membrane reactors were used to decompose H{sub 2}S and separate the reaction products. The reactors were designed to operate in the hostile process environment of the IGCC systems, and at temperatures ranging from 500 to 1,000. Feasibility of the membrane reactor process for decomposition of hydrogen sulfide was demonstrated; permeability and selectivity of molecular-sieve and Vycor glass membranes were studied at temperatures up to 1,000 C; experimental study of hydrogen sulfide in the membrane reactor was completed; and a generalized mathematical model was developed for the simulation of the high temperature membrane reactor.

Ma, Y.H.; Moser, W.R.; Pien, S.; Shelekhin, A.B.

1994-10-01T23:59:59.000Z

23

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas  

SciTech Connect

One of the key obstacles for the introduction of commercial gasification technology for the production of power with Integrated Gasification Combined Cycle (IGCC) plants or the production of value added chemicals, transportation fuels, and hydrogen has been the cost of these systems. This situation is particularly challenging because the United States has ample coal resources available as raw materials and effective use of these raw materials could help us meet our energy and transportation fuel needs while significantly reducing our need to import oil. One component of the cost of these systems that faces strong challenges for continuous improvement is removing the undesirable components present in the syngas. The need to limit the increase in cost of electricity to < 35% for new coal-based power plants which include CO{sub 2} capture and sequestration addresses both the growing social concern for global climate change resulting from the emission of greenhouse gas and in particular CO{sub 2} and the need to control cost increases to power production necessary to meet this social objective. Similar improvements to technologies for trace contaminants are getting similar pressure to reduce environmental emissions and reduce production costs for the syngas to enable production of chemicals from coal that is cost competitive with oil and natural gas. RTI, with DOE/NETL support, has been developing sorbent technologies that enable capture of trace contaminants and CO{sub 2} at temperatures above 400 °F that achieve better capture performance, lower costs and higher thermal efficiency. This report describes the specific work of sorbent development for mercury (Hg), arsenic (As), selenium (Se), cadmium (Cd), and phosphorous (P) and CO{sub 2} removal. Because the typical concentrations of Hg, As, Se, Cd, and P are less than 10 ppmv, the focus has been on single-use sorbents with sufficient capacity to ensure replacement costs are cost effective. The research in this report describes the development efforts which expand this sorbent development effort to include Se, Cd, and P as well as Hg and As. Additional research has focused on improving removal performance with the goal of achieving effluent concentrations that are suitable for chemical production applications. By contrast, sorbent development for CO{sub 2} capture has focused on regenerable sorbents that capture the CO{sub 2} byproduct at higher CO{sub 2} pressures. Previous research on CO{sub 2} sorbents has demonstrated that the most challenging aspect of developing CO{sub 2} sorbents is regeneration. The research documented in this report investigates options to improve regeneration of the CO{sub 2} capture sorbents. This research includes effort on addressing existing regeneration limitations for sorbents previously developed and new approaches that focus initially on the regeneration performance of the sorbent.

Turk, Brian; Gupta, Raghubir; Sharma, Pradeepkumar; Albritton, Johnny; Jamal, Aqil

2010-09-30T23:59:59.000Z

24

Facilitated transport ceramic membranes for high-temperature gas cleanup. Final report, February 1990--April 1994  

SciTech Connect

The objective of this program was to demonstrate the feasibility of developing high temperature, high pressure, facilitated transport ceramic membranes to control gaseous contaminants in Integrated Gasification Combined Cycle (IGCC) power generation systems. Meeting this objective requires that the contaminant gas H{sub 2}S be removed from an IGCC gas mixture without a substantial loss of the other gaseous components, specifically H{sub 2} and CH{sub 4}. As described above this requires consideration of other, nonconventional types of membranes. The solution evaluated in this program involved the use of facilitated transport membranes consisting of molten mixtures of alkali and alkaline earth carbonate salts immobilized in a microporous ceramic support. To accomplish this objective, Air Products and Chemicals, Inc., Golden Technologies Company Inc., and Research Triangle Institute worked together to develop and test high temperature facilitated membranes for the removal of H{sub 2}S from IGCC gas mixtures. Three basic experimental activities were pursued: (1) evaluation of the H{sub 2}S chemistry of a variety of alkali and alkaline earth carbonate salt mixtures; (2) development of microporous ceramic materials which were chemically and physically compatible with molten carbonate salt mixtures under IGCC conditions and which could function as a host to support a molten carbonate mixture and; (3) fabrication of molten carbonate/ceramic immobilized liquid membranes and evaluation of these membranes under conditions approximating those found in the intended application. Results of these activities are presented.

Quinn, R.; Minford, E.; Damle, A.S.; Gangwal, S.K.; Hart, B.A.

1994-04-01T23:59:59.000Z

25

Development of hollow-fiber catalytic-membrane reactors for high-temperature gas cleanup  

SciTech Connect

The project consist of the following main activities: (1) Design of catalytic hollow fiber membrane reactors. Single and multiple hollow-fiber membranes were studied in reactor/permeation cells made from stainless steel or quartz tubes. Modification of the hollow fiber membrane with catalysts was performed by aqueous impregnation, vapor deposition, and utilization of packed-bed reactors. (2) Investigation of gas separations and catalytic reactions in membrane reactors. Permeation of pure gases and gas mixtures was studied as a function of temperature. Pure component catalytic studies on the decomposition of H{sub 2}S was typically studied using 10% H{sub 2}S diluted in He. The H{sub 2}S and H{sub 2} concentrations were measured in both the tube and shell sides of the membrane reactor to determine the degree of chemical equilibrium shift. (3) Process development of the cleanup system using a simulated gas stream with a composition similar to that from an IGCC system. Catalytic studies using the IGCC gas composition will be performed according to the procedure used in the H{sub 2}S experiments. The conditions for optimum conversion in a gas mixture will be investigated.

Ma, Yi H.; Moser, M.R.; Pien, S.M.

1992-12-01T23:59:59.000Z

26

Development of hollow-fiber catalytic-membrane reactors for high-temperature gas cleanup  

SciTech Connect

The project consist of the following main activities: (1) Design of catalytic hollow fiber membrane reactors. Single and multiple hollow-fiber membranes were studied in reactor/permeation cells made from stainless steel or quartz tubes. Modification of the hollow fiber membrane with catalysts was performed by aqueous impregnation, vapor deposition, and utilization of packed-bed reactors. (2) Investigation of gas separations and catalytic reactions in membrane reactors. Permeation of pure gases and gas mixtures was studied as a function of temperature. Pure component catalytic studies on the decomposition of H[sub 2]S was typically studied using 10% H[sub 2]S diluted in He. The H[sub 2]S and H[sub 2] concentrations were measured in both the tube and shell sides of the membrane reactor to determine the degree of chemical equilibrium shift. (3) Process development of the cleanup system using a simulated gas stream with a composition similar to that from an IGCC system. Catalytic studies using the IGCC gas composition will be performed according to the procedure used in the H[sub 2]S experiments. The conditions for optimum conversion in a gas mixture will be investigated.

Ma, Yi H.; Moser, M.R.; Pien, S.M.

1992-01-01T23:59:59.000Z

27

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas  

Science Conference Proceedings (OSTI)

One of the key obstacles for the introduction of commercial gasification technology for the production of power with Integrated Gasification Combined Cycle (IGCC) plants or the production of value added chemicals, transportation fuels, and hydrogen has been the cost of these systems. This situation is particularly challenging because the United States has ample coal resources available as raw materials and effective use of these raw materials could help us meet our energy and transportation fuel needs while significantly reducing our need to import oil. One component of the cost of these systems that faces strong challenges for continuous improvement is removing the undesirable components present in the syngas. The need to limit the increase in cost of electricity to oil and natural gas. RTI, with DOE/NETL support, has been developing sorbent technologies that enable capture of trace contaminants and CO{sub 2} at temperatures above 400 °F that achieve better capture performance, lower costs and higher thermal efficiency. This report describes the specific work of sorbent development for mercury (Hg), arsenic (As), selenium (Se), cadmium (Cd), and phosphorous (P) and CO{sub 2} removal. Because the typical concentrations of Hg, As, Se, Cd, and P are less than 10 ppmv, the focus has been on single-use sorbents with sufficient capacity to ensure replacement costs are cost effective. The research in this report describes the development efforts which expand this sorbent development effort to include Se, Cd, and P as well as Hg and As. Additional research has focused on improving removal performance with the goal of achieving effluent concentrations that are suitable for chemical production applications. By contrast, sorbent development for CO{sub 2} capture has focused on regenerable sorbents that capture the CO{sub 2} byproduct at higher CO{sub 2} pressures. Previous research on CO{sub 2} sorbents has demonstrated that the most challenging aspect of developing CO{sub 2} sorbents is regeneration. The research documented in this report investigates options to improve regeneration of the CO{sub 2} capture sorbents. This research includes effort on addressing existing regeneration limitations for sorbents previously developed and new approaches that focus initially on the regeneration performance of the sorbent.

Turk, Brian; Gupta, Raghubir; Sharma, Pradeepkumar; Albritton, Johnny; Jamal, Aqil

2010-09-30T23:59:59.000Z

28

Development of ceramic membrane reactors for high temperature gas cleanup. Final report  

SciTech Connect

The objective of this project was to develop high temperature, high pressure catalytic ceramic membrane reactors and to demonstrate the feasibility of using these membrane reactors to control gaseous contaminants (hydrogen sulfide and ammonia) in integrated gasification combined cycle (IGCC) systems. Our strategy was to first develop catalysts and membranes suitable for the IGCC application and then combine these two components as a complete membrane reactor system. We also developed a computer model of the membrane reactor and used it, along with experimental data, to perform an economic analysis of the IGCC application. Our results have demonstrated the concept of using a membrane reactor to remove trace contaminants from an IGCC process. Experiments showed that NH{sub 3} decomposition efficiencies of 95% can be achieved. Our economic evaluation predicts ammonia decomposition costs of less than 1% of the total cost of electricity; improved membranes would give even higher conversions and lower costs.

Roberts, D.L.; Abraham, I.C.; Blum, Y.; Gottschlich, D.E.; Hirschon, A.; Way, J.D.; Collins, J.

1993-06-01T23:59:59.000Z

29

Microsoft Word - 10.5.11 Markup by Hargis Final EA-RTI Syngas CCS Project.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

67 67 FINAL ENVIRONMENTAL ASSESSMENT for RTI INTERNATIONAL SCALE-UP OF HIGH- TEMPERATURE SYNGAS CLEANUP AND CARBON CAPTURE AND SEQUESTRATION TECHNOLOGIES, POLK COUNTY, FLORIDA U.S. DEPARTMENT OF ENERGY National Energy Technology Laboratory October 2011 RTI Syngas Cleanup/Carbon Capture Final and Sequestration Project Environmental Assessment DOE/EA-1867 N:\MYFILES\CORRESPONDENCE\LUSK, MARK\RTI-POLK EA\FONSI FINAL EA\10.5.11 MARKUP BY HARGIS FINAL EA-RTI SYNGAS CCS PROJECT.DOCX-101411 i October 2011 COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Final Environmental Assessment for RTI International Scale-Up of High-Temperature Syngas Cleanup and Carbon Capture and Sequestration Technologies, Polk County, Florida (DOE/EA-1867)

30

Progress toward Biomass and Coal-Derived Syngas Warm Cleanup: Proof-of-Concept Process Demonstration of Multicontaminant Removal for Biomass Application  

Science Conference Proceedings (OSTI)

Systems comprising of multiple sorbent and catalytic beds have been developed for the warm syngas cleanup of coal- and biomass-derived syngas. Tailored specifically for biomass application the process described here consists of six primary unit operations: 1) Na2CO3 bed for HCl removal, 2) two regenerable ZnO beds for bulk H2S removal, 3) ZnO bed for H2S polishing, 4) NiCu/SBA-16 sorbent for trace metal (e.g. AsH3) removal, 5) steam reforming catalyst bed for tars and light hydrocarbons reformation and NH3 decomposition, and a 6) Cu-based LT-WGS catalyst bed. Simulated biomass-derived syngas containing a multitude of inorganic contaminants (H2S, AsH3, HCl, and NH3) and hydrocarbon additives (methane, ethylene, benzene, and naphthalene) was used to demonstrate process effectiveness. The efficiency of the process was demonstrated for a period of 175 hours, during which no signs of deactivation were observed. Post-run analysis revealed small levels of sulfur slipped through the sorbent bed train to the two downstream catalytic beds. Future improvements could be made to the trace metal polishing sorbent to ensure complete inorganic contaminant removal (to low ppb level) prior to the catalytic steps. However, dual, regenerating ZnO beds were effective for continuous removal for the vast majority of the sulfur present in the feed gas. The process was effective for complete AsH3 and HCl removal. The steam reforming catalyst completely reformed all the hydrocarbons present in the feed (methane, ethylene, benzene, and naphthalene) to additional syngas. However, post-run evaluation, under kinetically-controlled conditions, indicates deactivation of the steam reforming catalyst. Spent material characterization suggests this is attributed, in part, to coke formation, likely due to the presence of benzene and/or naphthalene in the feed. Future adaptation of this technology may require dual, regenerable steam reformers. The process and materials described in this report hold promise for a warm cleanup of a variety of contaminant species within warm syngas.

Howard, Christopher J.; Dagle, Robert A.; Lebarbier, Vanessa MC; Rainbolt, James E.; Li, Liyu; King, David L.

2013-06-19T23:59:59.000Z

31

Biomass Gasification Syngas Cleanup  

Science Conference Proceedings (OSTI)

In December 2012, the Electric Power Research Institute (EPRI) published report 1023994, Engineering and Economic Evaluation of Biomass Gasification, prepared by CH2M HILL Engineers, Inc. (CH2M HILL). It provided a global overview of commercially available biomass gasification technologies that can be used for power production in the 25- to 50-MWe range. The report provided detailed descriptions of biomass gasification technologies, typical operational parameters, emissions information, and ...

2013-12-23T23:59:59.000Z

32

Warm Gas Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Warm Gas Cleanup Warm Gas Cleanup NETL Office of Research and Development Project Number: FWP-2012.03.03 Task 5 Project Description The Environmental Protection Agency (EPA) has established strict regulations for the trace contaminant emissions from integrated gasification combined cycle (IGCC) systems. The Department of Energy (DOE) performance goals for trace contaminant removal were selected to meet or exceed EPA's standard limits for contaminants, as well as to avoid poisoning of: the catalysts utilized in making liquids from fuel gas the electrodes in fuel cells selective catalytic reduction (SCR) catalysts The objective of the NETL's ORD Warm Gas Cleanup project is to assist in achieving both DOE and EPA targets for trace contaminant capture from coal gasification, while preserving the high thermal efficiency of the IGCC system. To achieve this, both lab and pilot-scale research is underway to develop sorbents capable of removing the following contaminants from high temperature syngas (up to 550°F):

33

Development of hollow fiber catalytic membrane reactors for high temperature gas cleanup. Final report, September 1989--March 1994  

SciTech Connect

The objective of this project was to develop economically and technically viable catalytic membrane reactors for high temperature, high pressure gaseous contaminant control in Integrated Gasification Combined Cycle (IGCC) systems. These catalytic membrane reactors decompose H{sub 2}S and separate the reaction products. The reactors were designed to operate in the hostile process environment of the IGCC systems, and at temperatures ranging from 500 to 1000{degrees}C. Severe conditions encountered in the IGCC process (e.g., 900{degrees}C, containing of H{sub 2}S, CO{sub 2} and H{sub 2}O) make it impossible to use polymeric membranes in the process. A list of inorganic membranes that can be employed in the membrane reactor includes Pd metallic membranes, molecular-sieve glass membranes (PPG Industries), porous Vycor glass membranes and porous sol-gel derived membranes such as alumina, zirconia. Alumina and zirconia membranes, however, cannot withstand for a long time at high temperatures in the presence of water vapors. Palladium membranes are a very promising class of inorganic membranes for gas separations that is currently under development. In this project two different types of membranes were used in the design of the membrane reactor -- molecular-sieve glass membrane and Vycor glass porous membrane.

Ma, Yi Hua; Moser, W.R.; Pien, S.; Shelekhin, A.B.

1994-07-01T23:59:59.000Z

34

US Department of Energy`s high-temperature and high-pressure particulate cleanup for advanced coal-based power systems  

Science Conference Proceedings (OSTI)

The availability of reliable, low-cost electricity is a cornerstone for the United States` ability to compete in the world market. The Department of Energy (DOE) projects the total consumption of electricity in the US to rise from 2.7 trillion kilowatt-hours in 1990 to 3.5 trillion in 2010. Although energy sources are diversifying, fossil fuel still produces 90 percent of the nation`s energy. Coal is our most abundant fossil fuel resource and the source of 56 percent of our electricity. It has been the fuel of choice because of its availability and low cost. A new generation of high-efficiency power systems has made it possible to continue the use of coal while still protecting the environment. Such power systems greatly reduce the pollutants associated with cola-fired plants built before the 1970s. To realize this high efficiency and superior environmental performance, advanced coal-based power systems will require gas stream cleanup under high-temperature and high-pressure (HTHP) process conditions. Presented in this paper are the HTHP particulate capture requirements for the Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized-Bed Combustion (PFBC) power systems, the HTHP particulate cleanup systems being implemented in the PFBC and IGCC Clean Coal Technology (CCT) Projects, and the currently available particulate capture performance results.

Dennis, R.A.

1997-05-01T23:59:59.000Z

35

High-Temperature Co-electrolysis of Steam and Carbon Dioxide for Direct Production of Syngas; Equilibrium Model and Single-Cell Tests  

DOE Green Energy (OSTI)

An experimental study has been completed to assess the performance of single solid-oxide electrolysis cells operating over a temperature range of 800 to 850ºC in the coelectrolysis mode, simultaneously electrolyzing steam and carbon dioxide for the direct production of syngas. The experiments were performed over a range of inlet flow rates of steam, carbon dioxide, hydrogen and nitrogen and over a range of current densities (-0.1 to 0.25 A/cm2) using single electrolyte-supported button electrolysis cells. Steam and carbon dioxide consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation and a gas chromatograph, respectively. Cell operating potentials and cell current were varied using a programmable power supply. Measured values of open-cell potential and outlet gas composition are compared to predictions obtained from a chemical equilibrium coelectrolysis model. Model predictions of outlet gas composition based on an effective equilibrium temperature are shown to agree well with measurements. Cell area-specific resistance values were similar for steam electrolysis and coelectrolysis.

O'Brien, J. E.; Stoots, C. M.; Herring, J. S.; Hartvigsen, J. J.

2007-07-01T23:59:59.000Z

36

High-Temperature Co-electrolysis of Carbon Dioxide and Steam for the Production of Syngas; Equilibrium Model and Single-Cell Tests  

DOE Green Energy (OSTI)

An experimental study has been completed to assess the performance of single solid-oxide electrolysis cells operating over a temperature range of 800 to 850ºC in the coelectrolysis mode, simultaneously electrolyzing steam and carbon dioxide for the direct production of syngas. The experiments were performed over a range of inlet flow rates of steam, carbon dioxide, hydrogen and nitrogen and over a range of current densities (-0.1 to 0.25 A/cm2) using single electrolyte-supported button electrolysis cells. Steam and carbon dioxide consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation and a gas chromatograph, respectively. Cell operating potentials and cell current were varied using a programmable power supply. Measured values of open-cell potential and outlet gas composition are compared to predictions obtained from a chemical equilibrium coelectrolysis model. Model predictions of outlet gas composition based on an effective equilibrium temperature are shown to agree well with measurements. Area-specific resistance values were similar for steam electrolysis and coelectrolysis.

J. E. O'Brien; C. M. Stoots; G. L. Hawkes; J. S. Herring; J. J. Hartvigsen

2007-06-01T23:59:59.000Z

37

The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification  

E-Print Network (OSTI)

for biomas-derived syngas. National Renewable EnergyM. Lesemann. RTI/Eastman warm syngas clean-up technology:v the composition of syngas from steam hydrogasification

Luo, Qian

2012-01-01T23:59:59.000Z

38

Integrated High Temperature Coal-to-Hydrogen System with CO2 Separation  

DOE Green Energy (OSTI)

A significant barrier to the commercialization of coal-to-hydrogen technologies is high capital cost. The purity requirements for H{sub 2} fuels are generally met by using a series of unit clean-up operations for residual CO removal, sulfur removal, CO{sub 2} removal and final gas polishing to achieve pure H{sub 2}. A substantial reduction in cost can be attained by reducing the number of process operations for H{sub 2} cleanup, and process efficiency can be increased by conducting syngas cleanup at higher temperatures. The objective of this program was to develop the scientific basis for a single high-temperature syngas-cleanup module to produce a pure stream of H{sub 2} from a coal-based system. The approach was to evaluate the feasibility of a 'one box' process that combines a shift reactor with a high-temperature CO{sub 2}-selective membrane to convert CO to CO{sub 2}, remove sulfur compounds, and remove CO{sub 2} in a simple, compact, fully integrated system. A system-level design was produced for a shift reactor that incorporates a high-temperature membrane. The membrane performance targets were determined. System level benefits were evaluated for a coal-to-hydrogen system that would incorporate membranes with properties that would meet the performance targets. The scientific basis for high temperature CO{sub 2}-selective membranes was evaluated by developing and validating a model for high temperature surface flow membranes. Synthesis approaches were pursued for producing membranes that integrated control of pore size with materials adsorption properties. Room temperature reverse-selectivity for CO{sub 2} was observed and performance at higher temperatures was evaluated. Implications for future membrane development are discussed.

James A. Ruud; Anthony Ku; Vidya Ramaswamy; Wei Wei; Patrick Willson

2007-05-31T23:59:59.000Z

39

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Black Liquor Gasification  

DOE Green Energy (OSTI)

As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for removal of acid gases from black liquor-derived syngas for use in both power and liquid fuels synthesis. Two 3,200 metric tonne per day gasification schemes, both low-temperature/low-pressure (1100 deg F, 40 psi) and high-temperature/high-pressure (1800 deg F, 500 psi) were used for syngas production. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory and Princeton University. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

Nexant Inc.

2006-05-01T23:59:59.000Z

40

Production and high temperature treatment of syngas.  

E-Print Network (OSTI)

??Gas cleaning is an essential step in many chemical processes. The reason for cleaning is to remove components that can damage equipment or inhibit further… (more)

Botha, Martin Francis.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature syngas cleanup" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems  

Science Conference Proceedings (OSTI)

This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energyâ??s Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion concepts were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process â?? High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.

Howard Meyer

2010-11-30T23:59:59.000Z

42

NETL: Gasification Systems - Integrated Warm Gas Multicontaminant Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Project Number: DE-FC26-05NT42459 Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Project ID: DE-FC26-05NT42459 Objective: The objective is to develop a warm multi-contaminant syngas cleaning system for operation between 300 and 700° F. This project will continue development of the RTI warm syngas cleanup technology suite. Based on the field testing results with real syngas from Eastman Chemical Company's gasifier under DOE Contract DE-AC26-99FT40675, additional technical issues need to be addressed to move the technologies used in warm syngas cleaning further towards commercial deployment especially for chemical/fuels production. These issues range from evaluation of startup and standby options for the more developed desulfurization processes to integration and actual pilot plant testing with real coal-derived syngas for the technologies that were tested at bench scale during Phase I. Development shall continue of the warm gas syngas cleaning technology platform through a combination of lab-scale R&D and larger integrated pilot plant testing with real coal-derived syngas as well as process/systems analysis and simulation for optimization of integration and intensification.

43

A Novel Sorbent-Based Process for High Temperature Trace Metals...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbent-Based Process for High Temperature Trace Metals Removal from Coal-Derived Syngas Description Gasification converts coal and other heavy feedstocks into synthesis gas...

44

Dual-phase membrane for High temperature CO2 separation  

NLE Websites -- All DOE Office Websites (Extended Search)

2 CO 2 High temp. membrane for CO 2 removal High Temperature CO 2 Selective Membranes Syngas gas CO 2 enriched gas CO 2 High pressure H 2 0 100 200 300 400 500 600 700 1 10 100...

45

Simulation and optimization of hot syngas separation processes in integrated gasification combined cycle  

E-Print Network (OSTI)

IGCC with CO2 capture offers an exciting approach for cleanly using abundant coal reserves of the world to generate electricity. The present state-of-the-art synthesis gas (syngas) cleanup technologies in IGCC involve ...

Prakash, Kshitij

2009-01-01T23:59:59.000Z

46

NETL: Gasification Systems - Syngas Processing Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas Processing Systems Syngas Processing Systems Gasification Systems Syngas Processing Systems The various downstream uses of syngas require that most of the contaminants present in raw syngas be removed to very low levels prior to use. Many of these contaminants can contribute to erosion, corrosion, and loss of strength in gas turbine components, and can act as poisons to the catalysts often used in syngas conversion and utilization processes. These same contaminants include or result in regulated air pollutants such as SOx, NOx, particulates, and mercury and other trace metals, which must be removed to increasingly low levels to meet stringent regulatory limits on air emissions. Conventional methods for removing sulfur and other contaminants from syngas typically rely on chemical or physical absorption processes operating at low temperatures. However, after contaminant removal, the gas has to be reheated prior to its use in a gas turbine or other chemical synthesis process; in the case of downstream hydrogen production, additional steam needs to be added back to the syngas. These process swings adversely impact the plant's thermal efficiency and cost. Techno-economic analysis shows that gas-cleaning processes amenable to higher operating temperatures could significantly reduce this efficiency loss and improve the gasification plant's commercial viability. It is also critical that, while improving efficiency and reducing cost, the gas cleaning removes a wide variety of coal contaminants (including hydrogen sulfide, ammonia, hydrogen chloride, and carbonyl sulfide, as well as various forms of trace metals, including arsenic, mercury, selenium, and cadmium) to extremely low levels. Accordingly, the R&D approach in this area focuses on the development of high-efficiency processes that operate at moderate to high temperatures and provide multi-contaminant control to meet the highest environmental standards.

47

Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis  

DOE Green Energy (OSTI)

A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

Grant L. Hawkes; Michael G. McKellar

2009-11-01T23:59:59.000Z

48

High Temperatures & Electricity Demand  

E-Print Network (OSTI)

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

49

Deposition of Alternative (Syngas) Fuels on Turbine Blades with Film Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

ACERC ACERC Dr. Jeffrey Bons and Dr. Thomas Fletcher BRIGHAM YOUNG UNIVERSITY SCIES Project 05-01-SR-120 with support from General Electric, Siemens-Westinghouse, Solar Turbines, Praxair UTSR Peer Workshop III, Clemson University, SC Oct. 18-20, 2005 Deposition of Alternative ( Deposition of Alternative ( Syngas Syngas ) Fuels on ) Fuels on Turbine Blades with Film Cooling Turbine Blades with Film Cooling Alternate fuels (e.g. coal, petcoke, and biomass) are being cons Alternate fuels (e.g. coal, petcoke, and biomass) are being cons idered to idered to produce produce syngas syngas fuels to replace natural gas in power turbines fuels to replace natural gas in power turbines Despite gas cleanup, small levels of airborne particulate (e.g. Despite gas cleanup, small levels of airborne particulate (e.g. 0.1 0.1 ppmw

50

Assessment of the SRI Gasification Process for Syngas Generation with HTGR Integration -- White Paper  

SciTech Connect

This white paper is intended to compare the technical and economic feasibility of syngas generation using the SRI gasification process coupled to several high-temperature gas-cooled reactors (HTGRs) with more traditional HTGR-integrated syngas generation techniques, including: (1) Gasification with high-temperature steam electrolysis (HTSE); (2) Steam methane reforming (SMR); and (3) Gasification with SMR with and without CO2 sequestration.

A.M. Gandrik

2012-04-01T23:59:59.000Z

51

Computational and Experimental Development of Novel High-Temperature Alloys  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Novel High-Temperature Alloys Background The need for fossil-fueled power plants to run cleaner and more efficiently leads toward ever-higher operating temperatures and pressures. Gas turbines, which can be fueled by natural gas, synthetic gas (syngas), or a high-hydrogen stream derived from coal, are critical components in this development. High-temperature operation of turbines is generally achieved by using nickel-chrome superalloys with coatings

52

SYSTEM ANALYSIS OF NUCLEAR-ASSISTED SYNGAS PRODUCTION FROM COAL  

DOE Green Energy (OSTI)

A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 66.1% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

E. A. Harvego; M. G. McKellar; J. E. O'Brien

2008-09-01T23:59:59.000Z

53

The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification  

E-Print Network (OSTI)

Gupta, B. Turk, M. Lesemann. RTI/Eastman warm syngas clean-feasibility analysis of RTI warm gas cleanup(WGCU)reactor was constructed by RTI from DOE-Morgantown gasifier,

Luo, Qian

2012-01-01T23:59:59.000Z

54

System Analysis of Nuclear-Assisted Syngas Production from Coal  

SciTech Connect

A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via hightemperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

E. A. Harvego; M. G. McKellar; J. E. O'Brien

2009-07-01T23:59:59.000Z

55

Mitigation of Syngas Cooler Plugging and Fouling  

NLE Websites -- All DOE Office Websites (Extended Search)

process equipment used in the gasification island. The syngas cooler (SC) is a fire tube heat exchanger located after the coal gasifier before the syngas combustion turbine. The...

56

High Temperature Corrosion  

Science Conference Proceedings (OSTI)

Oct 18, 2010 ... Protective Coatings for Corrosion Resistance at High Temperatures: Vilupanur Ravi1; Thuan Nguyen1; Alexander Ly1; Kameron Harmon1; ...

57

Corrosion of Metallic SOFC Interconnects in Coal Syngas  

Science Conference Proceedings (OSTI)

With recent reductions in the operating temperature of Solid Oxide Fuel Cells (SOFC), the potential of using metallic interconnect has gone up. There is also an interest in using Coal syngas as the fuel gas and thus there is a need to analyze the behavior and performance of metallic interconnects when exposed to Coal syngas. Three high temperature material alloys, Crofer 22 APU, Ebrite and Haynes 230, having the potential to be used as SOFC interconnects were studied in simulated wet coal syngas. These alloys were exposed to syngas at 800 degrees C and for 100 hours. The exposure to coal syngas led to the formation of oxides and spinels, which evidently led to an increase in electrical resistance. Oxidation in a reducing and carburizing environment leads to unique phase and morphology formations. A comparative analysis was carried out for all the three alloys, wherein the samples were characterized by using SEM, EDS, Raman and X-Ray diffraction to obtain the morphology, thickness, composition and crystal structure of the oxides and spinels

Dastane, R.R. (University of West Virginia); Liu, X. (University of West Virginia); Johnson, C., Mao, Scott (University of Pittsburgh)

2007-09-01T23:59:59.000Z

58

Electrolysis – High Temperature – Hydrogen  

INL has developed a high-temperature process the utilizes solid oxide fuel cells that are operated in the electrolytic mode. The first process includes combining a high-temperature heat source (e.g. nuclear reactor) with a hydrogen production facility ...

59

High temperature sensor  

DOE Patents (OSTI)

A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

Tokarz, Richard D. (West Richland, WA)

1982-01-01T23:59:59.000Z

60

Integrated Process Configuration for High-Temperature Sulfur Mitigation during Biomass Conversion via Indirect Gasification  

DOE Green Energy (OSTI)

Sulfur present in biomass often causes catalyst deactivation during downstream operations after gasification. Early removal of sulfur from the syngas stream post-gasification is possible via process rearrangements and can be beneficial for maintaining a low-sulfur environment for all downstream operations. High-temperature sulfur sorbents have superior performance and capacity under drier syngas conditions. The reconfigured process discussed in this paper is comprised of indirect biomass gasification using dry recycled gas from downstream operations, which produces a drier syngas stream and, consequently, more-efficient sulfur removal at high temperatures using regenerable sorbents. A combination of experimental results from NREL's fluidizable Ni-based reforming catalyst, fluidizable Mn-based sulfur sorbent, and process modeling information show that using a coupled process of dry gasification with high-temperature sulfur removal can improve the performance of Ni-based reforming catalysts significantly.

Dutta. A.; Cheah, S.; Bain, R.; Feik, C.; Magrini-Bair, K.; Phillips, S.

2012-06-20T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature syngas cleanup" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Gas stream cleanup  

Science Conference Proceedings (OSTI)

This report describes the current status and recent accomplishments of gas stream cleanup (GSCU) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Gas Stream Cleanup Program is to develop contaminant control strategies that meet environmental regulations and protect equipment in advanced coal conversion systems. Contaminant control systems are being developed for integration into seven advanced coal conversion processes: Pressurized fludized-bed combustion (PFBC), Direct coal-fueled turbine (DCFT), Intergrated gasification combined-cycle (IGCC), Gasification/molten carbonate fuel cell (MCFC), Gasification/solid oxide fuel cell (SOFC), Coal-fueled diesel (CFD), and Mild gasification (MG). These advanced coal conversion systems present a significant challenge for development of contaminant control systems because they generate multi-contaminant gas streams at high-pressures and high temperatures. Each of the seven advanced coal conversion systems incorporates distinct contaminant control strategies because each has different contaminant tolerance limits and operating conditions. 59 refs., 17 figs., 5 tabs.

Bossart, S.J.; Cicero, D.C.; Zeh, C.M.; Bedick, R.C.

1990-08-01T23:59:59.000Z

62

High-temperature sensor  

DOE Patents (OSTI)

A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

Not Available

1981-01-29T23:59:59.000Z

63

High temperature refrigerator  

SciTech Connect

A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

Steyert, Jr., William A. (Los Alamos, NM)

1978-01-01T23:59:59.000Z

64

High temperature furnace  

DOE Patents (OSTI)

A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

Borkowski, Casimer J. (Oak Ridge, TN)

1976-08-03T23:59:59.000Z

65

Method for high temperature mercury capture from gas streams  

DOE Patents (OSTI)

A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

Granite, E.J.; Pennline, H.W.

2006-04-25T23:59:59.000Z

66

HIGH EFFICIENCY SYNGAS GENERATION  

DOE Green Energy (OSTI)

This project investigated an efficient and low cost method of auto-thermally reforming natural gas to hydrogen and carbon monoxide. Reforming is the highest cost step in producing products such as methanol and Fisher Tropsch liquids (i.e., gas to liquids); and reducing the cost of reforming is the key to reducing the cost of these products. Steam reforming is expensive because of the high cost of the high nickel alloy reforming tubes (i.e., indirectly fired reforming tubes). Conventional auto-thermal or Partial Oxidation (POX) reforming minimizes the size and cost of the reformers and provides a near optimum mixture of CO and hydrogen. However POX requires pure oxygen, which consumes power and significantly increases the cost to reforming. Our high efficiency process extracts oxygen from low-pressure air with novel oxygen sorbent and transfers the oxygen to a nickel-catalyzed reformer. The syngas is generated at process pressure (typically 20 to 40 bar) without nitrogen dilution and has a 1CO to 2H{sub 2} ratio that is near optimum for the subsequent production of Fisher-Tropsch liquid to liquids and other chemicals (i.e., Gas to Liquids, GTL). Our high process efficiency comes from the way we transfer the oxygen into the reformer. All of the components of the process, except for the oxygen sorbent, are commonly used in commercial practice. A process based on a longlived, regenerable, oxygen transfer sorbent could substantially reduce the cost of natural gas reforming to syngas. Lower cost syngas (CO + 2H{sub 2}) that is the feedstock for GTL would reduce the cost of GTL and for other commercial applications (e.g., methanol, other organic chemicals). The vast gas resources of Alaska's North Slope (ANS) offer more than 22 Tcf of gas and GTL production in this application alone, and could account for as much as 300,000 to 700,000 bpd for 20 to 30+ years. We developed a new sorbent, which is an essential part of the High Efficiency Oxygen Process (HOP). We tested the sorbent and observed that it has both a good oxygen capacity and operates as a highly effective reforming catalyst. We conducted a long duration tests of the sorbent (1,500 hours of continuous operation in the HOP cycle). Although the sorbent lost some oxygen capacity with cycling, the sorbent oxygen capacity stabilized after 1,000 hours and remained constant to the end of the test, 1,500 hour. The activity of the catalyst to reform methane to a hydrogen and carbon monoxide mixture was unchanged through the oxidation/reduction cycling. Our cost and performance analyses indicated a significant reduction in the cost of GTL production when using the HOP process integrated into a GTL plant.

Robert J. Copeland; Yevgenia Gershanovich; Brian Windecker

2005-02-01T23:59:59.000Z

67

High Hydrogen, Low Methane Syngas from Low-Rank Coals for Coal-to-Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

High Hydrogen, Low Methane Syngas from Low-Rank Coals for Coal-to-Liquids Production High Hydrogen, Low Methane Syngas from Low-Rank Coals for Coal-to-Liquids Production Southern Research Institute (SRI) Project Number: FE0012054 Project Description The focus of the project will be to develop, test, and optimize steam-reforming catalysts for converting tars, C2+ hydrocarbons, NH3, and CH4 in high-temperature and sulfur environments, increasing the ratio of hydrogen in syngas, as part of a modified, advanced gasification platform for the conversion of low-rank coals to syngas for coal-to-liquid and integrated gasification combined cycle applications. Project Details Program Background and Project Benefits Project Scope and Technology Readiness Level Accomplishments Contacts, Duration, and Cost Project Images Abstract Performer website: Southern Research Institute

68

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) announces a collaborative project with Research Triangle Institute (RTI) International to design, build, and test a warm gas cleanup system to remove multiple contaminants from coal-derived syngas. The 50-MWe system will include technologies to remove trace elements such as mercury and arsenic, capture the greenhouse gas carbon dioxide (CO2), and extract more than 99.9 percent of the sulfur from the syngas. A novel process to convert the extracted sulfur to a pure elemental sulfur product will also be tested. This project supports DOE's vision of coal power plants with near-zero

69

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) announces a collaborative project with Research Triangle Institute (RTI) International to design, build, and test a warm gas cleanup system to remove multiple contaminants from coal-derived syngas. The 50-MWe system will include technologies to remove trace elements such as mercury and arsenic, capture the greenhouse gas carbon dioxide (CO2), and extract more than 99.9 percent of the sulfur from the syngas. A novel process to convert the extracted sulfur to a pure elemental sulfur product will also be tested. This project supports DOE's vision of coal power plants with near-zero

70

High Temperature ESP Monitoring  

SciTech Connect

The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

Jack Booker; Brindesh Dhruva

2011-06-20T23:59:59.000Z

71

High Temperature Capacitor Development  

Science Conference Proceedings (OSTI)

The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a unique high-temperature electrolyte developed during the course of the program. During this program the feasibility of operating a high voltage hybridized capacitor at 230oC was demonstrated. Capacitor specifications were established in conjunction with potential capacitor users. A method to allow for capacitor operation at both ambient and elevated temperatures was demonstrated. The program was terminated prior to moving into Phase II due to a lack of cost-sharing funds.

John Kosek

2009-06-30T23:59:59.000Z

72

System analysis of nuclear-assisted syngas production from coal - article no. 042901  

Science Conference Proceedings (OSTI)

A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. The results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

Harvego, E.A.; McKellar, M.G.; O'Brien, J.E. [Idaho National Laboratory, Idaho Falls, ID (United States)

2009-07-15T23:59:59.000Z

73

Experimental Study on Direct-Fired Characteristics about Biomass Derived Crude Syngas  

Science Conference Proceedings (OSTI)

In order to solve the problem of slagging in biomass direct-fired and high tar content in biomass gasification, the method of using low-temperature gasification and crudesyn gas high temperature direct combustion for biomass is proposed. By changing ... Keywords: Biomass, Rice Husk, Direct-Fired, Temperature, Syngas, Gas Composition, Equivalence Ratio, Steam team to Air

Li Hong-tao; Li Bing-xi; Zhang Ya-ning; Xu You-ning

2011-02-01T23:59:59.000Z

74

High temperature thermometric phosphors  

SciTech Connect

A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

Allison, Stephen W. (Knoxville, TN); Cates, Michael R. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN); Gillies, George T. (Earlysville, VA)

1999-03-23T23:59:59.000Z

75

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Wood Feedstock  

DOE Green Energy (OSTI)

As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for treatment of wood-derived syngas for use in the synthesis of liquid fuels. Two different 2,000 metric tonne per day gasification schemes, a low-pressure, indirect system using the gasifier, and a high-pressure, direct system using gasification technology were evaluated. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

Nexant Inc.

2006-05-01T23:59:59.000Z

76

High temperature interfacial superconductivity  

DOE Patents (OSTI)

High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

Bozovic, Ivan (Mount Sinai, NY); Logvenov, Gennady (Port Jefferson Station, NY); Gozar, Adrian Mihai (Port Jefferson, NY)

2012-06-19T23:59:59.000Z

77

High Temperature Superconductivity Partners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Temperature Superconductivity Partners High Temperature Superconductivity Partners Map showing DOE's partnersstakeholders in the High Temperature Superconductivity Program...

78

Fuel Cell Technologies Office: High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

High Temperature Membrane Working Group High Temperature Membrane Working Group The High Temperature Membrane Working Group consists of government, industry, and university researchers interested in developing high temperature membranes for fuel cells. Description Technical Targets Meetings Contacts Description Polymer electrolyte membrane (PEM) fuel cells typically operate at temperatures no higher than 60°C-80°C due to structural limitations of the membrane. Operating PEM fuel cell stacks at higher temperatures (120°C for transportation and 150°C for stationary applications), however, would yield significant energy benefits. For example, heat rejection is easier at higher temperatures, which would allow use of smaller heat exchangers in fuel cell power systems. In addition, for reformate fuel cell systems, carbon monoxide (CO) tolerance of the stack is less problematic at higher temperatures, which would reduce the size requirements or possibly eliminate the need for some CO clean-up beds in the fuel processor.

79

Process for producing ethanol from syngas  

DOE Patents (OSTI)

The invention provides a method for producing ethanol, the method comprising establishing an atmosphere containing methanol forming catalyst and ethanol forming catalyst; injecting syngas into the atmosphere at a temperature and for a time sufficient to produce methanol; and contacting the produced methanol with additional syngas at a temperature and for a time sufficient to produce ethanol. The invention also provides an integrated system for producing methanol and ethanol from syngas, the system comprising an atmosphere isolated from the ambient environment; a first catalyst to produce methanol from syngas wherein the first catalyst resides in the atmosphere; a second catalyst to product ethanol from methanol and syngas, wherein the second catalyst resides in the atmosphere; a conduit for introducing syngas to the atmosphere; and a device for removing ethanol from the atmosphere. The exothermicity of the method and system obviates the need for input of additional heat from outside the atmosphere.

Krause, Theodore R; Rathke, Jerome W; Chen, Michael J

2013-05-14T23:59:59.000Z

80

WIPP - CBFO Accelerating Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

more information, access DOE Environmental Management site at: http:www.em.doe.govclosure For more information regarding the Accelerating Cleanup: Paths to Closure, contact...

Note: This page contains sample records for the topic "high-temperature syngas cleanup" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Superfund accelerated cleanup model  

SciTech Connect

In an effort to speed and maximize cleanup of the worst sites first, the Environmental Protection Agency (EPA) developed the Superfund Accelerated Cleanup Model (SACM). SACM streamlines the Superfund process so hazardous waste sites can be addressed quicker and in a more cost effective manner. EPA Regional offices developed a number of pilot projects to test the principles of SACM. Although many pilots are underway in the Regions, the pilots described here involve four areas: accelerating cleanup through early actions; integrating site assessments; using Regional Decision Teams to establish priorities; and accelerating cleanup through the use of new technology.

Not Available

1994-08-01T23:59:59.000Z

82

Fundamental Studies in Syngas Premixed Combustion Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

Studies Studies in Syngas Premixed Combustion Dynamics Ahmed F. Ghoniem, Anuradha M. Annaswamy, Raymond L. Speth, H. Murat Altay Massachusetts Institute of Technology SCIES Project 05-01-SR121 Project Awarded (08/01/2005, 36 Month Duration) Needs & Objectives Gas Turbine Needs Flexibility to operate with variable syngas compositions Ensure stable operation over a wide range of conditions Reduce emissions of CO and NO x Project Objectives Study experimentally lean premixed syngas combustion

83

Site Transition Process Upon Cleanup Completion | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Process Upon Cleanup Completion Site Transition Process Upon Cleanup Completion Site Transition Process Upon Cleanup Completion Site Transition Process Upon Cleanup Completion More...

84

Site Transition Process Upon Cleanup Completion | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Transition Process Upon Cleanup Completion Site Transition Process Upon Cleanup Completion Site Transition Process Upon Cleanup Completion Site Transition Process Upon Cleanup...

85

Syngas Upgrading to Hydrocarbon Fuels Technology Pathway  

DOE Green Energy (OSTI)

This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

Talmadge, M.; Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

2013-03-01T23:59:59.000Z

86

Catalysts for Syngas-Derived Alcohol Synthesis  

  This technology provides an advantageous means to convert syngas into a class of chemicals known as higher oxygenates as well as other long-chain ...

87

SYNGAS PRODUCTION SYSTEMS - Energy Innovation Portal  

Syngas components hydrogen and carbon monoxide may be formed by the decomposition of carbon dioxide and water or steam by a solid-oxide electrolysis cell to form ...

88

Cost Analysis and Evaluation of Syngas Synthesis through Anaerobic Digestion.  

E-Print Network (OSTI)

??Synthetic fuel, which is generated from syngas via Fischer – Tropsch synthesis, provides the world with an alternative for conventional fossil energy resources. Generating syngas… (more)

Tong, Yun

2012-01-01T23:59:59.000Z

89

Results Of Recent High Temperature Co-Electrolysis Studies At The Idaho National Laboratory  

DOE Green Energy (OSTI)

For the past several years, the Idaho National Laboratory and Ceramatec, Inc. have been studying the feasibility of high temperature solid oxide electrolysis for large-scale, nuclear-powered hydrogen production. Parallel to this effort, the INL and Ceramatec have been researching high temperature solid oxide co-electrolysis of steam/CO2 mixtures to produce syngas, the raw material for synthetic fuels production. When powered by nuclear energy, high temperature co-electrolysis offers a carbon-neutral means of syngas production while consuming CO2. The INL has been conducting experiments to characterize the electrochemical performance of co-electrolysis, as well as validate INL-developed computer models. An inline methanation reactor has also been tested to study direct methane production from co-electrolysis products. Testing to date indicate that high temperature steam electrolysis cells perform equally well under co-electrolysis conditions. Process model predictions compare well with measurements for outlet product compositions. The process appears to be a promising technique for large-scale syngas production.

C. M. Stoots; James E. O'Brien; Joseph J. Hartvigsen

2007-11-01T23:59:59.000Z

90

Fusion reactors-high temperature electrolysis (HTE)  

DOE Green Energy (OSTI)

Results of a study to identify and develop a reference design for synfuel production based on fusion reactors are given. The most promising option for hydrogen production was high-temperature electrolysis (HTE). The main findings of this study are: 1. HTE has the highest potential efficiency for production of synfuels from fusion; a fusion to hydrogen energy efficiency of about 70% appears possible with 1800/sup 0/C HTE units and 60% power cycle efficiency; an efficiency of about 50% possible with 1400/sup 0/C HTE units and 40% power cycle efficiency. 2. Relative to thermochemical or direct decomposition methods HTE technology is in a more advanced state of development, 3. Thermochemical or direct decomposition methods must have lower unit process or capital costs if they are to be more attractive than HTE. 4. While design efforts are required, HTE units offer the potential to be quickly run in reverse as fuel cells to produce electricity for restart of Tokamaks and/or provide spinning reserve for a grid system. 5. Because of the short timescale of the study, no detailed economic evaluation could be carried out.A comparison of costs could be made by employing certain assumptions. For example, if the fusion reactor-electrolyzer capital installation is $400/(KW(T) ($1000/KW(E) equivalent), the H/sub 2/ energy production cost for a high efficiency (about 70 %) fusion-HTE system is on the same order of magnitude as a coal based SNG plant based on 1976 dollars. 6. The present reference design indicates that a 2000 MW(th) fusion reactor could produce as much at 364 x 10/sup 6/ scf/day of hydrogen which is equivalent in heating value to 20,000 barrels/day of gasoline. This would fuel about 500,000 autos based on average driving patterns. 7. A factor of three reduction in coal feed (tons/day) could be achieved for syngas production if hydrogen from a fusion-HTE system were used to gasify coal, as compared to a conventional syngas plant using coal-derived hydrogen.

Fillo, J.A. (ed.)

1978-01-01T23:59:59.000Z

91

High Temperature and Electrical Properties  

Science Conference Proceedings (OSTI)

Mar 5, 2013... and Nanomaterials: High Temperature and Electrical Properties ... thermomechanical (or in cyclic power) loading of electronic devices is an ...

92

Ultra High Temperature Ceramic Composites  

Science Conference Proceedings (OSTI)

Oct 9, 2012 ... These ceramics, often combined with 20-30% SiC, have been studied extensively in monolithic form, demonstrating excellent high-temperature ...

93

High Temperature | Open Energy Information  

Open Energy Info (EERE)

Temperature Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: High Temperature Dictionary.png High Temperature: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Reservoir fluid between 230°C and 300°C is considered by Sanyal to be "high temperature." "Above a temperature level of 230°C, the reservoir would be expected to become two-phase at some point during exploitation. The next higher

94

Regeneration of Sulfur Deactivated Ni-based Biomass Syngas Cleaning Catalysts  

DOE Green Energy (OSTI)

Nickel-based catalysts have been widely tested in decomposing tar and methane in hot biomass syngas cleanup researches. However these catalysts can be easily deactivated by the sulfur compounds in syngas due to the strong sulfur adsorption effect on the Ni surface. Here we report on a new regeneration process, which can effectively and efficiently regenerate the sulfur-poisoned Ni reforming catalysts. This process consists of four sequential treatments: 1) controlled oxidation at 750oC in 1% O2, 2) decomposition at 900oC in Ar, 3) reduction at 900oC in 2% H2, and 4) reaction at 900oC under reforming condition. The duration of this 4-step regeneration process is only about 8 hours, which is shorter than that of the conventional steaming regeneration treatment.

Li, Liyu; Howard, Christopher J.; King, David L.; Gerber, Mark A.; Dagle, Robert A.; Stevens, Don J.

2010-09-14T23:59:59.000Z

95

Materials Testing in a Syngas Cooler of a Coal Gasification Plant  

Science Conference Proceedings (OSTI)

As part of an ongoing study of the corrosion of metallic alloys, several steels and protective coatings were exposed for up to 17,000 hrs in a syngas cooler of a coal-slurry-fed, entrained slagging gasifier. The materials suffered from corrosion during high-temperature service as well as during shutdown. Stainless steels containing molybdenum and low-alloy steels protected by a silicon-carbide refractory showed promising low corrosion rates, which decreased with increasing service time.

1996-05-03T23:59:59.000Z

96

Fischer-Tropsch Database Calculations Conversions: CO, H2, and Syngas  

E-Print Network (OSTI)

Fischer-Tropsch Database Calculations Conversions: CO, H2, and Syngas f in out in n n n = - 100 n contraction (%) #12;Syngas ratio (H2:CO): sr H in CO in n n = 2 _ _ n: (mols per hour) sr: Syngas ratio Rates active metal (g) r: Rate (mols / hr / g metal) #12;Rate Syngas: syngas H COr r r= +2 r syngas: Syngas

Kentucky, University of

97

Bio-Fuel Production Assisted with High Temperature Steam Electrolysis  

SciTech Connect

Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier.

Grant Hawkes; James O'Brien; Michael McKellar

2012-06-01T23:59:59.000Z

98

Carbon Neutral Production Of Syngas Via High Temperature Electrolytic Reduction Of Steam And CO2  

SciTech Connect

This paper presents the most recent results of experiments conducted at the Idaho National Laboratory (INL) studying coelectrolysis of steam and carbon dioxide in solid-oxide electrolysis stacks. Two 10-cell planar stacks were tested under various gas compositions, operating voltages, and operating temperatures. The tests were heavily instrumented, and outlet gas compositions were monitored with a gas chromatograph. Measured outlet compositions, open cell potentials, and coelectrolysis thermal neutral voltages compared reasonably well with a coelectrolysis computer model developed at the INL. Stack ASRs did not change significantly when switching from electrolysis to coelectrolysis operation.

C. Stoots; J. O' Brien; J. Hartvigsen

2007-11-01T23:59:59.000Z

99

Recent Progress At The Idaho National Laboratory In High Temperature Electrolysis For Hydrogen And Syngas Production  

DOE Green Energy (OSTI)

This paper presents the most recent results of experiments conducted at the Idaho National Laboratory (INL) studying electrolysis of steam and coelectrolysis of steam / carbon dioxide in solid-oxide electrolysis stacks. Single button cell tests as well as multi-cell stack testing have been conducted. Multi-cell stack testing used 10 x 10 cm cells (8 x 8 cm active area) supplied by Ceramatec, Inc (Salt Lake City, Utah, USA) and ranged from 10 cell short stacks to 240 cell modules. Tests were conducted either in a bench-scale test apparatus or in a newly developed 5 kW Integrated Laboratory Scale (ILS) test facility. Gas composition, operating voltage, and operating temperature were varied during testing. The tests were heavily instrumented, and outlet gas compositions were monitored with a gas chromatograph. The ILS facility is currently being expanded to 15 kW testing capacity (H2 production rate based upon lower heating value).

C. Stoots; J. O'Brien; J. Herring; J. Hartvigsen

2008-11-01T23:59:59.000Z

100

High-temperature ceramic receivers  

DOE Green Energy (OSTI)

An advanced ceramic dome cavity receiver is discussed which heats pressurized gas to temperatures above 1800/sup 0/F (1000/sup 0/C) for use in solar Brayton power systems of the dispersed receiver/dish or central receiver type. Optical, heat transfer, structural, and ceramic material design aspects of the receiver are reported and the development and experimental demonstration of a high-temperature seal between the pressurized gas and the high-temperature silicon carbide dome material is described.

Jarvinen, P. O.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature syngas cleanup" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Thermodynamic analysis of interactions between Ni-based solid oxide fuel cells (SOFC) anodes and trace species in a survey of coal syngas  

Science Conference Proceedings (OSTI)

A thermodynamic analysis was conducted to characterize the effects of trace contaminants in syngas derived from coal gasification on solid oxide fuel cell (SOFC) anode material. The effluents from 15 different gasification facilities were considered to assess the impact of fuel composition on anode susceptibility to contamination. For each syngas case, the study considers the magnitude of contaminant exposure resulting from operation of a warm gas cleanup unit at two different temperatures and operation of a nickel-based SOFC at three different temperatures. Contaminant elements arsenic (As), phosphorous (P), and antimony (Sb) are predicted to be present in warm gas cleanup effluent and will interact with the nickel (Ni) components of a SOFC anode. Phosphorous is the trace element found in the largest concentration of the three contaminants and is potentially the most detrimental. Poisoning was found to depend on the composition of the syngas as well as system operating conditions. Results for all trace elements tended to show invariance with cleanup operating temperature, but results were sensitive to syngas bulk composition. Synthesis gas with high steam content tended to resist poisoning.

Andrew Martinez; Kirk Gerdes; Randall Gemmen; James Postona

2010-03-20T23:59:59.000Z

102

Reactor water cleanup system  

DOE Patents (OSTI)

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

Gluntz, Douglas M. (San Jose, CA); Taft, William E. (Los Gatos, CA)

1994-01-01T23:59:59.000Z

103

High Temperature Optical Gas Sensing  

NLE Websites -- All DOE Office Websites (Extended Search)

Optical Gas Sensing Optical Gas Sensing Opportunity Research is active on optical sensors integrated with advanced sensing materials for high temperature embedded gas sensing applications. Patent applications have been filed for two inventions in this area and several other methods are currently under development. These technologies are available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Organizations or individuals with capabilities in optical sensor packaging for harsh environment and high temperature applications are encouraged to contact NETL to explore potential collaborative opportunities. Overview Contact NETL Technology Transfer Group techtransfer@netl.doe.gov

104

High temperature superconductor current leads  

DOE Patents (OSTI)

An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

Hull, John R. (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL)

1995-01-01T23:59:59.000Z

105

2013 Congressional Nuclear Cleanup Caucus Briefings | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Congressional Nuclear Cleanup Caucus Briefings 2013 Congressional Nuclear Cleanup Caucus Briefings The Congressional Nuclear Cleanup Caucus serves as a way to brief members of...

106

HANFORD SITE CLEANUP OBJECTIVES INCONSISTENTWITH PROJECTED LAND...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HANFORD SITE CLEANUP OBJECTIVES INCONSISTENTWITH PROJECTED LAND USES, IG-0446 HANFORD SITE CLEANUP OBJECTIVES INCONSISTENTWITH PROJECTED LAND USES, IG-0446 The cleanup of the...

107

Particulate hot gas stream cleanup technical issues  

Science Conference Proceedings (OSTI)

The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

Pontius, D.H.; Snyder, T.R.

1999-09-30T23:59:59.000Z

108

High-temperature plasma physics  

SciTech Connect

Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics.

Furth, H.P.

1988-03-01T23:59:59.000Z

109

High temperature lightweight foamed cements  

DOE Patents (OSTI)

Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

Sugama, Toshifumi.

1989-10-03T23:59:59.000Z

110

High temperature lightweight foamed cements  

DOE Patents (OSTI)

Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

Sugama, Toshifumi (Mastic Beach, NY)

1989-01-01T23:59:59.000Z

111

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

Boyd, Gary L. (Tempe, AZ)

1991-01-01T23:59:59.000Z

112

Geothermal high temperature instrumentation applications  

DOE Green Energy (OSTI)

A quick look at the geothermal industry shows a small industry producing about $1 billion in electric sales annually. The industry is becoming older and in need of new innovative solutions to instrumentation problems. A quick look at problem areas is given along with basic instrumentation requirements. The focus of instrumentation is on high temperature electronics.

Normann, R.A. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants (United States)

1998-06-11T23:59:59.000Z

113

High temperature electronic gain device  

SciTech Connect

An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

McCormick, J. Byron (Los Alamos, NM); Depp, Steven W. (Los Alamos, NM); Hamilton, Douglas J. (Tucson, AZ); Kerwin, William J. (Tucson, AZ)

1979-01-01T23:59:59.000Z

114

High temperature mineral fiber binder  

SciTech Connect

A modified phenol formaldehyde condensate is reacted with boric acid and cured in the presence of a polyfunctional nitrogeneous compound to provide a binder for mineral wool fibers which is particularly suited for thermal insulation products intended for high temperature service.

Miedaner, P.M.

1980-11-25T23:59:59.000Z

115

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

Boyd, Gary L. (Tempe, AZ)

1990-01-01T23:59:59.000Z

116

HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network (OSTI)

on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

Schroeder, R.C.

2009-01-01T23:59:59.000Z

117

Cleanup Sites | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleanup Sites Cleanup Sites Cleanup Sites Center Map As the largest environmental cleanup program in the world, EM has been charged with the responsibility of cleaning up 107 sites across the country whose area is equal to the combined area of Rhode Island and Delaware. EM has made substantial progress in nearly every area of nuclear waste cleanup and as of September 2012, completed cleanup at 90 of these sites. The "active" sites continue to have ongoing cleanup projects under EM's purview. Use the interactive map above to see states that still have cleanup activities associated with them. The tooltip in the upper-right corner shows site data for each state, and each marker gives site information as well as links to the site fact sheets here on the EM website and each site's full website.

118

Heterogeneous catalytic process for alcohol fuels from syngas. Thirteenth quarterly technical progress report, January--March 1995  

DOE Green Energy (OSTI)

The principal objectives of this project are to discover and evaluate novel heterogeneous catalysts for conversion of syngas to oxygenates having use as fuel enhancers, to explore novel reactor and process concepts applicable in this process, and to develop the best total process for converting syngas to liquid fuels. The authors have tested a number of K/Pd promoted Zn/Mn/Cr spinel oxide catalysts within an experimental design to determine the effect of K, Pd, temperature and pressure on catalyst performance. High temperature operation (at 440 C) results in drastic loss in selectivities to total alcohols (down to 18--30%), and this obscures the effect of the catalyst formulation variables. It appears that at higher temperatures, the tube walls can also catalyze syngas conversion with a more hydrogen-rich syngas mix. Comparison with tests in a copper-lined tube with 1:1 syngas confirm this hypothesis. The design suggested that higher Pd loadings would be beneficial for isobutanol synthesis. The 6 wt% and a 9 wt% Pd formulation were tested with 1:2 syngas in copper-lined tubes. The 6 wt% Pd catalyst, at 440 C and 1,500 psi, produced 71 g/kg-hr of isobutanol with a methanol/isobutanol product mole ratio < 1. Under the same conditions, the 9 wt% Pd catalyst is again inferior, producing 52 g/kg-hr of isobutanol with a methanol/isobutanol product mole ratio = 1.7. Of particular interest here is that the 6 wt% Pd catalyst produces more higher alcohols than methanol on a molar basis at good rates using a syngas mix that could be derived from a Shell gasifier.

NONE

1995-12-31T23:59:59.000Z

119

High temperature structural insulating material  

DOE Patents (OSTI)

A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

Chen, W.Y.

1984-07-27T23:59:59.000Z

120

High Temperature Heat Exchanger Project  

Science Conference Proceedings (OSTI)

The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

Anthony E. Hechanova, Ph.D.

2008-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature syngas cleanup" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

High-temperature geothermal cableheads  

DOE Green Energy (OSTI)

Two high-temperature, corrosion-resistant logging cableheads which use metal seals and a stable fluid to achieve proper electrical terminations and cable-sonde interfacings are described. A tensile bar provides a calibrated yield point, and a cone assembly anchors the cable armor to the head. Electrical problems of the sort generally ascribable to the cable-sonde interface were absent during demonstration hostile-environment loggings in which these cableheads were used.

Coquat, J.A.; Eifert, R.W.

1981-11-01T23:59:59.000Z

122

HIGH TEMPERATURE MICROSCOPE AND FURNACE  

DOE Patents (OSTI)

A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

Olson, D.M.

1961-01-31T23:59:59.000Z

123

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1992-01-01T23:59:59.000Z

124

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1993-01-01T23:59:59.000Z

125

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1994-01-01T23:59:59.000Z

126

High temperature size selective membranes  

DOE Green Energy (OSTI)

The objective of this research is to develop a high temperature size selective membrane capable of separating gas mixture components from each other based on molecular size, using a molecular sieving mechanism. The authors are evaluating two concepts: a composite of a carbon molecular sieve (CMS) with a tightly defined pore size distribution between 3 and 4 {angstrom}, and a microporous supporting matrix which provides mechanical strength and resistance to thermal degradation, and a sandwich of a CMS film between the porous supports. The high temperature membranes the authors are developing can be used to replace the current low-temperature unit operations for separating gaseous mixtures, especially hydrogen, from the products of the water gas shift reaction at high temperatures. Membranes that have a high selectivity and have both thermal and chemical stability would improve substantially the economics of the coal gasification process. These membranes can also improve other industrial processes such as the ammonia production and oil reform processes where hydrogen separation is crucial. Results of tests on a supported membrane and an unsupported carbon film are presented.

Yates, S.F.; Zhou, S.J.; Anderson, D.J.; Til, A.E. van

1994-10-01T23:59:59.000Z

127

High-Temperature Superconductivity Cable Demonstration Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Temperature Superconductivity Cable Demonstration Projects High-Temperature Superconductivity Cable Demonstration Projects A National Effort to Introduce New Technology into...

128

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1867: Draft Environmental Assessment RTI International Scale-Up of High-Temperature Syngas Cleanup and Carbon Capture and Sequestration Technologies, Polk County, Florida...

129

CX-008281: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-008281: Categorical Exclusion Determination High Temperature Syngas Cleanup Technology Scale-Up Demonstration Project CX(s) Applied: B3.6 Date: 05012012...

130

SOFC Anode Interaction with Trace Coal Syngas Species U.S. Dept of Energy, National Energy Technology Laboratory, Morgantown, WV 26507  

NLE Websites -- All DOE Office Websites (Extended Search)

SOFC Anode Interaction with Trace Coal Syngas Species SOFC Anode Interaction with Trace Coal Syngas Species U.S. Dept of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 Gregory Hackett, Kirk Gerdes, Randall Gemmen Phone: (304)285-5279, Gregory.Hackett@NETL.DOE.GOV Utilization of coal as a fuel source for highly efficient integrated gasification fuel cell (IGFC) power generation facilities is technologically and environmentally attractive. IGFC plants are expected to offer the highest efficiency coal gasification processes, even when carbon capture and storage systems are included in the design. One element of IGFC research at the National Energy Technology Laboratory is the investigation of syngas cleanup processes for these integrated systems. Of particular interest are the effects of trace elements naturally contained in

131

Hydrogen production by high-temperature steam gasification of biomass and coal  

Science Conference Proceedings (OSTI)

High-temperature steam gasification of paper, yellow pine woodchips, and Pittsburgh bituminous coal was investigated in a batch-type flow reactor at temperatures in the range of 700 to 1,200{sup o}C at two different ratios of steam to feedstock molar ratios. Hydrogen yield of 54.7% for paper, 60.2% for woodchips, and 57.8% for coal was achieved on a dry basis, with a steam flow rate of 6.3 g/min at steam temperature of 1,200{sup o}C. Yield of both the hydrogen and carbon monoxide increased while carbon dioxide and methane decreased with the increase in gasification temperature. A 10-fold reduction in tar residue was obtained at high-temperature steam gasification, compared to low temperatures. Steam and gasification temperature affects the composition of the syngas produced. Higher steam-to-feedstock molar ratio had negligible effect on the amount of hydrogen produced in the syngas in the fixed-batch type of reactor. Gasification temperature can be used to control the amounts of hydrogen or methane produced from the gasification process. This also provides mean to control the ratio of hydrogen to CO in the syngas, which can then be processed to produce liquid hydrocarbon fuel since the liquid fuel production requires an optimum ratio between hydrogen and CO. The syngas produced can be further processed to produce pure hydrogen. Biomass fuels are good source of renewable fuels to produce hydrogen or liquid fuels using controlled steam gasification.

Kriengsak, S.N.; Buczynski, R.; Gmurczyk, J.; Gupta, A.K. [University of Maryland, College Park, MD (United States). Dept. of Mechanical Engineering

2009-04-15T23:59:59.000Z

132

Syngas into Fuel: Optofluidic Solar Concentrators  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: Ohio State has developed an iron-based material and process for converting syngas—a synthetic gas mixture—into electricity, H2, and/or liquid fuel with zero CO2 emissions. Traditional carbon capture methods use chemical solvents or special membranes to separate CO2 from the gas exhaust from coal-fired power plants. Ohio State’s technology uses an iron-based oxygen carrier to generate CO2 and H2 from syngas in separate, pure product streams by means of a circulating bed reactor configuration. The end products of the system are H2, electricity, and/or liquid fuel, all of which are useful sources of power that can come from coal or syngas derived from biomass. Ohio State is developing a high-pressure pilot-scale unit to demonstrate this process at the National Carbon Capture Center.

None

2010-10-01T23:59:59.000Z

133

Mixed conducting membranes for syngas production  

DOE Patents (OSTI)

This invention presents a new class of multicomponent metallic oxides which are particularly suited toward use in fabricating components used in processes for producing syngas. The non-stoichiometric, A-site rich compositions of the present invention are represented by the formula (Ln.sub.x Ca.sub.1-x).sub.y FeO.sub.3-.delta. wherein Ln is La or a mixture of lanthanides comprising La, and wherein 1.0>x>0.5, 1.1.gtoreq.y>1.0 and .delta. is a number which renders the composition of matter charge neutral. Solid-state membranes formed from these compositions provide a favorable balance of oxygen permeance and resistance to degradation when employed in processes for producing syngas. This invention also presents a process for making syngas which utilizes such membranes.

Dyer, Paul Nigel (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Butt, Darryl (Gainesville, FL); Van Doorn, Rene Hendrick Elias (Neckarsulm, DE); Cutler, Raymond Ashton (Bountiful, UT)

2002-01-01T23:59:59.000Z

134

WIPP Accelerating Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

ACCELERATING CLEANUP: ACCELERATING CLEANUP: PATHS TO CLOSURE CARLSBAD AREA OFFICE JUNE 1998 I. Operations/Field Overview CAO Mission The mission of the Carlsbad Area Office (CAO) is to protect human health and the environment by opening and operating the Waste Isolation Pilot Plant (WIPP) for safe disposal of transuranic (TRU) waste and by establishing an effective system for management of TRU waste from generation to disposal. It includes personnel assigned to CAO, WIPP site operations, transportation, and other activities associated with the National TRU Program (NTP). The CAO develops and directs implementation of the TRU waste program, and assesses compliance with the program guidance, as well as the commonality of activities and assumptions among all TRU waste sites. NTP Program Management

135

Cleanup at Rocky Flats  

NLE Websites -- All DOE Office Websites (Extended Search)

David L. Clark, Los Alamos National Laboratory David L. Clark, Los Alamos National Laboratory The Rocky Flats Environmental Technology Site (RFETS) is an environmental cleanup site located about 16 miles northwest of downtown Denver (Fig 1). Two decades of routine monitoring have shown that the environment around RFETS is contaminated with actinide elements (U, Pu, Am) from site operations, [1] and RFETS has been designated by the U.S. Environmental Protection Agency (EPA) as a Superfund cleanup site. Until December 1989, the Rocky Flats Plant made components for nuclear weapons using various radioactive and hazardous materials, including plutonium, uranium and beryllium. Nearly 40 years of nuclear weapons production left behind a legacy of contaminated facilities, soils, and ground water. More than 2.5 million people live within a 50 mile radius of the site; 300,000 of those live in the Rocky Flats watershed.

136

BURNER DEVELOPMENT AND OPERABILITY ISSUES ASSOCIATED WITH STEADY FLOWING SYNGAS  

E-Print Network (OSTI)

BURNER DEVELOPMENT AND OPERABILITY ISSUES ASSOCIATED WITH STEADY FLOWING SYNGAS FIRED COMBUSTORS-Mu¨nchen, Garching, Germany This article addresses the impact of syngas fuel composition on combustor blowout, flash flashback mechanisms are present in swirling flows, and the key thermophysical properties of a syngas

Lieuwen, Timothy C.

137

CONFINEMENT OF HIGH TEMPERATURE PLASMA  

DOE Patents (OSTI)

The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

Koenig, H.R.

1963-05-01T23:59:59.000Z

138

LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS  

DOE Green Energy (OSTI)

Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

G. L. Hawkes; J. E. O'Brien; M. G. McKellar

2011-11-01T23:59:59.000Z

139

HIGH TEMPERATURE SUPERCONDUCTORS-SYNTHESIS ... - TMS  

Science Conference Proceedings (OSTI)

... Anaheim, California. HIGH TEMPERATURE SUPERCONDUCTORS- SYNTHESIS, PROCESSING, AND LARGE SCALE APPLICATIONS VII: Characterization ...

140

HIGH TEMPERATURE SUPERCONDUCTORS: III: YBCO Conductor ...  

Science Conference Proceedings (OSTI)

HIGH TEMPERATURE SUPERCONDUCTORS: Session III: YBCO Conductor Development. Sponsored by: Jt: EMPMD/SMD Superconducting Materials ...

Note: This page contains sample records for the topic "high-temperature syngas cleanup" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

High temperature nuclear gas turbine  

SciTech Connect

Significance of gas turbine cycle, process of the development of gas turbines, cycle and efficiency of high-temperature gas turbines, history of gas turbine plants and application of nuclear gas turbines are described. The gas turbines are directly operated by the heat from nuclear plants. The gas turbines are classified into two types, namely open cycle and closed cycle types from the point of thermal cycle, and into two types of internal combustion and external combustion from the point of heating method. The hightemperature gas turbines are tbe type of internal combustion closed cycle. Principle of the gas turbines of closed cycle and open cycle types is based on Brayton, Sirling, and Ericsson cycles. Etficiency of the turbines is decided only by pressure ratio, and is independent of gas temperature. An example of the turbine cycle for the nuclear plant Gestacht II is explained. The thermal efficiency of that plant attains 37%. Over the gas temperature of about 750 deg C, the thermal efficiency of the gas turbine cycle is better than that of steam turbine cycle. As the nuclear fuel, coated particle fuel is used, and this can attain higher temperature of core outlet gas. Direct coupling of the nuclear power plants and the high temperature gas turbines has possibility of the higher thermal efficiency. (JA)

Kurosawa, A.

1973-01-01T23:59:59.000Z

142

High temperature catalytic membrane reactors  

DOE Green Energy (OSTI)

Current state-of-the-art inorganic oxide membranes offer the potential of being modified to yield catalytic properties. The resulting modules may be configured to simultaneously induce catalytic reactions with product concentration and separation in a single processing step. Processes utilizing such catalytically active membrane reactors have the potential for dramatically increasing yield reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity. Examples of commercial interest include hydrogenation, dehydrogenation, partial and selective oxidation, hydrations, hydrocarbon cracking, olefin metathesis, hydroformylation, and olefin polymerization. A large portion of the most significant reactions fall into the category of high temperature, gas phase chemical and petrochemical processes. Microporous oxide membranes are well suited for these applications. A program is proposed to investigate selected model reactions of commercial interest (i.e. dehydrogenation of ethylbenzene to styrene and dehydrogenation of butane to butadiene) using a high temperature catalytic membrane reactor. Membranes will be developed, reaction dynamics characterized, and production processes developed, culminating in laboratory-scale demonstration of technical and economic feasibility. As a result, the anticipated increased yield per reactor pass economic incentives are envisioned. First, a large decrease in the temperature required to obtain high yield should be possible because of the reduced driving force requirement. Significantly higher conversion per pass implies a reduced recycle ratio, as well as reduced reactor size. Both factors result in reduced capital costs, as well as savings in cost of reactants and energy.

Not Available

1990-03-01T23:59:59.000Z

143

Syngas Upgrading to Hydrocarbon Fuels Technology Pathway  

SciTech Connect

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the upgrading of biomass derived synthesis gas (‘syngas’) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and risk adverse conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas to hydrocarbon pathway to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

Talmadge, M.; Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

2013-03-31T23:59:59.000Z

144

NETL: Gasification Systems - Mitigation of Syngas Cooler Plugging and  

NLE Websites -- All DOE Office Websites (Extended Search)

Mitigation of Syngas Cooler Plugging and Fouling Mitigation of Syngas Cooler Plugging and Fouling Project No.: DE-FE0007952 Reaction Engineering International (REI) is working to develop practical solutions to mitigate the plugging and fouling of syngas coolers (SC) - fire tube heat exchangers located between the coal gasifier and the combustion turbine. Syngas coolers used in Integrated Gasification Combined Cycle (IGCC) plants offer high efficiency, but their reliability is generally lower than other process equipment in the gasification island. The principle downtime events associated with syngas coolers are typically a result of ash deposits that: form on (wall) surfaces upstream of the syngas cooler, break loose, and then lodge in the tubes; or form on the fireside surface of the syngas cooler tubes that lead to fouling and reduced heat transfer. Both ash deposit mechanisms result in reduced equipment life and increased maintenance costs.

145

Producing Clean Syngas via Catalytic Reforming for Fuels Production  

Science Conference Proceedings (OSTI)

Thermochemical biomass conversion to fuels and chemicals can be achieved through gasification to syngas. The biomass derived raw syngas contains the building blocks of carbon monoxide and hydrogen as well as impurities such as tars, light hydrocarbons, and hydrogen sulfide. These impurities must be removed prior to fuel synthesis. We used catalytic reforming to convert tars and hydrocarbons to additional syngas, which increases biomass carbon utilization. In this work, nickel based, fluidizable tar reforming catalysts were synthesized and evaluated for tar and methane reforming performance with oak and model syngas in two types of pilot scale fluidized reactors (recirculating and recirculating regenerating). Because hydrogen sulfide (present in raw syngas and added to model syngas) reacts with the active nickel surface, regeneration with steam and hydrogen was required. Pre and post catalyst characterization showed changes specific to the syngas type used. Results of this work will be discussed in the context of selecting the best process for pilot scale demonstration.

Magrini, K. A.; Parent, Y.; Jablonski, W.; Yung, M.

2012-01-01T23:59:59.000Z

146

Environmental Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Cleanup Environmental Cleanup Environmental Cleanup Learn more about the history, cleanup activities and possible future uses of the Hanford Site, a 586-square-mile government site in southeast Washington State. | Video courtesy of the Energy Department. The Energy Department is committed to a safe, complete cleanup of the environmental legacy of five decades of government-sponsored nuclear weapons development and nuclear energy research. As part of this mission, we safely and cost-effectively transport and dispose of low-level wastes; decommission and decontaminate old facilities; remediate contaminated soil and groundwater; and secure and store nuclear material in stable, secure locations to protect national security. Featured An Update on the Hanford Site and Cleanup Progress

147

Joint Institute for High Temperatures  

National Nuclear Security Administration (NNSA)

Joint Institute for High Temperatures of Russian Academy of Sciences Moscow Institute of Physics and Technology Extended title Extended title Excited state of warm dense matter or Exotic state of warm dense matter or Novel form of warm dense matter or New form of plasma Three sources of generation similarity: solid state density, two temperatures: electron temperature about tens eV, cold ions keep original crystallographic positions, but electron band structure and phonon dispersion are changed, transient but steady (quasi-stationary for a short time) state of non-equilibrium, uniform plasmas (no reference to non-ideality, both strongly and weakly coupled plasmas can be formed) spectral line spectra are emitted by ion cores embedded in plasma environment which influences the spectra strongly,

148

Hanford Achieves a Cleanup First  

Energy.gov (U.S. Department of Energy (DOE))

RICHLAND, Wash. – DOE contractors have completed cleanup of F Area, the first reactor area at the 586-square-mile Hanford site to be fully remediated.

149

Environmental Cleanup, Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab campus Cleanup Project Details Groundwater Peconic River Surface and Soil Brookhaven Graphite Research Reactor High Flux Beam Reactor Brookhaven Medical Reactor...

150

RESULTS OF RECENT HIGH TEMPERATURE COELECTROLYSIS STUDIES AT THE IDAHO NATIONAL LABORATORY  

DOE Green Energy (OSTI)

Some results of CO2 / H2O electrolysis experiments performed to date using button cells and three different 10-cell planar solid oxide stacks are presented and discussed. These results include electrolysis performance at various temperatures, gas mixtures, and electrical settings. Product gas compositions, as measured via an in-line micro gas chromatograph (GC), are compared to predictions obtained from an INL-developed chemical equilibrium coelectrolysis model (CECM). Better understanding of the feasibility of producing syngas using high temperature electrolysis may initiate the systematic investigation of nuclear-powered synfuel production as a bridge to the future hydrogen economy and ultimate independence from foreign energy resources.

Carl Stoots; James O'Brien; Joseph Hartvigsen

2009-05-01T23:59:59.000Z

151

High Temperature Superconducting Underground Cable  

SciTech Connect

The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

Farrell, Roger, A.

2010-02-28T23:59:59.000Z

152

Recent Developments in High Temperature Superconductivity  

E-Print Network (OSTI)

New material systems and the experimental progress of high temperature superconductivity are briefly reviewed. We examine both oxides and non-oxides which exhibit stable and/or unstable superconductivity at high temperatures.

Hor, P. H.

1988-09-01T23:59:59.000Z

153

High-temperature thermocouples and related methods  

DOE Patents (OSTI)

A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

Rempe, Joy L. (Idaho Falls, ID); Knudson, Darrell L. (Firth, ID); Condie, Keith G. (Idaho Falls, ID); Wilkins, S. Curt (Idaho Falls, ID)

2011-01-18T23:59:59.000Z

154

Compact High-Temperature Superconducting Cable Wins ' ...  

Science Conference Proceedings (OSTI)

Compact High-Temperature Superconducting Cable Wins 'R&D 100' Award. From NIST Tech Beat: June 22, 2011. ...

2011-07-06T23:59:59.000Z

155

High temperature electronics application in well logging  

DOE Green Energy (OSTI)

Some limitations, problems, and needs are briefly reviewed for neutron logging tools used in high-temperature geothermal environments. (ACR)

Traeger, R.K.; Lysne, P.C.

1987-01-01T23:59:59.000Z

156

High Temperature Strain Gages for SOFC Application  

DOE Green Energy (OSTI)

This presentation discusses the investigation/extension of high temperature strain gage applications sensors to SOFC applications.

Pineault, R.L.; Johnson, C.; Gemmen, R.S.; Gregory, O.; You, T.

2005-01-27T23:59:59.000Z

157

HIGH TEMPERATURE SUPERCONDUCTORS: IV: BSCCO and ...  

Science Conference Proceedings (OSTI)

HIGH TEMPERATURE SUPERCONDUCTORS: Session IV: BSCCO and TBCCO Conductor Development. Sponsored by: Jt. EMPMD/SMD Superconducting ...

158

Biomass-derived Syngas Utilization for Fuels and Chemicals - Final Report  

SciTech Connect

Executive Summary The growing gap between petroleum production and demand, mounting environmental concerns, and increasing fuel prices have stimulated intense interest in research and development (R&D) of alternative fuels, both synthetic and bio-derived. Currently, the most technically defined thermochemical route for producing alternative fuels from lignocellulosic biomass involves gasification/reforming of biomass to produce syngas (carbon monoxide [CO] + hydrogen [H2]), followed by syngas cleaning, Fischer-Tropsch synthesis (FTS) or mixed alcohol synthesis, and some product upgrading via hydroprocessing or separation. A detailed techno-economic analysis of this type of process has recently been published [1] and it highlights the need for technical breakthroughs and technology demonstration for gas cleanup and fuel synthesis. The latter two technical barrier areas contribute 40% of the total thermochemical ethanol cost and 70% of the production cost, if feedstock costs are factored out. Developing and validating technologies that reduce the capital and operating costs of these unit operations will greatly reduce the risk for commercializing integrated biomass gasification/fuel synthesis processes for biofuel production. The objective of this project is to develop and demonstrate new catalysts and catalytic processes that can efficiently convert biomass-derived syngas into diesel fuel and C2-C4 alcohols. The goal is to improve the economics of the processes by improving the catalytic activity and product selectivity, which could lead to commercialization. The project was divided into 4 tasks: Task 1: Reactor Systems: Construction of three reactor systems was a project milestone. Construction of a fixed-bed microreactor (FBR), a continuous stirred tank reactor (CSTR), and a slurry bubble column reactor (SBCR) were completed to meet this milestone. Task 2: Iron Fischer-Tropsch (FT) Catalyst: An attrition resistant iron FT catalyst will be developed and tested. Task 3: Chemical Synthesis: Promising process routes will be identified for synthesis of selected chemicals from biomass-derived syngas. A project milestone was to select promising mixed alcohol catalysts and screen productivity and performance in a fixed bed micro-reactor using bottled syngas. This milestone was successfully completed in collaboration withour catalyst development partner. Task 4: Modeling, Engineering Evaluation, and Commercial Assessment: Mass and energy balances of conceptual commercial embodiment for FT and chemical synthesis were completed.

David C. Dayton

2010-03-24T23:59:59.000Z

159

Physical gas stream cleanup: Technology status report  

SciTech Connect

This report is a summary of the status of particulate control technologies for use at high temperatures and high pressures. The technologies are being developed under the Physical Gas Stream Cleanup Program that is administered by the US Department of Energy, Morgantown Energy Technology Center. The intended uses of the particulate control technologies are to protect components in advanced coal systems, such as integrated gasification combined cycles, pressurized fluidized-bed combustion combined cycles, gasification molten carbonate fuel cells, and direct coal-fueled turbines. The use of particulate control technologies for these advanced energy conversion systems requires separation and collection of particles at temperatures in excess of 1000/sup 0/F and at pressures in excess of 7 atmospheres. These temperature and pressure regimes represent a drastic departure from those of conventional technologies. The Physical Gas Stream Cleanup Program seeks to establish a technical and economic data base that will demonstrate the feasibility of high-temperature, high-pressure particulate control. Particulate control concepts and their corresponding research and development projects are described in this report. These projects include subpilot-scale tests of an electrostatic precipitator, a ceramic cross-flow filter, and a screenless granular-bed filter on a 30-inch diameter pressurized fluidized-bed combustor. Bench-scale tests will also be conducted using a ceramic cross-flow filter, a ceramic bag filter, and an electrostatic precipitator on a 6-inch diameter fluidized-bed gasifier. Additional research involves laboratory evaluation of acoustic agglomeration, turbulence characterization and suppression in cyclones and characterization of ceramic fabrics for bag filters. Each project and significant accomplishments in FY 85 are described. 14 refs., 25 figs., 5 tabs.

1986-04-01T23:59:59.000Z

160

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas  

DOE Green Energy (OSTI)

By contrast, sorbent development for CO{sub 2} capture has focused on regenerable sorbents that capture the CO{sub 2} byproduct at higher CO{sub 2} pressures. Previous research on CO{sub 2} sorbents has demonstrated that the most challenging aspect of developing CO{sub 2} sorbents is regeneration. The research documented in this report investigates options to improve regeneration of the CO{sub 2} capture sorbents. This research includes effort on addressing existing regeneration limitations for sorbents previously developed and new approaches that focus initially on the regeneration performance of the sorbent.

Turk, Brian; Gupta, Raghubir; Sharma, Pradeepkumar; Albritton, Johnny; Jamal, Aqil

2010-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature syngas cleanup" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Ultra High Temperature | Open Energy Information  

Open Energy Info (EERE)

Ultra High Temperature Ultra High Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Ultra High Temperature Dictionary.png Ultra High Temperature: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Reservoir fluid greater than 300°C is considered by Sanyal to be "ultra high temperature". "Such reservoirs are characterized by rapid development of steam saturation in the reservoir and steam fraction in the mobile fluid phase upon

162

Novel syngas-based process for methyl methacrylate  

SciTech Connect

Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel are developing a novel process for synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the U.S. Department of Energy, Pittsburgh Energy Technology Center. This three-step process consists of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Eastman has focused on the research on propionate synthesis step. The resultant Mo catalysts work efficiently at much less severe conditions (170{degrees}C and 30 atm) than the conventional Ni catalysts (270{degrees}C and 180 atm). Bechtel has performed an extensive cost analysis, which shows that Eastman`s propionate synthesis process is competitive with other technologies to produce the anhydride. In the second step, RTI and Eastman have developed active and stable V-SI-P and Ta metal oxide catalysts for condensation reactions of propionates with formaldehyde. RTI has demonstrated a novel correlation among the catalyst acid-base properties, condensation reaction yield, and long-term catalyst activity. Current research focuses on enhancing the condensation reaction yields, acid-base properties, in situ condensation in a high- temperature, high-pressure (HTHP) slurry reactor, and alternate formaldehyde feedstocks. Based on Eastman and RTI laboratory reactor operating data, a cost estimate is also being developed for the integrated process.

Gogate, M.R.; Spivey, J.J. [Research Triangle Institute, Research Triangle Park, NC (United States); Zoeller, J.R. [Eastman Chemical Co., Kingsport, TN (United States); Choi, G.N. [Bechtel, Inc., San Francisco, CA (United States); Tam, S.S. [Bechtel, Inc., Houston, TX (United States); Tischer, R.E. [USDOE Pittsburgh Energy Technology Center, PA (United States); Srivastava, R.D. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

1996-12-31T23:59:59.000Z

163

ISOBUTANOL FROM SYNGAS IN A THREE PHASE SYSTEM  

DOE Green Energy (OSTI)

With growing interest in oxygenates as octane booster for automotive fuels, various synthesis routes for these chemicals are being investigated. Among others, alternative routes to isobutene, the C4-components in MTBE-synthesis are under investigation. A promising path to isobutene is the heterogeneously catalyzed CO-hydrogenation to isobutanol with following dehydration (Fig. 1). As shown by thermodynamical studies, the heterogeneously catalyzed CO-hydrogenation to isobutanol is not expected to experience any thermodynamic constraints. However, heterogeneous hydrogenation of CO is a very exothermic process, a problem which can only be partly solved when being conducted in a plug flow reactor. When carried out in reaction vessels with moving catalyst bed (e.g. three phase stirred tank), heat transfer problems can be resolved, along with additional benefits connected with this reactor type. Several heterogeneous catalytic systems have been under investigation for their capability of isobutanol synthesis from syngas. Most promising catalysts for an active and selective isobutanol synthesis from CO are modified high temperature methanol catalysts.

Peter Tijrn

2002-12-29T23:59:59.000Z

164

High-Temperature Stress Relaxation Cracking and Stress Rupture ...  

Science Conference Proceedings (OSTI)

An incident occurred that resulted in the cracking of gasifier internals, bulging and stress rupture of the shell and the escape of hot syngas, causing a fire.

165

NETL: Gasification - Mitigation of Syngas Cooler Plugging and...  

NLE Websites -- All DOE Office Websites (Extended Search)

the coal gasifier and the combustion turbine. Syngas coolers used in Integrated Gasification Combined Cycle (IGCC) plants offer high efficiency, but their reliability is...

166

Chemical Looping Gasification for Hydrogen Enhanced Syngas Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO2 Capture The Ohio State University (OSU) Project Number: FE0012136 Project Description The...

167

Hybrid Molten Bed Gasifier for High Hydrogen Syngas Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Molten Bed Gasifier for High Hydrogen (H2) Syngas Production Gas Technology Institute (GTI) Project Number: FE0012122 Project Description The research team will evaluate and...

168

Scale Formation of SOFC Metallic Interconnects in Coal Syngas.  

E-Print Network (OSTI)

??Planar solid oxide fuel cells (SOFCs) which can use coal syngas as the fuel and stainless steels in their construction have attracted considerable interesting, due… (more)

Wang, Jingpeng

2008-01-01T23:59:59.000Z

169

SYNGAS FROM BIOMASS GASIFICATION AS FUEL FOR GENERATOR.  

E-Print Network (OSTI)

??The emergence of biomass based energy warrants the evaluation of syngas from biomass gasification as a fuel for personal power systems. The objectives of this… (more)

Shah, Ajay

2009-01-01T23:59:59.000Z

170

ITM Syngas: Ceramic Membrane Technology for Lower Cost Conversion...  

NLE Websites -- All DOE Office Websites (Extended Search)

ASU water use - Less Plot Area required - approx. 50% less - Fuel flexibility - natural gas, syngas, liquid fuels - Excellent integration capability with existing high...

171

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Gas Shift & Hydrogen Production Slag High-temperatureWarm Sygas Cleanup & DOE R&D Other DOE R&D Supporting Syngas Cleanup Technology Emissions Advantages of Gasification...

172

Thermodynamic, Sulfide, Redox Potential, and pH Effects on Syngas Fermentation.  

E-Print Network (OSTI)

??Recently, work in ethanol production is exploring the fermentation of syngas (primarily CO, CO2, and H2) following gasification of cellulosic biomass. The syngas fermentation by… (more)

Hu, Peng

2011-01-01T23:59:59.000Z

173

Autoignition of Hydrogen and Syngas with Air in a Turbulent Flow Reactor.  

E-Print Network (OSTI)

??A good deal of attention has been given recently to combustion of syngas in gas turbines used for power generation. Syngas is a mixture of… (more)

Elies, Daniel

2012-01-01T23:59:59.000Z

174

Deep Trek High Temperature Electronics Project  

Science Conference Proceedings (OSTI)

This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

Bruce Ohme

2007-07-31T23:59:59.000Z

175

Research on Very High Temperature Gas Reactors  

Science Conference Proceedings (OSTI)

Very high temperature gas reactors are helium-cooled, graphite-moderated advanced reactors that show potential for generating low-cost electricity via gas turbines or cogeneration with process-heat applications. This investigation addresses the development status of advanced coatings for nuclear-fuel particles and high-temperature structural materials and evaluates whether these developments are likely to lead to economically competitive applications of the very high temperature gas reactor concept.

1991-08-08T23:59:59.000Z

176

Upper Los Alamos Canyon Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Upper Los Alamos Canyon Cleanup Upper Los Alamos Canyon Cleanup Upper Los Alamos Canyon Cleanup The Upper Los Alamos Canyon Project involves cleaning up hazardous materials left over from some of the Laboratory's earliest activities. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Located along Los Alamos Canyon from 7th Street to the Pajarito Ski Hill, the Upper Los Alamos Canyon Project involves examining sites in present and former Laboratory technical areas to see if any further environmental cleanup actions are needed. If not, the Laboratory can apply to have these sites removed permanently from LANL's Hazardous Waste Permit, meaning that no further actions are needed at those sites. Among the 115 sites included in the Upper LA Canyon Project, 54 have been

177

Technology Development Advances EM Cleanup  

Energy.gov (U.S. Department of Energy (DOE))

The unique nature of many of EM's remaining facilities will require a strong and responsive engineering and technology program to improve work and public safety, and reduce costs and environmental impacts while completing the cleanup program.

178

Superfund Cleanups and Infant Health  

E-Print Network (OSTI)

We are the first to examine the effect of Superfund cleanups on infant health rather than focusing on proximity to a site. We study singleton births to mothers residing within 5km of a Superfund site between 1989 and 2003 ...

Currie, Janet

2011-02-23T23:59:59.000Z

179

U-PLANT GEOGRAPHIC ZONE CLEANUP PROTOTYPE  

Science Conference Proceedings (OSTI)

The U Plant geographic zone (UPZ) occupies 0.83 square kilometers on the Hanford Site Central Plateau (200 Area). It encompasses the U Plant canyon (221-U Facility), ancillary facilities that supported the canyon, soil waste sites, and underground pipelines. The UPZ cleanup initiative coordinates the cleanup of the major facilities, ancillary facilities, waste sites, and contaminated pipelines (collectively identified as ''cleanup items'') within the geographic zone. The UPZ was selected as a geographic cleanup zone prototype for resolving regulatory, technical, and stakeholder issues and demonstrating cleanup methods for several reasons: most of the area is inactive, sufficient characterization information is available to support decisions, cleanup of the high-risk waste sites will help protect the groundwater, and the zone contains a representative cross-section of the types of cleanup actions that will be required in other geographic zones. The UPZ cleanup demonstrates the first of 22 integrated zone cleanup actions on the Hanford Site Central Plateau to address threats to groundwater, the environment, and human health. The UPZ contains more than 100 individual cleanup items. Cleanup actions in the zone will be undertaken using multiple regulatory processes and decision documents. Cleanup actions will include building demolition, waste site and pipeline excavation, and the construction of multiple, large engineered barriers. In some cases, different cleanup actions may be taken at item locations that are immediately adjacent to each other. The cleanup planning and field activities for each cleanup item must be undertaken in a coordinated and cohesive manner to ensure effective execution of the UPZ cleanup initiative. The UPZ zone cleanup implementation plan (ZCIP) was developed to address the need for a fundamental integration tool for UPZ cleanup. As UPZ cleanup planning and implementation moves forward, the ZCIP is intended to be a living document that will provide a focal point for integrating UPZ actions, including field cleanup activities, waste staging and handling, and post-cleanup monitoring and institutional controls.

ROMINE, L.D.

2006-02-01T23:59:59.000Z

180

Improved Martensitic Steel for High Temperature Applications  

NETL has developed a stainless steel composition and heat treatment process for a high-temperature, titanium alloyed 9 Cr-1 molybdenum alloy ...

Note: This page contains sample records for the topic "high-temperature syngas cleanup" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Experiment Hazard Class 3 - High Temperatures  

NLE Websites -- All DOE Office Websites (Extended Search)

* RF and Microwave * UV Light Hydrogen * Hydrogen Electronics * Electrical Equipment * High Voltage Other * Other Class 3 - High Temperatures Applicability The hazard controls...

182

High-temperature brazed ceramic joints  

DOE Patents (OSTI)

High-temperature joints formed from metallized ceramics are disclosed wherein the metal coatings on the ceramics are vacuum sputtered thereon.

Jarvinen, Philip O. (Amherst, NH)

1986-01-01T23:59:59.000Z

183

Development of Inorganic High Temperature Proton Exchange ...  

Science Conference Proceedings (OSTI)

For fuel cell systems directly coupled to a reformer, the primary advantage of high temperatures is the elimination of CO poisoning. Direct methanol fuel cells ...

184

Recent Developments in High Temperature Superconductivity  

Science Conference Proceedings (OSTI)

Scope, Recently, significant progress has been made world-wide in both fabrication and fundamental understanding of high-temperature superconductors (HTS) ...

185

Thermodynamic and Kinetic Properties of High Temperature ...  

Science Conference Proceedings (OSTI)

Perspectives on Phonons and Electron-Phonon Scattering in High-Temperature Superconductors · Prediction and Design of Materials from Crystal Structures to ...

186

High temperature superconducting fault current limiter  

DOE Patents (OSTI)

A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

Hull, J.R.

1997-02-04T23:59:59.000Z

187

High-temperature electronics: an overview  

DOE Green Energy (OSTI)

A summary is presented providing an overview of contemporary high-temperature electronics and identifying the major areas where developments are needed and the laboratories where research is being conducted. The geothermal program, high-temperature oil and gas well logging, jet engine monitors, and circuits for operation in the sodium coolant loop of the Clinch River Breeder reactor have stimulated research. (FS)

Heckman, R.C.

1979-01-01T23:59:59.000Z

188

High Temperature Electrochemistry Center - HiTEC  

DOE Green Energy (OSTI)

This presentation discusses the High Temperature Electrochemistry Center (HiTEC). The mission of HiTEC is to advance the solid oxide technology, such as solid oxide, high temperature electrolysers, reversible fuel cells, energy storage devices, proton conductors, etc., for use in DG and FutureGen applications, and to conduct fundamental research that aids the general development of all solid oxide technology.

McVay, G.; Williams, M.

2005-01-27T23:59:59.000Z

189

Accelerating cleanup: Paths to closure  

SciTech Connect

This report describes the status of Environmental Management`s (EM`s) cleanup program and a direction forward to complete achievement of the 2006 vision. Achieving the 2006 vision results in significant benefits related to accomplishing EM program objectives. As DOE sites accelerate cleanup activities, risks to public health, the environment, and worker safety and health are all reduced. Finding more efficient ways to conduct work can result in making compliance with applicable environmental requirements easier to achieve. Finally, as cleanup activities at sites are completed, the EM program can focus attention and resources on the small number of sites with more complex cleanup challenges. Chapter 1 describes the process by which this report has been developed and what it hopes to accomplish, its relationship to the EM decision-making process, and a general background of the EM mission and program. Chapter 2 describes how the site-by-site projections were constructed, and summarizes, for each of DOE`s 11 Operations/Field Offices, the projected costs and schedules for completing the cleanup mission. Chapter 3 presents summaries of the detailed cleanup projections from three of the 11 Operations/Field Offices: Rocky Flats (Colorado), Richland (Washington), and Savannah River (South Carolina). The remaining eight Operations/Field Office summaries are in Appendix E. Chapter 4 reviews the cost drivers, budgetary constraints, and performance enhancements underlying the detailed analysis of the 353 projects that comprise EM`s accelerated cleanup and closure effort. Chapter 5 describes a management system to support the EM program. Chapter 6 provides responses to the general comments received on the February draft of this document.

NONE

1998-06-01T23:59:59.000Z

190

Symposium on high temperature and materials chemistry  

SciTech Connect

This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

1989-10-01T23:59:59.000Z

191

Process Modeling Results of Bio-Syntrolysis: Converting Biomass to Liquid Fuel with High Temperature Steam Electrolysis  

SciTech Connect

A new process called Bio-Syntrolysis is being researched at the Idaho National Laboratory (INL) investigating syngas production from renewable biomass that is assisted with high temperature steam electrolysis (HTSE). The INL is the world leader in researching HTSE and has recently produced hydrogen from high temperature solid oxide cells running in the electrolysis mode setting several world records along the way. A high temperature (~800°C) heat source is necessary to heat the steam as it goes into the electrolytic cells. Biomass provides the heat source and the carbon source for this process. Syngas, a mixture of hydrogen and carbon monoxide, can be used for the production of synthetic liquid fuels via Fischer-Tropsch processes. This concept, coupled with fossil-free electricity, provides a possible path to reduced greenhouse gas emissions and increased energy independence, without the major infrastructure shift that would be required for a purely hydrogen-based transportation system. Furthermore, since the carbon source is obtained from recyclable biomass, the entire concept is carbon-neutral

G. L. Hawkes; M. G. McKellar; R. Wood; M. M. Plum

2010-06-01T23:59:59.000Z

192

Argonne National Lab Cleanup schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Takes Steps to Complete Clean-Up of Argonne by 2003; Takes Steps to Complete Clean-Up of Argonne by 2003; Schedule for Shipping Waste to WIPP is 'Good News' for Illinois CARLSBAD, N.M., May 15, 2000 - The U.S. Department of Energy (DOE) reinforced plans to complete the clean-up of its Argonne National Laboratory-East site in Illinois by 2003 by accelerating its schedule for shipping transuranic waste to DOE's permanent disposal site in New Mexico. Previously, the shipments were not expected to begin before 2003. Under the accelerated schedule, shipments to DOE's Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, are expected to begin in Spring 2001 and be completed by the end of the calendar year. Characterization of the waste currently stored at Argonne will begin this October. This agreement is a major step in honoring Argonne and DOE's commitment to the community to

193

Environmental Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 19, 2010 August 19, 2010 Recovery Act Progress at Idaho National Lab North Wind Services will be constructing several new structures at the INL Radioactive Waste Management Complex -- facilities that will provide important protection from the elements and minimize the spread of contamination during buried waste excavation, retrieval and packaging operations. August 18, 2010 New Contract Helps Portsmouth GDP Cleanup To accelerate the Portsmouth GDP cleanup efforts left over from the Cold War, the Department of Energy made a huge step forward in our nuclear environmental cleanup efforts. August 13, 2010 Geek-Up: K East Reactor Demolition, Retrograde Melting and Cloud Pattern Tracking Recovery Act funds help clean up the Hanford site, retrograde melting (melting as something cools) and how open-cell clouds could help predict

194

Environmental Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Cleanup Environmental Cleanup Environmental Cleanup August 23, 2013 EM Office of External Affairs Acting Communications Director Dave Borak talks with EM intern Valerie Edwards. | Photo courtesy of the Energy Department. Internships Help Future Energy Leaders Gain Hands-On Experience What's it like interning at the Energy Department? We interviewed one intern to find out. August 6, 2013 Oak Ridge National Laboratory The U.S. Department of Energy's (DOE) Oak Ridge National Laboratory (ORNL) is the nation's largest multi-program science and technology laboratory. ORNL's mission is to deliver scientific discoveries and technical breakthroughs that will accelerate the development and deployment of solutions in clean energy and global security. August 6, 2013 Y-12 National Security Complex

195

Protocol_for_Environmental_Management_Cleanup_Projects_(clean...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ProtocolforEnvironmentalManagementCleanupProjects(clean).pdf ProtocolforEnvironmentalManagementCleanupProjects(clean).pdf ProtocolforEnvironmentalManagementCleanup...

196

Accelerating Clean-up at Savannah River | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Clean-up at Savannah River Accelerating Clean-up at Savannah River Accelerating Clean-up at Savannah River More Documents & Publications Integrated Project Team RM...

197

Live Work on High Temperature Conductors  

Science Conference Proceedings (OSTI)

Feedback from field personnel working with high-temperature conductors indicates that when a dead-end compression yoke assembly (DCYA) is installed on the conductor according to normal utility procedures, the soft aluminum strands are deformed and "birdcage." This is of course a concern to the field crews and the utility operating the line. This report presents results of research and tests performed on selected conductors operating at high temperature (approximately 250-260°C) with selected live wor...

2011-12-13T23:59:59.000Z

198

Optimum catalytic process for alcohol fuels from syngas  

DOE Green Energy (OSTI)

The objectives of this contract are to discover and evaluate the catalytic properties of novel homogeneous, heterogeneous, or combination catalytic systems for the production of alcohol fuel extenders from syngas, to evaluate analytically and on the bench scale novel reactor concepts for use in converting syngas to liquid fuel products, and to develop on the bench scale the best combination of chemistry, reactor, and total process configuration to achieve the minimum product cost for conversion of syngas to liquid fuel products. Methanol production and heterogeneous catalysis utilizing transition elements supported on metal oxides with spinel structure are discussed. 12 figs., 16 tabs.

Not Available

1990-04-28T23:59:59.000Z

199

Investigations into High Temperature Components and Packaging  

SciTech Connect

The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the temperature increase inside the device due the internal heat that is generated due to conduction and switching losses. Capacitors and high current switches that are reliable and meet performance specifications over an increased temperature range are necessary to realize electronics needed for hybrid-electric vehicles (HEVs), fuel cell (FC) and plug-in HEVs (PHEVs). In addition to individual component level testing, it is necessary to evaluate and perform long term module level testing to ascertain the effects of high temperature operation on power electronics.

Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

2007-12-31T23:59:59.000Z

200

Methods and systems for producing syngas  

DOE Patents (OSTI)

Methods and systems are provided for producing syngas utilizing heat from thermochemical conversion of a carbonaceous fuel to support decomposition of at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells. Simultaneous decomposition of carbon dioxide and water or steam by one or more solid-oxide electrolysis cells may be employed to produce hydrogen and carbon monoxide. A portion of oxygen produced from at least one of water and carbon dioxide using one or more solid-oxide electrolysis cells is fed at a controlled flow rate in a gasifier or combustor to oxidize the carbonaceous fuel to control the carbon dioxide to carbon monoxide ratio produced.

Hawkes, Grant L; O& #x27; Brien, James E; Stoots, Carl M; Herring, J. Stephen; McKellar, Michael G; Wood, Richard A; Carrington, Robert A; Boardman, Richard D

2013-02-05T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature syngas cleanup" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Laminar flame speeds of moist syngas mixtures  

SciTech Connect

This work experimentally investigates the effect of the presence of water vapor on the laminar flame speeds of moist syngas/air mixtures using the counterflow twin-flame configuration. The experimental results presented here are for fuel lean syngas mixtures with molar percentage of hydrogen in the hydrogen and carbon monoxide mixture varying from 5% to 100%, for an unburned mixture temperature of 323 K, and under atmospheric pressure. At a given equivalence ratio, the effect of varying amount of water vapor addition on the measured laminar flame speed is demonstrated. The experimental laminar flame speeds are also compared with computed values using chemical kinetic mechanisms reported in the literature. It is found that laminar flame speed varies non-monotonically with addition of water for the carbon monoxide rich mixtures. It first increases with increasing amount of water addition, reaches a maximum value, and then decreases. An integrated reaction path analysis is further conducted to understand the controlling mechanism responsible for the non-monotonic variation in laminar flame speed due to water addition. On the other hand, for higher values of H{sub 2}/CO ratio the laminar flame speed monotonically decreases with increasing water addition. It is shown that the competition between the chemical and thermal effects of water addition leads to the observed response. Furthermore, reaction rate sensitivity analysis as well as binary diffusion coefficient sensitivity analysis are conducted to identify the possible sources of discrepancy between the experimental and predicted values. The sensitivity results indicate that the reaction rate constant of H{sub 2}+OH = H{sub 2}O+H is worth revisiting and refinement of binary diffusion coefficient data of N{sub 2}-H{sub 2}O, N{sub 2}-H{sub 2}, and H{sub 2}-H{sub 2}O pairs can be considered. (author)

Das, Apurba K. [Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States); Kumar, Kamal; Sung, Chih-Jen [Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269 (United States)

2011-02-15T23:59:59.000Z

202

Superfund Cleanups and Infant Health  

E-Print Network (OSTI)

We are the first to examine the effect of Superfund cleanups on infant health rather than focusing on proximity to a site. We study singleton births to mothers residing within 5km of a Superfund site between 1989-2003 in ...

Currie, Janet

203

Accelerated cleanup risk reduction  

Science Conference Proceedings (OSTI)

There is no proven technology for remediating contaminant plume source regions in a heterogeneous subsurface. This project is an interdisciplinary effort to develop the requisite new technologies so that will be rapidly accepted by the remediation community. Our technology focus is hydrous pyrolysis/oxidation (HPO) which is a novel in situ thermal technique. We have expanded this core technology to leverage the action of steam injection and place an in situ microbial filter downstream to intercept and destroy the accelerated movement of contaminated groundwater. Most contaminant plume source regions, including the chlorinated solvent plume at LLNL, are in subsurface media characterized by a wide range in hydraulic conductivity. At LLNL, the main conduits for contaminant transport are buried stream channels composed of gravels and sands; these have a hydraulic conductivity in the range of 10{sup -1} to 10{sup -2} cm/s. Clay and silt units with a hydraulic conductivity of 10{sup -1} to 10{sup -6} cm/s bound these buried channels; these are barriers to groundwater movement and contain the highest contaminant concentrations in the source region. New remediation technologies are required because the current ones preferentially access the high conductivity units. HPO is an innovative process for the in situ destruction of contaminants in the entire subsurface. It operates by the injection of steam. We have demonstrated in laboratory experiments that many contaminants rapidly oxidize to harmless compounds at temperatures easily achieved by injecting steam, provided sufficient dissolved oxygen is present. One important challenge in a heterogeneous source region is getting heat, contaminants, and an oxidizing agent in the same place at the same time. We have used the NUFT computer program to simulate the cyclic injection of steam into a contaminated aquifer for design of a field demonstration. We used an 8 hour, steam/oxygen injection cycle followed by a 56 hour relaxation period in which the well was `capped`. Our results show the formation of an inclined gas phase during injection and a fast collapse of the steam zone within an hour of terminating steam injection. The majority of destruction occurs during the collapse phase, when contaminant laden water is drawn back towards the well. Little to no noncondensible gasses are created in this process, removing any possibility of sparging processes interfering with contaminant destruction. Our models suggest that the thermal region should be as hot and as large as possible. To have HPO accepted, we need to demonstrate the in situ destruction of contaminants. This requires the ability to inexpensively sample at depth and under high temperatures. We proved the ability to implies monitoring points at depths exceeding 150 feet in highly heterogeneous soils by use of cone penetrometry. In addition, an extractive system has been developed for sampling fluids and measuring their chemistry under the range of extreme conditions expected. We conducted a collaborative field test of HPO at a Superfund site in southern California where the contaminant is mainly creosote and pentachlorophenol. Field results confirm the destruction of contaminants by HPO, validate our field design from simulations, demonstrate that accurate field measurements of the critical fluid parameters can be obtained using existing monitoring wells (and minimal capital cost) and yield reliable cost estimates for future commercial application. We also tested the in situ microbial filter technology as a means to intercept and destroy the accelerated flow of contaminants caused by the injection of steam. A series of laboratory and field tests revealed that the selected bacterial species effectively degrades trichloroethene in LLNL Groundwater and under LLNL site conditions. In addition, it was demonstrated that the bacteria effectively attach to the LLNL subsurface media. An in-well treatability study indicated that the bacteria initially degrade greater than 99% of the contaminant, to concentrations less than regulatory limit

Knapp, R.B.; Aines, R.M.; Blake, R.G.; Copeland, A.B.; Newmark, R.L.; Tompson, A.F.B.

1998-02-01T23:59:59.000Z

204

Accelerating Clean-up at Savannah River | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Clean-up at Savannah River Accelerating Clean-up at Savannah River Accelerating Clean-up at Savannah River More Documents & Publications Accelerating Clean-up at...

205

Pyrochlore-Based Catalysts for Syngas-Derived Alcohol Synthesis  

NLE Websites -- All DOE Office Websites (Extended Search)

Pyrochlore-Based Catalysts for Syngas-Derived Pyrochlore-Based Catalysts for Syngas-Derived Alcohol Synthesis Contact NETL Technology Transfer Group techtransfer@netl.doe.gov PON-13-006 August 2013 Opportunity This technology provides an advantageous means to convert syngas into a class of chemicals known as higher oxygenates as well as other long-chain hydrocarbons. Research is currently active on this patent-pending technology "Method of CO and/or CO2 Hydrogenation Using Doped Mixed Metal Oxides." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Significance * Improves the conversion of syngas from natural gas, coal, or biomass * Enhances the potential use of oxygenates as

206

NETL: Gasification Systems - A Technology to Mitigate Syngas...  

NLE Websites -- All DOE Office Websites (Extended Search)

the coal gasification process depositing on the inner walls of the tubes in the fire tube heat exchanger used in the syngas cooler. Current project plans include the development of...

207

NETL: Gasification - A Technology to Mitigate Syngas Cooler Fouling  

NLE Websites -- All DOE Office Websites (Extended Search)

the coal gasification process depositing on the inner walls of the tubes in the fire tube heat exchanger used in the syngas cooler. Current project plans include the development of...

208

Improved Gas Turbines for LBTU Syngas Fuel Operation  

Science Conference Proceedings (OSTI)

Gas turbine engines running on syngas can take advantage of that fuel's high mass flow per BTU. Optimizing performance while keeping all operating parameters within acceptable limits was the result of a G.E. project.

1997-01-03T23:59:59.000Z

209

High Temperature Cements | Open Energy Information  

Open Energy Info (EERE)

High Temperature Cements High Temperature Cements Jump to: navigation, search Geothermal ARRA Funded Projects for High Temperature Cements Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

210

High Temperature Membrane & Advanced Cathode Catalyst Development  

DOE Green Energy (OSTI)

Current project consisted of three main phases and eighteen milestones. Short description of each phase is given below. Table 1 lists program milestones. Phase 1--High Temperature Membrane and Advanced Catalyst Development. New polymers and advanced cathode catalysts were synthesized. The membranes and the catalysts were characterized and compared against specifications that are based on DOE program requirements. The best-in-class membranes and catalysts were downselected for phase 2. Phase 2--Catalyst Coated Membrane (CCM) Fabrication and Testing. Laboratory scale catalyst coated membranes (CCMs) were fabricated and tested using the down-selected membranes and catalysts. The catalysts and high temperature membrane CCMs were tested and optimized. Phase 3--Multi-cell stack fabrication. Full-size CCMs with the down-selected and optimized high temperature membrane and catalyst were fabricated. The catalyst membrane assemblies were tested in full size cells and multi-cell stack.

Protsailo, Lesia

2006-04-20T23:59:59.000Z

211

Advanced Acid Gas Separation Technology for Clean Power and Syngas  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas Processing Systems Syngas Processing Systems Advanced Acid Gas Separation Technology for Clean Power and Syngas Applications Air Products and Chemicals, Inc. Project Number: FE0013363 Project Description In this project, Air Products will operate a two-bed mobile system at the National Carbon Capture Center (NCCC) facility. A slipstream of authentic, high-hydrogen syngas based on low-rank coal will be evaluated as the feedstock. Testing will be conducted for approximately eight weeks, thereby providing far longer adsorbent exposure data than demonstrated to date. By utilizing real-world, high- hydrogen syngas, information necessary to understand the utility of the system for methanol production will be made available. In addition, Air Products will also operate a multi-bed PSA process development unit (PDU), located at its Trexlertown, PA headquarters, to evaluate the impact of incorporating pressure equalization steps in the process cycle. This testing will be conducted utilizing a sulfur-free, synthetic syngas, and will improve the reliability of the prediction of the system's operating performance at commercial scale.

212

Initial stages of high temperature metal oxidation  

Science Conference Proceedings (OSTI)

The application of XPS and UPS to the study of the initial stages of high temperature (> 350/sup 0/C) electrochemical oxidation of iron and nickel is discussed. In the high temperature experiments, iron and nickel electrodes were electrochemically oxidized in contact with a solid oxide electrolyte in the uhv system. The great advantages of this technique are that the oxygen activity at the interface may be precisely controlled and the ability to run the reactions in uhv allows the simultaneous observation of the reactions by XPS.

Yang, C.Y.; O'Grady, W.E.

1981-01-01T23:59:59.000Z

213

High temperature crystalline superconductors from crystallized glasses  

DOE Patents (OSTI)

A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.

Shi, Donglu (Downers Grove, IL)

1992-01-01T23:59:59.000Z

214

Fusion blanket high-temperature heat transfer  

DOE Green Energy (OSTI)

Deep penetration of 14 MeV neutrons makes two-temperature region blankets feasible. A relatively low-temperature (approx. 300/sup 0/C) metallic structure is the vacuum/coolant pressure boundary, while the interior of the blanket, which is a simple packed bed of nonstructural material, operates at very high temperatures (>1000/sup 0/C). The water-cooled shell structure is thermally insulated from the steam-cooled interior. High-temperature steam can dramatically increase the efficiency of electric power generation, as well as produce hydrogen and oxygen-based synthetic fuels at high-efficiency.

Fillo, J.A.

1983-01-01T23:59:59.000Z

215

Comprehensive Environmental Cleanup and Responsibility Act (Montana) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comprehensive Environmental Cleanup and Responsibility Act Comprehensive Environmental Cleanup and Responsibility Act (Montana) Comprehensive Environmental Cleanup and Responsibility Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Institutional Fuel Distributor Savings Category Buying & Making Electricity Program Info State Montana Program Type Environmental Regulations Provider Montana Department of Environmental Quality The Comprehensive Environmental Cleanup and Responsibility Act contains general provisions (sections 705-729), along with the Voluntary Cleanup and Redevelopment Act (sections 730-738) and the Controlled Allocation of

216

Environmental Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 11, 2013 February 11, 2013 The Office of Nuclear Energy's mission is to advance nuclear power as a resource that can meet the United State's energy, environmental and national security needs. Office of Nuclear Energy Launches New Website A new website for NE means easier access to information and more up-to-date news for users. Check it out! January 30, 2013 Legacy Management Sites January 15, 2013 Secretary Chu, Governor Gregoire Issue Statement on Hanford Cleanup U.S. Energy Secretary Steven Chu and Governor Chris Gregoire issued a joint statement on the cleanup efforts underway at Hanford. December 21, 2012 The Rocky Flats Plant was first established in 1951 as a nuclear weapons manufacturing facility. Today, almost 4,000 acres make up the Rocky Flats National Wildlife Refuge. Located just 16 miles northwest of Denver, Colorado, the refuge provides a habitat for migratory birds and mammals. | Photo courtesy of the U.S. Department of Energy.

217

Safety Issues for High Temperature Gas Reactors  

E-Print Network (OSTI)

Safety Issues for High Temperature Gas Reactors Andrew C. Kadak Professor of the Practice #12;Major regulation) 50mSv/a (Could be exceeded for rear recovery events) 50 mSv/a 20 mSv/a (average 5 y) (5 m performance of safety systems - natural circulation - heat conduction and convection. #12;Issues · Fuel

218

Thermal disconnect for high-temperature batteries  

DOE Patents (OSTI)

A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

Jungst, Rudolph George (Albuquerque, NM); Armijo, James Rudolph (Albuquerque, NM); Frear, Darrel Richard (Austin, TX)

2000-01-01T23:59:59.000Z

219

High temperature spectral gamma well logging  

Science Conference Proceedings (OSTI)

A high temperature spectral gamma tool has been designed and built for use in small-diameter geothermal exploration wells. Several engineering judgments are discussed regarding operating parameters, well model selection, and signal processing. An actual well log at elevated temperatures is given with spectral gamma reading showing repeatability.

Normann, R.A.; Henfling, J.A.

1997-01-01T23:59:59.000Z

220

High temperature ceramic/metal joint structure  

DOE Patents (OSTI)

A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

Boyd, Gary L. (Tempe, AZ)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature syngas cleanup" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Live Work with High Temperature Conductors  

Science Conference Proceedings (OSTI)

This report examines issues that may arise when live work is undertaken on conductors that operate at high temperatures (HT conductors) and provides the results from selected tests on the temperature levels reached by tools in contact with hot conductors. It also discusses possible concerns that may arise during de-energized work on lines that use HT conductors.

2009-12-15T23:59:59.000Z

222

High Temperature Materials Interim Data Qualification Report  

SciTech Connect

ABSTRACT Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim FY2010 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under NQA-1 guidelines, and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing, to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from two test series within the High Temperature Materials data stream have been entered into the NDMAS vault: 1. Tensile Tests for Sm (i.e., Allowable Stress) Confirmatory Testing – 1,403,994 records have been inserted into the NDMAS database. Capture testing is in process. 2. Creep-Fatigue Testing to Support Determination of Creep-Fatigue Interaction Diagram – 918,854 records have been processed and inserted into the NDMAS database. Capture testing is in process.

Nancy Lybeck

2010-08-01T23:59:59.000Z

223

Accelerating cleanup: Paths to closure  

SciTech Connect

This document was previously referred to as the Draft 2006 Plan. As part of the DOE`s national strategy, the Richland Operations Office`s Paths to Closure summarizes an integrated path forward for environmental cleanup at the Hanford Site. The Hanford Site underwent a concerted effort between 1994 and 1996 to accelerate the cleanup of the Site. These efforts are reflected in the current Site Baseline. This document describes the current Site Baseline and suggests strategies for further improvements in scope, schedule and cost. The Environmental Management program decided to change the name of the draft strategy and the document describing it in response to a series of stakeholder concerns, including the practicality of achieving widespread cleanup by 2006. Also, EM was concerned that calling the document a plan could be misconstrued to be a proposal by DOE or a decision-making document. The change in name, however, does not diminish the 2006 vision. To that end, Paths to Closure retains a focus on 2006, which serves as a point in time around which objectives and goals are established.

Edwards, C.

1998-06-30T23:59:59.000Z

224

Improved Martensitic Steel for High Temperature Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Martensitic Steel Improved Martensitic Steel for High Temperature Applications Opportunity Research is active on the patented technology, titled "Heat-Treated 9 Cr-1 Mo Steel for High Temperature Application." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Overview The operating efficiency of coal-fired power plants is directly related to combustion system temperature and pressure. Incorporation of ultra- supercritical (USC) steam conditions into new or existing power plants can achieve increased efficiency and reduce coal consumption, while reducing carbon dioxide emissions as well as other pollutants. Traditionally used materials do not possess the optimal characteristics for operation

225

High-temperature helium-loop facility  

Science Conference Proceedings (OSTI)

The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100/sup 0/F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system.

Tokarz, R.D.

1981-09-01T23:59:59.000Z

226

Manufacturing Barriers to High Temperature PEM Commercialization  

NLE Websites -- All DOE Office Websites (Extended Search)

9/2011 9/2011 1 BASF Fuel Cell, Inc. Manufacturing Barriers to high temperature PEM commercialization 39 Veronica Ave Somerset , NJ 08873 Tel : (732) 545-5100 9/9/2011 2 Background on BASF Fuel Cell  BASF Fuel Cell was established in 2007, formerly PEMEAS Fuel Cells (including E-TEK)  Product line is high temperature MEAs (Celtec ® P made from PBI-phosphoric acid)  Dedicated a new advanced pilot manufacturing facility in Somerset NJ May 2009. Ribbon-cutting hosted by Dr. Kreimeyer (BASF BoD, right) and attended by various US pubic officials including former NJ Governor Jon Corzine (left) 9/9/2011 3 Multi-layer product of membrane (polybenzimidazole and phosphoric acid), gas diffusion material and catalysts Unique characteristics:  High operating temperature

227

Geochemistry of Aluminum in High Temperature Brines  

DOE Green Energy (OSTI)

geothermal industry to predict the chemistry ofthe reservoirs; these calculations will be tested for reliability against our laboratory results and field observations. Moreover, based on the success of the experimental methods developed in this program, we intend to use our unique high temperature pH easurement capabilities to make kinetic and equilibrium studies of pH-dependent aluminosilicate transformation reactions and other pH-dependent heterogeneous reactions.

Benezeth, P.; Palmer, D.A.; Wesolowski, D.J.

1999-05-18T23:59:59.000Z

228

Establishment of Harrop, High-Temperature Viscometer  

Science Conference Proceedings (OSTI)

This report explains how the Harrop, High-Temperature Viscometer was installed, calibrated, and operated. This report includes assembly and alignment of the furnace, viscometer, and spindle, and explains the operation of the Brookfield Viscometer, the Harrop furnace, and the UDC furnace controller. Calibration data and the development of the spindle constant from NIST standard reference glasses is presented. A simple operational procedure is included.

Schumacher, R.F.

1999-11-05T23:59:59.000Z

229

Thermal fuse for high-temperature batteries  

SciTech Connect

A thermal fuse, preferably for a high-temperature battery, comprising leads and a body therebetween having a melting point between approximately 400.degree. C. and 500.degree. C. The body is preferably an alloy of Ag--Mg, Ag--Sb, Al--Ge, Au--In, Bi--Te, Cd--Sb, Cu--Mg, In--Sb, Mg--Pb, Pb--Pd, Sb--Zn, Sn--Te, or Mg--Al.

Jungst, Rudolph G. (Albuquerque, NM); Armijo, James R. (Albuquerque, NM); Frear, Darrel R. (Austin, TX)

2000-01-01T23:59:59.000Z

230

High temperature simulation of petroleum formation  

Science Conference Proceedings (OSTI)

Petroleum formation has been simulated in the laboratory with emphasis on the effects of temperature, mineral catalysis, and starting material structure on the yield and composition of the liquid and gaseous hydrocarbon products. In an attempt to prove the hypothesis that petroleum formation can be simulated using high temperatures, Green River Shale from Colorado, USA, was subjected to pyrolysis for 16 hours at temperatures ranging from 300 to 500/sup 0/C. The sequence of products formed over this temperature range was used as the basis for defining five different zones of maturation reaction: 1) a heterobond cracking zone; 2) a labile carbon bond cracking zone; 3) a free radical synthesis zone; 4) a wet gas formation zone; and 5) an aromatization zone. The role of some typical inorganic components of sedimentary rocks in the origin and maturation of petroleum has been investigated using this high temperature model. The importance of the structure of organic matter in petroelum formation has also been investigated using this high temperature model. Lignin and cellulose are poor sources of liquid hydrocarbons, but cellulose in the presence of carbonate gives a high yield of gaseous hydrocarbons. Protein pyrolysis gives a high oil yield with an alkane distribution similar to petroleum. The lipids produced the highest oil yield of the substances tested but the n-alkanes show an odd carbon length predominance unlike the distribution found in petroleum.

Evans, R.J.

1982-01-01T23:59:59.000Z

231

MODELING AND ANALYSIS OF CHEMILUMINESCENCE SENSING FOR SYNGAS, METHANE AND JET-A COMBUSTION  

E-Print Network (OSTI)

MODELING AND ANALYSIS OF CHEMILUMINESCENCE SENSING FOR SYNGAS, METHANE AND JET-A COMBUSTION of Technology August 2008 #12;MODELING AND ANALYSIS OF CHEMILUMINESCENCE SENSING FOR SYNGAS, METHANE AND JET

Seitzman, Jerry M.

232

Design of an electrochemical cell making syngas (CO+H-2) from...  

NLE Websites -- All DOE Office Websites (Extended Search)

Design of an electrochemical cell making syngas (CO+H-2) from C02 and H20 reduction at room temperature Title Design of an electrochemical cell making syngas (CO+H-2) from C02 and...

233

Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL's High Temperature ORNL's High Temperature Materials Laboratory Assists NASCAR Teams to someone by E-mail Share Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Facebook Tweet about Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Twitter Bookmark Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Google Bookmark Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Delicious Rank Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Digg Find More places to share Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on AddThis.com...

234

High-Dielectric Constant, High-Temperature Ceramic Capacitors for ...  

Science Conference Proceedings (OSTI)

Growth of Thick, On-Axis SiC Epitaxial Layers by High Temperature Halide CVD for High Voltage Power Devices · High-Dielectric Constant, High-Temperature ...

235

Getting reimbursed for UST cleanup  

Science Conference Proceedings (OSTI)

To accelerate the pace of underground storage tank (UST) cleanup, many states now have programs that reimburse UST owners for money spent on various phases of soil and groundwater remediation. Many other states are enacting these programs. At their best, these programs have provided an incentive for those who operate USTs of all sizes to report and clean up contamination problems. Many states were surprised at the numbers of UST owners who came forward. This was certainly the case in Florida. In 1987, Florida's Department of Environmental Regulation (DER), in order to obtain rapid disclosure and meet remediation of leaking USTs, developed its Early Detection Incentive (EDI) program, which is now becoming a model for other states. Two important provisions of the program are amnesty from prosecution for not having previously reported leaking tanks and nearly full funding from the state for tank removal and cleanup. Prior to EDI, less than 1,000 petroleum USTs had been reported. As of May 1992, the number had reached 9,444 - about five times more sites than had been anticipated. While EDI has removed the threat of prosecution by the state for non-disclosure of leaking tanks, it does not absolve the responsible parties from potential liabilities due to underground plumes of contamination migrating off-site onto other properties. If the responsible parties wan to take charge of their own cleanup projects, they must advance the money for each stage of the operation. The cost of assessment and remediation of these sites can amount to several hundred thousand dollars. Consequently, swift negotiation in receiving state agency approval for various remediation phases, as well as site closure, can significantly shorten the amount of time it takes to get reimbursement from the state. Therefore, there is considerable incentive for the responsible parties to get their sites cleaned up as quickly as possible.

Dunn, B. (Groundwater Technology, Inc., Tampa, FL (United States))

1993-04-01T23:59:59.000Z

236

HANFORD SITE CENTRAL PLATEAU CLEANUP COMPLETION STRATEGY  

SciTech Connect

Cleanup of the Hanford Site is a complex and challenging undertaking. The U.S. Department of Energy (DOE) has developed a comprehensive vision for completing Hanford's cleanup mission including transition to post-cleanup activities. This vision includes 3 principle components of cleanup: the {approx}200 square miles ofland adjacent to the Columbia River, known as the River Corridor; the 75 square miles of land in the center of the Hanford Site, where the majority of the reprocessing and waste management activities have occurred, known as the Central Plateau; and the stored reprocessing wastes in the Central Plateau, the Tank Wastes. Cleanup of the River Corridor is well underway and is progressing towards completion of most cleanup actions by 2015. Tank waste cleanup is progressing on a longer schedule due to the complexity of the mission, with construction of the largest nuclear construction project in the United States, the Waste Treatment Plant, over 50% complete. With the progress on the River Corridor and Tank Waste, it is time to place increased emphasis on moving forward with cleanup of the Central Plateau. Cleanup of the Hanford Site has been proceeding under a framework defmed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In early 2009, the DOE, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency signed an Agreement in Principle in which the parties recognized the need to develop a more comprehensive strategy for cleanup of the Central Plateau. DOE agreed to develop a Central Plateau Cleanup Completion Strategy as a starting point for discussions. This DOE Strategy was the basis for negotiations between the Parties, discussions with the State of Oregon, the Hanford Advisory Board, and other Stakeholder groups (including open public meetings), and consultation with the Tribal Nations. The change packages to incorporate the Central Plateau Cleanup Completion Strategy were signed by the Parties on October 26,2010, and are now in the process of being implemented.

BERGMAN TB

2011-01-14T23:59:59.000Z

237

Monitoring Environmental Cleanup at Brookhaven National Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Compensation, and Liability Act environmental cleanup activities at Brookhaven National Laboratory comply with the Record of Decision (ROD) for each project. (A ROD...

238

Peconic River Cleanup at Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

a study of potential health impacts and developed various cleanup strategies. When the Lab and the Department of Energy (DOE) released a proposed plan for comment, the plan...

239

Method for regeneration and activity improvement of syngas conversion catalyst  

DOE Patents (OSTI)

A method is disclosed for the treatment of single particle iron-containing syngas (synthes.s gas) conversion catalysts comprising iron, a crystalline acidic aluminosilicate zeolite having a silica to alumina ratio of at least 12, a pore size greater than about 5 Angstrom units and a constraint index of about 1-12 and a matrix. The catalyst does not contain promoters and the treatment is applicable to either the regeneration of said spent single particle iron-containing catalyst or for the initial activation of fresh catalyst. The treatment involves air oxidation, hydrogen reduction, followed by a second air oxidation and contact of the iron-containing single particle catalyst with syngas prior to its use for the catalytic conversion of said syngas. The single particle iron-containing catalysts are prepared from a water insoluble organic iron compound.

Lucki, Stanley J. (Runnemede, NJ); Brennan, James A. (Cherry Hill, NJ)

1980-01-01T23:59:59.000Z

240

Dense ceramic membranes for converting methane to syngas  

DOE Green Energy (OSTI)

Dense mixed-oxide ceramics capable of conducting both electrons and oxygen ions are promising materials for partial oxygenation of methane to syngas. We are particularly interested in an oxide based on the Sr-Fe-Co-O system. Dense ceramic membrane tubes have been fabricated by a plastic extrusion technique. The sintered tubes were then used to selectively transport oxygen from air through the membrane to make syngas without the use of external electrodes. The sintered tubes have operated for >1000 h, and methane conversion efficiencies of >98% have been observed. Mechanical properties, structural integrity of the tubes during reactor operation, results of methane conversion, selectivity of methane conversion products, oxygen permeation, and fabrication of multichannel configurations for large-scale production of syngas will be presented.

Balachandran, U.; Dusek, J.T.; Picciolo, J.J.; Ma, B.; Maiya, P.S.; Mieville, R.L. [Argonne National Lab., IL (United States); Kleefisch, M.S.; Udovich, C.A. [Amoco Exploration/Production, Naperville, IL (United States)

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature syngas cleanup" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ITM Syngas and ITM H2: Engineering Development of Ceramic Membrane Reactor Systems for  

E-Print Network (OSTI)

ITM Syngas and ITM H2: Engineering Development of Ceramic Membrane Reactor Systems for Converting (U.S. DOE) and other members of the ITM Syngas/ITM H2 Team, is developing Ion Transport Membrane (ITM-scale centralized hydrogen production facilities with CO2 capture. The major goals of the ITM Syngas and ITM H2

242

Bayesian methods for the quantification of uncertainties in syngas chemistry models  

E-Print Network (OSTI)

Bayesian methods for the quantification of uncertainties in syngas chemistry models Kalen Braman, Todd Oliver and Venkat Raman, The University of Texas, Austin, Texas, 78712 Syngas chemistry modeling is an integral step toward the development of safe and ef- ficient syngas combustors. Although substantial effort

Raman, Venkat

243

Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef*  

E-Print Network (OSTI)

1 Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef* and J. M applications (1, 2) . Synthesis gas or syngas (mixture of hydrogen and carbon monoxide) are used as a major. The conventional reformers allowing syngas production are based on steam reforming of hydrocarbons (3) following

Paris-Sud XI, Université de

244

Synthesis of Methanol and Dimethyl Ether from Syngas over Pd/ZnO/Al2O3 Catalysts  

SciTech Connect

A Pd/ZnO/Al2O3 catalyst was developed for the synthesis of methanol and dimethyl ether (DME) from syngas. Studied were temperatures of operation ranging from 250°C to 380°C. High temperatures (e.g. 380°C) are necessary when combining methanol and DME synthesis with a methanol to gasoline (MTG) process in a single reactor bed. A commercial Cu/ZnO/Al2O3 catalyst, utilized industrially for the synthesis of methanol at 220-280°C, suffers from a rapid deactivation when the reaction is conducted at high temperature (>320°C). On the contrary, a Pd/ZnO/Al2O3 catalyst was found to be highly stable for methanol and DME synthesis at 380°C. The Pd/ZnO/Al2O3 catalyst was thus further investigated for methanol and DME synthesis at P=34-69 bars, T= 250-380°C, GHSV= 5 000-18 000 h-1, and molar feeds H2/CO= 1, 2, and 3. Selectivity to DME increased with decreasing operating temperature, and increasing operating pressure. Increased GHSV’s and H2/CO syngas feed ratios also enhanced DME selectivity. Undesirable CH4 formation was observed, however, can be minimized through choice of process conditions and by catalyst design. By studying the effect of the Pd loading and the Pd:Zn molar ratio the formulation of the Pd/ZnO/Al2O3 catalyst was optimized. A catalyst with 5% Pd and a Pd:Zn molar ratio of 0.25:1 has been identified as the preferred catalyst. Results indicate that PdZn particles are more active than Pdº particles for the synthesis of methanol and less active for CH4 formation. A correlation between DME selectivity and the concentration of acid sites of the catalysts has been established. Hence, two types of sites are required for the direct conversion of syngas to DME: 1) PdZn particles are active for the synthesis of methanol from syngas, and 2) acid sites which are active for the conversion of methanol to DME. Additionally, CO2 formation was problematic as PdZn was found to be active for the water-gas-shift (WGS) reaction, under all the conditions evaluated.

Lebarbier, Vanessa MC; Dagle, Robert A.; Kovarik, Libor; Lizarazo Adarme, Jair A.; King, David L.; Palo, Daniel R.

2012-10-01T23:59:59.000Z

245

Live Working Tools for High Temperature Conductors  

Science Conference Proceedings (OSTI)

In long-duration (several days) tests, strain link sticks used for live work were removed from service and exposed to conductors operating at high temperature of about 250-260C. Only strain link sticks were tested to date. Results obtained do not indicate damage or deterioration of the tested sticks. The research is a joint effort between project 35.010 Live Working Research for Overhead Transmission Equipment, Techniques, Procedures and Protective Grounding and project 35.015 Advanced Conductors to inve...

2010-12-17T23:59:59.000Z

246

High-temperature directional drilling turbodrill  

DOE Green Energy (OSTI)

The development of a high-temperature turbodrill for directional drilling of geothermal wells in hard formations is summarized. The turbodrill may be used for straight-hole drilling but was especially designed for directional drilling. The turbodrill was tested on a dynamometer stand, evaluated in laboratory drilling into ambient temperature granite blocks, and used in the field to directionally drill a 12-1/4-in.-diam geothermal well in hot 200/sup 0/C (400/sup 0/F) granite at depths to 10,5000 ft.

Neudecker, J.W.; Rowley, J.C.

1982-02-01T23:59:59.000Z

247

New Waste Calciner High Temperature Operation  

SciTech Connect

A new Calciner flowsheet has been developed to process the sodium-bearing waste (SBW) in the INTEC Tank Farm. The new flowsheet increases the normal Calciner operating temperature from 500 C to 600 C. At the elevated temperature, sodium in the waste forms stable aluminates, instead of nitrates that melt at calcining temperatures. From March through May 2000, the new high-temperature flowsheet was tested in the New Waste Calcining Facility (NWCF) Calciner. Specific test criteria for various Calciner systems (feed, fuel, quench, off-gas, etc.) were established to evaluate the long-term operability of the high-temperature flowsheet. This report compares in detail the Calciner process data with the test criteria. The Calciner systems met or exceeded all test criteria. The new flowsheet is a visible, long-term method of calcining SBW. Implementation of the flowsheet will significantly increase the calcining rate of SBW and reduce the amount of calcine produced by reducing the amount of chemical additives to the Calciner. This will help meet the future waste processing milestones and regulatory needs such as emptying the Tank Farm.

Swenson, M.C.

2000-09-01T23:59:59.000Z

248

Zero Emissions Coal Syngas Oxygen Turbo Machinery  

SciTech Connect

Siemens Energy, Inc. (formerly Siemens Westinghouse Power Corporation) worked with Clean Energy Systems and Florida Turbine Technologies to demonstrate the commercial feasibility of advanced turbines for oxy-fuel based power systems that discharge negligible CO{sub 2} into the atmosphere. The approach builds upon ultra supercritical steam turbine and advanced gas turbine technology with the goal of attaining plant efficiencies above 50% in the 2015 timeframe. Conceptual designs were developed for baseline, near term, and long term oxy-fuel turbine cycles, representing commercial introductions of increasingly advanced thermal conditions and increasing exposure to steam-CO{sub 2} mixtures. An economic analysis and market demand study was performed by Science Applications International Corp. (SAIC), and indicated that long-term oxy-fuel turbine cycles start to look attractive in 2025 when the CO{sub 2} tax is assumed to reach $40/ ton, and by 2030 it has a clear advantage over both IGCC with sequestration and pulverized coal with sequestration. A separate risk analysis of the oxy-fuel combustor, HP turbine, re-heater, and IP turbine of the long-term cycle identified and categorized risks and proposed mitigation measures. In 2007 the program began to focus on a potential oxy-fuel turbine power generation demonstration project in the 2012 -13 time period while still maintaining a link to the requirements of the long-term oxy-syngas cycle. The SGT-900 turbine was identified as the best fit for modification into an intermediate pressure turbine (IPT) for this application. The base metals, bond coats, thermal barrier coatings (TBCs), and rotor materials used in the SGT-900 were tested for their ability to operate in the steam- CO{sub 2} environment of the oxy-fuel OFT-900. Test results indicated that these same materials would operate satisfactorily, and the plan, is to use SGT-900materials for the OFT-900. Follow-on programs for corrosion testing and evaluation of crack growth rates in oxy-fuel environments have been proposed to build on these results and provide quantifiable assessments of the effects of oxy-fuel environments on the service lives of turbine components.

Dennis Horazak

2010-12-31T23:59:59.000Z

249

Catalytic conversion of syngas into C2 oxygenates over Rh-based catalysts--Effect of carbon supports  

E-Print Network (OSTI)

Catalytic conversion of syngas into C2 oxygenates over Rh-based catalysts--Effect of carbon synthesis other than grain fermentation, e.g. from syngas, because syngas can be conveniently manufactured we first undertake a brief overview of the catalyst development for syngas conversion to C2

Bao, Xinhe

250

Collusion Through Insurance: Sharing the Costs of Oil Spill Cleanups  

E-Print Network (OSTI)

Insurance: Sharing the Costs of Oil Spill Cleanups." EddieInsurance: Sharing the Costs of Oil Spill Cleanups EddieINSURANCE: SHARING THE COSTS OF OIL SPILL CLEANUPS Eddie

Dekel, Eddie; Scothmer, Suzanne

1989-01-01T23:59:59.000Z

251

Accelerating Clean-up at Savannah River | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Clean-up at Savannah River Accelerating Clean-up at Savannah River Accelerating Clean-up at Savannah River More Documents & Publications Project NameDescription Slide...

252

Environmental Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 28, 2010 October 28, 2010 Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative WASHINGTON - The White House Council on Environmental Quality and the U.S. Department of Energy hosted a workshop with the Great Lakes Wind Collaborative in Chicago on October 26 - 27, 2010, focused on the siting of offshore wind power in the Great Lakes. The two day workshop brought together wind developers, Federal and state regulators, environmental advocates, and other regional stakeholders to discuss methods for ensuring greater clarity, certainty and coordination of Federal and state decision-making for offshore wind development in the Great Lakes. October 6, 2010 Agreement on New Commitments for Hanford Tank Waste Cleanup Sent to Federal

253

Environmental Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 28, 2009 July 28, 2009 800 to 1000 New Jobs Coming to Piketon Department of Energy to Accelerate Cleanup Work While USEC Further Develops ACP Technology April 22, 2009 Op-Ed by Secretary of Energy Steven Chu and Secretary of Labor Hilda Solis: Building the American Clean Energy Economy To commemorate Earth Day, the op-ed below on green jobs and energy independence by Secretaries Steven Chu and Hilda Solis ran in the following papers yesterday and today: Austin American-Statesman Buffalo News Denver Post Montgomery Advertiser Omaha World Herald Pittsburgh Post-Gazette April 22, 2009 US Department of Energy Promotes Special Earth Week Feature on Energy.gov Simple Steps Will Help Consumers Save Money -- and the Planet March 27, 2009 U.S. and Portugal Sign Agreement for Climate Research Collaboration

254

System issues and tradeoffs associated with syngas production and combustion  

DOE Green Energy (OSTI)

The purpose of this article is to provide an overview of the basic technology of coal gasification for the production of syngas and the utilization of that syngas in power generation. The common gasifier types, fixed/moving bed, fluidized bed, entrained flow, and transport, are described, and accompanying typical product syngas compositions are shown for different coal ranks. Substantial variation in product gas composition is observed with changes in gasifier and coal feed type. Fuel contaminants such as sulfur, nitrogen, ash, as well as heavy metals such as mercury, arsenic, and selenium, can be removed to protect the environment and downstream processes. A variety of methods for syngas utilization for power production are discussed, including both present (gas turbine and internal combustion engines) and future technologies, including oxy-fuel, chemical looping, fuel cells, and hybrids. Goals to improve system efficiencies, further reduce NOx emissions, and provide options for CO2 sequestration require advancements in many aspects of IGCC plants, including the combustion system. Areas for improvements in combustion technology that could minimize these tradeoffs between cost, complexity, and performance are discussed.

Casleton, K.H.; Richards, G.A.; Breault, R.W.

2008-06-01T23:59:59.000Z

255

Study on Catalytic Experiments of Methanol Synthesis from Cornstalk Syngas  

Science Conference Proceedings (OSTI)

Biomass energy is a renewable and potential resource. In order to research the conversion of cornstalk biomass (the agricultural residues) into the fuel methanol and the effective utilization of biomass energy, the low-heat-value cornstalk gas was produced ... Keywords: Cornstalk, Syngas, Catalyst, Methanol, Synthesis

Zhu Lingfeng; Gao Ruqin; Liu Lili; Wang Yan; Wang Yangyang

2011-01-01T23:59:59.000Z

256

NOVEL SLURRY PHASE DIESEL CATALYSTS FOR COAL-DERIVED SYNGAS  

DOE Green Energy (OSTI)

This report describes research conducted to support the DOE program in novel slurry phase catalysts for converting coal-derived synthesis gas to diesel fuels. The primary objective of this research program is to develop attrition resistant catalysts that exhibit high activities for conversion of coal-derived syngas.

Dr. Dragomir B. Bukur; Dr. Ketil Hanssen; Alec Klinghoffer; Dr. Lech Nowicki; Patricia O'Dowd; Dr. Hien Pham; Jian Xu

2001-01-07T23:59:59.000Z

257

Storing syngas lowers the carbon price for profitable coal gasification  

SciTech Connect

Integrated gasification combined cycle (IGCC) electric power generation systems with carbon capture and sequestration have desirable environmental qualities but are not profitable when the carbon dioxide price is less than approximately $50 per metric ton. We examine whether an IGCC facility that operates its gasifier continuously but stores the syngas and produces electricity only when daily prices are high may be profitable at significantly lower CO{sub 2} prices. Using a probabilistic analysis, we have calculated the plant-level return on investment (ROI) and the value of syngas storage for IGCC facilities located in the U.S. Midwest using a range of storage configurations. Adding a second turbine to use the stored syngas to generate electricity at peak hours and implementing 12 h of above-ground high-pressure syngas storage significantly increases the ROI and net present value. Storage lowers the carbon price at which IGCC enters the U.S. generation mix by approximately 25%. 36 refs., 7 figs., 1 tab.

Adam Newcomer; Jay Apt [Carnegie Mellon University, Pittsburgh, PA (USA). Carnegie Mellon Electricity Industry Center

2007-12-15T23:59:59.000Z

258

Direct synthesis of dimethyl ether (DME) from syngas  

Science Conference Proceedings (OSTI)

We have developed appropriate and excellent catalysts for direct DME synthesis. The catalysts, Cu-Zn/Al2O3 catalysts prepared by the sol-gel method, produce DME with high DME activity and high DME selectivity under milder reaction ... Keywords: DME, alumina, catalyst, clean fuel, copper, dimethyl ether, direct synthesis, hydrogen, sol-gel method, syngas

Kaoru Takeishi; Yoshimi Akaike

2010-02-01T23:59:59.000Z

259

The Equilibrium Compositions of Methanol Synthesis System by Cornstalk Syngas  

Science Conference Proceedings (OSTI)

Methanol can be used as a promising alternative for conventional gasoline and Diesel fuel. It is necessary to decompose biomass such as cornstalks in order to produce methanol which is a raw material from agricultural residues. A promising route for processing cornstalks is firstly to gasify cornstalks with thermo?chemical method to prepare the syngas

Ling?feng Zhu; Qing?ling Zhao; Yang?yang Wang; Jing Chen; Le Zhang; Run?tao Zhang; Li?li Liu; Zhao?yue Zhang

2010-01-01T23:59:59.000Z

260

HANFORD SITE RIVER CORRIDOR CLEANUP  

SciTech Connect

In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km{sup 2} Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal.

BAZZELL, K.D.

2006-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature syngas cleanup" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Novel polymer membrane process for pre-combustion CO{sub 2} capture from coal-fired syngas  

Science Conference Proceedings (OSTI)

This final report describes work conducted for the Department of Energy (DOE NETL) on development of a novel polymer membrane process for pre-combustion CO{sub 2} capture from coalfired syngas (award number DE-FE0001124). The work was conducted by Membrane Technology and Research, Inc. (MTR) from September 15, 2009, through December 14, 2011. Tetramer Technologies, LLC (Tetramer) was our subcontract partner on this project. The National Carbon Capture Center (NCCC) at Wilsonville, AL, provided access to syngas gasifier test facilities. The main objective of this project was to develop a cost-effective membrane process that could be used in the relatively near-term to capture CO{sub 2} from shifted syngas generated by a coal-fired Integrated Gasification Combined Cycle (IGCC) power plant. In this project, novel polymeric membranes (designated as Proteus™ membranes) with separation properties superior to conventional polymeric membranes were developed. Hydrogen permeance of up to 800 gpu and H{sub 2}/CO{sub 2} selectivity of >12 was achieved using a simulated syngas mixture at 150°C and 50 psig, which exceeds the original project targets of 200 gpu for hydrogen permeance and 10 for H{sub 2}/CO{sub 2} selectivity. Lab-scale Proteus membrane modules (with a membrane area of 0.13 m{sup 2}) were also developed using scaled-up Proteus membranes and high temperature stable module components identified during this project. A mixed-gas hydrogen permeance of about 160 gpu and H{sub 2}/CO{sub 2} selectivity of >12 was achieved using a simulated syngas mixture at 150°C and 100 psig. We believe that a significant improvement in the membrane and module performance is likely with additional development work. Both Proteus membranes and lab-scale Proteus membrane modules were further evaluated using coal-derived syngas streams at the National Carbon Capture Center (NCCC). The results indicate that all module components, including the Proteus membrane, were stable under the field conditions (feed pressures: 150-175 psig and feed temperatures: 120-135°C) for over 600 hours. The field performance of both Proteus membrane stamps and Proteus membrane modules is consistent with the results obtained in the lab, suggesting that the presence of sulfur-containing compounds (up to 780 ppm hydrogen sulfide), saturated water vapor, carbon monoxide and heavy hydrocarbons in the syngas feed stream has no adverse effect on the Proteus membrane or module performance. We also performed an economic analysis for a number of membrane process designs developed in this project (using hydrogen-selective membranes, alone or in the combination with CO{sub 2}- selective membranes). The current field performance for Proteus membranes was used in the design analysis. The study showed the current best design has the potential to reduce the increase in Levelized Cost of Electricity (LCOE) caused by 90% CO{sub 2} capture to about 15% if co-sequestration of H{sub 2}S is viable. This value is still higher than the DOE target for increase in LCOE (10%); however, compared to the base-case Selexol process that gives a 30% increase in LCOE at 90% CO2 capture, the membrane-based process appears promising. We believe future improvements in membrane performance have the potential to reach the DOE target.

Merkel, Tim [MTR Inc., Menlo Park, CA (United States)

2011-09-14T23:59:59.000Z

262

Superconductivity Program Overview High-Temperature Superconductivity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SuperconducTiviTy program haS Three FocuS areaS: SuperconducTiviTy program haS Three FocuS areaS: SuperconducTiviTy applicaTionS Developing HTS-based electric power equipment such as transmission and distribution cables and fault current limiters Second-generaTion Wire developmenT Developing high-performance, low-cost, second- generation HTS wire at long lengths STraTegic reSearch Supporting fundamental research activities to better understand relationships between the microstructure of HTS materials and their ability to carry large electric currents over long lengths Superconductivity Program Overview High-Temperature Superconductivity for Electric Systems Office of Electricity Delivery and Energy Reliability www.oe.energy.gov Office of Electricity Delivery and Energy Reliability, OE-1 U.S. Department of Energy - 1000 Independence Avenue, SW - Washington, DC 20585

263

High Temperature Battery for Drilling Applications  

SciTech Connect

In this project rechargeable cells based on the high temperature electrochemical system Na/beta''-alumina/S(IV) in AlCl3/NaCl were developed for application as an autonomous power source in oil/gas deep drilling wells. The cells operate in the temperature range from 150 C to 250 C. A prototype DD size cell was designed and built based on the results of finite element analysis and vibration testing. The cell consisted of stainless steel case serving as anode compartment with cathode compartment installed in it and a seal closing the cell. Critical element in cell design and fabrication was hermetically sealing the cell. The seal had to be leak tight, thermally and vibration stable and compatible with electrode materials. Cathode compartment was built of beta''-alumina tube which served as an electrolyte, separator and cathode compartment.

Josip Caja

2009-12-31T23:59:59.000Z

264

Compliant high temperature seals for dissimilar materials  

DOE Patents (OSTI)

A high temperature, gas-tight seal is formed by utilizing one or more compliant metallic toroidal ring sealing elements, where the applied pressure serves to activate the seal, thus improving the quality of the seal. The compliant nature of the sealing element compensates for differences in thermal expansion between the materials to be sealed, and is particularly useful in sealing a metallic member and a ceramic tube art elevated temperatures. The performance of the seal may be improved by coating the sealing element with a soft or flowable coating such as silver or gold and/or by backing the sealing element with a bed of fine powder. The material of the sealing element is chosen such that the element responds to stress elastically, even at elevated temperatures, permitting the seal to operate through multiple thermal cycles.

Rynders, Steven Walton (Fogelsville, PA); Minford, Eric (Laurys Station, PA); Tressler, Richard Ernest (Boalsburg, PA); Taylor, Dale M. (Salt Lake City, UT)

2001-01-01T23:59:59.000Z

265

High Temperature Materials Laboratory (HTML) - PSD Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

filler A National Resource for Collaborative Materials Research The High Temperature Materials Laboratory (HTML) User Program is on hiatus due to federal budget reductions. However, research projects at the HTML still may be conducted on a cost-recovery basis through the Work for Others (WFO) Program or under a Cooperative R&D Agreement (CRADA). Dr. Edgar Lara-Curzio, HTML Director Tel: 865.574.1749 Fax: 865.574.4913 laracurzioe@ornl.gov Christine Goudy, Administrative Specialist Tel: 865.574.8295 Fax: 865.574.4913 goudyc@ornl.gov Oak Ridge National Laboratory [MST Home] [ORNL Home] [Site Index] [Search][Disclaimer] [Webmaster] Oak Ridge National Laboratory is a national multi-program research and development facility managed by UT-Battelle, LLC for the U.S. Department of Energy

266

Multilayer ultra-high-temperature ceramic coatings  

SciTech Connect

A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

Loehman, Ronald E. (Albuquerque, NM); Corral, Erica L. (Tucson, AZ)

2012-03-20T23:59:59.000Z

267

Precision control of high temperature furnaces  

DOE Patents (OSTI)

It is an object of the present invention to provide precision control of high temperature furnaces. It is another object of the present invention to combine the power of two power supplies of greatly differing output capacities in a single furnace. This invention combines two power supplies to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. Further, this invention comprises a means for high speed measurement of temperature of the process by the method of measuring the amount of current flow in a deliberately induced charged particle current.

Pollock, G.G.

1994-12-31T23:59:59.000Z

268

Turbine vane with high temperature capable skins  

Science Conference Proceedings (OSTI)

A turbine vane assembly includes an airfoil extending between an inner shroud and an outer shroud. The airfoil can include a substructure having an outer peripheral surface. At least a portion of the outer peripheral surface is covered by an external skin. The external skin can be made of a high temperature capable material, such as oxide dispersion strengthened alloys, intermetallic alloys, ceramic matrix composites or refractory alloys. The external skin can be formed, and the airfoil can be subsequently bi-cast around or onto the skin. The skin and the substructure can be attached by a plurality of attachment members extending between the skin and the substructure. The skin can be spaced from the outer peripheral surface of the substructure such that a cavity is formed therebetween. Coolant can be supplied to the cavity. Skins can also be applied to the gas path faces of the inner and outer shrouds.

Morrison, Jay A. (Oviedo, FL)

2012-07-10T23:59:59.000Z

269

Pressure sensor for high-temperature liquids  

DOE Patents (OSTI)

A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacment of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely.

Forster, George A. (Westmont, IL)

1978-01-01T23:59:59.000Z

270

High-temperature superconducting current leads  

Science Conference Proceedings (OSTI)

Use of high-temperature superconductors (HTSs) for current leads to deliver power to devices at liquid helium temperature can reduce refrigeration requirements to values significantly below those achievable with conventional leads. HTS leads are now near commercial realization. Argonne National Laboratory (ANL) has developed a sinter-forge process to fabricate current leads from bismuth-based superconductors. The current-carrying capacity of these leads is five times better than that of HTS leads made by a conventional fabrication process. ANL along with Superconductivity, Inc., has developed a 1500 ampere current lead for an existing superconducting magnetic energy storage (SMES) device. With Babcock & Wilcox Company, Argonne is creating 16-kiloampere leads for use in a 0.5 MWh SMES. In a third project Argonne performed characterization testing of a existing, proprietary conduction-cooled lead being developed by Zer Res Corp.

Niemann, R.C.

1995-03-01T23:59:59.000Z

271

DOE Awards Small Business Contract to Support Cleanup of New...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Support Cleanup of New York West Valley Demonstration Project DOE Awards Small Business Contract to Support Cleanup of New York West Valley Demonstration Project March 1, 2013 -...

272

Recovery Act Workers Complete Environmental Cleanup of Coal Ash...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Complete Environmental Cleanup of Coal Ash Basin Recovery Act Workers Complete Environmental Cleanup of Coal Ash Basin The Savannah River Site (SRS) recently cleaned up a 17-acre...

273

Site Transition Process upon Completion of the Cleanup Mission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Process upon Completion of the Cleanup Mission: Fact Sheet (September 2013) Site Transition Process upon Completion of the Cleanup Mission: Fact Sheet (September 2013) DOE's...

274

Recovery Act Workers Complete Environmental Cleanup of Coal Ash...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workers Complete Environmental Cleanup of Coal Ash Basin Recovery Act Workers Complete Environmental Cleanup of Coal Ash Basin The Savannah River Site (SRS) recently cleaned up a...

275

Workers at Hanford Site Achieve Recovery Act Legacy Cleanup Goals...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at Hanford Site Achieve Recovery Act Legacy Cleanup Goals Ahead of Schedule Workers at Hanford Site Achieve Recovery Act Legacy Cleanup Goals Ahead of Schedule The Hanford Site...

276

High Temperature Integrated Thermoelectric Ststem and Materials  

DOE Green Energy (OSTI)

The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits. Two composition systems, specifically 1.0 SrO - 0.8 x 1.03 TiO2 - 0.2 x 1.03 NbO2.5 and 0.97 TiO2 - 0.03 NbO2.5, have been identified as good base line compositions for n-type thermoelectric compositions in future module design. Tests of these materials at an outside company were promising using that company's processing and material expertise. There was no unique p-type thermoelectric compositions identified in phase I work other than several current cobaltite materials. Ca3Co4O9 will be the primary p-type material for the future module design until alternative materials are developed. BaTiO3 and rare earth titanate based dielectric compositions show both p-type and n-type behavior even though their electrical conductivities were very low. Further research and development of these materials for thermoelectric applications is planned in the future. A preliminary modeling and optimization of a thermoelectric generator (TEG) that uses the n-type 1.0 SrO - 1.03 x 0.8 TiO2 - 1.03 x 0.2 NbO2.5 was performed. Future work will combine development of ceramic powders and manufacturing expertise at TAM, development of SPS at TAM or a partner organization, and thermoelectric material/module testing, modeling, optimization, production at several partner organizations.

Mike S. H. Chu

2011-06-06T23:59:59.000Z

277

High Temperature Interactions of Antimony with Nickel  

SciTech Connect

In this chapter, the surface and bulk interactions of antimony with the Ni-based anodes in solid oxide fuel cells (SOFC) will be discussed. High fuel flexibility is a significant advantage of SOFCs, allowing the direct use of fossil and bio fuels without a hydrogen separation unit. Synthesis gas derived from coal and biomass consists of a mixture of hydrogen, carbon monoxide, carbon dioxide, and steam, but finite amounts of tars and trace impurities such as S, Se, P, As, Sb, Cd, Pb, Cl, etc, are also always present. While synthesis gas is commonly treated with a series of chemical processes and scrubbers to remove the impurities, complete purification is not economical. Antimony is widely distributed in coals. During coal gasification antimony is volatilized, such that contact with the SOFC anodes and other SOFC parts, e.g., interconnect, current collecting wires, fuel gas supplying tubing, is most likely. This chapter addresses the following topics: high temperature Ni - Sb interactions; alteration phase, Ni3Sb, Ni5Sb2, NiSb, formation; thermochemical modeling; impact of Sb on the electrocatalytic activity of Ni toward the fuel oxidation and the presence of other impurities (sulfur, in particular); converted anode structural instability during long-term SOFC operation; comparison with nickel heterogeneous catalysts.

Marina, Olga A.; Pederson, Larry R.

2012-07-01T23:59:59.000Z

278

High Temperature Borehole Televiewer software user manual  

DOE Green Energy (OSTI)

The High Temperature Borehole Televiewer is a downhole instrument which provides acoustic pictures of the borehole walls that are suitable for casing inspection and fracture detection in geothermal wells. The Geothermal Drilling Organization has funded the development of a commercial tool survivable to temperatures of 275{degree}C and pressures of 5000 psi. A real-time display on an IBM-compatible PC was included as part of the development effort. This report contains a User Manual which describes the operation of this software. The software is designed in a menu format allowing the user to change many of the parameters which control both the acquisition and the display of the Televiewer data. An internal data acquisition card digitizes the waveform from the tool at a rate of 100,000 samples per second. The data from the tool, both the range or arrival time and the amplitude of the return signal, are displayed in color on the CRT screen of the computer during the logging operation. This data may be stored on the hard disk for later display and analysis. The software incorporates many features which aid in the setup of the tool for proper operation. These features include displaying and storing the captured waveform data to check the voltage and time windows selected by the user. 17 refs., 28 figs., 15 tabs.

Duda, L.E.

1989-11-01T23:59:59.000Z

279

Urania vapor composition at very high temperatures  

SciTech Connect

Due to the chemically unstable nature of uranium dioxide its vapor composition at very high temperatures is, presently, not sufficiently studied though more experimental knowledge is needed for risk assessment of nuclear reactors. We used laser vaporization coupled to mass spectrometry of the produced vapor to study urania vapor composition at temperatures in the vicinity of its melting point and higher. The very good agreement between measured melting and freezing temperatures and between partial pressures measured on the temperature increase and decrease indicated that the change in stoichiometry during laser heating was very limited. The evolutions with temperature (in the range 2800-3400 K) of the partial pressures of the main vapor species (UO{sub 2}, UO{sub 3}, and UO{sub 2}{sup +}) were compared with theoretically predicted evolutions for equilibrium noncongruent gas-liquid and gas-solid phase coexistences and showed very good agreement. The measured main relative partial pressure ratios around 3300 K all agree with calculated values for total equilibrium between condensed and vapor phases. It is the first time the three main partial pressure ratios above stoichiometric liquid urania have been measured at the same temperature under conditions close to equilibrium noncongruent gas-liquid phase coexistence.

Pflieger, Rachel [Institute for Transuranium Elements, Joint Research Centre, European Commission, P.O. Box 2340, 76125 Karlsruhe (Germany); Marcoule Institute for Separation Chemistry (ICSM), UMR 5257, CEA-CNRS-UMII-ENSCM, Bagnols sur Ceze Cedex (France); Colle, Jean-Yves [Institute for Transuranium Elements, Joint Research Centre, European Commission, P.O. Box 2340, 76125 Karlsruhe (Germany); Iosilevskiy, Igor [Joint Institute for High Temperature, Russian Academy of Science, 125412 Moscow (Russian Federation); Moscow Institute of Physics and Technology, State University, 141700 Moscow (Russian Federation); Extreme Matter Institute (EMMI), 64291 Darmstadt (Germany); Sheindlin, Michael [Institute for Transuranium Elements, Joint Research Centre, European Commission, P.O. Box 2340, 76125 Karlsruhe (Germany); Joint Institute for High Temperature, Russian Academy of Science, 125412 Moscow (Russian Federation)

2011-02-01T23:59:59.000Z

280

Use of High Temperature Electrochemical Cells for Co-Generation of Chemicals and Electricity  

DOE Green Energy (OSTI)

In this project, two key issues were addressed to show the feasibility of electrochemical partial oxidation (EPOx) in a SOFC. First, it was demonstrated that SOFCs can reliably operate directly with natural gas. These results are relevant to both direct-natural-gas SOFCs, where the aim is solely electrical power generation, and to EPOx. Second, it must be shown that SOFCs can work effectively as partial oxidation reactors, i.e, that they can provide high conversion efficiency of natural gas to syngas. The results of this study in both these areas look extremely promising. The main results are summarized briefly: (1) Stability and coke-free direct-methane SOFC operation is promoted by the addition of a thin porous inert barrier layer to the anode and the addition of small amounts of CO{sub 2} or air to the fuel stream; (2) Modeling results readily explained these improvements by a change in the gas composition at the Ni-YSZ anode to a non-coking condition; (3) The operation range for coke-free operation is greatly increased by using a cell geometry with a thin Ni-YSZ anode active layer on an inert porous ceramic support, i.e., (Sr,La)TiO{sub 3} or partially-stabilized zirconia (in segmented-in-series arrays); (4) Ethane and propane components in natural gas greatly increase coking both on the SOFC anode and on gas-feed tubes, but this can be mitigated by preferentially oxidizing these components prior to introduction into the fuel cell, the addition of a small amount of air to the fuel, and/or the use of ceramic-supported SOFC; (5) While a minimum SOFC current density was generally required to prevent coking, current interruptions of up to 8 minutes yielded only slight anode coking that caused no permanent damage and was completely reversible when the cell current was resumed; (6) Stable direct-methane SOFC operation was demonstrated under EPOx conditions in a 350 h test; (7) EPOx operation was demonstrated at 750 C that yielded 0.9 W/cm{sup 2} and a syngas production rate of 30 sccm/cm{sup 2}, and the reaction product composition was close to the equilibrium prediction during the early stages of cell testing; (8) The methane conversion to syngas continuously decreased during the first 100 h of cell testing, even though the cell electrical characteristics did not change, due to a steady decrease in the reforming activity of Ni-YSZ anodes; (9) The stability of methane conversion was substantially improved via the addition of a more stable reforming catalyst to the SOFC anode; (10) Modeling results indicated that a SOFC with anode barrier provides similar non-coking performance as an internal reforming SOFC, and provides a simpler approach with no need for a high-temperature exhaust-gas recycle pump; (11) Since there is little or no heat produced in the EPOx reaction, overall efficiency of the SOFC operated in this mode can, in theory, approach 100%; and (12) The combined value of the electricity and syngas produced allows the EPOx generator to be economically viable at a >2x higher cost/kW than a conventional SOFC.

Scott Barnett

2007-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature syngas cleanup" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

9 High Temperature 9 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on AddThis.com...

282

STATEMENT OF CONSIDERATIONS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a single module for hot gas cleanup and production of pure hydrogen from coal-derived syngas. Development of high-temperature membrane materials is at the core of the design. The...

283

Effect of Environment and Microstructure on the High Temperature ...  

Science Conference Proceedings (OSTI)

EFFECT OF ENVIRONMENT AND MICROSTRUCTURE ON THE HIGH. TEMPERATURE BEHAVIOR OF ALLOY 718. E. Andrieu",. R. Cozar** and A. Pineau".

284

High Temperature Fatigue Life of Coated and Uncoated Valve ...  

Science Conference Proceedings (OSTI)

Symposium, Properties, Processing, and Performance of Steels and Ni-Based Alloys for Advanced Steam Conditions. Presentation Title, High Temperature ...

285

Improved Growth of High-Temperature Superconductors with ...  

Visual Patent Search; Success Stories; News; Events; Electricity Transmission Improved Growth of High-Temperature Superconductors with HF Pressure ...

286

WEB RESOURCE: High Temperature Materials 21 Project (Phase 2)  

Science Conference Proceedings (OSTI)

Feb 10, 2007... thermal efficiency of power generation systems and advanced aeroengines. ... SOURCE: Harada, H. "High Temperature Materials 21 Project ...

287

A Possible Pressure-Induced High-Temperature-Superconducting  

Science Conference Proceedings (OSTI)

... Materials Forensics, Three-dimensional Modeling and Fractal Characterization · Vortex Physics in Oxide and Pnictide High Temperature Superconductors.

288

Hydrogen Production from Nuclear Energy via High Temperature Electrolysis  

DOE Green Energy (OSTI)

This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production.

James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

2006-04-01T23:59:59.000Z

289

Lab completes record year for environmental cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Record year for environmental cleanup Record year for environmental cleanup Lab completes record year for environmental cleanup Personnel conducted more field investigations and cleanup campaigns than ever and completed a record number of Lab shipments to WIPP. December 16, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

290

Environmental Cleanup Reports | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Cleanup Reports Environmental Cleanup Reports Environmental Cleanup Reports September 8, 2010 Audit Report: OAS-L-10-10 The Audit of Precious Metals at NNSA Sites August 12, 2010 Audit Letter Report: OAS-RA-L-10-05 Decommissioning and Demolition Activities at Office of Science Sites May 25, 2010 Audit Report: OAS-RA-10-10 Waste Processing and Recovery Act Acceleration Efforts for Contact-Handled Transuranic Waste at the Hanford Site May 3, 2010 Audit Report: OAS-L-10-04 The Interim Treatment of Salt Waste at the Savannah River Site April 23, 2010 Audit Letter Report: OAS-RA-L-10-03 Audit of Moab Mill Tailings Cleanup Project April 9, 2010 Audit Report: OAS-RA-10-07 Management Alert on Environmental Management's Select Strategy for Disposition of Savannah River Site Depleted Uranium Oxides

291

Microsoft Word - California_cleanup.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Completes California Sites Cleanup CARLSBAD, N.M., June 14, 2010 - The U.S. Department of Energy's Carlsbad Field Office (CBFO) has successfully completed its campaign to clean up...

292

Lab completes first Recovery Act cleanup project  

NLE Websites -- All DOE Office Websites (Extended Search)

facility began in May and proceeded quickly. As part of the cleanup, a nearly new backup diesel generator was removed from the building and later donated to a nonprofit hospital...

293

2013 Congressional Nuclear Cleanup Caucus Briefings  

Energy.gov (U.S. Department of Energy (DOE))

The Congressional Nuclear Cleanup Caucus serves as a way to brief members of Congress and their staff on EM headquarters and site activities, including budget, safety and project progress.

294

Survey of processes for high temperature-high pressure gas purification. [52 references  

SciTech Connect

In order to ensure the optimum operating efficiency of a combined-cycle electric power generating system, it is necessary to provide gas treatment processes capable of operating at high temperatures (> 1000/sup 0/F) and high pressures (> 10 atm (absolute)). These systems will be required to condition the inlet stream to the gas turbine to suitable levels of gas purity (removal of particulate matter, sulfur, nitrogen, and alkali metal compounds) to be compatible with both environmental and machine constraints. A survey of the available and developmental processes for the removal of these various contaminant materials has been conducted. Based on the data obtained from a variety of sources, an analysis has been performed to evaluate the performance of a number of potential cleanup processes in view of the overall system needs. The results indicate that commercially available, reliable, and economically competitive hot-gas cleanup systems (for the removal of H/sub 2/S, particulate matter, alkali, and nitrogen compounds) capable of conditioning raw product gas to the levels required for turbine use will not be available for some time.

Meyer, J.P.; Edwards, M.S.

1978-11-01T23:59:59.000Z

295

HARVESTING EMSP RESEARCH RESULTS FOR WASTE CLEANUP  

Science Conference Proceedings (OSTI)

The extent of environmental contamination created by the nuclear weapons legacy combined with expensive, ineffective waste cleanup strategies at many U.S. Department of Energy (DOE) sites prompted Congress to pass the FY96 Energy and Water Development Appropriations Act, which directed the DOE to: ''provide sufficient attention and resources to longer-term basic science research, which needs to be done to ultimately reduce cleanup costs'', ''develop a program that takes advantage of laboratory and university expertise, and'' ''seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective.'' In response, the DOE initiated the Environmental Management Science Program (EMSP)-a targeted, long-term research program intended to produce solutions to DOE's most pressing environmental problems. EMSP funds basic research to lower cleanup cost and reduce risk to workers, the public, and the environment; direct the nation's scientific infrastructure towards cleanup of contaminated waste sites; and bridge the gap between fundamental research and technology development activities. EMSP research projects are competitively awarded based on the project's scientific, merit coupled with relevance to addressing DOE site needs. This paper describes selected EMSP research projects with long, mid, and short-term deployment potential and discusses the impacts, focus, and results of the research. Results of EMSP research are intended to accelerate cleanup schedules, reduce cost or risk for current baselines, provide alternatives for contingency planning, or provide solutions to problems where no solutions exist.

Guillen, Donna Post; Nielson, R. Bruce; Phillips, Ann Marie; Lebow, Scott

2003-02-27T23:59:59.000Z

296

Avestar® - Syngas-Fired Combined Cycle Dynamic Simulator  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas-Fired Combined Cycle Dynamic Simulator Syngas-Fired Combined Cycle Dynamic Simulator The AVESTAR® center offers courses using the Combined Cycle Simulator, focusing on the power generation process after gasification. This simulator is well-suited for concentrated training on operation and control of the gas and steam turbines; condensate, feed water, and circulating water systems; heat recovery steam generator; and selective catalytic reduction (SCR) unit. Combined cycle simulator startup operations include bringing up the gas turbine to rated speed on natural gas and then switching over to the firing of synthesis gas. Key capabilities of the Combined Cycle Simulator include: Combined Cycle Simulator Operator training station HMI display for overview of Gas Turbine - Train A Normal base load operation

297

Atmospheric Pressure Low Current Plasma for Syngas Production from Alcohol  

E-Print Network (OSTI)

Abstract – Atmospheric pressure low current arc discharge between graphite electrodes with conical geometry in liquid ethanol/water mixture was investigated. Syngas production was demonstrated over large experimental conditions. In this paper we focus on discharge aspects. It is shown from pictures that the behavior of low current arc discharge with consumable electrodes represents non-stationary plasma. The energetic properties of plasmas can be used to carry out many applications, particularly in discharge based systems. Recently, research interest focuses on the Non Thermal Plasma (NTP) treatment of hydrocarbons, alcohol, or biomass aimed to improve the yield of synthetic gas (syngas: H2+CO) production at low cost [1, 4]. Experiments were performed on a plasma reactor consisting of two graphite electrodes with conical shape

Ahmed Khacef; Khadija Arabi; Olivier Aubry; Jean Marie Cormier

2012-01-01T23:59:59.000Z

298

A Review of Materials for Gas Turbines Firing Syngas Fuels  

SciTech Connect

Following the extensive development work carried out in the 1990's, gas turbine combined-cycle (GTCC) systems burning natural gas represent a reliable and efficient power generation technology widely used in many parts of the world. A critical factor was that, in order to operate at the high turbine entry temperatures required for high efficiency operation, aero-engine technology, i.e., single-crystal blades, thermal barrier coatings, and sophisticated cooling techniques had to be rapidly scaled up and introduced into these large gas turbines. The problems with reliability that resulted have been largely overcome, so that the high-efficiency GTCC power generation system is now a mature technology, capable of achieving high levels of availability. The high price of natural gas and concern about emission of greenhouse gases has focused attention on the desirability of replacing natural gas with gas derived from coal (syngas) in these gas turbine systems, since typical systems analyses indicate that IGCC plants have some potential to fulfil the requirement for a zero-emissions power generation system. In this review, the current status of materials for the critical hot gas path parts in large gas turbines is briefly considered in the context of the need to burn syngas. A critical factor is that the syngas is a low-Btu fuel, and the higher mass flow compared to natural gas will tend to increase the power output of the engine. However, modifications to the turbine and to the combustion system also will be necessary. It will be shown that many of the materials used in current engines will also be applicable to units burning syngas but, since the combustion environment will contain a greater level of impurities (especially sulfur, water vapor, and particulates), the durability of some components may be prejudiced. Consequently, some effort will be needed to develop improved coatings to resist attack by sulfur-containing compounds, and also erosion.

Gibbons, Thomas [ORNL; Wright, Ian G [ORNL

2009-05-01T23:59:59.000Z

299

A Review of Materials for Gas Turbines Firing Syngas Fuels  

SciTech Connect

Following the extensive development work carried out in the 1990's, gas turbine combined-cycle (GTCC) systems burning natural gas represent a reliable and efficient power generation technology widely used in many parts of the world. A critical factor was that, in order to operate at the high turbine entry temperatures required for high efficiency operation, aero-engine technology, i.e., single-crystal blades, thermal barrier coatings, and sophisticated cooling techniques had to be rapidly scaled up and introduced into these large gas turbines. The problems with reliability that resulted have been largely overcome, so that the high-efficiency GTCC power generation system is now a mature technology, capable of achieving high levels of availability. The high price of natural gas and concern about emission of greenhouse gases has focused attention on the desirability of replacing natural gas with gas derived from coal (syngas) in these gas turbine systems, since typical systems analyses indicate that IGCC plants have some potential to fulfil the requirement for a zero-emissions power generation system. In this review, the current status of materials for the critical hot gas path parts in large gas turbines is briefly considered in the context of the need to burn syngas. A critical factor is that the syngas is a low-Btu fuel, and the higher mass flow compared to natural gas will tend to increase the power output of the engine. However, modifications to the turbine and to the combustion system also will be necessary. It will be shown that many of the materials used in current engines will also be applicable to units burning syngas but, since the combustion environment will contain a greater level of impurities (especially sulfur, water vapor, and particulates), the durability of some components may be prejudiced. Consequently, some effort will be needed to develop improved coatings to resist attack by sulfur-containing compounds, and also erosion.

Gibbons, Thomas [ORNL; Wright, Ian G [ORNL

2009-05-01T23:59:59.000Z

300

Noise in non?premixed turbulent syngas flames  

Science Conference Proceedings (OSTI)

A turbulentsyngasflame may generateacoustic noise of high acoustic intensity in a combustion chamber. This may lead to the failure of construction components in a gas turbine engine in periods of the order of 1–100 hours. The research as described in the literature has almost exclusively been performed on the generation of noise in premixed methane or propane flames.Syngas fuel is a mixture of hydrogen and carbon monoxide

Sikke A. Klein; Jim B. W. Kok

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature syngas cleanup" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas  

DOE Green Energy (OSTI)

The overall objective of this project is to develop technologies for cleaning/conditioning IGCC generated syngas to meet contaminant tolerance limits for fuel cell and chemical production applications. The specific goals are to develop processes for (1) removal of reduced sulfur species to sub-ppm levels using a hybrid process consisting of a polymer membrane and a regenerable ZnO-coated monolith or a mixed metal oxide sorbent; (2) removal of hydrogen chloride vapors to sub-ppm levels using an inexpensive, high-surface-area material; and (3) removal of NH3 with acidic adsorbents followed by conversion of this NH3 into nitrogen and water. Existing gasification technologies can effectively and efficiently convert a wide variety of carbonaceous feedstocks (coal, petcoke, resids, biomass, etc.) into syngas, which predominantly contains carbon monoxide and hydrogen. Unfortunately, the impurities present in these carbonaceous feedstocks are converted to gaseous contaminants such as H2S, COS, HCl, NH3, alkali macromolecules and heavy metal compounds (such as Hg) during the gasification process. Removal of these contaminants using conventional processes is thermally inefficient and capital intensive. This research and development effort is focused on investigation of modular processes for removal of sulfur, chlorine, nitrogen and mercury compounds from syngas at elevated temperature and pressures at significantly lower costs than conventional technologies.

Merkel, T.C.; Turk, B.S.; Gupta, R.P.; Cicero, D.C.; Jain, S.C.

2002-09-20T23:59:59.000Z

302

Synthesis of acrylates and methacrylates from coal-derived syngas. Quarterly report, October--December 1996  

SciTech Connect

Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the US Department of Energy, Federal Energy Technology Center. This three-step process consists of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Eastman has focused on the propionate synthesis step. the resultant Mo catalysts work efficiently at much less severe conditions (170{degrees}C and 30 atm) than the conventional Ni catalysts (270{degrees}C and 180 atm). Bechtel has performed an extensive cost analysis which shows that Eastman`s propionate synthesis step is competitive with other technologies to produce the anhydride. In the second step, RTI and Eastman have developed active and stable V-Si-P ternary metal oxide catalysts Nb/SiO{sub 2} and Ta/SiO{sub 2} catalysts for the condensation of propionic anhydride and acid with formaldehyde. RTI has demonstrated a novel correlation among the catalyst acid-base properties, condensation reaction yield, and long-term catalyst activity. Current research focuses on enhancing the condensation reaction yields by better understanding of the acid-base property correlation, in situ condensation in a high-temperature, high- pressure (HTHP) slurry reactor, and alternate formaldehyde feedstocks. Based on Eastman and RTI laboratory data, a cost estimate is also being developed for the integrated process.

NONE

1997-05-02T23:59:59.000Z

303

Evaluation of ceramic filters for high-temperature/high-pressure fine particulate control. Final report Dec 75-Jun 76  

SciTech Connect

High temperature gas turbines used to generate electric power require gas streams virtually free of particulate matter. Gas streams from high temperature, high pressure coal processes, such as low Btu gasification and pressurized fluidized bed combustion, require considerable particulate removal. In order to maintain high thermal efficiency the particulate clean-up must be done at the high temperatures of the process. Many new concepts for fine particulate control at elevated temperatures are presently being proposed. One such concept utilizes ceramic membrane filters. The report gives results of a study to analyze and evaluate ceramic membrane filters as a new, fine particulate (<3 um) control concept for high-temperature (approx. 900/sup 0/C), high-pressure processes. Several ceramic filters were identified as potential candidates for fine particulate removal. There does not seem to be any inherent material limitation to high-temperature operation; however, no evidence of high-temperature filter application was found. The filters typically are 2-6 mm thick, cylindrical, and available with various pore sizes, increasing upward from 0.5 um. These elements may be suitable for fine particulate control in hot gas streams. The most promising, although undeveloped, idea for a ceramic filter is to use ceramic honeycomb monoliths similar to those available for catalyst supports and heat exchangers. The walls of the monoliths are about 0.2-0.4 mm thick and of varying pore size and porosity. Geometric configurations are available which would force the gas to flow through the membrane walls. Pressure losses would be very small relative to those of standard ceramic filter elements. The application of ceramic monoliths to high-temperature fine particulate control appears very promising. It is strongly recommended that this concept be investigated further.

Poe, G.G.; Evans, R.M.; Bonnett, W.S.; Waterland, L.R.

1977-02-01T23:59:59.000Z

304

Co-Production of Pure Hydrogen and Electricity from Coal Syngas ...  

Science Conference Proceedings (OSTI)

Presentation Title, Co-Production of Pure Hydrogen and Electricity from Coal Syngas via the Steam-Iron Process Using Promoted Iron-Based Catalysts Sub-

305

The Performance of Planar Solid Oxide Fuel Cells using Hydrogen-depleted Coal Syngas.  

E-Print Network (OSTI)

??Since solid oxide fuel cells can operate on fuel containing both hydrogen and carbon monoxide, it may prove possible to remove hydrogen from syngas streams… (more)

Burnette, David D.

2007-01-01T23:59:59.000Z

306

The Effect of HCl in Syngas on Ni-YSZ Anode-Supported Solid ...  

Science Conference Proceedings (OSTI)

However, trace impurities, such as PH3 and HCl in coal-derived syngas can cause degradation in cell performance. In this research, SOFCs were exposed to a ...

307

Effect of Impurities in Coal-Derived Syngas on Hydrogen Separation ...  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy has established a set of performance targets for hydrogen separation membranes for the syngas applications in its Hydrogen ...

308

Studio sull'utilizzo di syngas come combustibile in cicli combinati.  

E-Print Network (OSTI)

??Nel presente lavoro si è valutata la possibilità di utilizzare combustibili gassosi (syngas) derivanti dalla gassificazione del carbone o delle biomasse negli impianti a ciclo… (more)

D'Erasmo, Daniele

2004-01-01T23:59:59.000Z

309

Numerical Analysis of Use of Syngas for Combustion Systems and in Solid Oxide Fuel Cells.  

E-Print Network (OSTI)

??As the world energy demand and environmental concern continue to grow, there is increasing interest in developing renewable and cleaner energy sources. Syngas is a… (more)

Cipriani, Francesco

2013-01-01T23:59:59.000Z

310

Syngas, mixed alcohol and diesel synthesis from forest residues via gasification - an economic analysis.  

E-Print Network (OSTI)

??Liquid transportation fuels can be produced by gasification of carbon containing biomass to syngas( a gaseous mixture of CO and H2) with subsequent conversion of… (more)

Koch, David

2008-01-01T23:59:59.000Z

311

Analytic Models of High-Temperature Hohlraums  

SciTech Connect

A unified set of high-temperature-hohlraum models has been developed. For a simple hohlraum, P{sub s} = [A{sub s}+(1{minus}{alpha}{sub W})A{sub W}+A{sub H}]{sigma}T{sub R}{sup 4} + (4V{sigma}/c)(dT{sub R}{sup r}/dt) where P{sub S} is the total power radiated by the source, A{sub s} is the source area, A{sub W} is the area of the cavity wall excluding the source and holes in the wall, A{sub H} is the area of the holes, {sigma} is the Stefan-Boltzmann constant, T{sub R} is the radiation brightness temperature, V is the hohlraum volume, and c is the speed of light. The wall albedo {alpha}{sub W} {triple_bond} (T{sub W}/T{sub R}){sup 4} where T{sub W} is the brightness temperature of area A{sub W}. The net power radiated by the source P{sub N} = P{sub S}-A{sub S}{sigma}T{sub R}{sup 4}, which suggests that for laser-driven hohlraums the conversion efficiency {eta}{sub CE} be defined as P{sub N}/P{sub LASER}. The characteristic time required to change T{sub R}{sup 4} in response to a change in P{sub N} is 4V/C[(l{minus}{alpha}{sub W})A{sub W}+A{sub H}]. Using this model, T{sub R}, {alpha}{sub W}, and {eta}{sub CE} can be expressed in terms of quantities directly measurable in a hohlraum experiment. For a steady-state hohlraum that encloses a convex capsule, P{sub N} = {l_brace}(1{minus}{alpha}{sub W})A{sub W}+A{sub H}+[(1{minus}{alpha}{sub C})(A{sub S}+A{sub W}{alpha}{sub W})A{sub C}/A{sub T}]{r_brace}{sigma}T{sub RC}{sup 4} where {alpha}{sub C} is the capsule albedo, A{sub C} is the capsule area, A{sub T} {triple_bond} (A{sub S}+A{sub W}+A{sub H}), and T{sub RC} is the brightness temperature of the radiation that drives the capsule. According to this relation, the capsule-coupling efficiency of the baseline National-Ignition-Facility (NIF) hohlraum is 15% higher than predicted by previous analytic expressions. A model of a hohlraum that encloses a z pinch is also presented.

Stygar, W.A.; Olson, R.E.; Spielman, R.B.; Leeper, R.J.

2000-11-29T23:59:59.000Z

312

High pressure-high temperature effect on the HTSC ceramics structure and properties  

Science Conference Proceedings (OSTI)

Keywords: high pressures-high temperatures, high temperature superconductors, mechanical properties, structure, superconductive

T. A. Prikhna

1995-12-01T23:59:59.000Z

313

Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor  

SciTech Connect

The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

2012-02-01T23:59:59.000Z

314

Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2005 High

315

Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2004 High

316

Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2010 High

317

Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2007 High

318

Hydrogen production from fusion reactors coupled with high temperature electrolysis  

SciTech Connect

An initial study was conducted on a fusion reactor and high temperature electrolyzer system for the production of synthetic fuel. The design temperatures in the fusion reactor blanket were above 1380/sup 0/C. Electrolytic hydrogen production at the high temperatures consumes a high ratio of thermal to electric energy and increases the efficiency of the plant and an overall efficiency of approximately 50% appeared possible. The concepts of the system and the design considerations of the high temperature electrolyzer will be presented.

Isaacs, H.S.; Fillo, J.A.; Dang, V.; Powell, J.R.; Steinberg, M.; Salzano, F.; Benenati, R.

1978-01-01T23:59:59.000Z

319

First high-temperature electronics products survey 2005.  

Science Conference Proceedings (OSTI)

On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

Normann, Randy Allen

2006-04-01T23:59:59.000Z

320

2nd International Symposium on High-Temperature Metallurgical ...  

Science Conference Proceedings (OSTI)

Aug 2, 2010... with reduced energy consumption and reduced emission of pollutants. ... A Breakthrough Application of Electricity at High Temperature for ...

Note: This page contains sample records for the topic "high-temperature syngas cleanup" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Ionic Solid Oxides for High Temperature Optical Gas Sensing in ...  

Science Conference Proceedings (OSTI)

Presentation Title, Ionic Solid Oxides for High Temperature Optical Gas Sensing in Fossil Fuel Based Power Plants. Author(s), Junhang Dong, Xiling Tang, Kurtis  ...

322

High Temperature Modules and Materials for Thermoelectric Power ...  

Science Conference Proceedings (OSTI)

We fabricated oxide-based thermoelectric modules for high temperature electrical-power generation. Potentials for a development of a thermoelectric generation ...

323

Environmental Degradation and Protection of High Temperature Alloys  

Science Conference Proceedings (OSTI)

Scope, Nickel-base superalloys and other high temperature alloys have been successfully used in turbine engine propulsion, power generation and many other ...

324

Evaluation of High-Temperature Alloys for Helium Gas Turbines  

Science Conference Proceedings (OSTI)

C. 1. Mechanical Property / Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material

Wolfgang Jakobeit; Jörn-Peter Pfeifer; Georg Ullrich

325

Corrosion of Candidate Alloys in High Temperature Supercritical  

Science Conference Proceedings (OSTI)

Materials corrosion in high temperature supercritical CO2 will be an important consideration for this application. The results of corrosion evaluations of a wide ...

326

Fracturing fluid high-temperature breaker for improving well performance  

Science Conference Proceedings (OSTI)

Oxidative breakers are currently being used in fracturing treatments to reduce polymeric gel damage in high-temperature reservoirs. Dissolved high-temperature oxidative breakers are very reactive at high temperatures (275 to 350 F), typically requiring less than 0.25 lbm/1,000 gal of fluid. Recent introduction of a new nonpersulfate oxidative high-temperature encapsulated breaker (HTEB) provides controlled degradation of the fracturing fluid polymers. Laboratory tests show viscosity reduction and delayed release of active oxidizer breaker. HTEB conductivity data show a two-fold increase in retained permeability at 300 F in a borate-crosslinked fluid system.

McConnell, B.

1994-05-01T23:59:59.000Z

327

Fuel Cell Technologies Office: 2006 High Temperature Membrane...  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems for High Temperature, Low Relative Humidity Polymer-Type Membranes, Andrew Herring, Colorado School of Mines (PDF 213 KB) Design and Development of High-Performance...

328

High-temperature Erosion Behavior of Aluminide-coated Turbine ...  

Science Conference Proceedings (OSTI)

The high-temperature erosion behavior of an aluminide-coated turbine blade ... The Tensile Property Of A Gas Turbine Engine Fan Blade And Casing Material.

329

Available Technologies: High Temperature Strain Cell for X-ray ...  

High Temperature Strain Cell for X-ray ... Six hexapole infrared lamps focus inside the sample chamber onto a ceramic material sample with a spherical ...

330

Advanced High Temperature Corrosion and Wear Resistant Internal ...  

Science Conference Proceedings (OSTI)

Presentation Title, Advanced High Temperature Corrosion and Wear Resistant Internal Coating for Oil Industry applications. Author(s), William Boardman, Rahul  ...

331

Processing of High-temperature Structural Materials I  

Science Conference Proceedings (OSTI)

Subsurface Alloy Microstructural Changes During High Temperature Reaction of Fe-Cr Alloys in CO2: David Young1; Thuan Nguyen1; Jianqiang Zhang1; ...

332

Creep Behavior of High Temperature Alloys for Generation IV ...  

Science Conference Proceedings (OSTI)

Presentation Title, Creep Behavior of High Temperature Alloys for Generation IV Nuclear Power Plant Applications. Author(s), Xingshuo Wen, Laura J. Carroll, ...

333

High-Temperature Reactor for Diffuse Reflectance Infrared ...  

High-Temperature Reactor for Diffuse Reflectance Infrared Fourier-Transform Spectroscopy Note: The technology described above is an early stage ...

334

High Temperature Fatigue Behavior of Laser Shock Peened ...  

Science Conference Proceedings (OSTI)

Presentation Title, High Temperature Fatigue Behavior of Laser Shock Peened IN718Plus Superalloy. Author(s), Vibhor Chaswal, S R Mannava, Dong Qian, ...

335

Direct Fired Reciprocating Engine and Bottoming High Temperature...  

NLE Websites -- All DOE Office Websites (Extended Search)

exhaust is split between fuel feeds and air feeds to the high temperature fuel cell. NOX reduction can be achieved using an autothermal reformer. By hybridizing the production...

336

High-temperature Material Systems for Energy Conversion and ...  

Science Conference Proceedings (OSTI)

Ionic Solid Oxides for High Temperature Optical Gas Sensing in Fossil Fuel Based Power Plants · Mitigation of Chromium Poisoning in Solid Oxide Fuel Cell

337

High-Temperature Lead-Free Solder Alternatives: Possibilities and ...  

Science Conference Proceedings (OSTI)

The development of high-temperature lead-free solders has become an important issue for both the electronics and automobile industries because of the health ...

338

High Temperature Stainless Steel Alloy with Low Cost Manganese  

High Temperature Stainless Steel Alloy with Low Cost Manganese ... ••Power industry components such as boiler tubing and piping, pressure vessels, chemical

339

Creep Behavior of High Temperature Alloys for Intermediate Heat ...  

Science Conference Proceedings (OSTI)

Presentation Title, Creep Behavior of High Temperature Alloys for Intermediate Heat Exchanger in Next Generation Nuclear Plant. Author(s), Xingshuo Wen, ...

340

SLAC National Accelerator Laboratory - High-temperature Superconductor...  

NLE Websites -- All DOE Office Websites (Extended Search)

evidence yet that a puzzling gap in the electronic structures of some high-temperature superconductors could indicate a new phase of matter. Understanding this "pseudogap" has...

Note: This page contains sample records for the topic "high-temperature syngas cleanup" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

High Temperature Universal Silicon on Insulator (SOI) Gate Drive  

higher current drive, on-chip regulation capacitors, and more space efficient and robust on-chip layout. ... •Development of high temperature galvanic isolation

342

High-temperature Foam-reinforced Thermal Insulation  

Science Conference Proceedings (OSTI)

Symposium, Advanced Materials for Harsh Environments. Presentation Title, High-temperature Foam-reinforced Thermal Insulation. Author(s), Jacob J. Stiglich, ...

343

Idaho Cleanup Contractor Surpasses Significant Safety Milestones |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleanup Contractor Surpasses Significant Safety Milestones Cleanup Contractor Surpasses Significant Safety Milestones Idaho Cleanup Contractor Surpasses Significant Safety Milestones April 29, 2013 - 12:00pm Addthis CWI employees discuss safety procedures before they remove a spent nuclear fuel shipment from a shipping container. CWI employees discuss safety procedures before they remove a spent nuclear fuel shipment from a shipping container. IDAHO FALLS, Idaho - For the second time in a little over a year, employees with DOE contractor CH2M-WG Idaho (CWI) supporting EM at the Idaho site have achieved 1 million hours without a recordable injury. They also worked more than 1.7 million hours without a lost work-time injury. "Our focus is working with employees to keep each other safe," said CWI Environmental, Safety, and Health Vice President Kevin Daniels. "We

344

Demolition, Groundwater Cleanup Highlight Paducah's 2013 Accomplishments  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demolition, Groundwater Cleanup Highlight Paducah's 2013 Demolition, Groundwater Cleanup Highlight Paducah's 2013 Accomplishments Demolition, Groundwater Cleanup Highlight Paducah's 2013 Accomplishments December 24, 2013 - 12:00pm Addthis A high-reach shear removes debris from the tallest structure of the C-340 complex at Paducah. Watch a video of this work here. The 120-foot-high Metals Plant was the tallest building at the Paducah site and encompassed about 1.5 million cubic feet, the volume of a football field roughly three stories tall. Demolition debris filled 28 rail cars and was shipped offsite for disposal. A high-reach shear removes debris from the tallest structure of the C-340 complex at Paducah. Watch a video of this work here. The 120-foot-high Metals Plant was the tallest building at the Paducah site and encompassed

345

Los Alamos National Laboratory names cleanup subcontractors  

NLE Websites -- All DOE Office Websites (Extended Search)

Cleanup subcontractors named Cleanup subcontractors named Los Alamos National Laboratory names cleanup subcontractors The three companies are Los Alamos Technical Associates (LATA), Portage Inc., and ARSEC Environmental, LLC (ARSEC). August 14, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Fred deSousa

346

ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT  

DOE Green Energy (OSTI)

An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

M. G. McKellar; E. A. Harvego; A. M. Gandrik

2010-11-01T23:59:59.000Z

347

Direct synthesis of dimethyl ether (DME) from syngas containing oxygen gas considering of biomass gasfication gas  

Science Conference Proceedings (OSTI)

We have developed appropriate and excellent catalysts for direct DME synthesis from syngas. The catalysts, Cu-Zn/Al2O3 catalysts prepared by the sol-gel method, produce DME with high DME activity and high DME selectivity with long ... Keywords: DME, biomass, catalyst, clean fuel, dimethyl ether, direct synthesis, gasification gas, hydrogen, sol-gel method, syngas

Kaoru Takeishi; Akane Arase

2010-02-01T23:59:59.000Z

348

Chemical Looping Reforming for H2, CO and Syngas Production  

SciTech Connect

We demonstrate that the extension of CLC onto oxidants beyond air opens new, highly efficient pathways for production of ultra-pure hydrogen, activation of CO{sub 2} via reduction to CO, and are currently working on production of syngas using nanocomposite Fe-BHA. CLR hold great potential due to fuel flexibility and CO{sub 2} capture. Chemical Looping Combustion (CLC) is a novel clean combustion technology which offers an elegant and highly efficient route for fossil fuel combustion. In CLC, combustion of a fuel is broken down into two spatially separated steps. In the reducer, the oxygen carrier (typically a metal) supplies the stoichiometric oxygen required for fuel combustion. In the oxidizer, the oxygen-depleted carrier is then re-oxidized with air. After condensation of steam from the effluent of the reducer, a high-pressure, high-purity sequestration-ready CO{sub 2} stream is obtained. In the present study, we apply the CLC principle to the production of high-purity H{sub 2}, CO, and syngas streams by replacing air with steam and/or CO{sub 2} as oxidant, respectively. Using H{sub 2}O as oxidant, pure hydrogen streams can be obtained. Similarly, using CO{sub 2} as oxidant, CO is obtained, thus opening an efficient route for CO{sub 2} utilization. Using steam and CO{sub 2} mixtures for carrier oxidation should thus allow production of syngas with adjustable CO:H{sub 2} ratios. Overall, these processes result in Chemical Looping Reforming (CLR), i.e. the net overall reaction is the steam and/or dry reforming of the respective fuel.

Bhavsar,Saurabh; Najera,Michelle; Solunke,Rahul; Veser,Götz

2001-06-06T23:59:59.000Z

349

Integrated Operation of INL HYTEST System and High-Temperature Steam Electrolysis for Synthetic Natural Gas Production  

SciTech Connect

The primary feedstock for synthetic fuel production is syngas, a mixture of carbon monoxide and hydrogen. Current hydrogen production technologies rely upon fossil fuels and produce significant quantities of greenhouse gases as a byproduct. This is not a sustainable means of satisfying future hydrogen demands, given the current projections for conventional world oil production and future targets for carbon emissions. For the past six years, the Idaho National Laboratory has been investigating the use of high-temperature steam electrolysis (HTSE) to produce the hydrogen feedstock required for synthetic fuel production. High-temperature electrolysis water-splitting technology, combined with non-carbon-emitting energy sources, can provide a sustainable, environmentally-friendly means of large-scale hydrogen production. Additionally, laboratory facilities are being developed at the INL for testing hybrid energy systems composed of several tightly-coupled chemical processes (HYTEST program). The first such test involved the coupling of HTSE, CO2 separation membrane, reverse shift reaction, and methanation reaction to demonstrate synthetic natural gas production from a feedstock of water and either CO or a simulated flue gas containing CO2. This paper will introduce the initial HTSE and HYTEST testing facilities, overall coupling of the technologies, testing results, and future plans.

Carl Marcel Stoots; Lee Shunn; James O'Brien

2010-06-01T23:59:59.000Z

350

Task 4.9 -- Value-added products from syngas  

DOE Green Energy (OSTI)

The work on advanced fuel forms in 1996 focused on the synthesis of higher alcohols from mixtures of hydrogen and carbon dioxide (syngas) from coal gasification. The conversion of coal gasification products to commercially valuable alcohols will provide an important new market for current and future gasification plants. Initial work in this project utilized a novel molybdenum sulfide catalyst previously shown to be active for hydrodesulfurization reactions of coal liquids. The support for the active metal sulfide is a layered mixed oxide (hydrotalcite) capable of interaction with the metal sites for catalysis of carbon monoxide reductions. These catalysts have a high surface area, are highly porous, and have basic and acidic functionality. A pressurized fixed-bed flow-through reactor was constructed, and the MoS{sub 2} catalysts were tested with syngas under a variety of conditions. Unfortunately, the catalysts, even with higher molybdenum loading and addition of promoters, failed to give alcohol products. A batch reactor test of the catalyst was also conducted, but did not produce alcohol products. Group 8 metals have been used previously in catalysts for syngas reactions. Ruthenium and rhodium catalysts were prepared by impregnation of a hydrotalcite support. Tests with these catalysts in flow-through reactors also did not produce the desired alcohol products. The formation of higher alcohols from smaller ones, such as methanol and ethanol, could be commercially important if high selectivity could be achieved. The methanol and ethanol would be derived from syngas and fermentation, respectively. Based on previous work in other laboratories, it was hypothesized that the hydrotalcite supported MoS{sub 2} or Ru or Rh catalysts could catalyze the formation of butyl alcohols. Although the desired 1-butanol was obtained in batch reactions with the promoted Ru catalyst, the reaction was not as selective as desired. Product suitable for a lower-vapor-pressure gasoline oxygenate additive was obtained, but it may not be economical to market such products in competition with methyl tertiary-butyl-ether. Flow-through catalytic bed reactions were not successful.

Olson, E.S.; Sharma, R.K.

1997-02-01T23:59:59.000Z

351

Effects of Soret diffusion on the laminar flame speed and Markstein length of syngas/air mixtures  

E-Print Network (OSTI)

Effects of Soret diffusion on the laminar flame speed and Markstein length of syngas/air mixtures, Beijing 100084, China Abstract The effects of Soret diffusion on premixed syngas/air flames at normal and stretched laminar flame speed and Markstein length of syngas/air mixtures. The laminar flame speed

Chen, Zheng

352

Effects of Soret diffusion on the laminar flame speed and Markstein length of syngas/air mixtures  

E-Print Network (OSTI)

Effects of Soret diffusion on the laminar flame speed and Markstein length of syngas/air mixtures syngas/air flames at normal and elevated temperatures and pressures are investigated numerically of syngas/air mixtures. The laminar flame speed and Markstein length are obtained by simulating

Chen, Zheng

353

An experimental and kinetic study of syngas/air combustion at elevated temperatures and the effect of water addition  

E-Print Network (OSTI)

An experimental and kinetic study of syngas/air combustion at elevated temperatures and the effect 20 December 2011 Keywords: Syngas combustion Elevated temperatures Water addition Laminar flame speed a b s t r a c t Laminar flame speeds of premixed syngas/air mixtures were measured at various fuel

Qiao, Li

354

Effects of Soret diffusion on the laminar flame speed and Markstein length of syngas/air mixtures  

E-Print Network (OSTI)

Effects of Soret diffusion on the laminar flame speed and Markstein length of syngas/air mixtures, China Abstract The effects of Soret diffusion on premixed syngas/air flames at normal and elevated and stretched flame speed and Markstein length of syngas/air mixtures. The laminar flame speed and Markstein

Chen, Zheng

355

Syngas Segregation Induced by Confinement in Carbon Nanotubes: A Combined First-Principles and Monte Carlo Study  

E-Print Network (OSTI)

Syngas Segregation Induced by Confinement in Carbon Nanotubes: A Combined First of the concave and convex surfaces of CNTs formed by graphene layers. As a result, syngas molecules are enriched of CO/H2 inside CNTs increases with respect to the composition of syngas in the exterior gas phase

Bao, Xinhe

356

Technical and economic assessment of producing hydrogen by reforming syngas from the Battelle indirectly heated biomass gasifier  

SciTech Connect

The technical and economic feasibility of producing hydrogen from biomass by means of indirectly heated gasification and steam reforming was studied. A detailed process model was developed in ASPEN Plus{trademark} to perform material and energy balances. The results of this simulation were used to size and cost major pieces of equipment from which the determination of the necessary selling price of hydrogen was made. A sensitivity analysis was conducted on the process to study hydrogen price as a function of biomass feedstock cost and hydrogen production efficiency. The gasification system used for this study was the Battelle Columbus Laboratory (BCL) indirectly heated gasifier. The heat necessary for the endothermic gasification reactions is supplied by circulating sand from a char combustor to the gasification vessel. Hydrogen production was accomplished by steam reforming the product synthesis gas (syngas) in a process based on that used for natural gas reforming. Three process configurations were studied. Scheme 1 is the full reforming process, with a primary reformer similar to a process furnace, followed by a high temperature shift reactor and a low temperature shift reactor. Scheme 2 uses only the primary reformer, and Scheme 3 uses the primary reformer and the high temperature shift reactor. A pressure swing adsorption (PSA) system is used in all three schemes to produce a hydrogen product pure enough to be used in fuel cells. Steam is produced through detailed heat integration and is intended to be sold as a by-product.

Mann, M.K. [National Renewable Energy Lab., Golden, CO (United States). Industrial Technologies Div.

1995-08-01T23:59:59.000Z

357

High Temperature, Buried Permanent Magnet, Brushless DC Motor  

E-Print Network (OSTI)

A high temperature magnetic bearing system using high temperature permanent magnets from Electron Energy Corporation (EEC) is under development. The system consists of two radial bearings, one thrust bearing, two radial catcher bearings and one motor. The purpose of this research is to develop one of the critical components of the system, namely, the High Temperature Permanent Magnet motor. A novel High Temperature Permanent Magnet (HTPM) Brushless DC(BLDC) motor capable of operating at 1000 degrees F (538 degrees C) is designed. HTPMs developed at Electron Energy Corporation are buried into the rotor. The high temperature motor is designed to produce 5.1kw of power at a top running speed of 20000 rpm. The numerical values of the motor voltage, power and torque output are predicted from calculations of the nonlinear finite element model of the motor. The motor stator is wound, potted, cured and high potential tested at 1000 degrees F. A servo amplifier from Advanced Motion Control is used to drive the high temperature motor. High temperature displacement sensors are set up for sensing the rotor position to form a closed loop motion control. However, the noise problem of the high temperature sensors causes a failure of this approach. An open loop approach is then developed and this approach succeeds in spinning the rotor with the capability of self-starting. The status of the full system assembling is introduced. Some other components of the system are briefly presented.

Zhang, Zhengxin

2010-08-01T23:59:59.000Z

358

Hydrogen production from high temperature electrolysis and fusion reactor  

SciTech Connect

Production of hydrogen from high temperature electrolysis of steam coupled with a fusion reactor is studied. The process includes three major components: the fusion reactor, the high temperature electrolyzer and the power conversion cycle each of which is discussed in the paper. Detailed process design and analysis of the system is examined. A parametric study on the effect of process efficiency is presented.

Dang, V.D.; Steinberg, J.F.; Issacs, H.S.; Lazareth, O.; Powell, J.R.; Salzano, F.J.

1978-01-01T23:59:59.000Z

359

Single-Step Syngas-to-Distillates (S2D) Synthesis via Methanol and Dimethyl Ether Intermediates: Final Report  

Science Conference Proceedings (OSTI)

The objective of the work was to enhance price-competitive, synthesis gas (syngas)-based production of transportation fuels that are directly compatible with the existing vehicle fleet (i.e., vehicles fueled by gasoline, diesel, jet fuel, etc.). To accomplish this, modifications to the traditional methanol-to-gasoline (MTG) process were investigated. In this study, we investigated direct conversion of syngas to distillates using methanol and dimethyl ether intermediates. For this application, a Pd/ZnO/Al2O3 (PdZnAl) catalyst previously developed for methanol steam reforming was evaluated. The PdZnAl catalyst was shown to be far superior to a conventional copper-based methanol catalyst when operated at relatively high temperatures (i.e., >300°C), which is necessary for MTG-type applications. Catalytic performance was evaluated through parametric studies. Process conditions such as temperature, pressure, gas-hour-space velocity, and syngas feed ratio (i.e., hydrogen:carbon monoxide) were investigated. PdZnAl catalyst formulation also was optimized to maximize conversion and selectivity to methanol and dimethyl ether while suppressing methane formation. Thus, a PdZn/Al2O3 catalyst optimized for methanol and dimethyl ether formation was developed through combined catalytic material and process parameter exploration. However, even after compositional optimization, a significant amount of undesirable carbon dioxide was produced (formed via the water-gas-shift reaction), and some degree of methane formation could not be completely avoided. Pd/ZnO/Al2O3 used in combination with ZSM-5 was investigated for direct syngas-to-distillates conversion. High conversion was achieved as thermodynamic constraints are alleviated when methanol and dimethyl are intermediates for hydrocarbon formation. When methanol and/or dimethyl ether are products formed separately, equilibrium restrictions occur. Thermodynamic relaxation also enables the use of lower operating pressures than what would be allowed for methanol synthesis alone. Aromatic-rich hydrocarbon liquid (C5+), containing a significant amount of methylated benzenes, was produced under these conditions. However, selectivity control to liquid hydrocarbons was difficult to achieve. Carbon dioxide and methane formation was problematic. Furthermore, saturation of the olefinic intermediates formed in the zeolite, and necessary for gasoline production, occurred over PdZnAl. Thus, yield to desirable hydrocarbon liquid product was limited. Evaluation of other oxygenate-producing catalysts could possibly lead to future advances. Potential exists with discovery of other types of catalysts that suppress carbon dioxide and light hydrocarbon formation. Comparative techno-economics for a single-step syngas-to-distillates process and a more conventional MTG-type process were investigated. Results suggest operating and capital cost savings could only modestly be achieved, given future improvements to catalyst performance. Sensitivity analysis indicated that increased single-pass yield to hydrocarbon liquid is a primary need for this process to achieve cost competiveness.

Dagle, Robert A.; Lebarbier, Vanessa MC; Lizarazo Adarme, Jair A.; King, David L.; Zhu, Yunhua; Gray, Michel J.; Jones, Susanne B.; Biddy, Mary J.; Hallen, Richard T.; Wang, Yong; White, James F.; Holladay, Johnathan E.; Palo, Daniel R.

2013-11-26T23:59:59.000Z

360

Determination of the Effect of Coal/Biomass-Derived Syngas Contaminants on the Performance of Fischer-Tropsch and Water-Gas-Shift Catalysts  

SciTech Connect

Today, nearly all liquid fuels and commodity chemicals are produced from non-renewable resources such as crude oil and natural gas. Because of increasing scrutiny of carbon dioxide (CO{sub 2}) emissions produced using traditional fossil-fuel resources, the utilization of alternative feedstocks for the production of power, hydrogen, value-added chemicals, and high-quality hydrocarbon fuels such as diesel and substitute natural gas (SNG) is critical to meeting the rapidly growing energy needs of modern society. Coal and biomass are particularly attractive as alternative feedstocks because of the abundant reserves of these resources worldwide. The strategy of co-gasification of coal/biomass (CB) mixtures to produce syngas for synthesis of Fischer-Tropsch (FT) fuels offers distinct advantages over gasification of either coal or biomass alone. Co-feeding coal with biomass offers the opportunity to exploit economies of scale that are difficult to achieve in biomass gasification, while the addition of biomass to the coal gasifier feed leverages proven coal gasification technology and allows CO{sub 2} credit benefits. Syngas generated from CB mixtures will have a unique contaminant composition because coal and biomass possess different concentrations and types of contaminants, and the final syngas composition is also strongly influenced by the gasification technology used. Syngas cleanup for gasification of CB mixtures will need to address this unique contaminant composition to support downstream processing and equipment. To investigate the impact of CB gasification on the production of transportation fuels by FT synthesis, RTI International conducted thermodynamic studies to identify trace contaminants that will react with water-gas-shift and FT catalysts and built several automated microreactor systems to investigate the effect of single components and the synergistic effects of multiple contaminants on water-gas-shift and FT catalyst performance. The contaminants investigated were sodium chloride (NaCl), potassium chloride (KCl), hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), ammonia (NH{sub 3}), and combinations thereof. This report details the thermodynamic studies and the individual and multi-contaminant results from this testing program.

Trembly, Jason; Cooper, Matthew; Farmer, Justin; Turk, Brian; Gupta, Raghubir

2010-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature syngas cleanup" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Idaho Cleanup Project completes work at Test Area North complex...  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho Cleanup Project completes work at Test Area North complex at DOEs Idaho site Loss-Of-Fluid Test Reactor Facility (before) Idaho Cleanup Project workers have completed all...

362

FIXED-PRICE CONTRACTING FOR DEPARTMENT OF ENERGY CLEANUP ACTIVITIES...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FIXED-PRICE CONTRACTING FOR DEPARTMENT OF ENERGY CLEANUP ACTIVITIES, CR-B-02-01 FIXED-PRICE CONTRACTING FOR DEPARTMENT OF ENERGY CLEANUP ACTIVITIES, CR-B-02-01 As part of its...

363

Assessment of synfuel spill cleanup options  

DOE Green Energy (OSTI)

Existing petroleum-spill cleanup technologies are reviewed and their limitations, should they be used to mitigate the effects of synfuels spills, are discussed. The six subsections of this report address the following program goals: synfuels production estimates to the year 2000; possible sources of synfuel spills and volumes of spilled fuel to the year 2000; hazards of synfuels spills; assessment of existing spill cleanup technologies for oil spills; assessment of cleanup technologies for synfuel spills; and disposal of residue from synfuel spill cleanup operations. The first goal of the program was to obtain the most current estimates on synfuel production. These estimates were then used to determine the amount of synfuels and synfuel products likely to be spilled, by location and by method of transportation. A review of existing toxicological studies and existing spill mitigation technologies was then completed to determine the potential impacts of synthetic fuel spills on the environment. Data are presented in the four appendixes on the following subjects: synfuel production estimates; acute toxicity of synfuel; acute toxicity of alcohols.

Petty, S.E.; Wakamiya, W.; English, C.J.; Strand, J.A.; Mahlum, D.D.

1982-04-01T23:59:59.000Z

364

Materials for Nuclear Waste Disposal and Environmental Cleanup  

Science Conference Proceedings (OSTI)

Symposium, Materials for Nuclear Waste Disposal and Environmental Cleanup ... Secure and Certify Studies to Work on Production of Spiked Plutonium.

365

Idaho Cleanup Project CH2M-WG Idaho, LLC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Cleanup Project CH2M-WG Idaho, LLC Idaho Cleanup Project CH2M-WG Idaho, LLC Idaho Cleanup Project Idaho Cleanup Project CH2M-WG Idaho, LLC More Documents & Publications...

366

Effects of Combustion-Induced Vortex Breakdown on Flashback Limits of Syngas-Fueled Gas Turbine Combustors  

DOE Green Energy (OSTI)

Turbine combustors of advanced power systems have goals to achieve very low pollutants emissions, fuel variability, and fuel flexibility. Future generation gas turbine combustors should tolerate fuel compositions ranging from natural gas to a broad range of syngas without sacrificing operational advantages and low emission characteristics. Additionally, current designs of advanced turbine combustors use various degrees of swirl and lean premixing for stabilizing flames and controlling high temperature NOx formation zones. However, issues of fuel variability and NOx control through premixing also bring a number of concerns, especially combustor flashback and flame blowout. Flashback is a combustion condition at which the flame propagates upstream against the gas stream into the burner tube. Flashback is a critical issue for premixed combustor designs, because it not only causes serious hardware damages but also increases pollutant emissions. In swirl stabilized lean premixed turbine combustors onset of flashback may occur due to (i) boundary layer flame propagation (critical velocity gradient), (ii) turbulent flame propagation in core flow, (iii) combustion instabilities, and (iv) upstream flame propagation induced by combustion induced vortex breakdown (CIVB). Flashback due to first two foregoing mechanisms is a topic of classical interest and has been studied extensively. Generally, analytical theories and experimental determinations of laminar and turbulent burning velocities model these mechanisms with sufficient precision for design usages. However, the swirling flow complicates the flashback processes in premixed combustions and the first two mechanisms inadequately describe the flashback propensity of most practical combustor designs. The presence of hydrogen in syngas significantly increases the potential for flashback. Due to high laminar burning velocity and low lean flammability limit, hydrogen tends to shift the combustor operating conditions towards flashback regime. Even a small amount of hydrogen in a fuel blend triggers the onset of flashback by altering the kinetics and thermophysical characteristics of the mixture. Additionally, the presence of hydrogen in the fuel mixture modifies the response of the flame to the global effects of stretch and preferential diffusion. Despite its immense importance in fuel flexible combustor design, little is known about the magnitude of fuel effects on CIVB induced flashback mechanism. Hence, this project investigates the effects of syngas compositions on flashback resulting from combustion induced vortex breakdown. The project uses controlled experiments and parametric modeling to understand the velocity field and flame interaction leading to CIVB driven flashback.

Ahsan Choudhuri

2011-03-31T23:59:59.000Z

367

Integrated Low Emissions Cleanup system for direct coal fueled turbines  

Science Conference Proceedings (OSTI)

The United States Department of.Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of coal-fired turbine technology in the areas of Pressurized Fluidized Bed Combustion, Integrated Gasification Combined Cycles, and Direct Coal-Fired Turbines. A major technical challenge remaining for the development of coal-fired turbine systems is high-temperature gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating an Integrated Low Emissions Cleanup (ILEC) concept that has been configured to meet this technical challenge. This ceramic barrier filter, ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases, and is considering cleaning temperatures up to 2100{degrees}F. This document describes Phase II of the program, the design, construction, and shakedown of a bench-scale facility to test and confirm the feasibility of this ILEC technology.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Smeltzer, E.E.; Lippert, T.E.

1993-07-01T23:59:59.000Z

368

Method for Synthesizing Extremeley High Temperature Melting Materials  

DOE Patents (OSTI)

The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

Saboungi, Marie-Louise and Glorieux, Benoit

2005-11-22T23:59:59.000Z

369

Advancing the technology base for high-temperature membranes  

DOE Green Energy (OSTI)

This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project addresses the major issues confronting the implementation of high-temperature membranes for separations and catalysis. We are pursuing high-temperature membrane systems that can have a large impact for DOE and be industrially relevant. A major obstacle for increased use of membranes is that most applications require the membrane material to withstand temperatures above those acceptable for polymer-based systems. Advances made by this project have helped industry and DOE move toward high-temperature membrane applications to improve overall energy efficiency.

Dye, R.C.; Birdsell, S.A.; Snow, R.C. [and others

1997-10-01T23:59:59.000Z

370

FEEDSTOCK-FLEXIBLE REFORMER SYSTEM (FFRS) FOR SOLID OXIDE FUEL CELL (SOFC)- QUALITY SYNGAS  

DOE Green Energy (OSTI)

The U.S. Department of Energy National Energy Technology Laboratory funded this research collaboration effort between NextEnergy and the University of Michigan, who successfully designed, built, and tested a reformer system, which produced highquality syngas for use in SOFC and other applications, and a novel reactor system, which allowed for facile illumination of photocatalysts. Carbon and raw biomass gasification, sulfur tolerance of non-Platinum Group Metals (PGM) based (Ni/CeZrO2) reforming catalysts, photocatalysis reactions based on TiO2, and mild pyrolysis of biomass in ionic liquids (ILs) were investigated at low and medium temperatures (primarily 450 to 850 C) in an attempt to retain some structural value of the starting biomass. Despite a wide range of processes and feedstock composition, a literature survey showed that, gasifier products had narrow variation in composition, a restriction used to develop operating schemes for syngas cleanup. Three distinct reaction conditions were investigated: equilibrium, autothermal reforming of hydrocarbons, and the addition of O2 and steam to match the final (C/H/O) composition. Initial results showed rapid and significant deactivation of Ni/CeZrO2 catalysts upon introduction of thiophene, but both stable and unstable performance in the presence of sulfur were obtained. The key linkage appeared to be the hydrodesulfurization activity of the Ni reforming catalysts. For feed stoichiometries where high H2 production was thermodynamically favored, stable, albeit lower, H2 and CO production were obtained; but lower thermodynamic H2 concentrations resulted in continued catalyst deactivation and eventual poisoning. High H2 levels resulted in thiophene converting to H2S and S surface desorption, leading to stable performance; low H2 levels resulted in unconverted S and loss in H2 and CO production, as well as loss in thiophene conversion. Bimetallic catalysts did not outperform Ni-only catalysts, and small Ni particles were found to have lower activities under S-free conditions, but did show less effect of S on performance, in this study. Imidazolium-based ILs, choline chloride compounds and low-melting eutectics of metal nitrates were evaluated, and it was found that, ILs have some capacity to dissolve cellulose and show thermal stability to temperatures where pyrolysis begins, have no vapor pressure, (simplifying product recoveries), and can dissolve ionic metal salts, allowing for the potential of catalytic reactions on breakdown intermediates. Clear evidence of photoactive commercial TiO2 was obtained, but in-house synthesis of photoactive TiO2 proved difficult, as did fixed-bed gasification, primarily due to the challenge of removing the condensable products from the reaction zone quickly enough to prevent additional reaction. Further investigation into additional non-PGM catalysts and ILs is recommended as a follow-up to this work.

Kelly Jezierski; Andrew Tadd; Johannes Schwank; Roland Kibler; David McLean; Mahesh Samineni; Ryan Smith; Sameer Parvathikar; Joe Mayne; Tom Westrich; Jerry Mader; F. Michael Faubert

2010-07-30T23:59:59.000Z

371

Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells  

DOE Green Energy (OSTI)

This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and in International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.

E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; John Hemmings

2005-05-01T23:59:59.000Z

372

DOE Hydrogen Analysis Repository: High Temperature Electrolysis (HTE)  

NLE Websites -- All DOE Office Websites (Extended Search)

High Temperature Electrolysis (HTE) High Temperature Electrolysis (HTE) Project Summary Full Title: High Temperature Electrolysis (HTE) Project ID: 159 Principal Investigator: Steve Herring Brief Description: A three-dimensional computational fluid dynamics (CFD) model was created to model high-temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). A solid-oxide fuel cell model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. Keywords: Solid oxide fuel cell; solid oxide elctrolysis cell; nuclear; model Purpose Assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Performer Principal Investigator: Steve Herring

373

High Temperature Corrosion Test Facilities and High Pressure Test  

NLE Websites -- All DOE Office Websites (Extended Search)

High Temperature High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting Test Facilities for Metal Dusting Overview Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting Six corrosion test facilities and two thermogravimetric systems for conducting corrosion tests in complex mixed gas environments, in steam and in the presence of deposits, and five facilities for metal dusting degradation Bookmark and Share The High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting include: High Pressure Test Facility for Metal Dusting Resistance:

374

30vol%SiC at Ultra-high Temperatures  

Science Conference Proceedings (OSTI)

Presentation Title, SiC-depletion in ZrB2-30vol%SiC at Ultra-high Temperatures. Author(s), K N Shugart, E. J. Opila. On-Site Speaker (Planned), K N Shugart.

375

High temperature solid electrolyte fuel cell configurations and interconnections  

DOE Patents (OSTI)

High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

Isenberg, Arnold O. (Forest Hills, PA)

1984-01-01T23:59:59.000Z

376

Enabling high-temperature nanophotonics for energy applications  

E-Print Network (OSTI)

The nascent field of high-temperature nanophotonics could potentially enable many important solid-state energy conversion applications, such as thermophotovoltaic energy generation, selective solar absorption, and selective ...

Yeng, YiXiang

377

Mold, flow, and economic considerations in high temperature precision casting  

E-Print Network (OSTI)

Casting high temperature alloys that solidify through a noticeable two phase region, specifically platinum-ruthenium alloys, is a particularly challenging task due to their high melting temperature and this necessitates ...

Humbert, Matthew S

2013-01-01T23:59:59.000Z

378

Cryogenic deformation of high temperature superconductive composite structures  

DOE Patents (OSTI)

An improvement in a process of preparing a composite high temperature oxide superconductive wire is provided and involves conducting at least one cross-sectional reduction step in the processing preparation of the wire at sub-ambient temperatures.

Roberts, Peter R. (Groton, MA); Michels, William (Brookline, MA); Bingert, John F. (Jemez Springs, NM)

2001-01-01T23:59:59.000Z

379

Thermodynamics and Transport Phenomena in High Temperature Steam Electrolysis Cells  

DOE Green Energy (OSTI)

Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technology will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.

James E. O'Brien

2012-03-01T23:59:59.000Z

380

DEVELOPMENT OF HIGH TEMPERATURE ULTRASONIC TRANSDUCER FOR STRUCTURAL HEALTH MONITORING  

Science Conference Proceedings (OSTI)

Structural health monitoring (SHM) techniques are needed to maintain the reliability of aging power plants for long term operation. The high temperature transducers are necessary to realize SHM (monitor wall thickness of the pipings

A. Baba; C. T. Searfass; B. R. Tittmann

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature syngas cleanup" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Ir-based alloys for ultra-high temperature applications ...  

Site Map; Printable Version; Share this resource. Send a link to Ir-based alloys for ultra-high temperature applications - Energy Innovation Portalto someone by E-mail

382

Electronic properties of doped Mott insulators and high temperature superconductors  

E-Print Network (OSTI)

High-temperature superconducting cuprates, which are the quintessential example of a strongly correlated system and the most extensively studied materials after semiconductors, spurred the development in the fields of ...

Ribeiro, Tiago Castro

2005-01-01T23:59:59.000Z

383

Comparative Assessment of Direct Drive High Temperature Superconductin...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, LLC. Contract No. DE-AC36-08GO28308 Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines B....

384

Stability and quench protection of high-temperature superconductors  

E-Print Network (OSTI)

In the design and operation of a superconducting magnet, stability and protection are two key issues that determine the magnet's reliability and safe operation. Although the high-temperature superconductor (HTS) is considered ...

Ang, Ing Chea

2006-01-01T23:59:59.000Z

385

Toward material-specific simulations of high temperature superconductivity  

Science Conference Proceedings (OSTI)

High temperature superconductors could potentially revolutionize the use and transmission of electric power. This along with intriguing scientific questions have motivated an enormous research effort over the past twenty years, since the discovery of ...

Thomas C. Schulthess

2006-11-01T23:59:59.000Z

386

HYFIRE: a tokamak/high-temperature electrolysis system  

DOE Green Energy (OSTI)

The HYFIRE studies to date have investigated a number of technical approaches for using the thermal energy produced in a high-temperature Tokamak blanket to provide the electrical and thermal energy required to drive a high-temperature (> 1000/sup 0/C) water electrolysis process. Current emphasis is on two design points, one consistent with electrolyzer peak inlet temperatures of 1400/sup 0/C, which is an extrapolation of present experience, and one consistent with a peak electrolyzer temperature of 1100/sup 0/C. This latter condition is based on current laboratory experience with high-temperature solid electrolyte fuel cells. Our major conclusion to date is that the technical integration of fusion and high-temperature electrolysis appears to be feasible and that overall hydrogen production efficiencies of 50 to 55% seem possible.

Fillo, J.A.; Powell, J.P.; Benenati, R.; Varljen, T.C.; Chi, J.W.H.; Karbowski, J.S.

1981-01-01T23:59:59.000Z

387

Description of a high temperature downhole fluid sampler  

DOE Green Energy (OSTI)

Downhole fluid samplers have been used for years with limited success in high temperature geothermal wells. This paper discusses the development and operating principles of a high temperature downhole fluid sampler, reliable at obtaining samples at temperatures of up to 350/sup 0/C. The sampler was used successfully for recovering a brine sample from a depth of 10,200 ft in the Salton Sea Scientific Drilling Project well.

Solbau, R.; Weres, O.; Hansen, L.; Dudak, B.

1986-05-01T23:59:59.000Z

388

Stimulus Funding Will Accelerate Cleanup In Idaho  

NLE Websites -- All DOE Office Websites (Extended Search)

STIMULUS FUNDING WILL STIMULUS FUNDING WILL ACCELERATE CLEANUP IN IDAHO Funding from the American Recovery and Reinvestment Act will do more than sustain employment at the U.S. Department of Energy's Idaho Site - it will accelerate cleanup. Click here to see larger image Inside the retrieval enclosure at Accelerated Retrieval Project-III Click on image to enlarge The Office of Environmental Management received $6 billon in additional funding under the "stimulus bill" passed earlier this year by Congress and signed by President Obama. The Idaho Site will receive $468 million of the EM funding. The funding will be used at DOE's Idaho Site to: Decontaminate and decommission buildings that have no useful mission. Accelerate removal of buried radioactive waste, which will be

389

Biogas Impurities and Cleanup for Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Impurities and Cleanup for Fuel Cells Impurities and Cleanup for Fuel Cells Dennis Papadias and Shabbir Ahmed Argonne National Laboratory Presented at the Biogas and Fuel Cells Workshop Golden, CO June 11-13, 2012 Biogas is the product of anaerobic decomposition of organic waste Municipal solid wastes (MSW)  For every 1 million tons of MSW: - 432,000 cubic feet per day of landfill gas (LFG) for a period of 20 years - 1 MW of electricity 1 Sewage sludge/waste water (WWTP or ADG)  A typical WWTP processes 100 gallons per day (GD) for every person served - 1 cubic foot of digester gas can be produced per 100 gallons of wastewater  100 kW of electricity 1 can be generated from 4.5 MGD of waste water Agricultural waste (i.e. dairy waste)  About 70-100 ft 3 /day of digester gas is produced

390

SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS  

DOE Green Energy (OSTI)

Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. The research team has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, we are currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter (January-March/99), in-situ formaldehyde generation and condensation with methyl propionate were tested over various catalysts and reaction conditions. The patent application is in preparation and the results are retained for future reports.

Makarand R. Gogate; James J. Spivey; Joseph R. Zoeller; Richard D. Colberg; Gerald N. Choi; Samuel S. Tam

1999-04-21T23:59:59.000Z

391

NREL Patents a Catalyst that Removes Syngas Tar, Boosting the Economics of Biofuels (Fact Sheet)  

DOE Green Energy (OSTI)

NREL has patented a catalyst that reforms tar into syngas, a breakthrough that can accelerate the process of getting biomass ready for fuel synthesis and use as a drop-in fuel.

Not Available

2013-08-01T23:59:59.000Z

392

Low Cost High-H2 Syngas Production for Power and Liquid Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost High-H2 Syngas Production for Power and Liquid Fuels Gas Technology Institute (GTI) Project Number: FE0011958 Project Description Proof-of-concept of a metal-polymeric...

393

Experimental and Computational Study of Catalytic Combustion of Methane-Air and Syngas-Air Mixtures.  

E-Print Network (OSTI)

??Catalytic combustion and conversion of methane (CH4) and Syngas (in our case, a gas mixture of H2, CO, CO2 and CH4) is characterized by the… (more)

Pathak, Saurav

2007-01-01T23:59:59.000Z

394

Production of Mixed Alcohols from Bio-syngas over Mo-based Catalyst  

Science Conference Proceedings (OSTI)

A series of Mo-based catalysts prepared by sol-gel method using citric acid as complexant were successfully applied in the high efficient production of mixed alcohols from bio-syngas

Song-bai Qiu; Wei-wei Huang; Yong Xu; Lu Liu; Quan-xin Li

2011-01-01T23:59:59.000Z

395

Survey of industrial coal conversion equipment capabilities: high-temperature, high-pressure gas purification  

SciTech Connect

In order to ensure optimum operating efficiencies for combined-cycle electric generating systems, it is necessary to provide gas treatment equipment capable of operating at high temperatures (>1000/sup 0/F) and high pressure (>10 atmospheres absolute). This equipment, when assembled in a process train, will be required to condition the inlet stream to a gas turbine to suitable levels of gas purity (removal of particulate matter, sulfur, nitrogen, and alkali metal compounds) so that it will be compatible with both environmental and machine constraints. In this work, a survey of the available and developmental equipment for the removal of particulate matter and sulfur compounds has been conducted. In addition, an analysis has been performed to evaluate the performance of a number of alternative process configurations in light of overall system needs. Results from this study indicate that commercially available, reliable, and economically competitive hot-gas cleanup equipment capable of conditioning raw product gas to the levels required for high-temperatue turbine operation will not be available for some time.

Meyer, J. P.; Edwards, M. S.

1978-06-01T23:59:59.000Z

396

Fabrication and Characterization of Uranium-based High Temperature Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

Fabrication and Characterization of Uranium-based High Temperature Reactor Fabrication and Characterization of Uranium-based High Temperature Reactor Fuel June 01, 2013 The Uranium Fuel Development Laboratory is a modern R&D scale lab for the fabrication and characterization of uranium-based high temperature reactor fuel. A laboratory-scale coater manufactures tri-isotropic (TRISO) coated fuel particles (CFPs), state-of-the-art materials property characterization is performed, and the CFPs are then pressed into fuel compacts for irradiation testing, all under a NQA-1 compliant Quality Assurance Program. After fuel kernel size and shape are measured by optical shadow imaging, the TRISO coatings are deposited via fluidized bed chemical vapor deposition in a 50-mm diameter conical chamber within the coating furnace. Computer control of temperature and gas composition ensures reproducibility

397

The Northwest Geysers High-Temperature Reservoir- Evidence For Active  

Open Energy Info (EERE)

Geysers High-Temperature Reservoir- Evidence For Active Geysers High-Temperature Reservoir- Evidence For Active Magmatic Degassing And Implications For The Origin Of The Geysers Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The Northwest Geysers High-Temperature Reservoir- Evidence For Active Magmatic Degassing And Implications For The Origin Of The Geysers Geothermal Field Details Activities (2) Areas (1) Regions (0) Abstract: Noble gas isotope abundances in steam from the Coldwater Creek field of the Northwest Geysers, California, show mixing between a nearly pure mid-ocean ridge (MOR) type magmatic gas with high 3He/4He and low radiogenic 40*Ar (R/Ra > 8.3 and 40*Ar/4He < 0.07), and a magmatic gas diluted with crustal gas (R/Ra 0.25). The

398

High-Temperature Downhole Tools | Open Energy Information  

Open Energy Info (EERE)

Tools Tools Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for High-Temperature Downhole Tools 2 Geothermal ARRA Funded Projects for High-Temperature Downhole Tools Geothermal Lab Call Projects for High-Temperature Downhole Tools Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

399

DOE Science Showcase - Understanding High-Temperature Superconductors |  

Office of Scientific and Technical Information (OSTI)

Understanding High-Temperature Superconductors Understanding High-Temperature Superconductors Credit: DOE Scientists have long worked to understand one of the great mysteries of modern physics - the origin and behavior of high-temperature superconductors (HTS) that are uniquely capable of transmitting electricity with zero loss when chilled to subzero temperatures. For decades there have been competing theories and misunderstandings of how HTS materials actually work and they have remained fundamentally puzzling to physicists. Solving this mystery has the potential to revolutionize the planet's energy infrastructure from generation to transmission and grid-scale storage. Recent technical breakthroughs in this quest are being discovered by DOE scientists and their collaborators. Read about HTS technology, basic

400

Potential uses for a high-temperature borehole gravimeter  

DOE Green Energy (OSTI)

It is possible to design a canister to cool a borehole gravimeter for use in geothermal and high-temperature (up to 350/sup 0/C) gas wells. Repeat surveys with such a gravimeter could (1) help estimate the extent of reservoir plugging in geothermal injection well after one year of operation and (2) detect compaction of a geothermal aquifer if the change in thickness of the aquifer exceeds 1 m. The instrument could be used together with conventional logging tools to evaluate radial dependence of density around a well, or to estimate gas-filled porosity around wells drilled with mud. A high-temperature borehole gravimeter could also be used to evaluate structure and stratigraphy around geothermal and high-temperature gas wells.

Hearst, J.R.; Kasameyer, P.W.; Owen, L.B.

1978-03-08T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature syngas cleanup" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalystes to Poisons form High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures  

DOE Green Energy (OSTI)

There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations.

Burton Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Janet ChakkamadathilMohandas; Wilson Shafer

2009-09-30T23:59:59.000Z

402

Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures  

DOE Green Energy (OSTI)

The successful adaptation of conventional cobalt and iron-based Fischer-Tropsch synthesis catalysts for use in converting biomass-derived syngas hinges in part on understanding their susceptibility to byproducts produced during the biomass gasification process. With the possibility that oil production will peak in the near future, and due to concerns in maintaining energy security, the conversion of biomass-derived syngas and syngas derived from coal/biomass blends to Fischer-Tropsch synthesis products to liquid fuels may provide a sustainable path forward, especially considering if carbon sequestration can be successfully demonstrated. However, one current drawback is that it is unknown whether conventional catalysts based on iron and cobalt will be suitable without proper development because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using an entrained-flow oxygen-blown gasifier) than solely from coal, other byproducts may be present in higher concentrations. The current project examines the impact of a number of potential byproducts of concern from the gasification of biomass process, including compounds containing alkali chemicals like the chlorides of sodium and potassium. In the second year, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities.

Burtron Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Dennis Sparks; Wilson Shafer

2010-09-30T23:59:59.000Z

403

Modeling of the reburning process using sewage sludge-derived syngas  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Gasification provides an attractive method for sewage sludges treatment. Black-Right-Pointing-Pointer Gasification generates a fuel gas (syngas) which can be used as a reburning fuel. Black-Right-Pointing-Pointer Reburning potential of sewage sludge gasification gases was defined. Black-Right-Pointing-Pointer Numerical simulation of co-combustion of syngases in coal fired boiler has been done. Black-Right-Pointing-Pointer Calculation shows that analysed syngases can provide higher than 80% reduction of NO{sub x}. - Abstract: Gasification of sewage sludge can provide clean and effective reburning fuel for combustion applications. The motivation of this work was to define the reburning potential of the sewage sludge gasification gas (syngas). A numerical simulation of the co-combustion process of syngas in a hard coal-fired boiler was done. All calculations were performed using the Chemkin programme and a plug-flow reactor model was used. The calculations were modelled using the GRI-Mech 2.11 mechanism. The highest conversions for nitric oxide (NO) were obtained at temperatures of approximately 1000-1200 K. The combustion of hard coal with sewage sludge-derived syngas reduces NO emissions. The highest reduction efficiency (>90%) was achieved when the molar flow ratio of the syngas was 15%. Calculations show that the analysed syngas can provide better results than advanced reburning (connected with ammonia injection), which is more complicated process.

Werle, Sebastian, E-mail: sebastian.werle@polsl.pl [Institute of Thermal Technology, Silesian University of Technology at Gliwice, 44-100 Gliwice, Konarskiego 22 (Poland)

2012-04-15T23:59:59.000Z

404

Enhanced durability of high-temperature desulfurization sorbents for moving-bed applications. Option 2 Program: Development and testing of zinc titanate sorbents  

SciTech Connect

One of the most advantageous configurations of the integrated gasification combined cycle (IGCC) power system is coupling it with a hot gas cleanup for the more efficient production of electric power in an environmentally acceptable manner. In conventional gasification cleanup systems, closely heat exchangers are necessary to cool down the fuel gases for cleaning, sometimes as low as 200--300{degree}F, and to reheat the gases prior to injection into the turbine. The result is significant losses in efficiency for the overall power cycle. High-temperature coal gas cleanup in the IGCC system can be operated near 1000{degree}F or higher, i.e., at conditions compatible with the gasifier and turbine components, resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for IGCC power systems in which mixed-metal oxides are currently being used as desulfurization sorbents. The objective of this contract is to identify and test fabrication methods and sorbent chemical compositions that enhance the long-term chemical reactivity and mechanical durability of zinc ferrite and other novel sorbents for moving-bed, high-temperature desulfurization of coal-derived gases. Zinc ferrite was studied under the base program of this contract. In the next phase of this program novel sorbents, particularly zinc titanate-based sorbents, are being studied under the remaining optional programs. This topical report summarizes only the work performed under the Option 2 program. In the course of carrying out the program, more than 25 zinc titanate formulations have been prepared and characterized to identify formulations exhibiting enhanced properties over the baseline zinc titanate formulation selected by the US Department of Energy.

Ayala, R.E.

1993-04-01T23:59:59.000Z

405

High-Temperature-High-Volume Lifting | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » High-Temperature-High-Volume Lifting Jump to: navigation, search Geothermal ARRA Funded Projects for High-Temperature-High-Volume Lifting Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

406

Vibration Combined High Temperature Cycle Tests for Capacitive MEMS Accelerometers  

E-Print Network (OSTI)

In this paper vibration combined high temperature cycle tests for packaged capacitive SOI-MEMS accelerometers are presented. The aim of these tests is to provide useful Design for Reliability information for MEMS designers. A high temperature test chamber and a chopper-stabilized read-out circuitry were designed and realized at BME - DED. Twenty thermal cycles of combined Temperature Cycle Test and Fatigue Vibration Test has been carried out on 5 samples. Statistical evaluation of the test results showed that degradation has started in 3 out of the 5 samples.

Szucs, Z; Hodossy, S; Rencz, M; Poppe, A

2008-01-01T23:59:59.000Z

407

Vibration Combined High Temperature Cycle Tests for Capacitive MEMS Accelerometers  

E-Print Network (OSTI)

In this paper vibration combined high temperature cycle tests for packaged capacitive SOI-MEMS accelerometers are presented. The aim of these tests is to provide useful Design for Reliability information for MEMS designers. A high temperature test chamber and a chopper-stabilized read-out circuitry were designed and realized at BME - DED. Twenty thermal cycles of combined Temperature Cycle Test and Fatigue Vibration Test has been carried out on 5 samples. Statistical evaluation of the test results showed that degradation has started in 3 out of the 5 samples.

Z. Szucs; G. Nagy; S. Hodossy; M. Rencz; A. Poppe

2008-01-07T23:59:59.000Z

408

Manhattan Project Truck Unearthed in Recovery Act Cleanup | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manhattan Project Truck Unearthed in Recovery Act Cleanup Manhattan Project Truck Unearthed in Recovery Act Cleanup Manhattan Project Truck Unearthed in Recovery Act Cleanup A Los Alamos National Laboratory (LANL) excavation crew working on an American Recovery and Reinvestment Act cleanup project has uncovered the remnants of a 1940s military truck buried in a Manhattan Project landfill. The truck was unearthed inside a sealed building where digging is taking place at Material Disposal Area B (MDA-B), the Lab's first hazardous and radioactive waste landfill. MDA-B was used from 1944 to 1948. Manhattan Project Truck Unearthed in Recovery Act Cleanup More Documents & Publications Los Alamos Lab Completes Excavation of Waste Disposal Site Used in the 1940s Protecting Recovery Act Cleanup Site During Massive Wildfire

409

Recovery Act Investment Accelerates Cleanup Work at DOE's Paducah Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investment Accelerates Cleanup Work at DOE's Paducah Investment Accelerates Cleanup Work at DOE's Paducah Site Recovery Act Investment Accelerates Cleanup Work at DOE's Paducah Site July 15, 2011 - 12:00pm Addthis UF6 piping deactivation The black inlet hose is attached to a negative air machine that allows Feed Plant cleanup workers to safely deactivate uranium hexafluoride (UF6) piping, seen at right of the lift supporting the crew. UF6 piping deactivation The black inlet hose is attached to a negative air machine that allows Feed Plant cleanup workers to safely deactivate uranium hexafluoride (UF6) piping, seen at right of the lift supporting the crew. Heavy equipment demo Heavy equipment demolishes the last part of the eastern third of the Feed Plant at the Paducah Site. Cleanup continues to prepare the remaining part of the complex, backgroundfor demolition later.

410

DOE Completes TRU Waste Cleanup at Bettis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRU Waste Cleanup at Bettis TRU Waste Cleanup at Bettis DOE Completes TRU Waste Cleanup at Bettis September 23, 2011 - 12:00pm Addthis Media Contact Deb Gill www.wipp.energy.gov 575-234-7270 CARLSBAD, N.M. - The U.S. Department of Energy (DOE) has successfully completed cleanup of all Cold War legacy transuranic (TRU) waste at the Bettis Atomic Power Laboratory (BAPL) near Pittsburgh, Pa., permanently disposing of it at the Waste Isolation Pilot Plant (WIPP). BAPL is the 20th site to be completely cleaned of legacy TRU waste. This milestone was achieved using approximately $640,000 of a $172 million investment from the American Recovery and Reinvestment Act to expedite legacy waste cleanup activities across the DOE complex. This summer, TRU waste cleanup was also completed at the Nuclear Radiation Development, LLC,

411

TRUEX process solvent cleanup with solid sorbents  

SciTech Connect

Solid sorbents, alumina, silica gel, and Amberlyst A-26 have been tested for the cleanup of degraded TRUEX-NPH solvent. A sodium carbonate scrub alone does not completely remove acidic degradation products from highly degraded solvent and cannot restore the stripping performance of the solvent. By following the carbonate scrub with either neutral alumina or Amberlyst A-26 anion exchange resin, the performance of the TRUEX-NPH is substantially restored. The degraded TRUEX-NPH was characterized before and after treatment by supercritical fluid chromatography. Its performance was evaluated by americium distribution ratios, phase-separation times, and lauric acid distribution coefficients. 17 refs., 2 figs., 5 tabs.

Tse, Pui-Kwan; Reichley-Yinger, L.; Vandegrift, G.F.

1989-01-01T23:59:59.000Z

412

Cyclone Performance for Reducing Biochar Concentrations in Syngas  

E-Print Network (OSTI)

Cotton gins have a readily available supply of biomass that is a by-product of cotton ginning. A 40 bph - cotton gin processing stripped cotton must manage 2,600 to 20,000 tonnes of cotton gin trash (CGT) annually. CGT contains approximately 16.3 MJ/kg (7000 Btu/lb.). CGT has the potential to serve as a renewable energy source. Gasification of biomasses such as CGT can offer processing facilities the opportunity to transform their waste biomass into electricity. The gasification of CGT yields 80% synthesis gas (syngas) and 20% biochar. The concentration of biochar in the syngas needs to be reduced prior to the direct fueling of an internal combustion engine driving a generator for electricity production. It was estimated that direct fueling of an internal combustion engine with syngas to drive the generator to produce electricity would cost $1M per megawatt (MW). In contrast, a 1MW system that consists of a boiler and steam turbine would cost $2M/MW. The current provisional patent for the TAMU fluidized bed gasification (FBG) unit uses a 1D2D and 1D3D cyclone for the removal of biochar. A cyclone test stand was designed and constructed to evaluate cyclone capture efficiencies of biochar. A statistical experiment design was used to evaluate cyclone performances for varying concentrations of biochar. A total of 24 tests for the 1D2D and 36 tests for the 1D3D cyclone were conducted at ambient conditions. Average collection efficiency for the 1D2D cyclone was 96.6% and 96.9% for the 1D3D cyclone. An analysis on the cyclone’s pressure drop was performed to compare the change in pressure drop from air only passing through the cyclone and when the cyclones are loaded with biochar. The average change in pressure drop for the 1D2D cyclone was a decrease of 74%, and the average change in pressure drop for the 1D3D cyclone was a decrease of 36%. An economic feasibility study was conducted to determine the price per kWh to produce electricity for a CGT fueled internal combustion engine power plant (ICPP) and a boiler and steam turbine power plant (SPP). The simulated cotton gin is a 40 bph rated facility operating for 2,000 hours a season (200% utilization) processing stripped cotton that yields approximately 180 kg/bale (400 lbs/bale) of CGT. Revenues consist of the electricity and natural gas expenses incurred during the ginning season, along with the extra electricity produced and sold back to the utility company at the whole price. Loan payments and operating costs include labor, maintenance, taxes, and insurance. Labor costs, the selling price of electricity and biochar are varied in the economic model. The ICPP has a NPV of $1,480,000, and the SPP has a NPV of -$160,000, under the base assumptions. The sensitivity analysis resulted in the selling price of electricity as having the largest change on the NPV for both of the power plants. The average predicted purchase price of electricity is $0.10/kWh for the twenty year simulation. The average price to produce electricity, with no source of revenue generation for the ICPP is $0.20/kWh and $0.26/kWh for the SPP.

Saucier, David Shane

2013-08-01T23:59:59.000Z

413

Assessment of Nuclear Safety Culture at the Idaho Cleanup Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oversight Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project May 2011 November 2012 Office of Safety and Emergency...

414

EM Risk and Cleanup Decision Making Presentation by Mark Gilbertson...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AND CLEANUP DECISION MAKING www.em.doe.gov 1 Mark Gilbertson Deputy Assistant Secretary for Site Restoration Office of Environmental Management May 31, 2012 Presented to...

415

Recovery Act funding accelerates cleanup of Idaho Site, Creates...  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act funding accelerates cleanup of Idaho Site, Creates jobs in community IDAHO FALLS American Recovery and Reinvestment Act (ARRA) funding has accelerated a project...

416

IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact: Brad Bugger (208) 526-0833 For Immediate Release: Wednesday, June 29, 2011 IDAHO OPERATIONS OFFICE NAMES NEW IDAHO CLEANUP PROJECT MANAGER Idaho Falls, ID The...

417

IMPORTANT CLEANUP PROJECT TO RESUME AT IDAHO NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

the Department of Energy for other cleanup work at the INL, including decontaminating and decommissioning three nuclear reactors - started in 2005 and completed last year. That...

418

Manhattan Project truck unearthed at landfill cleanup site  

NLE Websites -- All DOE Office Websites (Extended Search)

Phonebook Calendar Video Newsroom News Releases News Releases - 2011 April Manhattan project truck Manhattan Project truck unearthed at landfill cleanup site A LANL...

419

ORNL research reveals new challenges for mercury cleanup | ornl...  

NLE Websites -- All DOE Office Websites (Extended Search)

Jennifer Brouner Communications 865.241.0709 ORNL research reveals new challenges for mercury cleanup ORNL researchers are learning more about the microbial processes that convert...

420

Biomass Gas Cleanup Using a Therminator  

SciTech Connect

The objective of the project is to develop and demonstrate a novel fluidized-bed process module called a �¢����Therminator�¢��� to simultaneously destroy and/or remove tar, NH3 and H2S from raw syngas produced by a fluidized-bed biomass gasifier. The raw syngas contains as much as 10 g/m3 of tar, 4,000 ppmv of NH3 and 100 ppmv of H2S. The goal of the Therminator module would be to use promising regenerable catalysts developed for removing tar, ammonia, and H2S down to low levels (around 10 ppm). Tars are cracked to a non-condensable gas and coke that would deposit on the acid catalyst. We will deposit coke, much like a fluid catalytic cracker (FCC) in a petroleum refinery. The deposited coke fouls the catalyst, much like FCC, but the coke would be burned off in the regenerator and the regenerated catalyst would be returned to the cracker. The rapid circulation between the cracker and regenerator would ensure the availability of the required amount of regenerated catalyst to accomplish our goal. Also, by removing sulfur down to less than 10 ppmv, NH3 decomposition would also be possible in the cracker at 600-700���°C. In the cracker, tar decomposes and lays down coke on the acid sites of the catalyst, NH3 is decomposed using a small amount of metal (e.g., nickel or iron) catalyst incorporated into the catalyst matrix, and H2S is removed by a small amount of a metal oxide (e.g. zinc oxide or zinc titanate) by the H2S-metal oxide reaction to form metal sulfide. After a tolerable decline in activity for these reactions, the catalyst particles (and additives) are transported to the regenerator where they are exposed to air to remove the coke and to regenerate the metal sulfide back to metal oxide. Sulfate formation is avoided by running the regeneration with slightly sub-stoichiometric quantity of oxygen. Following regeneration, the catalyst is transported back to the cracker and the cycling continues. Analogous to an FCC reactor system, rapid cycling will allow the use of very active cracking catalysts that lose activity due to coking within the order of several seconds.

David C. Dayton; Atish Kataria; Rabhubir Gupta

2012-03-06T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature syngas cleanup" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries  

SciTech Connect

This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 ?m) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

2006-11-14T23:59:59.000Z

422

High Temperature coatings based on {beta}-NiAI  

Science Conference Proceedings (OSTI)

High temperature alloys are reviewed, focusing on current superalloys and their coatings. The synthesis, characerization, and oxidation performance of a NiAl–TiB{sub 2} composite are explained. A novel coating process for Mo–Ni–Al alloys for improved oxidation performance is examined. The cyclic oxidation performance of coated and uncoated Mo–Ni–Al alloys is discussed.

Severs, Kevin

2012-07-10T23:59:59.000Z

423

Preparation of high temperature gas-cooled reactor fuel element  

DOE Patents (OSTI)

This invention relates to a method for the preparation of high temperature gas-cooled reactor (HTGR) fuel elements wherein uncarbonized fuel rods are inserted in appropriate channels of an HTGR fuel element block and the entire block is inserted in an autoclave for in situ carbonization under high pressure. The method is particularly applicable to remote handling techniques.

Bradley, Ronnie A. (Oak Ridge, TN); Sease, John D. (Knoxville, TN)

1976-01-01T23:59:59.000Z

424

Free energy of Lorentz-violating QED at high temperature  

E-Print Network (OSTI)

In this paper we study the one- and two-loop contribution to the free energy in QED with the Lorentz symmetry breaking introduced via constant CPT-even Lorentz-breaking parameters at the high temperature limit. We find the impact of the Lorentz-violating term for the free energy and carry out a numerical estimation for the Lorentz-breaking parameter.

M. Gomes; T. Mariz; J. R. Nascimento; A. Yu. Petrov; A. F. Santos; A. J. da Silva

2009-10-23T23:59:59.000Z

425

AC Losses in the New High-Temperature Superconductors  

Science Conference Proceedings (OSTI)

This report addresses the properties of high-temperature ceramic oxide superconductors in low magnetic fields. It discusses ac losses in the superconducting and normal states, the influence of anisotropy, and a database for monitoring advances in superconductivity. The ac losses of the oxide superconductors were found to be excessive.

1989-03-17T23:59:59.000Z

426

Electronically conductive ceramics for high temperature oxidizing environments  

DOE Patents (OSTI)

This invention pertains to a high temperature, ceramic composition having electronic conductivity as measured by resistivity below about 500 ohm-cm, chemical stability particularly with respect to cathode conditions in a molten carbonate fuel cell, and composed of an alkali metal, transition metal oxide containing a dopant metal in the crystalline structure to replace a portion of the alkali metal or transition metal.

Kucera, G.H.; Smith, J.L.; Sim, J.W.

1983-11-10T23:59:59.000Z

427

High-temperature seal development for the share receiver  

DOE Green Energy (OSTI)

The development and experimental demonstration of a high-temperature seal for the SHARE ceramic dome cavity receiver is reported. The mechanical contact seal which was tested on one-foot diameter silicon carbide ceramic dome hardware at pressure differentials to four atmospheres and dome temperatures to 2200/sup 0/F (1200/sup 0/C) showed negligible leakage at expected receiver operating conditions.

Jarvinen, P. O.

1979-01-01T23:59:59.000Z

428

NUCLEAR RESONANT SCATTERING AT HIGH PRESSURE AND HIGH TEMPERATURE  

E-Print Network (OSTI)

NUCLEAR RESONANT SCATTERING AT HIGH PRESSURE AND HIGH TEMPERATURE JIYONG ZHAOa,Ã? , WOLFGANG, The University of Chicago, Chicago, IL 60637, USA We introduce the combination of nuclear resonant inelastic X the thermal radiation spectra fitted to the Planck radiation function up to 1700 K. Nuclear resonant

Shen, Guoyin

429

The Effect of Operational Voltage on a Solid Oxide Fuel Cell Operating on Coal Syngas Containing Trace Amounts of Phosphine.  

E-Print Network (OSTI)

??Electrolyte-supported Solid Oxide Fuel Cells have been proven capable of generating usable electricity when supplied with various fuels, including a synthetic fuel (syngas) generated from… (more)

Kaufman, Brian A.

2011-01-01T23:59:59.000Z

430

Catalytic Tri-reforming of Biomass-Derived Syngas to Produce Desired H2:CO Ratios for Fuel Applications.  

E-Print Network (OSTI)

??This study focuses on upgrading biomass derived syngas for the synthesis of liquid fuels using Fischer-Tropsch synthesis (FTS). The process includes novel gasification of biomass… (more)

Walker, Devin Mason

2012-01-01T23:59:59.000Z

431

HALLIBURTON SPERRY-SUN DOE HIGH TEMPERATURE LWD PROJECT  

SciTech Connect

The objective of this project was to build a high temperature, cost-effective, logging while drilling (HT-LWD) system with the ability to operate at 175 C with more than 100 hours mean time between failures (MTBF). Such a commercial real-time formation evaluation (FE) system would help operators to drill and produce hydrocarbon resources from moderately deep, hot reservoirs which otherwise might be uneconomic to drill. The project plan was to combine the existing Sperry-Sun high temperature directional and gamma logging system with lower temperature FE sensors which were upgraded to higher temperature operation as part of the project. The project was to be completed in two phases. Phase I included the development of the HT system, building two complete systems, demonstrating operational capability at 175 C and survivability at 200 C in the laboratory, and successfully testing the system in two low temperature field tests. Phase II was to test the system in a well with a bottom hole temperature of 175 C. The high temperature FE sensors developed as part of this project include gamma ray (DGR), resistivity (EWR-Phase 4), neutron (CTN), and density (SLD). The existing high temperature pulser and telemetry system was upgraded to accommodate the data and bandwidth requirements of the additional sensors. Environmental and lifetime testing of system components and modules indicates that system life and reliability goals will be substantially exceeded. The system has performed well in domestic and international high temperature wells (to 175 C). In addition to the sensor modules specified in the project contract, Sperry has now upgraded other system components to higher temperature as well. These include a LWD sonic sensor (BAT), pressure while drilling sensor (PWD), and a more powerful central system controller (CIM).

Ronald L. Spross

2005-03-15T23:59:59.000Z

432

A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas  

Office of Scientific and Technical Information (OSTI)

Timothy C. Merkel (Primary Contact) Timothy C. Merkel (Primary Contact) RTI P.O. Box 12194 Research Triangle Park, NC 27709 merkel@rti.org Tel (919) 485-2742 Fax (919) 541-8000 Raghubir P. Gupta RTI P.O. Box 12194 Research Triangle Park, NC 27709 gupta@rti.org Tel (919) 541-8023 Fax (919) 541-8000 Suresh C. Jain U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880 Morgantown, WV 26507 suresh.jain@netl.doe.gov Tel (304) 285-5431 Fax (304) 285-4403 Brian S. Turk RTI P.O. Box 12194 Research Triangle Park, NC 27709 bst@rti.org Tel (919) 541-8024 Fax (919) 541-8000 Daniel C. Cicero U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880 Morgantown, WV 26507 daniel.cicero@netl.doe.gov Tel (304) 285-4826 Fax (304) 285-4403 A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas

433

Synthesis of Methyl Methacrylate from Coal-Derived Syngas  

Science Conference Proceedings (OSTI)

Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. RTI has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, RTI is currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last month, RTI has finalized the design of a fixed-bed microreactor system for DME partial oxidation reactions. RTI incorporated some design changes to the feed blending system, so as to be able to blend varying proportions of DME and oxygen. RTI has also examined the flammability limits of DME-air mixtures. Since the lower flammability limit of DME in air is 3.6 volume percent, RTI will use a nominal feed composition of 1.6 percent in air, which is less than half the lower explosion limit for DME-air mixtures. This nominal feed composition is thus considered operationally safe, for DME partial oxidation reactions. RTI is also currently developing an analytical system for DME partial oxidation reaction system.

Gerald N. Choi; James J. Spivey; Jospeh R. Zoeller; Makarand R. Gogate; Richard D. Colberg; Samuel S. Tam

1998-04-17T23:59:59.000Z

434

High Temperature Superconductivity -- A Joint Feasibility Study for a Power Application with High-Temperature Superconducting Cable by Peco Energy  

Science Conference Proceedings (OSTI)

Practical realization of high temperature superconductivity (HTS) technology is within the electric power industry's reach. This report documents a feasibility study co-sponsored by PECO Energy Company (PECO) to assess a real-world underground transmission application of this technology.

1998-11-17T23:59:59.000Z

435

High Temperature Superconductivity -- A Joint Feasibility Study for a Power Application with High-Temperature Superconducting Cable by South Carolina  

Science Conference Proceedings (OSTI)

Practical realization of high temperature superconductivity (HTS) technology is within the reach of the electric power industry. This report documents a feasibility study co-sponsored by South Carolina Electric and Gas Company (SCE&G) to assess a real-world underground transmission application of this technology.

1998-11-17T23:59:59.000Z

436

Architecture synthesis basis for the Hanford Cleanup system: First issue  

SciTech Connect

This document describes a set of candidate alternatives proposed to accomplish the Hanford Cleanup system functions defined in a previous work. Development of alternatives is part of a sequence of system engineering activities which lead to definition of all the products which, when completed, accomplish the cleanup mission. The alternative set is developed to functional level four or higher depending on need.

Holmes, J.J. [comp.

1994-06-01T23:59:59.000Z

437

Safeguards Guidance for Prismatic Fueled High Temperature Gas Reactors (HTGR)  

National Nuclear Security Administration (NNSA)

5) 5) August 2012 Guidance for High Temperature Gas Reactors (HTGRs) with Prismatic Fuel INL/CON-12-26130 Revision 0 Safeguards-by-Design: Guidance for High Temperature Gas Reactors (HTGRs) With Prismatic Fuel Philip Casey Durst (INL Consultant) August 2012 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product,

438

Two Phase Transitions Make a High-Temperature Superconductor  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Phase Transitions Make a High-Temperature Superconductor Print Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first discovered 25 years ago and the current record holders for highest Tc. However, three groups of researchers who performed measurements on the same cuprate material recently joined forces to prove that this view is inaccurate. Their work showed that another phase transition actually exists at a higher temperature in the cuprate phase diagram, below which electrons, instead of pairing up, organize themselves in a drastically different way.

439

Two Phase Transitions Make a High-Temperature Superconductor  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Phase Transitions Make a High-Temperature Superconductor Print Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first discovered 25 years ago and the current record holders for highest Tc. However, three groups of researchers who performed measurements on the same cuprate material recently joined forces to prove that this view is inaccurate. Their work showed that another phase transition actually exists at a higher temperature in the cuprate phase diagram, below which electrons, instead of pairing up, organize themselves in a drastically different way.

440

Two Phase Transitions Make a High-Temperature Superconductor  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Phase Transitions Make a High-Temperature Superconductor Print Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first discovered 25 years ago and the current record holders for highest Tc. However, three groups of researchers who performed measurements on the same cuprate material recently joined forces to prove that this view is inaccurate. Their work showed that another phase transition actually exists at a higher temperature in the cuprate phase diagram, below which electrons, instead of pairing up, organize themselves in a drastically different way.

Note: This page contains sample records for the topic "high-temperature syngas cleanup" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Two Phase Transitions Make a High-Temperature Superconductor  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Phase Transitions Make a High-Temperature Superconductor Print Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first discovered 25 years ago and the current record holders for highest Tc. However, three groups of researchers who performed measurements on the same cuprate material recently joined forces to prove that this view is inaccurate. Their work showed that another phase transition actually exists at a higher temperature in the cuprate phase diagram, below which electrons, instead of pairing up, organize themselves in a drastically different way.

442

High temperature solar thermal technology: The North Africa Market  

DOE Green Energy (OSTI)

High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

Not Available

1990-12-01T23:59:59.000Z

443

Goa, India Permeability of Charnokite Rock at High Temperatures  

E-Print Network (OSTI)

ABSTRACT: Permeability at high temperature is a very important parameter to be considered for designing underground high level nuclear waste repository (HLW) in rock mass. The surrounding rock mass is exposed to heat radiated by HLW when it is buried underground and development or extension of micro-cracks takes place in the host rock due to rise in temperature. Keeping this in view, the permeability study was conducted for Charnokite rock at high temperatures in the range from room temperature, 30 to 200 o C. The cylindrical rock samples of 36mm diameter and 150mm in length were used as per the required size for the equipment permeameter, TEMCO, USA. Total thirty rock samples were tested at various temperatures using nitrogen gas as fluid. The permeability tests were conducted at confining pressure of around 4MPa in order to simulate the horizontal in situ stress conditions in Charnokite rock at the depth of 400m for construction of HLW repository. 1

R. D. Dwivedi; R. K. Goel; A. Swarup; V. V. R. Prasad; R. K. Bajpai; P. K. Narayan; V. Arumugam

2008-01-01T23:59:59.000Z

444

Materials Degradation Studies for High Temperature Steam Electrolysis Systems  

DOE Green Energy (OSTI)

Experiments are currently in progress to assess the high temperature degradation behavior of materials in solid oxide electrolysis systems. This research includes the investigation of various electrolysis cell components and balance of plant materials under both anodic and cathodic gas atmospheres at temperatures up to 850°C. Current results include corrosion data for a high temperature nickel alloy used for the air-side flow field in electrolysis cells and a commercial ferritic stainless steel used as the metallic interconnect. Three different corrosion inhibiting coatings were also tested on the steel material. The samples were tested at 850ºC for 500 h in both air and H2O/H2 atmospheres. The results of this research will be used to identify degradation mechanisms and demonstrate the suitability of candidate materials for long-term operation in electrolysis cells.

Paul Demkowicz; Pavel Medvedev; Kevin DeWall; Paul Lessing

2007-06-01T23:59:59.000Z

445

Hydrogen production from fusion reactors coupled with high temperature electrolysis  

DOE Green Energy (OSTI)

The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and complement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Processes which may be considered for this purpose include electrolysis, thermochemical decomposition or thermochemical-electrochemical hybrid cycles. Preliminary studies at Brookhaven indicate that high temperature electrolysis has the highest potential efficiency for production of hydrogen from fusion. Depending on design electric generation efficiencies of approximately 40 to 60 percent and hydrogen production efficiencies of approximately 50 to 70 percent are projected for fusion reactors using high temperature blankets.

Fillo, J A; Powell, J R; Steinberg, M

446

Operating high temperature (1000/sup 0/C) electrolysis demonstration unit  

SciTech Connect

Phase I of the BNL Fusion Synfuel Demonstration Program has been the successful construction and demonstration of a 100-W electrically-heated, high-temperature electrolysis unit operating at a temperature of 1000/sup 0/C. The high-temperature electrolyzer demonstration unit consists of 34 yttria-stabilized zirconia tubes contained in a 15-cm (od), 30-cm long INCONEL pressure vessel. The tubes are 25-cm long (active length), 0.64-cm (od), and coated on the inside with platinum to form the oxygen electrode and coated on the outside with nickel to form the hydrogen electrode. The 1000/sup 0/C steam is raised by electrically heating water. The system is designed to produce approx. 6 cc/s of hydrogen.

Horn, F.L.; Powell, J.R.; Fillo, J.A.

1981-01-01T23:59:59.000Z

447

NETL: Mercury Emissions Control Technologies - Enhanced High Temperature  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced High Temperature Mercury Oxidation and Enhanced High Temperature Mercury Oxidation and In-Situ Active Carbon Generation for Low Cost Mercury Capture Mercury oxidation phenomenon and the studies of this phenomenon have generally focused on lower temperatures, typically below 650°F. This has been based on the mercury vapor equilibrium speciation curve. The baseline extents of mercury oxidation as reported in the ICR dataset and observed during subsequent tests has shown a tremendous amount of scatter. The objective of this project is to examine, establish and demonstrate the effect of higher temperature kinetics on mercury oxidation rates. Further, it is the objective of this project to demonstrate how the inherent mercury oxidation kinetics can be influenced to dramatically increase the mercury oxidation.

448

Adaptable Sensor Packaging for High Temperature Fossil Fuel Energy System  

NLE Websites -- All DOE Office Websites (Extended Search)

Adaptable Sensor Packaging for High Adaptable Sensor Packaging for High Temperature Fossil Fuel Energy Systems Background The Advanced Research Sensors and Controls Program is leading the effort to develop sensing and control technologies and methods to achieve automated and optimized intelligent power systems. The program is led by the U.S. Department of Energy (DOE) Office of Fossil Energy National Energy Technology Laboratory (NETL) and is implemented through research and development agreements with other

449

Amorphous Alloy Membranes for High Temperature Hydrogen Separations  

NLE Websites -- All DOE Office Websites (Extended Search)

for High for High Temperature Hydrogen Separations Background Coal and biomass are readily available in the United States and can be mixed for thermal processing to produce hydrogen and power. The produced hydrogen can be sent directly to a fuel cell for highly efficient and environmentally clean power generation. For coal and biomass to become economically viable sources of hydrogen, more efficient production processes need to be developed. To meet this

450

Sealed glass coating of high temperature ceramic superconductors  

DOE Patents (OSTI)

A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

Wu, Weite (Tainan, TW); Chu, Cha Y. (Garnerville, NY); Goretta, Kenneth C. (Downers Grove, IL); Routbort, Jules L. (Darien, IL)

1995-01-01T23:59:59.000Z

451

Anode for a secondary, high-temperature electrochemical cell  

DOE Patents (OSTI)

A high-temperature, secondary electrochemical cell includes an anode containing lithium, an electrolyte containing lithium ions and a cathode containing a chalcogen material such as sulfur or a metallic sulfide. The anode includes a porous substrate formed of, for instance, a compacted mass of entangled metallic fibers providing interstitial crevices for receiving molten lithium metal. The surfaces of the interstitial crevices are provided with a coating of cobalt metal to enhance the retention of the molten lithium metal within the substrate.

Vissers, Donald R. (Naperville, IL); Tani, Benjamin S. (Chicago, IL)

1976-01-01T23:59:59.000Z

452

High-Temperature Thermodynamic Data for Species in Aqueous Solution  

Science Conference Proceedings (OSTI)

This report summarizes the results of experimental and theoretical research on the high-temperature thermodynamic properties of aqueous species important to nuclear reactor water chemistry. Methods of predicting thermodynamic functions are presented for electrolytes up to 300 degrees Celsius for use in supplementing experimental data. The report includes tables (up to 300 degrees Celsius) of (1) important equilibrium constants for 78 reactions encountered in corrosion and precipitation in nuclear reactor...

1982-05-01T23:59:59.000Z

453

High temperature superconductivity in metallic region near Mott transition  

E-Print Network (OSTI)

The spin-singlet superconductivity without phonons is examined in consideration of correlations on an extended Hubbard model. It is shown that the superconductivity requires not only the total correlation should be strong enough but also the density of state around Fermi energy should be large enough, which shows that the high temperature superconductivity could only be found in the metallic region near the Mott metal insulator transition (MIT). Other properties of superconductors are also discussed on these conclusions.

Tian De Cao

2009-06-11T23:59:59.000Z

454

High temperature sodium testing of the CRBR prototype primary pump  

Science Conference Proceedings (OSTI)

Qualification testing in sodium of the CRBR primary pump was conducted through 1982. This paper presents an overview of the test program, a description of the Sodium Pump Test Facility (largest of its kind in the world), a brief description of the test article and summary overview of results. Of special interest were the high temperature gas convection tests and the extensive flow/speed control (dynamic) tests. Special innovative test methods were employed to investigate these phenomena.

Tessier, M.J.; Grimaldi, J.L.

1983-01-01T23:59:59.000Z

455

Guide for High Temperature Operation of Overhead Lines: 2012 Updates  

Science Conference Proceedings (OSTI)

This Guide assists users in raising the capacities of overhead transmission lines by increasing the conductor temperature. It is based on a wealth of knowledge accumulated from extensive research conducted internally at the Electric Power Research Institute (EPRI), information from manufacturers, and results from research conducted outside of EPRI. The Guide has evolved from a collection of numerous EPRI reports published in the past, including Effect of High-Temperature Cycling on Conductor ...

2012-12-12T23:59:59.000Z

456

Accelerated Aging Test of High-Temperature Conductor and Connectors  

Science Conference Proceedings (OSTI)

As part of the research on high-temperature low-sag (HTLS) advanced conductors, this project investigates the long-term performance of commercially available advanced conductors to complement the field demonstration project, which provided information on handling and stringing of these conductors. The report provides preliminary results from the accelerated aging tests conducted on various types of HTLS conductors and their connectors. The objective of the accelerated aging tests is to determine the ...

2012-12-12T23:59:59.000Z

457

HTC (High-Temperature Conductor) Matrix: Version 4.1  

Science Conference Proceedings (OSTI)

EPRI’s HTC Matrix software is a Windows application designed to provide the user with quick and directed access to all of the information developed under several EPRI projects investigating the effects of high temperature operation of conductors. The research results have been published in several technical reports.  Benefits & ValueThe user can determine whether a certain type of connectors can be used at a specific ...

2012-11-05T23:59:59.000Z

458

Guide for Selection and Application of High-Temperature Conductors  

Science Conference Proceedings (OSTI)

Extensive research has been conducted by the Electric Power Research Institute (EPRI) on high-temperature low-sag (HTLS) conductors. Much knowledge has been gained on this type of conductor since EPRI initiated its first HTLS conductor research project in 2004. The projects on HTLS conductors completed to date include field demonstration, material study, and short-term to long-term performance evaluations. These projects were conducted under different funding arrangements and were sometimes ...

2012-12-31T23:59:59.000Z

459

Thermal Models of Overhead Transmission Lines Operating at High Temperatures  

Science Conference Proceedings (OSTI)

Bare stranded overhead transmission line conductorsreferred to as aluminum conductor steel reinforced ACSRtypically consist of at least two layers of aluminum strands, helically stranded around a core consisting of steel wires. The current that flows through such conductors is located predominantly in the aluminum layers while the steel core provides mechanical strength and limits sag at high temperature. The lack of new line construction combined with the decoupling of transmission from power generatio...

2010-12-23T23:59:59.000Z

460

Effect of High Temperature Cycling on Conductor Systems  

Science Conference Proceedings (OSTI)

One of the alternatives for increasing power flow on an existing transmission line is to raise the operating temperature of its conductor. The effects of high operating temperature on the conductor, however, include loss in conductor strength and reduction in conductor clearance to ground. The high temperature also affects the short- and long-term performance of the conductor connections and conductor accessories. All of these effects must be assessed for an overhead line to operate safely and reliably a...

2007-12-18T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature syngas cleanup" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

High-temperature hydrothermal systems in West Yunnan Province, China  

SciTech Connect

There are more than 660 thermal springs in West Yunnan Province, 30 of which are high-temperature hydrothermal systems with reservoir temperatures above 150/sup 0/C. All thermal springs in West Yunnan are under the control of tectonics, most of them distributed at anticlinoria of metamorphic rocks and granites. This paper discusses the relationship between thermal areas and tectonics, the correlation between thermal springs in West Yunnan and North Thailand, and the geothermal prospects in West Yunnan.

Laio, Z.; Tong, W.; Liu, S.; Zhao, F.

1986-01-01T23:59:59.000Z

462

Secret high-temperature reactor concept for inertial fusion  

DOE Green Energy (OSTI)

The goal of our SCEPTRE project was to create an advanced second-generation inertial fusion reactor that offers the potential for either of the following: (1) generating electricity at 50% efficiency, (2) providing high temperature heat (850/sup 0/C) for hydrogen production, or (3) producing fissile fuel for light-water reactors. We have found that these applications are conceptually feasible with a reactor that is intrinsically free of the hazards of catastrophic fire or tritium release.

Monsler, M.J.; Meier, W.R.

1983-01-01T23:59:59.000Z

463

Guide for Operating Overhead Lines at High Temperatures  

Science Conference Proceedings (OSTI)

This Guide assists users in raising the capacities of overhead transmission lines by increasing the conductor temperature. It is based on a wealth of knowledge accumulated from extensive research conducted internally at the Electric Power Research Institute (EPRI), information from manufacturers, and results from research conducted outside of EPRI. The Guide evolved from a collection of numerous EPRI reports published in the past, for example, Effect of High-Temperature Cycling on Conductor Systems (EPRI...

2010-12-13T23:59:59.000Z

464

Expansion Joint Concepts for High Temperature Insulation Systems  

E-Print Network (OSTI)

As high temperature steam and process piping expands with heat, joints begin to open between the insulation sections, resulting in increased energy loss and possible unsafe surface temperatures. Many different expansion joint designs are presently in use for both single and double layer insulation construction. However, due to the installation cost reduction associated with single layer systems and increased thickness capabilities of insulation manufacturers, much attention is being given to utilizing single layer construction as much as possible.

Harrison, M. R.

1980-01-01T23:59:59.000Z

465

Ultra high temperature instrumentation amplifier components final report  

DOE Green Energy (OSTI)

In order to develop a downhole instrumentation amplifier to support geothermal well logging without thermal protection, all the components required were tested over the temperature range of 25 to 500/sup 0/C. The components tested were ceramic vacuum tubes, resistors, capacitors, insulated hook-up wire, circuit boards, terminals, connectors, feedthroughs, thermal switch, magnet wire, and high temperature coatings and cements. Details of the tests are presented for all components. (MHR)

Kelly, R.D.; Morse, C.P.; Cannon, W.L.

1977-09-01T23:59:59.000Z

466

Performance of solid oxide fuel cells operaated with coal syngas provided directly from a gasification process  

Science Conference Proceedings (OSTI)

Solid oxide fuel cells (SOFCs) are being developed for integrated gasification power plants that generate electricity from coal at 50% efficiency. The interaction of trace metals in coal syngas with Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but test data from direct coal syngas exposure are sparsely available. This effort evaluates the significance of performance losses associated with exposure to direct coal syngas. Specimen are operated in a unique mobile test skid that is deployed to the research gasifier at NCCC in Wilsonville, AL. The test skid interfaces with a gasifier slipstream to deliver hot syngas to a parallel array of twelve SOFCs. During the 500 h test period, all twelve cells are monitored for performance at four current densities. Degradation is attributed to syngas exposure and trace material attack on the anode structure that is accelerated at increasing current densities. Cells that are operated at 0 and 125 mA cm{sup 2} degrade at 9.1 and 10.7% per 1000 h, respectively, while cells operated at 250 and 375 mA cm{sup 2} degrade at 18.9 and 16.2% per 1000 h, respectively. Spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

Hackett, G.; Gerdes, K.; Song, X.; Chen, Y.; Shutthanandan, V.; Englehard, M.; Zhu, Z.; Thevuthasan, S.; Gemmen, R.

2012-01-01T23:59:59.000Z

467

Idaho Site Advances Recovery Act Cleanup after Inventing Effective  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Advances Recovery Act Cleanup after Inventing Effective Site Advances Recovery Act Cleanup after Inventing Effective Treatment Idaho Site Advances Recovery Act Cleanup after Inventing Effective Treatment For the first time in history, workers at the Idaho site achieved success in the initial cleanup of potentially dangerous sodium in a decommissioned nuclear reactor using an innovative treatment process. The American Recovery and Reinvestment Act invested $70 million in the project, which employs 130 workers. DOE officials cheered the outcome and praised the team that designed and implemented the innovative sodium treatment for which the DOE has filed a provisional patent application. Idaho Site Advances Recovery Act Cleanup after Inventing Effective Treatment More Documents & Publications Experimental Breeder Reactor-II Primary Tank System Wash Water Workshop

468

EM, UCOR Quickly Reconcile Oak Ridge Cleanup Contract | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM, UCOR Quickly Reconcile Oak Ridge Cleanup Contract EM, UCOR Quickly Reconcile Oak Ridge Cleanup Contract EM, UCOR Quickly Reconcile Oak Ridge Cleanup Contract July 12, 2012 - 12:00pm Addthis DOE and UCOR employees held an event today celebrating the recent contract reconciliation. DOE and UCOR employees held an event today celebrating the recent contract reconciliation. OAK RIDGE, Tenn. - At a ceremony today, Oak Ridge's Environmental Management (EM) program and its prime contractor, URS | CH2M Oak Ridge, LLC (UCOR) celebrated the completion of the site's reconciled cleanup contract. The newly aligned contract accurately specifies the projects and activities that the site's cleanup contractor will perform. "The speedy completion of this process is a testament to DOE and UCOR contract teams and managers," said Sue Cange, acting manager of the Oak

469

The Application of NEPA to CERCLA Cleanups | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Application of NEPA to CERCLA Cleanups The Application of NEPA to CERCLA Cleanups The Application of NEPA to CERCLA Cleanups On March 31, 1994, officials from the Departrnent of Energy (DOE), the Environmental Protection Agency (EPA), and the Council on Environmental Quality (CEQ) met with then Acting Assistant Attorney General Lois Schiffer and other representatives of the Department of Justice (DOJ) to discuss the issue of the relationship of the National Environmental Policy Act (NEPA) to the cleanup of federal facilities