Powered by Deep Web Technologies
Note: This page contains sample records for the topic "high-temperature reservoir evidence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The Northwest Geysers High-Temperature Reservoir- Evidence For Active  

Open Energy Info (EERE)

Geysers High-Temperature Reservoir- Evidence For Active Geysers High-Temperature Reservoir- Evidence For Active Magmatic Degassing And Implications For The Origin Of The Geysers Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The Northwest Geysers High-Temperature Reservoir- Evidence For Active Magmatic Degassing And Implications For The Origin Of The Geysers Geothermal Field Details Activities (2) Areas (1) Regions (0) Abstract: Noble gas isotope abundances in steam from the Coldwater Creek field of the Northwest Geysers, California, show mixing between a nearly pure mid-ocean ridge (MOR) type magmatic gas with high 3He/4He and low radiogenic 40*Ar (R/Ra > 8.3 and 40*Ar/4He < 0.07), and a magmatic gas diluted with crustal gas (R/Ra 0.25). The

2

HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network (OSTI)

on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

Schroeder, R.C.

2009-01-01T23:59:59.000Z

3

Numerical investigations into the formation of a high temperature reservoir''  

DOE Green Energy (OSTI)

This paper summarizes an ongoing numerical modeling effort aimed at describing some of the thermodynamic conditions observed in vapor- dominated reservoirs, including the formation of a high temperature reservoir (HTR) beneath the typical'' reservoir. The modeled system begins as a hot water geothermal reservoir, and evolves through time into a vapor-dominated reservoir with a HTR at depth. This approach taken here to develop a vapor-dominated system is similar to that of Pruess (1985), and involves induced boiling through venting. The reservoir description is intentionally generic, but serves to describe a means of evolution of conditions observed (in particular) The Geysers.

Shook, M.

1993-01-01T23:59:59.000Z

4

Numerical investigations into the formation of a ``high temperature reservoir``  

DOE Green Energy (OSTI)

This paper summarizes an ongoing numerical modeling effort aimed at describing some of the thermodynamic conditions observed in vapor- dominated reservoirs, including the formation of a high temperature reservoir (HTR) beneath the ``typical`` reservoir. The modeled system begins as a hot water geothermal reservoir, and evolves through time into a vapor-dominated reservoir with a HTR at depth. This approach taken here to develop a vapor-dominated system is similar to that of Pruess (1985), and involves induced boiling through venting. The reservoir description is intentionally generic, but serves to describe a means of evolution of conditions observed (in particular) The Geysers.

Shook, M.

1993-04-01T23:59:59.000Z

5

Pressure testing of a high temperature naturally fractured reservoir  

DOE Green Energy (OSTI)

Los Alamos National Laboratory has conducted a number of pumping and flow-through tests at the Hot Dry Rock (HDR) test site at Fenton Hill, New Mexico. These tests consisted of injecting fresh water at controlled rates up to 12 BPM (32 l/s) and surface pressures up to 7000 psi (48 MPa) into the HDR formation at depths from 10,000 to 13,180 feet (3050 to 4000 m). The formation is a naturally fractured granite at temperatures of about 250/sup 0/C. The matrix porosity is <1% and permeability is on the order of 1 nD. Hence most of the injected fluid is believed to move through fractures. There has been no evidence of fracture breakdown phenomena, and hence it is believed that preexisting joints in the formation are opened by fluid injection. Water losses during pumping are significant, most likely resulting from flow into secondary fractures intersecting the main fluid conducting paths. The pressure-time response observed in these tests can be interpreted in terms of non-isothermal, fracture-dominated flow. As the fluid pressure increases from small values to those comparable to fracturing pressures, the formation response changes from linear fracture flow to the highly nonlinear situation where fracture lift-off occurs. A numerical heat and mass flow model was used to match the observed pressure response. Good matches were obtained for pressure buildup and shut-in data by assigning pressure dependent fracture and leak-off permeabilities. 12 refs., 5 figs., 2 tabs.

Kelkar, S.M.; Zyvoloski, G.A.; Dash, Z.V.

1986-01-01T23:59:59.000Z

6

Application of magnetic method to assess the extent of high temperature geothermal reservoirs  

DOE Green Energy (OSTI)

The extent of thermally altered rocks in high temperature geothermal reservoirs hosted by young volcanic rocks can be assessed from magnetic surveys. Magnetic anomalies associated with many geothermal field in New Zealand and Indonesia can be interpreted in terms of thick (up to 1 km) demagnetized reservoir rocks. Demagnetization of these rocks has been confirmed by core studies and is caused by hydrothermal alteration produced from fluid/rock interactions. Models of the demagnetized Wairakei (NZ) and Kamojang (Indonesia) reservoirs are presented which include the productive areas. Magnetic surveys give fast and economical investigations of high temperature prospects if measurements are made from the air. The magnetic interpretation models can provide important constraints for reservoir models. Magnetic ground surveys can also be used to assess the extent of concealed near surface alteration which can be used in site selection of engineering structures.

Soengkono, S.; Hochstein, M.P.

1995-01-26T23:59:59.000Z

7

The Northwest Geysers High-Temperature Reservoir- Evidence For...  

Open Energy Info (EERE)

Login | Sign Up Wiki Browse Latinoamrica Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy...

8

Enhanced Oil Recovery in High Salinity High Temperature Reservoir by Chemical Flooding  

E-Print Network (OSTI)

Studying chemical enhanced oil recovery (EOR) in a high-temperature/high-salinity (HT/HS) reservoir will help expand the application of chemical EOR to more challenging environments. Until recently, chemical EOR was not recommended at reservoirs that contain high concentrations of divalent cations without the need to recondition the reservoir by flooding it with less saline/ less hardness brines. This strategy was found ineffective in preparing the reservoir for chemical flooding. Surfactants used for chemical flooding operating in high temperatures tend to precipitate when exposed to high concentrations of divalent cations and will partition to the oil phase at high salinities. In this study amphoteric surfactant was used to replace the traditionally used anionic surfactants. Amphoteric surfactants show higher multivalent cations tolerance with better thermal stability. A modified amphoteric surfactant with lower adsorption properties was evaluated for oil recovery. Organic alkali was used to eliminate the water softening process when preparing the chemical solution and reduce potential scale problems caused by precipitation due to incompatibility between chemical slug containing alkali and formation brine. Using organic alkali helped in minimizing softening required when preparing an alkali-surfactant-polymer (ASP) solution using seawater. Solution prepared with organic alkali showed the least injectivity decline when compared to traditional alkalis (NaOH and Na2CO3) and sodium metaborate. Adding organic alkali helped further reduce IFT values when added to surfactant solution. Amphoteric surfactant was found to produce low IFT values at low concentrations and can operate at high salinity / high hardness conditions. When mixed with polymer it improved the viscosity of the surfactant-polymer (SP) solution when prepared in high salinity mixing water (6% NaCl). When prepared in seawater and tested in reservoir temperature (95C) no reduction in viscosity was found. Unlike the anionic surfactant that causes reduction in viscosity of the SP solution at reservoir temperature. This will not require increasing the polymer concentration in the chemical slug. Unlike the case when anionic surfactant was used and more polymer need to be added to compensate the reduction in viscosity. Berea sandstone cores show lower recovery compared to dolomite cores. It was also found that Berea cores were more sensitive to polymer concentration and type and injectivity decline can be a serious issue during chemical and polymer injection. Dolomite did not show injectivity decline during chemical and polymer flooding and was not sensitive to the polymer concentration when a polymer with low molecular weight was used. CT scan was employed to study the displacement of oil during ASP, SP, polymer and surfactant flooding. The formation and propagation oil bank was observed during these core flood experiments. ASP and SP flooding showed the highest recovery, and formation and propagation of oil bank was clearer in these experiments compared to surfactant flooding. It was found that in Berea sandstone with a permeability range of 50 to 80 md that the recovery and fluid flow was through some dominating and some smaller channels. This explained the deviation from piston-like displacement, where a sharp change in saturation in part of the flood related to the dominated channels and tapered front with late arrival when oil is recovered from the smaller channels. It was concluded that the recovery in the case of sandstone was dominated by the fluid flow and chemical propagation in the porous media not by the effectiveness of the chemical slug to lower the IFT between the displacing fluid and oil.

Bataweel, Mohammed Abdullah

2011-12-01T23:59:59.000Z

9

High temperature refrigerator  

SciTech Connect

A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

Steyert, Jr., William A. (Los Alamos, NM)

1978-01-01T23:59:59.000Z

10

High Temperature | Open Energy Information  

Open Energy Info (EERE)

Temperature Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: High Temperature Dictionary.png High Temperature: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Reservoir fluid between 230°C and 300°C is considered by Sanyal to be "high temperature." "Above a temperature level of 230°C, the reservoir would be expected to become two-phase at some point during exploitation. The next higher

11

Ultra High Temperature | Open Energy Information  

Open Energy Info (EERE)

Ultra High Temperature Ultra High Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Ultra High Temperature Dictionary.png Ultra High Temperature: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Reservoir fluid greater than 300°C is considered by Sanyal to be "ultra high temperature". "Such reservoirs are characterized by rapid development of steam saturation in the reservoir and steam fraction in the mobile fluid phase upon

12

High Temperature Capacitor Development  

Science Conference Proceedings (OSTI)

The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a unique high-temperature electrolyte developed during the course of the program. During this program the feasibility of operating a high voltage hybridized capacitor at 230oC was demonstrated. Capacitor specifications were established in conjunction with potential capacitor users. A method to allow for capacitor operation at both ambient and elevated temperatures was demonstrated. The program was terminated prior to moving into Phase II due to a lack of cost-sharing funds.

John Kosek

2009-06-30T23:59:59.000Z

13

High Temperatures & Electricity Demand  

E-Print Network (OSTI)

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

14

High Temperature Corrosion  

Science Conference Proceedings (OSTI)

Oct 18, 2010 ... Protective Coatings for Corrosion Resistance at High Temperatures: Vilupanur Ravi1; Thuan Nguyen1; Alexander Ly1; Kameron Harmon1;...

15

Electrolysis High Temperature Hydrogen  

INL has developed a high-temperature process the utilizes solid oxide fuel cells that are operated in the electrolytic mode. The first process includes combining a high-temperature heat source (e.g. nuclear reactor) with a hydrogen production facility ...

16

High temperature sensor  

DOE Patents (OSTI)

A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

Tokarz, Richard D. (West Richland, WA)

1982-01-01T23:59:59.000Z

17

High-temperature sensor  

DOE Patents (OSTI)

A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

Not Available

1981-01-29T23:59:59.000Z

18

High temperature furnace  

DOE Patents (OSTI)

A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

Borkowski, Casimer J. (Oak Ridge, TN)

1976-08-03T23:59:59.000Z

19

High Temperature ESP Monitoring  

SciTech Connect

The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 C based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 C system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 C.

Jack Booker; Brindesh Dhruva

2011-06-20T23:59:59.000Z

20

Geochemistry of Aluminum in High Temperature Brines  

DOE Green Energy (OSTI)

geothermal industry to predict the chemistry ofthe reservoirs; these calculations will be tested for reliability against our laboratory results and field observations. Moreover, based on the success of the experimental methods developed in this program, we intend to use our unique high temperature pH easurement capabilities to make kinetic and equilibrium studies of pH-dependent aluminosilicate transformation reactions and other pH-dependent heterogeneous reactions.

Benezeth, P.; Palmer, D.A.; Wesolowski, D.J.

1999-05-18T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature reservoir evidence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

High temperature thermometric phosphors  

SciTech Connect

A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

Allison, Stephen W. (Knoxville, TN); Cates, Michael R. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN); Gillies, George T. (Earlysville, VA)

1999-03-23T23:59:59.000Z

22

Fracturing fluid high-temperature breaker for improving well performance  

Science Conference Proceedings (OSTI)

Oxidative breakers are currently being used in fracturing treatments to reduce polymeric gel damage in high-temperature reservoirs. Dissolved high-temperature oxidative breakers are very reactive at high temperatures (275 to 350 F), typically requiring less than 0.25 lbm/1,000 gal of fluid. Recent introduction of a new nonpersulfate oxidative high-temperature encapsulated breaker (HTEB) provides controlled degradation of the fracturing fluid polymers. Laboratory tests show viscosity reduction and delayed release of active oxidizer breaker. HTEB conductivity data show a two-fold increase in retained permeability at 300 F in a borate-crosslinked fluid system.

McConnell, B.

1994-05-01T23:59:59.000Z

23

SLAC National Accelerator Laboratory - High-temperature Superconductor...  

NLE Websites -- All DOE Office Websites (Extended Search)

evidence yet that a puzzling gap in the electronic structures of some high-temperature superconductors could indicate a new phase of matter. Understanding this "pseudogap" has...

24

High temperature interfacial superconductivity  

DOE Patents (OSTI)

High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

Bozovic, Ivan (Mount Sinai, NY); Logvenov, Gennady (Port Jefferson Station, NY); Gozar, Adrian Mihai (Port Jefferson, NY)

2012-06-19T23:59:59.000Z

25

High Temperature Superconductivity Partners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Temperature Superconductivity Partners High Temperature Superconductivity Partners Map showing DOE's partnersstakeholders in the High Temperature Superconductivity Program...

26

High Temperature and Electrical Properties  

Science Conference Proceedings (OSTI)

Mar 5, 2013... and Nanomaterials: High Temperature and Electrical Properties ... thermomechanical (or in cyclic power) loading of electronic devices is an...

27

Ultra High Temperature Ceramic Composites  

Science Conference Proceedings (OSTI)

Oct 9, 2012 ... These ceramics, often combined with 20-30% SiC, have been studied extensively in monolithic form, demonstrating excellent high-temperature...

28

High-temperature ceramic receivers  

DOE Green Energy (OSTI)

An advanced ceramic dome cavity receiver is discussed which heats pressurized gas to temperatures above 1800/sup 0/F (1000/sup 0/C) for use in solar Brayton power systems of the dispersed receiver/dish or central receiver type. Optical, heat transfer, structural, and ceramic material design aspects of the receiver are reported and the development and experimental demonstration of a high-temperature seal between the pressurized gas and the high-temperature silicon carbide dome material is described.

Jarvinen, P. O.

1980-01-01T23:59:59.000Z

29

High Temperature Optical Gas Sensing  

NLE Websites -- All DOE Office Websites (Extended Search)

Optical Gas Sensing Optical Gas Sensing Opportunity Research is active on optical sensors integrated with advanced sensing materials for high temperature embedded gas sensing applications. Patent applications have been filed for two inventions in this area and several other methods are currently under development. These technologies are available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Organizations or individuals with capabilities in optical sensor packaging for harsh environment and high temperature applications are encouraged to contact NETL to explore potential collaborative opportunities. Overview Contact NETL Technology Transfer Group techtransfer@netl.doe.gov

30

High temperature superconductor current leads  

DOE Patents (OSTI)

An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

Hull, John R. (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL)

1995-01-01T23:59:59.000Z

31

High-temperature plasma physics  

SciTech Connect

Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics.

Furth, H.P.

1988-03-01T23:59:59.000Z

32

High temperature lightweight foamed cements  

DOE Patents (OSTI)

Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

Sugama, Toshifumi.

1989-10-03T23:59:59.000Z

33

High temperature lightweight foamed cements  

DOE Patents (OSTI)

Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

Sugama, Toshifumi (Mastic Beach, NY)

1989-01-01T23:59:59.000Z

34

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

Boyd, Gary L. (Tempe, AZ)

1991-01-01T23:59:59.000Z

35

Geothermal high temperature instrumentation applications  

DOE Green Energy (OSTI)

A quick look at the geothermal industry shows a small industry producing about $1 billion in electric sales annually. The industry is becoming older and in need of new innovative solutions to instrumentation problems. A quick look at problem areas is given along with basic instrumentation requirements. The focus of instrumentation is on high temperature electronics.

Normann, R.A. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants (United States)

1998-06-11T23:59:59.000Z

36

High temperature electronic gain device  

SciTech Connect

An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

McCormick, J. Byron (Los Alamos, NM); Depp, Steven W. (Los Alamos, NM); Hamilton, Douglas J. (Tucson, AZ); Kerwin, William J. (Tucson, AZ)

1979-01-01T23:59:59.000Z

37

High temperature mineral fiber binder  

SciTech Connect

A modified phenol formaldehyde condensate is reacted with boric acid and cured in the presence of a polyfunctional nitrogeneous compound to provide a binder for mineral wool fibers which is particularly suited for thermal insulation products intended for high temperature service.

Miedaner, P.M.

1980-11-25T23:59:59.000Z

38

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

Boyd, Gary L. (Tempe, AZ)

1990-01-01T23:59:59.000Z

39

High temperature structural insulating material  

DOE Patents (OSTI)

A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

Chen, W.Y.

1984-07-27T23:59:59.000Z

40

High Temperature Heat Exchanger Project  

Science Conference Proceedings (OSTI)

The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

Anthony E. Hechanova, Ph.D.

2008-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature reservoir evidence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

High-temperature geothermal cableheads  

DOE Green Energy (OSTI)

Two high-temperature, corrosion-resistant logging cableheads which use metal seals and a stable fluid to achieve proper electrical terminations and cable-sonde interfacings are described. A tensile bar provides a calibrated yield point, and a cone assembly anchors the cable armor to the head. Electrical problems of the sort generally ascribable to the cable-sonde interface were absent during demonstration hostile-environment loggings in which these cableheads were used.

Coquat, J.A.; Eifert, R.W.

1981-11-01T23:59:59.000Z

42

HIGH TEMPERATURE MICROSCOPE AND FURNACE  

DOE Patents (OSTI)

A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

Olson, D.M.

1961-01-31T23:59:59.000Z

43

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1992-01-01T23:59:59.000Z

44

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1993-01-01T23:59:59.000Z

45

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1994-01-01T23:59:59.000Z

46

High temperature size selective membranes  

DOE Green Energy (OSTI)

The objective of this research is to develop a high temperature size selective membrane capable of separating gas mixture components from each other based on molecular size, using a molecular sieving mechanism. The authors are evaluating two concepts: a composite of a carbon molecular sieve (CMS) with a tightly defined pore size distribution between 3 and 4 {angstrom}, and a microporous supporting matrix which provides mechanical strength and resistance to thermal degradation, and a sandwich of a CMS film between the porous supports. The high temperature membranes the authors are developing can be used to replace the current low-temperature unit operations for separating gaseous mixtures, especially hydrogen, from the products of the water gas shift reaction at high temperatures. Membranes that have a high selectivity and have both thermal and chemical stability would improve substantially the economics of the coal gasification process. These membranes can also improve other industrial processes such as the ammonia production and oil reform processes where hydrogen separation is crucial. Results of tests on a supported membrane and an unsupported carbon film are presented.

Yates, S.F.; Zhou, S.J.; Anderson, D.J.; Til, A.E. van

1994-10-01T23:59:59.000Z

47

High-Temperature Superconductivity Cable Demonstration Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Temperature Superconductivity Cable Demonstration Projects High-Temperature Superconductivity Cable Demonstration Projects A National Effort to Introduce New Technology into...

48

High-temperature hydrothermal systems in West Yunnan Province, China  

SciTech Connect

There are more than 660 thermal springs in West Yunnan Province, 30 of which are high-temperature hydrothermal systems with reservoir temperatures above 150/sup 0/C. All thermal springs in West Yunnan are under the control of tectonics, most of them distributed at anticlinoria of metamorphic rocks and granites. This paper discusses the relationship between thermal areas and tectonics, the correlation between thermal springs in West Yunnan and North Thailand, and the geothermal prospects in West Yunnan.

Laio, Z.; Tong, W.; Liu, S.; Zhao, F.

1986-01-01T23:59:59.000Z

49

Potential uses for a high-temperature borehole gravimeter  

DOE Green Energy (OSTI)

It is possible to design a canister to cool a borehole gravimeter for use in geothermal and high-temperature (up to 350/sup 0/C) gas wells. Repeat surveys with such a gravimeter could (1) help estimate the extent of reservoir plugging in geothermal injection well after one year of operation and (2) detect compaction of a geothermal aquifer if the change in thickness of the aquifer exceeds 1 m. The instrument could be used together with conventional logging tools to evaluate radial dependence of density around a well, or to estimate gas-filled porosity around wells drilled with mud. A high-temperature borehole gravimeter could also be used to evaluate structure and stratigraphy around geothermal and high-temperature gas wells.

Hearst, J.R.; Kasameyer, P.W.; Owen, L.B.

1978-03-08T23:59:59.000Z

50

CONFINEMENT OF HIGH TEMPERATURE PLASMA  

DOE Patents (OSTI)

The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

Koenig, H.R.

1963-05-01T23:59:59.000Z

51

HIGH TEMPERATURE SUPERCONDUCTORS-SYNTHESIS ... - TMS  

Science Conference Proceedings (OSTI)

... Anaheim, California. HIGH TEMPERATURE SUPERCONDUCTORS- SYNTHESIS, PROCESSING, AND LARGE SCALE APPLICATIONS VII: Characterization...

52

HIGH TEMPERATURE SUPERCONDUCTORS: III: YBCO Conductor ...  

Science Conference Proceedings (OSTI)

HIGH TEMPERATURE SUPERCONDUCTORS: Session III: YBCO Conductor Development. Sponsored by: Jt: EMPMD/SMD Superconducting Materials...

53

High temperature nuclear gas turbine  

SciTech Connect

Significance of gas turbine cycle, process of the development of gas turbines, cycle and efficiency of high-temperature gas turbines, history of gas turbine plants and application of nuclear gas turbines are described. The gas turbines are directly operated by the heat from nuclear plants. The gas turbines are classified into two types, namely open cycle and closed cycle types from the point of thermal cycle, and into two types of internal combustion and external combustion from the point of heating method. The hightemperature gas turbines are tbe type of internal combustion closed cycle. Principle of the gas turbines of closed cycle and open cycle types is based on Brayton, Sirling, and Ericsson cycles. Etficiency of the turbines is decided only by pressure ratio, and is independent of gas temperature. An example of the turbine cycle for the nuclear plant Gestacht II is explained. The thermal efficiency of that plant attains 37%. Over the gas temperature of about 750 deg C, the thermal efficiency of the gas turbine cycle is better than that of steam turbine cycle. As the nuclear fuel, coated particle fuel is used, and this can attain higher temperature of core outlet gas. Direct coupling of the nuclear power plants and the high temperature gas turbines has possibility of the higher thermal efficiency. (JA)

Kurosawa, A.

1973-01-01T23:59:59.000Z

54

High temperature catalytic membrane reactors  

DOE Green Energy (OSTI)

Current state-of-the-art inorganic oxide membranes offer the potential of being modified to yield catalytic properties. The resulting modules may be configured to simultaneously induce catalytic reactions with product concentration and separation in a single processing step. Processes utilizing such catalytically active membrane reactors have the potential for dramatically increasing yield reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity. Examples of commercial interest include hydrogenation, dehydrogenation, partial and selective oxidation, hydrations, hydrocarbon cracking, olefin metathesis, hydroformylation, and olefin polymerization. A large portion of the most significant reactions fall into the category of high temperature, gas phase chemical and petrochemical processes. Microporous oxide membranes are well suited for these applications. A program is proposed to investigate selected model reactions of commercial interest (i.e. dehydrogenation of ethylbenzene to styrene and dehydrogenation of butane to butadiene) using a high temperature catalytic membrane reactor. Membranes will be developed, reaction dynamics characterized, and production processes developed, culminating in laboratory-scale demonstration of technical and economic feasibility. As a result, the anticipated increased yield per reactor pass economic incentives are envisioned. First, a large decrease in the temperature required to obtain high yield should be possible because of the reduced driving force requirement. Significantly higher conversion per pass implies a reduced recycle ratio, as well as reduced reactor size. Both factors result in reduced capital costs, as well as savings in cost of reactants and energy.

Not Available

1990-03-01T23:59:59.000Z

55

Joint Institute for High Temperatures  

National Nuclear Security Administration (NNSA)

Joint Institute for High Temperatures of Russian Academy of Sciences Moscow Institute of Physics and Technology Extended title Extended title Excited state of warm dense matter or Exotic state of warm dense matter or Novel form of warm dense matter or New form of plasma Three sources of generation similarity: solid state density, two temperatures: electron temperature about tens eV, cold ions keep original crystallographic positions, but electron band structure and phonon dispersion are changed, transient but steady (quasi-stationary for a short time) state of non-equilibrium, uniform plasmas (no reference to non-ideality, both strongly and weakly coupled plasmas can be formed) spectral line spectra are emitted by ion cores embedded in plasma environment which influences the spectra strongly,

56

High Temperature Superconducting Underground Cable  

SciTech Connect

The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

Farrell, Roger, A.

2010-02-28T23:59:59.000Z

57

Recent Developments in High Temperature Superconductivity  

E-Print Network (OSTI)

New material systems and the experimental progress of high temperature superconductivity are briefly reviewed. We examine both oxides and non-oxides which exhibit stable and/or unstable superconductivity at high temperatures.

Hor, P. H.

1988-09-01T23:59:59.000Z

58

High-temperature thermocouples and related methods  

DOE Patents (OSTI)

A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

Rempe, Joy L. (Idaho Falls, ID); Knudson, Darrell L. (Firth, ID); Condie, Keith G. (Idaho Falls, ID); Wilkins, S. Curt (Idaho Falls, ID)

2011-01-18T23:59:59.000Z

59

Compact High-Temperature Superconducting Cable Wins ' ...  

Science Conference Proceedings (OSTI)

Compact High-Temperature Superconducting Cable Wins 'R&D 100' Award. From NIST Tech Beat: June 22, 2011. ...

2011-07-06T23:59:59.000Z

60

High temperature electronics application in well logging  

DOE Green Energy (OSTI)

Some limitations, problems, and needs are briefly reviewed for neutron logging tools used in high-temperature geothermal environments. (ACR)

Traeger, R.K.; Lysne, P.C.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature reservoir evidence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

High Temperature Strain Gages for SOFC Application  

DOE Green Energy (OSTI)

This presentation discusses the investigation/extension of high temperature strain gage applications sensors to SOFC applications.

Pineault, R.L.; Johnson, C.; Gemmen, R.S.; Gregory, O.; You, T.

2005-01-27T23:59:59.000Z

62

HIGH TEMPERATURE SUPERCONDUCTORS: IV: BSCCO and ...  

Science Conference Proceedings (OSTI)

HIGH TEMPERATURE SUPERCONDUCTORS: Session IV: BSCCO and TBCCO Conductor Development. Sponsored by: Jt. EMPMD/SMD Superconducting...

63

Deep Trek High Temperature Electronics Project  

Science Conference Proceedings (OSTI)

This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

Bruce Ohme

2007-07-31T23:59:59.000Z

64

Research on Very High Temperature Gas Reactors  

Science Conference Proceedings (OSTI)

Very high temperature gas reactors are helium-cooled, graphite-moderated advanced reactors that show potential for generating low-cost electricity via gas turbines or cogeneration with process-heat applications. This investigation addresses the development status of advanced coatings for nuclear-fuel particles and high-temperature structural materials and evaluates whether these developments are likely to lead to economically competitive applications of the very high temperature gas reactor concept.

1991-08-08T23:59:59.000Z

65

The origin of high-temperature zones in vapor-dominated geothermal systems  

DOE Green Energy (OSTI)

Vapor-dominated geothermal systems are proposed to originate by downward extension (by the ''heat pipe'' mechanism) into hot dry fractured rock above a large cooling igneous intrusion. High temperature zones found by drilling are shallow parts of the original hot dry rock where the penetration of the vapor reservoir was limited, and hot dry rock may extend under much of these reservoirs. An earlier hot water geothermal system may have formed during an early phase of the heating episode.

Truesdell, Alfred H.

1991-01-01T23:59:59.000Z

66

Improved Martensitic Steel for High Temperature Applications  

NETL has developed a stainless steel composition and heat treatment process for a high-temperature, titanium alloyed 9 Cr-1 molybdenum alloy ...

67

Experiment Hazard Class 3 - High Temperatures  

NLE Websites -- All DOE Office Websites (Extended Search)

* RF and Microwave * UV Light Hydrogen * Hydrogen Electronics * Electrical Equipment * High Voltage Other * Other Class 3 - High Temperatures Applicability The hazard controls...

68

High-temperature brazed ceramic joints  

DOE Patents (OSTI)

High-temperature joints formed from metallized ceramics are disclosed wherein the metal coatings on the ceramics are vacuum sputtered thereon.

Jarvinen, Philip O. (Amherst, NH)

1986-01-01T23:59:59.000Z

69

Development of Inorganic High Temperature Proton Exchange ...  

Science Conference Proceedings (OSTI)

For fuel cell systems directly coupled to a reformer, the primary advantage of high temperatures is the elimination of CO poisoning. Direct methanol fuel cells...

70

Recent Developments in High Temperature Superconductivity  

Science Conference Proceedings (OSTI)

Scope, Recently, significant progress has been made world-wide in both fabrication and fundamental understanding of high-temperature superconductors (HTS)...

71

Thermodynamic and Kinetic Properties of High Temperature ...  

Science Conference Proceedings (OSTI)

Perspectives on Phonons and Electron-Phonon Scattering in High-Temperature Superconductors Prediction and Design of Materials from Crystal Structures to...

72

HALLIBURTON SPERRY-SUN DOE HIGH TEMPERATURE LWD PROJECT  

SciTech Connect

The objective of this project was to build a high temperature, cost-effective, logging while drilling (HT-LWD) system with the ability to operate at 175 C with more than 100 hours mean time between failures (MTBF). Such a commercial real-time formation evaluation (FE) system would help operators to drill and produce hydrocarbon resources from moderately deep, hot reservoirs which otherwise might be uneconomic to drill. The project plan was to combine the existing Sperry-Sun high temperature directional and gamma logging system with lower temperature FE sensors which were upgraded to higher temperature operation as part of the project. The project was to be completed in two phases. Phase I included the development of the HT system, building two complete systems, demonstrating operational capability at 175 C and survivability at 200 C in the laboratory, and successfully testing the system in two low temperature field tests. Phase II was to test the system in a well with a bottom hole temperature of 175 C. The high temperature FE sensors developed as part of this project include gamma ray (DGR), resistivity (EWR-Phase 4), neutron (CTN), and density (SLD). The existing high temperature pulser and telemetry system was upgraded to accommodate the data and bandwidth requirements of the additional sensors. Environmental and lifetime testing of system components and modules indicates that system life and reliability goals will be substantially exceeded. The system has performed well in domestic and international high temperature wells (to 175 C). In addition to the sensor modules specified in the project contract, Sperry has now upgraded other system components to higher temperature as well. These include a LWD sonic sensor (BAT), pressure while drilling sensor (PWD), and a more powerful central system controller (CIM).

Ronald L. Spross

2005-03-15T23:59:59.000Z

73

High temperature superconducting fault current limiter  

DOE Patents (OSTI)

A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

Hull, J.R.

1997-02-04T23:59:59.000Z

74

High-temperature electronics: an overview  

DOE Green Energy (OSTI)

A summary is presented providing an overview of contemporary high-temperature electronics and identifying the major areas where developments are needed and the laboratories where research is being conducted. The geothermal program, high-temperature oil and gas well logging, jet engine monitors, and circuits for operation in the sodium coolant loop of the Clinch River Breeder reactor have stimulated research. (FS)

Heckman, R.C.

1979-01-01T23:59:59.000Z

75

High Temperature Electrochemistry Center - HiTEC  

DOE Green Energy (OSTI)

This presentation discusses the High Temperature Electrochemistry Center (HiTEC). The mission of HiTEC is to advance the solid oxide technology, such as solid oxide, high temperature electrolysers, reversible fuel cells, energy storage devices, proton conductors, etc., for use in DG and FutureGen applications, and to conduct fundamental research that aids the general development of all solid oxide technology.

McVay, G.; Williams, M.

2005-01-27T23:59:59.000Z

76

High temperature water adsorption on The Geysers rocks  

DOE Green Energy (OSTI)

In order to measure water retention by geothermal reservoir rocks at the actual reservoir temperature, the ORNL high temperature isopiestic apparatus was adapted for adsorption measurements. The quality of water retained by rock samples taken from three different wells of The Geysers geothermal reservoir was measured at 150{sup degree}C, 200{sup degree}C, and 250{sup degree}C as a function of pressure in the range 0.00 {<=}p/p{sub degree} {<=} 0.98, where p{sub degree} is the saturated water vapor pressure. Both adsorption (increasing pressure) and desorption (decreasing pressure) runs were made in order to investigate the nature and the extent of the hysteresis. Additionally, low temperature gas adsorption analyses were performed on the same rock samples. Nitrogen or krypton adsorption and desorption isotherms at 77 K were used to obtain BET specific surface areas, pore volumes and their distributions with respect to pore sizes. Mercury intrusion porosimetry was also used to obtain similar information extending to very large pores (macropores). A correlation is sought between water adsorption, the surface properties, and the mineralogical and petrological characteristics of the solids.

Gruszkiewicz, M.S.; Horita, J.; Simonson, J.M.; Mesmer, R.E.

1997-08-01T23:59:59.000Z

77

Symposium on high temperature and materials chemistry  

SciTech Connect

This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

1989-10-01T23:59:59.000Z

78

Live Work on High Temperature Conductors  

Science Conference Proceedings (OSTI)

Feedback from field personnel working with high-temperature conductors indicates that when a dead-end compression yoke assembly (DCYA) is installed on the conductor according to normal utility procedures, the soft aluminum strands are deformed and "birdcage." This is of course a concern to the field crews and the utility operating the line. This report presents results of research and tests performed on selected conductors operating at high temperature (approximately 250-260C) with selected live wor...

2011-12-13T23:59:59.000Z

79

Investigations into High Temperature Components and Packaging  

SciTech Connect

The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the temperature increase inside the device due the internal heat that is generated due to conduction and switching losses. Capacitors and high current switches that are reliable and meet performance specifications over an increased temperature range are necessary to realize electronics needed for hybrid-electric vehicles (HEVs), fuel cell (FC) and plug-in HEVs (PHEVs). In addition to individual component level testing, it is necessary to evaluate and perform long term module level testing to ascertain the effects of high temperature operation on power electronics.

Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

2007-12-31T23:59:59.000Z

80

High Temperature Cements | Open Energy Information  

Open Energy Info (EERE)

High Temperature Cements High Temperature Cements Jump to: navigation, search Geothermal ARRA Funded Projects for High Temperature Cements Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

Note: This page contains sample records for the topic "high-temperature reservoir evidence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

High Temperature Membrane & Advanced Cathode Catalyst Development  

DOE Green Energy (OSTI)

Current project consisted of three main phases and eighteen milestones. Short description of each phase is given below. Table 1 lists program milestones. Phase 1--High Temperature Membrane and Advanced Catalyst Development. New polymers and advanced cathode catalysts were synthesized. The membranes and the catalysts were characterized and compared against specifications that are based on DOE program requirements. The best-in-class membranes and catalysts were downselected for phase 2. Phase 2--Catalyst Coated Membrane (CCM) Fabrication and Testing. Laboratory scale catalyst coated membranes (CCMs) were fabricated and tested using the down-selected membranes and catalysts. The catalysts and high temperature membrane CCMs were tested and optimized. Phase 3--Multi-cell stack fabrication. Full-size CCMs with the down-selected and optimized high temperature membrane and catalyst were fabricated. The catalyst membrane assemblies were tested in full size cells and multi-cell stack.

Protsailo, Lesia

2006-04-20T23:59:59.000Z

82

Initial stages of high temperature metal oxidation  

Science Conference Proceedings (OSTI)

The application of XPS and UPS to the study of the initial stages of high temperature (> 350/sup 0/C) electrochemical oxidation of iron and nickel is discussed. In the high temperature experiments, iron and nickel electrodes were electrochemically oxidized in contact with a solid oxide electrolyte in the uhv system. The great advantages of this technique are that the oxygen activity at the interface may be precisely controlled and the ability to run the reactions in uhv allows the simultaneous observation of the reactions by XPS.

Yang, C.Y.; O'Grady, W.E.

1981-01-01T23:59:59.000Z

83

High temperature crystalline superconductors from crystallized glasses  

DOE Patents (OSTI)

A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.

Shi, Donglu (Downers Grove, IL)

1992-01-01T23:59:59.000Z

84

Fusion blanket high-temperature heat transfer  

DOE Green Energy (OSTI)

Deep penetration of 14 MeV neutrons makes two-temperature region blankets feasible. A relatively low-temperature (approx. 300/sup 0/C) metallic structure is the vacuum/coolant pressure boundary, while the interior of the blanket, which is a simple packed bed of nonstructural material, operates at very high temperatures (>1000/sup 0/C). The water-cooled shell structure is thermally insulated from the steam-cooled interior. High-temperature steam can dramatically increase the efficiency of electric power generation, as well as produce hydrogen and oxygen-based synthetic fuels at high-efficiency.

Fillo, J.A.

1983-01-01T23:59:59.000Z

85

Safety Issues for High Temperature Gas Reactors  

E-Print Network (OSTI)

Safety Issues for High Temperature Gas Reactors Andrew C. Kadak Professor of the Practice #12;Major regulation) 50mSv/a (Could be exceeded for rear recovery events) 50 mSv/a 20 mSv/a (average 5 y) (5 m performance of safety systems - natural circulation - heat conduction and convection. #12;Issues · Fuel

86

Thermal disconnect for high-temperature batteries  

DOE Patents (OSTI)

A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

Jungst, Rudolph George (Albuquerque, NM); Armijo, James Rudolph (Albuquerque, NM); Frear, Darrel Richard (Austin, TX)

2000-01-01T23:59:59.000Z

87

High temperature spectral gamma well logging  

Science Conference Proceedings (OSTI)

A high temperature spectral gamma tool has been designed and built for use in small-diameter geothermal exploration wells. Several engineering judgments are discussed regarding operating parameters, well model selection, and signal processing. An actual well log at elevated temperatures is given with spectral gamma reading showing repeatability.

Normann, R.A.; Henfling, J.A.

1997-01-01T23:59:59.000Z

88

High temperature ceramic/metal joint structure  

DOE Patents (OSTI)

A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

Boyd, Gary L. (Tempe, AZ)

1991-01-01T23:59:59.000Z

89

Live Work with High Temperature Conductors  

Science Conference Proceedings (OSTI)

This report examines issues that may arise when live work is undertaken on conductors that operate at high temperatures (HT conductors) and provides the results from selected tests on the temperature levels reached by tools in contact with hot conductors. It also discusses possible concerns that may arise during de-energized work on lines that use HT conductors.

2009-12-15T23:59:59.000Z

90

High Temperature Materials Interim Data Qualification Report  

SciTech Connect

ABSTRACT Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim FY2010 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under NQA-1 guidelines, and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing, to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from two test series within the High Temperature Materials data stream have been entered into the NDMAS vault: 1. Tensile Tests for Sm (i.e., Allowable Stress) Confirmatory Testing 1,403,994 records have been inserted into the NDMAS database. Capture testing is in process. 2. Creep-Fatigue Testing to Support Determination of Creep-Fatigue Interaction Diagram 918,854 records have been processed and inserted into the NDMAS database. Capture testing is in process.

Nancy Lybeck

2010-08-01T23:59:59.000Z

91

Property:SanyalTempReservoir | Open Energy Information  

Open Energy Info (EERE)

SanyalTempReservoir SanyalTempReservoir Jump to: navigation, search Property Name SanyalTempReservoir Property Type Page Description see Sanyal_Temperature_Classification Allows Values Extremely Low Temperature;Very Low Temperature;Low Temperature;Moderate Temperature;High Temperature;Ultra High Temperature;Steam Field Pages using the property "SanyalTempReservoir" Showing 16 pages using this property. A Amedee Geothermal Area + Very Low Temperature + B Beowawe Hot Springs Geothermal Area + Moderate Temperature + Blue Mountain Geothermal Area + High Temperature + C Chena Geothermal Area + Very Low Temperature + D Desert Peak Geothermal Area + Moderate Temperature + K Kilauea East Rift Geothermal Area + High Temperature + L Lightning Dock Geothermal Area + High Temperature +

92

Particle-hole symmetry broken pseudogap in high temperature superconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle-hole symmetry broken pseudogap in Particle-hole symmetry broken pseudogap in high temperature superconductors High-temperature (Tc) superconductivity is one of the most important topics in condensed matter physics. Despite extensive studies over more than two decades, the microscopic mechanism of high temperature superconductivity still remains elusive due to many unconventional properties that are not well understood. Among them, the most mysterious behavior of high-Tc superconductor is the nature of so called "pseudogap", which has been a focus of the field for many years. In conventional superconductors, a gap exists in the energy absorption spectrum only below Tc, corresponding to the energy price to pay for breaking a Cooper pair of electrons. In high-Tc cuprate superconductors, an energy gap called the pseudogap exists above Tc but below T*, and is controversially attributed either to pre-formed superconducting pairs or to competing phases. Recently, by carefully studying the "symmetry" of the gap, researchers Makoto Hashimoto and Rui-Hua He, along with their co-workers in Prof. Zhi-Xun Shen's group at Stanford University, have found crucial evidence suggesting that the particle-hole symmetry required by superconductivity is broken in the pseudogap state.

93

Improved Martensitic Steel for High Temperature Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Martensitic Steel Improved Martensitic Steel for High Temperature Applications Opportunity Research is active on the patented technology, titled "Heat-Treated 9 Cr-1 Mo Steel for High Temperature Application." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Overview The operating efficiency of coal-fired power plants is directly related to combustion system temperature and pressure. Incorporation of ultra- supercritical (USC) steam conditions into new or existing power plants can achieve increased efficiency and reduce coal consumption, while reducing carbon dioxide emissions as well as other pollutants. Traditionally used materials do not possess the optimal characteristics for operation

94

High-temperature helium-loop facility  

Science Conference Proceedings (OSTI)

The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100/sup 0/F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system.

Tokarz, R.D.

1981-09-01T23:59:59.000Z

95

Manufacturing Barriers to High Temperature PEM Commercialization  

NLE Websites -- All DOE Office Websites (Extended Search)

9/2011 9/2011 1 BASF Fuel Cell, Inc. Manufacturing Barriers to high temperature PEM commercialization 39 Veronica Ave Somerset , NJ 08873 Tel : (732) 545-5100 9/9/2011 2 Background on BASF Fuel Cell  BASF Fuel Cell was established in 2007, formerly PEMEAS Fuel Cells (including E-TEK)  Product line is high temperature MEAs (Celtec ® P made from PBI-phosphoric acid)  Dedicated a new advanced pilot manufacturing facility in Somerset NJ May 2009. Ribbon-cutting hosted by Dr. Kreimeyer (BASF BoD, right) and attended by various US pubic officials including former NJ Governor Jon Corzine (left) 9/9/2011 3 Multi-layer product of membrane (polybenzimidazole and phosphoric acid), gas diffusion material and catalysts Unique characteristics:  High operating temperature

96

Establishment of Harrop, High-Temperature Viscometer  

Science Conference Proceedings (OSTI)

This report explains how the Harrop, High-Temperature Viscometer was installed, calibrated, and operated. This report includes assembly and alignment of the furnace, viscometer, and spindle, and explains the operation of the Brookfield Viscometer, the Harrop furnace, and the UDC furnace controller. Calibration data and the development of the spindle constant from NIST standard reference glasses is presented. A simple operational procedure is included.

Schumacher, R.F.

1999-11-05T23:59:59.000Z

97

Thermal fuse for high-temperature batteries  

SciTech Connect

A thermal fuse, preferably for a high-temperature battery, comprising leads and a body therebetween having a melting point between approximately 400.degree. C. and 500.degree. C. The body is preferably an alloy of Ag--Mg, Ag--Sb, Al--Ge, Au--In, Bi--Te, Cd--Sb, Cu--Mg, In--Sb, Mg--Pb, Pb--Pd, Sb--Zn, Sn--Te, or Mg--Al.

Jungst, Rudolph G. (Albuquerque, NM); Armijo, James R. (Albuquerque, NM); Frear, Darrel R. (Austin, TX)

2000-01-01T23:59:59.000Z

98

High temperature simulation of petroleum formation  

Science Conference Proceedings (OSTI)

Petroleum formation has been simulated in the laboratory with emphasis on the effects of temperature, mineral catalysis, and starting material structure on the yield and composition of the liquid and gaseous hydrocarbon products. In an attempt to prove the hypothesis that petroleum formation can be simulated using high temperatures, Green River Shale from Colorado, USA, was subjected to pyrolysis for 16 hours at temperatures ranging from 300 to 500/sup 0/C. The sequence of products formed over this temperature range was used as the basis for defining five different zones of maturation reaction: 1) a heterobond cracking zone; 2) a labile carbon bond cracking zone; 3) a free radical synthesis zone; 4) a wet gas formation zone; and 5) an aromatization zone. The role of some typical inorganic components of sedimentary rocks in the origin and maturation of petroleum has been investigated using this high temperature model. The importance of the structure of organic matter in petroelum formation has also been investigated using this high temperature model. Lignin and cellulose are poor sources of liquid hydrocarbons, but cellulose in the presence of carbonate gives a high yield of gaseous hydrocarbons. Protein pyrolysis gives a high oil yield with an alkane distribution similar to petroleum. The lipids produced the highest oil yield of the substances tested but the n-alkanes show an odd carbon length predominance unlike the distribution found in petroleum.

Evans, R.J.

1982-01-01T23:59:59.000Z

99

Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL's High Temperature ORNL's High Temperature Materials Laboratory Assists NASCAR Teams to someone by E-mail Share Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Facebook Tweet about Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Twitter Bookmark Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Google Bookmark Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Delicious Rank Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Digg Find More places to share Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on AddThis.com...

100

High-Dielectric Constant, High-Temperature Ceramic Capacitors for ...  

Science Conference Proceedings (OSTI)

Growth of Thick, On-Axis SiC Epitaxial Layers by High Temperature Halide CVD for High Voltage Power Devices High-Dielectric Constant, High-Temperature...

Note: This page contains sample records for the topic "high-temperature reservoir evidence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Live Working Tools for High Temperature Conductors  

Science Conference Proceedings (OSTI)

In long-duration (several days) tests, strain link sticks used for live work were removed from service and exposed to conductors operating at high temperature of about 250-260C. Only strain link sticks were tested to date. Results obtained do not indicate damage or deterioration of the tested sticks. The research is a joint effort between project 35.010 Live Working Research for Overhead Transmission Equipment, Techniques, Procedures and Protective Grounding and project 35.015 Advanced Conductors to inve...

2010-12-17T23:59:59.000Z

102

High-temperature directional drilling turbodrill  

DOE Green Energy (OSTI)

The development of a high-temperature turbodrill for directional drilling of geothermal wells in hard formations is summarized. The turbodrill may be used for straight-hole drilling but was especially designed for directional drilling. The turbodrill was tested on a dynamometer stand, evaluated in laboratory drilling into ambient temperature granite blocks, and used in the field to directionally drill a 12-1/4-in.-diam geothermal well in hot 200/sup 0/C (400/sup 0/F) granite at depths to 10,5000 ft.

Neudecker, J.W.; Rowley, J.C.

1982-02-01T23:59:59.000Z

103

New Waste Calciner High Temperature Operation  

SciTech Connect

A new Calciner flowsheet has been developed to process the sodium-bearing waste (SBW) in the INTEC Tank Farm. The new flowsheet increases the normal Calciner operating temperature from 500 C to 600 C. At the elevated temperature, sodium in the waste forms stable aluminates, instead of nitrates that melt at calcining temperatures. From March through May 2000, the new high-temperature flowsheet was tested in the New Waste Calcining Facility (NWCF) Calciner. Specific test criteria for various Calciner systems (feed, fuel, quench, off-gas, etc.) were established to evaluate the long-term operability of the high-temperature flowsheet. This report compares in detail the Calciner process data with the test criteria. The Calciner systems met or exceeded all test criteria. The new flowsheet is a visible, long-term method of calcining SBW. Implementation of the flowsheet will significantly increase the calcining rate of SBW and reduce the amount of calcine produced by reducing the amount of chemical additives to the Calciner. This will help meet the future waste processing milestones and regulatory needs such as emptying the Tank Farm.

Swenson, M.C.

2000-09-01T23:59:59.000Z

104

Superconductivity Program Overview High-Temperature Superconductivity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SuperconducTiviTy program haS Three FocuS areaS: SuperconducTiviTy program haS Three FocuS areaS: SuperconducTiviTy applicaTionS Developing HTS-based electric power equipment such as transmission and distribution cables and fault current limiters Second-generaTion Wire developmenT Developing high-performance, low-cost, second- generation HTS wire at long lengths STraTegic reSearch Supporting fundamental research activities to better understand relationships between the microstructure of HTS materials and their ability to carry large electric currents over long lengths Superconductivity Program Overview High-Temperature Superconductivity for Electric Systems Office of Electricity Delivery and Energy Reliability www.oe.energy.gov Office of Electricity Delivery and Energy Reliability, OE-1 U.S. Department of Energy - 1000 Independence Avenue, SW - Washington, DC 20585

105

High Temperature Battery for Drilling Applications  

SciTech Connect

In this project rechargeable cells based on the high temperature electrochemical system Na/beta''-alumina/S(IV) in AlCl3/NaCl were developed for application as an autonomous power source in oil/gas deep drilling wells. The cells operate in the temperature range from 150 C to 250 C. A prototype DD size cell was designed and built based on the results of finite element analysis and vibration testing. The cell consisted of stainless steel case serving as anode compartment with cathode compartment installed in it and a seal closing the cell. Critical element in cell design and fabrication was hermetically sealing the cell. The seal had to be leak tight, thermally and vibration stable and compatible with electrode materials. Cathode compartment was built of beta''-alumina tube which served as an electrolyte, separator and cathode compartment.

Josip Caja

2009-12-31T23:59:59.000Z

106

Compliant high temperature seals for dissimilar materials  

DOE Patents (OSTI)

A high temperature, gas-tight seal is formed by utilizing one or more compliant metallic toroidal ring sealing elements, where the applied pressure serves to activate the seal, thus improving the quality of the seal. The compliant nature of the sealing element compensates for differences in thermal expansion between the materials to be sealed, and is particularly useful in sealing a metallic member and a ceramic tube art elevated temperatures. The performance of the seal may be improved by coating the sealing element with a soft or flowable coating such as silver or gold and/or by backing the sealing element with a bed of fine powder. The material of the sealing element is chosen such that the element responds to stress elastically, even at elevated temperatures, permitting the seal to operate through multiple thermal cycles.

Rynders, Steven Walton (Fogelsville, PA); Minford, Eric (Laurys Station, PA); Tressler, Richard Ernest (Boalsburg, PA); Taylor, Dale M. (Salt Lake City, UT)

2001-01-01T23:59:59.000Z

107

High Temperature Materials Laboratory (HTML) - PSD Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

filler A National Resource for Collaborative Materials Research The High Temperature Materials Laboratory (HTML) User Program is on hiatus due to federal budget reductions. However, research projects at the HTML still may be conducted on a cost-recovery basis through the Work for Others (WFO) Program or under a Cooperative R&D Agreement (CRADA). Dr. Edgar Lara-Curzio, HTML Director Tel: 865.574.1749 Fax: 865.574.4913 laracurzioe@ornl.gov Christine Goudy, Administrative Specialist Tel: 865.574.8295 Fax: 865.574.4913 goudyc@ornl.gov Oak Ridge National Laboratory [MST Home] [ORNL Home] [Site Index] [Search][Disclaimer] [Webmaster] Oak Ridge National Laboratory is a national multi-program research and development facility managed by UT-Battelle, LLC for the U.S. Department of Energy

108

Multilayer ultra-high-temperature ceramic coatings  

SciTech Connect

A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

Loehman, Ronald E. (Albuquerque, NM); Corral, Erica L. (Tucson, AZ)

2012-03-20T23:59:59.000Z

109

Precision control of high temperature furnaces  

DOE Patents (OSTI)

It is an object of the present invention to provide precision control of high temperature furnaces. It is another object of the present invention to combine the power of two power supplies of greatly differing output capacities in a single furnace. This invention combines two power supplies to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. Further, this invention comprises a means for high speed measurement of temperature of the process by the method of measuring the amount of current flow in a deliberately induced charged particle current.

Pollock, G.G.

1994-12-31T23:59:59.000Z

110

Turbine vane with high temperature capable skins  

Science Conference Proceedings (OSTI)

A turbine vane assembly includes an airfoil extending between an inner shroud and an outer shroud. The airfoil can include a substructure having an outer peripheral surface. At least a portion of the outer peripheral surface is covered by an external skin. The external skin can be made of a high temperature capable material, such as oxide dispersion strengthened alloys, intermetallic alloys, ceramic matrix composites or refractory alloys. The external skin can be formed, and the airfoil can be subsequently bi-cast around or onto the skin. The skin and the substructure can be attached by a plurality of attachment members extending between the skin and the substructure. The skin can be spaced from the outer peripheral surface of the substructure such that a cavity is formed therebetween. Coolant can be supplied to the cavity. Skins can also be applied to the gas path faces of the inner and outer shrouds.

Morrison, Jay A. (Oviedo, FL)

2012-07-10T23:59:59.000Z

111

Pressure sensor for high-temperature liquids  

DOE Patents (OSTI)

A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacment of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely.

Forster, George A. (Westmont, IL)

1978-01-01T23:59:59.000Z

112

High-temperature superconducting current leads  

Science Conference Proceedings (OSTI)

Use of high-temperature superconductors (HTSs) for current leads to deliver power to devices at liquid helium temperature can reduce refrigeration requirements to values significantly below those achievable with conventional leads. HTS leads are now near commercial realization. Argonne National Laboratory (ANL) has developed a sinter-forge process to fabricate current leads from bismuth-based superconductors. The current-carrying capacity of these leads is five times better than that of HTS leads made by a conventional fabrication process. ANL along with Superconductivity, Inc., has developed a 1500 ampere current lead for an existing superconducting magnetic energy storage (SMES) device. With Babcock & Wilcox Company, Argonne is creating 16-kiloampere leads for use in a 0.5 MWh SMES. In a third project Argonne performed characterization testing of a existing, proprietary conduction-cooled lead being developed by Zer Res Corp.

Niemann, R.C.

1995-03-01T23:59:59.000Z

113

Solid State Joining of High Temperature Alloy Tubes for USC and Heat-Exchanger Systems  

Science Conference Proceedings (OSTI)

The principal objective of this project was to develop materials enabling joining technologies for use in forward looking heat-exchanger fabrication in Brayton cycle HIPPS, IGCC, FutureGen concepts capable of operating at temperatures in excess of 1000{degree}C as well as conventional technology upgrades via Ultra Super-Critical (USC) Rankine-cycle boilers capable of operating at 760{degree}C (1400F)/38.5MPa (5500psi) steam, while still using coal as the principal fossil fuel. The underlying mission in Rankine, Brayton or Brayton-Rankine, or IGCC combined cycle heat engine is a steady quest to improving operating efficiency while mitigating global environmental concerns. There has been a progressive move to higher overall cycle efficiencies, and in the case of fossil fuels this has accelerated recently in part because of concerns about greenhouse gas emissions, notably CO{sub 2}. For a heat engine, the overall efficiency is closely related to the difference between the highest temperature in the cycle and the lowest temperature. In most cases, efficiency gains are prompted by an increase in the high temperature, and this in turn has led to increasing demands on the materials of construction used in the high temperature end of the systems. Our migration to new advanced Ni-base and Oxide Dispersion Strengthened (ODS) alloys poses significant fabrication challenges, as these materials are not readily weldable or the weld performs poorly in the high temperature creep regime. Thus the joining challenge is two-fold to a) devise appropriate joining methodologies for similar/dissimilar Ni-base and ODS alloys while b) preserving the near baseline creep performance in the welded region. Our program focus is on solid state joining of similar and dissimilar metals/alloys for heat exchanger components currently under consideration for the USC, HIPPS and IGCC power systems. The emphasis is to manipulate the joining methods and variables available to optimize joint creep performance compared to the base material creep performance. Similar and dissimilar butt joints were fabricated of MA956, IN740 alloys and using inertia welding techniques. We evaluated joining process details and heat treatments and its overall effect on creep response. Fixed and incrementally accelerated temperature creep tests were performed for similar and dissimilar joints and such incremental creep life data is compiled and reported. Long term MA956-MA556 joint tests indicate a firm 2Ksi creep stress threshold performance at 850{degree}C with a maximum exposure of over 9725 hours recorded in the current program. A Larsen Miller Parameter (LMP) of 48.50 for a 2Ksi test at 850{degree}C was further corroborated with tests at 2Ksi stress at 900{degree}C yielding a LMP=48.80. Despite this threshold the joints exhibit immense temperature sensitivity and fail promptly when test temperature raised above 900{degree}C. In comparison the performance of dissimilar joints was inferior, perhaps dictated by the creep characteristics of the mating nickel-base alloys. We describe a parametric window of joint development, and post weld heat treatment (PWHT) in dissimilar joints with solid solution (IN601, IN617) and precipitate strengthened (IN740) materials. Some concerns are evident regarding the diffusion of aluminum in dissimilar joints during high temperature recrystallization treatments. It is noted that aggressive treatments rapidly deplete the corrosion protecting aluminum reservoir in the vicinity of the joint interface. Subsequently, the impact of varying PWHT has been evaluated in the context on ensuing creep performance.

Bimal Kad

2011-12-31T23:59:59.000Z

114

High Temperature Integrated Thermoelectric Ststem and Materials  

DOE Green Energy (OSTI)

The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits. Two composition systems, specifically 1.0 SrO - 0.8 x 1.03 TiO2 - 0.2 x 1.03 NbO2.5 and 0.97 TiO2 - 0.03 NbO2.5, have been identified as good base line compositions for n-type thermoelectric compositions in future module design. Tests of these materials at an outside company were promising using that company's processing and material expertise. There was no unique p-type thermoelectric compositions identified in phase I work other than several current cobaltite materials. Ca3Co4O9 will be the primary p-type material for the future module design until alternative materials are developed. BaTiO3 and rare earth titanate based dielectric compositions show both p-type and n-type behavior even though their electrical conductivities were very low. Further research and development of these materials for thermoelectric applications is planned in the future. A preliminary modeling and optimization of a thermoelectric generator (TEG) that uses the n-type 1.0 SrO - 1.03 x 0.8 TiO2 - 1.03 x 0.2 NbO2.5 was performed. Future work will combine development of ceramic powders and manufacturing expertise at TAM, development of SPS at TAM or a partner organization, and thermoelectric material/module testing, modeling, optimization, production at several partner organizations.

Mike S. H. Chu

2011-06-06T23:59:59.000Z

115

High Temperature Interactions of Antimony with Nickel  

SciTech Connect

In this chapter, the surface and bulk interactions of antimony with the Ni-based anodes in solid oxide fuel cells (SOFC) will be discussed. High fuel flexibility is a significant advantage of SOFCs, allowing the direct use of fossil and bio fuels without a hydrogen separation unit. Synthesis gas derived from coal and biomass consists of a mixture of hydrogen, carbon monoxide, carbon dioxide, and steam, but finite amounts of tars and trace impurities such as S, Se, P, As, Sb, Cd, Pb, Cl, etc, are also always present. While synthesis gas is commonly treated with a series of chemical processes and scrubbers to remove the impurities, complete purification is not economical. Antimony is widely distributed in coals. During coal gasification antimony is volatilized, such that contact with the SOFC anodes and other SOFC parts, e.g., interconnect, current collecting wires, fuel gas supplying tubing, is most likely. This chapter addresses the following topics: high temperature Ni - Sb interactions; alteration phase, Ni3Sb, Ni5Sb2, NiSb, formation; thermochemical modeling; impact of Sb on the electrocatalytic activity of Ni toward the fuel oxidation and the presence of other impurities (sulfur, in particular); converted anode structural instability during long-term SOFC operation; comparison with nickel heterogeneous catalysts.

Marina, Olga A.; Pederson, Larry R.

2012-07-01T23:59:59.000Z

116

High Temperature Borehole Televiewer software user manual  

DOE Green Energy (OSTI)

The High Temperature Borehole Televiewer is a downhole instrument which provides acoustic pictures of the borehole walls that are suitable for casing inspection and fracture detection in geothermal wells. The Geothermal Drilling Organization has funded the development of a commercial tool survivable to temperatures of 275{degree}C and pressures of 5000 psi. A real-time display on an IBM-compatible PC was included as part of the development effort. This report contains a User Manual which describes the operation of this software. The software is designed in a menu format allowing the user to change many of the parameters which control both the acquisition and the display of the Televiewer data. An internal data acquisition card digitizes the waveform from the tool at a rate of 100,000 samples per second. The data from the tool, both the range or arrival time and the amplitude of the return signal, are displayed in color on the CRT screen of the computer during the logging operation. This data may be stored on the hard disk for later display and analysis. The software incorporates many features which aid in the setup of the tool for proper operation. These features include displaying and storing the captured waveform data to check the voltage and time windows selected by the user. 17 refs., 28 figs., 15 tabs.

Duda, L.E.

1989-11-01T23:59:59.000Z

117

Urania vapor composition at very high temperatures  

SciTech Connect

Due to the chemically unstable nature of uranium dioxide its vapor composition at very high temperatures is, presently, not sufficiently studied though more experimental knowledge is needed for risk assessment of nuclear reactors. We used laser vaporization coupled to mass spectrometry of the produced vapor to study urania vapor composition at temperatures in the vicinity of its melting point and higher. The very good agreement between measured melting and freezing temperatures and between partial pressures measured on the temperature increase and decrease indicated that the change in stoichiometry during laser heating was very limited. The evolutions with temperature (in the range 2800-3400 K) of the partial pressures of the main vapor species (UO{sub 2}, UO{sub 3}, and UO{sub 2}{sup +}) were compared with theoretically predicted evolutions for equilibrium noncongruent gas-liquid and gas-solid phase coexistences and showed very good agreement. The measured main relative partial pressure ratios around 3300 K all agree with calculated values for total equilibrium between condensed and vapor phases. It is the first time the three main partial pressure ratios above stoichiometric liquid urania have been measured at the same temperature under conditions close to equilibrium noncongruent gas-liquid phase coexistence.

Pflieger, Rachel [Institute for Transuranium Elements, Joint Research Centre, European Commission, P.O. Box 2340, 76125 Karlsruhe (Germany); Marcoule Institute for Separation Chemistry (ICSM), UMR 5257, CEA-CNRS-UMII-ENSCM, Bagnols sur Ceze Cedex (France); Colle, Jean-Yves [Institute for Transuranium Elements, Joint Research Centre, European Commission, P.O. Box 2340, 76125 Karlsruhe (Germany); Iosilevskiy, Igor [Joint Institute for High Temperature, Russian Academy of Science, 125412 Moscow (Russian Federation); Moscow Institute of Physics and Technology, State University, 141700 Moscow (Russian Federation); Extreme Matter Institute (EMMI), 64291 Darmstadt (Germany); Sheindlin, Michael [Institute for Transuranium Elements, Joint Research Centre, European Commission, P.O. Box 2340, 76125 Karlsruhe (Germany); Joint Institute for High Temperature, Russian Academy of Science, 125412 Moscow (Russian Federation)

2011-02-01T23:59:59.000Z

118

Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

9 High Temperature 9 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on AddThis.com...

119

Effect of Environment and Microstructure on the High Temperature ...  

Science Conference Proceedings (OSTI)

EFFECT OF ENVIRONMENT AND MICROSTRUCTURE ON THE HIGH. TEMPERATURE BEHAVIOR OF ALLOY 718. E. Andrieu",. R. Cozar** and A. Pineau".

120

High Temperature Fatigue Life of Coated and Uncoated Valve ...  

Science Conference Proceedings (OSTI)

Symposium, Properties, Processing, and Performance of Steels and Ni-Based Alloys for Advanced Steam Conditions. Presentation Title, High Temperature...

Note: This page contains sample records for the topic "high-temperature reservoir evidence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Improved Growth of High-Temperature Superconductors with ...  

Visual Patent Search; Success Stories; News; Events; Electricity Transmission Improved Growth of High-Temperature Superconductors with HF Pressure ...

122

WEB RESOURCE: High Temperature Materials 21 Project (Phase 2)  

Science Conference Proceedings (OSTI)

Feb 10, 2007... thermal efficiency of power generation systems and advanced aeroengines. ... SOURCE: Harada, H. "High Temperature Materials 21 Project...

123

A Possible Pressure-Induced High-Temperature-Superconducting  

Science Conference Proceedings (OSTI)

... Materials Forensics, Three-dimensional Modeling and Fractal Characterization Vortex Physics in Oxide and Pnictide High Temperature Superconductors.

124

Hydrogen Production from Nuclear Energy via High Temperature Electrolysis  

DOE Green Energy (OSTI)

This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production.

James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

2006-04-01T23:59:59.000Z

125

Fusion reactors-high temperature electrolysis (HTE)  

DOE Green Energy (OSTI)

Results of a study to identify and develop a reference design for synfuel production based on fusion reactors are given. The most promising option for hydrogen production was high-temperature electrolysis (HTE). The main findings of this study are: 1. HTE has the highest potential efficiency for production of synfuels from fusion; a fusion to hydrogen energy efficiency of about 70% appears possible with 1800/sup 0/C HTE units and 60% power cycle efficiency; an efficiency of about 50% possible with 1400/sup 0/C HTE units and 40% power cycle efficiency. 2. Relative to thermochemical or direct decomposition methods HTE technology is in a more advanced state of development, 3. Thermochemical or direct decomposition methods must have lower unit process or capital costs if they are to be more attractive than HTE. 4. While design efforts are required, HTE units offer the potential to be quickly run in reverse as fuel cells to produce electricity for restart of Tokamaks and/or provide spinning reserve for a grid system. 5. Because of the short timescale of the study, no detailed economic evaluation could be carried out.A comparison of costs could be made by employing certain assumptions. For example, if the fusion reactor-electrolyzer capital installation is $400/(KW(T) ($1000/KW(E) equivalent), the H/sub 2/ energy production cost for a high efficiency (about 70 %) fusion-HTE system is on the same order of magnitude as a coal based SNG plant based on 1976 dollars. 6. The present reference design indicates that a 2000 MW(th) fusion reactor could produce as much at 364 x 10/sup 6/ scf/day of hydrogen which is equivalent in heating value to 20,000 barrels/day of gasoline. This would fuel about 500,000 autos based on average driving patterns. 7. A factor of three reduction in coal feed (tons/day) could be achieved for syngas production if hydrogen from a fusion-HTE system were used to gasify coal, as compared to a conventional syngas plant using coal-derived hydrogen.

Fillo, J.A. (ed.)

1978-01-01T23:59:59.000Z

126

Gas Viscosity at High Pressure and High Temperature  

E-Print Network (OSTI)

Gas viscosity is one of the gas properties that is vital to petroleum engineering. Its role in the oil and gas production and transportation is indicated by its contribution in the resistance to the flow of a fluid both in porous media and pipes. Although viscosity of some pure components such as methane, ethane, propane, butane, nitrogen, carbon dioxide and binary mixtures of these components at low-intermediate pressure and temperature had been studied intensively and been understood thoroughly, very few investigations were performed on viscosity of naturally occurring gases, especially gas condensates at low-intermediate pressure and temperature, even fewer lab data were published. No gas viscosity data at high pressures and high temperatures (HPHT) is available. Therefore this gap in the oil industry still needs to be filled. Gas viscosity at HPHT becomes crucial to modern oil industry as exploration and production move to deep formation or deep water where HPHT is not uncommon. Therefore, any hydrocarbon encountered there is more gas than oil due to the chemical reaction causing oil to transfer to gas as temperature increases. We need gas viscosity to optimize production rate for production system, estimate reserves, model gas injection, design drilling fluid, and monitor gas movement in well control. Current gas viscosity correlations are derived using measured data at low-moderate pressures and temperatures, and then extrapolated to HPHT. No measured gas viscosities at HPHT are available so far. The validities of these correlations for gas viscosity at HPHT are doubted due to lack of experimental data. In this study, four types of viscometers are evaluated and their advantages and disadvantages are listed. The falling body viscometer is used to measure gas viscosity at a pressure range of 3000 to 25000 psi and a temperature range of 100 to 415 oF. Nitrogen viscosity is measured to take into account of the fact that the concentration of nonhydrocarbons increase drastically in HPHT reservoir. More nitrogen is found as we move to HPHT reservoirs. High concentration nitrogen in natural gas affects not only the heat value of natural gas, but also gas viscosity which is critical to petroleum engineering. Nitrogen is also one of common inject gases in gas injection projects, thus an accurate estimation of its viscosity is vital to analyze reservoir performance. Then methane viscosity is measured to honor that hydrocarbon in HPHT which is almost pure methane. From our experiments, we found that while the Lee-Gonzalez-Eakin correlation estimates gas viscosity at a low-moderate pressure and temperature accurately, it cannot give good match of gas viscosity at HPHT. Apparently, current correlations need to be modified to predict gas viscosity at HPHT. New correlations constructed for HPHT conditions based on our experiment data give more confidence on gas viscosity.

Ling, Kegang

2010-12-01T23:59:59.000Z

127

A High Temperature Liquid Plasma Model of the Sun  

E-Print Network (OSTI)

In this work, a liquid model of the Sun is presented wherein the entire solar mass is viewed as a high density/high energy plasma. This model challenges our current understanding of the densities associated with the internal layers of the Sun, advocating a relatively constant density, almost independent of radial position. The incompressible nature of liquids is advanced to prevent solar collapse from gravitational forces. The liquid plasma model of the Sun is a non-equilibrium approach, where nuclear reactions are free to occur throughout the solar mass. The primary means of addressing internal heat transfer are convection and conduction. As a result of the convective processes on the solar surface, the liquid model brings into question the established temperature of the solar photosphere by highlighting a violation of Kirchhoff's law of thermal emission. Along these lines, the model emphasizes that radiative emission is a surface phenomenon. Strong evidence is provided that the Sun is a high density/high energy liquid plasma. This evidence is based on our knowledge of Planckian thermal emission and condensed matter, including the existence of pressure ionization and liquid metallic hydrogen at high temperatures and pressures. The equations of magnetohydrodynamics are invoked as the proper vehicle for the understanding od stellar convection and structure. Prior to introducing the liquid plasma model, the historic and scientific justifications for the gaseous model of the Sun are reviewed and the gaseous equations of state are also discussed.

Pierre-Marie Robitaille

2004-10-04T23:59:59.000Z

128

Analytic Models of High-Temperature Hohlraums  

SciTech Connect

A unified set of high-temperature-hohlraum models has been developed. For a simple hohlraum, P{sub s} = [A{sub s}+(1{minus}{alpha}{sub W})A{sub W}+A{sub H}]{sigma}T{sub R}{sup 4} + (4V{sigma}/c)(dT{sub R}{sup r}/dt) where P{sub S} is the total power radiated by the source, A{sub s} is the source area, A{sub W} is the area of the cavity wall excluding the source and holes in the wall, A{sub H} is the area of the holes, {sigma} is the Stefan-Boltzmann constant, T{sub R} is the radiation brightness temperature, V is the hohlraum volume, and c is the speed of light. The wall albedo {alpha}{sub W} {triple_bond} (T{sub W}/T{sub R}){sup 4} where T{sub W} is the brightness temperature of area A{sub W}. The net power radiated by the source P{sub N} = P{sub S}-A{sub S}{sigma}T{sub R}{sup 4}, which suggests that for laser-driven hohlraums the conversion efficiency {eta}{sub CE} be defined as P{sub N}/P{sub LASER}. The characteristic time required to change T{sub R}{sup 4} in response to a change in P{sub N} is 4V/C[(l{minus}{alpha}{sub W})A{sub W}+A{sub H}]. Using this model, T{sub R}, {alpha}{sub W}, and {eta}{sub CE} can be expressed in terms of quantities directly measurable in a hohlraum experiment. For a steady-state hohlraum that encloses a convex capsule, P{sub N} = {l_brace}(1{minus}{alpha}{sub W})A{sub W}+A{sub H}+[(1{minus}{alpha}{sub C})(A{sub S}+A{sub W}{alpha}{sub W})A{sub C}/A{sub T}]{r_brace}{sigma}T{sub RC}{sup 4} where {alpha}{sub C} is the capsule albedo, A{sub C} is the capsule area, A{sub T} {triple_bond} (A{sub S}+A{sub W}+A{sub H}), and T{sub RC} is the brightness temperature of the radiation that drives the capsule. According to this relation, the capsule-coupling efficiency of the baseline National-Ignition-Facility (NIF) hohlraum is 15% higher than predicted by previous analytic expressions. A model of a hohlraum that encloses a z pinch is also presented.

Stygar, W.A.; Olson, R.E.; Spielman, R.B.; Leeper, R.J.

2000-11-29T23:59:59.000Z

129

High pressure-high temperature effect on the HTSC ceramics structure and properties  

Science Conference Proceedings (OSTI)

Keywords: high pressures-high temperatures, high temperature superconductors, mechanical properties, structure, superconductive

T. A. Prikhna

1995-12-01T23:59:59.000Z

130

Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor  

SciTech Connect

The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

2012-02-01T23:59:59.000Z

131

Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2005 High

132

Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2004 High

133

Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2010 High

134

Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2007 High

135

Hydrogen production from fusion reactors coupled with high temperature electrolysis  

SciTech Connect

An initial study was conducted on a fusion reactor and high temperature electrolyzer system for the production of synthetic fuel. The design temperatures in the fusion reactor blanket were above 1380/sup 0/C. Electrolytic hydrogen production at the high temperatures consumes a high ratio of thermal to electric energy and increases the efficiency of the plant and an overall efficiency of approximately 50% appeared possible. The concepts of the system and the design considerations of the high temperature electrolyzer will be presented.

Isaacs, H.S.; Fillo, J.A.; Dang, V.; Powell, J.R.; Steinberg, M.; Salzano, F.; Benenati, R.

1978-01-01T23:59:59.000Z

136

First high-temperature electronics products survey 2005.  

Science Conference Proceedings (OSTI)

On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

Normann, Randy Allen

2006-04-01T23:59:59.000Z

137

2nd International Symposium on High-Temperature Metallurgical ...  

Science Conference Proceedings (OSTI)

Aug 2, 2010... with reduced energy consumption and reduced emission of pollutants. ... A Breakthrough Application of Electricity at High Temperature for...

138

Ionic Solid Oxides for High Temperature Optical Gas Sensing in ...  

Science Conference Proceedings (OSTI)

Presentation Title, Ionic Solid Oxides for High Temperature Optical Gas Sensing in Fossil Fuel Based Power Plants. Author(s), Junhang Dong, Xiling Tang, Kurtis ...

139

High Temperature Modules and Materials for Thermoelectric Power ...  

Science Conference Proceedings (OSTI)

We fabricated oxide-based thermoelectric modules for high temperature electrical-power generation. Potentials for a development of a thermoelectric generation...

140

Environmental Degradation and Protection of High Temperature Alloys  

Science Conference Proceedings (OSTI)

Scope, Nickel-base superalloys and other high temperature alloys have been successfully used in turbine engine propulsion, power generation and many other...

Note: This page contains sample records for the topic "high-temperature reservoir evidence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Evaluation of High-Temperature Alloys for Helium Gas Turbines  

Science Conference Proceedings (OSTI)

C. 1. Mechanical Property / Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material

Wolfgang Jakobeit; Jrn-Peter Pfeifer; Georg Ullrich

142

Corrosion of Candidate Alloys in High Temperature Supercritical  

Science Conference Proceedings (OSTI)

Materials corrosion in high temperature supercritical CO2 will be an important consideration for this application. The results of corrosion evaluations of a wide...

143

Fuel Cell Technologies Office: 2006 High Temperature Membrane...  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems for High Temperature, Low Relative Humidity Polymer-Type Membranes, Andrew Herring, Colorado School of Mines (PDF 213 KB) Design and Development of High-Performance...

144

High-temperature Erosion Behavior of Aluminide-coated Turbine ...  

Science Conference Proceedings (OSTI)

The high-temperature erosion behavior of an aluminide-coated turbine blade ... The Tensile Property Of A Gas Turbine Engine Fan Blade And Casing Material.

145

Available Technologies: High Temperature Strain Cell for X-ray ...  

High Temperature Strain Cell for X-ray ... Six hexapole infrared lamps focus inside the sample chamber onto a ceramic material sample with a spherical ...

146

Advanced High Temperature Corrosion and Wear Resistant Internal ...  

Science Conference Proceedings (OSTI)

Presentation Title, Advanced High Temperature Corrosion and Wear Resistant Internal Coating for Oil Industry applications. Author(s), William Boardman, Rahul ...

147

Processing of High-temperature Structural Materials I  

Science Conference Proceedings (OSTI)

Subsurface Alloy Microstructural Changes During High Temperature Reaction of Fe-Cr Alloys in CO2: David Young1; Thuan Nguyen1; Jianqiang Zhang1;...

148

Creep Behavior of High Temperature Alloys for Generation IV ...  

Science Conference Proceedings (OSTI)

Presentation Title, Creep Behavior of High Temperature Alloys for Generation IV Nuclear Power Plant Applications. Author(s), Xingshuo Wen, Laura J. Carroll,...

149

High-Temperature Reactor for Diffuse Reflectance Infrared ...  

High-Temperature Reactor for Diffuse Reflectance Infrared Fourier-Transform Spectroscopy Note: The technology described above is an early stage ...

150

High Temperature Fatigue Behavior of Laser Shock Peened ...  

Science Conference Proceedings (OSTI)

Presentation Title, High Temperature Fatigue Behavior of Laser Shock Peened IN718Plus Superalloy. Author(s), Vibhor Chaswal, S R Mannava, Dong Qian,...

151

Direct Fired Reciprocating Engine and Bottoming High Temperature...  

NLE Websites -- All DOE Office Websites (Extended Search)

exhaust is split between fuel feeds and air feeds to the high temperature fuel cell. NOX reduction can be achieved using an autothermal reformer. By hybridizing the production...

152

High-temperature Material Systems for Energy Conversion and ...  

Science Conference Proceedings (OSTI)

Ionic Solid Oxides for High Temperature Optical Gas Sensing in Fossil Fuel Based Power Plants Mitigation of Chromium Poisoning in Solid Oxide Fuel Cell

153

High-Temperature Lead-Free Solder Alternatives: Possibilities and ...  

Science Conference Proceedings (OSTI)

The development of high-temperature lead-free solders has become an important issue for both the electronics and automobile industries because of the health...

154

High Temperature Stainless Steel Alloy with Low Cost Manganese  

High Temperature Stainless Steel Alloy with Low Cost Manganese ... Power industry components such as boiler tubing and piping, pressure vessels, chemical

155

Creep Behavior of High Temperature Alloys for Intermediate Heat ...  

Science Conference Proceedings (OSTI)

Presentation Title, Creep Behavior of High Temperature Alloys for Intermediate Heat Exchanger in Next Generation Nuclear Plant. Author(s), Xingshuo Wen,...

156

High Temperature Universal Silicon on Insulator (SOI) Gate Drive  

higher current drive, on-chip regulation capacitors, and more space efficient and robust on-chip layout. ... Development of high temperature galvanic isolation

157

High-temperature Foam-reinforced Thermal Insulation  

Science Conference Proceedings (OSTI)

Symposium, Advanced Materials for Harsh Environments. Presentation Title, High-temperature Foam-reinforced Thermal Insulation. Author(s), Jacob J. Stiglich,...

158

ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT  

DOE Green Energy (OSTI)

An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322C and 750C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

M. G. McKellar; E. A. Harvego; A. M. Gandrik

2010-11-01T23:59:59.000Z

159

High Temperature, Buried Permanent Magnet, Brushless DC Motor  

E-Print Network (OSTI)

A high temperature magnetic bearing system using high temperature permanent magnets from Electron Energy Corporation (EEC) is under development. The system consists of two radial bearings, one thrust bearing, two radial catcher bearings and one motor. The purpose of this research is to develop one of the critical components of the system, namely, the High Temperature Permanent Magnet motor. A novel High Temperature Permanent Magnet (HTPM) Brushless DC(BLDC) motor capable of operating at 1000 degrees F (538 degrees C) is designed. HTPMs developed at Electron Energy Corporation are buried into the rotor. The high temperature motor is designed to produce 5.1kw of power at a top running speed of 20000 rpm. The numerical values of the motor voltage, power and torque output are predicted from calculations of the nonlinear finite element model of the motor. The motor stator is wound, potted, cured and high potential tested at 1000 degrees F. A servo amplifier from Advanced Motion Control is used to drive the high temperature motor. High temperature displacement sensors are set up for sensing the rotor position to form a closed loop motion control. However, the noise problem of the high temperature sensors causes a failure of this approach. An open loop approach is then developed and this approach succeeds in spinning the rotor with the capability of self-starting. The status of the full system assembling is introduced. Some other components of the system are briefly presented.

Zhang, Zhengxin

2010-08-01T23:59:59.000Z

160

Hydrogen production from high temperature electrolysis and fusion reactor  

SciTech Connect

Production of hydrogen from high temperature electrolysis of steam coupled with a fusion reactor is studied. The process includes three major components: the fusion reactor, the high temperature electrolyzer and the power conversion cycle each of which is discussed in the paper. Detailed process design and analysis of the system is examined. A parametric study on the effect of process efficiency is presented.

Dang, V.D.; Steinberg, J.F.; Issacs, H.S.; Lazareth, O.; Powell, J.R.; Salzano, F.J.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature reservoir evidence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS  

DOE Green Energy (OSTI)

Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problems between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL's test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. This model is under continued development. It shows that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, within the electrolyte. The chemical potential within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just under the oxygen electrode (anode)/electrolyte interface, leading to electrode delamination. This theory is being further refined and tested by introducing some electronic conduction in the electrolyte.

M. S. Sohal; J. E. O'Brien; C. M. Stoots; V. I. Sharma; B. Yildiz; A. Virkar

2012-02-01T23:59:59.000Z

162

Method for Synthesizing Extremeley High Temperature Melting Materials  

DOE Patents (OSTI)

The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

Saboungi, Marie-Louise and Glorieux, Benoit

2005-11-22T23:59:59.000Z

163

Advancing the technology base for high-temperature membranes  

DOE Green Energy (OSTI)

This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project addresses the major issues confronting the implementation of high-temperature membranes for separations and catalysis. We are pursuing high-temperature membrane systems that can have a large impact for DOE and be industrially relevant. A major obstacle for increased use of membranes is that most applications require the membrane material to withstand temperatures above those acceptable for polymer-based systems. Advances made by this project have helped industry and DOE move toward high-temperature membrane applications to improve overall energy efficiency.

Dye, R.C.; Birdsell, S.A.; Snow, R.C. [and others

1997-10-01T23:59:59.000Z

164

DOE Hydrogen Analysis Repository: High Temperature Electrolysis (HTE)  

NLE Websites -- All DOE Office Websites (Extended Search)

High Temperature Electrolysis (HTE) High Temperature Electrolysis (HTE) Project Summary Full Title: High Temperature Electrolysis (HTE) Project ID: 159 Principal Investigator: Steve Herring Brief Description: A three-dimensional computational fluid dynamics (CFD) model was created to model high-temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). A solid-oxide fuel cell model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. Keywords: Solid oxide fuel cell; solid oxide elctrolysis cell; nuclear; model Purpose Assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Performer Principal Investigator: Steve Herring

165

Fuel Cell Technologies Office: High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

High Temperature Membrane Working Group High Temperature Membrane Working Group The High Temperature Membrane Working Group consists of government, industry, and university researchers interested in developing high temperature membranes for fuel cells. Description Technical Targets Meetings Contacts Description Polymer electrolyte membrane (PEM) fuel cells typically operate at temperatures no higher than 60°C-80°C due to structural limitations of the membrane. Operating PEM fuel cell stacks at higher temperatures (120°C for transportation and 150°C for stationary applications), however, would yield significant energy benefits. For example, heat rejection is easier at higher temperatures, which would allow use of smaller heat exchangers in fuel cell power systems. In addition, for reformate fuel cell systems, carbon monoxide (CO) tolerance of the stack is less problematic at higher temperatures, which would reduce the size requirements or possibly eliminate the need for some CO clean-up beds in the fuel processor.

166

High Temperature Corrosion Test Facilities and High Pressure Test  

NLE Websites -- All DOE Office Websites (Extended Search)

High Temperature High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting Test Facilities for Metal Dusting Overview Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting Six corrosion test facilities and two thermogravimetric systems for conducting corrosion tests in complex mixed gas environments, in steam and in the presence of deposits, and five facilities for metal dusting degradation Bookmark and Share The High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting include: High Pressure Test Facility for Metal Dusting Resistance:

167

30vol%SiC at Ultra-high Temperatures  

Science Conference Proceedings (OSTI)

Presentation Title, SiC-depletion in ZrB2-30vol%SiC at Ultra-high Temperatures. Author(s), K N Shugart, E. J. Opila. On-Site Speaker (Planned), K N Shugart.

168

High temperature solid electrolyte fuel cell configurations and interconnections  

DOE Patents (OSTI)

High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

Isenberg, Arnold O. (Forest Hills, PA)

1984-01-01T23:59:59.000Z

169

Enabling high-temperature nanophotonics for energy applications  

E-Print Network (OSTI)

The nascent field of high-temperature nanophotonics could potentially enable many important solid-state energy conversion applications, such as thermophotovoltaic energy generation, selective solar absorption, and selective ...

Yeng, YiXiang

170

Mold, flow, and economic considerations in high temperature precision casting  

E-Print Network (OSTI)

Casting high temperature alloys that solidify through a noticeable two phase region, specifically platinum-ruthenium alloys, is a particularly challenging task due to their high melting temperature and this necessitates ...

Humbert, Matthew S

2013-01-01T23:59:59.000Z

171

Cryogenic deformation of high temperature superconductive composite structures  

DOE Patents (OSTI)

An improvement in a process of preparing a composite high temperature oxide superconductive wire is provided and involves conducting at least one cross-sectional reduction step in the processing preparation of the wire at sub-ambient temperatures.

Roberts, Peter R. (Groton, MA); Michels, William (Brookline, MA); Bingert, John F. (Jemez Springs, NM)

2001-01-01T23:59:59.000Z

172

Thermodynamics and Transport Phenomena in High Temperature Steam Electrolysis Cells  

DOE Green Energy (OSTI)

Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technology will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.

James E. O'Brien

2012-03-01T23:59:59.000Z

173

DEVELOPMENT OF HIGH TEMPERATURE ULTRASONIC TRANSDUCER FOR STRUCTURAL HEALTH MONITORING  

Science Conference Proceedings (OSTI)

Structural health monitoring (SHM) techniques are needed to maintain the reliability of aging power plants for long term operation. The high temperature transducers are necessary to realize SHM (monitor wall thickness of the pipings

A. Baba; C. T. Searfass; B. R. Tittmann

2011-01-01T23:59:59.000Z

174

Ir-based alloys for ultra-high temperature applications ...  

Site Map; Printable Version; Share this resource. Send a link to Ir-based alloys for ultra-high temperature applications - Energy Innovation Portalto someone by E-mail

175

Electronic properties of doped Mott insulators and high temperature superconductors  

E-Print Network (OSTI)

High-temperature superconducting cuprates, which are the quintessential example of a strongly correlated system and the most extensively studied materials after semiconductors, spurred the development in the fields of ...

Ribeiro, Tiago Castro

2005-01-01T23:59:59.000Z

176

Comparative Assessment of Direct Drive High Temperature Superconductin...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, LLC. Contract No. DE-AC36-08GO28308 Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines B....

177

Stability and quench protection of high-temperature superconductors  

E-Print Network (OSTI)

In the design and operation of a superconducting magnet, stability and protection are two key issues that determine the magnet's reliability and safe operation. Although the high-temperature superconductor (HTS) is considered ...

Ang, Ing Chea

2006-01-01T23:59:59.000Z

178

Toward material-specific simulations of high temperature superconductivity  

Science Conference Proceedings (OSTI)

High temperature superconductors could potentially revolutionize the use and transmission of electric power. This along with intriguing scientific questions have motivated an enormous research effort over the past twenty years, since the discovery of ...

Thomas C. Schulthess

2006-11-01T23:59:59.000Z

179

Dual-phase membrane for High temperature CO2 separation  

NLE Websites -- All DOE Office Websites (Extended Search)

2 CO 2 High temp. membrane for CO 2 removal High Temperature CO 2 Selective Membranes Syngas gas CO 2 enriched gas CO 2 High pressure H 2 0 100 200 300 400 500 600 700 1 10 100...

180

HYFIRE: a tokamak/high-temperature electrolysis system  

DOE Green Energy (OSTI)

The HYFIRE studies to date have investigated a number of technical approaches for using the thermal energy produced in a high-temperature Tokamak blanket to provide the electrical and thermal energy required to drive a high-temperature (> 1000/sup 0/C) water electrolysis process. Current emphasis is on two design points, one consistent with electrolyzer peak inlet temperatures of 1400/sup 0/C, which is an extrapolation of present experience, and one consistent with a peak electrolyzer temperature of 1100/sup 0/C. This latter condition is based on current laboratory experience with high-temperature solid electrolyte fuel cells. Our major conclusion to date is that the technical integration of fusion and high-temperature electrolysis appears to be feasible and that overall hydrogen production efficiencies of 50 to 55% seem possible.

Fillo, J.A.; Powell, J.P.; Benenati, R.; Varljen, T.C.; Chi, J.W.H.; Karbowski, J.S.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature reservoir evidence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Computational and Experimental Development of Novel High-Temperature Alloys  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Novel High-Temperature Alloys Background The need for fossil-fueled power plants to run cleaner and more efficiently leads toward ever-higher operating temperatures and pressures. Gas turbines, which can be fueled by natural gas, synthetic gas (syngas), or a high-hydrogen stream derived from coal, are critical components in this development. High-temperature operation of turbines is generally achieved by using nickel-chrome superalloys with coatings

182

Description of a high temperature downhole fluid sampler  

DOE Green Energy (OSTI)

Downhole fluid samplers have been used for years with limited success in high temperature geothermal wells. This paper discusses the development and operating principles of a high temperature downhole fluid sampler, reliable at obtaining samples at temperatures of up to 350/sup 0/C. The sampler was used successfully for recovering a brine sample from a depth of 10,200 ft in the Salton Sea Scientific Drilling Project well.

Solbau, R.; Weres, O.; Hansen, L.; Dudak, B.

1986-05-01T23:59:59.000Z

183

Fabrication and Characterization of Uranium-based High Temperature Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

Fabrication and Characterization of Uranium-based High Temperature Reactor Fabrication and Characterization of Uranium-based High Temperature Reactor Fuel June 01, 2013 The Uranium Fuel Development Laboratory is a modern R&D scale lab for the fabrication and characterization of uranium-based high temperature reactor fuel. A laboratory-scale coater manufactures tri-isotropic (TRISO) coated fuel particles (CFPs), state-of-the-art materials property characterization is performed, and the CFPs are then pressed into fuel compacts for irradiation testing, all under a NQA-1 compliant Quality Assurance Program. After fuel kernel size and shape are measured by optical shadow imaging, the TRISO coatings are deposited via fluidized bed chemical vapor deposition in a 50-mm diameter conical chamber within the coating furnace. Computer control of temperature and gas composition ensures reproducibility

184

High-Temperature Downhole Tools | Open Energy Information  

Open Energy Info (EERE)

Tools Tools Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for High-Temperature Downhole Tools 2 Geothermal ARRA Funded Projects for High-Temperature Downhole Tools Geothermal Lab Call Projects for High-Temperature Downhole Tools Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

185

DOE Science Showcase - Understanding High-Temperature Superconductors |  

Office of Scientific and Technical Information (OSTI)

Understanding High-Temperature Superconductors Understanding High-Temperature Superconductors Credit: DOE Scientists have long worked to understand one of the great mysteries of modern physics - the origin and behavior of high-temperature superconductors (HTS) that are uniquely capable of transmitting electricity with zero loss when chilled to subzero temperatures. For decades there have been competing theories and misunderstandings of how HTS materials actually work and they have remained fundamentally puzzling to physicists. Solving this mystery has the potential to revolutionize the planet's energy infrastructure from generation to transmission and grid-scale storage. Recent technical breakthroughs in this quest are being discovered by DOE scientists and their collaborators. Read about HTS technology, basic

186

Water adsorption at high temperature on core samples from The Geysers geothermal field  

DOE Green Energy (OSTI)

The quantity of water retained by rock samples taken from three wells located in The Geysers geothermal reservoir, California, was measured at 150, 200, and 250 C as a function of pressure in the range 0.00 {le} p/p{sub 0} {le} 0.98, where p{sub 0} is the saturated water vapor pressure. Both adsorption (increasing pressure) and desorption (decreasing pressure) runs were made in order to investigate the nature and the extent of the hysteresis. Additionally, low temperature gas adsorption analyses were performed on the same rock samples. Nitrogen or krypton adsorption and desorption isotherms at 77 K were used to obtain BET specific surface areas, pore volumes and their distributions with respect to pore sizes. Mercury intrusion porosimetry was also used to obtain similar information extending to very large pores (macropores). A qualitative correlation was found between the surface properties obtained from nitrogen adsorption and the mineralogical and petrological characteristics of the solids. However, there is in general no proportionality between BET specific surface areas and the capacity of the rocks for water adsorption at high temperatures. The results indicate that multilayer adsorption rather than capillary condensation is the dominant water storage mechanism at high temperatures.

Gruszkiewicz, M.S.; Horita, J.; Simonson, J.M.; Mesmer, R.E.

1998-06-01T23:59:59.000Z

187

High-Temperature Circuit Boards for use in Geothermal Well Monitoring  

Open Energy Info (EERE)

Temperature Circuit Boards for use in Geothermal Well Monitoring Temperature Circuit Boards for use in Geothermal Well Monitoring Applications Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title High-Temperature Circuit Boards for use in Geothermal Well Monitoring Applications Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 High-Temperature Downhole Tools Project Description Geothermal energy offers an abundant, renewable source of power that could be used to ensure the long-term energy independence of our nation. Currently, geothermal power in the United States is produced from relatively shallow wells that also contain naturally occurring water sources. These current geothermal power plants with near-ideal conditions for geothermal power production exist primarily in the western U.S. In order to expand the use of geothermal energy, new technologies are needed that will enable the utilization of the hot, dry rock located at depths up to 10 km. The introduction of water into these deep wells to create geothermal reservoirs is referred to as Enhanced Geothermal System (EGS).

188

High-Temperature-High-Volume Lifting | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » High-Temperature-High-Volume Lifting Jump to: navigation, search Geothermal ARRA Funded Projects for High-Temperature-High-Volume Lifting Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

189

Vibration Combined High Temperature Cycle Tests for Capacitive MEMS Accelerometers  

E-Print Network (OSTI)

In this paper vibration combined high temperature cycle tests for packaged capacitive SOI-MEMS accelerometers are presented. The aim of these tests is to provide useful Design for Reliability information for MEMS designers. A high temperature test chamber and a chopper-stabilized read-out circuitry were designed and realized at BME - DED. Twenty thermal cycles of combined Temperature Cycle Test and Fatigue Vibration Test has been carried out on 5 samples. Statistical evaluation of the test results showed that degradation has started in 3 out of the 5 samples.

Szucs, Z; Hodossy, S; Rencz, M; Poppe, A

2008-01-01T23:59:59.000Z

190

Vibration Combined High Temperature Cycle Tests for Capacitive MEMS Accelerometers  

E-Print Network (OSTI)

In this paper vibration combined high temperature cycle tests for packaged capacitive SOI-MEMS accelerometers are presented. The aim of these tests is to provide useful Design for Reliability information for MEMS designers. A high temperature test chamber and a chopper-stabilized read-out circuitry were designed and realized at BME - DED. Twenty thermal cycles of combined Temperature Cycle Test and Fatigue Vibration Test has been carried out on 5 samples. Statistical evaluation of the test results showed that degradation has started in 3 out of the 5 samples.

Z. Szucs; G. Nagy; S. Hodossy; M. Rencz; A. Poppe

2008-01-07T23:59:59.000Z

191

Method for high temperature mercury capture from gas streams  

DOE Patents (OSTI)

A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

Granite, E.J.; Pennline, H.W.

2006-04-25T23:59:59.000Z

192

Assessment of non-destructive testing of well casing,, cement and cement bond in high temperature wells  

DOE Green Energy (OSTI)

Because of the difficulty in bringing geothermal well blowouts under control, any indication of a casing/cement problem should be expeditiously evaluated and solved. There are currently no high temperature cement bond and casing integrity logging systems for geothermal wells with maximum temperatures in excess of 500/sup 0/F. The market is currently insufficient to warrannt the private investment necessary to develop tools and cables capable of withstanding high temperatures. It is concluded that a DOE-funded development program is required to assure that diagnostic tools are available in the interim until geothermal resource development activities are of sufficient magnitude to support developmental work on high temperature casing/cement logging capabilities by industry. This program should be similar to and complement the current DOE program for development of reservoir evaluation logging capabilities for hot wells. The appendices contain annotated bibliographies on the following: high temperature logging in general, cement integrity testing, cosing integrity testing, casing and cement failures, and special and protective treatment techniques. Also included are composite listing of references in alphabetical order by senior author.

Knutson,, C.K.; Boardman, C.R.

193

Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries  

SciTech Connect

This report summarizes technical progress during the program Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700C and a frequency response up to 150 kHz, the worlds smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 ?m) with 700C capability, UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, a single crystal sapphire fiber-based sensor with a temperature capability up to 1600C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

2006-11-14T23:59:59.000Z

194

High Temperature coatings based on {beta}-NiAI  

Science Conference Proceedings (OSTI)

High temperature alloys are reviewed, focusing on current superalloys and their coatings. The synthesis, characerization, and oxidation performance of a NiAlTiB{sub 2} composite are explained. A novel coating process for MoNiAl alloys for improved oxidation performance is examined. The cyclic oxidation performance of coated and uncoated MoNiAl alloys is discussed.

Severs, Kevin

2012-07-10T23:59:59.000Z

195

Preparation of high temperature gas-cooled reactor fuel element  

DOE Patents (OSTI)

This invention relates to a method for the preparation of high temperature gas-cooled reactor (HTGR) fuel elements wherein uncarbonized fuel rods are inserted in appropriate channels of an HTGR fuel element block and the entire block is inserted in an autoclave for in situ carbonization under high pressure. The method is particularly applicable to remote handling techniques.

Bradley, Ronnie A. (Oak Ridge, TN); Sease, John D. (Knoxville, TN)

1976-01-01T23:59:59.000Z

196

Free energy of Lorentz-violating QED at high temperature  

E-Print Network (OSTI)

In this paper we study the one- and two-loop contribution to the free energy in QED with the Lorentz symmetry breaking introduced via constant CPT-even Lorentz-breaking parameters at the high temperature limit. We find the impact of the Lorentz-violating term for the free energy and carry out a numerical estimation for the Lorentz-breaking parameter.

M. Gomes; T. Mariz; J. R. Nascimento; A. Yu. Petrov; A. F. Santos; A. J. da Silva

2009-10-23T23:59:59.000Z

197

AC Losses in the New High-Temperature Superconductors  

Science Conference Proceedings (OSTI)

This report addresses the properties of high-temperature ceramic oxide superconductors in low magnetic fields. It discusses ac losses in the superconducting and normal states, the influence of anisotropy, and a database for monitoring advances in superconductivity. The ac losses of the oxide superconductors were found to be excessive.

1989-03-17T23:59:59.000Z

198

Electronically conductive ceramics for high temperature oxidizing environments  

DOE Patents (OSTI)

This invention pertains to a high temperature, ceramic composition having electronic conductivity as measured by resistivity below about 500 ohm-cm, chemical stability particularly with respect to cathode conditions in a molten carbonate fuel cell, and composed of an alkali metal, transition metal oxide containing a dopant metal in the crystalline structure to replace a portion of the alkali metal or transition metal.

Kucera, G.H.; Smith, J.L.; Sim, J.W.

1983-11-10T23:59:59.000Z

199

High-temperature seal development for the share receiver  

DOE Green Energy (OSTI)

The development and experimental demonstration of a high-temperature seal for the SHARE ceramic dome cavity receiver is reported. The mechanical contact seal which was tested on one-foot diameter silicon carbide ceramic dome hardware at pressure differentials to four atmospheres and dome temperatures to 2200/sup 0/F (1200/sup 0/C) showed negligible leakage at expected receiver operating conditions.

Jarvinen, P. O.

1979-01-01T23:59:59.000Z

200

NUCLEAR RESONANT SCATTERING AT HIGH PRESSURE AND HIGH TEMPERATURE  

E-Print Network (OSTI)

NUCLEAR RESONANT SCATTERING AT HIGH PRESSURE AND HIGH TEMPERATURE JIYONG ZHAOa,? , WOLFGANG, The University of Chicago, Chicago, IL 60637, USA We introduce the combination of nuclear resonant inelastic X the thermal radiation spectra fitted to the Planck radiation function up to 1700 K. Nuclear resonant

Shen, Guoyin

Note: This page contains sample records for the topic "high-temperature reservoir evidence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada |  

Open Energy Info (EERE)

Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: A 3-D surface seismic reflection survey, covering an area of over 3 square miles, was conducted at the Rye Patch geothermal reservoir (Nevada) to explore the structural features that may control geothermal production in the area. In addition to the surface sources and receivers, a high-temperature three-component seismometer was deployed in a borehole at a depth of 3900 ft within the basement below the reservoir, which recorded the waves generated by all surface sources. A total of 1959 first-arrival travel times were determined out of 2134 possible traces. Two-dimensional

202

Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal  

Open Energy Info (EERE)

Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Area, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Area, California Details Activities (1) Areas (1) Regions (0) Abstract: Coso is one of several high-temperature geothermal systems associated with recent volcanic activity in the Basin and Range province. Chemical and fluid inclusion data demonstrate that production is from a narrow, asymmetric plume of thermal water that originates from a deep reservoir to the south and then flows laterally to the north. Geologic controls on the geometry of the upwelling plume were investigated using petrographic and analytical analyses of reservoir rock and vein material.

203

High Temperature Superconductivity -- A Joint Feasibility Study for a Power Application with High-Temperature Superconducting Cable by Peco Energy  

Science Conference Proceedings (OSTI)

Practical realization of high temperature superconductivity (HTS) technology is within the electric power industry's reach. This report documents a feasibility study co-sponsored by PECO Energy Company (PECO) to assess a real-world underground transmission application of this technology.

1998-11-17T23:59:59.000Z

204

High Temperature Superconductivity -- A Joint Feasibility Study for a Power Application with High-Temperature Superconducting Cable by South Carolina  

Science Conference Proceedings (OSTI)

Practical realization of high temperature superconductivity (HTS) technology is within the reach of the electric power industry. This report documents a feasibility study co-sponsored by South Carolina Electric and Gas Company (SCE&G) to assess a real-world underground transmission application of this technology.

1998-11-17T23:59:59.000Z

205

Status of Norris Reservoir  

DOE Green Energy (OSTI)

This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Norris Reservoir summarizes reservoir and watershed characteristics, reservoir uses, conditions that impair reservoir uses, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most up-to-date publications and data available, and from interviews with water resource professionals in various federal, state, and local agencies, and in public and private water supply and wastewater treatment facilities. 14 refs., 3 figs.

Not Available

1990-09-01T23:59:59.000Z

206

Safeguards Guidance for Prismatic Fueled High Temperature Gas Reactors (HTGR)  

National Nuclear Security Administration (NNSA)

5) 5) August 2012 Guidance for High Temperature Gas Reactors (HTGRs) with Prismatic Fuel INL/CON-12-26130 Revision 0 Safeguards-by-Design: Guidance for High Temperature Gas Reactors (HTGRs) With Prismatic Fuel Philip Casey Durst (INL Consultant) August 2012 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product,

207

Two Phase Transitions Make a High-Temperature Superconductor  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Phase Transitions Make a High-Temperature Superconductor Print Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first discovered 25 years ago and the current record holders for highest Tc. However, three groups of researchers who performed measurements on the same cuprate material recently joined forces to prove that this view is inaccurate. Their work showed that another phase transition actually exists at a higher temperature in the cuprate phase diagram, below which electrons, instead of pairing up, organize themselves in a drastically different way.

208

Two Phase Transitions Make a High-Temperature Superconductor  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Phase Transitions Make a High-Temperature Superconductor Print Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first discovered 25 years ago and the current record holders for highest Tc. However, three groups of researchers who performed measurements on the same cuprate material recently joined forces to prove that this view is inaccurate. Their work showed that another phase transition actually exists at a higher temperature in the cuprate phase diagram, below which electrons, instead of pairing up, organize themselves in a drastically different way.

209

Two Phase Transitions Make a High-Temperature Superconductor  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Phase Transitions Make a High-Temperature Superconductor Print Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first discovered 25 years ago and the current record holders for highest Tc. However, three groups of researchers who performed measurements on the same cuprate material recently joined forces to prove that this view is inaccurate. Their work showed that another phase transition actually exists at a higher temperature in the cuprate phase diagram, below which electrons, instead of pairing up, organize themselves in a drastically different way.

210

Two Phase Transitions Make a High-Temperature Superconductor  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Phase Transitions Make a High-Temperature Superconductor Print Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first discovered 25 years ago and the current record holders for highest Tc. However, three groups of researchers who performed measurements on the same cuprate material recently joined forces to prove that this view is inaccurate. Their work showed that another phase transition actually exists at a higher temperature in the cuprate phase diagram, below which electrons, instead of pairing up, organize themselves in a drastically different way.

211

High temperature solar thermal technology: The North Africa Market  

DOE Green Energy (OSTI)

High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

Not Available

1990-12-01T23:59:59.000Z

212

Goa, India Permeability of Charnokite Rock at High Temperatures  

E-Print Network (OSTI)

ABSTRACT: Permeability at high temperature is a very important parameter to be considered for designing underground high level nuclear waste repository (HLW) in rock mass. The surrounding rock mass is exposed to heat radiated by HLW when it is buried underground and development or extension of micro-cracks takes place in the host rock due to rise in temperature. Keeping this in view, the permeability study was conducted for Charnokite rock at high temperatures in the range from room temperature, 30 to 200 o C. The cylindrical rock samples of 36mm diameter and 150mm in length were used as per the required size for the equipment permeameter, TEMCO, USA. Total thirty rock samples were tested at various temperatures using nitrogen gas as fluid. The permeability tests were conducted at confining pressure of around 4MPa in order to simulate the horizontal in situ stress conditions in Charnokite rock at the depth of 400m for construction of HLW repository. 1

R. D. Dwivedi; R. K. Goel; A. Swarup; V. V. R. Prasad; R. K. Bajpai; P. K. Narayan; V. Arumugam

2008-01-01T23:59:59.000Z

213

Materials Degradation Studies for High Temperature Steam Electrolysis Systems  

DOE Green Energy (OSTI)

Experiments are currently in progress to assess the high temperature degradation behavior of materials in solid oxide electrolysis systems. This research includes the investigation of various electrolysis cell components and balance of plant materials under both anodic and cathodic gas atmospheres at temperatures up to 850C. Current results include corrosion data for a high temperature nickel alloy used for the air-side flow field in electrolysis cells and a commercial ferritic stainless steel used as the metallic interconnect. Three different corrosion inhibiting coatings were also tested on the steel material. The samples were tested at 850C for 500 h in both air and H2O/H2 atmospheres. The results of this research will be used to identify degradation mechanisms and demonstrate the suitability of candidate materials for long-term operation in electrolysis cells.

Paul Demkowicz; Pavel Medvedev; Kevin DeWall; Paul Lessing

2007-06-01T23:59:59.000Z

214

Hydrogen production from fusion reactors coupled with high temperature electrolysis  

DOE Green Energy (OSTI)

The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and complement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Processes which may be considered for this purpose include electrolysis, thermochemical decomposition or thermochemical-electrochemical hybrid cycles. Preliminary studies at Brookhaven indicate that high temperature electrolysis has the highest potential efficiency for production of hydrogen from fusion. Depending on design electric generation efficiencies of approximately 40 to 60 percent and hydrogen production efficiencies of approximately 50 to 70 percent are projected for fusion reactors using high temperature blankets.

Fillo, J A; Powell, J R; Steinberg, M

215

Operating high temperature (1000/sup 0/C) electrolysis demonstration unit  

SciTech Connect

Phase I of the BNL Fusion Synfuel Demonstration Program has been the successful construction and demonstration of a 100-W electrically-heated, high-temperature electrolysis unit operating at a temperature of 1000/sup 0/C. The high-temperature electrolyzer demonstration unit consists of 34 yttria-stabilized zirconia tubes contained in a 15-cm (od), 30-cm long INCONEL pressure vessel. The tubes are 25-cm long (active length), 0.64-cm (od), and coated on the inside with platinum to form the oxygen electrode and coated on the outside with nickel to form the hydrogen electrode. The 1000/sup 0/C steam is raised by electrically heating water. The system is designed to produce approx. 6 cc/s of hydrogen.

Horn, F.L.; Powell, J.R.; Fillo, J.A.

1981-01-01T23:59:59.000Z

216

Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis  

DOE Green Energy (OSTI)

A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

Grant L. Hawkes; Michael G. McKellar

2009-11-01T23:59:59.000Z

217

NETL: Mercury Emissions Control Technologies - Enhanced High Temperature  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced High Temperature Mercury Oxidation and Enhanced High Temperature Mercury Oxidation and In-Situ Active Carbon Generation for Low Cost Mercury Capture Mercury oxidation phenomenon and the studies of this phenomenon have generally focused on lower temperatures, typically below 650°F. This has been based on the mercury vapor equilibrium speciation curve. The baseline extents of mercury oxidation as reported in the ICR dataset and observed during subsequent tests has shown a tremendous amount of scatter. The objective of this project is to examine, establish and demonstrate the effect of higher temperature kinetics on mercury oxidation rates. Further, it is the objective of this project to demonstrate how the inherent mercury oxidation kinetics can be influenced to dramatically increase the mercury oxidation.

218

Adaptable Sensor Packaging for High Temperature Fossil Fuel Energy System  

NLE Websites -- All DOE Office Websites (Extended Search)

Adaptable Sensor Packaging for High Adaptable Sensor Packaging for High Temperature Fossil Fuel Energy Systems Background The Advanced Research Sensors and Controls Program is leading the effort to develop sensing and control technologies and methods to achieve automated and optimized intelligent power systems. The program is led by the U.S. Department of Energy (DOE) Office of Fossil Energy National Energy Technology Laboratory (NETL) and is implemented through research and development agreements with other

219

Amorphous Alloy Membranes for High Temperature Hydrogen Separations  

NLE Websites -- All DOE Office Websites (Extended Search)

for High for High Temperature Hydrogen Separations Background Coal and biomass are readily available in the United States and can be mixed for thermal processing to produce hydrogen and power. The produced hydrogen can be sent directly to a fuel cell for highly efficient and environmentally clean power generation. For coal and biomass to become economically viable sources of hydrogen, more efficient production processes need to be developed. To meet this

220

High Temperature Syngas Cleanup Technology Scale-up  

NLE Websites -- All DOE Office Websites (Extended Search)

RECOVERY ACT: Scale-Up of RECOVERY ACT: Scale-Up of High-Temperature Syngas Cleanup Technology Background Coal gasification generates a synthesis gas (syngas)-predominantly a mixture of carbon monoxide (CO) and hydrogen (H 2 )-that can be used for chemical production of hydrogen, methanol, substitute natural gas (SNG), and many other industrial chemicals, or for electric power generation. Conventional integrated gasification combined cycle (IGCC) power plants use this syngas as a fuel for a combustion

Note: This page contains sample records for the topic "high-temperature reservoir evidence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Sealed glass coating of high temperature ceramic superconductors  

DOE Patents (OSTI)

A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

Wu, Weite (Tainan, TW); Chu, Cha Y. (Garnerville, NY); Goretta, Kenneth C. (Downers Grove, IL); Routbort, Jules L. (Darien, IL)

1995-01-01T23:59:59.000Z

222

Anode for a secondary, high-temperature electrochemical cell  

DOE Patents (OSTI)

A high-temperature, secondary electrochemical cell includes an anode containing lithium, an electrolyte containing lithium ions and a cathode containing a chalcogen material such as sulfur or a metallic sulfide. The anode includes a porous substrate formed of, for instance, a compacted mass of entangled metallic fibers providing interstitial crevices for receiving molten lithium metal. The surfaces of the interstitial crevices are provided with a coating of cobalt metal to enhance the retention of the molten lithium metal within the substrate.

Vissers, Donald R. (Naperville, IL); Tani, Benjamin S. (Chicago, IL)

1976-01-01T23:59:59.000Z

223

High-Temperature Thermodynamic Data for Species in Aqueous Solution  

Science Conference Proceedings (OSTI)

This report summarizes the results of experimental and theoretical research on the high-temperature thermodynamic properties of aqueous species important to nuclear reactor water chemistry. Methods of predicting thermodynamic functions are presented for electrolytes up to 300 degrees Celsius for use in supplementing experimental data. The report includes tables (up to 300 degrees Celsius) of (1) important equilibrium constants for 78 reactions encountered in corrosion and precipitation in nuclear reactor...

1982-05-01T23:59:59.000Z

224

High temperature superconductivity in metallic region near Mott transition  

E-Print Network (OSTI)

The spin-singlet superconductivity without phonons is examined in consideration of correlations on an extended Hubbard model. It is shown that the superconductivity requires not only the total correlation should be strong enough but also the density of state around Fermi energy should be large enough, which shows that the high temperature superconductivity could only be found in the metallic region near the Mott metal insulator transition (MIT). Other properties of superconductors are also discussed on these conclusions.

Tian De Cao

2009-06-11T23:59:59.000Z

225

High temperature sodium testing of the CRBR prototype primary pump  

Science Conference Proceedings (OSTI)

Qualification testing in sodium of the CRBR primary pump was conducted through 1982. This paper presents an overview of the test program, a description of the Sodium Pump Test Facility (largest of its kind in the world), a brief description of the test article and summary overview of results. Of special interest were the high temperature gas convection tests and the extensive flow/speed control (dynamic) tests. Special innovative test methods were employed to investigate these phenomena.

Tessier, M.J.; Grimaldi, J.L.

1983-01-01T23:59:59.000Z

226

Guide for High Temperature Operation of Overhead Lines: 2012 Updates  

Science Conference Proceedings (OSTI)

This Guide assists users in raising the capacities of overhead transmission lines by increasing the conductor temperature. It is based on a wealth of knowledge accumulated from extensive research conducted internally at the Electric Power Research Institute (EPRI), information from manufacturers, and results from research conducted outside of EPRI. The Guide has evolved from a collection of numerous EPRI reports published in the past, including Effect of High-Temperature Cycling on Conductor ...

2012-12-12T23:59:59.000Z

227

Accelerated Aging Test of High-Temperature Conductor and Connectors  

Science Conference Proceedings (OSTI)

As part of the research on high-temperature low-sag (HTLS) advanced conductors, this project investigates the long-term performance of commercially available advanced conductors to complement the field demonstration project, which provided information on handling and stringing of these conductors. The report provides preliminary results from the accelerated aging tests conducted on various types of HTLS conductors and their connectors. The objective of the accelerated aging tests is to determine the ...

2012-12-12T23:59:59.000Z

228

HTC (High-Temperature Conductor) Matrix: Version 4.1  

Science Conference Proceedings (OSTI)

EPRIs HTC Matrix software is a Windows application designed to provide the user with quick and directed access to all of the information developed under several EPRI projects investigating the effects of high temperature operation of conductors. The research results have been published in several technical reports.Benefits & ValueThe user can determine whether a certain type of connectors can be used at a specific ...

2012-11-05T23:59:59.000Z

229

Guide for Selection and Application of High-Temperature Conductors  

Science Conference Proceedings (OSTI)

Extensive research has been conducted by the Electric Power Research Institute (EPRI) on high-temperature low-sag (HTLS) conductors. Much knowledge has been gained on this type of conductor since EPRI initiated its first HTLS conductor research project in 2004. The projects on HTLS conductors completed to date include field demonstration, material study, and short-term to long-term performance evaluations. These projects were conducted under different funding arrangements and were sometimes ...

2012-12-31T23:59:59.000Z

230

Thermal Models of Overhead Transmission Lines Operating at High Temperatures  

Science Conference Proceedings (OSTI)

Bare stranded overhead transmission line conductorsreferred to as aluminum conductor steel reinforced ACSRtypically consist of at least two layers of aluminum strands, helically stranded around a core consisting of steel wires. The current that flows through such conductors is located predominantly in the aluminum layers while the steel core provides mechanical strength and limits sag at high temperature. The lack of new line construction combined with the decoupling of transmission from power generatio...

2010-12-23T23:59:59.000Z

231

Effect of High Temperature Cycling on Conductor Systems  

Science Conference Proceedings (OSTI)

One of the alternatives for increasing power flow on an existing transmission line is to raise the operating temperature of its conductor. The effects of high operating temperature on the conductor, however, include loss in conductor strength and reduction in conductor clearance to ground. The high temperature also affects the short- and long-term performance of the conductor connections and conductor accessories. All of these effects must be assessed for an overhead line to operate safely and reliably a...

2007-12-18T23:59:59.000Z

232

Secret high-temperature reactor concept for inertial fusion  

DOE Green Energy (OSTI)

The goal of our SCEPTRE project was to create an advanced second-generation inertial fusion reactor that offers the potential for either of the following: (1) generating electricity at 50% efficiency, (2) providing high temperature heat (850/sup 0/C) for hydrogen production, or (3) producing fissile fuel for light-water reactors. We have found that these applications are conceptually feasible with a reactor that is intrinsically free of the hazards of catastrophic fire or tritium release.

Monsler, M.J.; Meier, W.R.

1983-01-01T23:59:59.000Z

233

Guide for Operating Overhead Lines at High Temperatures  

Science Conference Proceedings (OSTI)

This Guide assists users in raising the capacities of overhead transmission lines by increasing the conductor temperature. It is based on a wealth of knowledge accumulated from extensive research conducted internally at the Electric Power Research Institute (EPRI), information from manufacturers, and results from research conducted outside of EPRI. The Guide evolved from a collection of numerous EPRI reports published in the past, for example, Effect of High-Temperature Cycling on Conductor Systems (EPRI...

2010-12-13T23:59:59.000Z

234

Expansion Joint Concepts for High Temperature Insulation Systems  

E-Print Network (OSTI)

As high temperature steam and process piping expands with heat, joints begin to open between the insulation sections, resulting in increased energy loss and possible unsafe surface temperatures. Many different expansion joint designs are presently in use for both single and double layer insulation construction. However, due to the installation cost reduction associated with single layer systems and increased thickness capabilities of insulation manufacturers, much attention is being given to utilizing single layer construction as much as possible.

Harrison, M. R.

1980-01-01T23:59:59.000Z

235

Ultra high temperature instrumentation amplifier components final report  

DOE Green Energy (OSTI)

In order to develop a downhole instrumentation amplifier to support geothermal well logging without thermal protection, all the components required were tested over the temperature range of 25 to 500/sup 0/C. The components tested were ceramic vacuum tubes, resistors, capacitors, insulated hook-up wire, circuit boards, terminals, connectors, feedthroughs, thermal switch, magnet wire, and high temperature coatings and cements. Details of the tests are presented for all components. (MHR)

Kelly, R.D.; Morse, C.P.; Cannon, W.L.

1977-09-01T23:59:59.000Z

236

Sourcebook on high-temperature electronics and instrumentation  

DOE Green Energy (OSTI)

This sourcebook summarizes the high-temperature characteristics of a number of commercially available electronic components and materials required in geothermal well-logging instruments that must operate to 275/sup 0/C. The sourcebook is written to provide a starting place for instrument designers, who need to know the high-temperature electronic products that are available and the design and performance limitations of these products. The electronic component information given includes the standard repertoire of passive devices such as resistors, capacitors, and magnetics; the active devices and integrated circuits sections emphasize silicon semiconductor JFETs and CMOS circuits; and, to complete the electronics, interconnections and packaging of hybrid microelectronics are described. Thermal insulation and refrigeration alternatives are also presented in the sourcebook. Finally, instrument housing materials and high-temperature cables and cablehead connectors are listed. This information was compiled as part of the Geothermal Logging Instrumentation Development Program that Sandia National Laboratories conducted for the US Department of Energy's Divison of Geothermal Energy from 1976 to 1981.

Veneruso, A.F. (ed.)

1981-10-01T23:59:59.000Z

237

High Temperature, High Pressure Devices for Zonal Isolation in Geothermal  

Open Energy Info (EERE)

Temperature, High Pressure Devices for Zonal Isolation in Geothermal Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Zonal Isolation Project Description For Enhanced Geothermal Systems (EGS), high-temperature high-pressure zonal isolation tools capable of withstanding the downhole environment are needed. In these wells the packers must withstand differential pressures of 5,000 psi at more than 300°C, as well as pressures up to 20,000 psi at 200°C to 250°C. Furthermore, when deployed these packers and zonal isolation tools must form a reliable seal that eliminates fluid loss and mitigates short circuiting of flow from injectors to producers. At this time, general purpose open-hole packers do not exist for use in geothermal environments, with the primary technical limitation being the poor stability of existing elastomeric seals at high temperatures.

238

High-Temperature-High-Volume Lifting For Enhanced Geothermal Systems  

Open Energy Info (EERE)

Temperature-High-Volume Lifting For Enhanced Geothermal Systems Temperature-High-Volume Lifting For Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title High-Temperature-High-Volume Lifting For Enhanced Geothermal Systems Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 High-Temperature-High-Volume Lifting Project Description The proposed scope of work is divided into three Phases. Overall system requirements will be established in Phase 1, along with an evaluation of existing lifting system capability, identification of technology limitations, and a conceptual design of an overall lifting system. In developing the system components in Phase 2, component-level tests will be conducted using GE facilities. Areas of development will include high-temperature drive system materials, journal and thrust bearings, and corrosion and erosion-resistant lifting pump components. Finally, in Phase 3, the overall lab-scale lifting system will be demonstrated in a flow loop that will be constructed at GE Global Research.

239

Pseudogap and Superconducting Gap in High-Temperature Superconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

Pseudogap and Superconducting Gap in Pseudogap and Superconducting Gap in High-Temperature Superconductors Two decades after the discovery of first high temperature superconductors, the microscopic mechanism of high-Tc superconductivity remains elusive. In conventional superconductors, it has been well established that electrons form so-called "Cooper pairs" to give rise to superconductivity. The pair binding manifests itself as an energy gap in many spectroscopic measurements. This energy gap, known as superconducting gap, appears at the superconducting transition temperature Tc where the resistance also vanishes. For high temperature superconductors, the story is more complicated. Over a wide region of compositions and temperatures, there exists an energy gap well above Tc. This energy gap is called pseudogap [1], because there is no direct correlation to the superconducting transition. The origin of this pseudogap and its relation to the superconducting gap are believed to hold the key for understanding the mechanism of high-Tc superconductivity - one of the outstanding problems in condensed matter physics. In this regard, researchers Kiyohisa Tanaka and Wei-Sheng Lee, along with their co-workers in Prof. Zhi-Xun Shen's group at Stanford University, have recently made an important discovery about the coexistence of two distinct energy gaps that have opposite doping dependence. Their observation not only provides a natural explanation for the contradictory results about the superconducting gap deduced from different experimental techniques, but also has profound implications on the mechanism of high-Tc superconductivity.

240

Sourcebook on high-temperature electronics and instrumentation  

SciTech Connect

This sourcebook summarizes the high-temperature characteristics of a number of commercially available electronic components and materials required in geothermal well-logging instruments that must operate to 275/sup 0/C. The sourcebook is written to provide a starting place for instrument designers, who need to know the high-temperature electronic products that are available and the design and performance limitations of these products. The electronic component information given includes the standard repertoire of passive devices such as resistors, capacitors, and magnetics; the active devices and integrated circuits sections emphasize silicon semiconductor JFETs and CMOS circuits; and, to complete the electronics, interconnections and packaging of hybrid microelectronics are described. Thermal insulation and refrigeration alternatives are also presented in the sourcebook. Finally, instrument housing materials and high-temperature cables and cablehead connectors are listed. This information was compiled as part of the Geothermal Logging Instrumentation Development Program that Sandia National Laboratories conducted for the US Department of Energy's Divison of Geothermal Energy from 1976 to 1981.

Veneruso, A.F. (ed.)

1981-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature reservoir evidence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

High power densities from high-temperature material interactions  

DOE Green Energy (OSTI)

Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs) offer important and unique advantages in terrestrial and space energy processing. And they are well suited to serve together synergistically. TEC and MFHPs operate through working-fluid vaporization, condensation cycles that accept great thermal power densities at high temperatures. TEC and MFHPs have apparently simple, isolated performance mechanisms that are somewhat similar. And they also have obviously difficult, complected material problems that again are somewhat similar. Intensive investigation reveals that aspects of their operating cycles and material problems tend to merge: high-temperature material effects determine the level and lifetime of performance. Simplified equations verify the preceding statement for TEC and MFHPs. Material properties and interactions exert primary influences on operational effectiveness. And thermophysicochemical stabilities dictate operating temperatures which regulate the thermoemissive currents of TEC and the vaporization flow rates of MFHPs. Major high-temperature material problems of TEC and MFHPs have been solved. These solutions lead to productive, cost-effective applications of current TEC and MFHPs - and point to significant improvements with anticipated technological gains.

Morris, J.F.

1981-01-01T23:59:59.000Z

242

Current Status of the Advanced High Temperature Reactor  

SciTech Connect

The Advanced High Temperature Reactor (AHTR) is a design concept for a central station type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently under development by Oak Ridge National Laboratory for the U. S. Department of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR design option exploration is a multidisciplinary design effort that combines core neutronic and fuel configuration evaluation with structural, thermal, and hydraulic analysis to produce a reactor and vessel concept and place it within a power generation station. The AHTR design remains at the notional level of maturity, as key technologies require further development and a logically complete integrated design has not been finalized. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated.

Holcomb, David Eugene [ORNL; Ilas, Dan [ORNL; Qualls, A L [ORNL; Peretz, Fred J [ORNL; Varma, Venugopal Koikal [ORNL; Bradley, Eric Craig [ORNL; Cisneros, Anselmo T. [University of California, Berkeley

2012-01-01T23:59:59.000Z

243

High temperature gas-cooled reactor: gas turbine application study  

SciTech Connect

The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project.

Not Available

1980-12-01T23:59:59.000Z

244

Development of High Temperature Capacitor Technology and Manufacturing Capability  

SciTech Connect

The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: ? Deeper oil exploration in higher temperature and pressure environments ? Enabling power electronic and control equipment to operate in higher temperature environments ? Enabling reduced cooling requirements of electronics ? Increasing reliability and life of capacitors operating below rated temperature ? Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: ? FPE Film is difficult to handle and wind, resulting in poor yields ? Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) ? Encapsulation technologies must be improved to enable higher temperature operation ? Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/?m. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200C and non-hermetic packages at 250C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

None

2011-05-15T23:59:59.000Z

245

GaAs ohmic contacts for high temperature devices  

DOE Green Energy (OSTI)

Instrumentation requirements for geothermal wells, jet engines, and nuclear reactors have exceeded the high temperature capability of silicon devices. As one part of a program to develop high temperature compound semiconductor devices, four basic ohmic contact systems for n-type GaAs have been evaluated for contact resistance as a function of temperature (24 to 350/sup 0/C) and time (at 300/sup 0/C): Ni/AuGe; Ag/Si and Ag/Ni/Si; Al/Ge and Al/AlGe; and Au/Nb/Si and Pt/Nb/Si. Optimization of processing parameters produced viable high temperature contacts with all but the Al/Ge systems. Aging at 300/sup 0/C changed the contact resistivity in only the Ag/Ni/Si contacts. Film adhesion was excellent for the Al/Ge, Ni/AuGe, and Ag/Si systems as measured with ultrasonic Al wire bond pull strengths. Lower adhesion was noticed with Nb/Si systems measured with gold wire bond pull strengths.

Coquat, J.A.; Palmer, D.W.

1980-01-01T23:59:59.000Z

246

High temperature thermal properties for metals used in LWR vessels  

Science Conference Proceedings (OSTI)

Because of the impact that melt relocation and vessel failure has on subsequent progression and associated consequences of an Light Water Reactor (LWR) accident, it is important to accurately predict the heatup and relocation of materials within the reactor vessel and heat transfer to and from the reactor vessel. Accurate predictions of such heat transfer phenomena require high temperature thermal properties. However, a review of vessel and structural steel material properties in severe accident analysis codes reveals that the required high temperature material properties are extrapolated, with little if any, data above 700 C. To reduce uncertainties in predictions relying upon this extrapolated high temperature data, INL obtained data using laser-flash thermal diffusivity techniques for two metals used in LWR vessels: SA533B1 carbon steel, which is used to fabricate most US LWR reactor vessels; and SS304, which is used in LWR vessel piping, penetration tubes, and internal structures. This paper summarizes the new data, compares it to existing data in the literature, and provides recommended correlations for thermal properties based on this data.

Joy L. Rempe

2008-01-01T23:59:59.000Z

247

RAPHAEL: The European Union's (Very) High Temperature Reactor Technology Project  

SciTech Connect

Since the late 1990, the European Union (EU) was conducting work on High Temperature Reactors (HTR) confirming their high potential in terms of safety (inherent safety features), environmental impact (robust fuel with no significant radioactive release), sustainability (high efficiency, potential suitability for various fuel cycles), and economics (simplifications arising from safety features). In April 2005, the EU Commission has started a new 4-year Integrated Project on Very High Temperature Reactors (RAPHAEL: Reactor for Process Heat And Electricity) as part of its 6{sup th} Framework Programme. The European Commission and the 33 partners from industry, R and D organizations and academia finance the project together. After the successful performance of earlier HTR-related EU projects which included the recovery of some earlier German experience and the re-establishment of strategically important R and D capabilities in Europe, RAPHAEL focuses now on key technologies required for an industrial VHTR deployment, both specific to very high temperature and generic to all types of modular HTR with emphasis on combined process heat and electricity generation. Advanced technologies are explored in order to meet the performance challenges required for a VHTR (900-1000 deg C, up to 200 GWd/tHM). To facilitate the planned sharing of significant parts of RAPHAEL results with the signatories of the Generation IV International Forum (GIF) VHTR projects, RAPHAEL is structured in a similar way as the corresponding GIF VHTR projects. (authors)

Fuetterer, Michael A. [European Commission, Joint Research Centre, Institute for Energy, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Besson, D.; Bogusch, E.; Carluec, B.; Hittner, D.; Verrier, D. [AREVA Framatome-ANP (France); Billot, Ph.; Phelip, M. [Commissariat a l'Energie Atomique (France); Buckthorpe, D. [NNC Ltd, Knutsford (United Kingdom); Casalta, S. [European Commission, DG RTD, Brussels (Belgium); Chauvet, V. [STEP, Paris (France); Van Heek, A. [Nuclear Research and Consultancy Group, Petten (Netherlands); Von Lensa, W. [Forschungszentrum Juelich (Germany); Pirson, J. [Tractebel Engineering, Brussels (Belgium); Scheuermann, W. [Institut fuer Kernenergetik, University of Stuttgart (Germany)

2006-07-01T23:59:59.000Z

248

Growth of Thick, On-Axis SiC Epitaxial Layers by High Temperature ...  

Science Conference Proceedings (OSTI)

... Layers by High Temperature Halide CVD for High Voltage Power Devices ... rate, high temperature process ideally suited for thick epitaxial requirements.

249

HIGH TEMPERATURE CONDUCTIVITY PROBE FOR MONITORING CONTAMINATION LEVELS IN POWER PLANT BOILER WATER.  

E-Print Network (OSTI)

??A high temperature/high pressure flow through probe was designed to measure high temperature electrical conductivity of aqueous (aq) dilute electrolyte solutions, an application which can (more)

Hipple, Sarah

2008-01-01T23:59:59.000Z

250

EA-0510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator Development Project (METC), Churchill, Pennsylvania EA-0510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator...

251

Study of Catcher Bearings for High Temperature Magnetic Bearing Application  

E-Print Network (OSTI)

The Electron Energy Corporation (EEC) along with National Aeronautics and Space Administration (NASA) in collaboration with Vibration Control and Electro mechanics Lab (VCEL), Texas A & M University, College Station, TX are researching on high temperature permanent magnet based magnetic bearings. The magnetic bearings are made of high temperature resistant permanent magnets (up to 1000 degrees F). A test rig has been developed to test these magnetic bearings. The test rig mainly consists of two radial bearings, one axial thrust bearing and two catcher bearings. The test rig that the catcher bearing is inserted in is the first ultra-high temperature rig with permanent magnet biased magnetic bearings and motor. The magnetic bearings are permanent magnet based which is a novel concept. The Graphalloy bearings represent a new approach for ultra-high temperature backup bearing applications. One of the main objectives of this research is to insure the mechanical and electrical integrity for all components of the test rig. Some assemblies and accessories required for the whole assembly need to be designed. The assembly methods need to be designed. The preliminary tests for coefficient of friction, Young's modulus and thermal expansion characteristics for catcher bearing material need to be done. A dynamic model needs to be designed for studying and simulating the rotor drop of the shaft onto the catcher bearing using a finite element approach in MATLAB. The assembly of the test rig was completed successfully by developing assembly fixtures and assembly methods. The components of the test rig were tested before assembly. Other necessary systems like Sensor holder system, Graphalloy press fit system were designed, fabricated and tested. The catcher bearing material (Graphalloy) was tested for coefficient of friction and Young's modulus at room and high temperatures. The rotor drop was simulated by deriving a dynamic model, to study the effect of system parameters like clearance, coefficient of friction, negative stiffness, initial spin speed on system behavior. Increasing the friction increases the backward whirl and decreases the rotor stoppage time. Increasing the clearance reduces the stoppage time and increases the peak bearing force. Increasing the initial spin speed increases the rotor stoppage time. The maximum stress encountered for as built conditions is more than allowable limits.

Narayanaswamy, Ashwanth

2011-05-01T23:59:59.000Z

252

Evaluation of ceramic filters for high-temperature/high-pressure fine particulate control. Final report Dec 75-Jun 76  

SciTech Connect

High temperature gas turbines used to generate electric power require gas streams virtually free of particulate matter. Gas streams from high temperature, high pressure coal processes, such as low Btu gasification and pressurized fluidized bed combustion, require considerable particulate removal. In order to maintain high thermal efficiency the particulate clean-up must be done at the high temperatures of the process. Many new concepts for fine particulate control at elevated temperatures are presently being proposed. One such concept utilizes ceramic membrane filters. The report gives results of a study to analyze and evaluate ceramic membrane filters as a new, fine particulate (<3 um) control concept for high-temperature (approx. 900/sup 0/C), high-pressure processes. Several ceramic filters were identified as potential candidates for fine particulate removal. There does not seem to be any inherent material limitation to high-temperature operation; however, no evidence of high-temperature filter application was found. The filters typically are 2-6 mm thick, cylindrical, and available with various pore sizes, increasing upward from 0.5 um. These elements may be suitable for fine particulate control in hot gas streams. The most promising, although undeveloped, idea for a ceramic filter is to use ceramic honeycomb monoliths similar to those available for catalyst supports and heat exchangers. The walls of the monoliths are about 0.2-0.4 mm thick and of varying pore size and porosity. Geometric configurations are available which would force the gas to flow through the membrane walls. Pressure losses would be very small relative to those of standard ceramic filter elements. The application of ceramic monoliths to high-temperature fine particulate control appears very promising. It is strongly recommended that this concept be investigated further.

Poe, G.G.; Evans, R.M.; Bonnett, W.S.; Waterland, L.R.

1977-02-01T23:59:59.000Z

253

Dual Phase Membrane for High Temperature CO2 Separation  

SciTech Connect

Dual-phase membranes consisting of stainless steel supports infiltrated with molten carbonate have been shown to be selective to CO{sub 2} at high temperatures (400-650 C). However, over time at high temperatures, the formation of iron oxides on the surface of the stainless steel supports render the membranes ineffective. This report details synthesis and characteristics of dual-phase carbonate membrane with an oxidation resistant perovskite type ceramic (lanthanum-strontium-cobaltite-iron; LSCF) support. Porous LSCF supports were prepared from its powder synthesized by the citrate method. Both steady state permeation and mercury porosimetry confirmed that the LSCF membrane sintered at 900 C has pores large enough to absorb molten carbonate, yet small enough to retain the molten carbonate under high pressure conditions. Results of XRD analysis have shown that LSCF and the molten carbonate mixture do not react with each other at temperatures below 700 C. Four-point method conductivity tests indicate that the support material has sufficiently high electronic conductivity for this application. Li-Na-K carbonate was coated to the porous LSCF support by a liquid infiltration method. Helium permeance of the support before and after infiltration of molten carbonate are on the order of 10{sup -6} and 10{sup -10} moles/m{sup 2} {center_dot} Pa {center_dot} s respectively, indicating that the molten carbonate is able to sufficiently infiltrate the membrane. Preliminary high temperature permeation experiments indicate that the membrane does separate CO{sub 2} in the presence of O{sub 2}, with a maximum flux of 0.623 ml/cm{sup 2} {center_dot} min obtained at 850 C.

Jerry Y.S. Lin; Matthew Anderson

2006-09-29T23:59:59.000Z

254

Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor  

DOE Green Energy (OSTI)

The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; Davie Petti

2009-10-01T23:59:59.000Z

255

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University CASING IN A HIGH TEMPERATURE GEOTHERMAL WELL Gunnar Skúlason Kaldal1 *, Magnús ?. Jónsson1 , Halldór@hi.is ABSTRACT The production casing of a high temperature geothermal well is subjected to multiple thermo

Stanford University

256

Heat exchangers for high-temperature thermodynamic cycles  

SciTech Connect

The special requirements of heat exchangers for high temperature thermodynamic cycles are outlined and discussed with particular emphasis on cost and thermal stress problems. Typical approaches that have been taken to a comprehensive solution intended to meet all of the many boundary conditions are then considered by examining seven typical designs including liquid-to-liquid heat exchangers for nuclear plants, a heater for a closed cycle gas turbine coupled to a fluidized bed coal combustion chamber, steam generators for nuclear plants, a fossil fuel-fired potassium boiler, and a potassium condenser-steam generator. (auth)

Fraas, A.P.

1975-01-01T23:59:59.000Z

257

High-temperature alloys for high-power thermionic systems  

DOE Green Energy (OSTI)

The need for structural materials with useful strength above 1600 k has stimulated interest in refractory-metal alloys. Tungsten possesses an extreme high modulus of elasticity as well as the highest melting temperature among metals, and hence is being considered as one of the most promising candidate materials for high temperature structural applications such as space nuclear power systems. This report is divided into three chapters covering the following: (1) the processing of tungsten base alloys; (2) the tensile properties of tungsten base alloys; and (3) creep behavior of tungsten base alloys. Separate abstracts were prepared for each chapter. (SC)

Shin, Kwang S.; Jacobson, D.L.; D'cruz, L.; Luo, Anhua; Chen, Bor-Ling.

1990-08-01T23:59:59.000Z

258

Conductor requirements for high-temperature superconducting utility power transformers  

Science Conference Proceedings (OSTI)

High-temperature superconducting (HTS) coated conductors in utility power transformers must satisfy a set of operating requirements that are driven by two major considerations-HTS transformers must be economically competitive with conventional units, and the conductor must be robust enough to be used in a commercial manufacturing environment. The transformer design and manufacturing process will be described in order to highlight the various requirements that it imposes on the HTS conductor. Spreadsheet estimates of HTS transformer costs allow estimates of the conductor cost required for an HTS transformer to be competitive with a similarly performing conventional unit.

Pleva, E. F. [Waukesha Electric Systems, Waukesha, WI; Mehrotra, V. [Waukesha Electric Systems, Waukesha, WI; Schwenterly, S W [ORNL

2010-01-01T23:59:59.000Z

259

High Temperature Measurements Of Martensitic transformations Using Digital Holography  

SciTech Connect

During thermal cycling of nickel-aluminum-platinum (NiAlPt) and single crystal Fe-15Cr-15Ni alloys, the structural changes associated with the martensite to austenite phase transformation were measured using dual-wavelength digital holography. Real-time in-situ measurements reveal the formation of striations within the NiPtAl alloy at 70 C and the FeCrNi alloy at 520 C. The results demonstrate that digital holography is an effective technique for acquiring non-contact, high precision information of the surface evolution of alloys at high temperatures.

Thiesing, Benjamin [Northern Arizona University; Mann, Christopher J [Northern Arizona University; Dryepondt, Sebastien N [ORNL

2013-01-01T23:59:59.000Z

260

Sealed glass coating of high temperature ceramic superconductors  

DOE Patents (OSTI)

A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor is disclosed. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor. 8 figs.

Wu, W.; Chu, C.Y.; Goretta, K.C.; Routbort, J.L.

1995-05-02T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature reservoir evidence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

High-temperature waste-heat-stream selection and characterization  

Science Conference Proceedings (OSTI)

Four types of industrial high-temperature, corrosive waste heat streams are selected that could yield significant energy savings if improved heat recovery systems were available. These waste heat streams are the flue gases from steel soaking pits, steel reheat furnaces, aluminum remelt furnaces, and glass melting furnaces. Available information on the temperature, pressure, flow, and composition of these flue gases is given. Also reviewed are analyses of corrosion products and fouling deposits resulting from the interaction of these flue gases with materials in flues and heat recovery systems.

Wikoff, P.M.; Wiggins, D.J.; Tallman, R.L.; Forkel, C.E.

1983-08-01T23:59:59.000Z

262

Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants  

DOE Green Energy (OSTI)

Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable oxygen standards and practices for minimum safety requirements. A summary of operational hazards, along with oxygen safety and emergency procedures, are provided.

Manohar S. Sohal; J. Stephen Herring

2008-07-01T23:59:59.000Z

263

Bolometer for measurements on high-temperature plasmas  

SciTech Connect

A bolometer has been developed, based on a thin, die-cut platinum grid. It can survive high temperatures and the neutron and gamma radiation expected in the Toroidal Fusion Test Factor (TFTR). The platinum resistance is measured with a square-wave carrier system to minimize sensitivity to ambient electromagnetic interference. Electrical power fed back to the sensor holds its temperature constant and provides an output directly proportional to absorbed radiation power. With a bandwidth of 50 Hz the noise is equivalent to 100 ..mu..W/cm/sup 2/. Methods are described for dealing with the background effects expected to contribute to bolometer heating.

Schivell, J.; Renda, G.; Lowrance, J.; Hsuan, H.

1982-06-01T23:59:59.000Z

264

Testing Methods Used for Materials at High Temperatures  

Science Conference Proceedings (OSTI)

Table 11   Typical commercial high-temperature/high-pressure service conditions...350??650 662??1202 ?10 ?100 Compressed natural gas storage Methane with trace H 2 S 0??100 32??212 ?8 ?80 Thermodynamic power generation NH 3 , H 2 O 100??650 212??1202 ?1.5??15 ?15??150 Geothermal power Brine, steam, H 2 S ?370 ?698 ?17 ?170 Steam boiler Water, steam ?300 ?572 ?9 ?90 Source: Ref 140...

265

Narrowband high temperature superconducting receiver for low frequency radio waves  

DOE Patents (OSTI)

An underground communicating device has a low-noise SQUID using high temperature superconductor components connected to detect a modulated external magnetic flux for outputting a voltage signal spectrum that is related to the varying magnetic flux. A narrow bandwidth filter may be used to select a portion of the voltage signal spectrum that is relatively free of power line noise to output a relatively low noise output signal when operating in a portion of the electromagnetic spectra where such power line noise exists. A demodulator outputs a communication signal, which may be an FM signal, indicative of a modulation on the modulated external magnetic flux.

Reagor, David W. (Los Alamos, NM)

2001-01-01T23:59:59.000Z

266

Status of Wheeler Reservoir  

DOE Green Energy (OSTI)

This is one in a series of status reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Wheeler Reservoir summarizes reservoir purposes and operation, reservoir and watershed characteristics, reservoir uses and use impairments, and water quality and aquatic biological conditions. The information presented here is from the most recent reports, publications, and original data available. If no recent data were available, historical data were summarized. If data were completely lacking, environmental professionals with special knowledge of the resource were interviewed. 12 refs., 2 figs.

Not Available

1990-09-01T23:59:59.000Z

267

Status of Cherokee Reservoir  

DOE Green Energy (OSTI)

This is the first in a series of reports prepared by Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overviews of Cherokee Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports, publications, and data available, and interviews with water resource professionals in various Federal, state, and local agencies and in public and private water supply and wastewater treatment facilities. 11 refs., 4 figs., 1 tab.

Not Available

1990-08-01T23:59:59.000Z

268

High temperature thermometric phosphors for use in a temperature sensor  

SciTech Connect

A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

Allison, Stephen W. (Knoxville, TN); Cates, Michael R. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN); Gillies, George T. (Earlysville, VA)

1998-01-01T23:59:59.000Z

269

SCALING OF THE SUPERFLUID DENSITY IN HIGH-TEMPERATURE SUPERCONDUCTORS.  

Science Conference Proceedings (OSTI)

A scaling relation N{sub c} {approx} 4.4{sigma}{sub dc}T{sub c} has been observed parallel and perpendicular to the copper-oxygen planes in the high-temperature superconductors; N{sub c} is the spectral weight and {sigma}{sub dc} is the dc conductivity just above the critical temperature T{sub c}. In addition, Nb and Pb also fall close to the this scaling line. The application of the Ferrell-Glover-Tinkham sum rule to the BCS optical properties of Nb above and below T{sub c} yields N{sub c} {approx} 8.1{sigma}{sub dc}T{sub c} when the normal-state scattering rate is much greater than the superconducting energy gap (1/{tau} > 2{Delta}, the ''dirty'' limit). This result implies that the high-temperature superconductors may be in the dirty limit. The superconductivity perpendicular to the planes is explained by the Josephson effect, which again yields N{sub c} {approx} 8.1{sigma}{sub dc}T{sub c} in the BCS formalism. The similar forms for the scaling relation in these two directions suggests that in some regime the dirty limit and the Josephson effect may be viewed as equivalent.

HOMES, C.C.

2005-10-24T23:59:59.000Z

270

Electronic phase diagram of high temperature copper oxide superconductors.  

SciTech Connect

In order to understand the origin of high-temperature superconductivity in copper oxides, we must understand the normal state from which it emerges. Here, we examine the evolution of the normal state electronic excitations with temperature and carrier concentration in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} using angle-resolved photoemission. In contrast to conventional superconductors, where there is a single temperature scale T{sub c} separating the normal from the superconducting state, the high-temperature superconductors exhibit two additional temperature scales. One is the pseudogap scale T*, below which electronic excitations exhibit an energy gap. The second is the coherence scale T{sub coh}, below which sharp spectral features appear due to increased lifetime of the excitations. We find that T* and T{sub coh} are strongly doping dependent and cross each other near optimal doping. Thus the highest superconducting T{sub c} emerges from an unusual normal state that is characterized by coherent excitations with an energy gap.

Chatterjee, U.; Ai, D.; Zhao, J.; Rosenkranz, S.; Kaminski, A.; Raffy, H.; Li, Z. Z.; Kadowaki, K.; Randeria, M.; Norman, M. R.; Campuzano, J. C. (Materials Science Division); (Univ. of Illinois at Chicago); (Iowa State Univ.); (Univ. Paris-Sud); (Univ. of Tsukuba); (Ohio State Univ.)

2011-06-07T23:59:59.000Z

271

The Framatome ANP Indirect-Cycle Very High Temperature Reactor  

SciTech Connect

Framatome ANP is developing a Very High Temperature Reactor (VHTR) design, relying on its previous experience with high temperature reactor designs, from its participation in the MODUL and the GT-MHR designs. The Framatome ANP VHTR design is based on an indirect cycle coupled to an 'off-the-shelf' combined cycle gas turbine. Although direct cycle HTR's are being promoted for their high efficiency, preliminary evaluations show that the Framatome ANP design efficiency is on par with a direct cycle while avoiding PGS (Power Generation System) developments and keeping the PGS contamination free. This concept was independently evaluated with sensitivity analysis by EDF. Moreover, the nuclear heat source of the indirect cycle could also be used to qualify the direct cycle components without risk of contamination behind the IHX, thus assisting in the preparation for the later introduction of that technology. Relying to the maximum extent on available technology, the Framatome ANP VHTR plant can demonstrate high-efficiency electricity generation and carbon-free hydrogen production. (authors)

Copsey, Bernie [Framatome ANP, Inc., 3315 Old Forest Road Lynchburg, VA (United States); Lecomte, Michel [Framatome ANP, SAS, Tour AREVA Paris, La Defense (France); Brinkmann, Gerd [Framatome ANP, GmbH, 49 (9131) 18-96630, Erlangen (Germany); Capitaine, Alain; Deberne, Nicolas [EDF/SEPTEN, Villeurbanne (France)

2004-07-01T23:59:59.000Z

272

Microstructure, Processing, Performance Relationships for High Temperature Coatings  

SciTech Connect

This work evaluates the suitability of iron aluminide coatings for use in high temperature fossil fuel combustion environments, such as boiler applications. The coatings are applied using High Velocity Oxy-Fuel (HVOF) thermal spray techniques. Iron aluminide coatings, with the nominal composition of Fe3Al, were applied to various high temperature structural materials (316 Stainless Steel, 9Cr-1Mo steel and Inconel 600) that typically lack inherent resistance to environmental degradation found in fossil fuel combustion atmospheres. Coating/substrate combinations were subjected to thermal cycling to evaluate the effect of HVOF parameters, coating thickness, substrate material and substrate surface roughness on the resistance to coating delamination and cracking. It was found that substrate surface roughness had a profound influence on the performance of a given substrate/coating system and that surface preparation techniques will need to be tailored to the specific substrate material. Also, higher particle velocity during HVOF thermal spray deposition of the iron aluminide coatings tended to result in better-performing coating/substrate systems with less delamination at the coating/substrate interface. Some combinations of HVOF parameters, coating thickness and substrate materials were found to perform extremely well even at temperatures up to 900oC. However, in some cases, substantial reactions at the interface were observed.

Thomas M. Lillo

2011-04-01T23:59:59.000Z

273

Development and Testing of High-Temperature Solar Selective Coatings  

DOE Green Energy (OSTI)

The Solar Energy Technologies Program is working to reduce the cost of parabolic trough solar power technology. System studies show that increasing the operating temperature of the solar field from 390 to >450 C will result in improved performance and cost reductions. This requires the development of new more-efficient selective coatings that have both high solar absorptance (>0.96) and low thermal emittance (<0.07) and are thermally stable above 450 C, ideally in air. Potential selective coatings were modeled, identified for laboratory prototyping, and manufactured at NREL. Optimization of the samples and high-temperature durability testing will be performed. Development of spectrally selective materials depends on reliable characterization of their optical properties. Protocols for testing the thermal/optical properties of selective coatings were developed and a round-robin experiment was conducted to verify and document the reflectance and high-temperature emittance measurements. The development, performance, and durability of these materials and future work will be described.

Kennedy, C.; Price, H.

2005-01-01T23:59:59.000Z

274

Advanced High Temperature Reactor Systems and Economic Analysis  

SciTech Connect

The Advanced High Temperature Reactor (AHTR) is a design concept for a large-output [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR's large thermal output enables direct comparison of its performance and requirements with other high output reactor concepts. As high-temperature plants, FHRs can support either high-efficiency electricity generation or industrial process heat production. The AHTR analysis presented in this report is limited to the electricity generation mission. FHRs, in principle, have the potential to be low-cost electricity producers while maintaining full passive safety. However, no FHR has been built, and no FHR design has reached the stage of maturity where realistic economic analysis can be performed. The system design effort described in this report represents early steps along the design path toward being able to predict the cost and performance characteristics of the AHTR as well as toward being able to identify the technology developments necessary to build an FHR power plant. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High temperature gas-cooled reactors provide experience with coated particle fuel and graphite components. Light water reactors (LWRs) show the potentials of transparent, high-heat capacity coolants with low chemical reactivity. Modern coal-fired power plants provide design experience with advanced supercritical-water power cycles. The current design activities build upon a series of small-scale efforts over the past decade to evaluate and describe the features and technology variants of FHRs. Key prior concept evaluation reports include the SmAHTR preconceptual design report,1 the PB-AHTR preconceptual design, and the series of early phase AHTR evaluations performed from 2004 to 2006. This report provides a power plant-focused description of the current state of the AHTR. The report includes descriptions and sizes of the major heat transport and power generation components. Component configuration and sizing are based upon early phase AHTR plant thermal hydraulic models. The report also provides a top-down AHTR comparative economic analysis. A commercially available advanced supercritical water-based power cycle was selected as the baseline AHTR power generation cycle both due to its superior performance and to enable more realistic economic analysis. The AHTR system design, however, has several remaining gaps, and the plant cost estimates consequently have substantial remaining uncertainty. For example, the enriched lithium required for the primary coolant cannot currently be produced on the required scale at reasonable cost, and the necessary core structural ceramics do not currently exist in a nuclear power qualified form. The report begins with an overview of the current, early phase, design of the AHTR plant. Only a limited amount of information is included about the core and vessel as the core design and refueling options are the subject of a companion report. The general layout of an AHTR system and site showing the relationship of the major facilities is then provided. Next is a comparative evaluation of the AHTR anticipated performance and costs. Finally, the major system design efforts necessary to bring the AHTR design to a pre-conceptual level are then presented.

Holcomb, David Eugene [ORNL; Peretz, Fred J [ORNL; Qualls, A L [ORNL

2011-09-01T23:59:59.000Z

275

Hydrothermal Reservoirs | Open Energy Information  

Open Energy Info (EERE)

Hydrothermal Reservoirs Hydrothermal Reservoirs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Hydrothermal Reservoirs Dictionary.png Hydrothermal Reservoir: Hydrothermal Reservoirs are underground zones of porous rock containing hot water and steam, and can be naturally occurring or human-made. Other definitions:Wikipedia Reegle Natural, shallow hydrothermal reservoirs naturally occurring hot water reservoirs, typically found at depths of less than 5 km below the Earth's surface where there is heat, water and a permeable material (permeability in rock formations results from fractures, joints, pores, etc.). Often, hydrothermal reservoirs have an overlying layer that bounds the reservoir and also serves as a thermal insulator, allowing greater heat retention. If hydrothermal reservoirs

276

Geothermal Reservoir Well Stimulation Program: technology transfer  

DOE Green Energy (OSTI)

A literature search on reservoir and/or well stimulation techniques suitable for application in geothermal fields is presented. The literature on stimulation techniques in oil and gas field applications was also searched and evaluated as to its relevancy to geothermal operations. The equivalent low-temperature work documented in the open literature is cited, and an attempt is made to evaluate the relevance of this information as far as high-temperature stimulation work is concerned. Clays play an important role in any stimulation work. Therefore, special emphasis has been placed on clay behavior anticipated in geothermal operations. (MHR)

Not Available

1980-05-01T23:59:59.000Z

277

Hot dry rock Phase II reservoir engineering  

DOE Green Energy (OSTI)

Early attempts to hydraulically fracture and connect two wells drilled at the Hot Dry Rock site at Fenton Hill in New Mexico failed. Microearthquakes triggered by hydraulic fracturing indicated that the fracture zones grew in unexpected directions. Consequently one of the wells was sidetracked at a depth of 2.9 km; was redrilled into the zones of most intense microseismic activity; and a flow connection was achieved. Hydraulic communication was improved by supplemental fracturing using recently developed high temperature and high pressure open hole packers. Preliminary testing indicates a reservoir with stimulated joint volume which already surpasses that attained in the earlier phase I reservoir after several years of development. 12 refs., 6 figs.

Murphy, H.D.

1985-01-01T23:59:59.000Z

278

Enhanced High Temperature Performance of NOx Reduction Catalyst Materials  

Science Conference Proceedings (OSTI)

Two primary NOx after-treatment technologies have been recognized as the most promising approaches for meeting stringent NOx emission standards for diesel vehicles within the Environmental Protection Agencys (EPAs) 2007/2010 mandated limits, NOx Storage Reduction (NSR) and NH3 selective catalytic reduction (SCR); both are, in fact being commercialized for this application. However, in looking forward to 2015 and beyond with expected more stringent regulations, the continued viability of the NSR technology for controlling NOx emissions from lean-burn engines such as diesels will require at least two specific, significant and inter-related improvements. First, it is important to reduce system costs by, for example, minimizing the precious metal content while maintaining, even improving, performance and long-term stability. A second critical need for future NSR systems, as well as for NH3 SCR, will be significantly improved higher and lower temperature performance and stability. Furthermore, these critically needed improvements will contribute significantly to minimizing the impacts to fuel economy of incorporating these after-treatment technologies on lean-burn vehicles. To meet these objectives will require, at a minimum an improved scientific understanding of the following things: i) the various roles for the precious and coinage metals used in these catalysts; ii) the mechanisms for these various roles; iii) the effects of high temperatures on the active metal performance in their various roles; iv) mechanisms for higher temperature NOx storage performance for modified and/or alternative storage materials; v) the interactions between the precious metals and the storage materials in both optimum NOx storage performance and long term stability; vi) the sulfur adsorption and regeneration mechanisms for NOx reduction materials; vii) materials degradation mechanisms in CHA-based NH3 SCR catalysts. The objective of this CRADA project between PNNL and Cummins, Inc. is to develop a fundamental understanding of the above-listed issues. Model catalysts that are based on literature formulations are the focus of the work being carried out at PNNL. In addition, the performance and stability of more realistic high temperature NSR catalysts, supplied by JM, are being studied in order to provide baseline data for the model catalysts that are, again, based on formulations described in the open literature. For this short summary, we will primarily highlight representative results from our recent studies of the stability of candidate high temperature NSR materials.

Gao, Feng; Kim, Do Heui; Luo, Jinyong; Muntean, George G.; Peden, Charles HF; Howden, Ken; Currier, Neal; Kamasamudram, Krishna; Kumar, Ashok; Li, Junhui; Stafford, Randy; Yezerets, Aleksey; Castagnola, Mario; Chen, Hai Ying; Hess, Howard ..

2012-12-31T23:59:59.000Z

279

Bio-Fuel Production Assisted with High Temperature Steam Electrolysis  

SciTech Connect

Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier.

Grant Hawkes; James O'Brien; Michael McKellar

2012-06-01T23:59:59.000Z

280

Horizontal Well Placement Optimization in Gas Reservoirs Using Genetic Algorithms  

E-Print Network (OSTI)

Horizontal well placement determination within a reservoir is a significant and difficult step in the reservoir development process. Determining the optimal well location is a complex problem involving many factors including geological considerations, reservoir and fluid properties, economic costs, lateral direction, and technical ability. The most thorough approach to this problem is that of an exhaustive search, in which a simulation is run for every conceivable well position in the reservoir. Although thorough and accurate, this approach is typically not used in real world applications due to the time constraints from the excessive number of simulations. This project suggests the use of a genetic algorithm applied to the horizontal well placement problem in a gas reservoir to reduce the required number of simulations. This research aims to first determine if well placement optimization is even necessary in a gas reservoir, and if so, to determine the benefit of optimization. Performance of the genetic algorithm was analyzed through five different case scenarios, one involving a vertical well and four involving horizontal wells. The genetic algorithm approach is used to evaluate the effect of well placement in heterogeneous and anisotropic reservoirs on reservoir recovery. The wells are constrained by surface gas rate and bottom-hole pressure for each case. This project's main new contribution is its application of using genetic algorithms to study the effect of well placement optimization in gas reservoirs. Two fundamental questions have been answered in this research. First, does well placement in a gas reservoir affect the reservoir performance? If so, what is an efficient method to find the optimal well location based on reservoir performance? The research provides evidence that well placement optimization is an important criterion during the reservoir development phase of a horizontal-well project in gas reservoirs, but it is less significant to vertical wells in a homogeneous reservoir. It is also shown that genetic algorithms are an extremely efficient and robust tool to find the optimal location.

Gibbs, Trevor Howard

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature reservoir evidence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Apparatus and method for high temperature viscosity and temperature measurements  

DOE Patents (OSTI)

A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

Balasubramaniam, Krishnan (Mississippi State, MS); Shah, Vimal (Houston, TX); Costley, R. Daniel (Mississippi State, MS); Singh, Jagdish P. (Mississippi State, MS)

2001-01-01T23:59:59.000Z

282

9 Cr-- 1 Mo steel material for high temperature application  

DOE Patents (OSTI)

One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.

Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

2012-11-27T23:59:59.000Z

283

Seeing Stripes: Competition and Complexity in High-Temperature Superconductors  

SciTech Connect

Superconductivity in layered copper-oxide compounds is remarkable not only because it survives to relatively high temperatures, but especially because it appears when mobile charge carriers are doped into a parent antiferromagnetic insulator. The tendency of the carriers to reduce their kinetic energy by delocalizing competes with the magnetic superexchange between spins on copper ions. One possible consequence of this competition is the segregation of carriers into charge stripes that separate antiferromagnetic domains. An ordered stripe phase has been observed by diffraction experiments in a few special cuprate compounds, and stripe order is found to compete with superconductivity. It has been proposed that quantum-disordered stripes might underlie the superconducting phase. Such a concept clashes with the conventional picture of electronic structure in solids. Some of the challenges of experimentally 'seeing' both static and fluctuating stripes will be discussed.

Tranquada, John [BNL

2004-12-01T23:59:59.000Z

284

NETL: Gasification - Recovery Act: High Temperature Syngas Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas Processing Systems Syngas Processing Systems Recovery Act: High Temperature Syngas Cleanup Technology Scale-Up and Demonstration Project Research Triangle Institute Project Number: FE0000489 Project Description Research Triangle Institute (RTI) is designing, building, and testing the Warm Temperature Desulfurization Process (WDP) at pre-commercial scale (50 megawatt electric equivalent [MWe]) to remove more than 99.9 percent of the sulfur from coal-derived synthesis gas (syngas). RTI is integrating this WDP technology with an activated methyl diethanolamine (aMDEA) solvent technology to separate 90% of the carbon dioxide (CO2) from shifted syngas. The Polk Power Station, an integrated gasification combined cycle (IGCC) power plant, will supply approximately 20% of its coal-derived syngas as a slipstream to feed into the pre-commercial scale technologies being scaled-up.

285

Microsoft PowerPoint - High Temperature Thermoelectric_Ohuchi  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermoelectric Oxides Engineered Thermoelectric Oxides Engineered at Multiple Length Scales for Energy Harvesting Program Manager: Patricia Rawls Fumio S. Ohuchi (PI) and Rajendra K. Bordia(Co-PI) Department of Materials Science and Engineering University of Washington Box 352120 Seattle, WA 98195 Grant No. DE-FE0007272 (June 1, 2012-May 31, 2013) Graduate Students: Christopher Dandeneau and YiHsun Yang June 10, 2013 The UCR Contractors Review Conference Introduction/Motivation for Research * Thermoelectric (TE) oxides for waste heat recovery  Good high-temperature stability  Stable in hostile environments  Low cost/toxicity * Oxides with complex structure:  Low thermal conductivity,   Tailor stoichiometry to maximize S

286

High temperature heat pipe experiments in low earth orbit  

SciTech Connect

Although high temperature, liquid metal heat pipe radiators have become a standard component on most high power space power system designs, there is no experimental data on the operation of these heat pipes in a zero gravity or micro-gravity environment. Experiments to benchmark the transient and steady state performance of prototypical heat pipe space radiator elements are in preparation for testing in low earth orbit. It is anticipated that these heat pipes will be tested aborad the Space Shuttle in 1995. Three heat pipes will be tested in a cargo bay Get Away Special (GAS) canister. The heat pipes are SST/potassium, each with a different wick structure; homogeneous, arterial, and annular gap, the heat pipes have been designed, fabricated, and ground tested. In this paper, the heat pipe designs are specified, and transient and steady-state ground test data are presented.

Woloshun, K.; Merrigan, M.A.; Sena, J.T. (Los Alamos National Lab., NM (United States)); Critchley, E. (Phillips Lab., Kirtland AFB, NM (United States))

1993-01-01T23:59:59.000Z

287

High temperature heat pipe experiments in low earth orbit  

SciTech Connect

Although high temperature, liquid metal heat pipe radiators have become a standard component on most high power space power system designs, there is no experimental data on the operation of these heat pipes in a zero gravity or micro-gravity environment. Experiments to benchmark the transient and steady state performance of prototypical heat pipe space radiator elements are in preparation for testing in low earth orbit. It is anticipated that these heat pipes will be tested aborad the Space Shuttle in 1995. Three heat pipes will be tested in a cargo bay Get Away Special (GAS) canister. The heat pipes are SST/potassium, each with a different wick structure; homogeneous, arterial, and annular gap, the heat pipes have been designed, fabricated, and ground tested. In this paper, the heat pipe designs are specified, and transient and steady-state ground test data are presented.

Woloshun, K.; Merrigan, M.A.; Sena, J.T. [Los Alamos National Lab., NM (United States); Critchley, E. [Phillips Lab., Kirtland AFB, NM (United States)

1993-02-01T23:59:59.000Z

288

High temperature combustion: Approaching equilibrium using nuclear networks  

E-Print Network (OSTI)

A method for integrating the chemical equations associated with nuclear combustion at high temperature is presented and extensively checked. Following the idea of E. M\\"uller, the feedback between nuclear rates and temperature was taken into account by simultaneously computing molar fraction changes and temperature response in the same matrix. The resulting algorithm is very stable and efficient at calculating nuclear combustion in explosive scenarios, especially in those situations where the reacting material manages to climb to the nuclear statistical equilibrium regime. The numerical scheme may be useful not only for those who carry out hydrodynamical simulations of explosive events, but also as a tool to investigate the properties of a nuclear system approaching equilibrium through a variety of thermodynamical trajectories.

Ruben M. Cabezon Gomez; Domingo Garcia-Senz; Eduardo Bravo

2004-01-07T23:59:59.000Z

289

Design of High Field Solenoids made of High Temperature Superconductors  

Science Conference Proceedings (OSTI)

This thesis starts from the analytical mechanical analysis of a superconducting solenoid, loaded by self generated Lorentz forces. Also, a finite element model is proposed and verified with the analytical results. To study the anisotropic behavior of a coil made by layers of superconductor and insulation, a finite element meso-mechanic model is proposed and designed. The resulting material properties are then used in the main solenoid analysis. In parallel, design work is performed as well: an existing Insert Test Facility (ITF) is adapted and structurally verified to support a coil made of YBa{sub 2}Cu{sub 3}O{sub 7}, a High Temperature Superconductor (HTS). Finally, a technological winding process was proposed and the required tooling is designed.

Bartalesi, Antonio; /Pisa U.

2010-12-01T23:59:59.000Z

290

Remote high-temperature insulatorless heat-flux gauge  

DOE Patents (OSTI)

A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge.

Noel, Bruce W. (Espanola, NM)

1993-01-01T23:59:59.000Z

291

Remote high-temperature insulatorless heat-flux gauge  

DOE Patents (OSTI)

A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge. 3 figures.

Noel, B.W.

1993-12-28T23:59:59.000Z

292

Damping in high-temperature superconducting levitation systems  

Science Conference Proceedings (OSTI)

Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.

Hull, John R. (Sammamish, WA)

2009-12-15T23:59:59.000Z

293

Potential impact of high temperature superconductors on maglev transportation  

DOE Green Energy (OSTI)

This report describes the potential impact that high-temperature superconductors (HTSs) may have on transportation by magnetically levitated vehicles. It is not intended as a planning document, but rather as an overview of potential HTS applications to magnetic-levitation (maglev) transportation. The present maglev program in the United States is summarized, and the present status of development of HTSs is described. Areas identified for possible impact on maglev technology are (1) liquid-nitrogen-cooled levitation magnets, (2) magnetic-field shielding of the passenger compartment, (3) superconducting magnetic energy storage for wayside power, (4) superconducting bearings for flywheel energy storage for wayside power, (5) downleads to continuously powered liquid-helium-cooled levitation magnets, and (6) liquid-hydrogen-cooled levitation magnets and linear motor propulsion windings. Major technical issues that remain to be resolved for the use of HTSs in maglev applications include thermal magnetic stability, mechanical properties, and critical current density at liquid-nitrogen temperatures.

Hull, J.R.

1992-02-01T23:59:59.000Z

294

Engineering design of a high-temperature superconductor current lead  

DOE Green Energy (OSTI)

As part of the US Department of Energy's Superconductivity Pilot Center Program, Argonne National Laboratory and Superconductivity, Inc., are developing high-temperature superconductor (HTS) current leads suitable for application to superconducting magnetic energy storage systems. The principal objective of the development program is to design, construct, and evaluate the performance of HTS current leads suitable for near-term applications. Supporting objectives are to (1) develop performance criteria; (2) develop a detailed design; (3) analyze performance; (4) gain manufacturing experience in the areas of materials and components procurement, fabrication and assembly, quality assurance, and cost; (5) measure performance of critical components and the overall assembly; (6) identify design uncertainties and develop a program for their study; and (7) develop application-acceptance criteria.

Niemann, R.C.; Cha, Y.S.; Hull, J.R. (Argonne National Lab., IL (United States)); Daugherty, M.A.; Buckles, W.E. (Superconductivity, Inc., Madison, WI (United States))

1993-01-01T23:59:59.000Z

295

Engineering design of a high-temperature superconductor current lead  

DOE Green Energy (OSTI)

As part of the US Department of Energy`s Superconductivity Pilot Center Program, Argonne National Laboratory and Superconductivity, Inc., are developing high-temperature superconductor (HTS) current leads suitable for application to superconducting magnetic energy storage systems. The principal objective of the development program is to design, construct, and evaluate the performance of HTS current leads suitable for near-term applications. Supporting objectives are to (1) develop performance criteria; (2) develop a detailed design; (3) analyze performance; (4) gain manufacturing experience in the areas of materials and components procurement, fabrication and assembly, quality assurance, and cost; (5) measure performance of critical components and the overall assembly; (6) identify design uncertainties and develop a program for their study; and (7) develop application-acceptance criteria.

Niemann, R.C.; Cha, Y.S.; Hull, J.R. [Argonne National Lab., IL (United States); Daugherty, M.A.; Buckles, W.E. [Superconductivity, Inc., Madison, WI (United States)

1993-06-01T23:59:59.000Z

296

Optimization of high-temperature superconductor current leads  

SciTech Connect

Methods to improve the performance of high-temperature superconducting current leads are analyzed. Designs are considered that are inherently safe from burnup, even if the lead enters the normal state. The effect of a tapered lead that takes advantage of the increase in critical current density with decreasing temperature will decrease helium boiloff by about a factor of two for an area ratio of four. A new concept, in which Ag powder is distributed in increasing concentration from the cold end to the hot end of the lead in sintered YBCO, is shown to have comparable performance to that of leads made with Ag-alloy sheaths. Performance of the best inherently safe designs is about one order of magnitude better than that of optimized nonsuperconducting leads. BSCCO leads with Ag-alloy sheaths show improved performance for Au fractions up to about 3%, after which increases in Au fraction yield negligible performance improvement.

Seol, S.Y. [Chonnam National Univ., Kwangju (Korea, Democratic People`s Republic of); Hull, J.R. [Argonne National Lab., IL (United States); Chyu, M.C. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Mechanical Engineering

1995-02-01T23:59:59.000Z

297

Energy Conservation R. D. & D. Programs in High Temperature Processes  

E-Print Network (OSTI)

The potential for energy conservation in high temperature industrial processes is very large. Industrial processes are known to consume over 30 percent of the Nation's energy. In turn something less than one third of this estimated twenty quads of energy is actually required to produce the product. This broad sweeping statement covers many sins and many virtues. The blast furnace, for example, is the largest user of energy per net ton of steel produced and operates at approximately 67% of theoretical efficiency. The slot forge furnace, used to reheat steel fat hot forging, operates at approximately 10% of theoretical efficiency. Actually steel forging stock can also be reheated at about 50% efficiency and this has been done by a DOE sponsored contractor. The technology is, in fact, being commercialized by the contractor and its rapid diffusion by DOE will be actively encouraged.

Sheneman, R. L.

1979-01-01T23:59:59.000Z

298

Anisotropic high temperature superconductors as variable resistors and switches  

Science Conference Proceedings (OSTI)

Several anisotropic high temperature superconductors show critical current densities which are strongly dependent on the direction of an applied external magnetic field. The resistance of a sample can change by several orders of magnitude by applying a magnetic field. The potential for using the field dependent variable resistor or switch for applications in power systems is evaluated. Test results with small samples are presented. The requirements for large scale applications are outlined. The magnetic field triggering requirement, the frequency response of the device, use in 60 Hz ac circuits and heat transfer consideration are investigated. Several application examples are discussed. Use of variable resistor as a fault current limiter, as a switching element in rectifier circuitry and as an improved dump resistor for a superconducting magnet is presented.

Boenig, H.J.; Daugherty, M.A.; Fleshler, S.; Maley, M.P.; Mueller, F.M.; Prenger, F.C.; Coulter, J.Y.

1994-12-01T23:59:59.000Z

299

Strangeness at high temperatures: from hadrons to quarks  

E-Print Network (OSTI)

Appropriate combinations of up to fourth order cumulants of net strangeness fluctuations and their correlations with net baryon number and electric charge fluctuations, obtained from lattice QCD calculations, have been used to probe the strangeness carrying degrees of freedom at high temperatures. For temperatures up to the chiral crossover separate contributions of strange mesons and baryons can be well described by an uncorrelated gas of hadrons. Such a description breaks down in the chiral crossover region, suggesting that the deconfinement of strangeness takes place at the chiral crossover. On the other hand, the strangeness carrying degrees of freedom inside the quark gluon plasma can be described by a weakly interacting gas of quarks only for temperatures larger than twice the chiral crossover temperature. In the intermediate temperature window these observables show considerably richer structures, indicative of the strongly interacting nature of the quark gluon plasma.

A. Bazavov; H. -T. Ding; P. Hegde; O. Kaczmarek; F. Karsch; E. Laermann; Y. Maezawa; Swagato Mukherjee; H. Ohno; P. Petreczky; C. Schmidt; S. Sharma; W. Soeldner; M. Wagner

2013-04-26T23:59:59.000Z

300

Overview of High-Temperature Electrolysis for Hydrogen Production  

SciTech Connect

Over the last five years there has been a growing interest in the use of hydrogen as an energy carrier, particularly to augment transportation fuels and thus reduce our dependence on imported petroleum. Hydrogen is now produced primarily via steam reforming of methane. However, in the long term, methane reforming is not a viable process for the large-scale hydrogen production since such fossil fuel conversion processes consume non-renewable resources and emit greenhouse gases. Nuclear energy can be used to produce hydrogen without consuming fossil fuels and without emitting greenhouse gases through the splitting of water into hydrogen and oxygen. The Nuclear Hydrogen Initiative of the DOE Office of Nuclear Energy is developing three general categories of high temperature processes for hydrogen production: thermochemical, electrolytic and hybrid thermo-electrolytic. This paper introduces the work being done in the development of high temperature electrolysis of steam. High Temperature Electrolysis (HTE) is built on the technology of solid oxide fuel cells (SOFCs), which were invented over a century ago, but which have been most vigorously developed during the last twenty years. SOFCs consume hydrogen and oxygen and produce steam and electricity. Solid Oxide Electrolytic Cells (SOECs) consume electricity and steam and produce hydrogen and oxygen. The purpose of the HTE research is to solve those problems unique to the electrolytic mode of operation, while building further on continuing fuel cell development. ORGANIZATION Experiments have been conducted for the last three years at the Idaho National Laboratory and at Ceramatec, Inc. on the operation of button cells and of progressively larger stacks of planar cells. In addition, the INL has been performing analyses of the cell-scale fluid dynamics and plant-scale flowsheets in order to determine optimum operating conditions and plant configurations. Argonne National Laboratory has been performing experiments for the development of new electrode materials, as well as modeling of the fluid dynamics and flowsheets for comparison with the work being done at the INL. ANL has also been performing diagnostic measures on components form long-duration tests at the INL and Ceramatec to determine the causes for the slow degradation in cell performance. Oak Ridge National Laboratory has been developing high temperature porous membranes for the separation of hydrogen from the residual steam, thus avoiding the need to condense and reheat the steam. The University of Nevada at Las Vegas has been collaborating with ANL on the development of electrode and electrolyte materials and will soon begin to investigate the causes of cell degradation. HTE research also includes NERI projects at the Virginia Polytechnic Institute on the development of toughened SOEC composite seals and at the Georgia Institute of Technology on the microstructural design of SOEC materials. EXPERIMENTAL RESULTS The most recent large-scale test of HTE was performed from June 28 through Sept 22, 2006 at the Ceramatec plant in Salt Lake City. The test apparatus consists of two stacks of 60 cells each in a configuration that will be used in the Integrated Laboratory Scale (ILS) experiment during FY-07. The ILS will contain three modules of four stacks each. The Half-Module initially produced 1.2 normal m3of H2/hour and 0.65 Nm3/hr at the end of the 2040-hour continuous test.

Herring, J. S.; O' Brien, J. E.; Stoots, C. M.; Hartvigsen, J. J.; Petri, M. C.; Carter, J. D.; Bischoff, B. L.

2007-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature reservoir evidence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

High-temperature process heat applications with an HTGR  

SciTech Connect

An 842-MW(t) HTGR-process heat (HTGR-PH) design and several synfuels and energy transport processes to which it could be coupled are described. As in other HTGR designs, the HTGR-PH has its entire primary coolant system contained in a prestressed concrete reactor vessel (PCRV) which provides the necessary biological shielding and pressure containment. The high-temperature nuclear thermal energy is transported to the externally located process plant by a secondary helium transport loop. With a capability to produce hot helium in the secondary loop at 800/sup 0/C (1472/sup 0/F) with current designs and 900/sup 0/C (1652/sup 0/F) with advanced designs, a large number of process heat applications are potentially available. Studies have been performed for coal liquefaction and gasification using nuclear heat.

Quade, R.N.; Vrable, D.L.

1980-04-01T23:59:59.000Z

302

Diagnostic technique for monitoring high temperature plasma dynamics  

Science Conference Proceedings (OSTI)

A preliminary design for the adaptation of a pinhole experiment (PINEX) technique to the monitoring of the dynamics of high temperature plasmas is described. Specifically, this imaging technique uses a thick aperture, an efficient radiation converter, and highly intensified television cameras to provide real-time viewing of radiation sources such as the neutron emissions from d-d and d-t fusion reactions in controlled thermonuclear research devices. The neutron emission strengths, R approx. 5 x 10/sup 15/ n/s, recently achieved at the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET) should be sufficient for 3 to 6-cm spatial resolution and 10 to 100-ms time resolution using such a system. Such information should be useful for on-line optimization of the plasma and for quantitative evaluation of its performance.

Lumpkin, A.H.; Pappas, D.S.

1987-06-01T23:59:59.000Z

303

Shock-induced synthesis of high temperature superconducting materials  

DOE Patents (OSTI)

It has now been determined that the unique features of the high pressure shock method, especially the shock-induced chemical synthesis technique, are fully applicable to high temperature superconducting materials. Extraordinarily high yields are achievable in accordance with this invention, e.g., generally in the range from about 20% to about 99%, often in the range from about 50% to about 90%, lower and higher yields, of course, also being possible. The method of this invention involves the application of a controlled high pressure shock compression pulse which can be produced in any conventional manner, e.g., by detonation of a high explosive material, the impact of a high speed projectile or the effect of intense pulsed radiation sources such as lasers or electron beams. Examples and a discussion are presented.

Ginley, D.S.; Graham, R.A.; Morosin, B.; Venturini, E.L.

1987-06-18T23:59:59.000Z

304

High temperature gas reactor and energy pipeline system  

SciTech Connect

Under contract to the General Electric Co. as a part of a DOE-sponsored program, the Energy Systems Analysis Group at the Institute of Gas Technology examined the following aspects of the high temperature gas reactor closed loop chemical energy pipeline concept: (1) pipeline transmission and storage system design; (2) pipeline and storage system cost; (3) methane reformer interface; and (4) system safety and environmental aspects. This work focuses on the pipeline and storage system concepts, pipeline size, compressor power, and storage facility requirements were developed for 4 different types of pipeline systems to obtain system cost estimates. Each pipeline system includes a synthesis-gas pipeline from the reformer to the methanator, a methane-rich gas pipeline from the methanator to the reformer, a water return line from the methanator to the reformer, and storage for the synthesis gas, methane-rich gas and water.

Daniels, E.; Blazek, C.; Pflasterer, G.R.; Allen, D.C.

1981-01-01T23:59:59.000Z

305

ULTRA HIGH TEMPERATURE REACTOR EXPERIMENT (UHTREX) HAZARD REPORT  

SciTech Connect

UHTREX utilizes a high-temperature, He-cooled, graphite moderated reactor employing unclad, refractory fuel elements. The reactor is designed to produce a msximum thermal power of 3 Mw and a maximum exit He temperature of 2400 deg F. The purpose of the experimert is to evaluate the advantages of the simple fuel against the disadvantages of the associated operation of a contaminated coolant loop. The mechanical and nuclear design of the reactor and related apparatus are described, discussed, and evaluated from the standpoint of hazards associated with conduct of the experiment. The building design and characteristics of the site are also examined from the same standpoint. The probable effects of operational errors and component failures are studied. The conseqnences of credible accidents are not considered to be catastrophic for either operating personnel or personnel in surrounding areas. (auth)

1962-03-01T23:59:59.000Z

306

High temperature concrete composites containing organosiloxane crosslinked copolymers  

DOE Patents (OSTI)

This invention relates to high temperature polymer concrete composites comprising about 10-30% by weight of a liquid monomer mixture consisting essentially of an organosiloxane polymer crosslinked with an olefinically unsaturated monomer selected from the group consisting of styrene, methyl methacrylate, trimethylolpropane trimethacrylate, triallyl cyanurate, n-phenylmalimide, divinyl benzene and mixtures theroef; and about 70-90% by weight of an inert inorganic filler system containing silica sand and preferably a member selected from the group consisting of portland cement, Fe.sub.2 O.sub.3, carbon black and mixtures thereof; and optionally a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide and other organic peroxides to initiate crosspolymerization of the monomer mixture in the presence of the inorganic filler.

Zeldin, Arkady (Rego Park, NY); Carciello, Neal (Patchogue, NY); Kukacka, Lawrence (Port Jefferson, NY); Fontana, Jack (Shoreham, NY)

1980-01-01T23:59:59.000Z

307

High temperature gas reactor and energy pipeline system  

DOE Green Energy (OSTI)

A study was made of the following aspects of the High Temperature Gas Reactor (HTGR) Closed Loop Chemical Energy Pipeline (CEP) concept: pipeline transmission and storage system design, pipeline and storage system cost, methane reformer interface, and system safety and environmental aspects. This paper focuses on the pipeline and storage system concepts. Pipeline size, compressor power, and storage facility requirements were developed for four different types of pipeline systems to obtain system cost estimates. Each pipeline system includes a synthesis-gas pipeline from the reformer to the methanator, a methane-rich gas pipeline from the methanator to the reformer, a water return line from the methanator to the reformer, and storage for the synthesis gas, methane-rich gas and water.

Daniels, E.; Blazek, C.; Allen, D.C.; Pflasterer, G.R.

1980-12-19T23:59:59.000Z

308

Development of a solar thermal receiver for high temperature applications  

DOE Green Energy (OSTI)

A thermal receiver for point focus collectors is being constructed. Its design, which is based upon experience with a commercial receiver, employs the advantages of that receiver and improves some of its features. The new receiver uses as a buffer between the cavity surface and the heat transfer fluid a thermal mass, which with a very small temperature drop penalty smooths the flux distribution to eliminate hot spots. Maximum operating temperature range was extended from 620/sup 0/C to 870/sup 0/C and receiver efficiency was improved. The design of the receiver enables significant spillage flux at the receiver to be used. Thus, lower quality optics can be employed in applications not requiring very high temperatures. Design and construction features of the receiver are presented and the testing program is described.

Bohn, M.; Bessler, G.

1979-11-01T23:59:59.000Z

309

Remote high temperature insulatorless heat-flux gauge  

DOE Patents (OSTI)

A remote optical heat-flux gauge for use in high temperature environments. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet light. The luminescence emitted by the two thermographic-phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat flux measurements can be made by scanning the light across the surface of the gauge.

Noel, B.W.

1992-12-31T23:59:59.000Z

310

NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS  

Science Conference Proceedings (OSTI)

Refractory materials can be limited in their application by many factors including chemical reactions between the service environment and the refractory material, mechanical degradation of the refractory material by the service environment, temperature limitations on the use of a particular refractory material, and the inability to install or repair the refractory material in a cost effective manner or while the vessel was in service. The objective of this project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3 spinel or other similar magnesia/alumina containing unshaped refractory composition (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, high-alkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries.

Hemrick, James Gordon [ORNL

2011-09-01T23:59:59.000Z

311

The DARPA manufacturing initiative in high temperature superconductivity  

SciTech Connect

The Defense Advanced Research Projects Agency (DARPA) has a very aggressive Technology Base program in high temperature superconductivity. This program is expected to provide the basis for a specialized set of military products - passive microwave and millimeter wave devices - within the next three years. In order to get these high leverage products into military systems, a manufacturing base must be developed for HTSC components. A plan for DARPA in HTSC manufacturing is directly coupled with the ongoing DARPA materials and device oriented R and D program. In essence, this plan recommends a three phased effort: 1. Phase I (two years); Fund companies through R and D contracts for specialized HTSC components; prepare a detailed plan and develop an HTSC consortium. 2. Phase II (six years): Establish an HTSC Sematech initiative for electronic applications, including active devices. 3. Phase III (optional): Continue the HTSC Sematech with emphasis on high power applications.

Adams, K.R. (Defense Advanced Research Projects Agency DARPA (US))

1989-01-01T23:59:59.000Z

312

High Temperature Chemical Kinetic Combustion Modeling of Lightly Methylated Alkanes  

DOE Green Energy (OSTI)

Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed high temperature chemical kinetic mechanism for n-octane and three lightly branched isomers octane (i.e., 2-methylheptane, 3-methylheptane, and 2,5-dimethylhexane). The model is validated against experimental data from a variety of fundamental combustion devices. This new model is used to show how the location and number of methyl branches affects fuel reactivity including laminar flame speed and species formation.

Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M

2011-03-01T23:59:59.000Z

313

High-temperature liquid--metal MHD generator experiments  

DOE Green Energy (OSTI)

Detailed data were obtained for the world's first high-temperature two-phase liquid--metal MHD generator under open-circuit conditions. Both single-phase (sodium) and two-phase (sodium and nitrogen) flows were used in the temperture range of approx. 490 to approx. 740/sup 0/K. The data presented includes pressures, voltages, and slip ratios (ratio of gas velocity to liquid velocity). The two-phase pressure--gradient data were predicted well by a simplified two-phase MHD correlation that includes the effect of a pure-liquid shunt layer between the electrodes. The slip ratio is shown to decrease with increasing temperature, implying higher generator and system efficiencies; this anticipated result was a prime reason for performing these experiments.

Dunn, P.F.; Pierson, E.S.; Staffon, J.D.

1979-01-01T23:59:59.000Z

314

High performance internal reforming unit for high temperature fuel cells  

DOE Patents (OSTI)

A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

Ma, Zhiwen (Sandy Hook, CT); Venkataraman, Ramakrishnan (New Milford, CT); Novacco, Lawrence J. (Brookfield, CT)

2008-10-07T23:59:59.000Z

315

High pressure/high temperature thermogravimetric apparatus. Final report  

DOE Green Energy (OSTI)

The purpose of this instrumentation grant was to acquire a state-of-the-art, high pressure, high temperature thermogravimetric apparatus (HP/HT TGA) system for the study of the interactions between gases and carbonaceous solids for the purpose of solving problems related to coal utilization and applications of carbon materials. The instrument that we identified for this purpose was manufactured by DMT (Deutsche Montan Technologies)--Institute of Cokemaking and Coal Chemistry of Essen, Germany. Particular features of note include: Two reactors: a standard TGA reactor, capable of 1100 C at 100 bar; and a high temperature (HT) reactor, capable of operation at 1600 C and 100 bar; A steam generator capable of generating steam to 100 bar; Flow controllers and gas mixing system for up to three reaction gases, plus a separate circuit for steam, and another for purge gas; and An automated software system for data acquisition and control. The HP/TP DMT-TGA apparatus was purchased in 1996 and installed and commissioned during the summer of 1996. The apparatus was located in Room 128 of the Prince Engineering Building at Brown University. A hydrogen alarm and vent system were added for safety considerations. The system has been interfaced to an Ametek quadruple mass spectrometer (MA 100), pumped by a Varian V250 turbomolecular pump, as provided for in the original proposed. With this capability, a number of gas phase species of interest can be monitored in a near-simultaneous fashion. The MS can be used in a few different modes. During high pressure, steady-state gasification experiments, it is used to sample, measure, and monitor the reactant/product gases. It can also be used to monitor gas phase species during nonisothermal temperature programmed reaction (TPR) or temperature programmed desorption (TPD) experiments.

Calo, J.M.; Suuberg, E.M.

1999-12-01T23:59:59.000Z

316

Heat-pipe development for high-temperature recuperator application  

SciTech Connect

Heat pipes have been developed for operation in oxidizing atmospheres at temperatures above 1100/sup 0/K. The heat pipes comprise a metallic liner and wick structure with a protective outer shell of an oxidation resistant material. The working fluids used in the heat pipes are alkali metals. A number of configurations have been evaluated, ranging from pipes using a metallic inner liner of a chemically vapor deposited (CVD) refractory metal applied to ceramic tubing, to one utilizing ferrous materials with an outer layer of a developed oxide. A promising intermediate configuration consisting of free-standing refractory tubing covered with a layered structure of fine grain, equi-axed CVD silicon carbide has also been evaluated. The test heat pipe was fabricated using low-carbon, arc-cast molybdenum tubing and a wick composed of 150 mesh molybdenum screen. Hafnium gettering was used with sodium working fluid. Assembly of the pipe was by electron beam welding. Following closure and capping of the fill tube the assembly was operated in a vacuum for several hours prior to the chemical vapor deposition of the exterior ceramic coating. After coating, the pipe was operated in air and in combustion gases for performance evaluation. The use of iron-chromium-aluminum alloys as container materials for operating in high temperature oxidizing and sulfiding gas streams has been investigated. Alloys of this type develop heavy, protective oxide surface layers when exposed to high temperature oxidizing atmospheres, and are commonly used in electrical heating elements because of their exceptional oxidation resistance.

Merrigan, M.; Dunwoody, W.; Lundberg, L.

1981-01-01T23:59:59.000Z

317

The experimental evaluation and application of high temperature solid lubricants  

Science Conference Proceedings (OSTI)

A research program meant to develop an understanding of high temperature solid lubrication and experimental techniques through the development of a composite lubricant coating system was described. The knowledge gained through this research was then applied to a specific engineering challenge, the tribology of a sliding seal for hypersonic flight vehicles. The solid lubricant coating is a chromium carbide based composite combined with silver, which acts as a low temperature lubricant, and barium fluoride/calcium fluoride eutectic, which acts as a high temperature lubricant. This composite coating provides good wear resistance and low friction for sliding contacts from room temperature to over 900 C in reducing or oxidative environments. The specific research on this coating included a composition screening using a foil gas bearing test rig and the use of thin silver films to reduce initial wear using a pin-on-disk test rig. The chemical stability of the materials used was also addressed. This research indicated that soft metallic films and materials which become soft at elevated temperatures are potentially good lubricants. The general results from the experiments with the model solid libricant coating were then applied to a sliding seal design concept. This seal design requires that a braided ceramic fabric slide against a variety of metal counterface materials at temperatures from 25 to 850 C in an oxidative environment. A pin-on-disk tribometer was used to evaluate the tribological properties of these materials and to develop lubrication techniques. The results indicate that these materials must be lubricated to prevent wear and reduce friction. Thin films of silver, gold and calcium fluoride provided lubrication to the sliding materials. The data obtained and the lubrication techniques developed provide important information to designers of sliding seals.

Dellacorte, C.

1989-01-01T23:59:59.000Z

318

Quantum tunneling, quantum computing, and high temperature superconductivity  

E-Print Network (OSTI)

In this dissertation, I have studied four theoretical problems in quantum tunneling, quantum computing, and high-temperature superconductivity. I have developed a generally-useful numerical tool for analyzing impurity-induced resonant-state images observed with scanning tunneling microscope (STM) in high temperature superconductors. The integrated tunneling intensities on all predominant sites have been estimated. The results can be used to test the predictions of any tight-binding model calculation. I have numerically simulated two-dimensional time-dependent tunneling of a Gaussian wave packet through a barrier, which contains charged ions. We have found that a negative ion in the barrier directly below the tunneling tip can deflect the tunneling electrons and drastically reduce the probability for them to reach the point in the target plane directly below the tunneling tip. I have studied an infinite family of sure-success quantum algorithms, which are introduced by C.-R. Hu [Phys. Rev. A {\\bf 66}, 042301 (2002)], for solving a generalized Grover search problem. Rigorous proofs are found for several conjectures made by Hu and explicit equations are obtained for finding the values of two phase parameters which make the algorithms sure success. Using self-consistent Hartree-Fock theory, I have studied an extended Hubbard model which includes quasi-long-range Coulomb interaction between the holes (characterized by parameter V). I have found that for sufficiently large V/t, doubly-charged-antiphase-island do become energetically favored localized objects in this system for moderate values of U/t, thus supporting a recent conjecture by C.-R. Hu [Int. J. Mod. Phys. B {\\bf 17}, 3284 (2003)].

Wang, Qian

2003-12-01T23:59:59.000Z

319

High-temperature Hydrogen Permeation in Nickel Alloys  

DOE Green Energy (OSTI)

In gas cooled Very High Temperature Reactor concepts, tritium is produced as a tertiary fission product and by activation of graphite core contaminants, such as lithium; of the helium isotope, He-3, that is naturally present in the He gas coolant; and the boron in the B4C burnable poison. Because of its high mobility at the reactor outlet temperatures, tritium poses a risk of permeating through the walls of the intermediate heat exchanger (IHX) or steam generator (SG) systems, potentially contaminating the environment and in particular the hydrogen product when the reactor heat is utilized in connection with a hydrogen generation plant. An experiment to measure tritium permeation in structural materials at temperatures up to 1000 C has been constructed at the Idaho National Laboratory Safety and Tritium Applied Research (STAR) facility within the Next Generation Nuclear Plant program. The design is based on two counter flowing helium loops to represent heat exchanger conditions and was optimized to allow control of the materials surface condition and the investigation of the effects of thermal fatigue. In the ongoing campaign three nickel alloys are being considered because of their high-temperature creep properties, alloy 617, 800H and 230. This paper introduces the general issues related to tritium in the on-going assessment of gas cooled VHTR systems fission product transport and outlines the planned research activities in this area; outlines the features and capabilities of the experimental facility being operated at INL; presents and discusses the initial results of hydrogen permeability measurements in two of the selected alloys and compares them with the available database from previous studies.

P. Calderoni; M. Ebner; R. Pawelko

2010-10-01T23:59:59.000Z

320

Assessment of microelectronics packaging for high temperature, high reliability applications  

DOE Green Energy (OSTI)

This report details characterization and development activities in electronic packaging for high temperature applications. This project was conducted through a Department of Energy sponsored Cooperative Research and Development Agreement between Sandia National Laboratories and General Motors. Even though the target application of this collaborative effort is an automotive electronic throttle control system which would be located in the engine compartment, results of this work are directly applicable to Sandia`s national security mission. The component count associated with the throttle control dictates the use of high density packaging not offered by conventional surface mount. An enabling packaging technology was selected and thermal models defined which characterized the thermal and mechanical response of the throttle control module. These models were used to optimize thick film multichip module design, characterize the thermal signatures of the electronic components inside the module, and to determine the temperature field and resulting thermal stresses under conditions that may be encountered during the operational life of the throttle control module. Because the need to use unpackaged devices limits the level of testing that can be performed either at the wafer level or as individual dice, an approach to assure a high level of reliability of the unpackaged components was formulated. Component assembly and interconnect technologies were also evaluated and characterized for high temperature applications. Electrical, mechanical and chemical characterizations of enabling die and component attach technologies were performed. Additionally, studies were conducted to assess the performance and reliability of gold and aluminum wire bonding to thick film conductor inks. Kinetic models were developed and validated to estimate wire bond reliability.

Uribe, F.

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature reservoir evidence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Supercell Depletion Studies for Prismatic High Temperature Reactors  

SciTech Connect

The traditional two-step method of analysis is not accurate enough to represent the neutronic effects present in the prismatic high temperature reactor concept. The long range coupling of the various regions in high temperature reactors poses a set of challenges that are not seen in either LWRs or fast reactors. Unlike LWRs, which exhibit large, localized effects, the dominant effects in PMRs are, for the most part, distributed over larger regions, but with lower magnitude. The 1-D in-line treatment currently used in pebble bed reactor analysis is not sufficient because of the 2-D nature of the prismatic blocks. Considerable challenges exist in the modeling of blocks in the vicinity of reflectors, which, for current small modular reactor designs with thin annular cores, include the majority of the blocks. Additional challenges involve the treatment of burnable poisons, operational and shutdown control rods. The use of a large domain for cross section preparation provides a better representation of the neutron spectrum, enables the proper modeling of BPs and CRs, allows the calculation of generalized equivalence theory parameters, and generates a relative power distribution that can be used in compact power reconstruction. The purpose of this paper is to quantify the effects of the reflector, burnable poison, and operational control rods on an LEU design and to delineate an analysis approach for the Idaho National Laboratory. This work concludes that the use of supercells should capture these long-range effects in the preparation of cross sections and along with a set of triangular meshes to treat BPs, and CRs a high fidelity neutronics computation is attainable.

J. Ortensi

2012-10-01T23:59:59.000Z

322

Geothermal reservoir technology  

DOE Green Energy (OSTI)

A status report on Lawrence Berkeley Laboratory's Reservoir Technology projects under DOE's Hydrothermal Research Subprogram is presented. During FY 1985 significant accomplishments were made in developing and evaluating methods for (1) describing geothermal systems and processes; (2) predicting reservoir changes; (3) mapping faults and fractures; and (4) field data analysis. In addition, LBL assisted DOE in establishing the research needs of the geothermal industry in the area of Reservoir Technology. 15 refs., 5 figs.

Lippmann, M.J.

1985-09-01T23:59:59.000Z

323

Possible Origin of Improved High Temperature Performance of Hydrothermally Aged Cu/Beta Zeolite Catalysts  

SciTech Connect

The hydrothermal stability of Cu/beta NH3 SCR catalysts are explored here. In particular, this paper focuses on the interesting ability of this catalyst to maintain and even enhance high-temperature performance for the "standard" SCR reaction after modest (900 C, 2 hours) hydrothermal aging. Characterization of the fresh and aged catalysts was performed with an aim to identify possible catalytic phases responsible for the enhanced high temperature performance. XRD, TEM and 27Al NMR all showed that the hydrothermally aging conditions used here resulted in almost complete loss of the beta zeolite structure between 1 and 2 hours aging. While the 27Al NMR spectra of 2 and 10 hour hydrothermally-aged catalysts showed significant loss of a peak associated with tetrahedrally-coordinated Al species, no new spectral features were evident. Two model catalysts, suggested by these characterization data as possible mimics of the catalytic phase formed during hydrothermal aging of Cu/beta, were prepared and tested for their performance in the "standard" SCR and NH3 oxidation reactions. The similarity in their reactivity compared to the 2 hour hydrothermally-aged Cu/beta catalyst suggests possible routes for preparing multi-component catalysts that may have wider temperature windows for optimum performance than those provided by current Cu/zeolite catalysts.

Peden, Charles HF; Kwak, Ja Hun; Burton, Sarah D.; Tonkyn, Russell G.; Kim, Do Heui; Lee, Jong H.; Jen, H. W.; Cavattaio, Giovanni; Cheng, Yisun; Lambert, Christine

2012-04-30T23:59:59.000Z

324

Geothermal Reservoir Dynamics - TOUGHREACT  

E-Print Network (OSTI)

Swelling in a Fractured Geothermal Reservoir, presented atTHC) Modeling Based on Geothermal Field Data, Geothermics,and Silica Scaling in Geothermal Production-Injection Wells

2005-01-01T23:59:59.000Z

325

High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems  

SciTech Connect

In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 deg. C while the heat losses caused by the addition of the VCHP are 1.8 W.

Tarau, Calin; Walker, Kara L.; Anderson, William G. [Advanced Cooling Technologies, Inc. 1046 New Holland Ave. Lancaster, PA 17601 (United States)

2009-03-16T23:59:59.000Z

326

Fractured geothermal reservoir growth induced by heat extraction  

DOE Green Energy (OSTI)

Field testing of a hydraulically-stimulated, hot dry rock geothermal system at the Fenton Hill site in northern New Mexico has indicated that significant reservoir growth occurred as energy was extracted. Tracer, microseismic, and geochemical measurements provided the primary quantitative evidence for documenting the increases in accessible reservoir volume and fractured rock surface area that were observed during energy extraction operations which caused substantial thermal drawdown in portions of the reservoir. These temporal increases suggest that augmentation of reservoir heat production capacity in hot dry rock systems may be possible.

Tester, J.W.; Murphy, H.D.; Grigsby, C.O.; Robinson, B.A.; Potter, R.M.

1986-01-01T23:59:59.000Z

327

Dual Phase Membrane for High Temperature CO2 Separation  

SciTech Connect

This project aimed at synthesis of a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Metal-carbonate dual-phase membranes were prepared by the direct infiltration method and the synthesis conditions were optimized. Permeation tests for CO{sub 2} and N{sub 2} from 450-750 C showed very low permeances of those two gases through the dual-phase membrane, which was expected due to the lack of ionization of those two particular gases. Permeance of the CO{sub 2} and O{sub 2} mixture was much higher, indicating that the gases do form an ionic species, CO{sub 3}{sup 2-}, enhancing transport through the membrane. However, at temperatures in excess of 650 C, the permeance of CO{sub 3}{sup 2-} decreased rapidly, while predictions showed that permeance should have continued to increase with temperature. XRD data obtained from used membrane indicated that lithium iron oxides formed on the support surface. This lithium iron oxide layer has a very low conductivity, which drastically reduces the flow of electrons to the CO{sub 2}/O{sub 2} gas mixture; thus limiting the formation of the ionic species required for transport through the membrane. These results indicated that the use of stainless steel supports in a high temperature oxidative environment can lead to decreased performance of the membranes. This revelation created the need for an oxidation resistant support, which could be gained by the use of a ceramic-type membrane. Work was extended to synthesize a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Helium permeance of the support before and after infiltration of molten carbonate are on the order of 10{sup -6} and 10{sup -10} moles/m{sup 2} {center_dot} Pa {center_dot} s respectively, indicating that the molten carbonate is able to sufficiently infiltrate the membrane. It was found that La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF) was a suitable candidate for the support material. This support material proved to separate CO{sub 2} when combined with O{sub 2} at a flux of 0.194 ml/min {center_dot} cm{sup 2} at 850 C. It was also observed that, because LSCF is a mixed conductor (conductor of both electrons and oxygen ions), the support was able to provide its own oxygen to facilitate separation of CO{sub 2}. Without feeding O{sub 2}, the LSCF dual phase membrane produced a maximum CO{sub 2} flux of 0.246 ml/min {center_dot} cm{sup 2} at 900 C.

Jerry Lin

2007-06-30T23:59:59.000Z

328

Advancement of High Temperature Black Liquor Gasification Technology  

DOE Green Energy (OSTI)

Weyerhaeuser operates the world's only commercial high-temperature black liquor gasifier at its pulp mill in New Bern, NC. The unit was started-up in December 1996 and currently processes about 15% of the mill's black liquor. Weyerhaeuser, Chemrec AB (the gasifier technology developer), and the U.S. Department of Energy recognized that the long-term, continuous operation of the New Bern gasifier offered a unique opportunity to advance the state of high temperature black liquor gasification toward the commercial-scale pressurized O2-blown gasification technology needed as a foundation for the Forest Products Bio-Refinery of the future. Weyerhaeuser along with its subcontracting partners submitted a proposal in response to the 2004 joint USDOE and USDA solicitation - 'Biomass Research and Development Initiative'. The Weyerhaeuser project 'Advancement of High Temperature Black Liquor Gasification' was awarded USDOE Cooperative Agreement DE-FC26-04NT42259 in November 2004. The overall goal of the DOE sponsored project was to utilize the Chemrec{trademark} black liquor gasification facility at New Bern as a test bed for advancing the development status of molten phase black liquor gasification. In particular, project tasks were directed at improvements to process performance and reliability. The effort featured the development and validation of advanced CFD modeling tools and the application of these tools to direct burner technology modifications. The project also focused on gaining a fundamental understanding and developing practical solutions to address condensate and green liquor scaling issues, and process integration issues related to gasifier dregs and product gas scrubbing. The Project was conducted in two phases with a review point between the phases. Weyerhaeuser pulled together a team of collaborators to undertake these tasks. Chemrec AB, the technology supplier, was intimately involved in most tasks, and focused primarily on the design, specification and procurement of facility upgrades. Chemrec AB is also operating a pressurized, O2-blown gasifier pilot facility in Piteaa, Sweden. There was an exchange of knowledge with the pressurized projects including utilization of the experimental results from facilities in Piteaa, Sweden. Resources at the Georgia Tech Research Corporation (GTRC, a.k.a., the Institute of Paper Science and Technology) were employed primarily to conduct the fundamental investigations on scaling and plugging mechanisms and characterization of green liquor dregs. The project also tapped GTRC expertise in the development of the critical underlying black liquor gasification rate subroutines employed in the CFD code. The actual CFD code development and application was undertaken by Process Simulation, Ltd (PSL) and Simulent, Ltd. PSL focused on the overall integrated gasifier CFD code, while Simulent focused on modeling the black liquor nozzle and description of the black liquor spray. For nozzle development and testing Chemrec collaborated with ETC (Energy Technology Centre) in Piteae utilizing their test facility for nozzle spray investigation. GTI (Gas Technology Institute), Des Plains, IL supported the team with advanced gas analysis equipment during the gasifier test period in June 2005.

Craig Brown; Ingvar Landalv; Ragnar Stare; Jerry Yuan; Nikolai DeMartini; Nasser Ashgriz

2008-03-31T23:59:59.000Z

329

High Temperature Calcination - MACT Upgrade Equipment Pilot Plant Test  

SciTech Connect

About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste are stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Calcination at high-temperature conditions (600 C, with alumina nitrate and calcium nitrate chemical addition to the feed) is one of four options currently being considered by the Department of Energy for treatment of the remaining tank wastes. If calcination is selected for future processing of the sodium-bearing waste, it will be necessary to install new off-gas control equipment in the New Waste Calcining Facility (NWCF) to comply with the Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors and incinerators. This will require, as a minimum, installing a carbon bed to reduce mercury emissions from their current level of up to 7,500 to <45 {micro}g/dscm, and a staged combustor to reduce unburned kerosene fuel in the off-gas discharge to <100 ppm CO and <10 ppm hydrocarbons. The staged combustor will also reduce NOx concentrations of about 35,000 ppm by 90-95%. A pilot-plant calcination test was completed in a newly constructed 15-cm diameter calciner vessel. The pilot-plant facility was equipped with a prototype MACT off-gas control system, including a highly efficient cyclone separator and off-gas quench/venturi scrubber for particulate removal, a staged combustor for unburned hydrocarbon and NOx destruction, and a packed activated carbon bed for mercury removal and residual chloride capture. Pilot-plant testing was performed during a 50-hour system operability test January 14-16, followed by a 100-hour high-temperature calcination pilot-plant calcination run January 19-23. Two flowsheet blends were tested: a 50-hour test with an aluminum-to-alkali metal molar ratio (AAR) of 2.25, and a 50-hour test with an AAR of 1.75. Results of the testing indicate that sodium-bearing waste can be successfully calcined at 600 C with an AAR of 1.75. Unburned hydrocarbons are reduced to less than 10 ppm (7% O2, dry basis), with >90% reduction of NOx emissions. Mercury removal by the carbon bed reached 99.99%, surpassing the control efficiency needed to meet MACT emissions standards. No deleterious impacts on the carbon bed were observed during the tests. The test results imply that upgrading the NWCF calciner with a more efficient cyclone separator and the proposed MACT equipment can process the remaining tanks wastes in 3 years or less, and comply with the MACT standards.

Richard D. Boardman; B. H. O& #39; Brien; N. R. Soelberg; S. O. Bates; R. A. Wood; C. St. Michel

2004-02-01T23:59:59.000Z

330

Enhanced oil recovery through water imbibition in fractured reservoirs using Nuclear Magnetic Resonance.  

E-Print Network (OSTI)

??Conventional waterflooding methods of oil recovery are difficult to apply when reservoirs show evidence of natural fractures, because injected water advances through paths of high (more)

Hervas Ordonez, Rafael Alejandro

2012-01-01T23:59:59.000Z

331

New Evidence On The Hydrothermal System In Long Valley Caldera, California,  

Open Energy Info (EERE)

New Evidence On The Hydrothermal System In Long Valley Caldera, California, New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Abstract Data collected since 1985 from test drilling, fluid sampling, and geologic and geophysical investigations provide a clearer definition of the hydrothermal system in Long Valley caldera than was previously available. This information confirms the existence of high-temperature (> 200°C) reservoirs within the volcanic fill in parts of the west moat. These

332

Reservoir assessment of The Geysers Geothermal field  

DOE Green Energy (OSTI)

Big Sulphur Creek fault zone, in The Geysers Geothermal field, may be part of a deep-seated, wrench-style fault system. Hydrothermal fluid in the field reservoir may rise through conduits beneath the five main anomalies associated with the Big Sulphur Creek wrench trend. Some geophysical anomalies (electrical resistivity and audio-magnetotelluric) evidently are caused by the hot water geothermal field or zones of altered rocks; others (gravity, P-wave delays, and possibly electrical resistivity) probably respresent the underlying heat source, a possible magma chamber; and others (microearthquake activity) may be related to the steam reservoir. A large negative gravity anomaly and a few low-resistivity anomalies suggest areas generally favorable for the presence of steam zones, but these anomalies apparently do not directly indicate the known steam reservoir. At the current generating capacity of 930 MWe, the estimated life of The Geysers Geothermal field reservoir is 129 years. The estimated reservoir life is 60 years for the anticipated maximum generating capacity of 2000 MWe as of 1990. Wells at The Geysers are drilled with conventional drilling fluid (mud) until the top of the steam reservoir is reached; then, they are drilled with air. Usually, mud, temperature, caliper, dual induction, and cement bond logs are run on the wells.

Thomas, R.P.; Chapman, R.H.; Dykstra, H.

1981-01-01T23:59:59.000Z

333

The U.S. Department of Energy's Geothermal Reservoir Technology Program  

Science Conference Proceedings (OSTI)

Geothermal reservoir engineering is an important aspect f the Department of Energys Geothermal Technology Division, geothermal research and development program. Reservoir engineering-related research, a component of all geosciences activities, is of particular importance in the context of Hydrothermal Reservoir Research. Three closely related research activities (Brine Injection, Reservoir Definition, and Caldera Reservoir Investigations) are now combined under the more general heading of Reservoir Technology. Scientific investigations, as part of the Salton Sea Scientific Drilling Program, also contribute greatly to the understanding of the behavior of high-temperature hydrothermal convection systems. With the creation of the Geothermal Technology Organization, where geothermal research will be cost-shard with industry, it is anticipated that a number of research topics will be brought to the point where the geothermal industry can rapidly put new technology into use. 2 tabs., 2 figs.

Mock, John E.; Blackett, Robert E.

1987-01-20T23:59:59.000Z

334

Gallium phosphide high-temperature bipolar junction transistor  

DOE Green Energy (OSTI)

Preliminary results are reported on the development of a high-temperature (> 350/sup 0/C) gallium phosphide bipolar junction transistor (BJT) for goethermal and other energy applications. This four-layer p/sup +/n/sup -/pp/sup +/ structure was fromed by liquid phase epitaxy using a supercooling technique to insure uniform nucleation of the thin layers. Magnesium was used as the p-type dopant to avoid excessive out-diffusion into the lightly doped base. By appropriate choice of electrodes, the device may also be driven as an n-channel junction field-effect transistor. The gallium phosphide BJT is observed to have a common-emitter current gain peaking in the range of 6 to 10 (for temperatures from 20/sup 0/C to 400/sup 0/C) and a room-temperature, punchthrough-limited, collector-emitter breakdown voltage of approximately -6V. Other parameters of interest include an f/sub/ = 400 KHz (at 20/sup 0/C) and a collector base leakage current = 200 ..mu..A (at 350/sup 0/C).

Zipperian, T.E.; Dawson, L.R.; Caffin, R.J.

1981-03-01T23:59:59.000Z

335

Ceramic heat pipes for high temperature heat removal  

SciTech Connect

Difficulties in finding metal or protected metal components that exhibit both strength and corrosion resistance at high temperature have severely restricted the application of effective heat recovery techniques to process heat furnaces. A potential method of overcoming this restriction is to use heat pipes fabricated from ceramic materials to construct counterflow recuperators. A development program has been initiated to demonstrate the technical and eventually the economical feasibility of ceramic heat pipes and ceramic heat pipe recuperators. The prime candidate for heat pipe construction is SiC. Closed-end tubes of this material have been prepared by chemical vapor deposition (CVD). These tubes were lined internally with tungsten by a subsequent CVD operation, partially filled with sodium, and sealed by brazing a tungsten lined SiC plug into the open-end with a palladium--cobalt alloy. Heat pipes constructed in this manner have been successfully operated in vacuum at temperatures of 1225/sup 0/K and in air at a temperature of 1125/sup 0/K. The heat source used initially for the air testing was an induction heated metallic sleeve in thermal contact with the test unit. Subsequent testing has shown that a silicon carbide heat pipe can be successfully operated with natural gas burners providing the input heat. Methods of fabricating and testing these devices are described.

Keddy, E.S.; Ranken, W.A.

1978-01-01T23:59:59.000Z

336

Pressure Resistance Welding of High Temperature Metallic Materials  

Science Conference Proceedings (OSTI)

Pressure Resistance Welding (PRW) is a solid state joining process used for various high temperature metallic materials (Oxide dispersion strengthened alloys of MA957, MA754; martensitic alloy HT-9, tungsten etc.) for advanced nuclear reactor applications. A new PRW machine has been installed at the Center for Advanced Energy Studies (CAES) in Idaho Falls for conducting joining research for nuclear applications. The key emphasis has been on understanding processing-microstructure-property relationships. Initial studies have shown that sound joints can be made between dissimilar materials such as MA957 alloy cladding tubes and HT-9 end plugs, and MA754 and HT-9 coupons. Limited burst testing of MA957/HT-9 joints carried out at various pressures up to 400oC has shown encouraging results in that the joint regions do not develop any cracking. Similar joint strength observations have also been made by performing simple bend tests. Detailed microstructural studies using SEM/EBSD tools and fatigue crack growth studies of MA754/HT-9 joints are ongoing.

N. Jerred; L. Zirker; I. Charit; J. Cole; M. Frary; D. Butt; M. Meyer; K. L. Murty

2010-10-01T23:59:59.000Z

337

High-temperature gas stream filter and method  

DOE Patents (OSTI)

The present invention relates generally to the removal of solid particulate material from high-temperature gas streams, and more particularly the removal of such particulate material by employing a barrier filter formed of a carbon-carbon composite provided by a porous carbon fiber substrate with open interstitial regions between adjacently disposed carbon fibers selectively restricted by carbon integrally attached to the carbon fibers of the substrate. In a typical utilization of a particulate-bearing hot gas stream, the particulate loading of the gas stream after cleaning is normally less than about 50 ppm and with essentially no particulates larger than about 10 microns. This carbon-carbon filter for removing particulate material of a particle size larger than a preselected particle size from a gas stream at a temperature greater than about 800 F, is produced by the steps which comprise: providing a substrate of carbonaceous fibers with pore-forming open interstitial regions between adjacently disposed fibers; and, sufficiently filling these open interstitial regions with carbon integrally attached to and supported by the fibers for providing the interstitial regions with throughgoing passage-ways of a pore size sufficient to provide for the passage of the gas stream while preventing the passage of particulate material larger than a preselected particle size.

Notestein, J.E.

1994-12-31T23:59:59.000Z

338

Protonation enthalpies of metal oxides from high temperature electrophoresis.  

Science Conference Proceedings (OSTI)

Surface protonation reactions play an important role in the behavior of mineral and colloidal systems, specifically in hydrothermal aqueous environments. However, studies addressing the reactions at the solid/liquid interface at temperatures above 100 C are scarce. In this study, newly and previously obtained high temperature electrophoresis data (up to 260 C) - zeta potentials and isoelectric points - for metal oxides, including SiO{sub 2}, SnO{sub 2}, ZrO{sub 2}, TiO{sub 2}, and Fe{sub 3}O{sub 4}, were used in thermodynamic analysis to derive the standard enthalpies of their surface protonation. Two different approaches were used for calculating the protonation enthalpy: one is based on thermodynamic description of the 1-pKa model for surface protonation, and another one - on a combination of crystal chemistry and solvation theories which link the relative permittivity of the solid phase and the ratio of the Pauling bond strength and bond length to standard protonation enthalpy. From this analysis, two expressions relating the protonation enthalpy to the relative permittivity of the solid phase were obtained.

Rodriguez-Santiago, V [Oak Ridge National Laboratory (ORNL); Fedkin, Mark V [ORNL; Lvov, Serguei N. [Pennsylvania State University

2012-01-01T23:59:59.000Z

339

Protonation enthalpies of metal oxides from high temperature electrophoresis  

SciTech Connect

Surface protonation reactions play an important role in the behavior of mineral and colloidal systems, specifically in hydrothermal aqueous environments. However, studies addressing the reactions at the solid/liquid interface at temperatures above 100 C are scarce. In this study, newly and previously obtained high temperature electrophoresis data (up to 260 C) zeta potentials and isoelectric points for metal oxides, including SiO2, SnO2, ZrO2, TiO2, and Fe3O4, were used in thermodynamic analysis to derive the standard enthalpies of their surface protonation. Two different approaches were used for calculating the protonation enthalpy: one is based on thermodynamic description of the 1-pKa model for surface protonation, and another one on a combination of crystal chemistry and solvation theories which link the relative permittivity of the solid phase and the ratio of the Pauling bond strength and bond length to standard protonation enthalpy. From this analysis, two expressions relating the protonation enthalpy to the relative permittivity of the solid phase were obtained.

Rodriguez-Santiago, V [Oak Ridge National Laboratory (ORNL); Fedkin, Mark V. [Pennsylvania State University; Lvov, Serguei N. [Pennsylvania State University

2012-01-01T23:59:59.000Z

340

Performance of digital integrated circuit technologies at very high temperatures  

Science Conference Proceedings (OSTI)

Results of investigations of the performance and reliability of digital bipolar and CMOS integrated circuits over the 25 to 340/sup 0/C range are reported. Included in these results are both parametric variation information and analysis of the functional failure mechanisms. Although most of the work was done using commercially available circuits (TTL and CMOS) and test chips from commercially compatible processes, some results of experimental simulations of dielectrically isolated CMOS are also discussed. It was found that commercial Schottky clamped TTL, and dielectrically isolated, low power Schottky-clamped TTL, functioned to junction temperatures in excess of 325/sup 0/C. Standard gold doped TTL functioned only to 250/sup 0/C, while commercial, isolated I/sup 2/L functioned to the range 250/sup 0/C to 275/sup 0/C. Commercial junction isolated CMOS, buffered and unbuffered, functioned to the range 280/sup 0/C to 310/sup 0/C/sup +/, depending on the manufacturer. Experimental simulations of simple dielectrically isolated CMOS integrated circuits, fabricated with heavier doping levels than normal, functioned to temperatures in excess of 340/sup 0/C. High temperature life testing of experimental, silicone-encapsulated simple TTL and CMOS integrated circuits have shown no obvious life limiting problems to date. No barrier to reliable functionality of TTL bipolar or CMOS integrated ciruits at temperatures in excess of 300/sup 0/C has been found.

Prince, J.L.; Draper, B.L.; Rapp, E.A.; Kromberg, J.N.; Fitch, L.T.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature reservoir evidence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Segmented lasing tube for high temperature laser assembly  

DOE Patents (OSTI)

A high temperature laser assembly capable of withstanding operating temperatures in excess of 1500.degree. C. is described comprising a segmented cylindrical ceramic lasing tube having a plurality of cylindrical ceramic lasing tube segments of the same inner and outer diameters non-rigidly joined together in axial alignment; insulation of uniform thickness surround the walls of the ceramic lasing tube; a ceramic casing, preferably of quartz, surrounding the insulation; and a fluid cooled metal jacket surrounds the ceramic casing. In a preferred embodiment, the inner surface of each of the ceramic lasing tube segments are provided with a pair of oppositely spaced grooves in the wall thereof parallel to the center axis of the segmented cylindrical ceramic lasing tube, and both of the grooves and the center axis of the segmented cylindrical ceramic lasing tube lie in a common plane, with the grooves in each ceramic lasing tube segment in circumferential alignment with the grooves in the adjoining ceramic lasing tube segments; and one or more ceramic plates, all lying in a common plane to one another and with the central axis of the segmented ceramic lasing tube, are received in the grooves to provide additional wall area in the segmented ceramic lasing tube for collision and return to ground state of metastable metal atoms within the segmented ceramic lasing tube.

Sawicki, Richard H. (Danville, CA); Alger, Terry W. (Tracy, CA); Finucane, Raymond G. (Pleasanton, CA); Hall, Jerome P. (Livermore, CA)

1996-01-01T23:59:59.000Z

342

Rare earth chalcogenides for use as high temperature thermoelectric materials  

DOE Green Energy (OSTI)

In the first part of the thesis, the electric resistivity, Seebeck coefficient, and Hall effect were measured in X{sub y}(Y{sub 2}S{sub 3}){sub 1-y} (X = Cu, B, or Al), for y = 0.05 (Cu, B) or 0.025-0.075 for Al, in order to determine their potential as high- temperature (HT)(300-1000 C) thermoelectrics. Results indicate that Cu, B, Al- doped Y{sub 2}S{sub 3} are not useful as HT thermoelectrics. In the second part, phase stability of {gamma}-cubic LaSe{sub 1.47-1.48} and NdSe{sub 1.47} was measured periodically during annealing at 800 or 1000 C for the same purpose. In the Nd selenide, {beta} phase increased with time, while the Nd selenide showed no sign of this second phase. It is concluded that the La selenide is not promising for use as HT thermoelectric due to the {gamma}-to-{beta} transformation, whereas the Nd selenide is promising.

Michiels, J.

1996-01-02T23:59:59.000Z

343

STEAM GENERATORS FOR HIGH-TEMPERATURE GAS-COOLED REACTORS  

SciTech Connect

An analytical approach and an IBM machine code were prepared for the design of gas-cooled reactor once-through steam generators for both axial-flow and cross-flow tube matrices. The codes were applied to investigate the effects of steam generator configuration, tube diameter, extended surface, type of cooling gas, steam and gas temperature and pressure conditions, and the pumping power-to-heat removal ratio on the size, weight, and cost of steam generators. The results indicate that the least expensive and most promising unit for high- temperature high-pressure gascooled reactor plants employs axial-gas flow over 0.5-in.dia bare U-tubes arranged with their axes parallel to that of the shell. The proposed design is readily adaptable to the installation of a reheater and is suited to conventional fabrication techniques. Charts are presented to facilitate tlie design of both axial-flow and cross-flow steam generators for gas- cooled reactor applications. (auth)

Fraas, A.P.; Ozisik, M.N.

1963-04-23T23:59:59.000Z

344

Progress in BNL High-Temperature Hydrogen Combustion Research Program  

DOE Green Energy (OSTI)

The objectives of the BNL High-Temperature Hydrogen Combustion Research Program are discussed. The experimental facilities are described and two sets of preliminary experiments are presented. Chemical reaction time experiments have been performed to determine the length of time reactive mixtures of interest can be kept at temperature before reaction in the absence of ignition sources consumes the reactants. Preliminary observations are presented for temperatures in the range 588K--700K. Detonation experiments are described in which detonation cell width is measured as a measure of mixture sensitivity to detonation. Preliminary experiments are described which are being carried out to establish data reproducibility with previous measurements in the literature and to test out and refine experimental methods. Intensive studies of hydrogen combustion phenomena were carried out during the 1980s. Much of this effort was driven by issues related to nuclear reactor safety. The high-speed'' combustion phenomena of flame acceleration, deflagration-to-detonation transition, direct initiation of detonation, detonation propagation, limits of detonation in tubes and channels, transmission of detonations from confined to unconfined geometry and other related phenomena were studied using a variety of gaseous fuel-oxidant systems, including hydrogen-steam-air systems of interest in reactor safety studies. Several reviews are available which document this work [Lee, 1989; Berman, 1986].

Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Curtiss, J.; Economos, C.; Jahelka, J.; Sato, K.

1992-01-01T23:59:59.000Z

345

Progress in BNL High-Temperature Hydrogen Combustion Research Program  

DOE Green Energy (OSTI)

The objectives of the BNL High-Temperature Hydrogen Combustion Research Program are discussed. The experimental facilities are described and two sets of preliminary experiments are presented. Chemical reaction time experiments have been performed to determine the length of time reactive mixtures of interest can be kept at temperature before reaction in the absence of ignition sources consumes the reactants. Preliminary observations are presented for temperatures in the range 588K--700K. Detonation experiments are described in which detonation cell width is measured as a measure of mixture sensitivity to detonation. Preliminary experiments are described which are being carried out to establish data reproducibility with previous measurements in the literature and to test out and refine experimental methods. Intensive studies of hydrogen combustion phenomena were carried out during the 1980s. Much of this effort was driven by issues related to nuclear reactor safety. The ``high-speed`` combustion phenomena of flame acceleration, deflagration-to-detonation transition, direct initiation of detonation, detonation propagation, limits of detonation in tubes and channels, transmission of detonations from confined to unconfined geometry and other related phenomena were studied using a variety of gaseous fuel-oxidant systems, including hydrogen-steam-air systems of interest in reactor safety studies. Several reviews are available which document this work [Lee, 1989; Berman, 1986].

Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Curtiss, J.; Economos, C.; Jahelka, J.; Sato, K.

1992-12-31T23:59:59.000Z

346

Ultra high temperature ceramics for hypersonic vehicle applications.  

SciTech Connect

HfB{sub 2} and ZrB{sub 2} are of interest for thermal protection materials because of favorable thermal stability, mechanical properties, and oxidation resistance. We have made dense diboride ceramics with 2 to 20 % SiC by hot pressing at 2000 C and 5000 psi. High-resolution transmission electron microscopy (TEM) shows very thin grain boundary phases that suggest liquid phase sintering. Fracture toughness measurements give RT values of 4 to 6 MPam{sup 1/2}. Four-pt flexure strengths measured in air up to 1450 C were as high as 450-500 MPa. Thermal diffusivities were measured to 2000 C for ZrB{sub 2} and HfB{sub 2} ceramics with SiC contents from 2 to 20%. Thermal conductivities were calculated from thermal diffusivities and measured heat capacities. Thermal diffusivities were modeled using different two-phase composite models. These materials exhibit excellent high temperature properties and are attractive for further development for thermal protection systems.

Tandon, Rajan; Dumm, Hans Peter; Corral, Erica L.; Loehman, Ronald E.; Kotula, Paul Gabriel

2006-01-01T23:59:59.000Z

347

Progress In High Temperature Electrolysis At The Idaho National Laboratory  

SciTech Connect

The United States is considering the development of a domestic hydrogen-based energy economy. Hydrogen is of particular interest as a secondary energy carrier because it has the potential to be storable, transportable, environmentally benign, and useful in many chemical processes. Obviously, before a hydrogen economy can be implemented, an efficient and environmentally friendly means for large scale hydrogen production must be identified, proven, and developed. Hydrogen is now produced primarily via steam reforming of methane. However, from a long-term perspective, methane reforming is not a viable process for large-scale production of hydrogen since such fossil fuel conversion processes consume non-renewable resources and emit greenhouse gases. The U. S. National Research Council has recommended the use of water-splitting technologies to produce hydrogen using energy derived from a nuclear reactor. For the past several years, the Idaho National Laboratory has been actively studying the use of solid oxide fuel cells in conjunction with nuclear power for large-scale, high-temperature, electrolytic hydrogen production.

Carl M. Stoots; James E.O' Brien; J. Steve Herring; Joseph Hartvigsen

2007-10-01T23:59:59.000Z

348

Viscosity-based high temperature waste form compositions  

SciTech Connect

High-temperature waste forms such as iron-enriched basalt are proposed to immobilize and stabilize a variety of low-level wastes stored at the Idaho National Engineering Laboratory. The combination of waste and soil anticipated for the waste form results in high SiO{sub 2} + Al{sub 2}O{sub 3} producing a viscous melt in an arc furnace. Adding a flux such as CaO to adjust the basicity ratio (the molar ratio of basic to acid oxides) enables tapping the furnace without resorting to extreme temperatures, but adds to the waste volume. Improved characterization of wastes will permit adjusting the basicity ratio to between 0.7 and 1.0 by blending of wastes and/or changing the waste-soil ratio. This minimizes waste form volume. Also, lower pouring temperatures will decrease electrode and refractory attrition, reduce vaporization from the melt, and, with suitable flux, facilitate crystallization. Results of laboratory tests were favorable and pilot-scale melts are planned; however, samples have not yet been subjected to leach testing.

Reimann, G.A.

1994-12-31T23:59:59.000Z

349

Stability of shock waves in high temperature plasmas  

Science Conference Proceedings (OSTI)

The Dyakov-Kontorovich criteria for spontaneous emission of acoustic waves behind shock fronts are investigated for high temperature aluminum and beryllium plasmas. To this end, the Dyakov and critical stability parameters are calculated from Rankine-Hugoniot curves using a more realistic equation of state (EOS). The cold and ionic contributions to the EOS are obtained via scaled binding energy and mean field theory, respectively. A screened hydrogenic model, including l-splitting, is used to calculate the bound electron contribution to the electronic EOS. The free electron EOS is obtained from Fermi-Dirac statistics. Predictions of the model for ionization curves and shock Hugoniot are found to be in excellent agreement with available experimental and theoretical data. It is observed that the electronic EOS has significant effect on the stability of the planar shock front. While the shock is stable for low temperatures and pressures, instability sets in as temperature rises. The basic reason is ionization of electronic shells and consequent increase in electronic specific heat. The temperatures and densities of the unstable region correspond to those where electronic shells get ionized. With the correct modeling of bound electrons, we find that shock instability for Al occurs at a compression ratio {approx}5.4, contrary to the value {approx}3 reported in the literature. Free electrons generated in the ionization process carry energy from the shock front, thereby giving rise to spontaneously emitted waves, which decay the shock front.

Das, Madhusmita [Department of Physics, Indian Institute of Technology, Bombay, Powai-400076 (India); Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Bhattacharya, Chandrani; Menon, S. V. G. [Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

2011-10-15T23:59:59.000Z

350

Systems Engineering Provides Successful High Temperature Steam Electrolysis Project  

DOE Green Energy (OSTI)

This paper describes two Systems Engineering Studies completed at the Idaho National Laboratory (INL) to support development of the High Temperature Stream Electrolysis (HTSE) process. HTSE produces hydrogen from water using nuclear power and was selected by the Department of Energy (DOE) for integration with the Next Generation Nuclear Plant (NGNP). The first study was a reliability, availability and maintainability (RAM) analysis to identify critical areas for technology development based on available information regarding expected component performance. An HTSE process baseline flowsheet at commercial scale was used as a basis. The NGNP project also established a process and capability to perform future RAM analyses. The analysis identified which components had the greatest impact on HTSE process availability and indicated that the HTSE process could achieve over 90% availability. The second study developed a series of life-cycle cost estimates for the various scale-ups required to demonstrate the HTSE process. Both studies were useful in identifying near- and long-term efforts necessary for successful HTSE process deployment. The size of demonstrations to support scale-up was refined, which is essential to estimate near- and long-term cost and schedule. The life-cycle funding profile, with high-level allocations, was identified as the program transitions from experiment scale R&D to engineering scale demonstration.

Charles V. Park; Emmanuel Ohene Opare, Jr.

2011-06-01T23:59:59.000Z

351

Aerogel-Based Insulation for High-Temperature Industrial Processes  

SciTech Connect

Under this program, Aspen Aerogels has developed an industrial insulation called Pyrogel HT, which is 4-5 times more thermally efficient than current non-aerogel technology. Derived from nanoporous silica aerogels, Pyrogel HT was specifically developed to address a high temperature capability gap not currently met with Aspen Aerogels{trademark} flagship product, Pyrogel XT. Pyrogel XT, which was originally developed on a separate DOE contract (DE-FG36-06GO16056), was primarily optimized for use in industrial steam processing systems, where application temperatures typically do not exceed 400 C. At the time, further improvements in thermal performance above 400 C could not be reasonably achieved for Pyrogel XT without significantly affecting other key material properties using the current technology. Cumulative sales of Pyrogel HT into domestic power plants should reach $125MM through 2030, eventually reaching about 10% of the total insulation market share in that space. Global energy savings would be expected to scale similarly. Over the same period, these sales would reduce domestic energy consumption by more than 65 TBtu. Upon branching out into all industrial processes in the 400 C-650 C regime, Pyrogel HT would reach annual sales levels of $150MM, with two-thirds of that being exported.

Dr. Owen Evans

2011-10-13T23:59:59.000Z

352

Advancing the Technology Base for High Temperature Hydrogen Membranes  

DOE Green Energy (OSTI)

High purity hydrogen is a critical component for at least two major industrial processes: 1) the refining of conventional steels and raw pig iron into low carbon steels and high purity iron used for high performance magnets in motors, generators, alternators, transformers, and etc.; and 2) refining metallurgical grade silicon to the high- purity, polycrystalline silicon used in fabricating single crystal silicon wafers for semiconductor manufacturing. In the process of producing low carbon iron products, CO and CO2 impurities prevent efficient removal of the carbon already in the raw iron. In the refining of metallurgical grade silicon, the presence of any impurity above the part-per- million level prevents the ultimate fabrication of the large scale single crystals that are essential to the semiconductor device. In a lesser magnitude role, high quality hydrogen is used in a variety of other processes, including specialty metals refining (e.g., iridium, osmium, palladium, platinum, and ruthenium) and R{ampersand}D in areas such as organic synthesis and development of certain types of fuel cells. In all of these applications, a high-temperature hydrogen membrane can provide a method for achieving a very high purity level of hydrogen in a manner that is more economical and/or more rugged than existing techniques.

Dye, Robert C.; Moss, Thomas S.

1997-12-31T23:59:59.000Z

353

Screening study on high temperature energy transport systems  

SciTech Connect

The purpose of the study described in this document is to identify the options for transporting thermal energy over long distances. The study deals specifically and exclusively with high temperature (> 400/sup 0/C(752/sup 0/F)) energy for industrial use. Energy transport is seen as a potential solution to: high unit cost of small coal and nuclear steam generators, and opposition to siting of coal or nuclear plants near populated areas. The study is of a preliminary nature but covers many options including steam, molten salts, organics, and chemical heat pipes. The development status and potential problems of these and other energy transport methods are discussed. Energy transport concepts are compared on a fundamental level based on physical properties and also are subjected to an economic study. The economic study indicated that the chemical heat pipe, under a specific set of circumstances, appeared to be the least expensive for distances greater than about 32 km (20 miles). However, if the temperature of the energy was lowered, the heat transfer salt (sodium nitrate/nitrite) system would apparently be a better economic choice for less than about 80 km (50 miles). None of the options studied appear to be more attractive than small coal-fired boilers when the transport distance is over about 64 km (40 miles). Several recommendations are made for refining the analysis.

Graves, R.L.

1980-10-01T23:59:59.000Z

354

High temperature metallic diffraction gratings and process of manufacturing same  

DOE Patents (OSTI)

This invention is comprised of a method of applying diffraction gratings or images directly to the surface of a substrate wherein the gratings or images are capable of withstanding high temperatures, pressures, humidity and other such conditions related to materials testing. The method includes coating the surface of the substrate with an uniform layer of metal which is then overlaid with a layer of photo-resist material. Next, after contacting the photo-resist material with a master image containing regions of opacity and transparency, electromagnetic radiation is directed through the master image to expose the photo-resist material such that a contact print of the master image is produced on the photo-resist material. Then, after removing the master image, the photo-resist material is developed so as to remove unhardened portions thereof and leave corresponding portions of the metal layer uncovered. Finally, after removing or etching the uncovered portions of the metal layer, the remaining photo-resist material is removed to produce a metallic diffraction grating or image of predetermined size and pattern on the surface of the substrate.

Deason, V.A.; Hsu, Karen M.; Miller, R.L.

1993-12-31T23:59:59.000Z

355

Polymer nanocomposites for high-temperature composite repair  

SciTech Connect

A novel repair agent for resin-injection repair of advanced high temperature composites was developed and characterized. The repair agent was based on bisphenol E cyanate ester (BECy) and reinforced with alumina nanoparticles. To ensure good dispersion and compatibility with the BECy matrix in nanocomposites, the alumina nanoparticles were functionalized with silanes. The BECy nanocomposites, containing bare and functionalized alumina nanoparticles, were prepared and evaluated for their thermal, mechanical, rheological, and viscoelastic properties. The monomer of BECy has an extremely low viscosity at ambient temperature, which is good for processability. The cured BECy polymer is a highly cross-linked network with excellent thermal mechanical properties, with a high glass transition temperature (T{sub g}) of 270 C and decomposition temperature above 350 C. The incorporation of alumina nanoparticles enhances the mechanical and rheological properties of the BECy nanocomposites. Additionally, the alumina nanoparticles are shown to catalyze the cure of BECy. Characterization of the nanocomposites included dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy. The experimental results show that the BECy nanocomposite is a good candidate as repair agent for resin-injection repair applications.

Sheng, Xia

2008-12-01T23:59:59.000Z

356

Variable pressure insulating jackets for high-temperature batteries  

DOE Green Energy (OSTI)

A new method is proposed for controlling the temperature of high-temperature batteries namely, varying the hydrogen pressure inside of multifoil insulation by varying the temperature of a reversible hydrogen getter. Calculations showed that the rate of heat loss through 1.5 cm of multifoil insulation between a hot-side temperature of 425[degrees]C and a cold-side temperature of 25[degrees]C could be varied between 17.6 W/m[sup 2] and 7,000 W/m[sup 2]. This change in heat transfer rate can be achieved by varying the hydrogen pressure between 1.0 Pa and 1,000 Pa, which can be done with an available hydrogen gettering alloy operating in the range of 50[degrees]C to 250[degrees]C. This approach to battery cooling requires cylindrical insulating jackets, which are best suited for bipolar batteries having round cells approximately 10 to 18 cm in diameter.

Nelson, P.A.; Chilenskas, A.A.; Malecha, R.F.

1992-01-01T23:59:59.000Z

357

Variable pressure insulating jackets for high-temperature batteries  

DOE Green Energy (OSTI)

A new method is proposed for controlling the temperature of high-temperature batteries namely, varying the hydrogen pressure inside of multifoil insulation by varying the temperature of a reversible hydrogen getter. Calculations showed that the rate of heat loss through 1.5 cm of multifoil insulation between a hot-side temperature of 425{degrees}C and a cold-side temperature of 25{degrees}C could be varied between 17.6 W/m{sup 2} and 7,000 W/m{sup 2}. This change in heat transfer rate can be achieved by varying the hydrogen pressure between 1.0 Pa and 1,000 Pa, which can be done with an available hydrogen gettering alloy operating in the range of 50{degrees}C to 250{degrees}C. This approach to battery cooling requires cylindrical insulating jackets, which are best suited for bipolar batteries having round cells approximately 10 to 18 cm in diameter.

Nelson, P.A.; Chilenskas, A.A.; Malecha, R.F.

1992-12-31T23:59:59.000Z

358

Overcharge tolerant high-temperature cells and batteries  

DOE Patents (OSTI)

In a lithium-alloy/metal sulfide high temperature electrochemical cell, cell damage caused by overcharging is avoided by providing excess lithium in a high-lithium solubility phase alloy in the negative electrode and a specified ratio maximum of the capacity of a matrix metal of the negative electrode in the working phase to the capacity of a transition metal of the positive electrode. In charging the cell, or a plurality of such cells in series and/or parallel, chemical transfer of elemental lithium from the negative electrode through the electrolyte to the positive electrode provides sufficient lithium to support an increased self-charge current to avoid anodic dissolution of the positive electrode components above a critical potential. The lithium is subsequently electrochemically transferred back to the negative electrode in an electrochemical/chemical cycle which maintains high self-discharge currents on the order of 3-15 mA/cm.sup.2 in the cell to prevent overcharging.

Redey, Laszlo (Downers Grove, IL); Nelson, Paul A. (Wheaton, IL)

1989-01-01T23:59:59.000Z

359

Power efficiency for very high temperature solar thermal cavity receivers  

DOE Patents (OSTI)

This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positioned in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts infrared radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatures are attained.

McDougal, Allan R. (LaCanada-Flintridge, CA); Hale, Robert R. (Upland, CA)

1984-01-01T23:59:59.000Z

360

Novel Gas Sensors for High-Temperature Fossil Fuel Applications  

SciTech Connect

SRI International (SRI) is developing ceramic-based microsensors to detect exhaust gases such as NO, NO{sub 2}, and CO in advanced combustion and gasification systems under this DOE NETL-sponsored research project. The sensors detect the electrochemical activity of the exhaust gas species on catalytic electrodes attached to a solid state electrolyte and are designed to operate at the high temperatures, elevated pressures, and corrosive environments typical of large power generation exhausts. The sensors can be easily integrated into online monitoring systems for active emission control. The ultimate objective is to develop sensors for multiple gas detection in a single package, along with data acquisition and control software and hardware, so that the information can be used for closed-loop control in novel advanced power generation systems. This report details the Phase I Proof-of-Concept, research activities performed from October 2003 to March 2005. SRI's research work includes synthesis of catalytic materials, sensor design and fabrication, software development, and demonstration of pulse voltammetric analysis of NO, NO{sub 2}, and CO gases on catalytic electrodes.

Palitha Jayaweera; Francis Tanzella

2005-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature reservoir evidence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

SunShot Initiative: High-Temperature Falling-Particle Receiver  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Temperature Falling-Particle High-Temperature Falling-Particle Receiver to someone by E-mail Share SunShot Initiative: High-Temperature Falling-Particle Receiver on Facebook Tweet about SunShot Initiative: High-Temperature Falling-Particle Receiver on Twitter Bookmark SunShot Initiative: High-Temperature Falling-Particle Receiver on Google Bookmark SunShot Initiative: High-Temperature Falling-Particle Receiver on Delicious Rank SunShot Initiative: High-Temperature Falling-Particle Receiver on Digg Find More places to share SunShot Initiative: High-Temperature Falling-Particle Receiver on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative

362

Geysers reservoir studies  

DOE Green Energy (OSTI)

LBL is conducting several research projects related to issues of interest to The Geysers operators, including those that deal with understanding the nature of vapor-dominated systems, measuring or inferring reservoir processes and parameters, and studying the effects of liquid injection. All of these topics are directly or indirectly relevant to the development of reservoir strategies aimed at stabilizing or increasing production rates of non-corrosive steam, low in non-condensable gases. Only reservoir engineering studies will be described here, since microearthquake and geochemical projects carried out by LBL or its contractors are discussed in accompanying papers. Three reservoir engineering studies will be described in some detail, that is: (a) Modeling studies of heat transfer and phase distribution in two-phase geothermal reservoirs; (b) Numerical modeling studies of Geysers injection experiments; and (c) Development of a dual-porosity model to calculate mass flow between rock matrix blocks and neighboring fractures.

Bodvarsson, G.S.; Lippmann, M.J.; Pruess, K.

1993-04-01T23:59:59.000Z

363

C20: In Situ High Temperature X-ray Analysis of a Supermartensitic ...  

Science Conference Proceedings (OSTI)

Differential Characterization of Ikperejere Iron shale and Iron Sandstone Deposit Direct Precipitation of ... High Temperature Exposure of Oil Well Cements.

364

Irradiation Effects on High-Temperature Gas-Cooled Reactor Structural Materials  

Science Conference Proceedings (OSTI)

G. Irradiation Behavior / Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material

James R. Lindgren

365

Method of manufacturing a high temperature superconductor with improved transport properties  

DOE Patents (OSTI)

A method of preparing a high temperature superconductor. A method of preparing a superconductor includes providing a powdered high temperature superconductor and a nanophase paramagnetic material. These components are combined to form a solid compacted mass with the paramagnetic material disposed on the grain boundaries of the polycrystaline high temperature superconductor.

Balachandran, Uthamalingam (Hinsdale, IL); Siegel, Richard W. (Hinsdale, IL); Askew, Thomas R. (Kalamazoo, MI)

2001-01-01T23:59:59.000Z

366

ELSEVIER Physica B 239(1997)I-5 High temperature shock consolidation of hard ceramic powders  

E-Print Network (OSTI)

ELSEVIER Physica B 239(1997)I-5 High temperature shock consolidation of hard ceramic powders K conducted. Keywords: High pressure; High temperature; Shock waves; Shock consolidation of powders 1 of strong shock waves. The use of high temperature is expected to enhance plastic defor- mation and surface

Meyers, Marc A.

367

Final Scientific Report - "Novel Steels for High Temperature Carburizing"  

Science Conference Proceedings (OSTI)

This program was undertaken to develop a microalloy-modified grade of standard carburizing steel that can successfully exploit the high temperature carburizing capabilities of current commercial low pressure (i.e. 'vacuum') carburizing systems. Such steels can lower the amount of energy required for commercial carburizing operations by reducing the time required for deep-case carburizing operations. The specific technical objective of the work was to demonstrate a carburizing steel composition capable of maintaining a prior austenite grain size no larger than ASTM grain size number 5 after exposure to simulated carburizing conditions of 1050 C for 8 hr. Such thermal exposure should be adequate for producing carburized case depths up to about 2 mm. Such carburizing steels are expected to be attractive for use across a wide range of industries, including the petroleum, chemical, forest products, automotive, mining and industrial equipment industries. They have potential for reducing energy usage during low pressure carburizing by more than 25%, as well as reducing cycle times and process costs substantially. They also have potential for reducing greenhouse gas emissions from existing low pressure carburizing furnaces by more than 25%. High temperature carburizing can be done in most modern low pressure carburizing systems with no additional capital investment. Accordingly, implementing this technology on carburizing furnaces will provide a return on investment significantly greater than 10%. If disseminated throughout the domestic carburizing community, the technology has potential for saving on the order of 23 to 34 trillion BTU/year in industrial energy usage. Under the program, two compositions of microalloyed, coarsening-resistant low alloy carburizing steels were developed, produced and evaluated. After vacuum annealing at 1050oC for 8 hrs and high pressure gas quenching, both steels exhibited a prior austenite ASTM grain size number of 5.0 or finer. For comparison, a control alloy of similar composition but without the microalloy additions exhibited a duplex prior austenite grain size with grains ranging from ASTM grain size 3 down to ASTM grain size 1 after similar processing and thermal exposure. These results confirm the potential for using microalloy additions of Ti, B, Nb, Al, rare earths and/or N for austenite grain size control in Cr-Mo (i.e. 4000-series) low alloy carburizing steels. They also demonstrate that these microalloy additions will not compromise the processability of the steel; all three materials produced under the program could be hot worked readily using normal steel processing protocols. To fully realize the technical and commercial potential of these steels, there is a need to continue development work using larger-scale heats. These larger-scale heats are needed to provide adequate material for fatigue testing of quenched and tempered alloys, to conduct more complete investigations of potential alloy chemistries and to provide additional material for processing studies. It will also be beneficial to carefully review intellectual property issues associated with this family of steels, since existing Japanese patent literature suggests that significant microstructural and/or process characterization work may be needed on new materials to confirm that these materials fall outside existing patent claims.

McKimpson, Marvin G.; Liu, Tianjun; Maniruzzaman, Md

2012-07-27T23:59:59.000Z

368

NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS  

SciTech Connect

A project was led by Oak Ridge National Laboratory (ORNL) in collaboration with a research team comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3, MgAl2O4, or other similar spinel structured or alumina-based unshaped refractory compositions (castables, gunnables, shotcretes, etc.) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, high-alkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. Both practical refractory development experience and computer modeling techniques were used to aid in the design of this new family of materials. The newly developed materials were expected to offer alternative material choices for high-temperature, high-alkali environments that were capable of operating at higher temperatures (goal of increasing operating temperature by 100-200oC depending on process) or for longer periods of time (goal of twice the life span of current materials or next process determined service increment). This would lead to less process down time, greater energy efficiency for associated manufacturing processes (more heat kept in process), and materials that could be installed/repaired in a more efficient manner. The overall project goal was a 5% improvement in energy efficiency (brought about through a 20% improvement in thermal efficiency) resulting in a savings of 3.7 TBtu/yr (7.2 billion ft3 natural gas) by the year 2030. Additionally, new application techniques and systems were developed as part of this project to optimize the installation of this new family of refractory materials to maximize the properties of installed linings and to facilitate nuances such as hot installation and repair. Under this project, seven new shotcrete materials were developed for both primary and repair applications in aluminum, black liquor, coal gasification, and lime kiln environments. Developed materials were based on alumino-silicate, magnesia, and spinel forming systems. One of the developed materials was an insulating shotcrete to be used behind the high conductivity spinel linings developed under this project. Fundamental research work was carried out at MS&T throughout the life of the project to provide support for the development and production of the experimental refractory materials being developed. Work was also ongoing at ORNL and MS&T through the duration of the project on the measurement and characterization of key refractory properties as identified during year one of the project. Both materials currently being used in the industrial processes as identified and supplied by the industrial partners of this project and new materials being provided and developed by MINTEQ were evaluated as necessary. Additionally, energy savings estimates based on measured properties of the experimentally developed refractory systems from this project were made at MINTEQ to validate the energy savings estimates originally proposed for the project. As another part of the project, on-line inspection and hot repair techniques were considered. It was determined that although repair materials were successfully developed under this project for aluminum, black liquor, and coal gasification systems which enable hot repair, there was only minor interest from industry in implementing these materials. On-line inspection techniques were also identified under this project which are currently used in the steel industry, but implementation of these techniques in applications such as black liquor and coal gasification where higher temperature

Hemrick, James Gordon [ORNL; Smith, Jeffrey D [ORNL; O'Hara, Kelley [University of Missouri, Rolla; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.

2012-08-01T23:59:59.000Z

369

Logging technology for high-temperature geothermal boreholes  

DOE Green Energy (OSTI)

Research in materials, equipment, and instrument development was required in the Hot Dry Rock Energy Extraction Demonstration at Fenton Hill located in northern New Mexico. Results of this extensive development advanced the logging technology in geothermal boreholes to present state-of-the art. The new Phase II Energy Extraction System at the Fenton Hill Test Site will consist of two wellbores drilled to a depth of about 4570 m (15,000 ft) and then connected by a series of hydraulic-induced fractures. The first borehole (EE-2) was completed in May of 1980 at a depth of 4633 m (15,200 ft) of which approximately 3960 m (13,000 ft) is in Precambrian granitic rock. Starting at a depth of approximately 2930 m (9600 ft), the borehole was inclined up to 35/sup 0/ from vertical. Bottom-hole temperature in EE-2 is 320/sup 0/C. The EE-3 borehole was then drilled to a depth of 4236 m (13,900 ft). Its inclined part is positioned directly over the EE-2 wellbore with a vertical separation of about 450 m (1500 ft) between them. Many of the geophysical measurements needed to develop the hot dry rock concept are unique. Most of the routine instruments used in petroleum drilling fail in the hot and abrasive environment. New equipment developed includes not only the downhole sonde that houses the transducer and associated line driving electronics, but modifications also were needed on the entire data retrieval systems and associated data analysis technology. Successful performance of wellbore surveys in the EE-2 and EE-3 boreholes depended upon the capacity of the sensors, instrument sonde, cablehead, and armored logging cable to work in this severe environment. The major areas of materials development for surveying the boreholes in the high-temperature environment were on elastomeric seals, electrical insulation for logging cables, downhole sensors, and associated downhole electronic and electro-mechanical components.

Dennis, B.R.

1984-05-01T23:59:59.000Z

370

Protective interlayer for high temperature solid electrolyte electrochemical cells  

DOE Patents (OSTI)

The invention is comprised of an electrically conducting doped or admixed cerium oxide composition with niobium oxide and/or tantalum oxide for electrochemical devices, characterized by the general formula: Nb{sub x}Ta{sub y}Ce{sub 1{minus}x{minus}y}O{sub 2} where x is about 0.0 to 0.05, y is about 0.0 to 0.05, and x+y is about 0.02 to 0.05, and where x is preferably about 0.02 to 0.05 and y is 0, and a method of making the same is also described. This novel composition is particularly applicable in forming a protective interlayer of a high temperature, solid electrolyte electrochemical cell, characterized by a first electrode; an electrically conductive interlayer of niobium and/or tantalum doped cerium oxide deposited over at least a first portion of the first electrode; an interconnect deposited over the interlayer; a solid electrolyte deposited over a second portion of the first electrode, the first portion being discontinuous from the second portion; and, a second electrode deposited over the solid electrolyte. The interlayer is characterized as being porous and selected from the group consisting of niobium doped cerium oxide, tantalum doped cerium oxide, and niobium and tantalum doped cerium oxide or admixtures of the same. The first electrode, an air electrode, is a porous layer of doped lanthanum manganite, the solid electrolyte layer is a dense yttria stabilized zirconium oxide, the interconnect layer is a dense, doped lanthanum chromite, and the second electrode, a fuel electrode, is a porous layer of nickel-zirconium oxide cermet. The electrochemical cell can take on a plurality of shapes such as annular, planar, etc. and can be connected to a plurality of electrochemical cells in series and/or in parallel to generate electrical energy. 5 figs.

Singh, P.; Vasilow, T.R.; Richards, V.L.

1996-05-14T23:59:59.000Z

371

Protective interlayer for high temperature solid electrolyte electrochemical cells  

DOE Patents (OSTI)

The invention comprises of an electrically conducting doped or admixed cerium oxide composition with niobium oxide and/or tantalum oxide for electrochemical devices, characterized by the general formula: Nb.sub.x Ta.sub.y Ce.sub.1-x-y O.sub.2 where x is about 0.0 to 0.05, y is about 0.0 to 0.05, and x+y is about 0.02 to 0.05, and where x is preferably about 0.02 to 0.05 and y is 0, and a method of making the same. This novel composition is particularly applicable in forming a protective interlayer of a high temperature, solid electrolyte electrochemical cell (10), characterized by a first electrode (12); an electrically conductive interlayer (14) of niobium and/or tantalum doped cerium oxide deposited over at least a first portion (R) of the first electrode; an interconnect (16) deposited over the interlayer; a solid electrolyte (18) deposited over a second portion of the first electrode, the first portion being discontinuous from the second portion; and, a second electrode (20) deposited over the solid electrolyte. The interlayer (14) is characterized as being porous and selected from the group consisting of niobium doped cerium oxide, tantalum doped cerium oxide, and niobium and tantalum doped cerium oxide or admixtures of the same. The first electrode (12), an air electrode, is a porous layer of doped lanthanum manganite, the solid electrolyte layer (18) is a dense yttria stabilized zirconium oxide, the interconnect layer (16) is a dense, doped lanthanum chromite, and the second electrode (20), a fuel electrode, is a porous layer of nickel-zirconium oxide cermet. The electrochemical cell (10) can take on a plurality of shapes such as annular, planar, etc. and can be connected to a plurality of electrochemical cells in series and/or in parallel to generate electrical energy.

Singh, Prabhakar (Export, PA); Vasilow, Theodore R. (Manor, PA); Richards, Von L. (Angola, IN)

1996-01-01T23:59:59.000Z

372

High Temperature Gas Reactors: Assessment of Applicable Codes and Standards  

SciTech Connect

Current interest expressed by industry in HTGR plants, particularly modular plants with power up to about 600 MW(e) per unit, has prompted NRC to task PNNL with assessing the currently available literature related to codes and standards applicable to HTGR plants, the operating history of past and present HTGR plants, and with evaluating the proposed designs of RPV and associated piping for future plants. Considering these topics in the order they are arranged in the text, first the operational histories of five shut-down and two currently operating HTGR plants are reviewed, leading the authors to conclude that while small, simple prototype HTGR plants operated reliably, some of the larger plants, particularly Fort St. Vrain, had poor availability. Safety and radiological performance of these plants has been considerably better than LWR plants. Petroleum processing plants provide some applicable experience with materials similar to those proposed for HTGR piping and vessels. At least one currently operating plant - HTR-10 - has performed and documented a leak before break analysis that appears to be applicable to proposed future US HTGR designs. Current codes and standards cover some HTGR materials, but not all materials are covered to the high temperatures envisioned for HTGR use. Codes and standards, particularly ASME Codes, are under development for proposed future US HTGR designs. A 'roadmap' document has been prepared for ASME Code development; a new subsection to section III of the ASME Code, ASME BPVC III-5, is scheduled to be published in October 2011. The question of terminology for the cross-duct structure between the RPV and power conversion vessel is discussed, considering the differences in regulatory requirements that apply depending on whether this structure is designated as a 'vessel' or as a 'pipe'. We conclude that designing this component as a 'pipe' is the more appropriate choice, but that the ASME BPVC allows the owner of the facility to select the preferred designation, and that either designation can be acceptable.

McDowell, Bruce K.; Nickolaus, James R.; Mitchell, Mark R.; Swearingen, Gary L.; Pugh, Ray

2011-10-31T23:59:59.000Z

373

Niobium Oxide-Metal Based Seals for High Temperature Applications  

Science Conference Proceedings (OSTI)

The present final report describes technical progress made in regards to evaluating niobium oxide/alumina as a high temperature seal material. Fabrication and characterization of specimens comprising niobium oxide and alumina composites of various compositions was performed. The goal was to identify regions where a glass formed. There were no experimental conditions where a glassy phase was unequivocally identified. However, the results led to the formation of an interesting class of fibrous composites which may have applications where high compliance and high toughness are needed. It is clear that vapor phase sintering is an active mass transport mechanism in Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3} composites (Figure 1), and it may be possible to design porous materials by utilizing vapor phase sintering. The compositions evaluated in the present work are 52, 60, 73, 82 and 95 mol. % Nb{sub 2}O{sub 5} with the remainder Al{sub 2}O{sub 3}. These were chosen so that some eutectic composition was present during cooling, in an attempt to encourage glass formation. However, the presence of large, elongated crystals, both in the slow cool and the quench experiments indicates that the driving force for crystallization is very high. Several joints were formed between high purity alumina with two compositions (60 and 82 mol. %) forming the joint. These were created by grinding and polishing alumina surfaces and stacking them end-to-end with the powdered Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3} material in between. Joining was accomplished in air at temperatures between 1400 C and 1450 C. The joints failed during subsequent machining for strength bars, indicating low strength. It may be possible to use the compositions evaluated here as a joint material, but it seems unlikely that a glassy phase could be produced while joining.

Ivar Reimanis

2006-08-14T23:59:59.000Z

374

Multiyear Program Plan for the High Temperature Materials Laboratory  

DOE Green Energy (OSTI)

Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly, the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO{sub x} and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required.

Arvid E. Pasto

2000-03-17T23:59:59.000Z

375

NOvel Refractory Materials for High Alkali, High Temperature Environments  

SciTech Connect

Refractory materials can be limited in their application by many factors including chemical reactions between the service environment and the refractory material, mechanical degradation of the refractory material by the service environment, temperature limitations on the use of a particular refractory material, and the inability to install or repair the refractory material in a cost effective manner or while the vessel was in service. The objective of this project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al2O3 spinel or other similar magnesia/alumina containing unshaped refractory composition (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, highalkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. A research team was formed to carry out the proposed work led by Oak Ridge National Laboratory (ORNL) and was comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The two goals of this project were to produce novel refractory compositions which will allow for improved energy efficiency and to develop new refractory application techniques which would improve the speed of installation. Also methods of hot installation were sought which would allow for hot repairs and on-line maintenance leading to reduced process downtimes and eliminating the need to cool and reheat process vessels.

Hemrick, J.G.; Griffin, R. (MINTEQ International, Inc.)

2011-08-30T23:59:59.000Z

376

Reservoir characterization of Pennsylvanian sandstone reservoirs. Final report  

SciTech Connect

This final report summarizes the progress during the three years of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description; (ii) scale-up procedures; (iii) outcrop investigation. The first section describes the methods by which a reservoir can be described in three dimensions. The next step in reservoir description is to scale up reservoir properties for flow simulation. The second section addresses the issue of scale-up of reservoir properties once the spatial descriptions of properties are created. The last section describes the investigation of an outcrop.

Kelkar, M.

1995-02-01T23:59:59.000Z

377

SunShot Initiative: A Small-Particle Solar Receiver for High-Temperature  

NLE Websites -- All DOE Office Websites (Extended Search)

A Small-Particle Solar Receiver A Small-Particle Solar Receiver for High-Temperature Brayton Power Cycles to someone by E-mail Share SunShot Initiative: A Small-Particle Solar Receiver for High-Temperature Brayton Power Cycles on Facebook Tweet about SunShot Initiative: A Small-Particle Solar Receiver for High-Temperature Brayton Power Cycles on Twitter Bookmark SunShot Initiative: A Small-Particle Solar Receiver for High-Temperature Brayton Power Cycles on Google Bookmark SunShot Initiative: A Small-Particle Solar Receiver for High-Temperature Brayton Power Cycles on Delicious Rank SunShot Initiative: A Small-Particle Solar Receiver for High-Temperature Brayton Power Cycles on Digg Find More places to share SunShot Initiative: A Small-Particle Solar Receiver for High-Temperature Brayton Power Cycles on AddThis.com...

378

DUAL PHASE MEMBRANE FOR HIGH TEMPERATURE CO2 SEPARATION  

SciTech Connect

This project is intended to expand upon the previous year's research en route to the development of a sustainable dual phase membrane for CO{sub 2} separation. It was found that the pores within the supports had to be less than 9 {micro}m in order to maintain the stability of the dual phase membrane. Pores larger than 9 {micro}m would be unable to hold the molten carbonate phase in place, rendering the membrane ineffective. Calculations show that 80% of the pore volume of the 0.5 media grade metal support was filled with the molten carbonate. Information obtained from EDS and SEM confirmed that the molten carbonate completely infiltrated the pores on both the contact and non-contact size of the metal support. Permeation tests for CO{sub 2} and N{sub 2} at 450-750 C show very low permeance of those two gases through the dual phase membrane, which was expected due to the lack of ionization of those two gases. Permeance of the CO{sub 2} and O{sub 2} mixture was much higher, indicating that the gases do form an ionic species, CO{sub 3}{sup 2-}, enhancing transport through the membrane. However, at temperatures in excess of 650 C, the permeance of CO{sub 3}{sup 2-} decreased quite rapidly, while predictions showed that permeance should have continued to increase. XRD data obtained form the surface of the membrane indicated the formation of lithium iron oxides on the support. This layer has a very low conductivity, which drastically reduces the flow of electrons to the CO{sub 2}/O{sub 2} gas mixture, limiting the formation of the ionic species. These results indicate that the use of stainless steel supports in a high temperature oxidative environment can lead to decreased performance of the membranes. This revelation has created the need for an oxidation resistant support, which can be gained by the use of a ceramic-type membrane. Future research efforts will be directed towards preparation of a new ceramic-carbonate dual phase membrane. The membrane will based on an oxide ceramic support that has an oxidation resistance better than the metal support and high electronic conductivity (1200-1500 S/cm) in the interested temperature range (400-600 C).

Jerry Y.S. Lin; Seungjoon Chung; Matthew Anderson

2005-12-01T23:59:59.000Z

379

Deterministic Modeling of the High Temperature Test Reactor  

SciTech Connect

Idaho National Laboratory (INL) is tasked with the development of reactor physics analysis capability of the Next Generation Nuclear Power (NGNP) project. In order to examine INLs current prismatic reactor deterministic analysis tools, the project is conducting a benchmark exercise based on modeling the High Temperature Test Reactor (HTTR). This exercise entails the development of a model for the initial criticality, a 19 column thin annular core, and the fully loaded core critical condition with 30 columns. Special emphasis is devoted to the annular core modeling, which shares more characteristics with the NGNP base design. The DRAGON code is used in this study because it offers significant ease and versatility in modeling prismatic designs. Despite some geometric limitations, the code performs quite well compared to other lattice physics codes. DRAGON can generate transport solutions via collision probability (CP), method of characteristics (MOC), and discrete ordinates (Sn). A fine group cross section library based on the SHEM 281 energy structure is used in the DRAGON calculations. HEXPEDITE is the hexagonal z full core solver used in this study and is based on the Greens Function solution of the transverse integrated equations. In addition, two Monte Carlo (MC) based codes, MCNP5 and PSG2/SERPENT, provide benchmarking capability for the DRAGON and the nodal diffusion solver codes. The results from this study show a consistent bias of 23% for the core multiplication factor. This systematic error has also been observed in other HTTR benchmark efforts and is well documented in the literature. The ENDF/B VII graphite and U235 cross sections appear to be the main source of the error. The isothermal temperature coefficients calculated with the fully loaded core configuration agree well with other benchmark participants but are 40% higher than the experimental values. This discrepancy with the measurement stems from the fact that during the experiments the control rods were adjusted to maintain criticality, whereas in the model, the rod positions were fixed. In addition, this work includes a brief study of a cross section generation approach that seeks to decouple the domain in order to account for neighbor effects. This spectral interpenetration is a dominant effect in annular HTR physics. This analysis methodology should be further explored in order to reduce the error that is systematically propagated in the traditional generation of cross sections.

Ortensi, J.; Cogliati, J. J.; Pope, M. A.; Ferrer, R. M.; Ougouag, A. M.

2010-06-01T23:59:59.000Z

380

Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at 900 rpm. They are approximately 15 kW with 103 C coolant and 20 kW with 50 C coolant. To avoid this 25% drop1 in continuous power, design changes for improved heat dissipation and carefully managed changes in allowable thermal limits would be required in the hybrid subsystems. This study is designed to identify the technical barriers that potentially exist in moving to a high-temperature cooling loop prior to addressing the actual detailed design. For operation at a significantly higher coolant temperature, there were component-level issues that had to be addressed in this study. These issues generally pertained to the cost and reliability of existing or near-term components that would be suitable for use with the 105 C coolant. The assessed components include power electronic devices/modules such as diodes and insulated-gate bipolar transistors (IGBTs), inverter-grade high-temperature capacitors, permanent magnets (PM), and motor-grade wire insulation. The need for potentially modifying/resizing subassemblies such as inverters, motors, and heat exchangers was also addressed in the study. In order to obtain pertinent information to assist ORNL researchers address the thermal issues at the component, module, subassembly, and system levels, pre-existing laboratory test data conducted at varying temperatures was analyzed in conjunction with information obtained from technical literature searches and industry sources.

Staunton, Robert H [ORNL; Hsu, John S [ORNL; Starke, Michael R [ORNL

2006-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature reservoir evidence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles  

SciTech Connect

This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at 900 rpm. They are approximately 15 kW with 103 C coolant and 20 kW with 50 C coolant. To avoid this 25% drop1 in continuous power, design changes for improved heat dissipation and carefully managed changes in allowable thermal limits would be required in the hybrid subsystems. This study is designed to identify the technical barriers that potentially exist in moving to a high-temperature cooling loop prior to addressing the actual detailed design. For operation at a significantly higher coolant temperature, there were component-level issues that had to be addressed in this study. These issues generally pertained to the cost and reliability of existing or near term components that would be suitable for use with the 105 C coolant. The assessed components include power electronic devices/modules such as diodes and insulated-gate bipolar transistors (IGBTs), inverter-grade high-temperature capacitors, permanent magnets (PM), and motor-grade wire insulation. The need for potentially modifying/resizing subassemblies such as inverters, motors, and heat exchangers was also addressed in the study. In order to obtain pertinent information to assist ORNL researchers address the thermal issues at the component, module, subassembly, and system levels, pre-existing laboratory test data conducted at varying temperatures was analyzed in conjunction with information obtained from technical literature searches and industry sources.

Hsu, J.S.; Staunton, M.R.; Starke, M.R.

2006-09-30T23:59:59.000Z

382

Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles  

SciTech Connect

This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at 900 rpm. They are approximately 15 kW with 103 C coolant and 20 kW with 50 C coolant. To avoid this 25% drop1 in continuous power, design changes for improved heat dissipation and carefully managed changes in allowable thermal limits would be required in the hybrid subsystems. This study is designed to identify the technical barriers that potentially exist in moving to a high-temperature cooling loop prior to addressing the actual detailed design. For operation at a significantly higher coolant temperature, there were component-level issues that had to be addressed in this study. These issues generally pertained to the cost and reliability of existing or near term components that would be suitable for use with the 105 C coolant. The assessed components include power electronic devices/modules such as diodes and insulated-gate bipolar transistors (IGBTs), inverter-grade high-temperature capacitors, permanent magnets (PM), and motor-grade wire insulation. The need for potentially modifying/resizing subassemblies such as inverters, motors, and heat exchangers was also addressed in the study. In order to obtain pertinent information to assist ORNL researchers address the thermal issues at the component, module, subassembly, and system levels, pre-existing laboratory test data conducted at varying temperatures was analyzed in conjunction with information obtained from technical literature searches and industry sources.

Hsu, J.S.; Staunton, M.R.; Starke, M.R.

2006-09-30T23:59:59.000Z

383

Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles  

SciTech Connect

This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at 900 rpm. They are approximately 15 kW with 103 C coolant and 20 kW with 50 C coolant. To avoid this 25% drop1 in continuous power, design changes for improved heat dissipation and carefully managed changes in allowable thermal limits would be required in the hybrid subsystems. This study is designed to identify the technical barriers that potentially exist in moving to a high-temperature cooling loop prior to addressing the actual detailed design. For operation at a significantly higher coolant temperature, there were component-level issues that had to be addressed in this study. These issues generally pertained to the cost and reliability of existing or near-term components that would be suitable for use with the 105 C coolant. The assessed components include power electronic devices/modules such as diodes and insulated-gate bipolar transistors (IGBTs), inverter-grade high-temperature capacitors, permanent magnets (PM), and motor-grade wire insulation. The need for potentially modifying/resizing subassemblies such as inverters, motors, and heat exchangers was also addressed in the study. In order to obtain pertinent information to assist ORNL researchers address the thermal issues at the component, module, subassembly, and system levels, pre-existing laboratory test data conducted at varying temperatures was analyzed in conjunction with information obtained from technical literature searches and industry sources.

Staunton, Robert H [ORNL; Hsu, John S [ORNL; Starke, Michael R [ORNL

2006-09-01T23:59:59.000Z

384

Developing hot dry rock reservoirs with inflatable open hole packers  

DOE Green Energy (OSTI)

An open hole packer system was designed for high pressure injection operations in high temperature wells at the Fenton Hill, Hot Dry Rock (HDR) Geothermal Site. The packer runs were required to verify that the HDR reservoir fractures had been penetrated during the drilling of well EE-3A. They were also used to stimulate fractures connecting EE-3A to the reservoir and to conduct two massive hydraulic fracture treatments at the bottom of EE-3A. An attempt to use a modified packer design as a temporary well completion system was not successful but with modification the system may prove to be an important HDR completion technique. The eleven packer runs have demonstrated that formation testing, stimulation and HDR reservoir development can now be conducted with an open hole inflatable packer operating over large temperature ranges and high differential pressures.

Dreesen, D.S.; Miller, J.R.; Nicholson, R.W.

1987-01-01T23:59:59.000Z

385

Reservoir Protection (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

The Oklahoma Water Resource Board has the authority to make rules for the control of sanitation on all property located within any reservoir or drainage basin. The Board works with the Department...

386

Geology and Reservoir Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

Service: 1-800-553-7681 Geology and Reservoir Simulation Background Natural gas from shale is becoming ever more recognized as an abundant and economically viable fuel in the...

387

Session: Reservoir Technology  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook

Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael

1992-01-01T23:59:59.000Z

388

Improved Materials for High-Temperature Black Liquor Gasification  

SciTech Connect

The laboratory immersion test system built and operated at ORNL was found to successfully screen samples from numerous refractory suppliers, including both commercially available and experimental materials. This system was found to provide an accurate prediction of how these materials would perform in the actual gasifier environment. Test materials included mullites, alumino-silicate bricks, fusion-cast aluminas, alumina-based and chrome-containing mortars, phosphate-bonded mortars, coated samples provided under an MPLUS-funded project, bonded spinels, different fusion-cast magnesia-alumina spinels with magnesia content ranging from 2.5% to about 60%, high-MgO castable and brick materials, spinel castables, and alkali-aluminate materials. This testing identified several candidate material systems that perform well in the New Bern gasifier. Fusion-cast aluminas were found to survive for nearly one year, and magnesia-alumina spinels have operated successfully for 18 months and are expected to survive for two years. Alkali-aluminates and high-MgO-content materials have also been identified for backup lining applications. No other material with a similar structure and chemical composition to that of the fusion-cast magnesium-aluminum spinel brick currently being used for the hot-face lining is commercially available. Other materials used for this application have been found to have inferior service lives, as previously discussed. Further, over 100 laboratory immersion tests have been performed on other materials (both commercial and experimental), but none to date has performed as well as the material currently being used for the hot-face lining. Operating experience accumulated with the high-temperature gasifier at New Bern, North Carolina, has confirmed that the molten alkali salts degrade many types of refractories. Fusion-cast alumina materials were shown to provide a great improvement in lifetime over materials used previously. Further improvement was realized with fusion-cast magnesia-alumina spinel refractory, which appears to be the most resistant to degradation found to date, exhibiting over a year of service life and expected to be capable of over two years of service life. Regarding the use of refractory mortar, it was found that expansion of the current chrome-alumina mortar when subjected to black liquor smelt is likely contributing to the strains seen on the vessel shell. Additionally, the candidate high-alumina mortar that was originally proposed as a replacement for the current chrome-alumina mortar also showed a large amount of expansion when subjected to molten smelt. A UMR experimental mortar, composed of a phosphate bonded system specifically designed for use with fusion-cast magnesium-aluminum spinel, was found to perform well in the molten smelt environment. Strain gauges installed on the gasifier vessel shell provided valuable information about the expansion of the refractory, and a new set of strain gauges and thermocouples has been installed in order to monitor the loading caused by the currently installed spinel refractory. These results provide information for a direct comparison of the expansion of the two refractories. Measurements to date suggest that the fusion-cast magnesia-alumina spinel is expanding less than the fusion-cast {alpha}/{beta}-alumina used previously. A modified liquor nozzle was designed and constructed to test a number of materials that should be more resistant to erosion and corrosion than the material currently used. Inserts made of three erosion-resistant metallic materials were fabricated, along with inserts made of three ceramic materials. The assembled system was sent to the New Bern mill for installation in the gasifer in 2005. Following operation of the gasifier using the modified nozzle, inserts should be removed and analyzed for wear by erosion/corrosion. Although no materials have been directly identified for sensor/thermocouple protection tubes, several of the refractory material systems identified for lining material applications may be applicable for use in this

Keiser, J.R.; Hemrick, J.G.; Gorog, J.P.; Leary, R.

2006-06-29T23:59:59.000Z

389

Third workshop on geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

The Third Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 14, 1977, with 104 attendees from six nations. In keeping with the recommendations expressed by the participants at the Second Workshop, the format of the Workshop was retained, with three days of technical sessions devoted to reservoir physics, well and reservoir testing, field development, and mathematical modeling of geothermal reservoirs. The program presented 33 technical papers, summaries of which are included in these Proceedings. Although the format of the Workshop has remained constant, it is clear from a perusal of the Table of Contents that considerable advances have occurred in all phases of geothermal reservoir engineering over the past three years. Greater understanding of reservoir physics and mathematical representations of vapor-dominated and liquid-dominated reservoirs are evident; new techniques for their analysis are being developed, and significant field data from a number of newer reservoirs are analyzed. The objectives of these workshops have been to bring together researchers active in the various physical and mathematical disciplines comprising the field of geothermal reservoir engineering, to give the participants a forum for review of progress and exchange of new ideas in this rapidly developing field, and to summarize the effective state of the art of geothermal reservoir engineering in a form readily useful to the many government and private agencies involved in the development of geothermal energy. To these objectives, the Third Workshop and these Proceedings have been successfully directed. Several important events in this field have occurred since the Second Workshop in December 1976. The first among these was the incorporation of the Energy Research and Development Administration (ERDA) into the newly formed Department of Energy (DOE) which continues as the leading Federal agency in geothermal reservoir engineering research. The Third Workshop under the Stanford Geothermal Program was supported by a grant from DOE through a subcontract with the Lawrence Berkeley Laboratory of the University of California. A second significant event was the first conference under the ERDA (DOE)-ENEL cooperative program where many of the results of well testing in both nations were discussed. The Proceedings of that conference should be an important contribution to the literature. These Proceedings of the Third Workshop should also make an important contribution to the literature on geothermal reservoir engineering. Much of the data presented at the Workshop were given for the first time, and full technical papers on these subjects will appear in the professional journals. The results of these studies will assist markedly in developing the research programs to be supported by the Federal agencies, and in reducing the costs of research for individual developers and utilities. It is expected that future workshops of the Stanford Geothermal Program will be as successful as this third one. Planning and execution of the Workshop... [see file; ljd, 10/3/2005] The Program Committee recommended two novel sessions for the Third Workshop, both of which were included in the program. The first was the three overviews given at the Workshop by George Pinder (Princeton) on the Academic aspect, James Bresee (DOE-DGE) on the Government aspect, and Charles Morris (Phillips Petroleum) on the Industry aspect. These constituted the invited slate of presentations from the several sectors of the geothermal community. The Program Committee acknowledges their contributions with gratitude. Recognition of the importance of reservoir assurance in opting for geothermal resources as an alternate energy source for electric energy generation resulted in a Panel Session on Various Definitions of Geothermal Reservoirs. Special acknowledgments are offered to Jack Howard and Werner Schwarz (LBL) and to Jack Howard as moderator; to the panelists: James Leigh (Lloyd's Bank of California), Stephen Lipman (Union Oil), Mark Mathisen (PG&E), Patrick M

Ramey, H.J. Jr.; Kruger, P. (eds.)

1977-12-15T23:59:59.000Z

390

High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures  

DOE Patents (OSTI)

A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

Young, J.E.; Jalan, V.M.

1984-06-19T23:59:59.000Z

391

Nano-Scale Nitride-Particle Strengthened High-Temperature Ferritic ...  

Nano-Scale Nitride-Particle Strengthened High-Temperature Ferritic and Martensitic Steels Produced by a Thermo-Mechanical Treatment Process Note: The technology ...

392

Nanofluid-based receivers for high-temperature, high-flux direct solar collectors  

E-Print Network (OSTI)

Solar power plants with surface receivers have low overall energy conversion efficiencies due to large emissive losses at high temperatures. Alternatively, volumetric receivers promise increased performance because solar ...

Lenert, Andrej

2010-01-01T23:59:59.000Z

393

Electronic Structure of LaOFeP - a Different Type of High Temperature...  

NLE Websites -- All DOE Office Websites (Extended Search)

discovery not only ended the monopoly of copper oxides in the family of high temperature superconductors, but also provides a new direction to understand the essential...

394

High Temperature Deformation Behavior and Modeling of Al/SiC ...  

Science Conference Proceedings (OSTI)

The nanolaminates were processed by physical vapor deposition (PVD) using ... by high temperature nanoindentation and pillar creep compression at 100, 200,...

395

Fracture Mechanics Investigations on High-Temperature Gas-Cooled Reactor Materials  

Science Conference Proceedings (OSTI)

C.5. Fracture Mechanic / Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material

Klaus Krompholz; Erik Bodmann; Gnter K. H. Gnirss; Horst Huthmann

396

Lead Research and Development Activity for DOEs High Temperature...  

NLE Websites -- All DOE Office Websites (Extended Search)

Membrane and MEA durability (C) Performance: High MEA performance at low relative humidity (RH) and high temperature Technical Targets FSEC plays a supporting role to the six...

397

High-temperature Creep-Fatigue Behavior Study of INCONEL Alloy ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Spallation-neutron-source-yielded multiple diffraction combining with the in-situ high-temperature experimental environment was applied to...

398

High Temperature Aging Study on Long-Term Aged Alloy 617 and ...  

Science Conference Proceedings (OSTI)

In order to gain a better understanding of the high-temperature degradation process of these materials, long-term (up to 10000 hours) aging experiments have...

399

Neutronics analysis of a modified Pebble Bed Advanced High Temperature Reactor.  

E-Print Network (OSTI)

??The objective of this research is to, based on the original design for the Pebble Bed Advanced High Temperature Reactor (PB-AHTR), develop an MCNPX model (more)

Abejon Orzaez, Jorge

2009-01-01T23:59:59.000Z

400

Concept of a thermonuclear reactor based on gravity retention of high-temperature plasma  

E-Print Network (OSTI)

In the present paper the realization of the obtained results in relation to the dense high- temperature plasma of multivalent ions including experimental data interpretation is discussed.

S. I. Fisenko; I. S. Fisenko

2007-05-27T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature reservoir evidence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Calculation of Defect Stability and Mobility in High-temperature BCC ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The high-temperature stability of many body-centered cubic ... Experimental Lattice Dynamics Measurements of Shock and Ramp Loaded BCC ...

402

Mechanical Properties of Welds in Commercial Alloys for High-Temperature Gas-Cooled Reactor Components  

Science Conference Proceedings (OSTI)

C. 1. Mechanical Property / Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material

James R. Lindgren; Brian E. Thurgood; Robin H. Ryder; Chia-Chuan Li

403

Evaluation of high temperature lubricants for downhole motors in geothermal applications  

DOE Green Energy (OSTI)

A Bearing-Seal Package is being developed for use with downhole motors and turbines for drilling geothermal wells. The lubricant will be sealed in the bearing section which will allow the bearings to operate directly in the lubricant. The development of the Bearing-Seal Package involves the improvement of high temperature seals and lubricants. Candidate high temperature lubricants were tested in the High Temperature Lubricant Tester under elevated temperatures and pressures. A list of candidate high temperature lubricants, a description of the lubricant test program, and the lubricant test results are presented.

DeLafosse, P.H.; Tibbitts, G.A.; Green, S.J.

1979-01-01T23:59:59.000Z

404

High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures  

DOE Patents (OSTI)

A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

Young, John E. (Woodridge, IL); Jalan, Vinod M. (Concord, MA)

1984-01-01T23:59:59.000Z

405

Investigation of Opportunities for High-Temperature Solar Energy in the Aluminum Industry  

DOE Green Energy (OSTI)

This report gives the conclusions drawn from a study of the potential application of high-temperature solar process heat for production of aluminum.

Murray, J.

2006-05-01T23:59:59.000Z

406

A Novel Sorbent-Based Process for High Temperature Trace Metals...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbent-Based Process for High Temperature Trace Metals Removal from Coal-Derived Syngas Description Gasification converts coal and other heavy feedstocks into synthesis gas...

407

Experimental Investigations Of Surface Interactions Of Shock Heated Gases On High Temperature Materials Using High Enthalpy Shock Tubes.  

E-Print Network (OSTI)

??The re-entry space vehicles encounter high temperatures when they enter the earth atmosphere and the high temperature air in the shock layer around the body (more)

Jayaram, V

2007-01-01T23:59:59.000Z

408

GEOTHERMAL RESERVOIR SIMULATIONS WITH SHAFT79  

E-Print Network (OSTI)

that well blocks must geothermal reservoir studies, paperof Califomia. LBL-10066 GEOTHERMAL RESERVOIR SIMULATIONSbe presented at the Fifth Geothermal Reservoir Engineering

Pruess, Karsten

2012-01-01T23:59:59.000Z

409

Real natural gas reservoir data Vs. natural gas reservoir models  

Science Conference Proceedings (OSTI)

The gas reservoir per se model is an exceedingly simple model of a natural gas reservoir designed to develop the physical relationship between ultimate recovery and rate(s) of withdrawal for production regulation policy assessment. To be responsive, ...

Ellis A. Monash; John Lohrenz

1979-03-01T23:59:59.000Z

410

Intermediate coating layer for high temperature rubbing seals for rotary regenerators  

Science Conference Proceedings (OSTI)

A metallic regenerator seal is provided having multi-layer coating comprising a NiCrAlY bond layer, a yttria stabilized zirconia (YSZ) intermediate layer, and a ceramic high temperature solid lubricant surface layer comprising zinc oxide, calcium fluoride, and tin oxide. Because of the YSZ intermediate layer, the coating is thermodynamically stable and resists swelling at high temperatures. 2 figs.

Schienle, J.L.; Strangman, T.E.

1995-03-14T23:59:59.000Z

411

Intermediate coating layer for high temperature rubbing seals for rotary regenerators  

DOE Patents (OSTI)

A metallic regenerator seal is provided having multi-layer coating comprising a NiCrAlY bond layer, a yttria stabilized zirconia (YSZ) intermediate layer, and a ceramic high temperature solid lubricant surface layer comprising zinc oxide, calcium fluoride, and tin oxide. Because of the YSZ intermediate layer, the coating is thermodynamically stable and resists swelling at high temperatures.

Schienle, James L. (Phoenix, AZ); Strangman, Thomas E. (Phoenix, AZ)

1995-01-01T23:59:59.000Z

412

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine  

E-Print Network (OSTI)

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine Dr. Fletcher Miller SDSU Department of Mechanical Engineering Abstract Solar thermal power for electricity will describe the design of a high temperature solar receiver capable of driving a gas turbine for power

Ponce, V. Miguel

413

Thermal shock modeling of Ultra-High Temperature Ceramics under active cooling  

Science Conference Proceedings (OSTI)

Thermal shock resistance is one of the most important parameters in Ultra-High Temperature Ceramics (UHTCs) since it determines their performance in various applications. In this paper, due to the fact that the material parameters of UHTCs are very sensitive ... Keywords: Active cooling, Target temperature, Thermal protection system, Thermal shock resistance, Ultra-High Temperature Ceramics

Weiguo Li; Fan Yang; Daining Fang

2009-12-01T23:59:59.000Z

414

technology offer SandTES -High Temperature Sand Thermal Energy Storage  

E-Print Network (OSTI)

technology offer SandTES - High Temperature Sand Thermal Energy Storage key words: High Temperature together with Dr. Eisl of ENRAG GmbH. Background Thermal energy storage (TES) systems are essential Energy Storage | Fluidized Bed | Sand | The invention consists of a fluidized bed with internal heat

Szmolyan, Peter

415

EA-0510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator 510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator Development Project (METC), Churchill, Pennsylvania EA-0510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator Development Project (METC), Churchill, Pennsylvania SUMMARY This EA evaluates the environmental impacts of a proposal to enter into a 5-year cooperative agreement with the Westinghouse Electric Corporation for the development of high-temperature solid oxide fuel cell generators near Pittsburgh, Pennsylvania. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 1, 1991 EA-0510: Final Environmental Assessment High-Temperature Solid Oxide Fuel Cell (Sofc) Generator Development Project (METC) August 1, 1991 EA-0510: Finding of No Significant Impact

416

EA-1867: Scale-up of High-Temperature Syngas Cleanup Technology, Polk  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Scale-up of High-Temperature Syngas Cleanup Technology, 7: Scale-up of High-Temperature Syngas Cleanup Technology, Polk County, Florida EA-1867: Scale-up of High-Temperature Syngas Cleanup Technology, Polk County, Florida Summary This EA evaluates the environmental impacts of a proposal to provide cost-shared funding to RTI International (RTI) for its proposed project to demonstrate the precommercial scale-up of RTI's high-temperature syngas cleanup and carbon capture and sequestration technologies. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download October 13, 2011 EA-1867: Finding of No Significant Impact RTI International Scale-Up of High-Temperature Syngas Cleanup and Carbon Capture and Sequestration Technologies, Polk County, Florida (October 2011)

417

Reinjection into geothermal reservoirs  

DOE Green Energy (OSTI)

Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

Bodvarsson, G.S.; Stefansson, V.

1987-08-01T23:59:59.000Z

418

PERFORMANCE ANALYSIS OF A WINDOWED HIGH TEMPERATURE GAS RECEIVER USING A SUSPENSION OF ULTRAFINE CARBON PARTICLES AS THE SOLAR ABSORBER  

E-Print Network (OSTI)

efficiency. INTRODUCTION Recently, there has been renewed interest in windowed high temperature receivers for solar thermal

Fisk, William J.

2012-01-01T23:59:59.000Z

419

Active devices for high temperature microcircuitry. [Silicon and gallium arsenide devices  

DOE Green Energy (OSTI)

As part of a program to develop high temperature electronics for geothermal well instrumentation, a number of solid state diode and transistor types were characterized from room temperature to 300/sup 0/C. The temperature dependence and aging stability of transport and leakage properties were measured. Included in the study were silicon diodes, bipolar transistors, JFETs, MOSFETs, and GaAs MESFETs and JFETs. In summary the results are: diodes and bipolar transistors became extremely leaky at high temperature and are therefore of limited use; silicon MOSFETs and GaAs devices showed unacceptable aging instabilities at high temperatures; silicon JFETs from certain manufacturers were sufficiently stable and had suitable temperature dependent characteristics so that operational circuits could be made. Comparisons were made of experimental device characteristics and those predicted by theory. The theoretical calculations were done using standard equations revised to include appropriate temperature dependent parameters. Close agreement between theory and experiment was found, indicating that unexpected high temperature effects were insignificant. In order to facilitate the use of devices in high temperature hybrids, it was necessary to develop bonding and prescreening techniques. A large variance of JFET 300/sup 0/C operating parameters was found even within a single production lot. Consequently, high temperature prescreening allowed each circuit to be specifically ''pretuned.'' Standard solder, epoxy, and chip and wire attachment technologies were not functional at 300/sup 0/C. Gold-germanium solder, aluminum wire to DuPont 9910 gold film, and diffusion barrier pads were developed to allow high temperature attachment.

Palmer, D.W.; Draper, B.L.; McBrayer, J.D.; White, K.R.

1978-02-01T23:59:59.000Z

420

Prediction of thermal front breakthrough due to fluid reinjection in geothermal reservoirs  

DOE Green Energy (OSTI)

Chemically reactive tracers can be used to measure reservoir temperature distributions because of their extreme sensitivity to temperature. If a reactive tracer flows through a reservoir from an injection well to a production well, then early in the production history the tracer will contact mostly high temperatures and experience a high percentage of decomposition. As more energy is extracted from the reservoir, subsequent reactive tracer tests will show less decomposition. Tracers must be chosen which have reaction kinetics appropriate to the temperature patterns expected in the reservoir under consideration. If kinetics are too slow, no significant reaction occurs. If kinetics are too fast, essentially all of the tracer will react. In neither case can useful information be obtained. Seventeen chemically reactive tracers have been identified which are appropriate for geothermal reservoirs in the 70 to 275/sup 0/C range. Of the 17 tracer reactions investigated, 5 are hydrolysis of esters, 3 are hydrolysis of amines, and 9 are hydrolysis of aryl halides. A method for choice of the appropriate reactive tracer for a given reservoir is also presented. The method requires measurement of the residence time distribution (from a conservative tracer test), an estimate of reservoir temperature, and some simple geochemistry measurements and calculations. Several examples of choosing reactive tracers for existing geothermal reservoirs are given.

Birdsell, S.A.; Robinson, B.A.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature reservoir evidence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Ionic liquids and ionic liquid acids with high temperature stability for fuel cell and other high temperature applications, method of making and cell employing same  

DOE Patents (OSTI)

Disclosed are developments in high temperature fuel cells including ionic liquids with high temperature stability and the storage of inorganic acids as di-anion salts of low volatility. The formation of ionically conducting liquids of this type having conductivities of unprecedented magnitude for non-aqueous systems is described. The stability of the di-anion configuration is shown to play a role in the high performance of the non-corrosive proton-transfer ionic liquids as high temperature fuel cell electrolytes. Performance of simple H.sub.2(g) electrolyte/O.sub.2(g) fuel cells with the new electrolytes is described. Superior performance both at ambient temperature and temperatures up to and above 200.degree. C. are achieved. Both neutral proton transfer salts and the acid salts with HSO.sup.-.sub.4 anions, give good results, the bisulphate case being particularly good at low temperatures and very high temperatures. The performance of all electrolytes is improved by the addition of a small amount of involatile base of pK.sub.a value intermediate between those of the acid and base that make the bulk electrolyte. The preferred case is the imidazole-doped ethylammonium hydrogensulfate which yields behavior superior in all respects to that of the industry standard phosphoric acid electrolyte.

Angell, C. Austen (Mesa, AZ); Xu, Wu (Broadview Heights, OH); Belieres, Jean-Philippe (Chandler, AZ); Yoshizawa, Masahiro (Tokyo, JP)

2011-01-11T23:59:59.000Z

422

Status of Blue Ridge Reservoir  

DOE Green Energy (OSTI)

This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Blue Ridge Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports and data available, as well as interview with water resource professionals in various federal, state, and local agencies. Blue Ridge Reservoir is a single-purpose hydropower generating project. When consistent with this primary objective, the reservoir is also operated to benefit secondary objectives including water quality, recreation, fish and aquatic habitat, development of shoreline, aesthetic quality, and other public and private uses that support overall regional economic growth and development. 8 refs., 1 fig.

Not Available

1990-09-01T23:59:59.000Z

423

Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures  

DOE Patents (OSTI)

The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250.degree. C. and improved room temperature ductility. The alloys contain a Cr.sub.2 Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements.

Liu, Chain T. (Oak Ridge, TN); Takeyama, Masao (Tokyo, JP)

1994-01-01T23:59:59.000Z

424

High Temperature Ultrasonic Transducers for In-Service Inspection of Liquid Metal Fast Reactors  

Science Conference Proceedings (OSTI)

In-service inspection of liquid metal (sodium) fast reactors requires the use of ultrasonic transducers capable of operating at high temperatures (>200C), high gamma radiation fields, and the chemically reactive liquid sodium environment. In the early- to mid-1970s, the U.S. Atomic Energy Commission supported development of high-temperature, submersible single-element transducers, used for scanning and under-sodium imaging in the Fast Flux Test Facility and the Clinch River Breeder Reactor. Current work is building on this technology to develop the next generation of high-temperature linear ultrasonic transducer arrays for under-sodium viewing and in-service inspections.

Griffin, Jeffrey W.; Posakony, Gerald J.; Harris, Robert V.; Baldwin, David L.; Jones, Anthony M.; Bond, Leonard J.

2011-12-31T23:59:59.000Z

425

Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures  

DOE Patents (OSTI)

The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250 C and improved room temperature ductility. The alloys contain a Cr[sub 2]Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements. 14 figures.

Liu, C.T.; Takeyama, Masao.

1994-02-01T23:59:59.000Z

426

High Temperature Electrolysis 4 kW Experiment Design, Operation, and Results  

SciTech Connect

This report provides results of long-term stack testing completed in the new high-temperature steam electrolysis multi-kW test facility recently developed at INL. The report includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. This facility has provided a demonstration of high-temperature steam electrolysis operation at the 4 kW scale with advanced cell and stack technology. This successful large-scale demonstration of high-temperature steam electrolysis will help to advance the technology toward near-term commercialization.

J.E. O'Brien; X. Zhang; K. DeWall; L. Moore-McAteer; G. Tao

2012-09-01T23:59:59.000Z

427

High Temperature Gas-cooled Reactor Projected Markets and Scoping Economics  

DOE Green Energy (OSTI)

The NGNP Project has the objective of developing the high temperature gas-cooled reactor (HTGR) technology to supply high temperature process heat to industrial processes as a substitute for burning of fossil fuels, such as natural gas. Applications of the HTGR technology that have been evaluated by the NGNP Project for supply of process heat include supply of electricity, steam and high-temperature gas to a wide range of industrial processes, and production of hydrogen and oxygen for use in petrochemical, refining, coal to liquid fuels, chemical, and fertilizer plants.

Larry Demick

2010-08-01T23:59:59.000Z

428

High-temperature Chemical Compatibility of As-fabricated TRIGA Fuel and Type 304 Stainless Steel Cladding  

SciTech Connect

Chemical interaction between TRIGA fuel and Type-304 stainless steel cladding at relatively high temperatures is of interest from the point of view of understanding fuel behavior during different TRIGA reactor transient scenarios. Since TRIGA fuel comes into close contact with the cladding during irradiation, there is an opportunity for interdiffusion between the U in the fuel and the Fe in the cladding to form an interaction zone that contains U-Fe phases. Based on the equilibrium U-Fe phase diagram, a eutectic can develop at a composition between the U6Fe and UFe2 phases. This eutectic composition can become a liquid at around 725C. From the standpoint of safe operation of TRIGA fuel, it is of interest to develop better understanding of how a phase with this composition may develop in irradiated TRIGA fuel at relatively high temperatures. One technique for investigating the development of a eutectic phase at the fuel/cladding interface is to perform out-of-pile diffusion-couple experiments at relatively high temperatures. This information is most relevant for lightly irradiated fuel that just starts to touch the cladding due to fuel swelling. Similar testing using fuel irradiated to different fission densities should be tested in a similar fashion to generate data more relevant to more heavily irradiated fuel. This report describes the results for TRIGA fuel/Type-304 stainless steel diffusion couples that were annealed for one hour at 730 and 800C. Scanning electron microscopy with energy- and wavelength-dispersive spectroscopy was employed to characterize the fuel/cladding interface for each diffusion couple to look for evidence of any chemical interaction. Overall, negligible fuel/cladding interaction was observed for each diffusion couple.

Dennis D. Keiser, Jr.; Jan-Fong Jue; Eric Woolstenhulme; Kurt Terrani; Glenn A. Moore

2012-09-01T23:59:59.000Z

429

Convective heat transfer model for determining quench recovery of high temperature superconducting YBCO in liquid nitrogen  

E-Print Network (OSTI)

Stability of a superconducting magnet is critical for reliable operation of a device in which the magnet plays a role. With the advent of high temperature superconductors (HTS), liquid nitrogen may be used to cool HTS ...

Jankowski, Joseph Edward, 1980-

2004-01-01T23:59:59.000Z

430

What Causes High-temperature Superconductivity? | U.S. DOE Office of  

Office of Science (SC) Website

What Causes High-temperature Superconductivity? What Causes High-temperature Superconductivity? Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » March 2013 What Causes High-temperature Superconductivity? A phase change at absolute zero temperature may provide key insights into the decades-old mystery of high-temperature superconductivity. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of Ames Laboratory

431

An integrated performance model for high temperature gas cooled reactor coated particle fuel  

E-Print Network (OSTI)

The performance of coated fuel particles is essential for the development and deployment of High Temperature Gas Reactor (HTGR) systems for future power generation. Fuel performance modeling is indispensable for understanding ...

Wang, Jing, 1976-

2004-01-01T23:59:59.000Z

432

CONCEPTS FOR SMART PROTECTIVE HIGH-TEMPERATURE COATINGS P.F. Tortorelli  

E-Print Network (OSTI)

in oxidizing-sulfidizing and sulfidizing environments and in air/oxygen at very high temperatures.3 the formation of a protective borosilicate or silica layer that grows laterally to seal the remaining Mo

433

Recent developments in high-temperature photonic crystals for energy conversion  

E-Print Network (OSTI)

After decades of intense studies focused on cryogenic and room temperature nanophotonics, scientific interest is also growing in high-temperature nanophotonics aimed at solid-state energy conversion. These latest extensive ...

Rinnerbauer, Veronika

434

Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion  

DOE Green Energy (OSTI)

This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

Per F. Peterson

2010-03-01T23:59:59.000Z

435

Low emissivity high-temperature tantalum thin film coatings for silicon devices  

E-Print Network (OSTI)

The authors study the use of thin ( ? 230?nm) tantalum (Ta) layers on silicon (Si) as a low emissivity (high reflectivity) coating for high-temperature Si devices. Such coatings are critical to reduce parasitic radiation ...

Rinnerbauer, Veronika

436

Development of a High Temperature Gas-Cooled Reactor TRISO-coated particle fuel chemistry model  

E-Print Network (OSTI)

The first portion of this work is a comprehensive analysis of the chemical environment in a High Temperature Gas-Cooled Reactor TRISO fuel particle. Fission product inventory versus burnup is calculated. Based on those ...

Diecker, Jane T

2005-01-01T23:59:59.000Z

437

Technical and economic feasibility of a high-temperature self-assembling battery  

E-Print Network (OSTI)

A conceptual high-temperature battery system for large-scale grid power applications was proposed, described, and evaluated. Unlike conventional battery technologies whose maximum current rate is constrained by at least ...

Bradwell, David (David Johnathon)

2006-01-01T23:59:59.000Z

438

Hydroxide Formation and Carbon Species Distributions During High-Temperature Kraft Black Liquor Gasification .  

E-Print Network (OSTI)

??This work focuses on high-temperature kraft black liquor gasification in the presence of H2O and CO2 in a laboratory-scale Laminar Entrained-Flow Reactor (LEFR). The effects (more)

Dance, Michael Raymond, Jr.

2005-01-01T23:59:59.000Z

439

N 18, a New Damage Tolerant PM Superalloy for High Temperature ...  

Science Conference Proceedings (OSTI)

and the properties of N 18. This new. P.M. alloy was designed for application in high temperature turbine discs. N 18 is strengthened by a high volume fraction.

440

High Temperature Materials Laboratory User Program: 19th Annual Report, October 1, 2005 - September 30, 2006  

SciTech Connect

Annual Report contains overview of the High Temperature Materials Laboratory User Program and includes selected highlights of user activities for FY2006. Report is submitted to individuals within sponsoring DOE agency and to other interested individuals.

Pasto, Arvid [ORNL

2007-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-temperature reservoir evidence" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

In-Situ Formation of Carbon Nanostructures into High-Temperature ...  

Science Conference Proceedings (OSTI)

Carbon nanofibres (CNFs) have great potential to replace traditional ... and Having Strength, Toughness and Wear Resistance Similar to that of Silicon Nitride Carbon Fiber Reinforced Ultra-High-Temperature Ceramic Matrix Composites.

442

Cellulose Simulations Demystify High-Temperature Behavior (Fact Sheet), NREL Highlights, Science  

DOE Green Energy (OSTI)

Molecular simulations that model cellulose microfibrils at high temperature indicate regions that may be easier to break down, which could lead to more efficient processing of cellulose into biofuel.

Not Available

2011-05-01T23:59:59.000Z

443

Test Results From The Idaho National Laboratory 15kW High Temperature Electrolysis Test Facility  

DOE Green Energy (OSTI)

A 15kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feed-stock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date.

Carl M. Stoots; Keith G. Condie; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

2009-07-01T23:59:59.000Z

444

Large Field Erected and Packaged High Temperature Water (HTW) Generators for Coal Firing  

E-Print Network (OSTI)

The purpose of the paper is to disseminate information on the energy savings possible with High Temperature Water (HTW) for heating and industrial process application and to provide information on coal fired HTW generator design and availability.

Boushell, C. C.

1980-01-01T23:59:59.000Z

445

Iron-niobium-aluminum alloy having high-temperature corrosion resistance  

DOE Patents (OSTI)

An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

Hsu, Huey S.

1988-04-14T23:59:59.000Z