National Library of Energy BETA

Sample records for high-temp process equipment

  1. Better metallurgy for process equipment

    SciTech Connect (OSTI)

    Rayner, R.E.

    1994-01-01

    Metallurgy choices have expanded significantly for process equipment and pumps used for handling difficult corrosive fluids. If they have been specifying the austenitic AISI types 316, 316L, 317, 317L or the newer first generation alloy 329 in their pumps, there is a strong message in recent literature. Based on tests and experience there are better, often less costly alternatives. In the case of CD[sub 4]MCu, N08020 and 904L, there are lower-cost material alternatives for many applications. For SA S31254 and SA N08367, there are some less aggressive can be substituted. These alternatives are the new second generation duplex steels. The lower cost of the duplex alloys is a result of the reduced nickel content, which is about half that of the standard austenitics. Also, their carbon content is low; the same as 316L and 317L for most alloys, including S31803. The second generation duplex alloys offer significant value improvement in a vast majority of applications over the common austenitics and ferritics. Further, their improved resistance to corrosion and improved physical properties relative to the expensive. and in many cases proprietary, highly corrosion-resistant, super-ferritics and super-austenitics, means that they can and should be considered as an alternative for applications where those materials are now overqualified. Strength, toughness and wide corrosion resistance are all-important properties and considerations for process pump materials. Combine these with competitive cost and there is an opportunity that must be investigated.

  2. Materials Selection Considerations for Thermal Process Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    productivity and operating cost of the equipment. These materials are used in burners, electrical heating elements, material handling, load support, and heater tubes, etc....

  3. Appendix D: Facility Process Data and Appendix E: Equipment Calibratio...

    Energy Savers [EERE]

    E: Equipment Calibration Data Sheets from Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating Station, Alexandria, Virginia Appendix D: Facility Process...

  4. EQUIPMENT OR PROCESS UCLA/ACADEMIC

    E-Print Network [OSTI]

    Jalali. Bahram

    Cleanroom Usage $21 $58 0.1 2 AMAT 7830i - CD SEM $50 $110 0.5 3 ASML PAS 5500/200 - Stepper $50 $120 1 4 Monthly Minimum waved if no charges are accumulated in that month Cleanroom Usage Cap: Academic Cleanroom Usage capped at $1000/user per month Industry Cleanroom Usage capped $4000/user per month Equipment

  5. Vehicle and Heavy Equipment Integrated Product & Process Development (IPPD)

    E-Print Network [OSTI]

    Beckermann, Christoph

    Test & Evaluation Enterprise and Engineering Information Infrastructure Design & Development ConcurrentVehicle and Heavy Equipment Integrated Product & Process Development (IPPD) Technology Development: Casting Process Simulation Christoph Beckermann Associate Professor Department of Mechanical Engineering

  6. Materials Selection Considerations for Thermal Process Equipment...

    Broader source: Energy.gov (indexed) [DOE]

    high-temperature metallic materials for use in process heating applications such as burners, electrical heating elements, material handling, load support, and heater tubes, etc....

  7. Processing and Manufacturing Equipment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhonoSolarProcessing and Manufacturing

  8. Gas phase decontamination of gaseous diffusion process equipment

    SciTech Connect (OSTI)

    Bundy, R.D.; Munday, E.B.; Simmons, D.W.; Neiswander, D.W.

    1994-03-01

    D&D of the process facilities at the gaseous diffusion plants (GDPs) will be an enormous task. The EBASCO estimate places the cost of D&D of the GDP at the K-25 Site at approximately $7.5 billion. Of this sum, nearly $4 billion is associated with the construction and operation of decontamination facilities and the dismantlement and transport of contaminated process equipment to these facilities. In situ long-term low-temperature (LTLT) gas phase decontamination is being developed and demonstrated at the K-25 site as a technology that has the potential to substantially lower these costs while reducing criticality and safeguards concerns and worker exposure to hazardous and radioactive materials. The objective of gas phase decontamination is to employ a gaseous reagent to fluorinate nonvolatile uranium deposits to form volatile LJF6, which can be recovered by chemical trapping or freezing. The LTLT process permits the decontamination of the inside of gas-tight GDP process equipment at room temperature by substituting a long exposure to subatmospheric C1F for higher reaction rates at higher temperatures. This paper outlines the concept for applying LTLT gas phase decontamination, reports encouraging laboratory experiments, and presents the status of the design of a prototype mobile system. Plans for demonstrating the LTLT process on full-size gaseous diffusion equipment are also outlined briefly.

  9. Using Data Processing Equipment to Keep Beef Cattle Production Records. 

    E-Print Network [OSTI]

    Maddox, L. A. Jr.; Thompson, U. D.

    1961-01-01

    will need to use a code for the sex of calves when filling out Form 2, since the data Breeding cows processing equipment works best with num- bers. Year of birth Dam no. 662 6 og 606 61t? 6 /? 6'1 /s P /7D 2 45 2 97 3 02 600 The code... 9 8 102 101 99 Adjusted weight 445 444 428 462 458 452 ........ for sires H ........ sex Sire no. 9 2 113 187 9 2 113 187 Animal no. Av. 12 heifers Av. 12 heifers Av. 10 heifers Av. 12 steers Av. 14 steers Av. 12 steers...

  10. Program management systems for the semiconductor processing capital equipment supply chain

    E-Print Network [OSTI]

    Chandler, Thomas B. (Thomas Brian), 1970-

    2004-01-01

    The Capital Equipment Procurement group of Intel Corporation is responsible for developing and procuring the semiconductor processing capital equipment that is used throughout all of the company's development and manufacturing ...

  11. POC-scale testing of oil agglomeration techniques and equipment for fine coal processing

    SciTech Connect (OSTI)

    W. Pawlak; K. Szymocha

    1999-07-01

    The information presented in this manual is solely for the purpose of operating the POC-scale equipment for fine coal processing as described herein. This manual provides a general description of the process technology and guidelines for plant operating procedures. It is intended for use by the operators and maintenance personnel who will be responsible for the operations of the plant. No attempt should be made to operate the plant until the principles of the process and operating instructions contained in this manual are fully understood. Operating personnel should thoroughly familiarize themselves with all processing equipment prior to commencing plant operation. All equipment is skid mounted to provide a self-contained unit. The dimensions of the unit are comply with standard guidelines. A minimum distance of 2 feet is provided between equipment for walkway and maintenance.

  12. Exergy Analysis for Cryogenic Process and Equipment Optimizations 

    E-Print Network [OSTI]

    Chiu, C.

    1982-01-01

    an analytical min imum compressor work analysis for the classical cascade natural gas liquefaction cycle. The temp erature dependence of the irreversible work of heat transfer due to a finite temperature approach was shown to be inversely proportional... Liquefaction Process lAl ~-:SUICDDL PROPANE COMPRESSOR -----......... OR (Il~ Cll I I I I I 1 cw -- _ I T lAI' I 1:,N!.J ----------, I FUEL, I I I L~_~ FLASH MIXED REFRIGERANT COMPRESSORS Figure 2 - Propane-Precooled Mixed Refrigerant...

  13. Development of an equipment management model to improve effectiveness of processes

    SciTech Connect (OSTI)

    Chang, H. S.; Ju, T. Y.; Song, T. Y.

    2012-07-01

    The nuclear industries have developed and are trying to create a performance model to improve effectiveness of the processes implemented at nuclear plants in order to enhance performance. Most high performing nuclear stations seek to continually improve the quality of their operations by identifying and closing important performance gaps. Thus, many utilities have implemented performance models adjusted to their plant's configuration and have instituted policies for such models. KHNP is developing a standard performance model to integrate the engineering processes and to improve the inter-relation among processes. The model, called the Standard Equipment Management Model (SEMM), is under development first by focusing on engineering processes and performance improvement processes related to plant equipment used at the site. This model includes performance indicators for each process that can allow evaluating and comparing the process performance among 21 operating units. The model will later be expanded to incorporate cost and management processes. (authors)

  14. Development of an Improved Process for Installation Projects of High Technology Manufacturing Equipment

    SciTech Connect (OSTI)

    Quintana, Sarah V.

    2014-04-30

    High technology manufacturing equipment is utilized at Los Alamos National Laboratory (LANL) to support nuclear missions. This is undertaken from concept initiation where equipment is designed and then taken through several review phases, working closely with system engineers (SEs) responsible for each of the affected systems or involved disciplines (from gasses to HVAC to structural, etc.). After the design is finalized it moves to procurement and custom fabrication of the equipment and equipment installation, including all of the paperwork involved. Not only are the engineering and manufacturing aspects important, but also the scheduling, financial forecasting, and planning portions that take place initially and are sometimes modified as the project progresses should requirements, changes or additions become necessary. The process required to complete a project of this type, including equipment installation, is unique and involves numerous steps to complete. These processes can be improved and recent work on the Direct Current Arc (DC Arc) Glovebox Design, Fabrication and Installation Project provides an opportunity to identify some important lessons learned (LL) that can be implemented in the future for continued project improvement and success.

  15. Financial Policy Manual 1106.6 PLANT ASSETS -EQUIPMENT IN PROCESS

    E-Print Network [OSTI]

    George, Edward I.

    Financial Policy Manual Page 1 1106.6 PLANT ASSETS - EQUIPMENT IN PROCESS Effective: May 2005 for standard items that are altered or customized to make them usable on a project do not qualify as EIP location, tagging contact and phone number, and custodian and phone number. Upon creation, PMG will notify

  16. ME 4210: Manufacturing Processes and Equipment Prof. J.S. Colton GIT 2011

    E-Print Network [OSTI]

    Colton, Jonathan S.

    Raw materials Furnace Atmosphere #12;ME 4210: Manufacturing Processes and Equipment Prof. J.S. Colton route from raw material to finished product · Melt metals · Pour / force liquid into hollow cavity (mold © GIT 2011 12 Melting · Raw material (charge) ­ scrap, alloying materials · Atmosphere ­ Air (oxygen

  17. Process/Equipment Co-Simulation on Syngas Chemical Looping Process

    SciTech Connect (OSTI)

    Zeng, Liang; Zhou, Qiang; Fan, Liang-Shih

    2012-09-30

    The chemical looping strategy for fossil energy applications promises to achieve an efficient energy conversion system for electricity, liquid fuels, hydrogen and/or chemicals generation, while economically separate CO{sub 2} by looping reaction design in the process. Chemical looping particle performance, looping reactor engineering, and process design and applications are the key drivers to the success of chemical looping process development. In order to better understand and further scale up the chemical looping process, issues such as cost, time, measurement, safety, and other uncertainties need to be examined. To address these uncertainties, advanced reaction/reactor modeling and process simulation are highly desired and the modeling efforts can accelerate the chemical looping technology development, reduce the pilot-scale facility design time and operating campaigns, as well as reduce the cost and technical risks. The purpose of this work is thus to conduct multiscale modeling and simulations on the key aspects of chemical looping technology, including particle reaction kinetics, reactor design and operation, and process synthesis and optimization.

  18. SU-E-J-189: Credentialing of IGRT Equipment and Processes for Clinical Trials

    SciTech Connect (OSTI)

    Court, L; Aristophanous, M; Followill, D; Kirsner, S; Kisling, K; Pidikiti, R; Wong, P; Balter, P; Bellezza, D; Massingill, B; Papanikolaou, N; Parker, B; Zhen, H

    2014-06-01

    Purpose: Current dosimetry phantoms used for clinical trial credentialing do not directly assess IGRT processes. This work evaluates a custom-built IGRT phantom for credentialing of multiple IGRT modalities and processes. Methods: An IGRT phantom was built out of a low-density body with two inserts. Insert A is used for the CT simulation. Insert B is used for the actual treatment. The inserts contain identical targets in different locations. Relative positions are unknown to the user. The user simulates the phantom (with insert A) as they would a patient, including marking the phantom. A treatment plan is created and sent to the treatment unit. The phantom (with insert B) is then positioned using local IGRT practice. Shifts (planned isocenter, if applicable, and final isocenter) are marked on the phantom using room lasers. The mechanical reproducibility of re-inserting the inserts within the phantom body was tested using repeat high-resolution CT scans. The phantom was tested at 7 centers, selected to include a wide variety of imaging equipment. Results: Mechanical reproducibility was measured as 0.5-0.9mm, depending on the direction. Approaches tested to mark (and transfer) simulation isocenter included lasers, fiducials and reflective markers. IGRT approaches included kV imaging (Varian Trilogy, Brainlab ExacTrac), kV CT (CT-on-rails), kV CBCT (Varian Trilogy, Varian Truebeam, Elekta Agility) and MV CT (Tomotherapy). Users were able to successfully use this phantom for all combinations of equipment and processes. IGRT-based shifts agreed with the truth within 0.8mm, 0.8mm and 1.9mm in the LR, AP, and SI directions, respectively. Conclusion: Based on these preliminary results, the IGRT phantom can be used for credentialing of clinical trials with an action level of 1mm in AP and LR directions, and 2mm in the SI direction, consistent with TG142. We are currently testing with additional institutions with different equipment and processes, including Cyberknife. This project was funded by the Cancer Prevention Research Institute of Texas.

  19. RECENT PROCESS AND EQUIPMENT IMPROVEMENTS TO INCREASE HIGH LEVEL WASTE THROUGHPUT AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Odriscoll, R; Allan Barnes, A; Jim Coleman, J; Timothy Glover, T; Robert Hopkins, R; Dan Iverson, D; Jeff Leita, J

    2008-01-15

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) began stabilizing high level waste (HLW) in a glass matrix in 1996. Over the past few years, there have been several process and equipment improvements at the DWPF to increase the rate at which the high level waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process to upsets, thereby minimizing downtime and increasing production. Improvements due to optimization of waste throughput with increased HLW loading of the glass resulted in a 6% waste throughput increase based upon operational efficiencies. Improvements in canister production include the pour spout heated bellows liner (5%), glass surge (siphon) protection software (2%), melter feed pump software logic change to prevent spurious interlocks of the feed pump with subsequent dilution of feed stock (2%) and optimization of the steam atomized scrubber (SAS) operation to minimize downtime (3%) for a total increase in canister production of 12%. A number of process recovery efforts have allowed continued operation. These include the off gas system pluggage and restoration, slurry mix evaporator (SME) tank repair and replacement, remote cleaning of melter top head center nozzle, remote melter internal inspection, SAS pump J-Tube recovery, inadvertent pour scenario resolutions, dome heater transformer bus bar cooling water leak repair and new Infra-red camera for determination of glass height in the canister are discussed.

  20. Development of Advanced Surface Enhancement Technology for Decreasing Wear and Corrosion of Equipment Used for Mineral Processing

    SciTech Connect (OSTI)

    Daniel Tao; Craig A. Blue

    2004-08-01

    Equipment wear is a major concern in the mineral processing industry, which dramatically increases the maintenance cost and adversely affects plant operation efficiency. In this research, wear problems of mineral processing equipment including screens, sieve bends, heavy media vessel, dewatering centrifuge, etc., were identified. A novel surface treatment technology, high density infrared (HDI) surface coating process was proposed for the surface enhancement of selected mineral processing equipment. Microstructural and mechanical properties of the coated samples were characterized. Laboratory-simulated wear tests were conducted to evaluate the tribological performance of the coated components. Test results indicate that the wear resistance of AISI 4140 and ASTM A36 steels can be increased 3 and 5 folds, respectively by the application of HDI coatings.

  1. Investigation of gas-phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping

    SciTech Connect (OSTI)

    Bundy, R.D.; Munday, E.B.

    1991-01-01

    Construction of the gaseous diffusion plants (GDPs) was begun during World War 2 to produce enriched uranium for defense purposes. These plants, which utilized UF{sub 6} gas, were used primarily for this purpose through 1964. From 1959 through 1968, production shifted primarily to uranium enrichment to supply the nuclear power industry. Additional UF{sub 6}-handling facilities were built in feed and fuel-processing plants associated with the uranium enrichment process. Two of the five process buildings at Oak ridge were shut down in 1964. Uranium enrichment activities at Oak Ridge were discontinued altogether in 1985. In 1987, the Department of Energy (DOE) decided to proceed with a permanent shutdown of the Oak Ridge Gaseous Diffusion Plant (ORGDP). DOE intends to begin decommissioning and decontamination (D D) of ORGDP early in the next century. The remaining two GDPs are expected to be shut down during the next 10 to 40 years and will also require D D, as will the other UF{sub 6}-handling facilities. This paper presents an investigation of gas- phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping using powerful fluorinating reagents that convert nonvolatile uranium compounds to volatile UF{sub 6}. These reagents include ClF{sub 3}, F{sub 2}, and other compounds. The scope of D D at the GDPs, previous work of gas-phase decontamination, four concepts for using gas-phase decontamination, plans for further study of gas-phase decontamination, and the current status of this work are discussed. 13 refs., 15 figs.

  2. Development of Advanced Surface Enhancement Technology for Decreasing Wear and Corrosion of Equipment Used for Mineral Processing

    SciTech Connect (OSTI)

    Daniel Tao; R. Honaker; B. K. Parekh

    2007-09-20

    Equipment wear is a major concern in the mineral processing industry, which dramatically increases the maintenance cost and adversely affects plant operation efficiency. In this research, novel surface treatment technologies, High Density Infrared (HDI) and Laser Surface Engineering (LSE) surface coating processes were developed for the surface enhancement of selected mineral and coal processing equipment. Microstructural and mechanical properties of the coated specimens were characterized. Laboratory-simulated wear tests were conducted to evaluate the tribological performance of the coated components. Test results indicate that the wear resistance of ASTM A36 (raw coal screen section) and can be significantly increased by applying HDI and LSE coating processes. Field testing has been performed using a LSE-treated screen panel and it showed a significant improvement of the service life.

  3. Vehicle Technologies Office Merit Review 2014: Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by Applied Materials at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about modular process equipment...

  4. Improving maintenance work flow processes in a volatile assembly factory environment : maintenance people and processes, spares inventory, and equipment reliability

    E-Print Network [OSTI]

    Chase, H. Ryan (Harold Ryan)

    2005-01-01

    Many manufacturing companies face significant challenges in maintaining their factory equipment in a cost efficient manner so as to provide reliable production capacity. CEI (Consumer Electronics, Inc., a pseudonym for an ...

  5. CONTAMINATED PROCESS EQUIPMENT REMOVAL FOR THE D&D OF THE 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINISHING PLANT (PFP)

    SciTech Connect (OSTI)

    HOPKINS, A.M.; MINETTE, M.J.; KLOS, D.B.

    2007-01-25

    This paper describes the unique challenges encountered and subsequent resolutions to accomplish the deactivation and decontamination of a plutonium ash contaminated building. The 232-Z Contaminated Waste Recovery Process Facility at the Plutonium Finishing Plant was used to recover plutonium from process wastes such as rags, gloves, containers and other items by incinerating the items and dissolving the resulting ash. The incineration process resulted in a light-weight plutonium ash residue that was highly mobile in air. This light-weight ash coated the incinerator's process equipment, which included gloveboxes, blowers, filters, furnaces, ducts, and filter boxes. Significant airborne contamination (over 1 million derived air concentration hours [DAC]) was found in the scrubber cell of the facility. Over 1300 grams of plutonium held up in the process equipment and attached to the walls had to be removed, packaged and disposed. This ash had to be removed before demolition of the building could take place.

  6. Power equipment applications

    SciTech Connect (OSTI)

    Seeley, R.S. (Consultant, Bridgewater, NJ (United States))

    1993-11-01

    Many considerations are taken into account in selecting equipment for power projects. The project often becomes a proving ground, benefiting equipment suppliers and developers. In designing and building power generation projects, developers and engineering and construction firms must go through the process of choosing the right equipment for the job. In doing so, a number of considerations regarding the benefits of selection and ease of installation must be taken into account. Understanding the selection process demonstrates how the independent power generation industry becomes a proving ground for different applications of power equipment. In turn, this adds more innovation and versatility to the entire power generation industry. It also provides lenders with examples of proven equipment that will more readily lead to successful financing in the future. Several developers and equipment vendors recently talked about how and why the choices were made for equipment like gas turbines, fluidized bed boilers, water treatment, power cooling equipment, and instruments and controls. 3 figs.

  7. Transfers of user process innovations to process equipment producers: A study of Dutch high-tech firms

    E-Print Network [OSTI]

    de Jong, Jeroen P. J.

    A detailed survey of 498 high technology small and medium-sized enterprises in the Netherlands shows process innovation by user firms to be common practice. Fifty-four percent of these firms reported developing entirely ...

  8. Department of Industrial Engineering Spring 2012 Equipment Jack Manufacturing Process Improvement at CIU -Global Project

    E-Print Network [OSTI]

    Demirel, Melik C.

    it to the current system's capacity Perform FMEA to conclude the top events critical to quality for the assembly collection for both EWMA, FMEA, and manufacturing systems Outcomes New, standardized process increased forecast schedules, orders, and capabilities. FMEA illustrates assembly steps that are crucial to quality

  9. Development of Functionally Graded Materials for Manufacturing Tools and Dies and Industrial Processing Equipment

    SciTech Connect (OSTI)

    Lherbier, Louis, W.; Novotnak, David, J.; Herling, Darrell, R.; Sears, James, W.

    2009-03-23

    Hot forming processes such as forging, die casting and glass forming require tooling that is subjected to high temperatures during the manufacturing of components. Current tooling is adversely affected by prolonged exposure at high temperatures. Initial studies were conducted to determine the root cause of tool failures in a number of applications. Results show that tool failures vary and depend on the operating environment under which they are used. Major root cause failures include (1) thermal softening, (2) fatigue and (3) tool erosion, all of which are affected by process boundary conditions such as lubrication, cooling, process speed, etc. While thermal management is a key to addressing tooling failures, it was clear that new tooling materials with superior high temperature strength could provide improved manufacturing efficiencies. These efficiencies are based on the use of functionally graded materials (FGM), a new subset of hybrid tools with customizable properties that can be fabricated using advanced powder metallurgy manufacturing technologies. Modeling studies of the various hot forming processes helped identify the effect of key variables such as stress, temperature and cooling rate and aid in the selection of tooling materials for specific applications. To address the problem of high temperature strength, several advanced powder metallurgy nickel and cobalt based alloys were selected for evaluation. These materials were manufactured into tooling using two relatively new consolidation processes. One process involved laser powder deposition (LPD) and the second involved a solid state dynamic powder consolidation (SSDPC) process. These processes made possible functionally graded materials (FGM) that resulted in shaped tooling that was monolithic, bi-metallic or substrate coated. Manufacturing of tooling with these processes was determined to be robust and consistent for a variety of materials. Prototype and production testing of FGM tooling showed the benefits of the nickel and cobalt based powder metallurgy alloys in a number of applications evaluated. Improvements in tool life ranged from three (3) to twenty (20) or more times than currently used tooling. Improvements were most dramatic where tool softening and deformation were the major cause of tool failures in hot/warm forging applications. Significant improvement was also noted in erosion of aluminum die casting tooling. Cost and energy savings can be realized as a result of increased tooling life, increased productivity and a reduction in scrap because of improved dimensional controls. Although LPD and SSDPC tooling usually have higher acquisition costs, net tooling costs per component produced drops dramatically with superior tool performance. Less energy is used to manufacture the tooling because fewer tools are required and less recycling of used tools are needed for the hot forming process. Energy is saved during the component manufacturing cycle because more parts can be produced in shorter periods of time. Energy is also saved by minimizing heating furnace idling time because of less downtime for tooling changes.

  10. Solid Waste Processing Center Primary Opening Cells Systems, Equipment and Tools

    SciTech Connect (OSTI)

    Bailey, Sharon A.; Baker, Carl P.; Mullen, O Dennis; Valdez, Patrick LJ

    2006-04-17

    This document addresses the remote systems and design integration aspects of the development of the Solid Waste Processing Center (SWPC), a facility to remotely open, sort, size reduce, and repackage mixed low-level waste (MLLW) and transuranic (TRU)/TRU mixed waste that is either contact-handled (CH) waste in large containers or remote-handled (RH) waste in various-sized packages.

  11. COATINGS FOR PROTECTION OF EQUIPMENT FOR BIOCHEMICAL PROCESSING OF GEOTHERMAL RESIDUES: PROGRESS REPORT FY 97

    SciTech Connect (OSTI)

    ALLAN,M.L.

    1997-11-01

    Thermal sprayed ethylene methacrylic acid (EMAA) and ethylene tetrafluoroethylene (ETFE), spray-and-bake ETFE and polyvinylidene fluoride (PVDF) and brushable ceramic-epoxy coatings were evaluated for corrosion protection in a biochemical process to treat geothermal residues. The findings are also relevant to other moderate temperature brine environments where corrosion is a problem. Coupon, Atlas cell, peel strength, cathodic disbondment and abrasion tests were performed in aggressive environments including geothermal sludge, hypersaline brine and sulfur-oxidizing bacteria (Thiobadus ferrooxidans) to determine suitability for protecting storage tanks and reaction vessels. It was found that all of the coatings were resistant to chemical attack and biodegradation at the test temperature of 55 C. The EMAA coatings protected 316L stainless steel from corrosion in coupon tests. However, corrosion of mild steel substrates thermal sprayed with EMAA and ETFE occurred in Atlas cell tests that simulated a lined reactor operating environment and this resulted in decreased adhesive strength. Peel tests to measure residual adhesion revealed that failure mode was dependent on exposure conditions. Long-term tests on the durability of ceramic-epoxy coatings in brine and bacteria are ongoing. Initial indications are that this coating has suitable characteristics. Abrasion tests showed that the ceramic-epoxy had good resistance to the abrasive effects of sludge. Thermal sprayed EMAA coatings also displayed abrasion resistance. Cathodic disbondment tests in brine at room temperature indicated that EMAA coatings are resistant to disbondment at applied potentials of {minus}780 to {minus}1,070 mV SCE for the test conditions and duration. Slight disbondment of one specimen occurred at a potential of {minus}1,500 mV SCE. The EMAA may be suited to use in conjunction with cathodic protection although further long-term, higher temperature testing would be needed.

  12. Coatings for protection of equipment for biochemical processing of geothermal residues: Progress report FY`97

    SciTech Connect (OSTI)

    Allan, M.L.

    1997-11-01

    Thermal sprayed ethylene methacrylic acid (EMAA) and ethylene tetrafluoroethylene (ETFE), spray-and-bake ETFE and polyvinylidene fluoride (PVDF) and brushable ceramic-epoxy coatings were evaluated for corrosion protection in a biochemical process to treat geothermal residues. Coupon, Atlas cell, peel strength, cathodic disbondment and abrasion tests were performed in aggressive environments including geothermal sludge, hypersaline brine and sulfur-oxidizing bacteria (Thiobacillus ferrooxidans) to determine suitability for protecting storage tanks and reaction vessels. It was found that all of the coatings were resistant to chemical attack and biodegradation at the test temperature of 55 C. The EMAA coatings protected 316L stainless steel from corrosion in coupon tests. However, corrosion of mild steel substrates thermal sprayed with EMAA and ETFE occurred in Atlas cell tests that simulated a lined reactor operating environment and this resulted in decreased adhesive strength. Peel tests to measure residual adhesion revealed that failure mode was dependent on exposure conditions. Abrasion tests showed that the ceramic-epoxy had good resistance to the abrasive effects of sludge. Thermal sprayed EMAA coatings also displayed abrasion resistance. Cathodic disbondment tests in brine at room temperature indicated that EMAA coatings are resistant to disbondment at applied potentials of {minus}780 to {minus}1,070 mV SCE for the test conditions and duration. Slight disbondment of one specimen occurred at a potential of {minus}1,500 mV SCE. The EMAA may be suited to use in conjunction with cathodic protection although further long-term, higher temperature testing would be needed.

  13. Electro-Mechanical Manipulator for Use in the Remote Equipment Decontamination Cell at the Defense Waste Processing Facility, Savannah River Site - 12454

    SciTech Connect (OSTI)

    Lambrecht, Bill; Dixon, Joe [Par Systems, Shoreview, Minnesota, 55126 (United States); Neuville, John R. [Savannah River Remediation, Savannah River Site, Aiken, South Carolina, 29808 (United States)

    2012-07-01

    One of the legacies of the cold war is millions of liters of radioactive waste. One of the locations where this waste is stored is at the Savannah River Site (SRS) in South Carolina. A major effort to clean up this waste is on-going at the defense waste processing facility (DWPF) at SRS. A piece of this effort is decontamination of the equipment used in the DWPF to process the waste. The remote equipment decontamination cell (REDC) in the DWPF uses electro-mechanical manipulators (EMM) arms manufactured and supplied by PaR Systems to decontaminate DWPF process equipment. The decontamination fluid creates a highly corrosive environment. After 25 years of operational use the original EMM arms are aging and need replacement. To support continued operation of the DWPF, two direct replacement EMM arms were delivered to the REDC in the summer of 2011. (authors)

  14. RADIOLOGICAL CONTROLS FOR PLUTONIUM CONTAMINATED PROCESS EQUIPMENT REMOVAL FROM 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINSHING PLANT (PFP)

    SciTech Connect (OSTI)

    MINETTE, M.J.

    2007-05-30

    The 232-Z facility at Hanford's Plutonium Finishing Plant operated as a plutonium scrap incinerator for 11 years. Its mission was to recover residual plutonium through incinerating and/or leaching contaminated wastes and scrap material. Equipment failures, as well as spills, resulted in the release of radionuclides and other contamination to the building, along with small amounts to external soil. Based on the potential threat posed by the residual plutonium, the U.S. Department of Energy (DOE) issued an Action Memorandum to demolish Building 232-2, Comprehensive Environmental Response Compensation, and Liability Act (CERC1.A) Non-Time Critical Removal Action Memorandum for Removal of the 232-2 Waste Recovery Process Facility at the Plutonium Finishing Plant (04-AMCP-0486).

  15. An assessment and evaluation for recycle/reuse of contaminated process and metallurgical equipment at the DOE Rocky Flats Plant Site -- Building 865. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    An economic analysis of the potential advantages of alternatives for recycling and reusing equipment now stored in Building 865 at the Rocky Flats Plant (RFP) in Colorado has been conducted. The inventory considered in this analysis consists primarily of metallurgical and process equipment used before January 1992, during development and production of nuclear weapons components at the site. The economic analysis consists of a thorough building inventory and cost comparisons for four equipment dispositions alternatives. The first is a baseline option of disposal at a Low Level Waste (LLW) landfill. The three alternatives investigated are metal recycling, reuse with the government sector, and release for unrestricted use. This report provides item-by-item estimates of value, disposal cost, and decontamination cost. The economic evaluation methods documented here, the simple cost comparisons presented, and the data provided as a supplement, should provide a foundation for D&D decisions for Building 865, as well as for similar D&D tasks at RFP and at other sites.

  16. Thermal Integration of CO{sub 2} Compression Processes with Coal-Fired Power Plants Equipped with Carbon Capture

    SciTech Connect (OSTI)

    Edward Levy

    2012-06-29

    Coal-fired power plants, equipped either with oxycombustion or post-combustion CO{sub 2} capture, will require a CO{sub 2} compression system to increase the pressure of the CO{sub 2} to the level needed for sequestration. Most analyses show that CO{sub 2} compression will have a significant effect on parasitic load, will be a major capital cost, and will contribute significantly to reduced unit efficiency. This project used first principle engineering analyses and computer simulations to determine the effects of utilizing compressor waste heat to improve power plant efficiency and increase net power output of coal-fired power plants with carbon capture. This was done for units with post combustion solvent-based CO{sub 2} capture systems and for oxyfired power plants, firing bituminous, PRB and lignite coals. The thermal integration opportunities analyzed for oxycombustion capture are use of compressor waste heat to reheat recirculated flue gas, preheat boiler feedwater and predry high-moisture coals prior to pulverizing the coal. Among the thermal integration opportunities analyzed for post combustion capture systems are use of compressor waste heat and heat recovered from the stripper condenser to regenerate post-combustion CO{sub 2} capture solvent, preheat boiler feedwater and predry high-moisture coals. The overall conclusion from the oxyfuel simulations is that thermal integration of compressor heat has the potential to improve net unit heat rate by up to 8.4 percent, but the actual magnitude of the improvement will depend on the type of heat sink used and to a lesser extent, compressor design and coal rank. The simulations of a unit with a MEA post combustion capture system showed that thermal integration of either compressor heat or stripper condenser heat to preheat boiler feedwater would result in heat rate improvements from 1.20 percent to 4.19 percent. The MEA capture simulations further showed that partial drying of low rank coals, done in combination with feedwater heating, would result in heat rate reductions of 7.43 percent for PRB coal and 10.45 percent for lignite.

  17. New Electrode Manufacturing Process Equipment: Novel High Energy Density Lithium-Ion Cell Designs via Innovative Manufacturing Process Modules for Cathode and Integrated Separator

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: Applied Materials is developing new tools for manufacturing Li-Ion batteries that could dramatically increase their performance. Traditionally, the positive and negative terminals of Li-Ion batteries are mixed with glue-like materials called binders, pressed onto electrodes, and then physically kept apart by winding a polymer mesh material between them called a separator. With the Applied Materials system, many of these manually intensive processes will be replaced by next generation coating technology to apply each component. This process will improve product reliability and performance of the cells at a fraction of the current cost. These novel manufacturing techniques will also increase the energy density of the battery and reduce the size of several of the battery’s components to free up more space within the cell for storage.

  18. Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems

    SciTech Connect (OSTI)

    Chin-Min Cheng; Pauline Hack; Paul Chu; Yung-Nan Chang; Ting-Yu Lin; Chih-Sheng Ko; Po-Han Chiang; Cheng-Chun He; Yuan-Min Lai; Wei-Ping Pan

    2009-09-15

    A full-scale field study was carried out at a 795 MWe coal-fired power plant equipped with selective catalytic reduction (SCR), an electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD) systems to investigate the distribution of selected trace elements (i.e., mercury, arsenic, selenium, boron, and chloride) from coal, FGD reagent slurry, makeup water to flue gas, solid byproduct, and wastewater streams. Flue gases were collected from the SCR outlet, ESP inlet, FGD inlet, and stack. Concurrent with flue gas sampling, coal, bottom ash, economizer ash, and samples from the FGD process were also collected for elemental analysis. By combining plant operation parameters, the overall material balances of selected elements were established. The removal efficiencies of As, Se, Hg, and B by the ESP unit were 88, 56, 17, and 8%, respectively. Only about 2.5% of Cl was condensed and removed from flue gas by fly ash. The FGD process removed over 90% of Cl, 77% of B, 76% of Hg, 30% of Se, and 5% of As. About 90% and 99% of the FGD-removed Hg and Se were associated with gypsum. For B and Cl, over 99% were discharged from the coal combustion process with the wastewater. Mineral trona (trisodium hydrogendicarbonate dehydrate, Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O) was injected before the ESP unit to control the emission of sulfur trioxide (SO{sub 3}). By comparing the trace elements compositions in the fly ash samples collected from the locations before and after the trona injection, the injection of trona did not show an observable effect on the partitioning behaviors of selenium and arsenic, but it significantly increased the adsorption of mercury onto fly ash. The stack emissions of mercury, boron, selenium, and chloride were for the most part in the gas phase. 47 refs., 3 figs., 11 tabs.

  19. Energy Audit Equipment 

    E-Print Network [OSTI]

    Phillips, J.

    2012-01-01

    The tools (equipment) needed to perform an energy audit include those items which assist the auditor in measuring the energy used by equipment or lost in inefficiency. Each tool is designed for a specific measurement. They can be inexpensive simple...

  20. Incidents of chemical reactions in cell equipment

    SciTech Connect (OSTI)

    Baldwin, N.M.; Barlow, C.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

    1991-12-31

    Strongly exothermic reactions can occur between equipment structural components and process gases under certain accident conditions in the diffusion enrichment cascades. This paper describes the conditions required for initiation of these reactions, and describes the range of such reactions experienced over nearly 50 years of equipment operation in the US uranium enrichment program. Factors are cited which can promote or limit the destructive extent of these reactions, and process operations are described which are designed to control the reactions to minimize equipment damage, downtime, and the possibility of material releases.

  1. Automatic monitoring of vibration welding equipment

    DOE Patents [OSTI]

    Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W

    2014-10-14

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

  2. Equipment qualification research program: program plan

    SciTech Connect (OSTI)

    Dong, R.G.; Smith, P.D.

    1982-06-08

    The Lawrence Livermore National Laboratory (LLNL) under the sponsorship of the US Nuclear Regulatory Commission (NRC) has developed this program plan for research in equipment qualification (EQA). In this report the research program which will be executed in accordance with this plan will be referred to as the Equipment Qualification Research Program (EQRP). Covered are electrical and mechanical equipment under the conditions described in the OBJECTIVE section of this report. The EQRP has two phases; Phase I is primarily to produce early results and to develop information for Phase II. Phase I will last 18 months and consists of six projects. The first project is program management. The second project is responsible for in-depth evaluation and review of EQ issues and EQ processes. The third project is responsible for detailed planning to initiate Phase II. The remaining three projects address specific equipment; i.e., valves, electrical equipment, and a pump.

  3. Early Equipment Management

    E-Print Network [OSTI]

    Schlie, Michelle

    2007-05-18

    Installed .................................................40 Exhibit 11: 400 Gallon Tank and K-Tron Feeder................................................42 Exhibit 12: Cardboard Box Layout of First Floor Equipment ..............................43... Exhibit 13: Continuous Mixer .............................................................................43 Exhibit 14: Gantry Palletizer...............................................................................44 Page 4 Acknowledgements I...

  4. Laboratory Equipment Donation Program - Equipment List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and masthead Berkeley LablooksEquipment List

  5. Health Care Buildings: Equipment Table

    U.S. Energy Information Administration (EIA) Indexed Site

    Equipment Table Buildings, Size and Age Data by Equipment Types for Health Care Buildings Number of Buildings (thousand) Percent of Buildings Floorspace (million square feet)...

  6. Fire suppression and detection equipment

    SciTech Connect (OSTI)

    E.E. Bates [HSB Professional Loss Control, Lexington, KY (United States)

    2006-01-15

    Inspection and testing guidelines go beyond the 'Code of Federal Regulation'. Title 30 of the US Code of Federal Regulations (30 CFR) contains requirements and references to national standards for inspection, testing and maintenance of fire suppression and detection equipment for mine operators. However, federal requirements have not kept pace with national standards and best practices. The article lists National Fire Protection (NFPA) standards that are referenced by the US Mine Safety and Health Administration (MSHA) in 30 CFR. It then discusses other NFPA Standards excluded from 30 CFR and explains the NFPA standard development process. 2 refs., 3 tabs., 5 photos.

  7. Equipment Operational Requirements

    SciTech Connect (OSTI)

    Greenwalt, B; Henderer, B; Hibbard, W; Mercer, M

    2009-06-11

    The Iraq Department of Border Enforcement is rich in personnel, but poor in equipment. An effective border control system must include detection, discrimination, decision, tracking and interdiction, capture, identification, and disposition. An equipment solution that addresses only a part of this will not succeed, likewise equipment by itself is not the answer without considering the personnel and how they would employ the equipment. The solution should take advantage of the existing in-place system and address all of the critical functions. The solutions are envisioned as being implemented in a phased manner, where Solution 1 is followed by Solution 2 and eventually by Solution 3. This allows adequate time for training and gaining operational experience for successively more complex equipment. Detailed descriptions of the components follow the solution descriptions. Solution 1 - This solution is based on changes to CONOPs, and does not have a technology component. It consists of observers at the forts and annexes, forward patrols along the swamp edge, in depth patrols approximately 10 kilometers inland from the swamp, and checkpoints on major roads. Solution 2 - This solution adds a ground sensor array to the Solution 1 system. Solution 3 - This solution is based around installing a radar/video camera system on each fort. It employs the CONOPS from Solution 1, but uses minimal ground sensors deployed only in areas with poor radar/video camera coverage (such as canals and streams shielded by vegetation), or by roads covered by radar but outside the range of the radar associated cameras. This document provides broad operational requirements for major equipment components along with sufficient operational details to allow the technical community to identify potential hardware candidates. Continuing analysis will develop quantities required and more detailed tactics, techniques, and procedures.

  8. Emergency Facilities and Equipment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

  9. Laboratory Equipment Donation Program - Application Process

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street LightingFrom theHighI _s - s i s i^

  10. Process Equipment Cost Estimation, Final Report

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding access toSmall Reactor forPatents -SciTech ConnectSciTechl*

  11. Liquid-Liquid Extraction Equipment

    SciTech Connect (OSTI)

    Jack D. Law; Terry A. Todd

    2008-12-01

    Solvent extraction processing has demonstrated the ability to achieve high decontamination factors for uranium and plutonium while operating at high throughputs. Historical application of solvent extraction contacting equipment implies that for the HA cycle (primary separation of uranium and plutonium from fission products) the equipment of choice is pulse columns. This is likely due to relatively short residence times (as compared to mixer-settlers) and the ability of the columns to tolerate solids in the feed. Savannah River successfully operated the F-Canyon with centrifugal contactors in the HA cycle (which have shorter residence times than columns). All three contactors have been successfully deployed in uranium and plutonium purification cycles. Over the past 20 years, there has been significant development of centrifugal contactor designs and they have become very common for research and development applications. New reprocessing plants are being planned in Russia and China and the United States has done preliminary design studies on future reprocessing plants. The choice of contactors for all of these facilities is yet to be determined.

  12. China production equipment sourcing strategy

    E-Print Network [OSTI]

    Chouinard, Natalie, 1979-

    2009-01-01

    This thesis recommends a China business and equipment strategy for the Controls Conveyor Robotics Welding (CCRW) group at General Motors. The current strategy is to use globally common equipment through predetermined global ...

  13. UNIRIB: Equipment Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0 - 19 Publications 1. Xie, Z.; Ma, L.;1Equipment

  14. Transportation Equipment (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source:...

  15. INL '@work' heavy equipment mechanic

    SciTech Connect (OSTI)

    Christensen, Cad

    2008-01-01

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  16. INL '@work' heavy equipment mechanic

    ScienceCinema (OSTI)

    Christensen, Cad

    2013-05-28

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  17. MERIT Equipment MERIT Video Conference

    E-Print Network [OSTI]

    McDonald, Kirk

    of Energy MERIT Equipment Dismantlement 1 Sept 2010 #12;What's Left · Hydraulic Power Unit (HPU disposal Sept 2010 (estimated) 2 Managed by UT-Battelle for the U.S. Department of Energy MERIT Equipment secondary containmentco ta e t · Hydraulic fluid drained & cylinders removed& cy de s e o ed 3 Managed by UT

  18. UCI Equipment Management Peter's Exchange

    E-Print Network [OSTI]

    Wood, Marcelo A.

    the Asset Retirement Global document available in KFS under KFS Capital Asset Management (as the EIMR formUCI Equipment Management Peter's Exchange (UCI Surplus Sales) SURPLUS PICK-UP REQUEST Department) Phone: (949) 824-6111, 6447, 6519, 6100 Fax this form to (949) 824-4115, or e-mail Equipment-Management

  19. Information technology equipment cooling method

    DOE Patents [OSTI]

    Schultz, Mark D.

    2015-10-20

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools air utilized by the rack of information technology equipment to cool the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat generated by the rack of information technology equipment.

  20. DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 3: HIGH TEMP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department ofRefrigerators | Department DOE1 DOE F5Department(SOFC)

  1. Process Laboratory Gustafson, Richard [University of Washington...

    Office of Scientific and Technical Information (OSTI)

    bioconversion steam explosion reactor and ancillary equipment such as a high pressure boiler and a fermenter to support the bioconversion process research. This equipment has been...

  2. Drilling equipment to shrink

    SciTech Connect (OSTI)

    Silverman, S.

    2000-01-01

    Drilling systems under development will take significant costs out of the well construction process. From small coiled tubing (CT) drilling rigs for North Sea wells to microrigs for exploration wells in ultra-deepwater, development projects under way will radically cut the cost of exploratory holes. The paper describes an inexpensive offshore system, reeled systems drilling vessel, subsea drilling rig, cheap exploration drilling, laser drilling project, and high-pressure water jets.

  3. Equipment specifications for an electrochemical fuel reprocessing plant

    SciTech Connect (OSTI)

    Hemphill, Kevin P [Los Alamos National Laboratory

    2010-01-01

    Electrochemical reprocessing is a technique used to chemically separate and dissolve the components of spent nuclear fuel, in order to produce new metal fuel. There are several different variations to electrochemical reprocessing. These variations are accounted for by both the production of different types of spent nuclear fuel, as well as different states and organizations doing research in the field. For this electrochemical reprocessing plant, the spent fuel will be in the metallurgical form, a product of fast breeder reactors, which are used in many nuclear power plants. The equipment line for this process is divided into two main categories, the fuel refining equipment and the fuel fabrication equipment. The fuel refining equipment is responsible for separating out the plutonium and uranium together, while getting rid of the minor transuranic elements and fission products. The fuel fabrication equipment will then convert this plutonium and uranium mixture into readily usable metal fuel.

  4. Origins of Eponymous Orthopaedic Equipment

    E-Print Network [OSTI]

    Meals, Clifton; Wang, Jeffrey

    2010-01-01

    equipment named for their inventors and in the broadest useof dermatology and a proli?c inventor. He produced a single-Foley’s described the inventor as having a ‘‘great presence

  5. Water-Using Equipment: Domestic

    SciTech Connect (OSTI)

    Solana, Amy E.; Mcmordie, Katherine

    2006-01-24

    Water management is an important aspect of energy engineering. This article addresses water-using equipment primarily used for household purposes, including faucets, showers, toilets, urinals, dishwashers, and clothes washers, and focuses on how the equipment can be optimized to save both water and energy. Technology retrofits and operation and maintenance changes are the primary methods discussed for water and energy conservation. Auditing to determine current consumption rates is also described for each technology.

  6. Summary of Construction Equipment Tests and Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment Tests A series of tests were conducted by the APS Construction Vibration Measurement Task Force using various pieces of construction equipment at the APCF...

  7. Calibrating Pesticide Application Ground Equipment 

    E-Print Network [OSTI]

    Shaw, Bryan W.

    2000-07-05

    - pose of rinse water as hazardous waste. Clean and lubricate the pump. Equipment used to apply certain pesticides should not be used to apply others. Do not use equipment to apply 2,4-D, MCPA, 2,4-DP, MCPP, and 2,4- DB for any other purpose because... or a commercial decontaminate for- mulation. Most contain a combination of soda ash, detergent and alkaline chlorine. Rinse thoroughly with clean water. Remove nozzles to clean screens and tips. Apply rinse water to a field per label requirements or dis...

  8. APPROVED MATERIALS FOR ALSEP EQUIPMENT

    E-Print Network [OSTI]

    Rathbun, Julie A.

    expanding Section I and Section II and adding Section III. New materials added in this revision are: 211 212#12;#12;: : . APPROVED MATERIALS FOR ALSEP EQUIPMENT NO. REV. NO. ATM 242 E PAGE COVER OF 54 DATE 213 322 323 324 417 418 419 612 613 806 1111 Materials reinstated (clarified type no.): 1009 Prepared

  9. Cleaning Mechanised Pesticide Spray Equipment

    E-Print Network [OSTI]

    , hoses, nozzles, valves and pumps of mechanised spraying equipment can contaminate operators and possibly bowls, hoses, tanks and pumps retain the most solution. This Technical Note sets out the procedures label for any special cleaning instructions. · Wear the protective clothing described on the pesticide

  10. Indexes for selected equipment show moderate increase

    SciTech Connect (OSTI)

    Farrar, G.

    1997-04-07

    Costs for six selected equipment items used in refining construction operations have been surveyed for the 3 years, 1994--1996. The accompanying table shows Nelson-Farrar equipment indexes for these items of equipment. The six categories of equipment tracked are bubble trays, fractionating towers, tube stills, valves and fittings, tanks and pressure vessels, and non-metallic building materials. Tables also present data on operating costs for materials, labor, and equipment.

  11. Used energy-related laboratory equipment grant program for institutions of higher learning. Eligible equipment catalog

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This is a listing of energy related equipment available through the Energy-Related Laboratory Equipment Grant Program which grants used equipment to institutions of higher education for energy-related research. Information included is an overview of the program, how to apply for a grant of equipment, eligibility requirements, types of equipment available, and the costs for the institution.

  12. Production lead time reduction in a semiconductor capital equipment manufacturing plant through optimized testing protocols

    E-Print Network [OSTI]

    Bhadauria, Anubha Singh

    2014-01-01

    Processes at a semiconductor equipment manufacturing facility were studied with the goal to reduce the production lead time. Based on the principles of lean manufacturing, DMAIC methodology was used to guide the process. ...

  13. Energy Comparison Vacuum Producing Equipment - Mechanical Vacuum Pumps vs. Steam Ejectors 

    E-Print Network [OSTI]

    Foisy, E. C.; Munkittrick, M. T.

    1982-01-01

    vacuum on condensers, process reactors, or equipment and processes requiring subatmospheric conditions, has been to utilize steam ejectors. Due to the inherent operating inefficiency and wastefulness of the steam ejector, coupled with the rapidly...

  14. Process Heating Assessment and Survey Tool | Department of Energy

    Energy Savers [EERE]

    methods to improve thermal efficiency of heating equipment. This tool helps industrial users survey process heating equipment that consumes fuel, steam, or electricity,...

  15. BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT.

    SciTech Connect (OSTI)

    KRISHNA,C.R.

    2001-12-01

    Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible.

  16. Abatement of Air Pollution: Air Pollution Control Equipment and Monitoring Equipment Operation (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations contain instructions for the operation and monitoring of air pollution control equipment, as well as comments on procedures in the event of equipment breakdown, failure, and...

  17. Operations and Maintenance for Major Equipment Types

    Broader source: Energy.gov [DOE]

    Equipment lies at the heart of all operations and maintenance (O&M) activities. This equipment varies greatly across the Federal sector in age, size, type, model, condition, etc.

  18. Asset Management Equipment Disposal Form -Refrigerant Recovery

    E-Print Network [OSTI]

    Sin, Peter

    EPA's rule, equipment that is typically dismantled on site before disposal (e.g., retail food vacuum, and for small appliances the recover equipment performance requirements are 90 percent efficiency

  19. Equipment Certification | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,Power Corp Jump to:SIBR JV JumpCertificationEquipment

  20. Agricultural Equipment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar EnergyAerodynall Countriescapital GmbH JumpEquipment Jump

  1. Equipment Insulation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop, IncsourceEnginuityBusinessEnviva MaterialsEquipment

  2. Equipment Listing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesof Energy ServicesEnergy4th Quarter 2012 for Equipment

  3. Slide 1

    Energy Savers [EERE]

    very high temps * Model cost and physical characteristics when scaling-up a process * New technologies * Selective targeted heating * Microwave & plasma heating * Efficient...

  4. Technical Comparative Analysis of "Best of Breed" Turnkey Si-Based Processes and Equipment, to be Used to Produce a Combined Multi-entity Research and Development Technology Roadmap for Thick and Thin Silicon PV

    SciTech Connect (OSTI)

    Hovel, Harold; Prettyman, Kevin

    2015-03-27

    A side-by-side analysis was done on then currently available technology, along with roadmaps to push each particular option forward. Variations in turnkey line processes can and do result in finished solar device performance. Together with variations in starting material quality, the result is a distribution of effciencies. Forensic analysis and characterization of each crystalline Si based technology will determine the most promising approach with respect to cost, efficiency and reliability. Forensic analysis will also shed light on the causes of binning variations. Si solar cells were forensically analyzed from each turn key supplier using a host of techniques

  5. Consider Steam Turbine Drives for Rotating Equipment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Turbine Drives for Rotating Equipment Consider Steam Turbine Drives for Rotating Equipment This tip sheet outlines the benefits of steam turbine drives for rotating equipment...

  6. WEAR RESISTANT ALLOYS FOR COAL HANDLING EQUIPMENT

    E-Print Network [OSTI]

    Bhat, M.S.

    2011-01-01

    Proceedings of the Conference on Coal Feeding Systems, HeldWear Resistant Alloys for Coal Handling Equipment", proposalWear Resistant Alloys for Coal Handling Equi pment". The

  7. Healthcare Energy: Spotlight on Medical Equipment

    Broader source: Energy.gov [DOE]

    The Building Technologies Office conducted a healthcare energy end-use monitoring project for two sites. Read details about large medical imaging equipment energy results.

  8. Pollution Control Equipment Tax Deduction (Alabama)

    Broader source: Energy.gov [DOE]

    The Pollution Control Equipment Tax Deduction allows businesses to deduct from their Alabama net worth the net amount invested in all devices, facilities, or structures, and all identifiable...

  9. Commercial and Industrial Kitchen Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    NOTE: All equipment must be installed on or after January 1, 2015 through December 31, 2015. The documentation must be received no later than March 31, 2016. 

  10. Energy Conservation Program for Certain Industrial Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards and Test Procedures for Commercial Heating, Air- Conditioning, and Water-Heating Equipment AGENCY: Office of Energy Efficiency and Renewable Energy, Department...

  11. PPP Equipment Corporation | Open Energy Information

    Open Energy Info (EERE)

    PPP Equipment Corporation Sector: Solar Product: PPP-E designs, produces and markets Chemical Vapor Deposition (CVD) reactors and converter systems producing high-purity...

  12. dieSel/heAvy equipMent College of Rural and Community Development

    E-Print Network [OSTI]

    Hartman, Chris

    credits The diesel and heavy equipment mechanics program offers the student training in the maintenance and repair of trucks, buses and heavy equip- ment. This one-year certificate program emphasizes hands of equipment problems and make nec- essary repairs and adjustments from tune-ups to complete engine

  13. Use Lower Flammable Limit Monitoring Equipment to Improve Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    requiring 46 gallons of xylol with a maximum oven temperature of 800F and ambient air temperature of 70F, the safety ventilation ratio is 4:1 without LFL monitoring...

  14. Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-Sessions | Department ofVP ofof EnergyFact Sheet UraniumEfficiency |

  15. Modular Process Equipment for Low Cost Manufacturing of High Capacity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX F Wetlandsof Energy ModelSEI Layer |Department

  16. Materials Selection Considerations for Thermal Process Equipment: A

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof Energy ThisSitesStorage Center of Excellence

  17. List of Processing and Manufacturing Equipment Incentives | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressed airGeothermalListPersonal

  18. Appendix D: Facility Process Data and Appendix E: Equipment Calibration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDITLeslieAlgaeAnatomy of aoffor a

  19. The design and testing of subsea production equipment: Current practice and potential for the future

    SciTech Connect (OSTI)

    Cort, A.J.C.; Ford, J.T.

    1995-12-31

    This paper presents an analysis of the current approach to the design and testing of equipment used in subsea developments. The paper critically assesses the current equipment specification, design, manufacture and testing process. An essential part of the analysis is a review of the standards used by the industry and statutory regulations which impact on this process. It raises significant questions about the efficacy of the design and testing procedures and the role of the regulating bodies in that process. It discusses the impact of poor specification and design procedures, and inadequate testing, of the safety and reliability of the equipment. As a consequence of the analysis it is suggested that the manner in which equipment is specified, designed and tested may need to be changed in order to meet future needs. The above issues are focused, by considering the production of a subsea wellhead, from specification by the operator to delivery by the manufacturer.

  20. Subsea equipment marriage is top ROV priority

    SciTech Connect (OSTI)

    Redden, J.

    1985-04-01

    Interfacing subsea equipment with remotely operated vehicles (ROV's) and the further development of arctic-class units are the primary challenges facing manufacturers. Worldwide use of the ROV for drilling support has exploded during this decade as oil companies continue their search in deeper waters. If the unmanned vehicles are to become an even more integral tool of the oilman, experts say they must be able to perform more complex tasks. The evolution of more multi-purpose ROVs, however, hinges on the redesigning of subsea equipment. The severe limitations on subsea support (by ROVs) is the obsolete design associated with the subsea equipment itself. These limitations are discussed.

  1. Water-Using Equipment: Commercial and Industrial

    SciTech Connect (OSTI)

    Solana, Amy E.; Mcmordie, Katherine

    2006-01-24

    Water is an important aspect of many facets in energy engineering. While the previous article detailed domestic related water-using equipment such as toilets and showerheads, this article focuses on various types of water-using equipment in commercial and industrial facilities, including commercial dishwashers and laundry, single-pass cooling equipment, boilers and steam generators, cooling towers, and landscape irrigation. Opportunities for water and energy conservation are explained, including both technology retrofits and operation and maintenance changes. Water management planning and leak detection are also included as they are essential to a successful water management program.

  2. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  3. Feasibility of gas-phase decontamination of gaseous diffusion equipment

    SciTech Connect (OSTI)

    Munday, E.B.; Simmons, D.W.

    1993-02-01

    The five buildings at the K-25 Site formerly involved in the gaseous diffusion process contain 5000 gaseous diffusion stages as well as support facilities that are internally contaminated with uranium deposits. The gaseous diffusion facilities located at the Portsmouth Gaseous Diffusion Plant and the Paducah Gaseous Diffusion Plant also contain similar equipment and will eventually close. The decontamination of these facilities will require the most cost-effective technology consistent with the criticality, health physics, industrial hygiene, and environmental concerns; the technology must keep exposures to hazardous substances to levels as low as reasonably achievable (ALARA). This report documents recent laboratory experiments that were conducted to determine the feasibility of gas-phase decontamination of the internal surfaces of the gaseous diffusion equipment that is contaminated with uranium deposits. A gaseous fluorinating agent is used to fluorinate the solid uranium deposits to gaseous uranium hexafluoride (UF[sub 6]), which can be recovered by chemical trapping or freezing. The lab results regarding the feasibility of the gas-phase process are encouraging. These results especially showed promise for a novel decontamination approach called the long-term, low-temperature (LTLT) process. In the LTLT process: The equipment is rendered leak tight, evacuated, leak tested, and pretreated, charged with chlorine trifluoride (ClF[sub 3]) to subatmospheric pressure, left for an extended period, possibly > 4 months, while processing other items. Then the UF[sub 6] and other gases are evacuated. The UF[sub 6] is recovered by chemical trapping. The lab results demonstrated that ClF[sub 3] gas at subatmospheric pressure and at [approx] 75[degree]F is capable of volatilizing heavy deposits of uranyl fluoride from copper metal surfaces sufficiently that the remaining radioactive emissions are below limits.

  4. Feasibility of gas-phase decontamination of gaseous diffusion equipment

    SciTech Connect (OSTI)

    Munday, E.B.; Simmons, D.W.

    1993-02-01

    The five buildings at the K-25 Site formerly involved in the gaseous diffusion process contain 5000 gaseous diffusion stages as well as support facilities that are internally contaminated with uranium deposits. The gaseous diffusion facilities located at the Portsmouth Gaseous Diffusion Plant and the Paducah Gaseous Diffusion Plant also contain similar equipment and will eventually close. The decontamination of these facilities will require the most cost-effective technology consistent with the criticality, health physics, industrial hygiene, and environmental concerns; the technology must keep exposures to hazardous substances to levels as low as reasonably achievable (ALARA). This report documents recent laboratory experiments that were conducted to determine the feasibility of gas-phase decontamination of the internal surfaces of the gaseous diffusion equipment that is contaminated with uranium deposits. A gaseous fluorinating agent is used to fluorinate the solid uranium deposits to gaseous uranium hexafluoride (UF{sub 6}), which can be recovered by chemical trapping or freezing. The lab results regarding the feasibility of the gas-phase process are encouraging. These results especially showed promise for a novel decontamination approach called the long-term, low-temperature (LTLT) process. In the LTLT process: The equipment is rendered leak tight, evacuated, leak tested, and pretreated, charged with chlorine trifluoride (ClF{sub 3}) to subatmospheric pressure, left for an extended period, possibly > 4 months, while processing other items. Then the UF{sub 6} and other gases are evacuated. The UF{sub 6} is recovered by chemical trapping. The lab results demonstrated that ClF{sub 3} gas at subatmospheric pressure and at {approx} 75{degree}F is capable of volatilizing heavy deposits of uranyl fluoride from copper metal surfaces sufficiently that the remaining radioactive emissions are below limits.

  5. Consider Steam Turbine Drives for Rotating Equipment

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

  6. An Approach to Evaluating Equipment Efficiency Policies 

    E-Print Network [OSTI]

    Newsom, D. E.; Evans, A. R.

    1980-01-01

    The National Energy Conservation Policy Act of 1978 authorized studies of several types of industrial equipment to evaluate the technical and economic feasibility of labeling rules and minimum energy efficiency standards. An approach...

  7. Industrial Equipment Demand and Duty Factors 

    E-Print Network [OSTI]

    Dooley, E. S.; Heffington, W. M.

    1998-01-01

    Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air ...

  8. Hot conditioning equipment conceptual design report

    SciTech Connect (OSTI)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  9. Solar Equipment Certification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4Energy SmoothEquipment Certification Solar Equipment

  10. Gasoline from coal in the state of Illinois: feasibility study. Volume I. Design. [KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Volume 1 describes the proposed plant: KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process, and also with ancillary processes, such as oxygen plant, shift process, RECTISOL purification process, sulfur recovery equipment and pollution control equipment. Numerous engineering diagrams are included. (LTN)

  11. Electricity Used by Office Equipment and Network Equipment in the U.S.: Detailed Report and Appendices

    E-Print Network [OSTI]

    LBNL-45917 Electricity Used by Office Equipment and Network Equipment in the U.S.: Detailed Report..............................................................................................46 #12;#12;1 Electricity Used by Office Equipment and Network Equipment in the U.S. Kaoru Kawamoto and network equipment, there has been no recent study that estimates in detail how much electricity

  12. Abatement of Air Pollution: Air Pollution Control Equipment and...

    Broader source: Energy.gov (indexed) [DOE]

    contain instructions for the operation and monitoring of air pollution control equipment, as well as comments on procedures in the event of equipment breakdown, failure, and...

  13. Early Markets: Fuel Cells for Material Handling Equipment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Early Markets: Fuel Cells for Material Handling Equipment Early Markets: Fuel Cells for Material Handling Equipment This fact sheet describes the use of hydrogen fuel cells to...

  14. Best Management Practice #9: Single-Pass Cooling Equipment |...

    Energy Savers [EERE]

    degreasers, hydraulic equipment, condensers, air compressors, welding machines, vacuum pumps, ice machines, x-ray equipment, and air conditioners. To remove the same heat...

  15. Cold-Start Emissions Control in Hybrid Vehicles Equipped with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for...

  16. Data Center Efficiency and IT Equipment Reliability at Wider...

    Energy Savers [EERE]

    Data Center Efficiency and IT Equipment Reliability at Wider Operating Temperature and Humidity Ranges Data Center Efficiency and IT Equipment Reliability at Wider Operating...

  17. Dispensing Equipment Testing With Mid-Level Ethanol/Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid The National Renewable Energy...

  18. Guide to Low-Emission Boiler and Combustion Equipment Selection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Emission Boiler and Combustion Equipment Selection Guide to Low-Emission Boiler and Combustion Equipment Selection The guide provides background information about various types...

  19. Saving Energy and Money with Appliance and Equipment Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Equipment Standards in the United States Overview Appliance and equipment efficien- cy standards have served as one of the nation's most effective policies for...

  20. LABORATORY EQUIPMENT Most of the work at the Automation and Control Institute is done with the

    E-Print Network [OSTI]

    15 4 LABORATORY EQUIPMENT Most of the work at the Automation and Control Institute is done-time software applications, too. Figure 1. Distillation process. A semi-industrial scale binary (ethanol with MetsoDNA open automation system. When testing more sophisticated control algorithms the process data

  1. Electrical Metering Equipment and Sensors Appendix D -Electrical Metering Equipment and Sensors

    E-Print Network [OSTI]

    Appendix D ­ Electrical Metering Equipment and Sensors #12;D.1 Appendix D - Electrical Metering Equipment and Sensors D.1 Controllable Electrical Panel Figure D.1. Square D Power Link Electrical Panel D.1.1 Schneider Electric/Square D Power Link G3 Control System The Square D Powerlink G3 offers programmable

  2. Injection Molding-Injection Molding Process Description

    E-Print Network [OSTI]

    Colton, Jonathan S.

    Injection Molding-Injection Molding Process Description ver. 1 ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton © GIT 2009 2 #12;EquipmentEquipment Cl M ld B lClamp Mold Hopper Barrel ME 4210;Machine schematic ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton © GIT 2009 6 #12;Mold

  3. Radiochemical Separation & Processing | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in specially-designed equipment in one of the hot cells in Building 7920. Solvent extraction flowsheets for processing irradiated fuels from commercial light water reactors...

  4. Enabling process improvements through visual performance indicators

    E-Print Network [OSTI]

    McCaghren, Neville G. (Neville Gregory)

    2005-01-01

    Most modern production processes automatically generate volumes of rich data, including equipment states, material presentations, labor content, and quality non- conformances. Unfortunately, much of this data is either ...

  5. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...

    Broader source: Energy.gov (indexed) [DOE]

    Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Guide to Low-Emission Boiler and Combustion Equipment Selection...

  6. APPROVED MATERIALS LIST FOR ALSEP EQUIPMENT

    E-Print Network [OSTI]

    Rathbun, Julie A.

    APPROVED MATERIALS LIST FOR ALSEP EQUIPMENT Addendum 1 ATU 242 I (E1) I PAGE-~ OF 39 DATE July 15, 1971 1. Amendment 1 to ATM 242 is issued to incorporate additional non-metallic materials which can operation and storage period. 2. Show alternate material designation for EPON adhesives made by Hysol after

  7. Engineering study of riser equipment contamination

    SciTech Connect (OSTI)

    BOGER, R.M.

    1999-08-25

    This Engineering Study was to evaluate the current equipment and operating procedures to determine if changes could be made to improve ALARA and evaluate the feasibility of implementing the proposed solutions. As part of this study input from the cognizant characterization engineers and operating sampling crews was obtained and evaluated for ALARA improvements.

  8. Research equipment: Surface Acoustic Wave (SAW) devices

    E-Print Network [OSTI]

    Gizeli, Electra

    Research equipment: Surface Acoustic Wave (SAW) devices: Operating frequencies @50MHz, 104MHz, 110 outputs measuring the real-time change of the phase and amplitude of the acoustic wave. More specifically with Dissipation monitoring (QCM-D): Qsense D-300 for real-time acoustic measurements at low frequencies (5-35MHz

  9. On Storage Operators LAMA -Equipe de Logique

    E-Print Network [OSTI]

    Nour, Karim

    On Storage Operators Karim NOUR LAMA - Equipe de Logique Universit´e de Savoie 73376 Le Bourget du Lac e-mail nour@univ-savoie.fr Abstract In 1990 Krivine (1990b) introduced the notion of storage shown that there is a very simple type in the AF2 type system for storage operators using Godel

  10. Test and Test Equipment Joshua Lottich

    E-Print Network [OSTI]

    Patel, Chintan

    Test and Test Equipment Joshua Lottich CMPE 640 11/23/05 #12;Testing Verifies that manufactured chip meets design specifications. Cannot test for every potential defect. Modeling defects as faults allows for passing and failing of chips. Ideal test would capture all defects and pass only chips

  11. Project Sponsor: An Original Equipment Manufacturer (confidential)

    E-Print Network [OSTI]

    Mease, Kenneth D.

    transfer within the boiler while staying within the O2 concentration limits set by existing equipment high concentration of CO2 in the gas flowing through the boiler, the difference in physical properties air into the boiler, a downstream CO2purification step (cryogenic) is required to meet

  12. University of California Policy Personal Protective Equipment

    E-Print Network [OSTI]

    Aluwihare, Lihini

    and regulatory standards require the supervisor to select Personal Protective Equipment (PPE) for workers under is included in Appendix A. Laboratory/Technical Areas: For the purposes of this policy, a laboratory/technical, the default "supervisor" in laboratory/technical areas is the Principal Investigator. Use or Storage

  13. Safety Topic: Rota/ng Equipment

    E-Print Network [OSTI]

    Cohen, Robert E.

    Safety Topic: Rota/ng Equipment Jus/n Kleingartner #12;Safety protocols for opera/ng a lathe · Dos: ­ Locate emergency stop bu?on before use ­ Be sure 2 #12;Safety protocols for opera/ng a lathe · Don'ts: ­ Do not wear gloves

  14. Right-Sizing Laboratory Equipment Loads

    SciTech Connect (OSTI)

    Frenze, David; Greenberg, Steve; Mathew, Paul; Sartor, Dale; Starr, William

    2005-11-29

    Laboratory equipment such as autoclaves, glass washers, refrigerators, and computers account for a significant portion of the energy use in laboratories. However, because of the general lack of measured equipment load data for laboratories, designers often use estimates based on 'nameplate' rated data, or design assumptions from prior projects. Consequently, peak equipment loads are frequently overestimated. This results in oversized HVAC systems, increased initial construction costs, and increased energy use due to inefficiencies at low part-load operation. This best-practice guide first presents the problem of over-sizing in typical practice, and then describes how best-practice strategies obtain better estimates of equipment loads and right-size HVAC systems, saving initial construction costs as well as life-cycle energy costs. This guide is one in a series created by the Laboratories for the 21st Century ('Labs21') program, a joint program of the U.S. Environmental Protection Agency and U.S. Department of Energy. Geared towards architects, engineers, and facilities managers, these guides provide information about technologies and practices to use in designing, constructing, and operating safe, sustainable, high-performance laboratories.

  15. SONIC EQUIPMENT FOR TRACKING INDIVIDUAL FISH

    E-Print Network [OSTI]

    . The equipment can be used in varied hydraulic conditions and in fresh or salt water to track the movements of individual adult salmon in relation to Columbia River dams. Each dam on the Columbia River presents a chance for delay in migration with injurious consequences if the delay is prolonged. Since new dams are under

  16. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  17. Commercial HVAC and Water-Heating Equipment Minimum Efficiency Standards in the United States

    SciTech Connect (OSTI)

    Nasseri, Cyrus H.; Somasundaram, Sriram

    2001-08-01

    ABSTRACT In 1992, Federal legislation mandated that the U.S. Department of Energy (DOE) set the efficiency levels in the then-current ASHRAE Standard 90.1 as mandatory minimums for heating, ventilating, and air-conditioning (HVAC) and service water-heating (SWH) equipment sold in the U.S. market, as well as a process for revising the minimum equipment efficiency standards to comply with requirements in an updated Standard 90.1. Because Standard 90.1 was updated in October 1999 (Standard 90.1-1999), DOE is now undertaking a rulemaking process for these equipment categories. In January 2001, DOE published a final rule adopting Standard 90.1-1999 levels as uniform national standards for 18 product categories of commercial HVAC and SWH equipment. For 11 other categories of commercial products, DOE has signaled its intention to consider more stringent standards than those adopted by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE). DOE has now initiated a formal rulemaking process to further analyze these equipment categories.

  18. Requisition's, Donations, Gifts, Transfers of Equipment There are several ways the University acquires equipment.

    E-Print Network [OSTI]

    as either a Donation or a Transfer. The Property Management Office is re- sponsible for capturing the cost equipment received or purchased. 1 Issue 2 May 2014 The end is near! VOLUME 1 focusDE-MYSTIFYING CAPITA L

  19. Dairy Manure Handling Systems and Equipment

    E-Print Network [OSTI]

    Sweeten, John M.

    1983-01-01

    Equipment Type System Tank Wagon, Surface spread' Tank Wagon , Surface spread' Tank Wagon, Soil injection' Irrigation , Stationary gun Irrigation , Traveling gun Irrigation, Traveling gun Nominal capacity 1,500 gal. 3,000 gal. 3,000 gal... wagon and 2000 It. haul distance labor. The total cost of pump, irrigation pipe, and traveling gun sprinkler is similar to the cost of a tank wagon system excluding the power unit (tractor) . Direct slurry irrigation systems can serve the dual...

  20. Laser alignment of rotating equipment at PNL

    SciTech Connect (OSTI)

    Berndt, R.H.

    1994-05-01

    Lateral vibration in direct-drive equipment is usually caused by misalignment. Over the years, because of the need to improve on techniques and ways of working more efficiently, various types of alignment methods have evolved. In the beginning, craftsmen used a straight-edge scale across the coupling with a feeler gauge measuring the misalignment error. This is still preferred today for aligning small couplings. The industry has since decided that alignment of large direct-drive equipment needed a more accurate type of instrumentation. Rim and face is another of the first alignment methods and is used on all sizes of equipment. A disadvantage of the rim and face method is that in most cases the coupling has to be disassembled. This can cause alignment problems when the coupling is reassembled. Also, the rim and face method is not fast enough to work satisfactorily on alignment of thermally hot equipment. Another concern is that the coupling has to be manufactured accurately for correct rim and face readings. Reverse dial alignment is an improvement over the rim and face method, and depending on the operator`s experience, this method can be very accurate. A good training program along with field experience will bring the operator to a proper level of proficiency for a successful program. A hand-held computer with reverse dial calculations in memory is a must for job efficiency. An advantage over the rim and face method is that the coupling is not disassembled and remains locked together. Reverse dial instrumentation measures from both shaft center lines, rather than the coupling surface so the machining of the coupling during manufacture is not a major concern.

  1. Measured Peak Equipment Loads in Laboratories

    SciTech Connect (OSTI)

    Mathew, Paul A.

    2007-09-12

    This technical bulletin documents measured peak equipment load data from 39 laboratory spaces in nine buildings across five institutions. The purpose of these measurements was to obtain data on the actual peak loads in laboratories, which can be used to rightsize the design of HVAC systems in new laboratories. While any given laboratory may have unique loads and other design considerations, these results may be used as a 'sanity check' for design assumptions.

  2. Direct Liquid Cooling for Electronic Equipment

    SciTech Connect (OSTI)

    Coles, Henry; Greenberg, Steve

    2014-03-01

    This report documents a demonstration of an electronic--equipment cooling system in the engineering prototype development stage that can be applied in data centers. The technology provides cooling by bringing a water--based cooling fluid into direct contact with high--heat--generating electronic components. This direct cooling system improves overall data center energy efficiency in three ways: High--heat--generating electronic components are more efficiently cooled directly using water, capturing a large portion of the total electronic equipment heat generated. This captured heat reduces the load on the less--efficient air--based data center room cooling systems. The combination contributes to the overall savings. The power consumption of the electronic equipment internal fans is significantly reduced when equipped with this cooling system. The temperature of the cooling water supplied to the direct cooling system can be much higher than that commonly provided by facility chilled water loops, and therefore can be produced with lower cooling infrastructure energy consumption and possibly compressor-free cooling. Providing opportunities for heat reuse is an additional benefit of this technology. The cooling system can be controlled to produce high return water temperatures while providing adequate component cooling. The demonstration was conducted in a data center located at Lawrence Berkeley National Laboratory in Berkeley, California. Thirty--eight servers equipped with the liquid cooling system and instrumented for energy measurements were placed in a single rack. Two unmodified servers of the same configuration, located in an adjacent rack, were used to provide a baseline. The demonstration characterized the fraction of heat removed by the direct cooling technology, quantified the energy savings for a number of cooling infrastructure scenarios, and provided information that could be used to investigate heat reuse opportunities. Thermal measurement data were used with data center energy use modeling software to estimate overall site energy use. These estimates show that an overall data center energy savings of approximately 20 percent can be expected if a center is retrofitted as specified in the models used. Increasing the portion of heat captured by this technology is an area suggested for further development.

  3. Sales and Use Tax Exemption for Electrical Generating Equipment

    Broader source: Energy.gov [DOE]

    Indiana does not have a specific sales and use tax exemption for equipment used in the production of renewable electricity. Therefore, such equipment is presumed to be subject to sales and use tax....

  4. Anne Arundel County- Solar and Geothermal Equipment Property Tax Credits

    Broader source: Energy.gov [DOE]

    Anne Arundel County offers a one-time credit from county property taxes on residential dwellings that use solar and geothermal energy equipment for heating and cooling, and solar energy equipment...

  5. Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF In reference...

  6. Optimal Deployment of Emissions Reduction Technologies for Construction Equipment

    E-Print Network [OSTI]

    Quadrifoglio, Luca

    Optimal Deployment of Emissions Reduction Technologies for Construction Equipment Muhammad Ehsanul The objective of this research was to develop a multiob- jective optimization model to deploy emissions reduction technologies for nonroad construction equipment to re- duce emissions in a cost

  7. Best Management Practice #12: Laboratory and Medical Equipment

    Broader source: Energy.gov [DOE]

    Equipment used in hospitals and laboratories can use significant amounts of water, offering the opportunity for substantial water savings by making a few small changes to how and when the water is used by the equipment.

  8. Equipment acquisition plans for the SSCL magnet excitation power system

    SciTech Connect (OSTI)

    Winje, R.

    1993-05-01

    This report gives a brief description of the major electrical technical equipment used in the Superconducting Super Collider accelerators systems and the present laboratory plans for the acquisition of the equipment.

  9. Balance-of-System Equipment Required for Renewable Energy Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Balance-of-System Equipment Required for Renewable Energy Systems Balance-of-System Equipment Required for Renewable Energy Systems July 2, 2012 - 8:21pm Addthis Both...

  10. Training Room Equipment Instructions Projector and TV Display

    E-Print Network [OSTI]

    Crawford, T. Daniel

    Training Room Equipment Instructions Projector and TV Display The control panel on the wall are connected to a training room computer and room is equipped with a keyboard, mouse and clicker. Connect USB

  11. Data Network Equipment Energy Use and Savings Potential in Buildings

    E-Print Network [OSTI]

    Lanzisera, Steven

    2010-01-01

    separate router with combined wireless and wired capabilityrouter. The category of “Other Customer Premises Equipment” covers users of satellite, fixed wireless, androuters, firewalls, modems (service provider and customer premises equipment), network security appliances, and wireless

  12. Optimal Sequencing of Central Refrigeration Equipment in an Industrial Plant 

    E-Print Network [OSTI]

    Fiorino, D. P.; Priest, J. W.

    1986-01-01

    A model was developed to find a viable solution to the problem of selecting the optimal sequence of refrigeration equipment (chillers, cooling towers, pumps) to operate in a Central Utility Plant. The optimal equipment sequence is that sequence...

  13. Electrical Equipment Replacement: Energy Efficiency versus System Compatibility 

    E-Print Network [OSTI]

    Massey, G. W.

    2005-01-01

    Electrical equipment components are replaced every day because of failure, obsolescence, or upgrade. Because of technological gains, replacement components are typically more energy efficient than older equipment. Life cycle cost analyses encourage...

  14. Disciplined agility for process control & automation

    E-Print Network [OSTI]

    Tibazarwa, Augustine

    2009-01-01

    Process automation vendors must consider agility as a basis to gain a competitive edge in innovation. Process Automation systems can impact the operating cost of manufacturing equipment, the safe control of large quantities ...

  15. Safe Operating Procedure LOCKOUT/TAGOUT FOR MACHINES & EQUIPMENT

    E-Print Network [OSTI]

    Tsymbal, Evgeny Y.

    Safe Operating Procedure (5/11) LOCKOUT/TAGOUT FOR MACHINES & EQUIPMENT: SPECIAL CIRCUMSTANCES://ehs.unl.edu/) Introduction This SOP is intended to work in tandem with other EHS SOPs related to Lockout/Tagout (LO/TO): · Lockout/Tagout for Machines & Equipment: Program Overview · Lockout/Tagout for Machines & Equipment

  16. BCM 1 Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass andAtomsVehicles and FuelsjBBEE Public1 Equipment

  17. BCM 2 Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass andAtomsVehicles and FuelsjBBEE Public1 Equipment2

  18. Cruising Equipment Company CECO | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation EU-UNDPCross-LaminatedCruising Equipment Company

  19. LANSCE | Lujan Center | Instruments | ASTERIX | Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource and Job Event InLANLRecoveryEquipment Surfaces

  20. Laboratory Equipment & Supplies | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScience (SC) DirectedEquipment & Supplies

  1. Laboratory Equipment Donation Program - Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScience (SC) DirectedEquipment &

  2. INL Equipment to Aid Regional Response Team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHighHussein KhalilResearch8 IEEEINL Equipment to Aid Regional

  3. Laboratory Equipment Donation Program - Guidelines/FAQ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and masthead Berkeley LablooksEquipment

  4. High Temperature Calcination - MACT Upgrade Equipment Pilot Plant Test

    SciTech Connect (OSTI)

    Richard D. Boardman; B. H. O'Brien; N. R. Soelberg; S. O. Bates; R. A. Wood; C. St. Michel

    2004-02-01

    About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste are stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Calcination at high-temperature conditions (600 C, with alumina nitrate and calcium nitrate chemical addition to the feed) is one of four options currently being considered by the Department of Energy for treatment of the remaining tank wastes. If calcination is selected for future processing of the sodium-bearing waste, it will be necessary to install new off-gas control equipment in the New Waste Calcining Facility (NWCF) to comply with the Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors and incinerators. This will require, as a minimum, installing a carbon bed to reduce mercury emissions from their current level of up to 7,500 to <45 {micro}g/dscm, and a staged combustor to reduce unburned kerosene fuel in the off-gas discharge to <100 ppm CO and <10 ppm hydrocarbons. The staged combustor will also reduce NOx concentrations of about 35,000 ppm by 90-95%. A pilot-plant calcination test was completed in a newly constructed 15-cm diameter calciner vessel. The pilot-plant facility was equipped with a prototype MACT off-gas control system, including a highly efficient cyclone separator and off-gas quench/venturi scrubber for particulate removal, a staged combustor for unburned hydrocarbon and NOx destruction, and a packed activated carbon bed for mercury removal and residual chloride capture. Pilot-plant testing was performed during a 50-hour system operability test January 14-16, followed by a 100-hour high-temperature calcination pilot-plant calcination run January 19-23. Two flowsheet blends were tested: a 50-hour test with an aluminum-to-alkali metal molar ratio (AAR) of 2.25, and a 50-hour test with an AAR of 1.75. Results of the testing indicate that sodium-bearing waste can be successfully calcined at 600 C with an AAR of 1.75. Unburned hydrocarbons are reduced to less than 10 ppm (7% O2, dry basis), with >90% reduction of NOx emissions. Mercury removal by the carbon bed reached 99.99%, surpassing the control efficiency needed to meet MACT emissions standards. No deleterious impacts on the carbon bed were observed during the tests. The test results imply that upgrading the NWCF calciner with a more efficient cyclone separator and the proposed MACT equipment can process the remaining tanks wastes in 3 years or less, and comply with the MACT standards.

  5. Mixed Oxide Fresh Fuel Package Auxiliary Equipment

    SciTech Connect (OSTI)

    Yapuncich, F.; Ross, A. [AREVA Federal Services (AFS), Tacoma WA (United States); Clark, R.H. [Shaw AREVA MOX Services, Savannah River Site, Aiken, SC (United States); Ammerman, D. [Sandia National Laboratories, Albuquerque, NM (United States)

    2008-07-01

    The United States Department of Energy's National Nuclear Security Administration (NNSA) is overseeing the construction the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) on the Savannah River Site. The new facility, being constructed by NNSA's contractor Shaw AREVA MOX Services, will fabricate fuel assemblies utilizing surplus plutonium as feedstock. The fuel will be used in designated commercial nuclear reactors. The MOX Fresh Fuel Package (MFFP), which has recently been licensed by the Nuclear Regulatory Commission (NRC) as a type B package (USA/9295/B(U)F-96), will be utilized to transport the fabricated fuel assemblies from the MFFF to the nuclear reactors. It was necessary to develop auxiliary equipment that would be able to efficiently handle the high precision fuel assemblies. Also, the physical constraints of the MFFF and the nuclear power plants require that the equipment be capable of loading and unloading the fuel assemblies both vertically and horizontally. The ability to reconfigure the load/unload evolution builds in a large degree of flexibility for the MFFP for the handling of many types of both fuel and non fuel payloads. The design and analysis met various technical specifications including dynamic and static seismic criteria. The fabrication was completed by three major fabrication facilities within the United States. The testing was conducted by Sandia National Laboratories. The unique design specifications and successful testing sequences will be discussed. (authors)

  6. Emergency sacrificial sealing method in filters, equipment, or systems

    DOE Patents [OSTI]

    Brown, Erik P

    2014-09-30

    A system seals a filter or equipment component to a base and will continue to seal the filter or equipment component to the base in the event of hot air or fire. The system includes a first sealing material between the filter or equipment component and the base; and a second sealing material between the filter or equipment component and the base and proximate the first sealing material. The first sealing material and the second seal material are positioned relative to each other and relative to the filter or equipment component and the base to seal the filter or equipment component to the base and upon the event of fire the second sealing material will be activated and expand to continue to seal the filter or equipment component to the base in the event of hot air or fire.

  7. Performance evaluation of the quarter-scale Russian retrieval equipment for the removal of hazardous waste

    SciTech Connect (OSTI)

    Enderlin, C.W.; Mullen, O.D.; Terrones, G.

    1997-09-01

    This report describes the test program for evaluating the Russian Retrieval Equipment fabricated by the Integrated Mining Chemical Company (IMCC) and delivered to the US by Radiochem Services Company (RCSC), both of Russia. The testing and fabrication of this equipment were sponsored by the US Department of Energy (DOE). The tests described in this report were conducted at the Pacific Northwest National Laboratory (PNNL) at the DOE Hanford Site by the Retrieval Process Development and Enhancement (RPD and E) team of the Tank Focus Area program (TFA). Tests were carried out jointly by Russian and US personnel for the purpose of evaluating the Russian Retrieval Equipment for potential deployment within the DOE complex. Section 1.0 of this report presents the objectives and a brief background for the test program. The Russian Equipment is described in Section 2.0. Section 3.0 describes the approach taken for testing the equipment. The results of the tests and an analysis of the data are described in Section 4.0. The results and observations obtained from the tests are discussed in Section 5.0. Recommendations and conclusions are presented in Section 6.0.

  8. Pervaporation process and assembly

    DOE Patents [OSTI]

    Wynn, Nicholas P. (Redwood City, CA); Huang, Yu (Palo Alto, CA); Aldajani, Tiem (San Jose, CA); Fulton, Donald A. (Fairfield, CA)

    2010-07-20

    The invention is a pervaporation process and pervaporation equipment, using a series of membrane modules, and including inter-module reheating of the feed solution under treatment. The inter-module heating is achieved within the tube or vessel in which the modules are housed, thereby avoiding the need to repeatedly extract the feed solution from the membrane module train.

  9. Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment

    Broader source: Energy.gov [DOE]

    Most lawn and garden equipment uses gasoline instead of diesel fuel. Mowing equipment consumes nearly half of all the fuel used by lawn and garden equipment. The fuel used in this equipment...

  10. Estimation and Reduction Methodologies for Fugitive Emissions from Equipment 

    E-Print Network [OSTI]

    Scataglia, A.

    1992-01-01

    and Reduction Methodologies for Fugitive Emissions from Equipment Anthony Scataglia, Branch Manager, Team, Incorporated, Webster, Texas ABSTRACT Environmental regulations have resulted in the need for industrial facilities to reduce fugitive emissions... from equipment leaks to their lowest possible level. This paper presents and compares approved methods outlined by the U.S. Environmental Protection Agency (EPA) for estimating fugitive emissions from equipment leaks, as well as strategies...

  11. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-10-01

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  12. Alternative Fuel and Advanced Technology Commercial Lawn Equipment

    SciTech Connect (OSTI)

    2014-10-10

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  13. Saving Energy and Money with Appliance and Equipment Standards...

    Office of Environmental Management (EM)

    clothes washers, commercial refrigeration equipment, walk-in coolers and freezers, electric motors, general service fluorescent lamps (GSFLs), metal halide lamp fixtures,...

  14. Operations and Maintenance for Major Equipment Types | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    website. Instead, the Federal Energy Management Program (FEMP) outlines major equipment types within chapter 9 of the Federal Energy Management Programs's (FEMP) O&M Best...

  15. Reduction of fire hazards on large mining equipment

    SciTech Connect (OSTI)

    Maria I. De Rosa

    2008-09-15

    Although standards and regulations are in place to prevent large mining equipment fires, recent analyses of mine accident data show that mining equipment fires still occur with alarming frequency and grave consequences, particularly at all surface mines and in underground metal/nonmetal mines. Recently technological advances in fire protection, combined with the statistical data on equipment fires, led NIOSH to reinvestigate this and to improve operator safety. NIOSH demonstrated that newly developed technologies, such as dual cab fire inerting systems and engine compartment fire barriers, can greatly enhance operator safety and lessen the damage of property during large mobile equipment fires. 10 refs., 5 figs.

  16. Condensing Heating and Water Heating Equipment Workshop Location...

    Energy Savers [EERE]

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time:...

  17. Collecting Construction Equipment Activity Data from Caltrans Project Records

    E-Print Network [OSTI]

    Kable, Justin M

    2008-01-01

    Niemeier, D. , (2002). Construction Emissions Review Memo.Documents/June_2002_TO8_construction_memo_for_mjb.pdf Pope,s Fleet Remains Strong. Construction Equipment Magazine,

  18. Novel Energy Conversion Equipment for Low Temperature Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Develop equipment that generates electricity from low temperature geothermal resources at a cost at least 20% below that of the currently available technology....

  19. Operating Experience Level 3, Industrial Equipment Impacts Infrastruct...

    Broader source: Energy.gov (indexed) [DOE]

    on a safety concern related to heavy industrial equipment that contacts and damages structures and electrical, gas, and water lines. Although these contacts did not cause...

  20. The Opportunity for Interoperability of Buildings Equipment and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment, and Systems Joseph Hagerman Building Technologies Office Office of Energy Efficiency and Renewable Energy, DOE 2 * Enhance energy efficiency and productivity; *...

  1. Control of Computer Room Air Conditioning using IT Equipment Sensors

    E-Print Network [OSTI]

    Bell, Geoffrey C.

    2010-01-01

    Control of Computer Room Air Conditioning using IT EquipmentControl of Computer Room Air Conditioning using IT equipmentcontrol computer room air conditioning. The data provided

  2. Philadelphia Gas Works- Residential and Small Business Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Residential Heating Equipment rebates are available to all PGW residential or small business customers installing high efficiency boilers and furnaces, and programma...

  3. ID BUC$ EQUIPMENT REQUEST FORM CAMPUS EVENT PAYMENT OPTION

    E-Print Network [OSTI]

    Karsai, Istvan

    ID BUC$ EQUIPMENT REQUEST FORM CAMPUS EVENT PAYMENT OPTION FOR ETSU ORGANIZATIONS Name ID BUC$. ETSU account transfer or a check requested? o ETSU Account

  4. Energy Performance Assessment for Equipment and Utility Systems...

    Open Energy Info (EERE)

    performance in the field. Chapters address furnaces, thermal power systems, electric motors, and other equipment. References Retrieved from "http:en.openei.orgw...

  5. Environment/Health/Safety (EHS): Personal Protective Equipment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EHS Occupational Safety Safety Group Home Electrical Safety Ergonomics ISM Occupational Safety Group Organization Personal Protective Equipment (PPE) Injury Review & Analysis...

  6. Global Energy Efficient IT Equipment Industry 2015 Market Research...

    Open Energy Info (EERE)

    Global Energy Efficient IT Equipment Industry 2015 Market Research Report Home Gosreports's picture Submitted by Gosreports(70) Contributor 30 June, 2015 - 20:07 Global Energy...

  7. Oilfield Equipment Market - Global and U.S. Industry Analysis...

    Open Energy Info (EERE)

    for oilfield equipment. The shift towards unconventional energy resources such as shale gas is also expected to drive the market. This report estimates and forecasts the...

  8. ORNL MAXLAB occupied, nearing fully equipped status | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wall assemblies and a low-bay area housing a heating, ventilation, and air-conditioning laboratory. Equipment installation began in early January. Both suites should be...

  9. Consider Steam Turbine Drives for Rotating Equipment, Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Rotating Equipment Steam turbines are well suited as prime movers for driving boiler feedwater pumps, forced or induced-draft fans, blowers, air compressors, and other...

  10. Collecting Construction Equipment Activity Data from Caltrans Project Records

    E-Print Network [OSTI]

    Kable, Justin M

    2008-01-01

    The date ' Equipment data ' Bid item/phase data ' Miscsheets ' Predictive data ' The last bid item column Publicfrom diary Data entry notes Award amount at bid Project

  11. Neural network based system for equipment surveillance

    DOE Patents [OSTI]

    Vilim, Richard B. (Aurora, IL); Gross, Kenneth C. (Bolingbrook, IL); Wegerich, Stephan W. (Glendale Hts., IL)

    1998-01-01

    A method and system for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process.

  12. Neural network based system for equipment surveillance

    DOE Patents [OSTI]

    Vilim, R.B.; Gross, K.C.; Wegerich, S.W.

    1998-04-28

    A method and system are disclosed for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process. 33 figs.

  13. Amount Number Total Courses Room CommentLab. Equipment > $5,000 (itemize each piece of equipment, lab and function)

    E-Print Network [OSTI]

    Reed, Nancy E.

    and Furniture Repairs & Maintenance Repairs and calibration of equipment used PEL Rebuild Syringe pump (KDS Scientific) 2500 2 $5,000 EE 328 / EE 328L Holmes 449

  14. Optimization of Hydroacoustic Equipment Deployments at Lookout Point and Cougar Dams, Willamette Valley Project, 2010

    SciTech Connect (OSTI)

    Johnson, Gary E.; Khan, Fenton; Ploskey, Gene R.; Hughes, James S.; Fischer, Eric S.

    2010-08-18

    The goal of the study was to optimize performance of the fixed-location hydroacoustic systems at Lookout Point Dam (LOP) and the acoustic imaging system at Cougar Dam (CGR) by determining deployment and data acquisition methods that minimized structural, electrical, and acoustic interference. The general approach was a multi-step process from mount design to final system configuration. The optimization effort resulted in successful deployments of hydroacoustic equipment at LOP and CGR.

  15. Safe Operating Procedure LOCKOUT/TAGOUT FOR MACHINES & EQUIPMENT

    E-Print Network [OSTI]

    Tsymbal, Evgeny Y.

    Safe Operating Procedure (5/11) LOCKOUT/TAGOUT FOR MACHINES & EQUIPMENT: TRAINING AND INSPECTIONS during maintenance and repair operations. In these situations, a Lockout/Tagout (LO/TO) program must "Control of Hazardous Energy: Lockout/Tagout (LO/TO) for Machines and Equipment." This course is available

  16. Can Computer Simulations Replace Real Equipment in Undergraduate Laboratories?

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    of their mastery of physics concepts and skills with real equipment. Students who used the simulated equipment electricity, magnetism, optics and modern physics. Students, typically in their 2nd or 3rd year of study. K. Perkins, W. Adams, P. Kohl, and N. Podolefsky Department of Physics University of Colorado

  17. Data Network Equipment Energy Use and Savings Potential in Buildings

    SciTech Connect (OSTI)

    Lanzisera, Steven; Nordman, Bruce; Brown, Richard E.

    2010-06-09

    Network connectivity has become nearly ubiquitous, and the energy use of the equipment required for this connectivity is growing. Network equipment consists of devices that primarily switch and route Internet Protocol (IP) packets from a source to a destination, and this category specifically excludes edge devices like PCs, servers and other sources and sinks of IP traffic. This paper presents the results of a study of network equipment energy use and includes case studies of networks in a campus, a medium commercial building, and a typical home. The total energy use of network equipment is the product of the stock of equipment in use, the power of each device, and their usage patterns. This information was gathered from market research reports, broadband market penetration studies, field metering, and interviews with network administrators and service providers. We estimate that network equipment in the USA used 18 TWh, or about 1percent of building electricity, in 2008 and that consumption is expected to grow at roughly 6percent per year to 23 TWh in 2012; world usage in 2008 was 51 TWh. This study shows that office building network switches and residential equipment are the two largest categories of energy use consuming 40percent and 30percent of the total respectively. We estimate potential energy savings for different scenarios using forecasts of equipment stock and energy use, and savings estimates range from 20percent to 50percent based on full market penetration of efficient technologies.

  18. exclusively dedicated to healthcare state-of-the-art equipment

    E-Print Network [OSTI]

    Delgado, Mauricio

    exclusively dedicated to healthcare state-of-the-art equipment the very best faculty & students organization dedicated to educational excellence and improvement through peer-evaluation and accreditation a University that is exclusively dedicated to health care, with state-of-the-art equipment, rigorous coursework

  19. Improvement of the Lost Foam Casting Process

    Broader source: Energy.gov [DOE]

    Casting is an energy-intensive manufacturing process within the metal casting and aluminum industries, requiring natural gas to melt aluminum and electricity to run equipment. The higher-than...

  20. Commercializing the H-Coal Process 

    E-Print Network [OSTI]

    DeVaux, G. R.; Dutkiewicz, B.

    1982-01-01

    The H-Coal Process is being demonstrated in commercial equipment at the Catlettsburg, Kentucky plant. A program is being developed for further operations including several tests for specific commercial projects and a long-term test. Over the last...

  1. Metering Process

    Broader source: Energy.gov [DOE]

    Developing and implementing a metering plan is highly dependent on the individual facility's needs, mission, metering equipment, and available infrastructure. One size does not fit all.

  2. Machine protection system for rotating equipment and method

    DOE Patents [OSTI]

    Lakshminarasimha, Arkalgud N. (Marietta, GA); Rucigay, Richard J. (Marietta, GA); Ozgur, Dincer (Kennesaw, GA)

    2003-01-01

    A machine protection system and method for rotating equipment introduces new alarming features and makes use of full proximity probe sensor information, including amplitude and phase. Baseline vibration amplitude and phase data is estimated and tracked according to operating modes of the rotating equipment. Baseline vibration and phase data can be determined using a rolling average and variance and stored in a unit circle or tracked using short term average and long term average baselines. The sensed vibration amplitude and phase is compared with the baseline vibration amplitude and phase data. Operation of the rotating equipment can be controlled based on the vibration amplitude and phase.

  3. Waste immobilization process development at the Savannah River Plant

    SciTech Connect (OSTI)

    Charlesworth, D L

    1986-01-01

    Processes to immobilize various wasteforms, including waste salt solution, transuranic waste, and low-level incinerator ash, are being developed. Wasteform characteristics, process and equipment details, and results from field/pilot tests and mathematical modeling studies are discussed.

  4. Natural phenomena hazards evaluation of equipment and piping of Gaseous Diffusion Plant Uranium Enrichment Facility

    SciTech Connect (OSTI)

    Singhal, M.K.; Kincaid, J.H.; Hammond, C.R.; Stockdale, B.I.; Walls, J.C. [Oak Ridge National Lab., TN (United States). Technical Programs and Services; Brock, W.R.; Denton, D.R. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)

    1995-12-31

    In support of the Gaseous Diffusion Plant Safety Analysis Report Upgrade program (GDP SARUP), a natural phenomena hazards evaluation was performed for the main process equipment and piping in the uranium enrichment buildings at Paducah and Portsmouth gaseous diffusion plants. In order to reduce the cost of rigorous analyses, the evaluation methodology utilized a graded approach based on an experience data base collected by SQUG/EPRI that contains information on the performance of industrial equipment and piping during past earthquakes. This method consisted of a screening walkthrough of the facility in combination with the use of engineering judgment and simple calculations. By using these screenings combined with evaluations that contain decreasing conservatism, reductions in the time and cost of the analyses were significant. A team of experienced seismic engineers who were trained in the use of the DOE SQUG/EPRI Walkdown Screening Material was essential to the success of this natural phenomena hazards evaluation.

  5. Collecting Construction Equipment Activity Data from Caltrans Project Records

    E-Print Network [OSTI]

    Kable, Justin M

    2008-01-01

    nonroad equipment. Light trucks may also run on gasolinerecord versus reality for light trucks is probably dramatic,TOTAL NONROAD 1. Light Duty Truck 2. Heavy Duty Truck 3.

  6. Analysis and Evaluation For Equipment Performance by Surface Measurement 

    E-Print Network [OSTI]

    Ishizuka, K.; Aizawa, N.; Shibata, K.; Yonezawa, H.; Yamada, S.

    2006-01-01

    Many building owners and facility managers are deeply interested in both operation and maintenance costs related to a building's life cycle. Optimizing energy consumption and obtaining long equipment activity requires sophisticated management...

  7. Improving reuse of semiconductor equipment through benchmarking, standardization, and automation

    E-Print Network [OSTI]

    Silber, Jacob B. (Jacob Bradley)

    2006-01-01

    The 6D program at Intel® Corporation was set up to improve operations around capital equipment reuse, primarily in their semiconductor manufacturing facilities. The company was faced with a number of challenges, including ...

  8. Field Labeling to Ensure the Electrical Safety of Production Equipment

    E-Print Network [OSTI]

    Mills, Todd

    2012-05-11

    The Occupational Safety and Health Administration (OSHA) requires that all equipment that uses electrical power be certified as electrically safe by a Nationally Recognized Testing Lab (NRTL) or Authority Having Jurisdiction (AHJ) prior to being...

  9. Balance-of-System Equipment Required for Renewable Energy Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Both grid-connected and off-grid home renewable energy systems require additional balance-of-system equipment. Both grid-connected and off-grid home renewable energy...

  10. A study of industrial equipment energy use and demand control 

    E-Print Network [OSTI]

    Dooley, Edward Scott

    2001-01-01

    personnel. Comparing a detailed summary of equipment rated loads to annual utility bills, when measurements are not available, can prevent over-estimation of the demand and duty factors for a plant. Raw unadjusted estimates of demand factors of 60...

  11. Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment

    Broader source: Energy.gov [DOE]

    As defined by the Federal Energy Management Program (FEMP), greenhouse gas (GHG) emission reduction strategies for Federal vehicles and equipment are based on the three driving principles of petroleum reduction: Reduce vehicle miles traveled Improve fuel efficiency Use alternative fuels.

  12. 1997 Housing Characteristics Tables Home Office Equipment Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1997 Home Office Equipment RSE Column Factor: Total 1997 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than 10,000...

  13. Design of an underwater vertical glider for subsea equipment delivery

    E-Print Network [OSTI]

    Ambler, Charles Kirby

    2010-01-01

    Delivery of subsea equipment and sensors is generally accomplished with unguided sinking platforms or powered autonomous underwater vehicles (AUVs). An alternative would be to augment existing platforms with navigation and ...

  14. Sales and Use Tax Exemption for Renewable Energy Equipment

    Broader source: Energy.gov [DOE]

    Two pieces of legislation expanding the sales tax exemption were enacted in May 2009. H.B. 1171 added residential wind energy equipment as eligible for this incentive. Residential wind energy...

  15. Internal corrosion monitoring of subsea oil and gas production equipment

    SciTech Connect (OSTI)

    Joosten, M.W.; Fischer, K.P.; Lunden, K.C.

    1995-10-01

    Internal corrosion monitoring provides data vital to the operation of high-capital-cost, subsea equipment such as pipelines, flowlines, manifolds and water injection equipment. Monitoring can be used to determine the efficacy of corrosion/erosion mitigation techniques and allows operation of subsea equipment to maximize useful equipment life and minimize maintenance. For the operation of subsea systems that utilized corrosion inhibitors, there is a particular need to monitor the inhibitor performance. Methods for remote monitoring of corrosion are rapidly developing as the pace of subsea developments increase. Subsea completions set a record in 1993, exceeding the previous all-time high by 18% and exceeding 1992 installations by 73%. This paper will review experiences with offshore corrosion monitoring, the currently installed subsea corrosion monitoring systems, discuss the use of intelligent pigs as monitoring tools, and review some of the technologies that could possibly be utilized in the future such as ion selective electrodes, radioactive tracers and spectroscopy.

  16. Fact #708: January 2, 2012 Amenities, Safety and Emissions Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment Make Up an Increasing Share of the Cost of a Car While the overall price of a new car has not increased greatly from 1967 to 2010 when adjusted for inflation, the costs...

  17. Design review report for modifications to RMCS safety class equipment

    SciTech Connect (OSTI)

    Corbett, J.E.

    1997-05-30

    This report documents the completion of the formal design review for modifications to the Rotary Mode Core Sampling (RMCS) safety class equipment. These modifications are intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to approve the Engineering Change Notices affecting safety class equipment used in the RMCS system. The conclusion reached by the review committee was that these changes are acceptable.

  18. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

  19. Tensiometer, drive probe for use with environmental testing equipment, and methods of inserting environmental testing equipment into a sample

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    2005-07-26

    A method of inserting a tensiometer into a sample, comprises providing a drive probe configured to be engaged by direct push equipment; supporting a porous member from the drive probe; and driving the drive probe into the sample using a cone penetrometer. A tensiometer comprises a drive probe configured to be engaged by direct push equipment or a cone penetrometer; a porous member supported by the drive probe; and a pressure sensor in pressure sensing relation to the porous member.

  20. Wireless data acquisition system for multi-phase electric power equipment 

    E-Print Network [OSTI]

    Goodsell, Douglas Andreas

    2009-05-15

    to the equipment. If these data acqusistion modules are accessible wirelessly, then one can monitor all the interfaced equipment from a central location. To successfully monitor such electrical equipment, a data acquisition unit is required that can sample on five...

  1. Managing EHS of PV-Related Equipment at the National Renewable Energy Laboratory: Preprint

    SciTech Connect (OSTI)

    McCuskey, T.; Nelson, B. P.

    2012-06-01

    Managing environment, health, and safety (EHS) risks at a national laboratory, or university, can be intimidating to a researcher who is focused on research results. Laboratory research and development (R&D) operations are often driven by scientists with limited engineering support and lack well-refined equipment development resources. To add to the burden for a researcher, there is a plethora of codes, standards, and regulations that govern the safe installation and operation of photovoltaic-related R&D equipment -- especially those involving hazardous production materials. To help guide the researcher through the vast list of requirements, the EHS office at NREL has taken a variety of steps. Organizationally, the office has developed hazard-specific laboratory-level procedures to govern particular activities. These procedures are a distillation of appropriate international codes, fire agencies, SEMI standards, U.S. Department of Energy orders, and other industry standards to those necessary and sufficient to govern the safe operation of a given activity. The EHS office works proactively with researchers after a concept for a new R&D capability is conceived to help guide the safe design, acquisition, installation, and operation of the equipment. It starts with a safety assessment at the early stages such that requirements are implemented to determine the level of risk and degree of complexity presented by the activity so appropriate controls can be put in place to manage the risk. As the equipment requirements and design are refined, appropriate equipment standards are applied. Before the 'to-build' specifications are finalized, a process hazard analysis is performed to ensure that no single-point failure presents an unacceptable risk. Finally, as the tool goes through construction and installation stages, reviews are performed at logical times to ensure that the requisite engineering controls and design are in place and operational. Authorization to operate is not given until adherence to these requirements is fully verified and documented. Operations continue under the conditions defined through this process and are reviewed with changing processes.

  2. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  3. An MILP approach to Multi-location, Multi-Period Equipment ...

    E-Print Network [OSTI]

    2013-06-24

    Jun 24, 2013 ... to consider both the purchase and salvage of the equipment, since equipment ..... Since A comes from the power set of E ? , the compatibility ...

  4. GE Hydro Asia Co Ltd formerly Kvaerner Power Equipment Co Ltd...

    Open Energy Info (EERE)

    Hydro Asia Co Ltd formerly Kvaerner Power Equipment Co Ltd Kvaerner Hangfa Jump to: navigation, search Name: GE Hydro Asia Co Ltd (formerly Kvaerner Power Equipment Co., Ltd...

  5. How Do I Bring and Use Electrical Equipment at the ALS?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bring and Use Electrical Equipment at the ALS? Print Testing All electrical equipment must meet minimum electrical safety requirements. Whenever possible, we rely on third party...

  6. Integrated Dynamic Simulation for Process Optimization and Control

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Integrated Dynamic Simulation for Process Optimization and Control G. Brian Lu, Laura L. Tedder ­ Film Deposition · Applications in Process Optimization for Manufacturing and the Environment ­ Process efficient processes, equipment, sensor, and control systems #12;Dynamic Simulators for Sensor-Based Process

  7. Audit Report on "Management Controls over the Department's Excess Weapons Inventories and Selected Sensitive Equipment used by Protective Forces"

    SciTech Connect (OSTI)

    None

    2009-01-01

    Since September 11, 2001, the Department of Energy has, on several occasions, revised its security posture based on identified threats and adversaries. These revisions in security posture have driven Departmental sites to upgrade their defensive and tactical equipment. Subsequent changes in the perceived threats have, in some cases, led to a reduction in the need for certain types of weapons, thus creating a pool of surplus equipment. These surplus weapons could potentially be used by other Department sites and Federal law enforcement agencies. Recent Office of Inspector General reports have raised concerns with the adequacy of controls related to defensive and tactical equipment. For example, our report on Management Controls Over Defense Related High Risk Property (OAS-M-08-06, April 2008) found that administrative controls over certain defense related high risk property were not sufficient for providing accountability over these items. Because of prior reported weaknesses in controls over defensive and tactical equipment, we initiated this audit to determine whether the Department and its contractors were properly managing excess weapons inventories and selected sensitive equipment used by protective forces. Our review disclosed that the Department was not always properly managing its inventories of excess weapons and selected sensitive equipment. We identified issues with the retention of unneeded weapons at many locations and with the identification and tracking of sensitive items. More specifically: Sites maintained large inventories of weapons that were no longer needed but had not been made available for use by either other Departmental sites or other Federal law enforcement agencies. For instance, at six of the locations included in our review we identified a total of 2,635 unneeded weapons with a total acquisition value of over $2.8 million that had not been officially declared as excess - an action that would have made them available for others to use. In addition; Sites were not always identifying, tracking and properly disposing of potentially high risk and sensitive equipment. In particular, we identified control weaknesses in this area related to weapons sights and scopes. These issues occurred because the Department did not have processes in place to properly manage excess inventories of weapons. In particular, the Department does not have requirements for ensuring timely declaration of excess weapons. Additionally, certain sites indicated that they were unwilling to give up excess weapons because of the possibility that they may be needed in the future. However, other sites had a need for some of these weapons and could have avoided purchasing them had they been made available through the excess screening process. Also, we found that the Department lacks clear guidance on the identification of high risk/sensitive equipment. Except for immaterial differences, we were able to locate and verify accountability over the items of defensive and tactical equipment we selected for review. Specifically, we took statistical samples of weapons, ammunition, and other related equipment and were able to verify their existence. While these accountability measures were noteworthy, additional action is necessary to strengthen controls over weapon and sensitive equipment management. Untimely declaration of excess weapons may result in an inefficient use of scarce Government resources. Similarly, if selected high risk/sensitive equipment is not properly categorized and tracked, accountability issues may occur. To address these issues, we made recommendations aimed at improving the management of these categories of defensive and tactical equipment.

  8. Seismic analyses of equipment in 2736-Z complex. Revision 1

    SciTech Connect (OSTI)

    Ocoma, E.C.

    1995-04-01

    This report documents the structural qualification for the existing equipment when subjected to seismic loading in the Plutonium Storage Complex. It replaces in entirety Revision 0 and reconciles the U.S. Department of Energy (DOE) comments on Revision 0. The Complex consists of 2736-Z Building (plutonium storage vault), 2736-ZA Building (vault ventilation equipment building), and 2736-ZB Building (shipping/receiving, repackaging activities). The existing equipment structurally qualified in this report are the metal storage racks for 7 inch and lard cans in room 2 of Building 2736-Z; the cubicles, can holders and pedestals in rooms 1, 3, and 4 of Building 2736-Z; the ventilation duct including exhaust fans/motors, emergency diesel generator, and HEPA filter housing in Building 2736-ZA; the repackaging glovebox in Building 2736-ZB; and the interface duct between Buildings 2736-Z and 2736-ZA.

  9. Nuclear fuel post-irradiation examination equipment package

    SciTech Connect (OSTI)

    DeCooman, W.J. [AREVA NP Inc., Lynchburg, VA (United States); Spellman, D.J. [UT-Battelle, LLC, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2007-07-01

    Hot cell capabilities in the U.S. are being reviewed and revived to meet today's demand for fuel reliability, tomorrow's demands for higher burnup fuel and future demand for fuel recycling. Fuel reliability, zero tolerance for failure, is more than an industry buzz. It is becoming a requirement to meet the rapidly escalating demands for the impending renaissance of nuclear power generation, fuel development, and management of new waste forms that will need to be dealt with from programs such as the Global Nuclear Energy Partnership (GNEP). Fuel performance data is required to license fuel for higher burnup; to verify recycled fuel performance, such as MOX, for wide-scale use in commercial reactors; and, possibly, to license fuel for a new generation of fast reactors. Additionally, fuel isotopic analysis and recycling technologies will be critical factors in the goal to eventually close the fuel cycle. This focus on fuel reliability coupled with the renewed interest in recycling puts a major spotlight on existing hot cell capabilities in the U.S. and their ability to provide the baseline analysis to achieve a closed fuel cycle. Hot cell examination equipment is necessary to determine the characteristics and performance of irradiated materials that are subjected to nuclear reactor environments. The equipment within the hot cells is typically operated via master-slave manipulators and is typically manually operated. The Oak Ridge National Laboratory is modernizing their hot cell nuclear fuel examination equipment, installing automated examination equipment and data gathering capabilities. Currently, the equipment has the capability to perform fuel rod visual examinations, length and diametrical measurements, eddy current examination, profilometry, gamma scanning, fission gas collection and void fraction measurement, and fuel rod segmentation. The used fuel postirradiation examination equipment was designed to examine full-length fuel rods for both Boiling Water Reactors and Pressurized Water Reactors. (authors)

  10. Atomic Force Microscopy for materials research, modular easy upgrade to Confocal/Raman/SNOM www.WITec.de Refurbished Lab Equipment We sell quality refurbished lab equipment with warranty for less. www.marshallscientific.com

    E-Print Network [OSTI]

    Eldar, Yonina

    .WITec.de Refurbished Lab Equipment We sell quality refurbished lab equipment with warranty for less. www

  11. DIESEL/HEAVY The diesel/heavy equipment certificate offers training in maintenance

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    DIESEL/HEAVY EQUIPMENT The diesel/heavy equipment certificate offers training in maintenance and repair of heavy equipment and trucks. Students will learn to work on electrical and air systems, diesel · Small Engines · Automotive Maintenance · Welding · Training for entry level heavy diesel equipment

  12. Energy spectra and dissipation Mikel Indurain, Equipe Planto

    E-Print Network [OSTI]

    Madeleine, Jean-Baptiste

    Energy spectra and dissipation Mikel Indurain, Equipe Planéto LMD LMDZ.EARTH LMDZ.GENERIC LMDZ.MARS #12;Dissipation : introduction Energy transfer from large scales to small scales. Problem : energy : introduction Energy transfer from large scales to small scales. Problem : energy accumulation if dissipative

  13. PROVISION, USE, AND MAINTENANCE OF EMERGENCY DRENCH EQUIPMENT IN

    E-Print Network [OSTI]

    Jia, Songtao

    to provide fluid to irrigate and flush the eyes, face and body areas. 6. Hazardous Material: A chemical the effects of personal exposures to hazardous materials and is integral to emergency response efforts where hazardous materials are used or stored. This policy ensures that emergency drench equipment is provided

  14. LWA Equipment RF Emissions: Spectrum Analyzers and Ylva Pihlstrm, UNM

    E-Print Network [OSTI]

    Ellingson, Steven W.

    1 LWA Equipment RF Emissions: Spectrum Analyzers and Laptops Ylva Pihlström, UNM 8/27/06 Summary I be used at the LWDA site during standard VLA operations. Two brands of spectrum analyzers and laptop are therefore considered typical of spectrum analyzers and laptops. The results of the measurements suggest

  15. Giancarlo Valentn & Michael Arpin Camera Equipped Robotic Arm

    E-Print Network [OSTI]

    Hamblen, James

    Giancarlo Valentín & Michael Arpin Camera Equipped Robotic Arm ECE 4180 Fall 2011 #12;Overview #12;Materials: Use USB camera was attached to the ebox to detect objects in the vicinity of the robot arm. If an object of a predetermined type is detected (e.g. red pyramid) it should be picked up by the arm and moved

  16. Camera Equipped Robotic Arm Giancarlo Valentn & Michael Arpin

    E-Print Network [OSTI]

    Hamblen, James

    Camera Equipped Robotic Arm Giancarlo Valentín & Michael Arpin #12;Overview: Use USB camera with the ebox to detect objects in the vicinity of the robot arm. If an object of a predetermined type is detected (e.g. red ball) it should be picked up by the arm and move to a designated location. Materials: 1

  17. Applications of Artificial Neural Networks (ANNs) to Rotating Equipment

    E-Print Network [OSTI]

    Sainudiin, Raazesh

    , automotive, banking, defense, electronics, finance, insurance, manufacturing, medicine, oil and gas, robotics a vital role in oil and power industries. In spite of all research which has been carried out so far equipment, rotating machine, oil and power industry 1-PhD Candidate 2-Professor, Director of Mechatronics

  18. UF{sub 6} cylinder lifting equipment enhancements

    SciTech Connect (OSTI)

    Hortel, J.M. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    This paper presents numerous enhancements that have been made to the Portsmouth lifting equipment to ensure the safe handling of cylinders containing liquid uranium hexafluoride (UF{sub 6}). The basic approach has been to provide redundancy to all components of the lift path so that any one component failure would not cause the load to drop or cause any undesirable movement.

  19. Space and Movable Equipment On-line Inventory

    E-Print Network [OSTI]

    Hayden, Nancy J.

    Expense Movable Equipment Depreciation Expense Operation & Maintenance Expenses Library Expenses with government requirements · Develop proposal statistics that are defensible during F&A rate negotiations of the space functional usage (i.e. square footage statistics). » Federal regulations require the allocation

  20. "Designing equipment and buildings to more quickly respond to occupant

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    prediction system Energy Efficient Smart Buildings In the near future, intelligent buildings"Designing equipment and buildings to more quickly respond to occupant behavior." Kamin Whitehouse University of Virginia Charlottesville, VA 434.982.2211 Whitehouse Research Group Our group is creating smart

  1. Recovering the Heat Dissipated by the Digital Switching Equipment 

    E-Print Network [OSTI]

    Karasseferian, V. V.; Desjardins, R.

    1983-01-01

    With the advent of the Digital Switching Equipment, came the need for year round cooling due to its high heat density. This meant the need for independent systems of heating and cooling within the same building, one consuming energy for heating...

  2. Export Guidance: Traveling Out of the Country with Laptops and Other Equipment You need to comply with United States export statutes and regulations whenever you take equipment,

    E-Print Network [OSTI]

    Sorin, Eric J.

    Export Guidance: Traveling Out of the Country with Laptops and Other Equipment You need to comply with United States export statutes and regulations whenever you take equipment, devices, computer software to take any special actions to comply with the export rules. Most of the equipment and data that you

  3. Improved Biomass Cooking Stoves and Improved Stove Emission Equipment

    SciTech Connect (OSTI)

    HATFIELD, MICHAEL; Still, Dean

    2013-04-15

    In developing countries, there is an urgent need for access to safe, efficient, and more affordable cooking technologies. Nearly 2.5 billion people currently use an open fire or traditional cookstove to prepare their meals, and recent models predict that use of biomass for cooking will continue to be the dominant energy use in rural, resource-poor households through 2030. For these families, cooking poses serious risks to health, safety, and income. An alarming 4 million people, primarily women and children, die prematurely each year from indoor and outdoor exposure to the harmful emissions released by solid fuel combustion. Use of traditional stoves can also have a significant impact on deforestation and climate change. This dire situation creates a critical need for cookstoves that significantly and verifiably reduce fuel use and emissions in order to reach protective levels for human health and the environment. Additionally, advances in the scientific equipment needed to measure and monitor stove fuel use and emissions have not kept pace with the significant need within the industry. While several testing centers in the developed world may have hundred thousand-dollar emissions testing systems, organizations in the field have had little more than a thermometer, a scale, and subjective observations to quantify the performance of stove designs. There is an urgent need for easy-to-use, inexpensive, accurate, and robust stove testing equipment for use by laboratory and field researchers around the world. ASAT and their research partner, Aprovecho Research Center (ARC), have over thirty years of experience addressing these two needs, improved cookstoves and emissions monitoring equipment, with expertise spanning the full spectrum of development from conceptual design to product manufacturing and dissemination. This includes: 1) research, design, and verification of clean biomass cookstove technology and emissions monitoring equipment; 2) mass production of quality-controlled stove and emissions equipment at levels scalable to meet global demand; and 3) global distribution through a variety of channels and partners. ARC has been instrumental in designing and improving more than 100 stove designs over the past thirty years. In the last four years, ASAT and ARC have played a key role in the production and sales of over 200,000 improved stoves in the developed and developing world. The ARC-designed emissions equipment is currently used by researchers in laboratories and field studies on five continents. During Phase I of the DOE STTR grant, ASAT and ARC worked together to apply their wealth of product development experience towards creating the next generation of improved cookstoves and emissions monitoring equipment. Highlights of Phase I for the biomass cookstove project include 1) the development of several new stove technologies that reached the DOE 50/90 benchmark; 2) fabrication of new stove prototypes by ASAT’s manufacturing partner, Shengzhou Stove Manufacturing (SSM); 3) field testing of prototype stoves with consumers in Puerto Rico and the US; and 4) the selection of three stove prototypes for further development and commercialization during Phase II. Highlights of Phase I for the emissions monitoring equipment project include: 1) creation of a new emissions monitoring equipment product, the Laboratory Emissions Monitoring System (LEMS 2) the addition of gravimetric PM measurements to the stove testing systems to meet International Standards Organization criteria; 3) the addition of a CO{sub 2} sensor and wireless 3G capability to the IAP Meter; and 4) and the improvement of sensors and signal quality on all systems. Twelve Regional Testing and Knowledge Centers purchased this equipment during the Phase I project period.

  4. Clearing Away Process Gas Equipment Moves Portsmouth D&D Forward |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy Headquarters Categorical| DepartmentDataInitiative Partnershipsin State2 Cleanupsoil

  5. Development of a safety analysis system for the offshore personnel and equipment transfer process 

    E-Print Network [OSTI]

    McKenna, Michael George

    1988-01-01

    From Minerals Management Service Report, "Risk Analysis of Crane Accidents" OCS Re rt - MMS 84-0056 1984. 12 heaving of the vessel can cause dynamic loads up to five times the load being lifted, resulting in a crane or rope failure due to overload... source of inspiration. v ACKNOWLEDGMENTS Several individuals have been instrumental in making this research possible. Special thanks are due to the ARCO Oil and Gas Company, especially the Dallas safety staff, which provided the financial support...

  6. One of the Largest Pieces of Processing Equipment Removed from Plutonium

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive71.1 OMB Field Element0 Study: Oncor'sOne

  7. Defense waste processing facility radioactive operations. Part 1 - operating experience

    SciTech Connect (OSTI)

    Little, D.B.; Gee, J.T.; Barnes, W.M.

    1997-12-31

    The Savannah River Site`s Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation`s first and the world`s largest vitrification facility. Following a ten year construction program and a 3 year non-radioactive test program, DWPF began radioactive operations in March 1996. This paper presents the results of the first 9 months of radioactive operations. Topics include: operations of the remote processing equipment reliability, and decontamination facilities for the remote processing equipment. Key equipment discussed includes process pumps, telerobotic manipulators, infrared camera, Holledge{trademark} level gauges and in-cell (remote) cranes. Information is presented regarding equipment at the conclusion of the DWPF test program it also discussed, with special emphasis on agitator blades and cooling/heating coil wear. 3 refs., 4 figs.

  8. Specialized equipment enabled completions with large coiled tubing

    SciTech Connect (OSTI)

    Taylor, R.W.; Conrad, B.

    1996-02-19

    Specialized equipment enabled successful well completions in Oman with large 3{1/2}-inch coiled tubing. Conventional drilling or completion rigs were not needed. Although the use of 3{1/2}-inch coiled tubing to complete wells is relatively new, it is gaining widespread industry application. One Middle East operating company felt that if downhole completion equipment could be successfully run using coiled tubing, greater cost efficiency, both in initial deployment and in maintenance, could be derived. The paper lists some of the technical considerations for these assumptions. The long-term advantages regarding production and well maintenance cannot yet be determined, but experience in Oman has confirmed the belief that large coiled tubing completions can be technically achieved.

  9. SHEAR STRENGTH MEASURING EQUIPMENT EVALUATION AT THE COLD TEST FACILITY

    SciTech Connect (OSTI)

    MEACHAM JE

    2009-09-09

    Retrievals under current criteria require that approximately 2,000,000 gallons of double-shell tank (DST) waste storage space not be used to prevent creating new tanks that might be susceptible to buoyant displacement gas release events (BDGRE). New criteria are being evaluated, based on actual sludge properties, to potentially show that sludge wastes do not exhibit the same BDGRE risk. Implementation of the new criteria requires measurement of in situ waste shear strength. Cone penetrometers were judged the best equipment for measuring in situ shear strength and an A.P. van den berg Hyson 100 kN Light Weight Cone Penetrometer (CPT) was selected for evaluation. The CPT was procured and then evaluated at the Hanford Site Cold Test Facility. Evaluation demonstrated that the equipment with minor modification was suitable for use in Tank Farms.

  10. Equipment compatibility and logistics assessment for containment foam deployment.

    SciTech Connect (OSTI)

    McRoberts, Vincent M.; Martell, Mary-Alena; Jones, Joseph A.

    2005-09-01

    The deployment of the Joint Technical Operations Team (JTOT) is evolving toward a lean and mobile response team. As a result, opportunities to support more rapid mobilization are being investigated. This study investigates three specific opportunities including: (1) the potential of using standard firefighting equipment to support deployment of the aqueous foam concentrate (AFC-380); (2) determining the feasibility and needs for regional staging of equipment to reduce the inventory currently mobilized during a JTOT response; and (3) determining the feasibility and needs for development of the next generation AFC-380 to reduce the volume of foam concentrate required for a response. This study supports the need to ensure that requirements for alternative deployment schemes are understood and in place to support improved response activities.

  11. Electromagnetic pulse (EMP), Part I: Effects on field medical equipment

    SciTech Connect (OSTI)

    Vandre, R.H.; Klebers, J.; Tesche, F.M.; Blanchard, J.P. (Walter Reed Army Medical Center, Washington, DC (United States))

    1993-04-01

    The electromagnetic pulse (EMP) from a high-altitude nuclear detonation has the potential to cover an area as large as the continental United States with damaging levels of EMP radiation. In this study, two of seven items of medical equipment were damaged by an EMP simulator. Computer circuit analysis of 17 different items showed that 11 of the 17 items would be damaged by current surges on the power cords, while two would be damaged by current surges on external leads. This research showed that a field commander can expect approximately 65% of his electronic medical equipment to be damaged by a single nuclear detonation as far as 2,200 km away.

  12. Limited Personal Use of Government Office Equipment including Information Technology

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-07

    The Order establishes requirements and assigns responsibilities for employees' limited personal use of Government resources (office equipment and other resources including information technology) within DOE, including NNSA. The Order is required to provide guidance on appropriate and inappropriate uses of Government resources. This Order was certified 04/23/2009 as accurate and continues to be relevant and appropriate for use by the Department. Certified 4-23-09. No cancellation.

  13. Adaptive Optimization of Central Chiller Plant Equipment Sequencing 

    E-Print Network [OSTI]

    Fiorino, D. P.; Priest, J. W.

    1987-01-01

    the optimal sequence of central refrigeration equipment (chillers, cooling towers, pumps) to operate in an industrial plant. The control algorithm adapts the optimal equipaent sequence to reflect changes in the plant's cooling load and outside air... primary pumps totaling 625 horsepower and two chilled water booster pumps totaling 200 horsepower. Heat rejected by the chillers' vapor-compression cycles is rejected to the atmosphere by five cooling towers totaling 4,335 tons of refrigeration...

  14. Recovery Act: Training Program Development for Commercial Building Equipment Technicians

    SciTech Connect (OSTI)

    Leah Glameyer

    2012-07-12

    The overall goal of this project has been to develop curricula, certification requirements, and accreditation standards for training on energy efficient practices and technologies for commercial building technicians. These training products will advance industry expertise towards net-zero energy commercial building goals and will result in a substantial reduction in energy use. The ultimate objective is to develop a workforce that can bring existing commercial buildings up to their energy performance potential and ensure that new commercial buildings do not fall below their expected optimal level of performance. Commercial building equipment technicians participating in this training program will learn how to best operate commercial buildings to ensure they reach their expected energy performance level. The training is a combination of classroom, online and on-site lessons. The Texas Engineering Extension Service (TEEX) developed curricula using subject matter and adult learning experts to ensure the training meets certification requirements and accreditation standards for training these technicians. The training targets a specific climate zone to meets the needs, specialized expertise, and perspectives of the commercial building equipment technicians in that zone. The combination of efficient operations and advanced design will improve the internal built environment of a commercial building by increasing comfort and safety, while reducing energy use and environmental impact. Properly trained technicians will ensure equipment operates at design specifications. A second impact is a more highly trained workforce that is better equipped to obtain employment. Organizations that contributed to the development of the training program include TEEX and the Texas Engineering Experiment Station (TEES) (both members of The Texas A&M University System). TEES is also a member of the Building Commissioning Association. This report includes a description of the project accomplishments, including the course development phases, tasks associated with each phase, and detailed list of the course materials developed. A summary of each year's activities is also included.

  15. Solar Install Mount Production Labor Equipment Simple Balance of Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4Energy SmoothEquipment CertificationSolar Hot

  16. Solar and Wind Equipment Sales Tax Exemption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4Energy SmoothEquipmentSolar PVEquipment Sales Tax

  17. Bulk Hauling Equipment for CHG | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department of EnergyEmergingEnergyBulk Hauling Equipment

  18. An investigation of factors related to the design of prototype process equipment for the enzymatic processing of fish 

    E-Print Network [OSTI]

    Shah, Suresh Somalal

    1964-01-01

    positive feeding of the fish during the rolling oper- ation. This design feature should be subjected to further in- vestigation. The residence time of fish in an inclined perforated washer-drum was found to be a function of the frictional forces...; that is, residence time was decreased. The coefficient of friction between wet fish and a drum sur- face was found to be a function of the angle of displacement of the fish, the angular velocity of the drum and the diameter of the drum. Economy...

  19. Tips and traps for reapplying used process plants

    SciTech Connect (OSTI)

    Conder, M.W.

    1999-07-01

    Many gas processing projects are based on reapplying used gas processing plants and equipment. There has been little information or advice in the literature which provides practical advice for this type of project. GPA's Technical Section A Committee has been developing a monograph on experiences in reapplying used plants and equipment. This paper includes excerpts from that monograph and presents advice illustrated by recent experiences with used plants.

  20. REVIEW OF EQUIPMENT USED IN RUSSIAN PRACTICE FOR ACCOUNTING MEASUREMENTS OF NUCLEAR MATERIALS.

    SciTech Connect (OSTI)

    NEYMOTIN,L.

    1999-07-25

    The objective of this work was to analyze instrumentation and methodologies used at Russian nuclear facilities for measurement of item nuclear materials, materials in bulk form, and waste streams; specify possibilities for the application of accounting measurements; and develop recommendations for improvement. The major steps and results: Representative conversion, enrichment (gas centrifuge), fuel fabrication, spent fuel reprocessing, and chemical-metallurgical production facilities in Russia were selected; Full lists of nuclear materials were prepared; Information about measurement methods and instrumentation for each type of nuclear material were gathered; and Recommendations on methodological and instrumentation support of accounting measurements for all types of materials were formulated. The analysis showed that the existing measurement methods and instrumentation serve mostly to support the technological process control and nuclear and radiation safety control. Requirements for these applications are lower than requirements for MC and A applications. To improve the state of MC and A at Russian nuclear facilities, significant changes in instrumentation support will be required, specifically in weighing equipment, volume measurements, and destructive and non-destructive analysis equipment, along with certified reference materials.

  1. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    SciTech Connect (OSTI)

    Calmus, D.B.

    1994-08-25

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferred from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length.

  2. Environmental Assessment for the Leasing of Facilities and Equipment to USEC Inc.

    SciTech Connect (OSTI)

    N /A

    2002-10-18

    The U.S. Department of Energy (DOE) Oak Ridge Operations Office (DOE-ORO) has prepared this Environmental Assessment (EA) for the lease of facilities and equipment to USEC Inc. (USEC), which would be used in its Gas Centrifuge Research and Development (R&D) Project at the East Tennessee Technology Park (ETTP) [hereinafter referred to as the USEC EA]. The USEC EA analyzes the potential environmental impacts of DOE leasing facility K-101 and portions of K-1600, K-1220 and K-1037 at the ETTP to USEC for a minimum 3-year period, with additional option periods consistent with the Oak Ridge Accelerated Clean-up Plan (ACP) Agreement. In July 2002, USEC notified DOE that it intends to use certain leased equipment at an off-site facility at the Centrifuge Technology Center (CTC) on the Boeing Property. The purpose of the USEC Gas Centrifuge R&D Project is to develop an economically attractive gas centrifuge machine and process using DOE's centrifuge technology.

  3. Centrifugal infiltration of particulate metal matrix composites : process development and fundamental studies/

    E-Print Network [OSTI]

    Wannasin, Jessada, 1977-

    2004-01-01

    A high-pressure liquid infiltration process utilizing centrifugal force was designed and laboratory equipment developed. In this process, a mold containing reinforcing materials was located at the end of an elongated runner, ...

  4. HVAC Equipment Design Options for Near-Zero-Energy Homes (NZEH) -A Stage 2 Scoping Assessment

    SciTech Connect (OSTI)

    Baxter, Van D

    2005-11-01

    Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Conventional unitary equipment and system designs have matured to a point where cost-effective, dramatic efficiency improvements that meet near-zero-energy housing (NZEH) goals require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. This report describes results of a scoping assessment of HVAC system options for NZEH homes. ORNL has completed a preliminary adaptation, for consideration by The U.S. Department of Energy, Energy Efficiency and Renewable Energy Office, Building Technologies (BT) Program, of Cooper's (2001) stage and gate planning process to the HVAC and Water Heating element of BT's multi-year plan, as illustrated in Figure 1. In order to adapt to R&D the Cooper process, which is focused on product development, and to keep the technology development process consistent with an appropriate role for the federal government, the number and content of the stages and gates needed to be modified. The potential federal role in technology development involves 6 stages and 7 gates, but depending on the nature and status of the concept, some or all of the responsibilities can flow to the private sector for product development beginning as early as Gate 3. In the proposed new technology development stage and gate sequence, the Stage 2 'Scoping Assessment' provides the deliverable leading into the Gate 3 'Scoping Assessment Screen'. This report is an example of a Stage 2 deliverable written to document the screening of options against the Gate 3 criteria and to support DOE decision making and option prioritization. The objective of this scoping assessment was to perform a transparent evaluation of the HVAC system options for NZEH based on the applying the Gate 3 criteria uniformly to all options.

  5. Incorporating Equipment Condition Assessment in Risk Monitors for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Coble, Jamie B.; Coles, Garill A.; Meyer, Ryan M.; Ramuhalli, Pradeep

    2013-10-01

    Advanced small modular reactors (aSMRs) can complement the current fleet of large light-water reactors in the USA for baseload and peak demand power production and process heat applications (e.g., water desalination, shale oil extraction, hydrogen production). The day-to-day costs of aSMRs are expected to be dominated by operations and maintenance (O&M); however, the effect of diverse operating missions and unit modularity on O&M is not fully understood. These costs could potentially be reduced by optimized scheduling, with risk-informed scheduling of maintenance, repair, and replacement of equipment. Currently, most nuclear power plants have a “living” probabilistic risk assessment (PRA), which reflects the as-operated, as-modified plant and combine event probabilities with population-based probability of failure (POF) for key components. “Risk monitors” extend the PRA by incorporating the actual and dynamic plant configuration (equipment availability, operating regime, environmental conditions, etc.) into risk assessment. In fact, PRAs are more integrated into plant management in today’s nuclear power plants than at any other time in the history of nuclear power. However, population-based POF curves are still used to populate fault trees; this approach neglects the time-varying condition of equipment that is relied on during standard and non-standard configurations. Equipment condition monitoring techniques can be used to estimate the component POF. Incorporating this unit-specific estimate of POF in the risk monitor can provide a more accurate estimate of risk in different operating and maintenance configurations. This enhanced risk assessment will be especially important for aSMRs that have advanced component designs, which don’t have an available operating history to draw from, and often use passive design features, which present challenges to PRA. This paper presents the requirements and technical gaps for developing a framework to integrate unit-specific estimates of POF into risk monitors, resulting in enhanced risk monitors that support optimized operation and maintenance of aSMRs.

  6. Effects of Duct Improvement and ENERGYSTAR Equipment on Comfort and Energy Efficiency

    E-Print Network [OSTI]

    LBNL 43723 Effects of Duct Improvement and ENERGYSTAR Equipment on Comfort and Energy Efficiency I................................................................................................................................................ 5 DUCT LEAKAGE AND ENERGYSTAR EQUIPMENT EFFECTS ON COMFORT .................................... 5).......................................................................................................9 Duct leakage by pressurization

  7. University of Sussex DSE Policy March 2012 Display Screen Equipment Policy

    E-Print Network [OSTI]

    Sussex, University of

    Title Created Owner Review HSWO- SC1 DSE Policy 12/03/2012 Health, Safety and Wellbeing Office HSWO Equipment: equipment for DSE use approved by the University Health, Safety and Wellbeing Office. (See HSWO

  8. Permit Regulations for the Construction and, or Operation of Air Emissions Equipment (Mississippi)

    Broader source: Energy.gov [DOE]

    The Permit Board will issue two types of air pollution control permits, a permit to construct air emissions equipment and a State Permit to Operate such equipment. A State Permit to Operate is...

  9. Analysis and sourcing of the mechanical equipment required for a ceramic pot filter production facility

    E-Print Network [OSTI]

    Getachew, Julian (Julian B.)

    2011-01-01

    Research was done into identifying and sourcing the mechanical equipment required for manufacturing ceramic pot filters, specifically for use in the Pure Home Water factory in Northern Ghana. The pieces of equipment ...

  10. Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes

    E-Print Network [OSTI]

    Brown, Richard E.; Rittelman, William; Parker, Danny; Homan, Gregory

    2007-01-01

    online: www.eia.doe.gov/cneaf/electricity/esr/esr_sum.html.Miscellaneous Equipment Electricity Use in New Homes RichardMiscellaneous Equipment Electricity Use in New Homes Richard

  11. Table HC7-8a. Home Office Equipment by Urban/Rural Location...

    Gasoline and Diesel Fuel Update (EIA)

    8a. Home Office Equipment by UrbanRural Location, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total UrbanRural Location 1 RSE Row Factors City Town...

  12. Table HC7-5a. Home Office Equipment by Type of Owner-Occupied...

    Gasoline and Diesel Fuel Update (EIA)

    5a. Home Office Equipment by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Owner- Occupied Units Type of...

  13. Table HC7-6a. Home Office Equipment by Type of Rented Housing...

    Gasoline and Diesel Fuel Update (EIA)

    6a. Home Office Equipment by Type of Rented Housing Unit, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE...

  14. Feasibility of Automated Monitoring of Lifting Equipment in Support of Project Control

    E-Print Network [OSTI]

    Sacks, Rafael

    Futcher 2001; Saidi et al. 2003 . Quantities of work performed and hours invested by labor and equipment

  15. Comment submitted by Hobart/ITW Food Equipment Group regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by Hobart/ITW Food Equipment Group regarding the Energy Star Verification Testing Program

  16. Vapor cooled current lead for cryogenic electrical equipment

    DOE Patents [OSTI]

    Vansant, James H. (Tracy, CA)

    1983-01-01

    Apparatus and method are provided for conducting electric current to cryogenic electrical equipment devices. A combination of inner and outer tubes together form a plurality of hollow composite tubes housed in a sheath. Top and bottom block mounting means are fitted to hold the composite tubes and are affixed to the ends of the sheath. This combination forms a current lead. The current lead is attached to a cryogenic device housing a fluid coolant which moves through the current lead, cooling the current lead as the fluid travels.

  17. Puget Sound Energy - Commercial Energy Efficient Equipment Rebate Programs

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary AreasDepartmentImreInvolvement Plantable thatEquipmentLorelei|

  18. Hydrogen Equipment Certification Guide Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill FinancingDepartment ofPowerScenario Analysis ModelHydrogenEquipment

  19. Shenyang Tendo New Energy Equipment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New Energy Equipment Co Ltd Jump to: navigation,

  20. Shenyang Tianrui Wind Equipments Sales Company Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New Energy Equipment Co Ltd Jump to:

  1. Shenyang Tianxiang Wind Equipments Manufacturing Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New Energy Equipment Co Ltd Jump to:Information

  2. Property:Incentive/EquipReqs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,PropertyPartner7WebsiteCertReqs Jump to:ContNameEquipReqs Jump

  3. Baoding Solar Thermal Equipment Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuelsOpen EnergyBanksSolar Thermal Equipment Company

  4. List of Equipment Insulation Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressed air IncentivesEquipment Insulation

  5. List of Food Service Equipment Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressed air IncentivesEquipment

  6. Microsoft Word - CAMD Equipment PrePurchase Form.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework uses concrete and realisticQuarterStochastic Mean-FieldEquipment

  7. Design and Operation of Equipment to Detect and Remove Water within Used Nuclear Fuel Storage Bottles

    SciTech Connect (OSTI)

    C.C. Baker; T.M. Pfeiffer; J.C. Price

    2013-09-01

    Inspection and drying equipment has been implemented in a hot cell to address the inadvertent ingress of water into used nuclear fuel storage bottles. Operated with telemanipulators, the system holds up to two fuel bottles and allows their threaded openings to be connected to pressure transducers and a vacuum pump. A prescribed pressure rebound test is used to diagnose the presence of moisture. Bottles found to contain moisture are dried by vaporization. The drying process is accelerated by the application of heat and vacuum. These techniques detect and remove virtually all free water (even water contained in a debris bed) while leaving behind most, if not all, particulates. The extracted water vapour passes through a thermoelectric cooler where it is condensed back to the liquid phase for collection. Fuel bottles are verified to be dry by passing the pressure rebound test.

  8. Failure Forewarning in NPP Equipment NERI2000-109 Final Project Report

    SciTech Connect (OSTI)

    Hively, LM

    2004-03-26

    The objective of this project is forewarning of machine failures in critical equipment at next-generation nuclear power plants (NPP). Test data were provided by two collaborating institutions: Duke Engineering and Services (first project year), and the Pennsylvania State University (Applied Research Laboratory) during the second and third project years. New nonlinear methods were developed and applied successfully to extract forewarning trends from process-indicative, time-serial data for timely, condition-based maintenance. Anticipation of failures in critical equipment at next-generation NPP will improve the scheduling of maintenance activities to minimize safety concerns, unscheduled non-productive downtime, and collateral damage due to unexpected failures. This approach provides significant economic benefit, and is expected to improve public acceptance of nuclear power. The approach is a multi-tiered, model-independent, and data-driven analysis that uses ORNL's novel nonlinear method to extract forewarning of machine failures from appropriate data. The first tier of the analysis provides a robust choice for the process-indicative data. The second tier rejects data of inadequate quality. The third tier removes signal artifacts that would otherwise confound the analysis, while retaining the relevant nonlinear dynamics. The fourth tier converts the artifact-filtered time-serial data into a geometric representation, that is then transformed to a discrete distribution function (DF). This method allows for noisy, finite-length datasets. The fifth tier obtains dissimilarity measures (DM) between the nominal-state DF and subsequent test-state DFs. Forewarning of a machine failure is indicated by several successive occurrences of the DM above a threshold, or by a statistically significant trend in the DM. This paradigm yields robust nonlinear signatures of degradation and its progression, allowing earlier and more accurate detection of the machine failure.

  9. ATLAS experimental equipment. November 1983 workshop and present status

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    The latest workshop was held in November 1983 with the purpose of presenting an overview of the experimental stations planned for ATLAS, describing the current status of each individual apparatus, soliciting final input on devices of the first phase (i.e. on those that will be ready when beams from ATLAS become available in late Spring of 1985), and discussing and collecting new ideas on equipment for the second phase. There were short presentations on the status of the various projects followed by informal discussions. The presentations mainly concentrated on new equipment for target area III, but included some descriptions of current apparatus in target area II that might also be of interest for experiments with the higher-energy beams available in area III. The meeting was well attended with approx. 50 scientists, approximately half of them from institutions outside Argonne. The present proceedings summarize the presentations and discussions of this one-day meeting. In addition we take the opportunity to include information about developments since this meeting and an update of the current status of the various experimental stations. We would like to emphasize again that outside-user input is extremely welcome.

  10. Video requirements plan for the HMT equipment removal system

    SciTech Connect (OSTI)

    Vargo, G.F. Jr.

    1995-02-01

    This document is the plan defining the video coverage requirements for the equipment removal event of the Hydrogen Mitigation Test (HMT) mixer pump currently installed in high level nuclear waste storage Tank 241-SY-101. When the mixer pump fails the removal and installation of a spare pump will be a time critical event. Since the success of the HMT mixer pump has resolved the DOE safety issue it is absolutely essential that mixing be restored to the tank in a short as time possible. Therefore, the removal of the failed pump and the installation of the spare pump must be anticipated and planned well in advance. The removal, containment, transporting, and storage of the failed pump is a very complex and hazardous task. The successful completion of this task will require careful planning and monitoring. Certain events, during the removal and subsequent installation of the new pump, will require video observation and storage for safety, documenting, training, and promotional use. Furthermore, certain events will require close monitoring and observation by the event directors and key supervisory personnel for the execution of specific tasks during the equipment removal event.

  11. Criticality safety concerns of uranium deposits in cascade equipment

    SciTech Connect (OSTI)

    Plaster, M.J. [Lockheed Martin Utility Services, Inc., Piketon, OH (United States)

    1996-12-31

    The Paducah and Portsmouth Gaseous Diffusion Plants enrich uranium in the {sup 235}U isotope by diffusing gaseous uranium hexafluoride (UF{sub 6}) through a porous barrier. The UF{sub 6} gaseous diffusion cascade utilized several thousand {open_quotes}stages{close_quotes} of barrier to produce highly enriched uranium (HEU). Historically, Portsmouth has enriched the Paducah Gaseous Diffusion Plant`s product (typically 1.8 wt% {sup 235}U) as well as natural enrichment feed stock up to 97 wt%. Due to the chemical reactivity of UF{sub 6}, particularly with water, the formation of solid uranium deposits occur at a gaseous diffusion plant. Much of the equipment operates below atmospheric pressure, and deposits are formed when atmospheric air enters the cascade. Deposits may also be formed from UF{sub 6} reactions with oil, UF{sub 6} reactions with the metallic surfaces of equipment, and desublimation of UF{sub 6}. The major deposits form as a result of moist air in leakage due to failure of compressor casing flanges, blow-off plates, seals, expansion joint convolutions, and instrument lines. This report describes criticality concerns and deposit disposition.

  12. Compressor Selection and Equipment Sizing for Cold Climate Heat Pumps

    SciTech Connect (OSTI)

    Shen, Bo [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Rice, C Keith [ORNL] [ORNL

    2014-01-01

    In order to limit heating capacity degradation at -25 C (-13 F) ambient to 25%, compared to the nominal rating point capacity at 8.3 C (47 F), an extensive array of design and sizing options were investigated, based on fundamental equipment system modeling and building energy simulation. Sixteen equipment design options were evaluated in one commercial building and one residential building, respectively in seven cities. The energy simulation results were compared to three baseline cases: 100% electric resistance heating, a 9.6 HSPF single-speed heat pump unit, and 90% AFUE gas heating system. The general recommendation is that variable-speed compressors and tandem compressors, sized such that their rated heating capacity at a low speed matching the building design cooling load, are able to achieve the capacity goal at low ambient temperatures by over-speeding, for example, a home with a 3.0 ton design cooling load, a tandem heat pump could meet this cooling load running a single compressor, while running both compressors to meet heating load at low ambient temperatures in a cold climate. Energy savings and electric resistance heat reductions vary with building types, energy codes and climate zones. Oversizing a heat pump can result in larger energy saving in a less energy efficient building and colder regions due to reducing electric resistance heating. However, in a more energy-efficient building or for buildings in warmer climates, one has to consider balance between reduction of resistance heat and addition of cyclic loss.

  13. Impacts of Water Quality on Residential Water Heating Equipment

    SciTech Connect (OSTI)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  14. Appendix D Instrumentation and equipment This appendix contains the tables of instrumentation and equipment used in the Griffin field experiment. For each sensor/instrument the

    E-Print Network [OSTI]

    Appendix D Instrumentation and equipment This appendix contains the tables of instrumentation and equipment used in the Griffin field experiment. For each sensor/instrument the manufacturer and item serial / #020 Gill Instruments Cup anemometer Wind speed - analogue 0.00421 0.2041 U = V Denominator

  15. Instructions/Procedure for Transferring Capital Equipment Assets 1) Download the Capital Equipment Asset Transfer Form (UM 1556) from the UWide Forms Library. Please

    E-Print Network [OSTI]

    Minnesota, University of

    Instructions/Procedure for Transferring Capital Equipment Assets 1) Download the Capital Equipment that the original CF string on which the asset was purchased is incorrect. The cost of the asset will be transferred in the transfer. The cost of the asset will be transferred from the old CF string to the new CF string

  16. Transfer of Research Equipment from the School of Medicine to Other Research Institutions Transfer of Research Equipment from the School of Medicine

    E-Print Network [OSTI]

    Lawrence, Deborah

    Transfer of Research Equipment from the School of Medicine to Other Research Institutions Page 1 Transfer of Research Equipment from the School of Medicine to Other Research Institutions Date: May 6 of Medicine to another research institution. Reason for Policy: This policy clarifies the circumstances under

  17. Procedure for SFU personnel borrowing equipment Below is a list of questions that the equipment contract should address between SFU and the lender,

    E-Print Network [OSTI]

    Kavanagh, Karen L.

    contract should address between SFU and the lender, and that need to be answered for SFU to assess whether is the duration of the loan period? 4) What is the agreement if the lender does not want the equipment returned will the equipment be transported between the lender and SFU? 7) Who is responsible for shipping costs? 8) Who

  18. Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Guide explains the different types of alternative fuel commercial mowers and lists the makes and models of the ones available on the market. Turf grass is a fixture of the American landscape and the American economy. It is the nation's largest irrigated crop, covering more than 40 million acres. Legions of lawnmowers care for this expanse during the growing season-up to year-round in the warmest climates. The annual economic impact of the U.S. turf grass industry has been estimated at more than $62 billion. Lawn mowing also contributes to the nation's petroleum consumption and pollutant emissions. Mowers consume 1.2 billion gallons of gasoline annually, about 1% of U.S. motor gasoline consumption. Commercial mowing accounts for about 35% of this total and is the highest-intensity use. Large property owners and mowing companies cut lawns, sports fields, golf courses, parks, roadsides, and other grassy areas for 7 hours per day and consume 900 to 2,000 gallons of fuel annually depending on climate and length of the growing season. In addition to gasoline, commercial mowing consumes more than 100 million gallons of diesel annually. Alternative fuel mowers are one way to reduce the energy and environmental impacts of commercial lawn mowing. They can reduce petroleum use and emissions compared with gasoline- and diesel-fueled mowers. They may also save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and promote a 'green' image. And on ozone alert days, alternative fuel mowers may not be subject to the operational restrictions that gasoline mowers must abide by. To help inform the commercial mowing industry about product options and potential benefits, Clean Cities produced this guide to alternative fuel commercial lawn equipment. Although the guide's focus is on original equipment manufacturer (OEM) mowers, some mowers can be converted to run on alternative fuels. For more information about propane conversions. This guide may be particularly helpful for organizations that are already using alternative fuels in their vehicles and have an alternative fuel supply or electric charging in place (e.g., golf cart charging stations at most golf courses). On the flip side, experiencing the benefits of using alternative fuels in mowing equipment may encourage organizations to try them in on-road vehicles as well. Whatever the case, alternative fuel commercial lawnmowers are a powerful and cost-effective way to reduce U.S. petroleum dependence and help protect the environment.

  19. Topsides equipment, operating flexibility key floating LNG design

    SciTech Connect (OSTI)

    Yost, K.; Lopez, R.; Mok, J.

    1998-03-09

    Use of a large-scale floating liquefied natural gas (LNG) plant is an economical alternative to an onshore plant for producing from an offshore field. Mobil Technology Co., Dallas, has advanced a design for such a plant that is technically feasible, economical, safe, and reliable. Presented were descriptions of the general design basis, hull modeling and testing, topsides and storage layouts, and LNG offloading. But such a design also presents challenges for designing topsides equipment in an offshore environment and for including flexibility and safety. These are covered in this second article. Mobil`s floating LNG plant design calls for a square concrete barge with a moon-pool in the center. It is designed to produce 6 million tons/year of LNG with up to 55,000 b/d of condensate from 1 bcfd of raw feed gas.

  20. Instrumentation and Equipment for Three Independent Research Labs

    SciTech Connect (OSTI)

    Darlene Roth

    2012-03-29

    Completed in 2011, Albright's new Science Center includes three independent student and faculty research labs in Biology, Chemistry/Biochemistry, and Physics (separate from teaching labs). Providing independent research facilities, they eliminate disruptions in classrooms and teaching labs, encourage and accommodate increased student interest, and stimulate advanced research. The DOE grant of $369,943 enabled Albright to equip these advanced labs for 21st century science research, with much instrumentation shared among departments. The specialty labs will enable Albright to expand its student-faculty research program to meet growing interest, help attract superior science students, maximize faculty expertise, and continue exceeding its already high rates of acceptance for students applying for postgraduate education or pharmaceutical research positions. Biology instrumentation/equipment supports coursework and independent and collaborative research by students and faculty. The digital shaker, CO{sub 2} and water bath incubators (for controlled cell growth), balance, and micropipettes support cellular biology research in the advanced cell biology course and student-faculty research into heavy metal induction of heat shock proteins in cultured mammalian cells and the development of PCR markers from different populations of the native tree, Franklinia. The gravity convection oven and lyophilizer support research into physical and chemical analysis of floodplain sediments used in assessment of riparian restoration efforts. The Bio-Rad thermocycler permits fast and accurate DNA amplification as part of research into genetic diversity in small mammal populations and how those populations are affected by land-use practices and environmental management. The Millipore water deionizing system and glassware washer provide general support of the independent research lab and ensure quality control of coursework and interdisciplinary research at the intersection of biology, chemistry, and toxicology. Grant purchases support faculty and students working in the areas of plant cellular biology, landscape ecology and wildlife management, wetland restoration, and ecotoxicology of aquatic invertebrates. Chemistry/BioChemistry instrumentation supports a wide range of research and teaching needs. The Dell quad core Xeon processors and Gaussian 09 support computational research efforts of two of our faculty. The computational work of one of these groups is part of close collaboration with one organic chemist and provides support info for the synthetic work of this professor and his students. Computational chemistry studies were also introduced into the physical chemistry laboratory course for junior chemistry concentrators. The AKTA plus system and superdex columns, Thermoscientific Sorvall RC-6 plus superspeed centrifuge, Nanodrop spectrometer, Eppendorf microfuge, Homogenizer and Pipetman pipetters were incorporated into a research project involving purification and characterization of a construct of beta 2-microglobulin by one of our biochemists. The vacuum system (glove box, stand, and pump) makes a significant contribution to the research of our inorganic chemist, the newest department member, working on research projects with four students. The glove box provides the means to carry out their synthetic work in an oxygenless atmosphere. Supporting basic research pursued by faculty and students, the remaining items (refrigerator/freezer units for flammable storage, freezer, refrigerated water bath, rotary evaporator system, vacuum oven, analytical and top-loading balances) were distributed between our biochemistry and chemistry research labs. The Nanodrop spectrometer, Sorvall centrifuge, and rotary evaporator system are used in several junior/senior lab courses in both biochemistry and chemistry. To date, 14 undergraduate research students have been involved in projects using the new instrumentation and equipment provided by this grant. Physics equipment acquired is radically transforming Albright research and teaching capabilities. The tw

  1. Internal corrosion monitoring of subsea oil and gas production equipment

    SciTech Connect (OSTI)

    Joosten, M.W.; Fischer, K.P.; Lunden, K.C.

    1995-04-01

    Nonintrusive techniques will dominate subsea corrosion monitoring compared with the intrusive methods because such methods do not interfere with pipeline operations. The long-term reliability of the nonintrusive techniques in general is considered to be much better than that of intrusive-type probes. The nonintrusive techniques based on radioactive tracers (TLA, NA) and FSM and UT are expected to be the main types of subsea corrosion monitoring equipment in the coming years. Available techniques that could be developed specifically for subsea applications are: electrochemical noise, corrosion potentials (using new types of reference electrodes), multiprobe system for electrochemical measurements, and video camera inspection (mini-video camera with light source). The following innovative techniques have potential but need further development: ion selective electrodes, radioactive tracers, and Raman spectroscopy.

  2. Method and apparatus for operating equipment in a remote location

    SciTech Connect (OSTI)

    Cassity, T.G.; Montgomery, W.C.; Baker, G.S.; Wedel, A.W.; Taylor, W.M.

    1989-08-29

    This patent describes an apparatus for manipulating equipment including a well component in a subsea wellhead of a subsea marine well. It comprises: detecting means for detecting the occurrence of a condition with respect to the well component within the subsea wellhead, transmitting means for transmitting a signal to the water surface, means for supporting the detecting means and the transmitting means on the running string with the well component, a running string for lowering the well component, the detecting means and the transmitting means into the subsea marine well. The detecting means upon the detection of the occurrence of a condition with respect to the well component within the subsea wellhead causing the transmitting means to transmit a signal to the water surface that the condition has occurred.

  3. Commissioning Process

    Broader source: Energy.gov [DOE]

    The commissioning process for Federal facilities generally follows a four-step process. This process holds true across all forms of commissioning and for both new and existing buildings.

  4. Point processes

    E-Print Network [OSTI]

    Frederic Schoenberg

    2011-01-01

    f(t) = 0 for t Renewal models embody the notion thatmodels are surveyed including Poisson processes, renewalrenewal process originating at the corresponding parent. Self-correcting models

  5. Technical Report on Preliminary Methodology for Enhancing Risk Monitors with Integrated Equipment Condition Assessment

    SciTech Connect (OSTI)

    Ramuhalli, Pradeep; Coles, Garill A.; Coble, Jamie B.; Hirt, Evelyn H.

    2013-09-17

    Small modular reactors (SMRs) generally include reactors with electric output of ~350 MWe or less (this cutoff varies somewhat but is substantially less than full-size plant output of 700 MWe or more). Advanced SMRs (AdvSMRs) refer to a specific class of SMRs and are based on modularization of advanced reactor concepts. AdvSMRs may provide a longer-term alternative to traditional light-water reactors (LWRs) and SMRs based on integral pressurized water reactor concepts currently being considered. Enhancing affordability of AdvSMRs will be critical to ensuring wider deployment. AdvSMRs suffer from loss of economies of scale inherent in small reactors when compared to large (~greater than 600 MWe output) reactors. Some of this loss can be recovered through reduced capital costs through smaller size, fewer components, modular fabrication processes, and the opportunity for modular construction. However, the controllable day-to-day costs of AdvSMRs will be dominated by operation and maintenance (O&M) costs. Technologies that help characterize real-time risk are important for controlling O&M costs. Risk monitors are used in current nuclear power plants to provide a point-in-time estimate of the system risk given the current plant configuration (e.g., equipment availability, operational regime, and environmental conditions). However, current risk monitors are unable to support the capability requirements listed above as they do not take into account plant-specific normal, abnormal, and deteriorating states of active components and systems. This report documents technology developments that are a step towards enhancing risk monitors that, if integrated with supervisory plant control systems, can provide the capability requirements listed and meet the goals of controlling O&M costs. The report describes research results from an initial methodology for enhanced risk monitors by integrating real-time information about equipment condition and POF into risk monitors.

  6. Remote video radioactive process evaluation, Savannah River Site

    SciTech Connect (OSTI)

    Heckendorn, F.M.

    1990-01-01

    Specialized miniature low cost video equipment has been effectively used in a number of remote, radioactive, and contaminated environments at the Savannah River Site (SRS). The equipment and related techniques have reduced the potential for personnel exposure to both radiation and physical hazards. The valuable process information thus provided would not have otherwise been available for use in improving the quality of operation at SRS.

  7. Remote video radioactive process evaluation, Savannah River Site

    SciTech Connect (OSTI)

    Heckendorn, F.M.

    1990-12-31

    Specialized miniature low cost video equipment has been effectively used in a number of remote, radioactive, and contaminated environments at the Savannah River Site (SRS). The equipment and related techniques have reduced the potential for personnel exposure to both radiation and physical hazards. The valuable process information thus provided would not have otherwise been available for use in improving the quality of operation at SRS.

  8. Integrated hardware, software, and sensor design for control of a scalable, continuous roll-to-roll microcontact printing process

    E-Print Network [OSTI]

    Nill, Scott T. (Scott Thomas)

    2014-01-01

    Soft lithography has been a long-time candidate for altering the landscape in micromanufacturing. Such processes promise lower cost in equipment and processed products while showing substantial gains in throughput and ...

  9. Mechanical integrity implementation and related process safety management elements

    SciTech Connect (OSTI)

    Hudson, K.M. [General Physics Corp., San Diego, CA (United States)

    1995-12-31

    The OSHA Process Safety Management (PSM) rule requires covered facilities to establish a mechanical integrity (MI) program. The MI program must address an ongoing effort to maintain the integrity of process equipment and safety systems by providing written procedures, training, inspection and testing, and quality assurance. Development of an MI program requires information from other PSM elements such as equipment process safety information and employee participation as building blocks for the program. Information obtained from other elements of PSM can be used as the basis for inspection and testing, frequency of testing, written maintenance procedures, training of maintenance personnel, and quality assurance of spare parts and newly installed equipment. This paper presents highlights in the implementation of a mechanical integrity program. A description of the use of process safety information and baseline inspections is detailed with appropriate examples. The MI program stems from an initial documentation review, and culminates in a completely functional MI program in compliance with the regulation.

  10. Safety equipment list for the light duty utility arm system

    SciTech Connect (OSTI)

    Barnes, G.A.

    1998-03-02

    The initial issue (Revision 0) of this Safety Equipment List (SEL) for the Light Duty Utility Arm (LDUA) requires an explanation for both its existence and its being what it is. All LDUA documentation leading up to creation of this SEL, and the SEL itself, is predicated on the LDUA only being approved for use in waste tanks designated as Facility Group 3, i.e., it is not approved for use in Facility Group 1 or 2 waste tanks. Facility Group 3 tanks are those in which a spontaneous or induced hydrogen gas release would be small, localized, and would not exceed 25% of the LFL when mixed with the remaining air volume in the dome space; exceeding these parameters is considered unlikely. Thus, from a NFPA flammable gas environment perspective the waste tank interior is not classified as a hazardous location. Furthermore, a hazards identification and evaluation (HNF-SD-WM-HIE-010, REV 0) performed for the LDUA system concluded that the consequences of actual LDUA system postulated accidents in Flammable Gas Facility Group 3 waste tanks would have either NO IMPACT or LOW IMPACT on the offsite public and onsite worker. Therefore, from a flammable gas perspective, there is not a rationale for classifying any of SSCs associated with the LDUA as either Safety Class (SC) or Safety Significant (SS) SSCs, which, by default, categorizes them as General Service (GS) SSCs. It follows then, based on current PHMC procedures (HNF-PRO-704 and HNF-IP-0842, Vol IV, Section 5.2) for SEL creation and content, and from a flammable gas perspective, that an SEL is NOT REQ@D HOWEVER!!! There is both a precedent and a prudency to capture all SSCS, which although GS, contribute to a Defense-In-Depth (DID) approach to the design and use of equipment in potentially flammable gas environments. This Revision 0 of the LDUA SEL has been created to capture these SSCs and they are designated as GS-DID in this document. The specific reasons for doing this are listed.

  11. Possibility of Contamination of Subcontractor-Owned Materials and Equipment UT-B Contracts Div Page 1 of 1

    E-Print Network [OSTI]

    Possibility of Contamination of Subcontractor-Owned Materials and Equipment UT-B Contracts Div Jul 2005 Page 1 of 1 contamination-matl-equip-ext-jul05.doc POSSIBILITY OF CONTAMINATION OF SUBCONTRACTOR-OWNED MATERIALS AND EQUIPMENT AT ORNL (Jul 2005) (a) Seller's equipment may become contaminated with residual

  12. UMBC Policy VIII-1.10.02 Page 1 of 4 UMBC Policy for Non-Capital and Sensitive Equipment

    E-Print Network [OSTI]

    Suri, Manil

    : The University defines non-capital equipment, as equipment with an acquisition cost greater than or equal to $2UMBC Policy VIII-1.10.02 Page 1 of 4 UMBC Policy for Non-Capital and Sensitive Equipment UMBC #VIII-1.10.02 Purpose: To provide adequate internal control over non-capital equipment and help ensure

  13. Hydrocarbon Processing`s refining processes `96

    SciTech Connect (OSTI)

    NONE

    1996-11-01

    The paper compiles information on the following refining processes: alkylation, benzene reduction, benzene saturation, catalytic cracking, catalytic reforming, coking, crude distillation, deasphalting, deep catalytic cracking, electrical desalting, ethers, fluid catalytic cracking, hydrocracking, hydrogenation, hydrotreating, isomerization, resid catalytic cracking, treating, and visbreaking. The application, products, a description of the process, yield, economics, installation, and licensor are given for each entry.

  14. Design of HVDC converter station equipment subject to severe seismic performance requirements

    SciTech Connect (OSTI)

    Enblom, R. ); Coad, J.N.O. ); Berggren, S. )

    1993-10-01

    Severe seismic design levels were specified for the upgrading of the HVDC link between the principal islands of New Zealand. A number of novel design solutions were required to fulfill the performance requirements for the electric equipment. The purpose of this paper is to give an overview of design solutions and verification methods in the light of a specification stating performance criteria rather than specific allowables. Modifications to items of high voltage electrical equipment are described that reduce the seismic loads in the equipment and enable standard equipment to be used in areas of high seismicity. The seismic performance is further improved by controlling the eventual collapse mechanism.

  15. Students try out high-tech equipment at ASM Materials Camp |...

    National Nuclear Security Administration (NNSA)

    try out high-tech equipment at ASM Materials Camp | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  16. Distribution Effectiveness and Impacts on Equipment Sizing for Residential Thermal Distribution Systems

    E-Print Network [OSTI]

    1 LBNL-43724 Distribution Effectiveness and Impacts on Equipment Sizing for Residential Thermal Distribution Systems Walker, I., Sherman, M., and Siegel, J. Environmental Energy Technologies Division Energy

  17. Advanced Manufacturing and Engineering Equipment at the University of Southern Indiana

    SciTech Connect (OSTI)

    Mitchell, Zane Windsor; Gordon, Scott Allen

    2014-08-04

    Department of Energy grant DE-SC0005231was awarded to the University of Southern Indiana for the purchase of Advanced Manufacturing and Engineering equipment.

  18. Effects of ambient humidity on the energy use of air conditioning equipment

    E-Print Network [OSTI]

    White, Justin George

    2010-01-01

    Refrigeration, and Air-Conditioning Engi- neers. cz07ventilation, and air conditioning. ksan identifier for theon the Energy Use of Air Conditioning Equipment A Thesis

  19. Facilities and Equipment for Genomics/Comparative Functional Genomics at New York University

    SciTech Connect (OSTI)

    Lennie, Peter

    2006-06-29

    This award was for partial support for the renovation of space to house research laboratories and moveable scientific equipment for genomics/functional geonomics at New York University.

  20. An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry

    E-Print Network [OSTI]

    2004-01-01

    of Commercial and Residential Air Conditioning and HeatingOF COMMERCIAL AND RESIDENTIAL AIR-CONDITIONING AND HEATINGand residential air-conditioning and heating equipment.

  1. DOE Publishes Notice of Proposed Rulemaking for Direct Heating Equipment and Pool Heater Test Procedures

    Broader source: Energy.gov [DOE]

    The Department of Energy has published a notice of proposed rulemaking regarding test procedures for direct heating equipment and pool heaters.

  2. Pollution prevention assessment for a manufacturer of food service equipment

    SciTech Connect (OSTI)

    Edwards, H.W.; Kostrzewa, M.F.; Looby, G.P.

    1995-09-01

    The US Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. In an effort to assist these manufacturers Waste Minimization Assessment Centers (WMACs) were established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual. The WMAC team at Colorado State University performed an assessment at a plant that manufacturers commercial food service equipment. Raw materials used by the plant include stainless steel, mild steel, aluminum, and copper and brass. Operations performing in the plant include cutting, forming, bending, welding, polishing, painting, and assembly The team`s report, detailing findings and recommendations, indicated that paint-related wastes (organic solvents) are generated in large quantities and that significant cost savings could be achieved by retrofitting the water curtain paint spray booth to operate as a dry filter paint booth. Toluene could be replaced by a less toxic solvent. This Research Brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

  3. Analog Video Authentication and Seal Verification Equipment Development

    SciTech Connect (OSTI)

    Gregory Lancaster

    2012-09-01

    Under contract to the US Department of Energy in support of arms control treaty verification activities, the Savannah River National Laboratory in conjunction with the Pacific Northwest National Laboratory, the Idaho National Laboratory and Milagro Consulting, LLC developed equipment for use within a chain of custody regime. This paper discussed two specific devices, the Authentication Through the Lens (ATL) analog video authentication system and a photographic multi-seal reader. Both of these devices have been demonstrated in a field trial, and the experience gained throughout will also be discussed. Typically, cryptographic methods are used to prove the authenticity of digital images and video used in arms control chain of custody applications. However, in some applications analog cameras are used. Since cryptographic authentication methods will not work on analog video streams, a simple method of authenticating analog video was developed and tested. A photographic multi-seal reader was developed to image different types of visual unique identifiers for use in chain of custody and authentication activities. This seal reader is unique in its ability to image various types of seals including the Cobra Seal, Reflective Particle Tags, and adhesive seals. Flicker comparison is used to compare before and after images collected with the seal reader in order to detect tampering and verify the integrity of the seal.

  4. Remote handling facility and equipment used for space truss assembly

    SciTech Connect (OSTI)

    Burgess, T.W.

    1987-01-01

    The ACCESS truss remote handling experiments were performed at Oak Ridge National Laboratory's (ORNL's) Remote Operation and Maintenance Demonstration (ROMD) facility. The ROMD facility has been developed by the US Department of Energy's (DOE's) Consolidated Fuel Reprocessing Program to develop and demonstrate remote maintenance techniques for advanced nuclear fuel reprocessing equipment and other programs of national interest. The facility is a large-volume, high-bay area that encloses a complete, technologically advanced remote maintenance system that first began operation in FY 1982. The maintenance system consists of a full complement of teleoperated manipulators, manipulator transport systems, and overhead hoists that provide the capability of performing a large variety of remote handling tasks. This system has been used to demonstrate remote manipulation techniques for the DOE, the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan, and the US Navy in addition to the National Aeronautics and Space Administration. ACCESS truss remote assembly was performed in the ROMD facility using the Central Research Laboratory's (CRL) model M-2 servomanipulator. The model M-2 is a dual-arm, bilateral force-reflecting, master/slave servomanipulator which was jointly developed by CRL and ORNL and represents the state of the art in teleoperated manipulators commercially available in the United States today. The model M-2 servomanipulator incorporates a distributed, microprocessor-based digital control system and was the first successful implementation of an entirely digitally controlled servomanipulator. The system has been in operation since FY 1983. 3 refs., 2 figs.

  5. Informa(on and Resources Pes%cide Applica%on Equipment and Calibra%on

    E-Print Network [OSTI]

    Ishida, Yuko

    personal protective equipment (PPE) · Use clean water · Choose the correct type of equipment based may have pressure regulators, fans, filter screens, control valves, booms, agitators Pes4cide://npic.orst.edu/gen.htm) · Pesticides and Urban Water Quality (http://www.ipm.ucanr.edu/WATER/U/index.html) · WaterTOX water

  6. FFaacciilliittiieess MMaannaaggeemmeenntt//EEnnvviirroonnmmeennttaall HHeeaalltthh && SSaaffeettyy Hazardous Work Area/Equipment Repair Form

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Hazardous Work Area/Equipment Repair Form Form Instructions: Client is responsible for completing this form to assure that equipment and/or immediate work areas are not contaminated with any hazardous materials, tissue, etc.) Do Safety Hazards exist in the work area? N ___ Y ___ (Electrical, burn, or trip hazards

  7. The maintenance of equipment painting in maritime oil platforms is an expensive and

    E-Print Network [OSTI]

    Barbosa, Alberto

    , and set dates for each maintenance, which involves a complex logistics of embarking peopleAbstract The maintenance of equipment painting in maritime oil platforms is an expensive of the maintenance of the painting of platform elements, calculating the paint areas of different equipment

  8. WSU's M.A. in aging studies equips students with the necessary skills to

    E-Print Network [OSTI]

    WSU's M.A. in aging studies equips students with the necessary skills to meet the growing needs of America's aging population. Graduates will be well equipped for a diverse range of career opportunities from aging research and counseling to employment in nursing facilities, assisted-living communities

  9. NEW PRIMARY SUPPLIER CONTRACT Laboratory Products, Chemicals, Equipment and Lab Furniture

    E-Print Network [OSTI]

    Miller, Brian G.

    NEW PRIMARY SUPPLIER CONTRACT Laboratory Products, Chemicals, Equipment and Lab Furniture Effective Supplier for Laboratory Products including laboratory products, chemicals, equipment and lab furniture. Kickoff Event Date: Nov 5th Time: 10am - 2pm Location: College of Medicine Atrium 30+ Scientific suppliers

  10. Review of Pre- and Post-1980 Buildings in CBECS - HVAC Equipment

    SciTech Connect (OSTI)

    Winiarski, David W.; Jiang, Wei; Halverson, Mark A.

    2006-12-01

    PNNL was tasked by DOE to look at HVAC systems and equipment for Benchmark buildings based on 2003 CBECS data. This white paper summarizes the results of PNNL’s analysis of 2003 CBECS data and provides PNNL’s recommendations for HVAC systems and equipment for use in the Benchmark buildings.

  11. Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach

    E-Print Network [OSTI]

    2012-01-01

    a potential for global energy consumption reduction inenergy consumption represent 14%, 7%, and 27% of the globalEnergy Consumption Analysis in Assembly Processes and Equip- ment. 9th Global

  12. Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facilities Process Water Handling System

    SciTech Connect (OSTI)

    KESSLER, S.F.

    2000-08-10

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

  13. POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE

    SciTech Connect (OSTI)

    X.H. Wang; J. Wiseman; D.J. Sung; D. McLean; William Peters; Jim Mullins; John Hugh; G. Evans; Vince Hamilton; Kenneth Robinette; Tim Krim; Michael Fleet

    1999-08-01

    Dewatering of ultra-fine (minus 150 {micro}m) coal slurry to less than 20% moisture is difficult using the conventional dewatering techniques. The main objective of the project was to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions and surfactants in combination for the dewatering of ultra-fine clean-coal slurries using various dewatering techniques on a proof-of-concept (POC) scale of 0.5 to 2 tons per hour. The addition of conventional reagents and the application of coal surface modification technique were evaluated using vacuum filtration, hyperbaric (pressure) filtration, ceramic plate filtration and screen-bowl centrifuge techniques. The laboratory and pilot-scale dewatering studies were conducted using the fine-size, clean-coal slurry produced in the column flotation circuit at the Powell Mountain Coal Company, St. Charles, VA. The pilot-scale studies were conducted at the Mayflower preparation plant in St. Charles, VA. The program consisted of nine tasks, namely, Task 1--Project Work Planning, Task 2--Laboratory Testing, Task 3--Engineering Design, Task 4--Procurement and Fabrication, Task 5--Installation and Shakedown, Task 6--System Operation, Task 7--Process Evaluation, Task 8--Equipment Removal, and Task 9--Reporting.

  14. High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant

    SciTech Connect (OSTI)

    Bardal, M.A. [PaR Systems, Inc., Shoreview, MN (United States); Darwen, N.J. [Bechtel National, Inc., Richland, WA (United States)

    2008-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification. Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance functional and timing studies throughout the design process. Since no humans can go in or out of the cell, there are several recovery options that have been designed into the system including jack-down wheels for the bridge and trolley, recovery drums for the manipulator hoist, and a wire rope cable cutter for the slewer jib hoist. If the entire crane fails in cell, the large diameter cable reel that provides power, signal, and control to the crane can be used to retrieve the crane from the cell into the crane maintenance area. (authors)

  15. Acquisition of Single Crystal Growth and Characterization Equipment

    SciTech Connect (OSTI)

    Maple, M. Brian; Zocco, Diego A.

    2008-12-09

    Final Report for DOE Grant No. DE-FG02-04ER46178 'Acquisition of Single Crystal Growth and Characterization Equipment'. There is growing concern in the condensed matter community that the need for quality crystal growth and materials preparation laboratories is not being met in the United States. It has been suggested that there are too many researchers performing measurements on too few materials. As a result, many user facilities are not being used optimally. The number of proficient crystal growers is too small. In addition, insufficient attention is being paid to the enterprise of finding new and interesting materials, which is the driving force behind much of condensed matter research and, ultimately, technology. While a detailed assessment of this situation is clearly needed, enough evidence of a problem already exists to compel a general consensus that the situation must be addressed promptly. This final report describes the work carried out during the last four years in our group, in which a state-of-the-art single crystal growth and characterization facility was established for the study of novel oxides and intermetallic compounds of rare earth, actinide and transition metal elements. Research emphasis is on the physics of superconducting (SC), magnetic, heavy fermion (HF), non-Fermi liquid (NFL) and other types of strongly correlated electron phenomena in bulk single crystals. Properties of these materials are being studied as a function of concentration of chemical constituents, temperature, pressure, and magnetic field, which provide information about the electronic, lattice, and magnetic excitations at the root of various strongly correlated electron phenomena. Most importantly, the facility makes possible the investigation of material properties that can only be achieved in high quality bulk single crystals, including magnetic and transport phenomena, studies of the effects of disorder, properties in the clean limit, and spectroscopic and scattering studies through efforts with numerous collaborators. These endeavors will assist the effort to explain various outstanding theoretical problems, such as order parameter symmetries and electron-pairing mechanisms in unconventional superconductors, the relationship between superconductivity and magnetic order in certain correlated electron systems, the role of disorder in non-Fermi liquid behavior and unconventional superconductivity, and the nature of interactions between localized and itinerant electrons in these materials. Understanding the mechanisms behind strongly correlated electron behavior has important technological implications.

  16. Transient Burned Gas Rate Control on VVA equipped Diesel Engines

    E-Print Network [OSTI]

    - drocarbons), CO (Carbon monoxide) and above all NOx (Nitrogen Oxides) emissions. This has spurred an inter- est in new (cleaner) combustion modes. The premixed combustion modes (LTC: Low Temperature Combustion) into the combustion process. Usually, the EGR can be realized in two possible manners: through a High Pressure (HP

  17. DISPERSIVE AND DISTRIBUTIVE MIXING CHARACTERIZATION IN EXTRUSION EQUIPMENT

    E-Print Network [OSTI]

    machinery performance has relied more on users' experience and trial and error experiments. Recently as an alternative and more efficient approach in studying the influence of design and processing conditions, defined as: old = D D + (3) can be used as a basic measure of mixing efficiency for the machine design

  18. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  19. Development of bonded composite doublers for the repair of oil recovery equipment.

    SciTech Connect (OSTI)

    Roach, David W.; Rackow, Kirk A.

    2005-06-01

    An unavoidable by-product of a metallic structure's use is the appearance of crack and corrosion flaws. Economic barriers to the replacement of these structures have created an aging infrastructure and placed even greater demands on efficient and safe repair methods. In the past decade, an advanced composite repair technology has made great strides in commercial aviation use. Extensive testing and analysis, through joint programs between the Sandia Labs FAA Airworthiness Assurance Center and the aviation industry, have proven that composite materials can be used to repair damaged aluminum structure. Successful pilot programs have produced flight performance history to establish the durability of bonded composite patches as a permanent repair on commercial aircraft structures. With this foundation in place, this effort is adapting bonded composite repair technology to civil structures. The use of bonded composite doublers has the potential to correct the difficulties associated with current repair techniques and the ability to be applied where there are no rehabilitation options. It promises to be cost-effective with minimal disruption to the users of the structure. This report concludes a study into the application of composite patches on thick steel structures typically used in mining operations. Extreme fatigue, temperature, erosive, and corrosive environments induce an array of equipment damage. The current weld repair techniques for these structures provide a fatigue life that is inferior to that of the original plate. Subsequent cracking must be revisited on a regular basis. The use of composite doublers, which do not have brittle fracture problems such as those inherent in welds, can help extend the structure's fatigue life and reduce the equipment downtime. Two of the main issues for adapting aircraft composite repairs to civil applications are developing an installation technique for carbon steel and accommodating large repairs on extremely thick structures. This study developed and proved an optimum field installation process using specific mechanical and chemical surface preparation techniques coupled with unique, in-situ heating methods. In addition, a comprehensive performance assessment of composite doubler repairs was completed to establish the viability of this technology for large, steel structures. The factors influencing the durability of composite patches in severe field environments were evaluated along with related laminate design issues.

  20. Impact of Collection Equipment on Ash Variability of Baled Corn Stover Biomass for Bioenergy

    SciTech Connect (OSTI)

    William Smith; Jeffery Einerson; Kevin Kenney; Ian J. Bonner

    2014-09-01

    Cost-effective conversion of agricultural residues for renewable energy hinges not only on the material’s quality but also the biorefinery’s ability to reliably measure quality specifications. The ash content of biomass is one such specification, influencing pretreatment and disposal costs for the conversion facility and the overall value of a delivered lot of biomass. The biomass harvest process represents a primary pathway for accumulation of soil-derived ash within baled material. In this work, the influence of five collection techniques on the total ash content and variability of ash content within baled corn stover in southwest Kansas is discussed. The equipment tested included a mower for cutting the corn stover stubble, a basket rake, wheel rake, or shred flail to gather the stover, and a mixed or uniform in-feed baler for final collection. The results showed mean ash content to range from 11.5 to 28.2 % depending on operational choice. Resulting impacts on feedstock costs for a biochemical conversion process range from $5.38 to $22.30 Mg-1 based on the loss of convertible dry matter and ash disposal costs. Collection techniques that minimized soil contact (shred flail or nonmowed stubble) were shown to prevent excessive ash contamination, whereas more aggressive techniques (mowing and use of a wheel rake) caused greater soil disturbance and entrainment within the final baled material. Material sampling and testing were shown to become more difficult as within-bale ash variability increased, creating uncertainty around feedstock quality and the associated costs of ash mitigation.

  1. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces, Supplemental Notice of Proposed Rulemaking

  2. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

  3. Powder handling for automated fuel processing

    SciTech Connect (OSTI)

    Frederickson, J.R.; Eschenbaum, R.C.; Goldmann, L.H.

    1989-04-09

    Installation of the Secure Automated Fabrication (SAF) line has been completed. It is located in the Fuel Cycle Plant (FCP) at the Department of Energy's (DOE) Hanford site near Richland, Washington. The SAF line was designed to fabricate advanced reactor fuel pellets and assemble fuel pins by automated, remote operation. This paper describes powder handling equipment and techniques utilized for automated powder processing and powder conditioning systems in this line. 9 figs.

  4. The Fastmet[sup SM] direct reduction process

    SciTech Connect (OSTI)

    Lepinski, J.A.

    1993-01-01

    The Fastmet Process offers a simple and economical approach to producing direct reduced iron (DRI). It combines conventional equipment into a reliable ironmaking system. The process is ideally suited for processing U.S. iron oxide concentrates and coals. High iron yields are achievable due to the inherent ability to recycle in-plant fines and dust. Very low residence time of material in the rotary hearth furnace allows rapid adjustment of process parameters and minimal production loss from process upsets. Environmental impact is minimal. The paper gives a description of the process, then describes the economics, test facilities, test results, and scale-up.

  5. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

  6. Analysis of Alternatives for Dismantling of the Equipment in Building 117/1 at Ignalina NPP - 13278

    SciTech Connect (OSTI)

    Poskas, Povilas; Simonis, Audrius [Lithuanian Energy Institute, Kaunas (Lithuania)] [Lithuanian Energy Institute, Kaunas (Lithuania); Poskas, Gintautas [Lithuanian Energy Institute, Kaunas (Lithuania) [Lithuanian Energy Institute, Kaunas (Lithuania); Kaunas University of Technology, Kaunas (Lithuania)

    2013-07-01

    Ignalina NPP was operating two RBMK-1500 reactors which are under decommissioning now. In this paper dismantling alternatives of the equipment in Building 117/1 are analyzed. After situation analysis and collection of the primary information related to components' physical and radiological characteristics, location and other data, two different alternatives for dismantling of the equipment are formulated - the first (A1), when major components (vessels and pipes of Emergency Core Cooling System - ECCS) are segmented/halved in situ using flame cutting (oxy-acetylene) and the second one (A2), when these components are segmented/halved at the workshop using CAMC (Contact Arc Metal Cutting) technique. To select the preferable alternative MCDA method - AHP (Analytic Hierarchy Process) is applied. Hierarchical list of decision criteria, necessary for assessment of alternatives performance, are formulated. Quantitative decision criteria values for these alternatives are calculated using software DECRAD, which was developed by Lithuanian Energy Institute Nuclear engineering laboratory. While qualitative decision criteria are evaluated using expert judgment. Analysis results show that alternative A1 is better than alternative A2. (authors)

  7. Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW

    SciTech Connect (OSTI)

    Li Wei [Faculty of Materials and Metallurgical Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Science, Kunming University of Science and Technology, Kunming 650093 (China); Peng Jinhui [Faculty of Materials and Metallurgical Engineering, Kunming University of Science and Technology, Kunming 650093 (China)], E-mail: jhpeng_ok@yeah.net; Zhang Libo; Yang Kunbin; Xia Hongying; Zhang Shimin; Guo Shenghui [Faculty of Materials and Metallurgical Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2009-02-15

    Experiments to prepare activated carbon by microwave heating indicated that microwave energy can decrease reaction temperature, save the energy and shorten processing time remarkably compared to conventional heating, owing to its internal and volumetric heating effects. The above results were based on the laboratory-scale experiments. It is desirable to develop a pilot-scale microwave heating equipment and investigate the parameters with the aim of technological industrialization. In the present study, the components and features of the self-invented equipment were introduced. The temperature rise curves of the chars were obtained. Iodine numbers of the activated carbons all exceed the state standard of China under the following conditions: 25 kg/h charging rate, 0.42 rev/min turning rate of ceramic tube, flow rate of steam at pressure of 0.01 MPa and 40 kW microwave heating power after 60 kW pre-activation for 30 min. Pore structure of the sample obtained at a time point of 46 h, which contained BET surface area, and pore size distributions of micropores and total pores, was tested by nitrogen adsorption at 77 K.

  8. Italian WEEE management system and treatment of end-of-life cooling and freezing equipments for CFCs removal

    SciTech Connect (OSTI)

    Sansotera, M., E-mail: maurizio.sansotera@polimi.it [Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, via Mancinelli 7, I-20131 Milano (Italy); Istituto Nazionale di Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, I-50121 Firenze (Italy); Navarrini, W. [Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, via Mancinelli 7, I-20131 Milano (Italy); Istituto Nazionale di Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, I-50121 Firenze (Italy); Talaeemashhadi, S.; Venturini, F. [Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, via Mancinelli 7, I-20131 Milano (Italy)

    2013-06-15

    Highlights: • Italian data about WEEE management in the period 2005–2010 have been reported. • In 2001–2004 CFC release was monitored and Po Valley resulted as main source region. • The Italian directive on WEEE management was enacted in 2005 but took effect in 2008. • The CFC analytic procedures of the audit assessments have been discussed. - Abstract: This study presents and analyzes the data of the Italian system for take-back and recovery of waste electrical and electronic equipments (WEEEs) in the start-up period 2008–2010. The analysis was focused particularly on the data about the treatment of end-of-life cooling and freezing equipments. In fact, the wastes of cooling and freezing equipments have a high environmental impact. Indeed, in their compressor oil and insulation polyurethane (PU) foams chlorofluorocarbon (CFC) ozone-depleting gases are still present. In the period 2001–2004 Northern Italy resulted the main source in Europe of CFCs. The European Directive on WEEE management was enacted in 2002, but in Italy it was implemented by the legislative Decree in 2005 and it became operational in 2008. Actually, in 2008 the national WEEE Coordination Centre was founded in order to organize the WEEE pick-up process and to control collection, recovery and recycling targets. As a result, in 2010 the average WEEE collection per capita exceeded the threshold of more than 4 kg per inhabitant, as well as cooling and freezing appliances represented more than one fourth of the Italian WEEE collection stream. During the treatment of end-of-life cooling and freezing equipments, CFCs were recovered and disposed principally by burner methods. The analyses of defined specimens collected in the treatment facilities were standardized to reliably determine the amount of recovered CFCs. Samples of alkaline solid salt, alkaline saline solution, polyurethane matrix and compressor oil collected during the audit assessment procedure were analyzed and the results were discussed. In particular, the analysis of PU samples after the shredding and the warm pressing procedures measured a residual CFCs content around 500–1300 mg/kg of CFCs within the foam matrix.

  9. 16/05/12 3:54 PMFloating, smartphone-equipped robots track water flow | SmartPlanet Page 1 of 4http://www.smartplanet.com/blog/smart-takes/floating-smartphone-equipped-robots-track-water-flow/26331

    E-Print Network [OSTI]

    ://www.smartplanet.com/blog/smart-takes/floating-smartphone-equipped-robots-track-water-flow/26331http://www.smartplanet.com/blog/smart-takes/floating-smartphone-equipped-robots-track-water-flow/26331-equipped robots track water flow | SmartPlanet Page 3 of 4http://www.smartplanet.com/blog

  10. HYDROLOGICAL PROCESSES Hydrol. Process. (2011)

    E-Print Network [OSTI]

    2011-01-01

    HYDROLOGICAL PROCESSES Hydrol. Process. (2011) Published online in Wiley Online Library. Many recent studies quantify historical trends in streamflow and usually attribute these trends to structure studies of streamflow responses to climate change. A wide variety of trends in streamflow have

  11. In-Place Cleaning of Milk Pasteurizing Equipment

    E-Print Network [OSTI]

    Potter, F. E.; Moore, A. V.

    1953-01-01

    gallons daily. It was produced under excellent sanitary conditions through the use of mechanical milkers, a closed- pipe system including a filter, and a water-cool- ed, enclosed surface cooler. The milk was piped directly from the surface cooler... storage vat. Cleaning Procedure for the Pipe System After the day's run of milk had been process- ed, the cloth bag was removed from the filter, the homogenizer by-passed and all valves removed and scrubbed by hand. With the valves replaced, rinse...

  12. Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Commercial Warm Air Furnaces, Notice of Proposed Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Commercial Warm Air Furnaces, Notice of Proposed Rulemaking

  13. Energy Conservation Program for Consumer Products: Energy Conservation Standards for Direct Heating Equipment and Pool Heaters, Request for Information

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Consumer Products: Energy Conservation Standards for Direct Heating Equipment and Pool Heaters, Request for Information

  14. Painter Greenhouse Guidelines Contact: All emails regarding facilities, facilities equipment, supplies at facilities, or watering

    E-Print Network [OSTI]

    Painter Greenhouse Guidelines Contact: All emails regarding facilities, facilities equipment, supplies at facilities, or watering concerns to both the greenhouse manager, Shane Merrell for the Painter Greenhouses must be generated through Shane Merrell. Keep doors locked at all times. Repairs

  15. 01-06-2000 - Use of Non-approved Electronic Equipment in a Class...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-2000 - Use of Non-approved Electronic Equipment in a Class I, Division 2 Hazardous Location Document Number: NA Effective Date: 012000 File (public): 01-06-2000yellow...

  16. ARRA Material Handling Equipment Composite Data Products: Data Through Quarter 4 of 2012

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ainscough, C.; Saur, G.; Post, M.; Peters, M.; Ramsden, T.

    2013-05-01

    This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment composite data products for data through the fourth quarter of 2012.

  17. Vit Plant receives and sets key air filtration equipment for Low Activity Waste Facility

    Broader source: Energy.gov [DOE]

    WTP lifted a nearly 100-ton carbon bed absorber into the Low-Activity Waste Facility. This key piece of air-filtration equipment will remove mercury and acidic gases before air is channeled through...

  18. Assembly lead time reduction in a semiconductor capital equipment plant through constraint based scheduling

    E-Print Network [OSTI]

    Sedore, Blake William Clark

    2014-01-01

    The assembly protocols for a semiconductor capital equipment machine were analyzed for potential lead time reduction. The objective of this study was to determine the minimum assembly lead time for the machine based on the ...

  19. A regression approach to infer electricity consumption of legacy telecom equipment

    E-Print Network [OSTI]

    Greenberg, Albert

    A regression approach to infer electricity consumption of legacy telecom equipment [Extended and communications technology accounts for a significant fraction of worldwide electricity consumption. Given inferring the electricity consumption of different components of the installed base of telecommu- nications

  20. An investigation of transportation methods of laptop computers and peripheral equipment 

    E-Print Network [OSTI]

    Parker, Martha Katherine

    1997-01-01

    Laptop computer usage is a significant portion of business computer use. Many mobile computer users face problems with laptop and peripheral equipment transportation. This study gathered and analyzed data concerning three methods of laptop...

  1. Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment...

    Open Energy Info (EERE)

    Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co Ltd Jump to: navigation, search Name: Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power...

  2. Covenant Community Capital Mission: Covenant Community Capital equips working families to thrive financially

    E-Print Network [OSTI]

    Aazhang, Behnaam

    Covenant Community Capital Mission: Covenant Community Capital equips developments. Since its establishment, Covenant Community Capital has helped over 600. Research and develop a strategy for Covenant to acquire donated and low-cost

  3. Consider Steam Turbine Drives for Rotating Equipment - Steam Tip Sheet #21

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

  4. Dispensing Equipment Testing with Mid-Level Ethanol/Gasoline Test Fluid: Summary Report

    SciTech Connect (OSTI)

    Boyce, K.; Chapin, J. T.

    2010-11-01

    The National Renewable Energy Laboratory's (NREL) Nonpetroleum-Based Fuel Task addresses the hurdles to commercialization of biomass-derived fuels and fuel blends. One such hurdle is the unknown compatibility of new fuels with current infrastructure, such as the equipment used at service stations to dispense fuel into automobiles. The U.S. Department of Energy's (DOE) Vehicle Technology Program and the Biomass Program have engaged in a joint project to evaluate the potential for blending ethanol into gasoline at levels higher than nominal 10 volume percent. This project was established to help DOE and NREL better understand any potentially adverse impacts caused by a lack of knowledge about the compatibility of the dispensing equipment with ethanol blends higher than what the equipment was designed to dispense. This report provides data about the impact of introducing a gasoline with a higher volumetric ethanol content into service station dispensing equipment from a safety and a performance perspective.

  5. Evaluating Equipment Performance Using SCADA/PMS Data for Thermal Utility Plants - Case Studies 

    E-Print Network [OSTI]

    Deng, X.; Chen, Q.; Xu, C.

    2007-01-01

    Acquisition Plant Monitoring Systems (SCADA/PMS) or Energy Management and Control Systems (EMCS) to monitor sensors, display data, control equipment, activate alarms and log information. However, the utilization and interpretation of the logged data are often...

  6. VALVE FUNNEL SPRING PIN PRESS PERFORMANCE AND FUNCTIONAL REQUIREMENTS EVALUATION FOR SPECIAL TOOLS AND EQUIPMENT

    SciTech Connect (OSTI)

    WITHERSPOON JT

    2009-12-30

    This evaluation allows use of the valve funnel spring pin press and describes appropriate handling instructions for the tool. The engineering evaluation is required for operations and field use of special tools and equipment.

  7. Equipment Availability in the Home and School Environment: Its Relationship on Physical Activity in Children 

    E-Print Network [OSTI]

    Montandon, Kristi

    2013-01-14

    where children spend the major of time, home and school, were evaluated for equipment availability and increased physical activity. Three studies were conducted to complete this purpose. In Manuscript 1, a systematic literature review was conducted...

  8. Horse Theft Awareness and Prevention - 15 Steps to Minimizing Theft of Horses and Equipment 

    E-Print Network [OSTI]

    Gibbs, Pete G.

    2003-09-26

    Horse owners can take steps in the management and care of horses, facilities and equipment to minimize the risk of theft. This publication explains 15 ways to prevent horse theft....

  9. ARRA Material Handling Equipment Composite Data Products: Data through Quarter 2 of 2012

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-10-01

    This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment composite data products for data through the second quarter of 2012.

  10. 2014-02-21 Issuance: Test Procedure for Commercial Water Heating Equipment; Request for Information

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register request for information regarding test procedures for commercial water heating equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency (February 21, 2014).

  11. Assembly lead time reduction in a semiconductor capital equipment plant through improved material kitting

    E-Print Network [OSTI]

    Jain, Sonam

    2014-01-01

    Manufacturing operations were studied at a semiconductor capital equipment manufacturing plant, with an aim to reduce the production time of their longest lead time module. Preliminary analysis was done by observing the ...

  12. Webinar: Analysis Using Fuel Cell Material Handling Equipment for Shaving Peak Building Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Analysis Using Fuel Cell Material Handling Equipment (MHE) for Shaving Peak Building Energy" held on August 11, 2015.

  13. Upgradation of nuclear medical equipment in the developing countries and its impact in Bangladesh

    E-Print Network [OSTI]

    Jahangir, S M; Haque, M A S; Hoq, M; Mawla, Y; Morium, T; Uddin, M R; Xie, Y

    2002-01-01

    Bangladesh has thirteen Nuclear Medical Centres and one Institute of Nuclear Medicine in the country which are being run and maintained by the physicians scientists and engineers of Bangladesh Atomic Energy Commission. The peaceful application of atomic energy was initiated through all these Centres with the use of clinical isotopes for thyroid and kidney studies. The equipment used for these purposes were the thyroid uptake system, rectilinear scanner and the multiprobe renogram system. The first gamma camera was installed in the country in 1980 at the Institute of Nuclear Medicine, Dhaka. That was the turning point for the country in the field of nuclear medicine. Presently all the nuclear medical establishments are equipped least with a gamma camera, thyroid uptake system and a renogram system. In the last two decades there has been a tremendous development in the design of nuclear medical equipment. Most of the old equipments were slow and manually operated. In the beginning of nineties of the past centur...

  14. ARRA Material Handling Equipment Composite Data Products: Data through Quarter 2 of 2013

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ainscough, C.; Saur, G.; Post, M.; Peters, M.

    2013-11-01

    This report includes 47 composite data products (CDPs) produced for American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment, with data through the second quarter of 2013.

  15. Equipe 2004/2005 Antonio Roberto Formaggio (formag@ltid.inpe.br) Coord.

    E-Print Network [OSTI]

    Equipe ­ 2004/2005 Antonio Roberto Formaggio (formag@ltid.inpe.br) ­ Coord. José Carlos N (obtido no SAS) e número aleatório #12;Amostras · No SPRING: importação de pontos, recorte usando o limite

  16. How Do I Bring and Use Electrical Equipment at the ALS?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cheapest, most reliable way to have equipment approved is to make sure that it has a label from a Nationally Recognized Testing Lab (NRTL) . We recognize that many pieces of...

  17. Development of an NC equipment level controller in a hierarchical shop floor control system 

    E-Print Network [OSTI]

    Chang, William

    1993-01-01

    The methodology of developing an NC equipment controller in a Computer Integrated Manufacturing (CIM) System, which is based on a philosophy of hierarchical shop floor control, is presented in this research. The underlying architecture consists...

  18. ARRA Material Handling Equipment Composite Data Products: Data Through Quarter 4 of 2013

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Peters, M.

    2014-06-01

    This report includes 47 composite data products (CDPs) produced for American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment, with data through the fourth quarter of 2013.

  19. Environmental and Resource Studies Program Equipment Available For Use in ERS Courses

    E-Print Network [OSTI]

    Fox, Michael

    microscopes, dissecting mixers/homogenizers muffle furnace (high temperature) ovens/incubators pH meters (battery tester) power inverter solar panel and solar charge controller Audio-Visual Equipment camera

  20. A Look at Health Care Buildings - What type of equipment do they...

    U.S. Energy Information Administration (EIA) Indexed Site

    Equipment Used Return to: A Look at Health Care Buildings How large are they? How many employees are there? Where are they located? How old are they? Who owns and occupies them?...

  1. Behavior Observation Lab Equipment Manual Room 388 04/16/14 Behavior Science Core, CHDD, University of Washington 1

    E-Print Network [OSTI]

    Behavior Observation Lab Equipment Manual Room 388 04/16/14 Behavior Science Core, CHDD, University to be in the lab. #12;Behavior Observation Lab Equipment Manual Room 388 04/16/14 Behavior Science Core, CHDD;Behavior Observation Lab Equipment Manual Room 388 04/16/14 Behavior Science Core, CHDD, University

  2. Behavior Observation Lab Equipment Manual Room SB208 04/16/14 Behavior Science Core, CHDD, University of Washington 1

    E-Print Network [OSTI]

    Behavior Observation Lab Equipment Manual Room SB208 04/16/14 Behavior Science Core, CHDD visit or out of town researcher is scheduled to be in the lab. #12;Behavior Observation Lab Equipment the breeze from moving the shade out of it's track. #12;Behavior Observation Lab Equipment Manual Room SB208

  3. The Problem of Second-Hand Industrial Equipment: Reclaiming a Missed Opportunity 

    E-Print Network [OSTI]

    Kelly-Detwiler, P.; Opheim, K.

    1997-01-01

    OF SECOND-HAND INDUSTRIAL EQUIPMENT: RECLAIMING A MISSED OPPORTUNITY Peter Kelly-Detwiler Kelly Opheim Project Manager International Institute Program Manager IIEC-Latin America for Energy Conservation IIEC-North America Santiago, Chile Washington, DC... rapidly, and relatively high rates of risk and uncertainty leading to very high discount rates among equipment purchasers. In addition, the comparatively low costs of inputs including labor, energy and materials mean that even quite energy...

  4. Electrical power systems (Guatemala). Electric power generation and distribution equipment, March 1991. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1991-03-01

    The article analyzes the electrical power generation and distribution equipment market in Guatemala and contains the following subtopics: market assessment, competitive situation, market access, trade promotion opportunities, best sales prospects, and statistical data. The total market demand of electrical power generation and distribution equipment and materials in Guatemala increased from US $19.0 million in 1987 to $24.8 million in 1988 (30.5 percent).

  5. Design and Analysis of a Spurious Switching Suppression Technique Equipped Low Power Multiplier with Hybrid Encoding Scheme

    E-Print Network [OSTI]

    Saravanan, S

    2010-01-01

    Multiplication is an arithmetic operation that is mostly used in Digital Signal Processing (DSP) and communication applications. Efficient implementation of the multipliers is required in many applications. The design and analysis of Spurious Switching Suppression Technique (SSST) equipped low power multiplier with hybrid encoding is presented in this paper. The proposed encoding technique reduces the number of switching activity and dynamic power consumption by analyzing the bit patterns in the input data. In this proposed encoding scheme, the operation is executed depends upon the number of 1s and its position in the multiplier data. The architecture of the proposed multiplier is designed using a low power full adder which consumes less power than the other adder architectures. The switching activity of the proposed multiplier has been reduced by 86 percent and 46percent compared with conventional and Booth multiplier respectively. It is observed from the device level simulation using TANNER 12.6 EDA that t...

  6. Regulatory issues associated with closure of the Hanford AX Tank Farm ancillary equipment

    SciTech Connect (OSTI)

    Becker, D.L.

    1998-09-02

    Liquid mixed, high-level radioactive waste has been stored in underground single-shell tanks at the US Department of Energy`s (DOE`s) Hanford Site. After retrieval of the waste from the single-shell tanks, the DOE will proceed with closure of the tank farm. The 241-AX Tank Farm includes four one-million gallon single-shell tanks in addition to sluice lines, transfer lines, ventilation headers, risers, pits, cribs, catch tanks, buildings, well and associated buried piping. This equipment is classified as ancillary equipment. This document addresses the requirements for regulatory close of the ancillary equipment in the Hanford Site 241-AX Tank Farm. The options identified for physical closure of the ancillary equipment include disposal in place, disposal in place after treatment, excavation and disposal on site in an empty single-shell tank, and excavation and disposal outside the AX Tank Farm. The document addresses the background of the Hanford Site and ancillary equipment in the AX Tank Farm, regulations for decontamination and decommissioning of radioactively contaminated equipment, requirements for the cleanup and disposal of radioactive wastes, cleanup and disposal requirements governing hazardous and mixed waste, and regulatory requirements and issues associated with each of the four physical closure options. This investigation was conducted by the Sandia National Laboratories, Albuquerque, New Mexico, during Fiscal Year 1998 for the Hanford Tanks Initiative Project.

  7. Oxidation of volatiles in residential wood burning equipment. Final technical report, September 1980-February 1984

    SciTech Connect (OSTI)

    Malte, P.C.; Thornton, M.M.; Kamber, P.D.

    1984-04-01

    The objectives of this project are to measure, through the use of laboratory combustors, those conditions which promote complete combustion of wood volatiles in residential wood burning equipment. The conditions of interest are combustion temperature, residence time, stoichiometry, and air mixing. The project objectives are met through two laboratory approaches: (1) model compound studies: in order to measure the overall rates of oxidative pyrolysis of biomass volatiles, and to determine the types of intermediate organic species which are likely to form as part of this process, model compounds have been reacted in a specialized jet-stirred reactor, which has been developed as part of this research. (2) high-intensity wood combustion: in order to study the clean combustion of wood, that is, to investigate the conceptual design features required for clean burning, and to ascertain the levels and types of pollutant and condensible species which are most difficult to oxidize, a high-intensity, research wood combustor has been developed and examined for the different phases of the wood burning cycle. Although the objectives of the project have been met, it has not been possible, because of support limitations, to thoroughly explore several interesting aspects which have arisen because of this research. For example, a third laboratory system in which wood pyrolysis gas is injected directly into the a well characterized reactor, so that the kinetics and mechanisms of the gas-phase reaction of the actual biomass volatiles can be studied, could not be thoroughly developed. Refinements in the high-intensity wood combustor, which would bring its design features closer to practicality for the industry, could not be considered. 32 references, 37 figures, 10 tables.

  8. SECOND GENERATION EXPERIMENTAL EQUIPMENT DESIGN TO SUPPORT VOLOXIDATION TESTING AT INL

    SciTech Connect (OSTI)

    Dennis L. Wahlquit; Kenneth J. Bateman; Brian R. Westphal

    2008-05-01

    Voloxidation is a potential head-end process used prior to aqueous or pyrochemical spent-oxide-fuel treatment. The spent oxide fuel is heated to an elevated temperature in oxygen or air to promote separation of the fuel from the cladding as well as volatize the fission products. The Idaho National Laboratory (INL) and the Korea Atomic Energy Research Institute (KAERI) have been collaborating on voloxidation research through a joint International Nuclear Energy Research Initiative (I-NERI). A new furnace and off-gas trapping system (OTS) with enhanced capability was necessary to perform further testing. The design criteria for the OTS were jointly agreed upon by INL and KAERI. First, the equipment must accommodate the use of spent nuclear fuel and be capable of operating in the Hot Fuel Examination Facility (HFEF) at the INL. This primarily means the furnace and OTS must be remotely operational and maintainable. The system requires special filters and distinctive temperature zones so that the fission products can be uniquely captured. The OTS must be sealed to maximize the amount of fission products captured. Finally, to accommodate the largest range of operating conditions, the OTS must be capable of handling high temperatures and various oxidizing environments. The constructed system utilizes a vertical split-tube furnace with four independently controlled zones. One zone is capable of reaching 1200°C to promote the release of volatile fission products. The three additional zones that capture fission products can be controlled to operate between 100-1100°C. A detailed description of the OTS will be presented as well as some initial background information on high temperature seal options.

  9. Preliminary evaluation of alternative waste form solidification processes. Volume I. Identification of the processes.

    SciTech Connect (OSTI)

    Treat, R.L.; Nesbitt, J.F.; Blair, H.T.; Carter, J.G.; Gorton, P.S.; Partain, W.L.; Timmerman, C.L.

    1980-04-01

    This document contains preconceptual design data on 11 processes for the solidification and isolation of nuclear high-level liquid wastes (HLLW). The processes are: in-can glass melting (ICGM) process, joule-heated glass melting (JHGM) process, glass-ceramic (GC) process, marbles-in-lead (MIL) matrix process, supercalcine pellets-in-metal (SCPIM) matrix process, pyrolytic-carbon coated pellets-in-metal (PCCPIM) matrix process, supercalcine hot-isostatic-pressing (SCHIP) process, SYNROC hot-isostatic-pressing (SYNROC HIP) process, titanate process, concrete process, and cermet process. For the purposes of this study, it was assumed that each of the solidification processes is capable of handling similar amounts of HLLW generated in a production-sized fuel reprocessing plant. It was also assumed that each of the processes would be enclosed in a shielded canyon or cells within a waste facility located at the fuel reprocessing plant. Finally, it was assumed that all of the processes would be subject to the same set of regulations, codes and standards. Each of the solidification processes converts waste into forms that may be acceptable for geological disposal. Each process begins with the receipt of HLLW from the fuel reprocessing plant. In this study, it was assumed that the original composition of the HLLW would be the same for each process. The process ends when the different waste forms are enclosed in canisters or containers that are acceptable for interim storage. Overviews of each of the 11 processes and the bases used for their identification are presented in the first part of this report. Each process, including its equipment and its requirements, is covered in more detail in Appendices A through K. Pertinent information on the current state of the art and the research and development required for the implementation of each process are also noted in the appendices.

  10. Rapid process for producing transparent, monolithic porous glass

    DOE Patents [OSTI]

    Coronado, Paul R. (Livermore, CA)

    2006-02-14

    A process for making transparent porous glass monoliths from gels. The glass is produced much faster and in much larger sizes than present technology for making porous glass. The process reduces the cost of making large porous glass monoliths because: 1) the process does not require solvent exchange nor additives to the gel to increase the drying rates, 2) only moderate temperatures and pressures are used so relatively inexpensive equipment is needed, an 3) net-shape glass monoliths are possible using this process. The process depends on the use of temperature to control the partial pressure of the gel solvent in a closed vessel, resulting in controlled shrinking during drying.

  11. IT Support for Release Management Processes in the Automotive Industry

    E-Print Network [OSTI]

    Ulm, Universität

    IT Support for Release Management Processes in the Automotive Industry Dominic M¨uller1,2 , Joachim equipment. Different life cycle times of mechanical, software and hardware components as well as different In the automotive industry, car development has been dramatically influenced by the introduction of electrical

  12. C-106 tank process ventilation test

    SciTech Connect (OSTI)

    Bailey, J.W.

    1998-07-20

    Project W-320 Acceptance Test Report for tank 241-C-106, 296-C-006 Ventilation System Acceptance Test Procedure (ATP) HNF-SD-W320-012, C-106 Tank Process Ventilation Test, was an in depth test of the 296-C-006 ventilation system and ventilation support systems required to perform the sluicing of tank C-106. Systems involved included electrical, instrumentation, chiller and HVAC. Tests began at component level, moved to loop level, up to system level and finally to an integrated systems level test. One criteria was to perform the test with the least amount of risk from a radioactive contamination potential stand point. To accomplish this a temporary configuration was designed that would simulate operation of the systems, without being connected directly to the waste tank air space. This was done by blanking off ducting to the tank and connecting temporary ducting and an inlet air filter and housing to the recirculation system. This configuration would eventually become the possible cause of exceptions. During the performance of the test, there were points where the equipment did not function per the directions listed in the ATP. These events fell into several different categories. The first and easiest problems were field configurations that did not match the design documentation. This was corrected by modifying the field configuration to meet design documentation and reperforming the applicable sections of the ATP. A second type of problem encountered was associated with equipment which did not operate correctly, at which point an exception was written against the ATP, to be resolved later. A third type of problem was with equipment that actually operated correctly but the directions in the ATP were in error. These were corrected by generating an Engineering Change Notice (ECN) against the ATP. The ATP with corrected directions was then re-performed. A fourth type of problem was where the directions in the ATP were as the equipment should operate, but the design of the equipment was not correct for that type of operation. To correct this problem an ECN was generated against the design documents, the equipment modified accordingly, and the ATP re-performed. The last type of problem was where the equipment operated per the direct ions in the ATP, agreed with the design documents, yet violated requirements of the Basis of Interim Operation (BIO). In this instance a Non Conformance Report (NCR) was generated. To correct problems documented on an NCR, an ECN was generated to modify the design and field work performed, followed by retesting to verify modifications corrected noted deficiencies. To expedite the completion of testing and maintain project schedules, testing was performed concurrent with construct on, calibrations and the performance of other ATP`s.

  13. Validation of Sanitation Procedures to Prevent the Cross Contact with Allergens During the Processing of Pork Products 

    E-Print Network [OSTI]

    Winkler, Dawna

    2010-10-12

    This study was conducted to develop and validate cleaning procedures for different processing equipment of varying complexity and to determine the efficacy of two different allergen tests. Following introduction of selected ...

  14. Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Brawley 10 MW Geothermal Plant Plant Manual for Southern California Edison Company and Union Oil Company of California. Volume IV. Equipment Data

    SciTech Connect (OSTI)

    1980-11-28

    This volume covers Equipment Data. This volume has technical presentations on each piece of plant equipment. it also references manufacturer's instruction books and drawing lists.

  16. BENEFITS OF VIBRATION ANALYSIS FOR DEVELOPMENT OF EQUIPMENT IN HLW TANKS - 12341

    SciTech Connect (OSTI)

    Stefanko, D.; Herbert, J.

    2012-01-10

    Vibration analyses of equipment intended for use in the Savannah River Site (SRS) radioactive liquid waste storage tanks are performed during pre-deployment testing and has been demonstrated to be effective in reducing the life-cycle costs of the equipment. Benefits of using vibration analysis to identify rotating machinery problems prior to deployment in radioactive service will be presented in this paper. Problems encountered at SRS and actions to correct or lessen the severity of the problem are discussed. In short, multi-million dollar cost saving have been realized at SRS as a direct result of vibration analysis on existing equipment. Vibration analysis of equipment prior to installation can potentially reduce inservice failures, and increases reliability. High-level radioactive waste is currently stored in underground carbon steel waste tanks at the United States Department of Energy (DOE) Savannah River Site and at the Hanford Site, WA. Various types of rotating machinery (pumps and separations equipment) are used to manage and retrieve the tank contents. Installation, maintenance, and repair of these pumps and other equipment are expensive. In fact, costs to remove and replace a single pump can be as high as a half million dollars due to requirements for radioactive containment. Problems that lead to in-service maintenance and/or equipment replacement can quickly exceed the initial investment, increase radiological exposure, generate additional waste, and risk contamination of personnel and the work environment. Several different types of equipment are considered in this paper, but pumps provide an initial example for the use of vibration analysis. Long-shaft (45 foot long) and short-shaft (5-10 feet long) equipment arrangements are used for 25-350 horsepower slurry mixing and transfer pumps in the SRS HLW tanks. Each pump has a unique design, operating characteristics and associated costs, sometimes exceeding a million dollars. Vibration data are routinely collected during pre-installation tests and screened for: Critical speeds or resonance, Imbalance of rotating parts, Shaft misalignment, Fluid whirl or lubrication break down, Bearing damages, and Other component abnormalities. Examples of previous changes in operating parameters and fabrication tolerances and extension of equipment life resulting from the SRS vibration analysis program include: (1) Limiting operational speeds for some pumps to extend service life without design or part changes; (2) Modifying manufacturing methods (tightening tolerances) for impellers on slurry mixing pumps based on vibration data that indicated hydraulic imbalance; (3) Identifying rolling element mounting defects and replacing those components in pump seals before installation; and (4) Identifying the need for bearing design modification for SRS long-shaft mixing pump designs to eliminate fluid whirl and critical speeds which significantly increased the equipment service life. In addition, vibration analyses and related analyses have been used during new equipment scale-up tests to identify the need for design improvements for full-scale operation / deployment of the equipment in the full size tanks. For example, vibration analyses were recently included in the rotary micro-filtration scale-up test program at SRNL.

  17. Selecting a plutonium vitrification process

    SciTech Connect (OSTI)

    Jouan, A. [Centre d`Etudes de la Vallee du Rhone, Bagnols sur Ceze (France)

    1996-05-01

    Vitrification of plutonium is one means of mitigating its potential danger. This option is technically feasible, even if it is not the solution advocated in France. Two situations are possible, depending on whether or not the glass matrix also contains fission products; concentrations of up to 15% should be achievable for plutonium alone, whereas the upper limit is 3% in the presence of fission products. The French continuous vitrification process appears to be particularly suitable for plutonium vitrification: its capacity is compatible with the required throughout, and the compact dimensions of the process equipment prevent a criticality hazard. Preprocessing of plutonium metal, to convert it to PuO{sub 2} or to a nitric acid solution, may prove advantageous or even necessary depending on whether a dry or wet process is adopted. The process may involve a single step (vitrification of Pu or PuO{sub 2} mixed with glass frit) or may include a prior calcination step - notably if the plutonium is to be incorporated into a fission product glass. It is important to weigh the advantages and drawbacks of all the possible options in terms of feasibility, safety and cost-effectiveness.

  18. Hydrocracking process

    SciTech Connect (OSTI)

    Baird, M.J.; Gutberlet, L.C.; Miller, J.T.

    1984-02-14

    A process for hydrocracking gas oil boiling range hydrocarbon feeds comprising contacting the feed with hydrogen under hydrocracking conditions in the presence of a catalyst comprising an active metallic component comprising at least one metal having hydrogenation activity and at least one oxygenated phosphorus component, and a support component comprising at least one non-zeolitic, porous refractory inorganic oxide matrix component and at least one crystalline molecular sieve zeolite component.

  19. Hydrocracking process

    SciTech Connect (OSTI)

    Lamb, P.R.; Bakas, S.T.; Wood, B.M.

    1984-05-08

    A method is disclosed for hydrocracking a hydrocarbon feedstock having a propensity to form polynuclear aromatic compounds without excessively fouling the processing unit. The hydrocracking method includes contacting the hydrocarbon feedstock with a crystalline zeolite hydrocracking catalyst, contacting at least a portion of the resulting unconverted hydrocarbon oil containing polynuclear aromatic compounds with an adsorbent which selectively retains polynuclear aromatic compounds and recycling unconverted hydrocarbon oil having a reduced concentration of polynuclear aromatic compounds to the hydrocracking zone.

  20. HYDROLOGICAL PROCESSES Hydrol. Process. (2011)

    E-Print Network [OSTI]

    Fountain, Andrew G.

    2011-01-01

    . Simultaneous time series for electrical conductivity, water temperature, and DO over the four-week study period. The main driver of the observed variations in DO is likely to be periodic melt-freeze cycles. We conclude perturbations have large impacts on hydrological and biological processes, via changes in rates of ice and snow

  1. Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD

    SciTech Connect (OSTI)

    Katherine Dombrowski

    2009-12-31

    This report presents the results of a multi-year test program conducted as part of Cooperative Agreement DE-FC26-06NT42779, 'Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD.' The objective of this program was to determine the level of mercury removal achievable using sorbent injection for a plant firing Texas lignite fuel and equipped with an ESP and wet FGD. The project was primarily funded by the U.S. DOE National Energy Technology Laboratory. EPRI, NRG Texas, Luminant (formerly TXU), and AEP were project co-funders. URS Group was the prime contractor, and Apogee Scientific and ADA-ES were subcontractors. The host site for this program was NRG Texas Limestone Electric Generating Station (LMS) Units 1 and 2, located in Jewett, Texas. The plant fires a blend of Texas lignite and Powder River Basin (PRB) coal. Full-scale tests were conducted to evaluate the mercury removal performance of powdered sorbents injected into the flue gas upstream of the ESP (traditional configuration), upstream of the air preheater, and/or between electric fields within the ESP (Toxecon{trademark} II configuration). Phases I through III of the test program, conducted on Unit 1 in 2006-2007, consisted of three short-term parametric test phases followed by a 60-day continuous operation test. Selected mercury sorbents were injected to treat one quarter of the flue gas (e.g., approximately 225 MW equivalence) produced by Limestone Unit 1. Six sorbents and three injection configurations were evaluated and results were used to select the best combination of sorbent (Norit Americas DARCO Hg-LH at 2 lb/Macf) and injection location (upstream of the ESP) for a two-month performance evaluation. A mercury removal rate of 50-70% was targeted for the long-term test. During this continuous-injection test, mercury removal performance and variability were evaluated as the plant operated under normal conditions. Additional evaluations were made to determine any balance-of-plant impacts of the mercury control process, including those associated with ESP performance and fly ash reuse properties. Upon analysis of the project results, the project team identified several areas of interest for further study. Follow-on testing was conducted on Unit 2 in 2009 with the entire unit treated with injected sorbent so that mercury removal across the FGD could be measured and so that other low-ash impact technologies could be evaluated. Three approaches to minimizing ash impacts were tested: (1) injection of 'low ash impact' sorbents, (2) alterations to the injection configuration, and (3) injection of calcium bromide in conjunction with sorbent. These conditions were tested with the goal of identifying the conditions that result in the highest mercury removal while maintaining the sorbent injection at a rate that preserves the beneficial use of ash.

  2. Hydropyrolysis process

    DOE Patents [OSTI]

    Ullman, Alan Z. (Northridge, CA); Silverman, Jacob (Woodland Hills, CA); Friedman, Joseph (Huntington Beach, CA)

    1986-01-01

    An improved process for producing a methane-enriched gas wherein a hydrogen-deficient carbonaceous material is treated with a hydrogen-containing pyrolysis gas at an elevated temperature and pressure to produce a product gas mixture including methane, carbon monoxide and hydrogen. The improvement comprises passing the product gas mixture sequentially through a water-gas shift reaction zone and a gas separation zone to provide separate gas streams of methane and of a recycle gas comprising hydrogen, carbon monoxide and methane for recycle to the process. A controlled amount of steam also is provided which when combined with the recycle gas provides a pyrolysis gas for treatment of additional hydrogen-deficient carbonaceous material. The amount of steam used and the conditions within the water-gas shift reaction zone and gas separation zone are controlled to obtain a steady-state composition of pyrolysis gas which will comprise hydrogen as the principal constituent and a minor amount of carbon monoxide, steam and methane so that no external source of hydrogen is needed to supply the hydrogen requirements of the process. In accordance with a particularly preferred embodiment, conditions are controlled such that there also is produced a significant quantity of benzene as a valuable coproduct.

  3. Mathematical modeling and computer simulation of processes in energy systems

    SciTech Connect (OSTI)

    Hanjalic, K.C. )

    1990-01-01

    This book is divided into the following chapters. Modeling techniques and tools (fundamental concepts of modeling); 2. Fluid flow, heat and mass transfer, chemical reactions, and combustion; 3. Processes in energy equipment and plant components (boilers, steam and gas turbines, IC engines, heat exchangers, pumps and compressors, nuclear reactors, steam generators and separators, energy transport equipment, energy convertors, etc.); 4. New thermal energy conversion technologies (MHD, coal gasification and liquefaction fluidized-bed combustion, pulse-combustors, multistage combustion, etc.); 5. Combined cycles and plants, cogeneration; 6. Dynamics of energy systems and their components; 7. Integrated approach to energy systems modeling, and 8. Application of modeling in energy expert systems.

  4. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect (OSTI)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  5. Risk analysis of the LHC underground area fire risk due to faulty electrical equipment

    E-Print Network [OSTI]

    Harrison, A

    2007-01-01

    The European Organisation for Nuclear Research (CERN) in Geneva, Switzerland, is currently building the latest generation of particle accelerators, the LHC (Large Hadron Collider). The machine is housed in a circular tunnel of 27 km of circumference and is situated approximately 100 metres beneath the surface astride the Franco-Swiss border. Electrically induced fires in the LHC are a major concern, since an incident could present a threat to CERN personnel as well as the public. Moreover, the loss of equipment would result in significant costs and downtime. However, the amount of electrical equipment in the underground area required for operation, supervision and control of the machine is essential. Thus the present thesis is assessing the risk of fire due to faulty electrical equipment in both a qualitative as well as quantitative way. The recommendations following the qualitative analysis suggest the introduction of fire protection zones for the areas with the highest risk of fire due to a combination of p...

  6. Guide to good practices for control of equipment and system status

    SciTech Connect (OSTI)

    NONE

    1998-12-01

    This Guide to Good Practices is written to enhance understanding of, and provide direction for, Control of Equipment and System Status, Chapter VIII of Department of Energy (DOE) Order 5480.19, Conduct of Operations Requirements for DOE Facilities. The practices in this guide should be considered when planning or reviewing equipment and system status control programs. Contractors are advised to adopt procedures that meet the intent of DOE Order 5480.19. Control of Equipment and System Status is an element of an effective Conduct of Operations program. The complexity and array of activities performed in DOE facilities dictate the need for a formal status control program to promote safe and efficient operations.

  7. Ceramic Processing

    SciTech Connect (OSTI)

    EWSUK,KEVIN G.

    1999-11-24

    Ceramics represent a unique class of materials that are distinguished from common metals and plastics by their: (1) high hardness, stiffness, and good wear properties (i.e., abrasion resistance); (2) ability to withstand high temperatures (i.e., refractoriness); (3) chemical durability; and (4) electrical properties that allow them to be electrical insulators, semiconductors, or ionic conductors. Ceramics can be broken down into two general categories, traditional and advanced ceramics. Traditional ceramics include common household products such as clay pots, tiles, pipe, and bricks, porcelain china, sinks, and electrical insulators, and thermally insulating refractory bricks for ovens and fireplaces. Advanced ceramics, also referred to as ''high-tech'' ceramics, include products such as spark plug bodies, piston rings, catalyst supports, and water pump seals for automobiles, thermally insulating tiles for the space shuttle, sodium vapor lamp tubes in streetlights, and the capacitors, resistors, transducers, and varistors in the solid-state electronics we use daily. The major differences between traditional and advanced ceramics are in the processing tolerances and cost. Traditional ceramics are manufactured with inexpensive raw materials, are relatively tolerant of minor process deviations, and are relatively inexpensive. Advanced ceramics are typically made with more refined raw materials and processing to optimize a given property or combination of properties (e.g., mechanical, electrical, dielectric, optical, thermal, physical, and/or magnetic) for a given application. Advanced ceramics generally have improved performance and reliability over traditional ceramics, but are typically more expensive. Additionally, advanced ceramics are typically more sensitive to the chemical and physical defects present in the starting raw materials, or those that are introduced during manufacturing.

  8. Proposal Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions |(Conference)Project TourVehicles &Proposal Process

  9. The test result of diesel truck on road with use of soot removal equipment

    SciTech Connect (OSTI)

    Yoshikawa, Hideo; Kowada, Minoru [Chiba Inst. of Tech. (Japan); Yamaguchi, Tateo [Chiba Truck Corp. (Japan); Ikeda, Takashi

    1996-09-01

    In this study, the test results of commercialized 2 ton cargo truck on road for 6 months, are reported using the soot removal equipment at low voltage and with a short regeneration time. The equipment consists of using commercial truck battery, changing electrically neutral soot to negative charged soot. It adsorbs charged soot electrically with the metal mesh connected to positive pole and washes the soot with liquid detergent, during the cutting off of electric source. The removal of the accumulated soot was completed within two minutes, with 100% regeneration.

  10. Reductive stripping process for uranium recovery from organic extracts

    DOE Patents [OSTI]

    Hurst, F.J. Jr.

    1983-06-16

    In the reductive stripping of uranium from an organic extractant in a uranium recovery process, the use of phosphoric acid having a molarity in the range of 8 to 10 increases the efficiency of the reductive stripping and allows the strip step to operate with lower aqueous to organic recycle ratios and shorter retention time in the mixer stages. Under these operating conditions, less solvent is required in the process, and smaller, less expensive process equipment can be utilized. The high strength H/sub 3/PO/sub 4/ is available from the evaporator stage of the process.

  11. TANKS 18 AND 19-F EQUIPMENT GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    SciTech Connect (OSTI)

    Stefanko, D.; Langton, C.

    2011-12-15

    The United States Department of Energy (US DOE) intends to remove Tanks 18-F and 19-F at the Savannah River Site (SRS) from service. The high-level waste (HLW) tanks have been isolated from the F-area Tank Farm (FTF) facilities and will be filled with cementitious grout for the purpose of: (1) physically stabilizing the empty volumes in the tanks, (2) limiting/eliminating vertical pathways from the surface to residual waste on the bottom of the tanks, (3) providing an intruder barrier, and (4) providing an alkaline, chemical reducing environment within the closure boundary to limit solubility of residual radionuclides. Bulk waste and heel waste removal equipment will remain in Tanks 18-F and 19-F when the tanks are closed. This equipment includes: mixer pumps, transfer pumps, transfer jets, equipment support masts, sampling masts and dip tube assemblies. The current Tank 18-F and 19-F closure strategy is to grout the internal void spaces in this equipment to eliminate fast vertical pathways and slow water infiltration to the residual material on the tank floor. This report documents the results of laboratory testing performed to identify a grout formulation for filling the abandoned equipment in Tanks 18-F and 19-F. The objective of this work was to formulate a flowable grout for filling internal voids of equipment that will remain in Tanks 18-F and 19-F during the final closures. This work was requested by V. A. Chander, Tank Farm Closure Engineering, in HLW-TTR-2011-008. The scope for this task is provided in the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The specific objectives of this task were to: (1) Prepare and evaluate the SRR cooling coil grout identified in WSRC-STI-2008-00298 per the TTR for this work. The cooling coil grout is a mixture of BASF MasterFlow{reg_sign} 816 cable grout (67.67 wt. %), Grade 100 ground granulated blast furnace slag (7.52 wt. %) and water (24.81 wt. %); (2) Identify equipment grout placement and performance properties; (3) Design up to 2 additional grout systems for filling the Tank 18-F and Tank 19-F equipment; (4) Prepare samples of candidate grouts and measure fresh properties, thermal properties and cured properties; (5) Recommend a grout for the Tier 1A equipment fill mock up - ADMP 4 foot high mock up, 1 inch and 2 inch pipes; (6) Support procurement of materials for the Tier 1A equipment fill mock up test; (7) Prepare samples of the recommended grout for hydraulic property measurements which can be used for comparison to values used in the F- Tank Farm Performance Assessment (PA); and (8) Document equipment fill grout data and recommendations in a report.

  12. TANK 18 AND 19-F TIER 1A EQUIPMENT FILL MOCK UP TEST SUMMARY

    SciTech Connect (OSTI)

    Stefanko, D.; Langton, C.

    2011-11-04

    The United States Department of Energy (US DOE) has determined that Tanks 18-F and 19-F have met the F-Tank Farm (FTF) General Closure Plan Requirements and are ready to be permanently closed. The high-level waste (HLW) tanks have been isolated from FTF facilities. To complete operational closure they will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) discouraging future intrusion, and (4) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. Bulk waste removal and heel removal equipment remain in Tanks 18-F and 19-F. This equipment includes the Advance Design Mixer Pump (ADMP), transfer pumps, transfer jets, standard slurry mixer pumps, equipment-support masts, sampling masts, dip tube assemblies and robotic crawlers. The present Tank 18 and 19-F closure strategy is to grout the equipment in place and eliminate vertical pathways by filling voids in the equipment to vertical fast pathways and water infiltration. The mock-up tests described in this report were intended to address placement issues identified for grouting the equipment that will be left in Tank 18-F and Tank 19-F. The Tank 18-F and 19-F closure strategy document states that one of the Performance Assessment (PA) requirements for a closed tank is that equipment remaining in the tank be filled to the extent practical and that vertical flow paths 1 inch and larger be grouted. The specific objectives of the Tier 1A equipment grout mock-up testing include: (1) Identifying the most limiting equipment configurations with respect to internal void space filling; (2) Specifying and constructing initial test geometries and forms that represent scaled boundary conditions; (3) Identifying a target grout rheology for evaluation in the scaled mock-up configurations; (4) Scaling-up production of a grout mix with the target rheology (16 second flow cone value) from 0.25 cubic feet to 4.3 cubic feet. (Ten 0.43 cubic batches were produced because full-scale equipment was not available for the Tier 1A test.); (5) Demonstrating continuous gravity filling of the ADMP mock up test form; (6) Demonstrating continuous gravity filling of 1 inch and 2 inch schedule 40 pipe; and (7) Demonstrating filling of 1 inch and 2 inch schedule 40 pipe from the bottom up by discharging through a tube inserted into the pipes. The Tier 1A mock-up test focused on the ADMP and pipes at least one inch in diameter. The ADMP which is located in center riser of Tank 18-F is a concern because the column for this long-shaft (55 ft) pump is unique and modification to the pump prior to placing it in service limited the flow path options for filling by creating a single flow path for filling and venting the ADMP support column. The large size, vertical orientation, and complicated flow path in the ADMP warrants a detailed description of this piece of ancillary equipment.

  13. Lubrication Systems Market : Mining & Mineral Processing Industry...

    Open Energy Info (EERE)

    Groeneveld Groep B.V., SKF AB, Bijur Delimon, Castrol-Lubecon, Changzhou Huali Hydraulic Lubrication Equipment Co., Ltd., Changhua Chen Ying Oil Machine Co., Ltd., Equipment...

  14. Crystallization process

    DOE Patents [OSTI]

    Adler, Robert J. (Shaker Heights, OH); Brown, William R. (Brecksville, OH); Auyang, Lun (Highland Heights, OH); Liu, Yin-Chang (Richmond Heights, OH); Cook, W. Jeffrey (Cleveland Heights, OH)

    1986-01-01

    An improved crystallization process is disclosed for separating a crystallizable material and an excluded material which is at least partially excluded from the solid phase of the crystallizable material obtained upon freezing a liquid phase of the materials. The solid phase is more dense than the liquid phase, and it is separated therefrom by relative movement with the formation of a packed bed of solid phase. The packed bed is continuously formed adjacent its lower end and passed from the liquid phase into a countercurrent flow of backwash liquid. The packed bed extends through the level of the backwash liquid to provide a drained bed of solid phase adjacent its upper end which is melted by a condensing vapor.

  15. Hydrocracking process

    SciTech Connect (OSTI)

    Hudson, C.W.; Hamner, G.P.

    1986-10-21

    This patent describes a catalytic hydrocracking process which comprises: (a) contacting a hydrocarbon feed having a propensity to form polynuclear aromatic hydrocarbon compounds in a hydrocracking zone with added hydrogen and a metal promoted crystalline zeolite hydrocracking catalyst; (b) condensing the hydrocarbon effluent from the hydrocracking zone. Then, separating the same into a low boiling hydrocarbon product and unconverted hydrocarbon oil containing small quantities of polynuclear aromatic hydrocarbon compounds; (c) contacting at least a portion of the unconverted hydrocarbon oil containing polynuclear aromatic compounds with a catalyst which contains elemental iron and one or more of an alkali or alkaline-earth metal, or compound thereof. The contacting taking place in the presence of hydrogen, at conditions inclusive of temperatures sufficient to hydrogenate and hydrocrack the polynuclear aromatic hydrocarbon compounds; and (d) recycling unconverted hydrocarbon oil having a reduced concentration of polynuclear aromatic compounds resulting from step (c) to the hydrocracking zone.

  16. Hydrocracking process

    SciTech Connect (OSTI)

    Ward, J.W.; Carlson, T.L.; Millman, W.S.

    1989-05-02

    A hydrocracking process is described which comprises contacting a hydrocarbon feedstock under hydrocracking conditions with hydrogen in the presence of a hydrocracking catalyst comprising a Group VIB metal component or a non-noble Group VIII metal component on a support comprising a zeolite aluminosilicate having a mode ratio of oxides in the anhydrous state of (0.85 -1.1)M/sub 2/n/O:Al/sub 2/O/sub 3/:xSiO/sub 2/. M is a cation having a valence of ''n'' and ''x'' has a value above 9.0, the aluminosilicate having been hydrothermally treated with resultant shrinkage in the unit cell size followed by an ammonium cation exchange.

  17. Etherification process

    DOE Patents [OSTI]

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1990-08-21

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled. 2 figs.

  18. Oligomerization process

    DOE Patents [OSTI]

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1991-03-26

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled. 2 figures.

  19. Oligomerization process

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX); hearn, Dennis (Houston, TX); Jones, Jr., Edward M. (Friendswood, TX)

    1991-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300.degree. F. wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  20. Etherification process

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Houston, TX); Hearn, Dennis (Houston, TX); Jones, Jr., Edward M. (Friendswood, TX)

    1990-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  1. Application and Technology Requirements for Heat Pumps at the Process Industries 

    E-Print Network [OSTI]

    Priebe, S.; Chappell, R.

    1987-01-01

    AND TECHNOLOGY REQUIREMENTS FOR HEAT PUMPS AT THE PROCESS INDUSTRIESl Stephen Priebe Engineering Specialist EG&G Idaho, Inc. Idaho Falls, ID There are basically three categories of equip ment used to manage heat energy flows in an indus trial process.... First, heat exchangers are used to move heat through the process down the temperature gradient. Second, heat pumps are used to move heat through the process up the temperature gra dient. Third, heat engines are used to convert heat to shaft power...

  2. In-Situ Metrology: the Path to Real-Time Advanced Process Control

    E-Print Network [OSTI]

    Rubloff, Gary W.

    in semiconductor technology development and manufacturing. [1,2] Advanced process control (APC) [3, 4] is aimed fault management and course correction, i.e., for real-time advanced process control We have also at exploiting metrology to increase equipment productivity and lower manufacturing costs. Early efforts toward

  3. Process Description for the Retrieval of Earth Covered Transuranic (TRU) Waste Containers at the Hanford Site

    SciTech Connect (OSTI)

    DEROSA, D.C.

    2000-01-13

    This document describes process and operational options for retrieval of the contact-handled suspect transuranic waste drums currently stored below grade in earth-covered trenches at the Hanford Site. Retrieval processes and options discussed include excavation, container retrieval, venting, non-destructive assay, criticality avoidance, incidental waste handling, site preparation, equipment, and shipping.

  4. Decommissioning the Fuel Process Building, a Shift in Paradigm for Terminating Safeguards on Process Holdup

    SciTech Connect (OSTI)

    Ivan R. Thomas

    2010-07-01

    INMM Abstract 51st Annual Meeting Decommissioning the Fuel Process Building, a Shift in Paradigm for Terminating Safeguards on Process Holdup The Fuel Process Building at the Idaho Nuclear Technology and Engineering Center (INTEC) is being decommissioned after nearly four decades of recovering high enriched uranium from various government owned spent nuclear fuels. The separations process began with fuel dissolution in one of multiple head-ends, followed by three cycles of uranium solvent extraction, and ending with denitration of uranyl nitrate product. The entire process was very complex, and the associated equipment formed an extensive maze of vessels, pumps, piping, and instrumentation within several layers of operating corridors and process cells. Despite formal flushing and cleanout procedures, an accurate accounting for the residual uranium held up in process equipment over extended years of operation, presented a daunting safeguards challenge. Upon cessation of domestic reprocessing, the holdup remained inaccessible and was exempt from measurement during ensuing physical inventories. In decommissioning the Fuel Process Building, the Idaho Cleanup Project, which operates the INTEC, deviated from the established requirements that all nuclear material holdup be measured and credited to the accountability books and that all nuclear materials, except attractiveness level E residual holdup, be transferred to another facility. Instead, the decommissioning involved grouting the process equipment in place, rather than measuring and removing the contained holdup for subsequent transfer. The grouting made the potentially attractiveness level C and D holdup even more inaccessible, thereby effectually converting the holdup to attractiveness level E and allowing for termination of safeguards controls. Prior to grouting the facility, the residual holdup was estimated by limited sampling and destructive analysis of solutions in process lines and by acceptable knowledge based upon the separations process, plant layout, and operating history. The use of engineering estimates, in lieu of approved measurement methods, was justified by the estimated small quantity of holdup remaining, the infeasibility of measuring the holdup in a highly radioactive background, and the perceived hazards to personnel. The alternate approach to quantifying and terminating safeguards on process holdup was approved by deviation.

  5. Design considerations, tooling, and equipment for remote in-service inspection of radioactive piping and pressure-vessel systems

    SciTech Connect (OSTI)

    Swannack, D.L.; Schmoker, D.S.

    1983-01-01

    This paper summarizes results obtained in use of remotely-operated nondestructive testing (NDT) equipment for inspection of reactor-system components. Experience obtained in operating the Fast Flux Test Facility (FFTF) has provided a basis for field verification of remote NDT equipment designs and has suggested development improvements. Remote Viewing and data gathering systems used include periscopes, borescopes, fiberscopes, hybrid borescopes/fiberscopes, and closed circuit television. A summary of design consideration for inspection equipment and power plant design is presented to achieve improved equipment operation and reduction of plant maintenance downtime.

  6. Hydrogen Fuel Cell Performance in the Key Early Markets of Material Handling Equipment and Backup Power (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

    2013-10-01

    This presentation summarizes the results of NREL's analysis of hydrogen fuel cell performance in the key early markets of material handling equipment (MHE) and backup power.

  7. Comment submitted by the North American Association of Food Equipment Manufacturers (NAFEM) regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by the North American Association of Food Equipment Manufacturers (NAFEM) regarding the Energy Star Verification Testing Program

  8. BOT Greenhouse Guidelines: Contact: Please direct emails regarding greenhouse facilities, equipment, supplies, or watering

    E-Print Network [OSTI]

    BOT Greenhouse Guidelines: Contact: Please direct emails regarding greenhouse facilities, equipment, supplies, or watering concerns to both the greenhouse manager, Shane Merrell and the horticulturist, Mick using the Greenhouse Request Form found on the BioSci website. Users are responsible for the health

  9. Welch Greenhouse Guidelines Contact: Please direct emails regarding greenhouse facilities, equipment, supplies, or watering

    E-Print Network [OSTI]

    Welch Greenhouse Guidelines Contact: Please direct emails regarding greenhouse facilities, equipment, supplies, or watering concerns to both the greenhouse manager Shane Merrell time you are at the greenhouse. 3. All plants that are growing in the chambers need to be labeled

  10. Risk-based Maintenance Allocation and Scheduling for Bulk Electric Power Transmission System Equipment

    E-Print Network [OSTI]

    risk of wide-area bulk transmission system failures. The work makes use of two previously developed1 Risk-based Maintenance Allocation and Scheduling for Bulk Electric Power Transmission System for bulk transmission equipment that is based on the cumulative long-term risk caused by each piece

  11. Demo: Organic Solar Cell-equipped Energy Harvesting Active Networked Tag (EnHANT) Prototypes

    E-Print Network [OSTI]

    Carloni, Luca

    Demo: Organic Solar Cell-equipped Energy Harvesting Active Networked Tag (EnHANT) Prototypes Gerald their communications and networking parameters to the available environmental energy harvested by the organic solar harvesting, organic solar cells, ultra-low-power com- munications, ultra-wideband impulse radio, energy

  12. ARCHITECTURE GEOMETRIE PERCEPTION IMAGES GESTES Equipe AGPiG-Architecture gomtrie perception images gestes

    E-Print Network [OSTI]

    Condat, Laurent

    gipsa-lab AGPiG ARCHITECTURE GEOMETRIE PERCEPTION IMAGES GESTES Equipe AGPiG-Architecture géométrie programmation parallèle Gestion dynamique d'architecture THÉMATIQUES RESPONSABLES Dominique ATTALI Dominique vidéos Mesures de courbure Suivi d'activités Identification d'expressions Attention visuelle Architecture

  13. Foreign-Made Energy Conservation Equipment in the U. S. Market 

    E-Print Network [OSTI]

    Exstrum, B. A.

    1983-01-01

    The huge jump in energy prices since the early 1970s has created a large market for energy-saving industrial equipment and systems in the U.S. In Europe and Japan, great emphasis has been placed on developing energy-efficient ...

  14. FACILITIES and EQUIPMENT DESCRIPTION The UCR Institute for Integrative Genome Biology

    E-Print Network [OSTI]

    Lyubomirsky, Ilya

    1 FACILITIES and EQUIPMENT DESCRIPTION The UCR Institute for Integrative Genome Biology interdisciplinary, four-story Genomics Building in 2009 to accommodate over 200 faculty members, graduate students one roof who use modern genetic tools, genomics and bioinformatics to help address basic and applied

  15. New Remote Method for Estimation of Contamination Levels of Reactor Equipment - 13175

    SciTech Connect (OSTI)

    Danilovich, Alexey; Ivanov, Oleg; Potapov, Victor; Semenov, Sergey; Semin, Ilya; Smirnov, Sergey; Stepanov, Vyacheslav; Volkovich, Anatoly

    2013-07-01

    Projects for decommissioning of shutdown reactors and reactor facilities carried out in several countries, including Russia. In the National Research Centre 'Kurchatov Institute' decontamination and decommissioning of the research reactor MR (Material Testing Reactor) has been initiated. The research reactor MR has a long history and consists of nine loop facilities for experiments with different kinds of fuel. During the operation of main and auxiliary equipment of reactors it was subjected to strong radioactive contamination. The character of this contamination requires individual strategies for the decontamination work. This requires information about the character of the distribution of radioactive contamination of equipment in the premises. A detailed radiation survey of these premises using standard dosimetric equipment is almost impossible because of high levels of radiation and high-density of the equipment that does not allow identifying the most active fragments using standard tools of measurement. The problem can be solved using the method of remote measurements of distribution of radioactivity with help of the collimated gamma-ray detectors. For radiation surveys of the premises of loop installations remotely operated spectrometric collimated system was used [1, 2, 3]. As a result of the work, maps of the distribution of activity and dose rate for surveyed premises were plotted and superimposed on its photo. The new results of measurements in different areas of the reactor and at its loop installations, with emphasis on the radioactive survey of highly-contaminated samples, are presented. (authors)

  16. Hazard Assessment for Personal Protective Equipment Northwestern University Office for Research Office for Research Safety

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Hazard Assessment for Personal Protective Equipment Northwestern University Office for Research Office for Research Safety Page 1 of 1 H:\\Courses\\Laboratory Standard\\Course Materials\\PPE_Hazard_Assess.doc Name: PI and Department: Date: Eye Hazards - Tasks that can cause eye hazards include: Working

  17. ASSESSMENT OF DEGRADATION OF EQUIPMENT AND MATERIALS IN RELATION TO SUSTAINABILITY MEASURES

    E-Print Network [OSTI]

    Magnuson, George Raynor

    2013-12-31

    is investigated in this research. With degradation, equipment will use 27.3% more electrical use at the end of life, with at total energy use increase of 15.6%. This increase is important to be included in total building energy accounting for accuracy....

  18. Parallel controller construction for a multi-DOF hand rehabilitation equipment

    E-Print Network [OSTI]

    Ito, Satoshi

    Parallel controller construction for a multi-DOF hand rehabilitation equipment Satoshi Itoa describes the development of a hand rehabilitation system for stroke patients. Our aim is to provide fine motion exercise for a hand and fingers. Thus, a hand rehabilitation device that assists patients' finger

  19. Operational Experience and Research Directions in Military Night Vision Equipment Chris Johnson,

    E-Print Network [OSTI]

    Johnson, Chris

    to the human eye. Living and man-made objects tend to emit radiation, for instance in the form of heatOperational Experience and Research Directions in Military Night Vision Equipment Chris Johnson resolution. A second area of interest focuses on detecting electro-magnetic radiation that is not visible

  20. Final Technical Report for project entitled "Equipment Request for the Belleville Agricultural Research and Education Center"

    SciTech Connect (OSTI)

    Young, Bryan; Nehring, Jarrett; Susan Graham, Brian Klubek

    2013-01-16

    Executive Summary The funding provided by the DOE for this project was used exclusively to purchase research equipment involved with the field development and evaluation of crop production technologies and practices for energy crop production. The new equipment has been placed into service on the SIU farms and has significantly enhanced our research capacity and scope for agronomy and precision ag research to support novel seed traits or crop management strategies for improving the efficiency and productivity of corn and soybeans. More specifically, the precision ag capability of the equipment that was purchased has heightened interest by faculty and associated industry partners to develop collaborative projects. In addition, this equipment has provided SIU with a foundation to be more successful at securing competitive grants in energy crop production and precision ag data management. Furthermore, the enhanced capacity for agronomy research in the southern Illinois region has been realized and will benefit crop producers in this region by learning to improve their operations from our research outcomes.

  1. All Active Equipment Jul 7, 2015, 5:15 AM Name Description Location

    E-Print Network [OSTI]

    Lee, Seung-Wuk

    oxide etch chamber - Ch B 586 cha CHA E-beam Evaporator 582 chp Chemical Hygiene Plan nanolab cmp To Report NanoLab Building Problems nanolab fei-sem FEI Nova NanoSEM650 131 #12;All Active Equipment Jul 7

  2. Data Center Energy Benchmarking: Part 3 -Case Study on an IT Equipment-testing Center

    E-Print Network [OSTI]

    Data Center Energy Benchmarking: Part 3 - Case Study on an IT Equipment-testing Center (No. 20 .............................................................................................. 12 4.3 DATA CENTER SPACE AIR TEMPERATURE AND RELATIVE HUMIDITY Summary The data center in this study had a total floor area of 3,024 square feet (ft2 ) with one

  3. Guide for Using the Classroom Audio/Visual Equipment If the computer is off

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Guide for Using the Classroom Audio/Visual Equipment If the computer is off: · Open the cabinet and press the power button on the computer to power on. · Use your MSU login for access. · If you do to stop. · The left and right buttons work as usual. · Mouse has a range of 40 feet and is NOT limited

  4. Laboratory supervisors are responsible for protecting their own equipment and research.

    E-Print Network [OSTI]

    Meyers, Steven D.

    Laboratory supervisors are responsible for protecting their own equipment and research the USF Hurricane Guide at http://usfweb2.usf.edu/Adminsvc/publicsafety/ HURRICANE SAFETY FOR LABORATORIES How to prepare your laboratory for a hurricane CHEMICAL SAFETY Label and cap all chemical containers

  5. SIDA DemoEast programme in Estonia. Supply, delivery and installation of wood pellet burning equipment

    E-Print Network [OSTI]

    Overviews 1 SIDA DemoEast programme in Estonia. Supply, delivery and installation of wood pellet. The DemoEast programme objective in Estonia was to promote the pellets firing technology, equipment and Kiltsi light oil fired boilers have been converted to wood pellets burning. The supplier

  6. Optimal Deployment Plan of Emission Reduction Technologies for TxDOT's Construction Equipment 

    E-Print Network [OSTI]

    Bari, Muhammad Ehsanul

    2010-10-12

    -road equipment of TxDOT to reduce emissions in a cost effective and optimal manner. Three technologies were considered for deployment in this research, (1) hydrogen enrichment (HE), (2) selective catalytic reduction (SCR) and (3) fuel additive (FA... Gas ....................................................................... 24 Biodiesel ............................................................................ 24 Hydrogen...

  7. Energy and CO2 efficient scheduling of smart appliances in active houses equipped with batteries

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    Energy and CO2 efficient scheduling of smart appliances in active houses equipped with batteries the electricity bill and the CO2 emissions. Mathematically, the scheduling problem is posed as a multi that the new formulation can decrease both the CO2 emissions and the electricity bill. Furthermore, a survey

  8. Standardization of Chemical Protective Equipment for Protective Forces and Special Agents

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-03-29

    This Notice provides requirements for the standardization and procurement of chemical protective equipment for use by Department of Energy (DOE) protective forces and Special Agents of the Transportation Safeguards Division (TSD). DOE N 251.40, dated 5/3/01, extends this directive until 12/31/01. Does not cancel other directives.

  9. Communications, and Signal Processing

    E-Print Network [OSTI]

    Prodiæ, Aleksandar

    : Digital signal processing ECE 462: Multimedia systems ECE 516 Intelligent image processing Biomedical: Digital signal processing ECE 462: Multimedia systems ECE 516 Intelligent image processing Biomedical: Digital signal processing ECE 462: Multimedia systems ECE 516 Intelligent image processing Biomedical

  10. Electrochromic Windows: Advanced Processing Technology

    SciTech Connect (OSTI)

    SAGE Electrochromics, Inc

    2006-12-13

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGE’s production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass® products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.026×1015BTU/yr) by the year 2017.

  11. Cleanroom Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMayARM-0501Classroom-presentations Sign InClean Tech

  12. Hydrocracking process

    SciTech Connect (OSTI)

    Kukes, S.G; Marshall, C.L.; Hopkins, P.D.; Hensley, A.L. Jr.

    1990-05-15

    This patent describes a process for the hydrocracking of a hydrocarbon feedstock. It comprises: reacting the feedstock with hydrogen at hydrocracking conversion conditions in the presence of a catalyst comprising a hydrogenation component comprising a Group VIB metal component and a Group VIII metal component and a support component comprising a refractory inorganic oxide component and a crystalline molecular sieve component wherein the crystalline molecular sieve component consists essentially of a first ultrastable zeolite Y wherein the framework silica to alumina molar ratio varies from about 5 to about 8 and the unit cell size varies from about 24.667 to about 24.524 Angstroms and a second more dealuminated ultrastable zeolite Y wherein the framework silica to alumina molar ratio varies from about 8 to about 200 and the unit cell size varies from a but 24.524 to about 24.343 Angstroms, wherein the amount of the first zeolite Y varies from about 40 to about 80 wt. % based on the total amount of the crystalline molecular sieve component.

  13. Process Considerations in Surface Condenser Design 

    E-Print Network [OSTI]

    Polley, G. T.; Terranova, A.; Capel, A. C. P.

    1999-01-01

    and the lifetime costs incurred are orders of magnitude greater than the purchase price of the unit As with most heat exchangers, two separate groups are involved in the specification and design of surface condensers: the process engineers and the equipment... can be a larger and heavier unit and one that may be more prone to fouling. The choice of cheaper material may result in both a more expensive unit and much higher life time costs. Allowable tubeside pressure drop can have a controlling influence...

  14. Pulse combusted acoustic agglomeration apparatus and process

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD)

    1993-01-01

    An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance bimodal agglomeration of particulates which may be collected and removed using a conventional separation apparatus. A particulate having a size different from the size of the particulate in the gas stream to be cleaned is introduced into the system to effectuate the bimodal process. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, the added particulate may be a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

  15. Process for coal liquefaction in staged dissolvers

    DOE Patents [OSTI]

    Roberts, George W. (Emmaus, PA); Givens, Edwin N. (Bethlehem, PA); Skinner, Ronald W. (Allentown, PA)

    1983-01-01

    There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a pasting oil, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. In accordance with the improved process, the first dissolver is operated at a higher temperature than the second dissolver. This temperature sequence produces improved product selectivity and permits the incorporation of sufficient hydrogen in the solvent for adequate recycle operations.

  16. Radiation Monitoring Equipment Procedure: 7.513 Created: 10/30/2013 Version: 1.0 Revised

    E-Print Network [OSTI]

    Jia, Songtao

    equipment for performing radiation detection surveys. This ensures that the work environment is safe and can NaI: Sodium Iodide Counter D. Procedures 1. The lab is responsible for purchasing radiation detection equipment suitable to detect the type of radiation (i.e., alpha, beta, gamma or x ray) being used. Surveys

  17. Occupational exposure assessment of magnetic fields generated by induction heating equipment--the role of spatial averaging

    E-Print Network [OSTI]

    Ljubljana, University of

    heating equipment is a source of strong and nonhomogeneous magnetic fields, which can exceed occupationalOccupational exposure assessment of magnetic fields generated by induction heating equipment for more Home Search Collections Journals About Contact us My IOPscience #12;IOP PUBLISHING PHYSICS

  18. A safety equipment list for rotary mode core sampling systems operation in single shell flammable gas tanks

    SciTech Connect (OSTI)

    SMALLEY, J.L.

    1999-05-18

    This document identifies all interim safety equipment to be used for rotary mode core sampling of single-shell flammable gas tanks utilizing Rotary Mode Core Sampling systems (RMCS). This document provides the safety equipment for RMCS trucks HO-68K-4600, HO-68K-4647, trucks three and four respectively, and associated equipment. It is not intended to replace or supersede WHC-SD-WM-SEL-023, (Kelly 1991), or WHC-SD-WM-SEL-032, (Corbett 1994), which classifies 80-68K-4344 and HO-68K-4345 respectively. The term ''safety equipment'' refers to safety class (SC) and safety significant (SS) equipment, where equipment refers to structures, systems and components (SSC's). The identification of safety equipment in this document is based on the credited design safety features and analysis contained in the Authorization Basis (AB) for rotary mode core sampling operations in single-shell flammable gas tanks. This is an interim safety classification since the AB is interim. This document will be updated to reflect the final RMCS equipment safety classification designations upon completion of a final AB which will be implemented with the release of the Final Safety Analysis Report (FSAR).

  19. Event-Based Processing of Neutron Scattering Data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peterson, Peter F.; Campbell, Stuart I.; Reuter, Michael A.; Taylor, Russell J.; Zikovsky, Janik L.

    2015-09-16

    Many of the world's time-of-flight spallation neutrons sources are migrating to the recording of individual neutron events. This provides for new opportunities in data processing, the least of which is to filter the events based on correlating them with logs of sample environment and other ancillary equipment. This paper will describe techniques for processing neutron scattering data acquired in event mode that preserve event information all the way to a final spectrum, including any necessary corrections or normalizations. This results in smaller final errors, while significantly reducing processing time and memory requirements in typical experiments. Results with traditional histogramming techniquesmore »will be shown for comparison.« less

  20. Differential Wiener process

    E-Print Network [OSTI]

    Penny, Will

    Stochastic Processes Will Penny Stochastic Differential Equations Wiener process Sample Paths OU rates References Stochastic Processes Will Penny 19th May 2011 #12;Stochastic Processes Will Penny on Hierarchical Dynamic Models #12;Stochastic Processes Will Penny Stochastic Differential Equations Wiener

  1. Dismantling of Loop-Type Channel Equipment of MR Reactor in NRC 'Kurchatov Institute' - 13040

    SciTech Connect (OSTI)

    Volkov, Victor; Danilovich, Alexey; Zverkov, Yuri; Ivanov, Oleg; Kolyadin, Vyacheslav; Lemus, Alexey; Pavlenko, Vitaly; Semenov, Sergey; Fadin, Sergey; Shisha, Anatoly; Chesnokov, Alexander

    2013-07-01

    In 2009 the project of decommissioning of MR and RTF reactors was developed and approved by the Expert Authority of the Russian Federation (Gosexpertiza). The main objective of the decommissioning works identified in this project: - complete dismantling of reactor equipment and systems; - decontamination of reactor premises and site in accordance with the established sanitary and hygienic standards. At the preparatory stage (2008-2010) of the project the following works were executed: loop-type channels' dismantling in the storage pool; experimental fuel assemblies' removal from spent fuel repositories in the central hall; spent fuel assembly removal from the liquid-metal-cooled loop-type channel of the reactor core and its placement into the SNF repository; and reconstruction of engineering support systems to the extent necessary for reactor decommissioning. The project assumes three main phases of dismantling and decontamination: - dismantling of equipment/pipelines of cooling circuits and loop-type channels, and auxiliary reactor equipment (2011-2012); - dismantling of equipment in underground reactor premises and of both MR and RTF in-vessel devices (2013-2014); - decontamination of reactor premises; rehabilitation of the reactor site; final radiation survey of reactor premises, loop-type channels and site; and issuance of the regulatory authorities' de-registration statement (2015). In 2011 the decommissioning license for the two reactors was received and direct MR decommissioning activities started. MR primary pipelines and loop-type facilities situated in the underground reactor hall were dismantled. Works were also launched to dismantle the loop-type channels' equipment in underground reactor premises; reactor buildings were reconstructed to allow removal of dismantled equipment; and the MR/RTF decommissioning sequence was identified. In autumn 2011 - spring 2012 results of dismantling activities performed are: - equipment from underground rooms (No. 66, 66A, 66B, 72, 64, 63) - as well as from water and gas loop corridors - was dismantled, with the total radwaste weight of 53 tons and the total removed activity of 5,0 x 10{sup 10} Bq; - loop-type channel equipment from underground reactor hall premises was dismantled; - 93 loop-type channels were characterized, chopped and removed, with radwaste of 2.6 x 10{sup 13} Bq ({sup 60}Co) and 1.5 x 10{sup 13} Bq ({sup 137}Cs) total activity removed from the reactor pool, fragmented and packaged. Some of this waste was placed into the high-level waste (HLW) repository of the Center. Dismantling works were executed with application of remotely operated mechanisms, which promoted decrease of radiation impact on the personnel. The average individual dose for the personnel was 1.9 mSv/year in 2011, and the collective dose is estimated as 0.0605 man x Sv/year. (authors)

  2. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    SciTech Connect (OSTI)

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P. [and others] [and others

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs.

  3. Modular, High-Volume Fuel Cell Leak-Test Suite and Process

    SciTech Connect (OSTI)

    Ru Chen; Ian Kaye

    2012-03-12

    Fuel cell stacks are typically hand-assembled and tested. As a result the manufacturing process is labor-intensive and time-consuming. The fluid leakage in fuel cell stacks may reduce fuel cell performance, damage fuel cell stack, or even cause fire and become a safety hazard. Leak check is a critical step in the fuel cell stack manufacturing. The fuel cell industry is in need of fuel cell leak-test processes and equipment that is automatic, robust, and high throughput. The equipment should reduce fuel cell manufacturing cost.

  4. Assuring Mechanical Integrity of Refinery Equipment Through Global ON-Stream Inspection

    SciTech Connect (OSTI)

    John W. Berthold

    2006-02-22

    The development of global on-stream inspection technology will have a dramatic effect on how refinery operations are managed in the U.S. in the future. Global on-stream inspection will provide assurance of the mechanical integrity of critical plant equipment and will allow refineries to operate more efficiently with less impact on our environment and with an increased margin of safety.

  5. High energy arcing fault fires in switchgear equipment : a literature review.

    SciTech Connect (OSTI)

    Nowlen, Steven Patrick; Brown, Jason W.; Wyant, Francis John

    2008-10-01

    In power generating plants, switchgear provide a means to isolate and de-energize specific electrical components and buses in order to clear downstream faults, perform routine maintenance, and replace necessary electrical equipment. These protective devices may be categorized by the insulating medium, such as air or oil, and are typically specified by voltage classes, i.e. low, medium, and high voltage. Given their high energy content, catastrophic failure of switchgear by means of a high energy arcing fault (HEAF) may occur. An incident such as this may lead to an explosion and fire within the switchgear, directly impact adjacent components, and possibly render dependent electrical equipment inoperable. Historically, HEAF events have been poorly documented and discussed in little detail. Recent incidents involving switchgear components at nuclear power plants, however, were scrupulously investigated. The phenomena itself is only understood on a very elementary level from preliminary experiments and theories; though many have argued that these early experiments were inaccurate due to primitive instrumentation or poorly justified methodologies and thus require re-evaluation. Within the past two decades, however, there has been a resurgence of research that analyzes previous work and modern technology. Developing a greater understanding of the HEAF phenomena, in particular the affects on switchgear equipment and other associated switching components, would allow power generating industries to minimize and possibly prevent future occurrences, thereby reducing costs associated with repair and downtime. This report presents the findings of a literature review focused on arc fault studies for electrical switching equipment. The specific objective of this review was to assess the availability of the types of information needed to support development of improved treatment methods in fire Probabilistic Risk Assessment (PRA) for nuclear power plant applications.

  6. Design Concepts for Power Distribution Equipment Serving Non-Linear Loads 

    E-Print Network [OSTI]

    Massey, G. W.

    1995-01-01

    foundation for building non-linear load power distribution system design guidelines for single-phase branch circuit wiring, three-phase equipment circuiting, panelboard circuit breakers, bus bars, and feeders, transformers, and power capacitors... or harmonic current overload, reduced energy consumption with lower operati g cost, and longer expected transformer life, regardle s of loading. Power Capacitors Power capacitors are installed on systems f? r voltage regulation and power factor correctio...

  7. Nonlinear identification and control of building structures equipped with magnetorheological dampers 

    E-Print Network [OSTI]

    Kim, Yeesock

    2009-05-15

    point of view, research related to a systematic semiactive control system design framework is still required for vibration control of large scale civil engineering structures subjected to destructive environmental forces, e.g., earthquakes or strong... of DOCTOR OF PHILOSOPHY December 2007 Major Subject: Civil Engineering NONLINEAR IDENTIFICATION AND CONTROL OF BUILDING STRUCTURES EQUIPPED WITH MAGNETORHEOLOGICAL DAMPERS A Dissertation by YEESOCK KIM Submitted to the Office...

  8. Replacing Inefficient Equipment - An Engineering Analysis to Justify Purchasing A More Efficient Chiller 

    E-Print Network [OSTI]

    Chen, H.; Deng, S.; Claridge, D. E.; Turner, W. D.; Bensouda, N.

    2005-01-01

    determinate of office building and chiller energy use, is the building schedule and office temperature that is maintained within the space. Thermostat control (day and night settings for cooling and heating within the terminal electronic controller...REPLACING INEFFICIENT EQUIPMENT --- AN ENGINEERING ANALYSIS TO JUSTIFY PURCHASING A MORE EFFICIENT CHILLER Hui Chen, P.E. Project Engineer W. D. Turner, Ph.D., P.E. Professor, Director Song Deng, P.E. Asst. Research Engineer...

  9. A model for estimation of potential generation of waste electrical and electronic equipment in Brazil

    SciTech Connect (OSTI)

    Araujo, Marcelo Guimaraes; Magrini, Alessandra; Mahler, Claudio Fernando; Bilitewski, Bernd

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Literature of WEEE generation in developing countries is reviewed. Black-Right-Pointing-Pointer We analyse existing estimates of WEEE generation for Brazil. Black-Right-Pointing-Pointer We present a model for WEEE generation estimate. Black-Right-Pointing-Pointer WEEE generation of 3.77 kg/capita year for 2008 is estimated. Black-Right-Pointing-Pointer Use of constant lifetime should be avoided for non-mature market products. - Abstract: Sales of electrical and electronic equipment are increasing dramatically in developing countries. Usually, there are no reliable data about quantities of the waste generated. A new law for solid waste management was enacted in Brazil in 2010, and the infrastructure to treat this waste must be planned, considering the volumes of the different types of electrical and electronic equipment generated. This paper reviews the literature regarding estimation of waste electrical and electronic equipment (WEEE), focusing on developing countries, particularly in Latin America. It briefly describes the current WEEE system in Brazil and presents an updated estimate of generation of WEEE. Considering the limited available data in Brazil, a model for WEEE generation estimation is proposed in which different methods are used for mature and non-mature market products. The results showed that the most important variable is the equipment lifetime, which requires a thorough understanding of consumer behavior to estimate. Since Brazil is a rapidly expanding market, the 'boom' in waste generation is still to come. In the near future, better data will provide more reliable estimation of waste generation and a clearer interpretation of the lifetime variable throughout the years.

  10. AC System Equipment Specification, Installation and Operational Options for Improved Indoor Humidity Control 

    E-Print Network [OSTI]

    Shirey, D. B.

    2008-01-01

    Specification, Installation and Operational Options for Improved Indoor Humidity Control Don B. Shirey, III Program Manager Florida Solar Energy Center Cocoa, Florida ABSTRACT High-efficiency home designs have significantly reduced sensible...: Florida Solar Energy Center. James, P., J.E. Cummings, J. Sonne, R. Vieira, J. Klongerbo. 1997. The Effect of Residential Equipment Capacity on Energy Use, Demand, and Run-Time, FSEC-PF-328-97. Cocoa, FL: Florida Solar Energy Center. Lennox...

  11. Solar equipment ravaged by floods gets new life | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4Energy SmoothEquipmentSolar PVEquipment Sales Taxat

  12. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential5 Commercial Equipment

  13. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential5 Commercial Equipment6 2008

  14. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential5 Commercial Equipment6

  15. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential5 Commercial Equipment68

  16. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential5 Commercial Equipment689

  17. Appliances, Lighting, Electronics, and Miscellaneous EquipmentElectricity Use in New Homes

    SciTech Connect (OSTI)

    Brown, Richard E.; Rittelman, William; Parker, Danny; Homan,Gregory

    2007-02-28

    The "Other" end-uses (appliances, lighting, electronics, andmiscellaneous equipment) continue to grow. This is particularly true innew homes, where increasing floor area and amenities are leading tohigher saturation of these types of devices. This paper combines thefindings of several field studies to assess the current state ofknowledge about the "Other" end-uses in new homes. The field studiesinclude sub-metered measurements of occupied houses in Arizona, Florida,and Colorado, as well as device-level surveys and power measurements inunoccupied new homes. We find that appliances, lighting, electronics, andmiscellaneous equipment can consume from 46 percent to 88 percent ofwhole-house electricity use in current low-energy homes. Moreover, theannual consumption for the "Other" end-uses is not significantly lower innew homes (even those designed for low energy use) compared to existinghomes. The device-level surveys show that builder-installed equipment isa significant contributor to annual electricity consumption, and certaindevices that are becoming more common in new homes, such as structuredwiring systems, contribute significantly to this power consumption. Thesefindings suggest that energy consumption by these "Other" end uses isstill too large to allow cost-effective zero-energy homes.

  18. Promoting high efficiency residential HVAC equipment: Lessons learned from leading utility programs

    SciTech Connect (OSTI)

    Neme, C.; Peters, J.; Rouleau, D.

    1998-07-01

    The Consortium for Energy Efficiency recently sponsored a study of leading electric utility efforts to promote high efficiency residential HVAC equipment. Given growing concerns from some utilities about the level of expenditures associated with rebate programs, special emphasis was placed on assessing the success of financing and other non-rebate options for promoting efficiency. Emphasis was also placed on review of efforts--rebate or otherwise--to push the market to very high levels of efficiency (i.e., SEER 13). This paper presents the results of the study. It includes discussion of key lessons from the utility programs analyzed. It also examines program participation rates and other potential indicators of market impacts. One notable conclusion is that several utility programs have pushed market shares for SEER 12 equipment to about 50% (the national average is less than 20%). At least one utility program has achieved a 50% market share for SEER 13 equipment (the national average is less than 3%). In general, financing does not appear to have as broad an appeal as consumer rebates. However, one unique utility program which combines the other of customer financing with modest incentives to contractors--in the form of frequent seller points that can be redeemed for advertising, technician training, travel and other merchandise--offers some promise that high participation rates can be achieved without customer rebates.

  19. Connecticut State University System Initiative for Nanotechnology-Related Equipment, Faculty Development and Curriculum Development

    SciTech Connect (OSTI)

    Broadbridge, Christine C.

    2013-03-28

    DOE grant used for partial fulfillment of necessary laboratory equipment for course enrichment and new graduate programs in nanotechnology at the four institutions of the Connecticut State University System (CSUS). Equipment in this initial phase included variable pressure scanning electron microscope with energy dispersive x-ray spectroscopy elemental analysis capability [at Southern Connecticut State University]; power x-ray diffractometer [at Central Connecticut State University]; a spectrophotometer and spectrofluorimeter [at Eastern Connecticut State University; and a Raman Spectrometer [at Western Connecticut State University]. DOE's funding was allocated for purchase and installation of this scientific equipment and instrumentation. Subsequently, DOE funding was allocated to fund the curriculum, faculty development and travel necessary to continue development and implementation of the System's Graduate Certificate in Nanotechnology (GCNT) program and the ConnSCU Nanotechnology Center (ConnSCU-NC) at Southern Connecticut State University. All of the established outcomes have been successfully achieved. The courses and structure of the GCNT program have been determined and the program will be completely implemented in the fall of 2013. The instrumentation has been purchased, installed and has been utilized at each campus for the implementation of the nanotechnology courses, CSUS GCNT and the ConnSCU-NC. Additional outcomes for this grant include curriculum development for non-majors as well as faculty and student research.

  20. Can combining economizers with improved filtration save energy and protect equipment in data centers?

    SciTech Connect (OSTI)

    Shehabi, Arman; Ganguly, Srirupa; Gundel, Lara A.; Horvath, Arpad; Kirchstetter, Thomas W.; Lunden, Melissa M.; Tschudi, William; Gadgil, Ashok J.; Nazaroff, William W

    2009-06-05

    Economizer use in data centers is an energy efficiency strategy that could significantly limit electricity demand in this rapidly growing economic sector. Widespread economizer implementation, however, has been hindered by potential equipment reliability concerns associated with exposing information technology equipment to particulate matter of outdoor origin. This study explores the feasibility of using economizers in data centers to save energy while controlling particle concentrations with high-quality air filtration. Physical and chemical properties of indoor and outdoor particles were analyzed at an operating northern California data center equipped with an economizer under varying levels of air filtration efficiency. Results show that when improved filtration is used in combination with an economizer, the indoor/outdoor concentration ratios for most measured particle types were similar to levels when using conventional filtration without economizers. An energy analysis of the data center reveals that, even during the summer months, chiller savings from economizer use greatly outweigh any increase in fan power associated with improved filtration. These findings indicate that economizer use combined with improved filtration could reduce data center energy demand while providing a level of protection from particles of outdoor origin similar to that observed with conventional design.

  1. Screening Analysis for EPACT-Covered Commercial HVAC and Water-Heating Equipment

    SciTech Connect (OSTI)

    Somasundaram, Sriram; Armstrong, Peter R.; Belzer, David B.; Gaines, Suzanne C.; Hadley, Donald L.; Katipumula, S.; Smith, David L.; Winiarski, David W.

    2000-04-25

    The Energy Policy and Conservation Act (EPCA) as amended by the Energy Policy Act of 1992 (EPACT) establishes that the U.S. Department of Energy (DOE) regulate efficiency levels of certain categories of commercial heating, cooling, and water-heating equip-ment. EPACT establishes the initial minimum efficiency levels for products falling under these categories, based on ASHRAE/IES Standard 90.1-1989 requirements. EPCA states that, if ASHRAE amends Standard 90.1-1989 efficiency levels, then DOE must establish an amended uniform national manufacturing standard at the minimum level specified in the amended Standard 90.1 and that it can establish higher efficiency levels if they would result in significant additional energy savings. Standard 90.1-1999 increases minimum efficiency levels for some of the equipment categories covered by EPCA 92. DOE conducted a screening analysis to determine the energy-savings potential for EPACT-covered products meet and exceeding these levels. This paper describes the methodology, data assumptions, and results of the analysis.

  2. Long Length Contaminated Equipment Retrieval System Receiver Trailer and Transport Trailer Operations and Maintenance Manual

    SciTech Connect (OSTI)

    DALE, R.N.

    2000-05-01

    A system to accommodate the removal of long-length contaminated equipment (LLCE) from Hanford underground radioactive waste storage tanks was designed, procured, and demonstrated, via a project activity during the 1990s. The system is the Long Length Contaminated Equipment Removal System (LLCERS). LLCERS will be maintained and operated by Tank Farms Engineering and Operations organizations and other varied projects having a need for the system. The responsibility for the operation and maintenance of the LLCERS Receiver Trailer (RT) and Transport Trailer (TT) resides with the RPP Characterization Project Operations organization. The purpose of this document is to provide vendor supplied operating and maintenance (O & M) information for the RT and TT in a readily retrievable form. This information is provided this way instead of in a vendor information (VI) file to maintain configuration control of the operations baseline as described in RPP-6085, ''Configuration Management Plan for Long Length Contaminated Equipment Receiver and Transport Trailers''. Additional Operations Baseline documents are identified in RPP-6085.

  3. CFD Modeling of Thermal Effects of Nuclear Waste Vitrification Processes

    SciTech Connect (OSTI)

    Rayner, Chris; Soltani, Mehdi; Barringer, Chris; Knight, Kelly

    2006-07-01

    The Waste Treatment Plant (WTP) at Hanford, WA will vitrify nuclear waste stored at the DOE Hanford facility. The vitrification process will take place in two large concrete buildings where the glass is poured into stainless steel canisters or containers and allowed to cool. Computational Fluid Dynamics (CFD) was used extensively to calculate the effects of the heat released by molten glass as it is poured and cooled, on the HVAC system and the building structure. CFD studies of the glass cooling in these facilities were used to predict canister temperatures, HVAC air temperatures, concrete temperatures and insulation requirements, and design temperatures for canister handling equipment and instrumentation at various stages of the process. These predictions provided critical input in the design of the HVAC system, specification of insulation, the design of canister handling equipment, and the selection of instrumentation. (authors)

  4. INTEC CPP-603 Basin Water Treatment System Closure: Process Design

    SciTech Connect (OSTI)

    Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

    2002-09-01

    This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

  5. Dismantling Structures and Equipment of the MR Reactor and its Loop Facilities at the National Research Center 'Kurchatov Institute' - 12051

    SciTech Connect (OSTI)

    Volkov, V.G.; Danilovich, A.S.; Zverkov, Yu. A.; Ivanov, O.P.; Kolyadin, V.I.; Lemus, A.V.; Muzrukova, V.D.; Pavlenko, V.I.; Semenov, S.G.; Fadin, S.Yu.; Shisha, A.D.; Chesnokov, A.V.

    2012-07-01

    In 2008 a design of decommissioning of research reactors MR and RFT has been developed in the National research Center 'Kurchatov institute'. The design has been approved by Russian State Authority in July 2009 year and has received the positive conclusion of ecological expertise. In 2009-2010 a preparation for decommissioning of reactors MR and RFT was spent. Within the frames of a preparation a characterization, sorting and removal of radioactive objects, including the irradiated fuel, from reactor storage facilities and pool have been executed. During carrying out of a preparation on removal of radioactive objects from reactor sluice pool water treating has been spent. For these purposes modular installation for clearing and processing of a liquid radioactive waste 'Aqua - Express' was used. As a result of works it was possible to lower volume activity of water on three orders in magnitude that has allowed improving essentially of radiating conditions in a reactor hall. Auxiliary systems of ventilation, energy and heat supplies, monitoring systems of radiating conditions of premises of the reactor and its loop-back installations are reconstructed. In 2011 the license for a decommissioning of the specified reactors has been received and there are begun dismantling works. Within the frames of works under the design the armature and pipelines are dismantled in a under floor space of a reactor hall where a moving and taking away pipelines of loop facilities and the first contour of the MR reactor were replaced. A dismantle of the main equipment of loop facility with the gas coolant has been spent. Technologies which were used on dismantle of the radioactive contaminated equipment are presented, the basic works on reconstruction of systems of maintenance of on the decommissioning works are described, the sequence of works on the decommissioning of reactors MR and RFT is shown. Dismantling works were carried out with application of means of a dust suppression that, in aggregate with standard means at such works of individual protection of the personnel and devices of radiating control, has allowed to lower risk of action of radiation on the personnel, the population and environment at the expense of reduction of volume activity of radioactive aerosols in air. (authors)

  6. Process analysis of margarine and tablespread crystallization operations 

    E-Print Network [OSTI]

    Garfield, Gary Charles

    1990-01-01

    of crystal networking in the fat (deMan et a1?1989). The use of nuclear magnetic resonance will likely replace other methods for solids determination as NMR equipment becomes more widespread. 2. RheologyfI'exture Measureinent The structure and rheological...PROCESS ANALYSIS OF MARGARINE AND TABLESPREAD CRYSTALLIZATION OPERATIONS A Thesis by GARY CHARLES GARFIELD Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirement for the degree...

  7. Evaluation of Packed Columns in Supercritical Extraction Processes 

    E-Print Network [OSTI]

    Rathkamp, P. J.; Fair, J. R.; Humphrey, J. L.

    1986-01-01

    was extracted in a spray column using super critical carbon dioxide. Mass transfer coefficients were determined to be more than ten times greater than those associated with conventional liquid extraction systems. In a mass transfer study at near... the results of this study have shown mass transfer advantages for SFE, it is a process which requires high pressure equipment including 167 ESL-IE-86-06-28 Proceedings from the Eighth Annual Industrial Energy Technology Conference, Houston, TX, June 17...

  8. Fluor hanford ALARA center -showcases- tools, equipment, and work practices used during D and D work

    SciTech Connect (OSTI)

    Waggoner, L.O. [Fluor Hanford, Richland, WA (United States)

    2007-07-01

    In 1996, Fluor established the ALARA Center at the Department of Energy's (DOE) Hanford Site in southeastern Washington State to 'showcase' tools and equipment used to support the principle of As Low As Reasonably Achievable (ALARA). Much of the work was being done by workers who used hand tools while dressed in multiple sets of protective clothing. The Center was opened so that workers could see and handle the latest tools and equipment and have experienced personnel to help them plan work evolutions. Experienced personnel who were familiar with the ALARA concept as well as new technology were assigned to the Center. In addition, vendors were asked to display their products so the Hanford workers could experience state-of-the-art tools and equipment for doing work in a radiological environment. Since opening, the ALARA Center has evolved into a tremendous resource - not only for Hanford, but also most of the entire DOE Complex, as well as contractors around the world. Classes in fundamental radiological work practices are presented when the facilities recognize a need. The ALARA Center has a variety of products that range from simple hand tools to robots, video scopes, and gamma cameras. The tools and equipment on display are used in these training classes to train the workers on the work practices to operate them, take them apart to determine how they work and decide how to maintain them. Many facilities invite the ALARA Center staff to attend planning meetings at the facilities and participate in job walk-downs. Generally, ALARA Center personnel provide several options on how the radiological work can be accomplished safely and recommend the option that is ALARA and safest for the workers. A few years ago, it became obvious that the work scope was changing and many facilities had a new job to clean out the facilities and demolish them. The ALARA Center began contacting vendors who had tools and equipment that could be used for D and D work. Today, the ALARA Center occupies 4,000 square feet (372 m{sup 2}) in a building centrally located in the 586- square mile Hanford Reservation. Other DOE sites have set up their own ALARA Centers because of the success at Hanford. (authors)

  9. Exposure Evaluation for Benzene, Lead and Noise in Vehicle and Equipment Repair Shops

    SciTech Connect (OSTI)

    Sweeney, Lynn C.

    2013-04-10

    An exposure assessment was performed at the equipment and vehicle maintenance repair shops operating at the U. S. Department of Energy Hanford site, in Richland, Washington. The maintenance shops repair and maintain vehicles and equipment used in support of the Hanford cleanup mission. There are three general mechanic shops and one auto body repair shop. The mechanics work on heavy equipment used in construction, cranes, commercial motor vehicles, passenger-type vehicles in addition to air compressors, generators, and farm equipment. Services include part fabrication, installation of equipment, repair and maintenance work in the engine compartment, and tire and brake services. Work performed at the auto body shop includes painting and surface preparation which involves applying body filler and sanding. 8-hour time-weighted-average samples were collected for benzene and noise exposure and task-based samples were collected for lead dust work activities involving painted metal surfaces. Benzene samples were obtained using 3M™ 3520 sampling badges and were analyzed for additional volatile organic compounds. These compounds were selected based on material safety data sheet information for the aerosol products used by the mechanics for each day of sampling. The compounds included acetone, ethyl ether, toluene, xylene, VM&P naphtha, methyl ethyl ketone, and trichloroethylene. Laboratory data for benzene, VM&P naphtha, methyl ethyl ketone and trichloroethylene were all below the reporting detection limit. Airborne concentrations for acetone, ethyl ether, toluene and xylene were all less than 10% of their occupational exposure limit. The task-based samples obtained for lead dusts were submitted for a metal scan analysis to identify other metals that might be present. Laboratory results for lead dusts were all below the reporting detection limit and airborne concentration for the other metals observed in the samples were less than 10% of the occupational exposure limit. Noise dosimetry sampling was performed on a random basis and was representative of the different work activities within the four shops. Twenty three percent of the noise samples exceeded the occupational exposure limit of 85 decibels for an 8-hour time-weightedaverage. Work activities where noise levels were higher included use of impact wrenches and grinding wheels.

  10. The AP1000{sup R} China projects move forward to construction completion and equipment installation

    SciTech Connect (OSTI)

    Harrop, G. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    The AP1000 design is the only Generation III+ technology to receive design certification from the U.S. Nuclear Regulatory Commission. This evolutionary design provides the highest safety and performance standards and has several distinct advantages over other designs, including improved operations and reduced construction schedule risks through the use of modern, modular, engineering principles that allow construction and fabrication tasks traditionally performed in sequence to be undertaken in parallel. Since the first granting of Design Certification in 2005 by the NRC, the AP1000 design has been modified to meet emergent NRC requirements such as those requiring the design to withstand the impact of an aircraft crash. Both domestic and foreign utilities have turned to the Westinghouse AP1000 plant design to meet their near - and long-term sustainable energy needs. The first ever deployment of this advanced U.S. nuclear power technology began in China in 2007 with the award of a contract to build four AP1000 units, constructed in pairs at the coastal sites of Sanmen (Zhejiang Province) and Haiyang (Shandong Province). Currently, all four units are at an advanced stage of construction. The commercial operation date for Sanmen Unit 1 is November 2013 followed by Haiyang Unit 1 being operational in May 2014. Construction and equipment manufacture is at an advanced stage. Sanmen Unit 1 equipment that has been delivered includes the reactor vessel, the reactor vessel closure head, the passive residual heat removal heat exchanger, the integrated head package, the polar crane, and the refueling machine. The steam generators are also completed. The RV was installed within the containment vessel building in September 2011. The installation of this major equipment will allow the setting of the containment vessel top head. Haiyang Unit 1 is also achieving significant progress. Significant benefits continue to be realized as a result of lessons learned and experience gained from the first-of-a-kind activities for Sanmen Unit 1 and AP1000 equipment design and manufacturing. For example, the nuclear island basemat at Haiyang Units 1 and 2 and Sanmen Unit 2 was laid in less time than that of Sanmen Unit 1, the ultra-large steam generator and RV forging lead times were reduced for the follow on units, and the fabrication of the auxiliary building module for Haiyang Unit 1 took less time than for the Sanmen first unit. These benefits are also being realized by the United States AP1000 project construction and fabrication modules, and equipment. Some difficulties arise from building this first-of-a-kind (advanced passive) type of plant; however, these difficulties are being overcome and the overall schedule remains achievable. (authors)

  11. Evaluation of nonaqueous processes for nuclear materials

    SciTech Connect (OSTI)

    Musgrave, B.C.; Grens, J.Z.; Knighton, J.B.; Coops, M.S.

    1983-12-01

    A working group was assigned the task of evaluating the status of nonaqueous processes for nuclear materials and the prospects for successful deployment of these technologies in the future. In the initial evaluation, the study was narrowed to the pyrochemical/pyrometallurgical processes closely related to the processes used for purification of plutonium and its conversion to metal. The status of the chemistry and process hardware were reviewed and the development needs in both chemistry and process equipment technology were evaluated. Finally, the requirements were established for successful deployment of this technology. The status of the technology was evaluated along three lines: (1) first the current applications were examined for completeness, (2) an attempt was made to construct closed-cycle flow sheets for several proposed applications, (3) and finally the status of technical development and future development needs for general applications were reviewed. By using these three evaluations, three different perspectives were constructed that together present a clear picture of how complete the technical development of these processes are.

  12. Extensible packet processing architecture

    DOE Patents [OSTI]

    Robertson, Perry J.; Hamlet, Jason R.; Pierson, Lyndon G.; Olsberg, Ronald R.; Chun, Guy D.

    2013-08-20

    A technique for distributed packet processing includes sequentially passing packets associated with packet flows between a plurality of processing engines along a flow through data bus linking the plurality of processing engines in series. At least one packet within a given packet flow is marked by a given processing engine to signify by the given processing engine to the other processing engines that the given processing engine has claimed the given packet flow for processing. A processing function is applied to each of the packet flows within the processing engines and the processed packets are output on a time-shared, arbitered data bus coupled to the plurality of processing engines.

  13. Pulse combusted acoustic agglomeration apparatus and process

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD); Chandran, Ravi (Ellicott City, MD)

    1994-01-01

    An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance agglomeration of particulates which may be collected and removed using a conventional separation apparatus. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, added particulates may include a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

  14. AX Tank farm process impacts study

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1999-03-18

    This study provides facility and process concepts and costs for partial decontamination of the most heavily contaminated debris from the demolition of the four AX tanks and ancillary equipment items. This debris would likely be classified as high-level and/or remote handle TRU waste based on source and radiological inventory. A process flow sheet was developed to treat contaminated metal wastes such as pipes and tank liners as well as contaminated concrete and the residual waste and grout left in the tanks after final waste retrieval. The treated solid waste is prepared for delivery to either the ERDF or the Low-Level waste burial grounds. Liquid waste products are delivered to the private vitrification contractor for further treatment and storage. This is one of several reports prepared for use by the Hanford Tanks Initiative Project to develop retrieval performance criteria for tank farms.

  15. Hydrocarbon Processing`s process design and optimization `96

    SciTech Connect (OSTI)

    NONE

    1996-06-01

    This paper compiles information on hydrocarbon processes, describing the application, objective, economics, commercial installations, and licensor. Processes include: alkylation, ammonia, catalytic reformer, crude fractionator, crude unit, vacuum unit, dehydration, delayed coker, distillation, ethylene furnace, FCCU, polymerization, gas sweetening, hydrocracking, hydrogen, hydrotreating (naphtha, distillate, and resid desulfurization), natural gas processing, olefins, polyethylene terephthalate, refinery, styrene, sulfur recovery, and VCM furnace.

  16. Independent criticality safety evaluation of deposits in cooler equipment in Building K-31 at the Oak Ridge K-25 Site, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-10-01

    This report provides an independent assessment of nuclear criticality issues associated with uranium deposits in the West and East Coolers for the 6A Booster Station in Building K-31 at the Oak Ridge K-25 Site. This assessment investigates the applicability of the initial assumptions used by Lockheed Martin Energy Systems (Energy Systems) and evaluates criticality calculations previously completed by Energy Systems. The calculations were independently verified. Each component was evaluated for its ability to satisfy requirements for subcriticality and meet the double contingency principle. Facility walk downs, detailed neutronics analysis, and fault tree analysis (FTA) were performed. The facility walk downs provided a better understanding of the building condition and status, equipment configuration, and uranium deposit locations. The detailed neutronics analysis focused on system geometry and moderation levels applicable to the individual components. The FTA considered the annual rate of occurrence for the events identified as potential causes of criticality issues. This report also examines the advantages of using this type of evaluation to assess the removal process for additional components and equipment.

  17. Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation

    E-Print Network [OSTI]

    Lu, Xiaoming

    2012-01-01

    methodology for equipment cost and capital cost estimationcapital cost estimation Parameter Total Purchased Equipment Cost (

  18. Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility; Preprint

    SciTech Connect (OSTI)

    Lobato, C.; Pless, S.; Sheppy, M.; Torcellini, P.

    2011-02-01

    This paper documents the design and operational plug and process load energy efficiency measures needed to allow a large scale office building to reach ultra high efficiency building goals. The appendices of this document contain a wealth of documentation pertaining to plug and process load design in the RSF, including a list of equipment was selected for use.

  19. ISSUANCE 2015-08-21: Energy Efficiency Program for Commercial and Industrial Equipment: Notice of Open Meetings for the Fans and Blowers Working Group

    Broader source: Energy.gov [DOE]

    Energy Efficiency Program for Commercial and Industrial Equipment: Notice of Open Meetings for the Fans and Blowers Working Group

  20. ISSUANCE 2015-05-12: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters