Sample records for high-speed diesel engines

  1. Coal-fueled high-speed diesel engine development

    SciTech Connect (OSTI)

    Kakwani, R. M.; Winsor, R. E.; Ryan, III, T. W.; Schwalb, J. A.; Wahiduzzaman, S.; Wilson, Jr., R. P.

    1991-11-01T23:59:59.000Z

    The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

  2. Coal-fueled high-speed diesel engine development. Final report, September 28, 1990--November 30, 1993

    SciTech Connect (OSTI)

    Kakwani, R.M.; Winsor, R.E.; Ryan, T.W. III; Schwalb, J.A.; Wahiduzzaman, S.; Wilson, R.P. Jr.

    1993-09-01T23:59:59.000Z

    The goal of this program was to study the feasibility of operating a Detroit Diesel Series 149 engine at high speeds using a Coal-Water-Slurry (CWS) fuel. The CWS-fueled 149 engine is proposed for the mine-haul off-highway truck and work boat marine markets. Economic analysis studies indicate that, for these markets, the use of CWS fuel could have sufficient operating cost savings, depending upon the future diesel fuel price, emission control system capital and operating costs, and maintenance and overhaul costs. A major portion of the maintenance costs is expected to be due to lower life and higher cost of the CWS injectors. Injection and combustion systems were specially designed for CWS, and were installed in one cylinder of a Detroit Diesel 8V-149TI engine for testing. The objective was to achieve engine operation for sustained periods at speeds up to 1,900 rpm with reasonable fuel economy and coal burnout rate. A computer simulation predicted autoignition of coal fuel at 1,900 rpm would require an average droplet size of 18 microns and 19:1 compression ratio, so the injection system, and pistons were designed accordingly. The injection system was capable of supplying the required volume of CWS/injection with a duration of approximately 25 crank angle degrees and peak pressures on the order of 100 mpa. In addition to the high compression ratio, the combustion system also utilized hot residual gases in the cylinder, warm inlet air admission and ceramic insulated engine components to enhance combustion. Autoignition of CWS fuel was achieved at 1900 rpm, at loads ranging from 20--80 percent of the rated load of diesel-fuel powered cylinders. Limited emissions data indicates coal burnout rates in excess of 99 percent. NO{sub x} levels were significantly lower, while unburned hydrocarbon levels were higher for the CWS fueled cylinder than for corresponding diesel-fuel powered cylinders.

  3. Coal-fueled high-speed diesel engine development. Annual technical progress report, October 1990--September 1991

    SciTech Connect (OSTI)

    Not Available

    1991-11-01T23:59:59.000Z

    The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

  4. Low pressure high speed Stirling air engine. Final technical report

    SciTech Connect (OSTI)

    Ross, M.A.

    1980-06-16T23:59:59.000Z

    The purpose of this project was to design, construct and test a simple, appropriate technology low pressure, high speed, wood-fired Stirling air engine of 100 W output. The final design was a concentric piston/displacer engine of 454 in. bore and 1 in. stroke with a rhombic drive mechanism. The project engine was ultimately completed and tested, using a propane burner for all tests as a matter of convenience. The 100 W aim was exceeded, at atmospheric pressure, over a wide range of engine speed with the maximum power being 112 W at 1150 rpm. A pressure can was constructed to permit pressurization; however the grant funds were running out, and the only pressurized power test attempted was unsuccessful due to seal difficulties. This was a disappointment because numerous tests on the 4 cubic inch engine suggested power would be more than doubled with pressurization at 25 psig. A manifold was designed and constructed to permit operation of the engine over a standard No. 40 pot bellied stove. The engine was run successfully, but at reduced speed and power, over this stove. The project engine started out being rather noisy in operation, but modifications ultimately resulted in a very quiet engine. Various other difficulties and their solutions also are discussed. (LCL)

  5. Diesel Engine Alternatives

    SciTech Connect (OSTI)

    Ryan, T

    2003-08-24T23:59:59.000Z

    There are basically three different modes of combustion possible for use in reciprocating engines. These include, diffusion burning, as occurs in current diesel engines, flame propagation combustion such as used in conventional SI engines, and homogeneous combustion such as is used in the SwRI HCCI engine. Diesel engines currently offer significant fuel consumption benefits relative to other powerplants for on and off road applications; however, costs and efficiency may become problems as the emissions standards become even more stringent. This presentation presents a discussion of the potentials of HCCI and flame propagation engines as alternatives to the diesel engines. It is suggested that as the emissions standards become more and more stringent, the advantages of the diesel may disappear. The potential for HCCI is limited by the availability of the appropriate fuel. The potential of flame propagation engines is limited by several factors including knock, EGR tolerance, high BMEP operation, and throttling. These limitations are discussed in the context of potential for improvement of the efficiency of the flame propagation engine.

  6. Diesel Engine Idling Test

    SciTech Connect (OSTI)

    Larry Zirker; James Francfort; Jordon Fielding

    2006-02-01T23:59:59.000Z

    In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

  7. A spherical joint piston design for high speed diesel engines

    SciTech Connect (OSTI)

    Wiczynski, P.D. [Cummins Engine Co., Inc., Columbus, IN (United States); Mielke, S. [Kolbenschmidt AG, Neckarsulm (Germany); Conrow, R.

    1996-09-01T23:59:59.000Z

    A spherical joint piston and connecting rod have been developed through design proof-of-concept. The spherical joint allows piston rotation. The benefits of a rotating, symmetrical piston are: mechanical and thermal load symmetry, improved ring sealing and lubrication, and reduced bearing loads, scuffing, clearances and oil consumption. The assembly includes a squeeze cast, fiber reinforced aluminum spherical joint piston. Reinforcement is located in the piston bowl and skirt. The connecting rod consists of a spherical small end positioned on an elliptical cross-sectioned shank blended into a conventional big end. The assembly has operated at cylinder pressures exceeding of 24 MPa.

  8. Optimization of Advanced Diesel Engine Combustion Strategies...

    Broader source: Energy.gov (indexed) [DOE]

    Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

  9. Technical Challenges and Opportunities Light-Duty Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine...

  10. Technology Development for Light Duty High Efficient Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications...

  11. Perspectives Regarding Diesel Engine Emissions Reduction in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast 2004 Diesel Engine Emissions...

  12. The 60% Efficient Diesel Engine: Probably, Possible, Or Just...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The 60% Efficient Diesel Engine: Probably, Possible, Or Just a Fantasy? The 60% Efficient Diesel Engine: Probably, Possible, Or Just a Fantasy? 2005 Diesel Engine Emissions...

  13. Department of Engineering Design Spring 2012 Super 8...High Speed Paper Roll Alignment Set-Up

    E-Print Network [OSTI]

    Demirel, Melik C.

    Set-Up Overview High speed printing requires precise alignment. Printer engines are able to send paper through a system at speeds up to 550 ft/min. Within these systems, the paper may encounter a 90o turn bar that changes the direction of the paper. Operators within Xerox facilities must manually set up the turn bar

  14. Jet Simulation in a Diesel Engine James Glimm zx , M.N. Kim x , X.-L. Li z , R. Samulyak x , and Z.-L. Xu yz

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    Jet Simulation in a Diesel Engine James Glimm zx , M.N. Kim x , X.-L. Li z , R. Samulyak x , and Z and spray formation in a diesel engine by the Front Tracking method. We model mixed vapor-liquid region of a high speed diesel jet injected through a circular nozzle are the key to design a fuel e

  15. Future Diesel Engine Thermal Efficiency Improvement andn Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology 2005 Diesel...

  16. Diesel engine fuel systems

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  17. Diesel engine fuel systems

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  18. Indiana: Improving Diesel Engine Performance for Trucks

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cummins, the world's largest diesel engine manufacturer, received funds from EERE to research advanced engine technology for heavy-duty and light-duty vehicles.

  19. High speed diesel performance/combustion characteristics correlated with structural composition of tar sands derived experimental fuels

    SciTech Connect (OSTI)

    Webster, G.D.; Chiappetta, S.J.; Neill, W.S.; Glavihcevski, B.; Stringer, P.L.

    1985-01-01T23:59:59.000Z

    Two Canadian tar sands derived experimental diesel fuels with cetane numbers of 26 and 36 and a reference fuel with a cetane number of 47 were tested in a Deutz (FIL511D), single cylinder, 4 stroke, naturally aspirated research engine. The fuels were tested at intake and cooling air temperatures of 30 and 0/sup 0/C. The 36 cetane number fuel was tested with advanced, rated and retarded injection timings. Poor engine speed stability at light loads and excessive rates of combustion pressure rise were experienced with the lowest cetane number fuel. Detailed performance/combustion behavior is presented and a correlation with fuel structural compostiton is made. The analytical techniques used to characterize the fuels included liquid chromatography, gas chromatography mass spectrometry (GC-MS) and proton nuclear magnetic resonance spectrometry (PNMR).

  20. agricultural diesel engine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

  1. adiabatic diesel engine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

  2. advanced diesel engine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

  3. adiabatic diesel engines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

  4. advanced diesel engines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

  5. Effects of an Accelerated Diesel Engine Replacement/Retrofit Program

    E-Print Network [OSTI]

    Millstein, Dev E.; Harley, Robert A

    2009-01-01T23:59:59.000Z

    and Cackette, T. A. , (2001). Diesel engines: environmentalfrom On-Road Gasoline and Diesel Vehicles. Atmos. Environ.emissions from gasoline- and diesel-powered motor vehicles.

  6. "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends"

    E-Print Network [OSTI]

    Xibin Wang "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends" Abstract : Combustion, performance and emission were studied for DI diesel engine fuelled with DMM/diesel fuel blends for DMM content from 0 to 50%. Results showed that, for diesel engine with fuel

  7. Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine...

  8. Advanced Diesel Engine and Aftertreatment Technology Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Aftertreatment Technology Development for Tier 2 Emissions Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions 2003 DEER Conference...

  9. Multicylinder Diesel Engine Design for HCCI Operation

    Broader source: Energy.gov (indexed) [DOE]

    7 DEER Detroit August 12-16 Multicylinder Diesel Engine Design for HCCI operation William de Ojeda Phil Zoldak, Ral Espinoza, Raj Kumar, Chunyi Xia, Dan Cornelius International...

  10. Optimization of Advanced Diesel Engine Combustion Strategies

    Broader source: Energy.gov (indexed) [DOE]

    - UW-ERC 1 "University Research in Advanced Combustion and Emissions Control" Optimization of Advanced Diesel Engine Combustion Strategies Profs. Rolf Reitz, D. Foster, J....

  11. Staged direct injection diesel engine

    DOE Patents [OSTI]

    Baker, Quentin A. (San Antonio, TX)

    1985-01-01T23:59:59.000Z

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  12. Adaptive Control to Improve Low Temperature Diesel Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control to Improve Low Temperature Diesel Engine Combustion Adaptive Control to Improve Low Temperature Diesel Engine Combustion Presentation given at DEER 2006, August 20-24,...

  13. Oxygen-Enriched Combustion for Military Diesel Engine Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxygen-Enriched Combustion for Military Diesel Engine Generators Oxygen-Enriched Combustion for Military Diesel Engine Generators Substantial increases in brake power and...

  14. Complete Fuel Combustion for Diesel Engines Resulting in Greatly...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced Emissions and Improved Fuel Efficiency Complete Fuel Combustion for Diesel Engines Resulting in Greatly...

  15. Durability of Diesel Engine Particulate Filters (Agreement ID...

    Broader source: Energy.gov (indexed) [DOE]

    Durability of Diesel Engine Particulate Filters (Agreement ID:10461) Durability of Diesel Engine Particulate Filters (Agreement ID:10461) 2013 DOE Hydrogen and Fuel Cells Program...

  16. Recent Diesel Engine Emission Mitigation Activities of the Maritime...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program Recent Diesel Engine Emission Mitigation Activities of the Maritime...

  17. 12TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE (DEER 2006) PRESENTATIONS 12TH DIESEL ENGINE-EFFICIENCY AND EMISSIONS RESEARCH CONFERENCE (DEER 2006) PRESENTATIONS...

  18. Advances in Diesel Engine Technologies for European Passenger...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Technologies for European Passenger Vehicles Advances in Diesel Engine Technologies for European Passenger Vehicles 2002 DEER Conference Presentation: Volkswagen AG...

  19. Load Expansion with Diesel/Gasoline RCCI for Improved Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with DieselGasoline RCCI for Improved Engine Efficiency and Emissions Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will...

  20. Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment Integration - Strategy and Experimental Results Attaining Tier 2 Emissions Through Diesel Engine and...

  1. Eaton Aftertreatment System (EAS) for On-Highway Diesel Engines

    Broader source: Energy.gov (indexed) [DOE]

    System (EAS) for On- Highway Diesel Engines Highway Diesel Engines Haoran Hu Eaton Corporation August 22, 2006 2004 Eaton Corporation. All rights reserved. Agenda...

  2. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Caterpillar Inc. 2002deerhopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat...

  3. Visualization of UHC Emissions for Low-Temperature Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UHC Emissions for Low-Temperature Diesel Engine Combustion Visualization of UHC Emissions for Low-Temperature Diesel Engine Combustion Presentation given at DEER 2006, August...

  4. Emission Performance of Modern Diesel Engines Fueled with Biodiesel...

    Broader source: Energy.gov (indexed) [DOE]

    Emission Performance of Modern Diesel Engines Fueled with Biodiesel Emission Performance of Modern Diesel Engines Fueled with Biodiesel This study presents full quantification of...

  5. Robust Strategy for Intake Leakage Detection in Diesel Engines

    E-Print Network [OSTI]

    Boyer, Edmond

    Robust Strategy for Intake Leakage Detection in Diesel Engines Riccardo Ceccarelli , Philippe are provided using advanced Diesel engine developed under AMEsim. I. INTRODUCTION The modern Diesel engine has of the functioning of a air-path in a Diesel engine with exhaust gas recirculation circuit is presented. More

  6. Development of Innovative Combustion Processes for a Direct-Injection Diesel Engine

    SciTech Connect (OSTI)

    John Dec; Paul Miles

    1999-01-01T23:59:59.000Z

    In support of the Partnership for a New Generation Vehicle (PNGV) emissions and fuel economy goals, a small-bore, high-speed, direct-injection (HSDI) diesel facility in which to conduct research into the physics of the combustion process relevant to these engines has been developed. The characteristics of this facility are described, and the motivation for selecting these characteristics and their relation to high efficiency, low-emission HSDI engine technology is discussed.

  7. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Advanced Natural Gas Reciprocating Engines (ARES) -...

  8. Oil Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations Oil Bypass Filter and Diesel Engine Idling Wear-Rate Evaluations 2005 Diesel Engine Emissions Reduction (DEER)...

  9. Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01T23:59:59.000Z

    jet airplanes. Gas turbines and diesel engines eventuallyof Diesel Engines and Gas Turbines By Vaclav Smil Reviewedof Diesel Engines and Gas Turbines. Cambridge, MA: The MIT

  10. Durability of Diesel Engine Particulate Filters

    Broader source: Energy.gov (indexed) [DOE]

    Durability of Diesel Engine Particulate Filters Thomas Watkins, Amit Shyam, H.T. Lin, Edgar Lara-Curzio and Amit Pandey; ORNL Randall Stafford; Cummins Inc. Sponsored by U.S....

  11. Simultaneous Efficiency, NOx, and Smoke Improvements through Diesel/Gasoline Dual-Fuel Operation in a Diesel Engine 

    E-Print Network [OSTI]

    Sun, Jiafeng

    2014-08-05T23:59:59.000Z

    Diesel/gasoline dual-fuel combustion uses both gasoline and diesel fuel in diesel engines to exploit their different reactivities. This operation combines the advantages of diesel fuel and gasoline while avoiding their disadvantages, attains...

  12. 2006 Diesel Engine-Efficiency and Emissions Research (DEER) Conference...

    Broader source: Energy.gov (indexed) [DOE]

    Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and WHR-ORC Engines Gerhard Regner AVL Powertrain Engineering Inc. (PDF 339 KB) Electric...

  13. THE DIESEL ENGINE'S CHALLENGE IN THE NEW MILLENIUM

    SciTech Connect (OSTI)

    Fairbanks, John W.

    2000-08-20T23:59:59.000Z

    Diesel engines are the dominant propulsion engine of choice for most of the commercial surface transportation applications in the world. Consider agricultural uses: Diesel engine power is used to prepare the soil, transport the bulk seed or seedlings, pump irrigation water, and spray fertilizers, mechanically harvest some crops and distribute the produce to market. Diesel engines power virtually all of the off-highway construction equipment. Deep water commercial freighters or containerships are almost all diesel engine powered. The passenger ships are primarily either diesel or a combination of diesel and gas turbine, referred to as CODAG or CODOG.

  14. Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels 

    E-Print Network [OSTI]

    Esquivel, Jason

    2010-01-16T23:59:59.000Z

    characterizes the performance of a medium-duty diesel engine fuelled with biodiesel and conventional diesel. The objective is accomplished by taking measurements of manifold pressure and temperature, fuel flow, air flow, and torque. The study first characterizes...

  15. Improving Diesel Engine Sweet-spot Efficiency and Adapting it...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Sweet-spot Efficiency and Adapting it to Improve Duty-cycle MPG - plus Increasing Propulsion and Reducing Cost Improving Diesel Engine Sweet-spot Efficiency and...

  16. Improving Turbocharged Diesel Engine Operation with Turbo Power Assist System

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Improving Turbocharged Diesel Engine Operation with Turbo Power Assist System I. Kolmanovsky A. G Engineering, UC, Santa Barbara Abstract The paper investigates improvements in the tur- bocharged diesel problem. Comparison with a conventional turbocharged diesel engine reveals the mechanism by which

  17. Vibration signatures, wavelets and principal components analysis in diesel engine

    E-Print Network [OSTI]

    Sharkey, Amanda

    Vibration signatures, wavelets and principal components analysis in diesel engine diagnostics G of a normally aspirated diesel engine contain valu­ able information on the health of the combustion chamber induced in a 4­stroke diesel engine and the ensuing vi­ bration signals recorded. Three different feature

  18. MODELING AND CONTROL OF A DIESEL HCCI ENGINE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MODELING AND CONTROL OF A DIESEL HCCI ENGINE J. Chauvin A. Albrecht G. Corde N. Petit Institut Abstract: This article focuses on the control of a Diesel engine airpath. We propose a detailed description of the airpath of a Diesel HCCI engine supported by experimental results. Moreover, we propose a simple, yet

  19. Fault Tolerant Oxygen Control of a Diesel Engine Air System

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Fault Tolerant Oxygen Control of a Diesel Engine Air System Rainer Nitsche Matthias Bitzer control problem of a Diesel engine air system having a jammed Exhaust Gas Recirculation (EGR) valve of the air system. Keywords: Fault tolerant control, Diesel engine, Air system, Model-based trajectory

  20. Light-duty diesel engine development status and engine needs

    SciTech Connect (OSTI)

    Not Available

    1980-08-01T23:59:59.000Z

    This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

  1. Update on Modeling for Effective Diesel Engine Aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Aftertreatment Implementation - Master Plan, Status and Critical Needs Update on Modeling for Effective Diesel Engine Aftertreatment Implementation - Master Plan, Status...

  2. Demonstration of a 50% Thermal Efficient Diesel Engine - Including...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    50% Thermal Efficient Engine Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission...

  3. Materials-Enabled High-Efficiency Diesel Engines (CRADA with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines (CRADA with Caterpillar) Materials-Enabled High-Efficiency Diesel Engines (CRADA with Caterpillar) 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit...

  4. Exploring Low Emission Lubricants for Diesel Engines

    SciTech Connect (OSTI)

    Perez, J. M.

    2000-07-06T23:59:59.000Z

    A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

  5. Optimization of Engine-out Emissions from a Diesel Engine to...

    Broader source: Energy.gov (indexed) [DOE]

    Optimization of Engine-out Emissions from a Diesel Engine to Meet Tier 2 Bin 5 Emission Limits Optimization of Engine-out Emissions from a Diesel Engine to Meet Tier 2 Bin 5...

  6. ON CONDITION MONITORING OF EXHAUST VALVES IN MARINE DIESEL ENGINES

    E-Print Network [OSTI]

    Mosegaard, Klaus

    ON CONDITION MONITORING OF EXHAUST VALVES IN MARINE DIESEL ENGINES T. L. Fog x L. K. Hansen z , J : Research & Development, MAN B&W Diesel A/S Teglholmsgade 41, DK­2450, Copenhagen SV, Denmark. E­mail: tof­invasive characterisation of ex­ haust valve conditions in large marine diesel engines, were exper­ imentally investigated

  7. Cleaning Up Diesel Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag" |Energy Diesel:DepartmentDiesel Engines

  8. Progress in diesel engine emissions control

    SciTech Connect (OSTI)

    Khair, M.K. (Southwest Research Inst., San Antonio, TX (United States))

    1992-07-01T23:59:59.000Z

    A considerable amount of work was carried out in the mid-1980s to develop heavy-duty diesel engines that could meet limits on particulate emissions. These limits, although high by today's standards, were considered very restrictive. Some manufacturers struggled to achieve the 0.6 g/bhp-h particulate matter limit with enough margin for production variabilities and to account for the deterioration factor. Significant progress was achieved in diesel emissions control through engine and fuel system design changes. This eventually made it possible to meet a particulate level of 0.25 g/bhp-h for 1991. The next target level for particulate emissions is 0.1 g/bhp-h for the 1994 heavy-duty engine. To meet the challenge, engine developers are not only considering engine and injection system design changes but also fuel improvements and exhaust aftertreatment. This paper includes a review of past and current strategies used to control emissions in the modern diesel engine.

  9. Cleaner, More Efficient Diesel Engines

    ScienceCinema (OSTI)

    Musculus, Mark

    2014-02-26T23:59:59.000Z

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  10. Cleaner, More Efficient Diesel Engines

    SciTech Connect (OSTI)

    Musculus, Mark

    2013-08-13T23:59:59.000Z

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  11. Performance of a High Speed Indirect Injection Diesel Engine with Poultry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 TermoelectricaPaving the pathPeople'sTransientFleet inFat

  12. Proceedings of the 1998 diesel engine emissions reduction workshop [DEER

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

  13. Numerical simulation of turbulent jet primary breakup in Diesel engines

    E-Print Network [OSTI]

    Helluy, Philippe

    Numerical simulation of turbulent jet primary breakup in Diesel engines Peng Zeng1 Marcus Herrmann" IRMA Strasbourg, 23.Jan.2008 #12;Introduction DNS of Primary Breakup in Diesel Injection Phase Transition Modeling Turbulence Modeling Summary Outline 1 Introduction 2 DNS of Primary Breakup in Diesel

  14. Clean and Efficient Diesel Engine

    SciTech Connect (OSTI)

    None

    2010-12-31T23:59:59.000Z

    Task 1 was to design study for fuel-efficient system configuration. The objective of task 1 was to perform a system design study of locomotive engine configurations leading to a 5% improvement in fuel efficiency. Modeling studies were conducted in GT-Power to perform this task. GT-Power is an engine simulation tool that facilitates modeling of engine components and their system level interactions. It provides the capability to evaluate a variety of engine technologies such as exhaust gas circulation (EGR), variable valve timing, and advanced turbo charging. The setup of GT-Power includes a flexible format that allows the effects of variations in available technologies (i.e., varying EGR fractions or fuel injection timing) to be systematically evaluated. Therefore, development can be driven by the simultaneous evaluation of several technology configurations.

  15. Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01T23:59:59.000Z

    and Impact of Diesel Engines and Gas Turbines By Vaclav Smiland Impact of Diesel Engines and Gas Turbines. Cambridge,of the internal combustion engine invented by Rudolf Diesel

  16. Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01T23:59:59.000Z

    The History and Impact of Diesel Engines and Gas Turbines ByThe History and Impact of Diesel Engines and Gas Turbines.engine invented by Rudolf Diesel in the 1890s and the gas

  17. A Correlation of Diesel Engine Performance with Measured NIR...

    Broader source: Energy.gov (indexed) [DOE]

    CORRELATION OF DIESEL ENGINE PERFORMANCE WITH MEASURED NIR FUEL CHARACTERISTICS Bruce Bunting, Michael Bunce, ORNL Alain Lunati, Oswin Galtier, Eric Hermitte, SP3H Monday, P-02...

  18. Multicylinder Diesel Engine for Low Temperature Combustion Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Low Temperature Combustion Operation Multicylinder Diesel Engine for Low Temperature Combustion Operation Fuel injection strategies to extend low temperature combustion...

  19. Sandia Energy - New Conceptual Insights into Diesel Engine Fuel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at various ambient pressure and temperature conditions. The diagram suggests dense-fluid jet presence (grey region) under diesel-engine conditions (highlighted area) without drop...

  20. Diesel and Gasoline Engine Emissions: Characterization of Atmosphere...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions Diesel and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health...

  1. Diesel Engine Strategy & North American Market Challenges, Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategy & North American Market Challenges, Technology and Growth Diesel Engine Strategy & North American Market Challenges, Technology and Growth Presentation given at the 2007...

  2. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology 2003 DEER Conference Presentation: Caterpillar Inc. 2003deeralgrain.pdf...

  3. Emission Performance of Modern Diesel Engines Fueled with Biodiesel

    Broader source: Energy.gov (indexed) [DOE]

    Emission Performance of Modern Diesel Engines Fueled with Biodiesel Aaron Williams, Jonathan Burton, Xin He and Robert L. McCormick National Renewable Energy Laboratory October 5,...

  4. Impact of Biodiesel on Modern Diesel Engine Emissions

    Broader source: Energy.gov (indexed) [DOE]

    Impact of Biodiesel on Modern Diesel Engine Emissions Vehicle Technologies Program Merit Review - Fuels and Lubricants Technologies PI: Bob McCormick Presenter: Aaron Williams May...

  5. Estimation and Control of Diesel Engine Processes Utilizing Variable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for multi-cylinder variable geometry turbocharged diesel engine with cooled EGR and flexible intake valve actuation developed to capture dynamic effects of gas exchange actuators...

  6. Effect of engine operating parameters and fuel characteristics on diesel engine emissions

    E-Print Network [OSTI]

    Acar, Joseph, 1977-

    2005-01-01T23:59:59.000Z

    To examine the effects of using synthetic Fischer-Tropsch (FT) diesel fuel in a modern compression ignition engine, experiments were conducted on a MY 2002 Cummins 5.9 L diesel engine outfitted with high pressure, common ...

  7. LES Applied to Low-Temperature, Diesel and Hydrogen Engine Combustion...

    Energy Savers [EERE]

    LES Applied to Low-Temperature, Diesel and Hydrogen Engine Combustion Research LES Applied to Low-Temperature, Diesel and Hydrogen Engine Combustion Research Presentation from the...

  8. Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Technology to Meet US EPA 2010 Emissions with Improved Thermal Efficiency Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions with Improved Thermal...

  9. Department of Mechanical Engineering Fall 2011 Heavy Duty Diesel Engine Friction Reduction

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical Engineering Fall 2011 Heavy Duty Diesel Engine Friction the friction losses of a heavy duty diesel engine. In addition, a tear down procedure needed to be created needs Discussed test cell configuration with Diesel Combustion & Emissions Laboratory Performed

  10. MODELING AND CONTROL OF A DIESEL HCCI ENGINE

    E-Print Network [OSTI]

    MODELING AND CONTROL OF A DIESEL HCCI ENGINE J. Chauvin A. Albrecht G. Corde N. Petit Institut of the airpath of a Diesel HCCI engine supported by experimental results. Moreover, we propose a simple, yet Ignition (HCCI) ­ has be- come of major interest. It requires the use of high Exhaust Gas Recirculation

  11. Engine performance and exhaust emissions from a diesel 

    E-Print Network [OSTI]

    Powell, Jacob Joseph

    2009-05-15T23:59:59.000Z

    Non-road diesel engines are significant contributors to air pollution in the United States. Recent regulations put forth by EPA and other environmental agencies have laid out stringent guidelines for engine manufacturers and fuel producers. Recent...

  12. Active Diesel Emission Control Technology for Sub-50 HP Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sub-50 HP Engines with Low Exhaust Temperature Profiles Active Diesel Emission Control Technology for Sub-50 HP Engines with Low Exhaust Temperature Profiles A new type of emission...

  13. Analysis of parasitic losses in heavy duty diesel engines

    E-Print Network [OSTI]

    James, Christopher Joseph

    2012-01-01T23:59:59.000Z

    Fuel economy of large, on-road diesel engines has become even more critical in recent years for engine manufactures, vehicle OEMs, and truck operators, in view of pending CO2 emission regulations. Demands for increased ...

  14. BMW Diesel - Engine Concepts for Efficient Dynamics

    Broader source: Energy.gov (indexed) [DOE]

    "24 Hours of Nrburgring" 2001 - 2nd Gen. Common Rail (1600 bar) 2004 - Variable Twin Turbo - Diesel Particulate Filter of 2nd Gen. 1999 - First V8 Diesel Sedan in Premium...

  15. Nitrogen oxidizing in modeling of diesel engine operation

    SciTech Connect (OSTI)

    Kulakov, V.; Merker, G.

    1995-12-31T23:59:59.000Z

    A computer model of diesel engine operation based on the interconnected calculation of diesel fuel spray and the processes in the combustion chamber is extended for the calculation of Nitrogen oxidizing. A number of chemical reactions with O{sub 2}, O, N{sub 2}, N, NO, OH, H, H{sub 2} are included in the model.

  16. Friction Characteristics of Steel Pistons for Diesel Engines

    E-Print Network [OSTI]

    Kim, Dallwoo

    The use of iron pistons is increasing due to the higher power requirements of diesel truck engines. Expansion of the iron piston is a common concern. The purpose of this study is to clarify the lubrication conditions of ...

  17. Durability of Diesel Engine Particulate Filters CRADA No. ORNL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Filters CRADA No. ORNL-04-0692 with Cummins Inc. Durability of Diesel Engine Particulate Filters CRADA No. ORNL-04-0692 with Cummins Inc. Presentation from the U.S. DOE Office of...

  18. 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference...

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Injection Argun Yetkin Tenneco Automotive (PDF 141 KB) Diesel Engine CO2 and SOx Emission Compliance Strategy for the Royal Navy (RN) and Royal Fleet Auxiliary (RFA) Flotillas...

  19. Technology Development for High Efficiency Clean Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Cost reduction is a key area of...

  20. automotive diesel engines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    used to test the procedure Paris-Sud XI, Universit de 25 EFFECT OF INJECTING HYDROGEN PEROXIDE INTO DIESEL ENGINE CiteSeer Summary: An experiment was conducted with four...

  1. automotive diesel engine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    used to test the procedure Paris-Sud XI, Universit de 25 EFFECT OF INJECTING HYDROGEN PEROXIDE INTO DIESEL ENGINE CiteSeer Summary: An experiment was conducted with four...

  2. Cottonseed oil as a diesel-engine fuel. Final report

    SciTech Connect (OSTI)

    Staph, H.E.; Staudt, J.J.

    1982-07-31T23:59:59.000Z

    If diesel fuel becomes unavailable for any reason, can diesel powered farm equipment function on alternate fuels from energy crops that are available on the farm. This project sought to gain some insight into this question through the use of once-refined cottonseed oil as fuel in a typical unmodified agricultural diesel engine. The engine used for test was an International Harvester Model DT-436B 6 cylinder, inline, direct injection, turbocharged engine of approximately 175 brake horsepower at 2500 rpm. The engine was run on a stationary stand using blends of reference diesel fuel (DF-2), once-refined cottonseed oil (CSO), and transesterified cottonseed oil (ESCO). The latter is cottonseed oil which has been processed to give a methyl ester instead of a glyceride. The volume percent blends of fuels used in the tests ranged from 100% DF-2, to 20/80 DF-2/CSO, 50/50 DF-2/ESCO, 50/50 CSO/ESCO, and 100% ESCO. The test procedures and results are presented in this volume. The results suggest that ESCO would probably be a satisfactory substitute for diesel fuel, but more testing is required. None of the fuels tested is a cost effective alternative to diesel fuels. ESCO presently costs four to five times as much as commercial diesel fuel.

  3. Nano Catalysts for Diesel Engine Emission Remediation

    SciTech Connect (OSTI)

    Narula, Chaitanya Kumar [ORNL; Yang, Xiaofan [ORNL; Debusk, Melanie Moses [ORNL; Mullins, David R [ORNL; Mahurin, Shannon Mark [ORNL; Wu, Zili [ORNL

    2012-06-01T23:59:59.000Z

    The objective of this project was to develop durable zeolite nanocatalysts with broader operating temperature windows to treat diesel engine emissions to enable diesel engine based equipment and vehicles to meet future regulatory requirements. A second objective was to improve hydrothermal durability of zeolite catalysts to at least 675 C. The results presented in this report show that we have successfully achieved both objectives. Since it is accepted that the first step in NO{sub x} conversion under SCR (selective catalytic reduction) conditions involves NO oxidation to NO{sub 2}, we reasoned that catalyst modification that can enhance NO oxidation at low-temperatures should facilitate NO{sub x} reduction at low temperatures. Considering that Cu-ZSM-5 is a more efficient catalyst than Fe-ZSM-5 at low-temperature, we chose to modify Cu-ZSM-5. It is important to point out that the poor low-temperature efficiency of Fe-ZSM-5 has been shown to be due to selective absorption of NH{sub 3} at low-temperatures rather than poor NO oxidation activity. In view of this, we also reasoned that an increased electron density on copper in Cu-ZSM-5 would inhibit any bonding with NH{sub 3} at low-temperatures. In addition to modified Cu-ZSM-5, we synthesized a series of new heterobimetallic zeolites, by incorporating a secondary metal cation M (Sc{sup 3+}, Fe{sup 3+}, In{sup 3+}, and La{sup 3+}) in Cu exchanged ZSM-5, zeolite-beta, and SSZ-13 zeolites under carefully controlled experimental conditions. Characterization by diffuse-reflectance ultra-violet-visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS) and electron paramagnetic resonance spectroscopy (EPR) does not permit conclusive structural determination but supports the proposal that M{sup 3+} has been incorporated in the vicinity of Cu(II). The protocols for degreening catalysts, testing under various operating conditions, and accelerated aging conditions were provided by our collaborators at John Deere Power Systems. Among various zeolites reported here, CuFe-SSZ-13 offers the best NO{sub x} conversion activity in 150-650 C range and is hydrothermally stable when tested under accelerated aging conditions. It is important to note that Cu-SSZ-13 is now a commercial catalyst for NO{sub x} treatment on diesel passenger vehicles. Thus, our catalyst performs better than the commercial catalyst under fast SCR conditions. We initially focused on fast SCR tests to enable us to screen catalysts rapidly. Only the catalysts that exhibit high NO{sub x} conversion at low temperatures are selected for screening under varying NO{sub 2}:NO{sub x} ratio. The detailed tests of CuFe-SSZ-13 show that CuFe-SSZ-13 is more effective than commercial Cu-SSZ-13 even at NO{sub 2}:NO{sub x} ratio of 0.1. The mechanistic studies, employing stop-flow diffuse reflectance FTIR spectroscopy (DRIFTS), suggest that high concentration of NO{sup +}, generated by heterobimetallic zeolites, is probably responsible for their superior low temperature NO{sub x} activity. The results described in this report clearly show that we have successfully completed the first step in a new emission treatment catalyst which is synthesis and laboratory testing employing simulated exhaust. The next step in the catalyst development is engine testing. Efforts are in progress to obtain follow-on funding to carry out scale-up and engine testing to facilitate commercialization of this technology.

  4. Hydrogen assisted combustion of ethanol in Diesel enginesHydrogen assisted combustion of ethanol in Diesel engines Anil Singh Bika, Luke Franklin, Prof. David B. Kittelson

    E-Print Network [OSTI]

    Minnesota, University of

    Hydrogen assisted combustion of ethanol in Diesel enginesHydrogen assisted combustion of ethanol in Diesel engines Anil Singh Bika, Luke Franklin, Prof. David B. Kittelson Department of Mechanical a means of using nearly pure ethanol as a diesel engine fuel by using hydrogen rich gases to facilitate

  5. BMW Diesel Engines - Dynamic, Efficient and Clean

    Broader source: Energy.gov (indexed) [DOE]

    Nrburgring 2001 - DI with 2nd generation Common Rail, 1600 bar 2004 - Variable Twin Turbo - Particulate filter 2nd generation 1999 - First V8 diesel with direct injection...

  6. DIESEL ENGINES FOR FIREDAMP MINES Institut National de 1'Environnement Industricl

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    93-41 DIESEL ENGINES FOR FIREDAMP MINES A.CZYZ Institut National de 1'Environnement Industricl et REGULATIONS The introducüon of foreign diesel engines (mainly German engines with 12.5 mm flameproof joints any Problems in the case of dassical diesel engines i.e. with natural aspiration. On the otherhand

  7. The Elimination of Oxides of Nitrogen from the Exhaust of a diesel Engine using cryogenic air separation

    E-Print Network [OSTI]

    Manikowski, A.; Noland, G.; Green, M.A.

    1997-01-01T23:59:59.000Z

    DIESEL ENGINE USING CRYOGENIC AIR SEPARATION, A. Manikowski,A DIESEL ENGINE USING CRYOGENIC AIR SEPARATION A. Manikowskiengine cycle. THE CRYOGENIC AIR SEPARATION CYCLE A number of

  8. Measurements of the soot emissions and engine operat-ing parameters from a diesel engine during transient op-

    E-Print Network [OSTI]

    Daraio, Chiara

    ABSTRACT Measurements of the soot emissions and engine operat- ing parameters from a diesel engine and are the subject of future research. INTRODUCTION Soot emissions from diesel engines are well known to have gov- erning the emission of particles from diesel engines are becoming ever more stringent. The soot

  9. Coal-fueled diesel engines for locomotive applications

    SciTech Connect (OSTI)

    Hsu, B.D.; Najewicz, D.J.; Cook, C.S.

    1993-11-01T23:59:59.000Z

    GE Transportation Systems (GE/TS) completed a two and one half year study into the economic viability of a coal fueled locomotive. The coal fueled diesel engine was deemed to be one of the most attractive options. Building on the BN-NS study, a proposal was submitted to DOE to continue researching economic and technical feasibility of a coal fueled diesel engine for locomotives. The contract DE-AC21-85MC22181 was awarded to GE Corporate Research and Development (GE/CRD) for a three year program that began in March 1985. This program included an economic assessment and a technical feasibility study. The economic assessment study examined seven areas and their economic impact on the use of coal fueled diesels. These areas included impact on railroad infrastructure, expected maintenance cost, environmental considerations, impact of higher capital costs, railroad training and crew costs, beneficiated coal costs for viable economics, and future cost of money. The results of the study indicated the merits for development of a coal-water slurry (CWS) fueled diesel engine. The technical feasibility study examined the combustion of CWS through lab and bench scale experiments. The major accomplishments from this study have been the development of CWS injection hardware, the successful testing of CWS fuel in a full size, single cylinder, medium speed diesel engine, evaluation of full scale engine wear rates with metal and ceramic components, and the characterization of gaseous and particulate emissions.

  10. French perspective on diesel engines & emissions

    Broader source: Energy.gov (indexed) [DOE]

    smell, smoke Image CNG (CH4) Hybrid Diesel + DPF Electric Users' point of view Greenhouse effect Maintenance Investment extra costs Pollutants N o x P M CNG C N G Hybrid Hybrid...

  11. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Barone, Teresa L [ORNL; Lewis Sr, Samuel Arthur [ORNL; Storey, John Morse [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL; Parks, II, James E [ORNL

    2010-01-01T23:59:59.000Z

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  12. Prime Movers of Globalization: The History and Impact of Diesel Engines and Gas Turbines

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01T23:59:59.000Z

    of Diesel Engines and Gas Turbines By Vaclav Smil Reviewedof Diesel Engines and Gas Turbines. Cambridge, MA: The MITin the 1890s and the gas turbine invented by Frank Whittle

  13. Towards Real-Time and Memory Efficient Predictions of Valve States in Diesel Engines

    E-Print Network [OSTI]

    Zell, Andreas

    Towards Real-Time and Memory Efficient Predictions of Valve States in Diesel Engines Philippe Komma T¨ubingen, Germany {philippe.komma, andreas.zell}@uni-tuebingen.de system for a diesel engine

  14. Investigation of Bio-Diesel Fueled Engines under Low-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies ftp01lee.pdf More...

  15. Diesel Engines: What Role Can They Play in an Emissions-Constrained...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What Role Can They Play in an Emissions-Constrained World? Diesel Engines: What Role Can They Play in an Emissions-Constrained World? 2004 Diesel Engine Emissions Reduction (DEER)...

  16. A Study of Emissions from a Light Duty Diesel Engine with the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Study of Emissions from a Light Duty Diesel Engine with the European Particulate Measurement Programme A Study of Emissions from a Light Duty Diesel Engine with the European...

  17. Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine Discusses plan, baselining, and modeling, for new...

  18. Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine Development of a new light truck, in-line...

  19. Effects of Biodiesel and Engine Load on Some Emission Characteristics of a Direct Injection Diesel Engine

    E-Print Network [OSTI]

    Alireza Shirneshan; Morteza Almassi; Barat Ghobadian; Ali Mohammad Borghei; Gholam Hassan Najafi

    2012-01-01T23:59:59.000Z

    In this research, experiments were conducted on a 4-cylinder direct-injection diesel engine using biodiesel as an alternative fuel and their blends to investigate the emission characteristics of the engine under four engine loads (25%, 40%, 65 % and 80%) at an engine speed of 1800 rev/min. A test was applied in which an engine was fueled with diesel and four different blends of diesel/ biodiesel (B20, B40, B60 and B80) made from waste frying oil and the results were analyzed. The use of biodiesel resulted in lower emissions of hydrocarbon (HC) and CO and increased emissions

  20. Capture of Heat Energy from Diesel Engine Exhaust

    SciTech Connect (OSTI)

    Chuen-Sen Lin

    2008-12-31T23:59:59.000Z

    Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data, the synthetic fuel contained slightly less heat energy and fewer emissions. Test results obtained from adding different levels of a small amount of hydrogen into the intake manifold of a diesel-operated engine showed no effect on exhaust heat content. In other words, both synthetic fuel and conventional diesel with a small amount of hydrogen may not have a significant enough effect on the amount of recoverable heat and its feasibility. An economic analysis computer program was developed on Visual Basic for Application in Microsoft Excel. The program was developed to be user friendly, to accept different levels of input data, and to expand for other heat recovery applications (i.e., power, desalination, etc.) by adding into the program the simulation subroutines of the desired applications. The developed program has been validated using experimental data.

  1. Optimization of Engine-out Emissions from a Diesel Engine to...

    Broader source: Energy.gov (indexed) [DOE]

    The 2008 Deer Conference, 4 The 2008 Deer Conference, 4 - - 7th August 7th August Optimization of Engine Optimization of Engine - - out Emissions from out Emissions from a Diesel...

  2. New concept on lower exhaust emission of diesel engine

    SciTech Connect (OSTI)

    Fujimoto, Hajime; Senda, Jiro; Shibata, Ichiro; Matsui, Koji

    1995-12-31T23:59:59.000Z

    One of the countermeasures for exhaust emissions from a diesel engine, especially, DI diesel engine, is the use of a super high pressure injection system with a small hole diameter. However, the system needs greater driving force than that with normal injection pressure,and its demerit is an increase in NO{sub x}, although soot decreases. The authors propose a new concept, the simultaneous reduction of NO{sub x} and soot. The concept is that the utilization of flash boiling phenomenon in a diesel engine. The phenomenon can be realized by use of the injection of fuel oil with CO{sub 2} gas dissolved. Flash boiling facilities the distinguished atomization of fuel oil and CO{sub 2} gas contributes to the internal EGR (Exhaust Gas Recirculation) during combustion. Fundamental information on the characteristics of a flash boiling spray of n-tridecane with CO{sub 2} gas dissolved is described in this paper, as a first step.

  3. Emissions comparison between petroleum diesel and biodiesel in a medium-duty diesel engine 

    E-Print Network [OSTI]

    Tompkins, Brandon T.

    2009-05-15T23:59:59.000Z

    oils, or animal fats. It has become increasingly popular and is looked at as a diesel replacement. This research characterizes the emissions of the new John Deere PowerTech Plus 4045HF285 in the Advance Engine Research Laboratory at Texas A&M University...

  4. Dynamics and Control of a Free-Piston Diesel Engine Tor A. Johansen1

    E-Print Network [OSTI]

    Johansen, Tor Arne

    Dynamics and Control of a Free-Piston Diesel Engine Tor A. Johansen£1 , Olav Egeland£, Erling Aa, Norway. Abstract Free-piston diesel engines are characterized by freely moving pistons without any-piston diesel engine, and a control oriented dynamic analysis leading to a piston motion control structure

  5. Adaptive Air Charge Estimation for Turbocharged Diesel Engines without Exhaust Gas Recirculation

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Adaptive Air Charge Estimation for Turbocharged Diesel Engines without Exhaust Gas Recirculation an adaptive observer for in-cylinder air charge estimation for turbocharged diesel engines without exhaust gas (734) 764-4256 1 #12;Storset et al.- Adaptive Air Charge Est. for TC Diesel Engines 2 1 Introduction

  6. Mass Flow Estimation with Model Bias Correction for a Turbocharged Diesel Engine

    E-Print Network [OSTI]

    Johansen, Tor Arne

    Mass Flow Estimation with Model Bias Correction for a Turbocharged Diesel Engine Tomás Polóni. Based on an augmented observable Mean Value En- gine Model (MVEM) of a turbocharged Diesel engine in the intake duct. Keywords: Diesel engine, Mass flow estimation, Bias estimation, Kalman filtering, Mean value

  7. The process of soot formation in a DI Diesel engine is very challenging to understand and

    E-Print Network [OSTI]

    Sandoghdar, Vahid

    Background The process of soot formation in a DI Diesel engine is very challenging to understand and describe. But with respect to the demand for much lower particulate emissions (Tab.1) of Diesel engines emissi- ons of a medium duty DI Diesel engine which is certified for the TIER 3 norm should be evaluated

  8. Free-Piston Diesel Engine Timing and Control { Towards Electronic Cam-and Crankshaft

    E-Print Network [OSTI]

    Johansen, Tor Arne

    1 Free-Piston Diesel Engine Timing and Control { Towards Electronic Cam- and Crankshaft Tor A. Johansen, Olav Egeland, Erling Aa. Johannessen and Rolf Kvamsdal Abstract| The free-piston diesel engine replaces the crankshaft of the traditional diesel engine with a power tur- bine to convert energy from

  9. Impacts of a Nanosized Ceria Additive on Diesel Engine Emissions of Particulate and Gaseous Pollutants

    E-Print Network [OSTI]

    Garfunkel, Eric

    Impacts of a Nanosized Ceria Additive on Diesel Engine Emissions of Particulate and Gaseous incorporating nanosized ceria have been increasingly used in diesel engines as combustion promoters. However- cylinder, four-cycle diesel engine using fuel mixes containing nanoceria of varying concentrations

  10. Free-Piston Diesel Engine Dynamics and Control Tor A. Johansen1, Olav Egeland

    E-Print Network [OSTI]

    Johansen, Tor Arne

    Free-Piston Diesel Engine Dynamics and Control Tor A. Johansen1, Olav Egeland , Erling Aa. Kv rner ASA, Postboks 169, N-1325 Lysaker, Norway. Abstract Free-piston diesel engines. This paper present a dynamic mathematical model of a free-piston diesel engine, a control oriented dynamic

  11. Physical properties of bio-diesel & Implications for use of bio-diesel in diesel engines

    SciTech Connect (OSTI)

    Chakravarthy, Veerathu K [ORNL; McFarlane, Joanna [ORNL; Daw, C Stuart [ORNL; Ra, Youngchul [ORNL; Griffin, Jelani K [ORNL; Reitz, Rolf [University of Wisconsin

    2008-01-01T23:59:59.000Z

    In this study we identify components of a typical biodiesel fuel and estimate both their individual and mixed thermo-physical and transport properties. We then use the estimated mixture properties in computational simulations to gauge the extent to which combustion is modified when biodiesel is substituted for conventional diesel fuel. Our simulation studies included both regular diesel combustion (DI) and premixed charge compression ignition (PCCI). Preliminary results indicate that biodiesel ignition is significantly delayed due to slower liquid evaporation, with the effects being more pronounced for DI than PCCI. The lower vapor pressure and higher liquid heat capacity of biodiesel are two key contributors to this slower rate of evaporation. Other physical properties are more similar between the two fuels, and their impacts are not clearly evident in the present study. Future studies of diesel combustion sensitivity to both physical and chemical properties of biodiesel are suggested.

  12. Department of Energy and Electrical Engineering Spring 2012 Heavy-Duty Diesel Engine Friction Reduction Testing and Analysis

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Energy and Electrical Engineering Spring 2012 Heavy-Duty Diesel Engine and pumping frictional losses on Volvo-Mack's 11 liter Diesel Engine. Thermocouples and pressure transducers use this rig in the future to quantify frictional losses and improve on the efficiency of their diesel

  13. Cost and performance data on diesel engine generators and pumps

    SciTech Connect (OSTI)

    Kenna, J.

    1987-05-01T23:59:59.000Z

    This report summarizes performance data and costs of operation and maintenance obtained from seven diesel engines operating under field conditions in Kenya. Four of the engines were diesel water pumps and three were diesel generators. Short-term tests (2-hour) were conducted on-site to determine engine efficiency as a function of time after start-up. After the short-term tests, the engines were monitored for a 3-month period to determine use pattern and fuel consumption. In addition, the owners (or operators) completed a questionnaire which documented their perception of reliability and operation and maintenance costs. The short-term tests showed that the diesel efficiencies were primarily dependent on the load factor and time from start-up to shut-down. The measured efficiencies were significantly reduced when the diesels were run for either short periods (less than 90 minutes for the generators and 30 minutes for the pumps) or with loads less than their rated output. The data collected during the 3-month monitoring period revealed relatively low efficiencies because of low load factors and short run periods. This type of use pattern is typical for diesels in Kenya. Operation and maintenance costs varied from .20 to .95 $/kWh for the generators, and from .13 to .74 $/m/sup 3/ of water for the pumps, depending primarily on the efficiency and the cost of labor for an operator and repairs. The owners' perception of the operation and maintenance costs was usually significantly less than the measured costs. 15 figs., 5 tabs.

  14. Increasing efficiency, reducing emissions with hydrous ethanol in diesel engines

    E-Print Network [OSTI]

    Minnesota, University of

    Increasing efficiency, reducing emissions with hydrous ethanol in diesel engines Ethanol continuedOber 2013 Catalystcts.umn.edu Nearly all corn-based ethanol produced in the United States is anhydrous processes required to remove the water from ethanol consume a great deal of energy. Researchers from

  15. High speed door assembly

    DOE Patents [OSTI]

    Shapiro, C.

    1993-04-27T23:59:59.000Z

    A high speed door assembly is described, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  16. High speed door assembly

    DOE Patents [OSTI]

    Shapiro, Carolyn (Idaho Falls, ID)

    1993-01-01T23:59:59.000Z

    A high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  17. Coal-fueled diesel technology development -- Fuel injection equipment for coal-fueled diesel engines

    SciTech Connect (OSTI)

    Johnson, R.N.; Hayden, H.L.

    1994-01-01T23:59:59.000Z

    Because of the abrasive and corrosive nature of coal water slurries, the development of coal-fueled diesel engine technology by GE-Transportation Systems (GE-TS) required special fuel injection equipment. GE-Corporate Research and Development (GE-CRD) undertook the design and development of fuel injectors, piston pumps, and check valves for this project. Components were tested at GE-CRD on a simulated engine cylinder, which included a cam-actuated jerk pump, prior to delivery to GE-TS for engine testing.

  18. Control-Oriented Linear Parameter-Varying Modelling of a Turbocharged Diesel Engine

    E-Print Network [OSTI]

    Cambridge, University of

    Control-Oriented Linear Parameter-Varying Modelling of a Turbocharged Diesel Engine Merten Jung-- In this paper, a third order nonlinear model of the airpath of a turbocharged diesel engine is derived, which and to a higher order nonlinear model suggests the validity of this approach. I. INTRODUCTION Modern diesel

  19. Modeling Pollutant Emissions of Diesel Engine based on Kriging Models: a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modeling Pollutant Emissions of Diesel Engine based on Kriging Models: a Comparison between.denis-vidal@math.univ-lille1.fr, ghislaine.joly-blanchard@utc.fr) Abstract: In order to optimize the performance of a diesel problems, modelling errors, Automotive emissions, Diesel engines 1. INTRODUCTION The automotive industry

  20. JET BREAKUP and SPRAY FORMATION in a DIESEL ENGINE James Glimm

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    JET BREAKUP and SPRAY FORMATION in a DIESEL ENGINE James Glimm Department of Applied Mathematics of a fuel eÆcient, nonpollut- ing diesel engine. We report preliminary progress on the numerical simulation of diesel fuel injection spray with the front tracking code FronTier. Our simulation design is set to match

  1. IMPACT OF LOW-EMISSION DIESEL ENGINES ON UNDERGROUND MINE AIR QUALITY

    E-Print Network [OSTI]

    Minnesota, University of

    1 IMPACT OF LOW-EMISSION DIESEL ENGINES ON UNDERGROUND MINE AIR QUALITY Susan T. Bagley1, Winthrop-1295 2 Department of Mechanical Engineering, Center for Diesel Research, University of Minnesota, 111, however, is providing the report on its Website because it is important for parties interested in diesel

  2. An Evolutionary Algorithm to design Diesel Engines T. Donateo, D. Laforgia

    E-Print Network [OSTI]

    Coello, Carlos A. Coello

    An Evolutionary Algorithm to design Diesel Engines T. Donateo, D. Laforgia CREA, Research Center silvia.mocavero@unile.it Abstract - An evolutionary algorithm has been developed for the design of diesel to be achieved. A typical case is the contemporary reduction of soot and NOx emissions in a diesel engine. All

  3. Diesel engine emissions reduction by multiple injections having increasing pressure

    DOE Patents [OSTI]

    Reitz, Rolf D. (Madison, WI); Thiel, Matthew P. (Madison, WI)

    2003-01-01T23:59:59.000Z

    Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

  4. Regulation of Emissions from Stationary Diesel Engines (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    On July 11, 2006, the Environmental Protection Agency (EPA) issued regulations covering emissions from stationary diesel engines New Source Performance Standards that limit emissions of NOx, particulate matter, SO2, carbon monoxide, and hydrocarbons to the same levels required for nonroad diesel engines. The regulation affects new, modified, and reconstructed diesel engines. Beginning with model year 2007, engine manufacturers must specify that new engines less than 3,000 horsepower meet the same emissions standard as nonroad diesel engines. For engines greater than 3,000 horsepower, the standard will be fully effective in 2011. Stationary diesel engine fuel will also be subject to the same standard as nonroad diesel engine fuel, which reduces the sulfur content of the fuel to 500 parts per million by mid-2007 and 15 parts per million by mid-2010.

  5. Experimental and computational study of soot formation under diesel engine conditions

    E-Print Network [OSTI]

    Kitsopanidis, Ioannis, 1975-

    2004-01-01T23:59:59.000Z

    Past research has shown that during diesel combustion, soot is formed in local premixed fuel-rich regions. This project focuses on the fundamentals soot formation under fuel-rich conditions similar to those in diesel engine ...

  6. ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Vehicle Technologies Office Merit Review 2014: ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel...

  7. ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Evaluation ace061ruth2011o.pdf More Documents & Publications ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel...

  8. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect (OSTI)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01T23:59:59.000Z

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  9. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines

    SciTech Connect (OSTI)

    Hall, Matt; Matthews, Ron

    2011-09-30T23:59:59.000Z

    The goal of the research was to refine and complete development of an on-board particulate matter (PM) sensor for diesel, DISI, and HCCI engines, bringing it to a point where it could be commercialized and marketed.

  10. Effects of an Accelerated Diesel Engine Replacement/Retrofit Program

    E-Print Network [OSTI]

    Millstein, Dev E.; Harley, Robert A

    2009-01-01T23:59:59.000Z

    Heavy-Duty Diesel Truck Emissions. Environ. Sci. Technol. ,reductions in diesel truck emissions are forecast to occurof NO 2 /NO x emissions from diesel trucks equipped with

  11. An experimental investigation of low octane gasoline in diesel engines.

    SciTech Connect (OSTI)

    Ciatti, S. A.; Subramanian, S. (Energy Systems)

    2011-09-01T23:59:59.000Z

    Conventional combustion techniques struggle to meet the current emissions norms. In particular, oxides of nitrogen (NO{sub x}) and particulate matter (PM) emissions have limited the utilization of diesel fuel in compression ignition engines. Advance combustion concepts have proved the potential to combine fuel efficiency and improved emission performance. Low-temperature combustion (LTC) offers reduced NO{sub x} and PM emissions with comparable modern diesel engine efficiencies. The ability of premixed, low-temperature compression ignition to deliver low PM and NO{sub x} emissions is dependent on achieving optimal combustion phasing. Diesel operated LTC is limited by early knocking combustion, whereas conventional gasoline operated LTC is limited by misfiring. So the concept of using an unconventional fuel with the properties in between those two boundary fuels has been experimented in this paper. Low-octane (84 RON) gasoline has shown comparable diesel efficiencies with the lowest NO{sub x} emissions at reasonable high power densities (NO{sub x} emission was 1 g/kW h at 12 bar BMEP and 2750 rpm).

  12. Durability of Diesel Engine Particulate Filters

    Broader source: Energy.gov (indexed) [DOE]

    approved Barriers * - Propulsion Materials Technology: * Changing internal combustion engine combustion regimes Optimize to minimize thermal stresses during regen. * Cost ...

  13. Systems and methods for controlling diesel engine emissions

    DOE Patents [OSTI]

    Webb, Cynthia Chaffin; Weber, Phillip Anthony; Khair, Magdi K.

    2004-06-01T23:59:59.000Z

    Systems and methods for controlling diesel engine emissions, including, for example, oxides of nitrogen emissions, particulate matter emissions, and the like. The emission control system according to this invention is provided in the exhaust passageway of a diesel engine and includes a catalyst-based particulate filter; and first and second lean NO.sub.x trap systems coupled to the catalyst-based particulate filter. The first and second lean NO.sub.x trap systems are arranged in a parallel flow configuration with each other. Each of the first and second lean NO.sub.x trap systems include a carbon monoxide generating catalyst device, a sulfur trap device, a lean NO.sub.x device, a supplemental fuel injector device, and a plurality of flow diverter devices.

  14. High speed flywheel

    DOE Patents [OSTI]

    McGrath, Stephen V. (Knoxville, TN)

    1991-01-01T23:59:59.000Z

    A flywheel for operation at high speeds utilizes two or more ringlike coments arranged in a spaced concentric relationship for rotation about an axis and an expansion device interposed between the components for accommodating radial growth of the components resulting from flywheel operation. The expansion device engages both of the ringlike components, and the structure of the expansion device ensures that it maintains its engagement with the components. In addition to its expansion-accommodating capacity, the expansion device also maintains flywheel stiffness during flywheel operation.

  15. Durability of Diesel Engine Particulate Filters

    Broader source: Energy.gov (indexed) [DOE]

    * Funding received: - FY09 318k - FY10 238k Barriers * - Advanced Combustion Engine Research: Emission Control System: * Poor durability thermal stresses and porosity *...

  16. High speed transient sampler

    DOE Patents [OSTI]

    McEwan, T.E.

    1995-11-28T23:59:59.000Z

    A high speed sampler comprises a meandered sample transmission line for transmitting an input signal, a straight strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates along the transmission lines. The sampling gates comprise a four terminal diode bridge having a first strobe resistor connected from a first terminal of the bridge to the positive strobe line, a second strobe resistor coupled from the third terminal of the bridge to the negative strobe line, a tap connected to the second terminal of the bridge and to the sample transmission line, and a sample holding capacitor connected to the fourth terminal of the bridge. The resistance of the first and second strobe resistors is much higher than the signal transmission line impedance in the preferred system. This results in a sampling gate which applies a very small load on the sample transmission line and on the strobe generator. The sample holding capacitor is implemented using a smaller capacitor and a larger capacitor isolated from the smaller capacitor by resistance. The high speed sampler of the present invention is also characterized by other optimizations, including transmission line tap compensation, stepped impedance strobe line, a multi-layer physical layout, and unique strobe generator design. A plurality of banks of such samplers are controlled for concatenated or interleaved sample intervals to achieve long sample lengths or short sample spacing. 17 figs.

  17. High speed transient sampler

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A high speed sampler comprises a meandered sample transmission line for transmitting an input signal, a straight strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates along the transmission lines. The sampling gates comprise a four terminal diode bridge having a first strobe resistor connected from a first terminal of the bridge to the positive strobe line, a second strobe resistor coupled from the third terminal of the bridge to the negative strobe line, a tap connected to the second terminal of the bridge and to the sample transmission line, and a sample holding capacitor connected to the fourth terminal of the bridge. The resistance of the first and second strobe resistors is much higher than the signal transmission line impedance in the preferred system. This results in a sampling gate which applies a very small load on the sample transmission line and on the strobe generator. The sample holding capacitor is implemented using a smaller capacitor and a larger capacitor isolated from the smaller capacitor by resistance. The high speed sampler of the present invention is also characterized by other optimizations, including transmission line tap compensation, stepped impedance strobe line, a multi-layer physical layout, and unique strobe generator design. A plurality of banks of such samplers are controlled for concatenated or interleaved sample intervals to achieve long sample lengths or short sample spacing.

  18. Neural Modeling and Control of Diesel Engine with Pollution Constraints

    E-Print Network [OSTI]

    Ouladsine, Mustapha; Dovifaaz, Xavier; 10.1007/s10846-005-3806-y

    2009-01-01T23:59:59.000Z

    The paper describes a neural approach for modelling and control of a turbocharged Diesel engine. A neural model, whose structure is mainly based on some physical equations describing the engine behaviour, is built for the rotation speed and the exhaust gas opacity. The model is composed of three interconnected neural submodels, each of them constituting a nonlinear multi-input single-output error model. The structural identi?cation and the parameter estimation from data gathered on a real engine are described. The neural direct model is then used to determine a neural controller of the engine, in a specialized training scheme minimising a multivariable criterion. Simulations show the effect of the pollution constraint weighting on a trajectory tracking of the engine speed. Neural networks, which are ?exible and parsimonious nonlinear black-box models, with universal approximation capabilities, can accurately describe or control complex nonlinear systems, with little a priori theoretical knowledge. The present...

  19. Achieving Consistent Maximum Brake Torque with Varied Injection Timing in a DI Diesel Engine 

    E-Print Network [OSTI]

    Kroeger, Timothy H

    2013-09-19T23:59:59.000Z

    , revealing the premixed and diffusion burn fractions as well as important engine and exhaust design criteria such as maximum in-cylinder pressure and exhaust composition. These results are significant in diesel engine design because cheaper, lighter engines...

  20. The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Emissions Reduction (DEER) Conference Presentation: Volkwagen AG, Wolfsburg, Germany 2004deerschindler.pdf More Documents & Publications Accelerating Light-Duty Diesel...

  1. Biodiesel Production from Linseed Oil and Performance Study of a Diesel Engine 40 BIODIESEL PRODUCTION FROM LINSEED OIL AND PERFORMANCE STUDY OF A DIESEL ENGINE WITH DIESEL BIO-DIESEL FUELS

    E-Print Network [OSTI]

    Md. Nurun Nabi; S. M. Najmul Hoque

    Abstract: The use of biodiesel is rapidly expanding around the world, making it imperative to fully understand the impacts of biodiesel on the diesel engine combustion process and pollutant formation. Biodiesel is known as “the mono alkyl esters of long chain fatty acids derived from renewable lipid feedstock, such as vegetable oils or animal fats, for use in compression ignition (diesel) engines. ” Biodiesel was made by transesterification from linseed oil. In aspect of Bangladesh linseed can play an important role in the production of alternative diesel fuel. The climatic and soil condition of our country is convenient for the production of linseed (Linum Usitatissimum) crop. In the first phase of this work optimization of different parameters for biodiesel production were investigated. In the second phase the performance study of a diesel engine with diesel biodiesel blends were carried out. The results showed that with the variation of catalyst, methanol and reaction time; variation of biodiesel production was realized. About 88 % biodiesel production was experienced with 20 % methanol, 0.5% NaOH catalyst and at 550C. The results also showed that when compared with neat diesel fuel, biodiesel gives almost similar thermal efficiency, lower carbon monoxide (CO) and particulate matter (PM) while slightly higher nitrogen oxide (NOx) emission was experienced.

  2. SCR & DPF RETROFITS FOR MOBILE DIESEL ENGINES

    Broader source: Energy.gov (indexed) [DOE]

    3.56 0.01 0.27 3.56 0.90 795 Composite Baseline 3.01 0.01 0.20 2.99 0.76 760 Baseline Emission Tests (Engine is equipped with DPF) Emissions (gbhp.hr) NMHC+NOx PM CO NOx NO2...

  3. Systems engineering approach towards performance monitoring of emergency diesel generator

    SciTech Connect (OSTI)

    Ramli, Nurhayati, E-mail: nurhayati14@gmail.com; Yong-kwan, Lee, E-mail: nurhayati14@gmail.com [KEPCO International Nuclear Graduate School, 1456-1 Shinam-ri, Ulsan 689-882 (Korea, Republic of)

    2014-02-12T23:59:59.000Z

    Systems engineering is an interdisciplinary approach and means to enable the realization of successful systems. In this study, systems engineering approach towards the performance monitoring of Emergency Diesel Generator (EDG) is presented. Performance monitoring is part and parcel of predictive maintenance where the systems and components conditions can be detected before they result into failures. In an effort to identify the proposal for addressing performance monitoring, the EDG boundary has been defined. Based on the Probabilistic Safety Analysis (PSA) results and industry operating experiences, the most critical component is identified. This paper proposed a systems engineering concept development framework towards EDG performance monitoring. The expected output of this study is that the EDG reliability can be improved by the performance monitoring alternatives through the systems engineering concept development effort.

  4. Investigation of the pool boiling heat transfer enhancement of nano-engineered fluids by means of high-speed infrared thermography

    E-Print Network [OSTI]

    Gerardi, Craig Douglas

    2009-01-01T23:59:59.000Z

    A high-speed video and infrared thermography based technique has been used to obtain detailed and fundamental time- and space-resolved information on pool boiling heat transfer. The work is enabled by recent advances in ...

  5. 2008-01-0984 Active Combustion Control of Diesel HCCI Engine: Combustion

    E-Print Network [OSTI]

    2008-01-0984 Active Combustion Control of Diesel HCCI Engine: Combustion Timing M. Hillion, J according to the air path dynamics on a Diesel HCCI engine. This approach complements existing airpath Com- bustion modes (HPC), including Homogeneous Charge Com- pression Ignition (HCCI). HCCI combustion

  6. Emissions From Various Biodiesel Sources Compared to a Range of Diesel Fuels in DPF Equipped Diesel Engines

    SciTech Connect (OSTI)

    Williams, A.; Burton, J.; Christensen, E.; McCormick, R. L.; Tester, J.

    2011-01-01T23:59:59.000Z

    The purpose of this study was to measure the impact of various sources of petroleum-based and bio-based diesel fuels on regulated emissions and fuel economy in diesel particulate filter (DPF) equipped diesel engines. Two model year 2008 diesel engines were tested with nine fuels including a certification ultra-low sulfur diesel (ULSD), local ULSD, high aromatic ULSD, low aromatic ULSD, and twenty percent blends of biodiesel derived from algae, camelina, soy, tallow, and yellow grease. Regulated emissions were measured over the heavy duty diesel transient test cycle. Measurements were also made of DPF-out particle size distribution and total particle count from a 13-mode steady state test using a fast mobility particle sizer. Test engines were a 2008 Cummins ISB and a 2008 International Maxx Force 10, both equipped with actively regenerated DPFs. Fuel consumption was roughly 2% greater over the transient test cycle for the B20 blends versus certification ULSD in both engines, consistent with the slightly lower energy content of biodiesel. Unlike studies conducted on older model engines, these engines equipped with diesel oxidation catalysts and DPFs showed small or no measurable fuel effect on the tailpipe emissions of total hydrocarbons (THC), carbon monoxide (CO) and particulate matter (PM). No differences in particle size distribution or total particle count were seen in a comparison of certification ULSD and B20 soy, with the exception of engine idling conditions where B20 produced a small reduction in the number of nucleation mode particles. In the Cummins engine, B20 prepared from algae, camelina, soy, and tallow resulted in an approximately 2.5% increase in nitrogen oxides (NO{sub x}) compared to the base fuel. The International engine demonstrated a higher degree of variability for NO{sub x} emissions, and fuel effects could not be resolved (p > 0.05). The group of petroleum diesel test fuels produced a range of NO{sub x} emissions very similar to that caused by blending of biodiesel. Test cycles where an active regeneration of the DPF occurred resulted in a nearly threefold increase in NO{sub x} emissions and a 15% increase in fuel consumption. The full quantification of DPF regeneration events further complicates the accurate calculation of fuel impacts on emissions and fuel consumption.

  7. Soot formation modelling of n-heptane sprays under diesel engine conditions using the Conditional Moment Closure

    E-Print Network [OSTI]

    Daraio, Chiara

    1 Soot formation modelling of n-heptane sprays under diesel engine conditions using the Conditional-volume vessel under diesel engine conditions under different ambient densities (14.8 and 30 kg/m3 ) and ambient that the conditional moment closure approach is a promising framework for soot modelling under Diesel engine conditions

  8. KINETIC MODELING OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    KINETIC MODELING OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES R OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES INTRODUCTION Engines running on HCCI combustion mode (Homogeneous Charge Compression Ignition) have the potential to provide both diesel

  9. Effects of a Zeolite-Selective Catalytic Reduction System on Comprehensive Emissions from a Heavy-Duty Diesel Engine

    E-Print Network [OSTI]

    Wu, Mingshen

    -Duty Diesel Engine Z. Gerald Liu and Devin R. Berg Cummins Emission Solutions, Stoughton, WI James J. Schauer spec- trum of chemical species from diesel engine emissions were investigated in this study with established procedures and com- pared between the measurements taken from a baseline heavy-duty diesel engine

  10. Comparison Study of SPEA2+, SPEA2, and NSGA-II in Diesel Engine Emissions and Fuel Economy Problem

    E-Print Network [OSTI]

    Coello, Carlos A. Coello

    Comparison Study of SPEA2+, SPEA2, and NSGA-II in Diesel Engine Emissions and Fuel Economy Problem@mail.doshisha.ac.jp Abstract- Recently, the technology that can control NOx and Soot values of diesel engines by changing between fuel economy and NOx values. Therefore, the diesel engines that can change their characteristics

  11. The Influence of Light Weight Materials on Fuel Economy and Emissions in Heavy Duty Diesel Engine

    SciTech Connect (OSTI)

    Becker, Paul C.

    2000-08-20T23:59:59.000Z

    Technologies being developed that will allow for the substitution of aluminum for cast iron in engine heads and blocks, while maintaining performance and durability. Development of lightweight diesel engine technology: funded by NAVY, DOE and TACOM

  12. Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines

    Broader source: Energy.gov (indexed) [DOE]

    ID-NR.12345-1 Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines Deer Conference 2003 Presented by Josef Maier AVL Powertrain Engineering ID-NR.12345-2 Overview of...

  13. Creation and Testing of the ACES Heavy Heavy-Duty Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing of the ACES Heavy Heavy-Duty Diesel Engine Test Schedule for Representative Measurement of Heavy-Duty Engine Emissions Creation and Testing of the ACES Heavy Heavy-Duty...

  14. 9th Diesel Engine Emissions Reduction (DEER) Workshop 2003

    SciTech Connect (OSTI)

    Kukla, P; Wright, J; Harris, G; Ball, A; Gu, F

    2003-08-24T23:59:59.000Z

    The PowerTrap{trademark} is a non-exhaust temperature dependent system that cannot become blocked and features a controlled regeneration process independent of the vehicle's drive cycle. The system has a low direct-current power source requirement available in both 12-volt and 24-volt configurations. The system is fully programmable, fully automated and includes Euro IV requirements of operation verification. The system has gained European component-type approval and has been tested with both on- road and off-road diesel fuel up to 2000 parts per million. The device is fail-safe: in the event of a device malfunction, it cannot affect the engine's performance. Accumulated mileage testing is in excess of 640,000 miles to date. Vehicles include London-type taxicabs (Euro 1 and 2), emergency service fire engines (Euro 1, 2, and 3), inner city buses, and light-duty locomotives. Independent test results by Shell Global Solutions have consistently demonstrated 85-99 percent reduction of ultrafines across the 7-35 nanometer size range using a scanning mobility particle sizer with both ultra-low sulfur diesel and off-road high-sulfur fuel.

  15. Effects of Canola Biodiesel on a DI Diesel Engine Performance and Emissions

    E-Print Network [OSTI]

    Murari Mohon Roy; Majed Alawi; Wilson Wang

    Abstract- A direct injection (DI) diesel engine is tested with different biodiesel-diesel blends, such as B0 (neat diesel), B5 (i.e., 5 vol. % biodiesel and 95 vol. % diesel), B10 (10 vol. % biodiesel), B20 (20 vol. % biodiesel), B50 (50 vol. % biodiesel), and B100 (neat biodiesel) for performance and emissions under different load conditions. Engine performance is examined by measuring brake specific fuel consumption (bsfc) and fuel conversion efficiency (? f). The emission of carbon monoxide (CO), hydrocarbon (HC), nitric oxide (NO), nitrogen dioxide (NO 2), nitrogen oxides (NOx), carbon dioxide (CO 2) and others are measured. Biodiesel shows a significant CO and HC reduction compared to diesel under low load operation; under high load operation, however, CO with biodiesel is increased a little and HC emissions are very similar to that with diesel. On the other hand, under low load operation, NOx emission with biodiesel is significantly increased than diesel; however, under high load operation, there is almost no change in NOx emissions with biodiesel and diesel. Index Term- Canola biodiesel, diesel engine, engine performance, exhaust emissions.

  16. Analysis of Smoke of Diesel Engine by Using Biodiesel as Fuel

    E-Print Network [OSTI]

    Gayatri Kushwah; Methanol

    Abstract- This study represents the analysis of smoke of biodiesel by using smoke tester. In this article biodiesel is taken as a fuel instead of diesel and quantity of emitted pollutants HC and CO is evaluated by taking different quantity of biodiesel at different load. This work shows how use of biodiesel will affect the emission of pollutants. Diesel Engine is compression ignition engine and use diesel as fuel, in this engine alternative fuel can be used. One alternate fuel is biodiesel. Biodiesel can be used in pure form or may be blended with petroleum diesel at any concentration in most injection pump diesel engines and also can be used in Vehicle, Railway, and Aircraft as heating oil.

  17. Power and Torque Characteristics of Diesel Engine Fuelled by Palm-Kernel Oil Biodiesel

    E-Print Network [OSTI]

    Oguntola J Alamu; Ezra A Adeleke; Nurudeen O. Adekunle; Salam O; Oguntola J Alamu; Ezra A Adeleke; Nurudeen O Adekunle; Salam O Ismaila

    Short-term engine performance tests were carried out on test diesel engine fuelled with Palm kernel oil (PKO) biodiesel. The biodiesel fuel was produced through transesterification process using 100g PKO, 20.0 % ethanol (wt%), 1.0 % potassium hydroxide catalyst at 60°C reaction temperature and 90min. reaction time. The diesel engine was attached to a general electric dynamometer. Torque and power delivered by the engine were monitored throughout the 24-hour test duration at 1300, 1500, 1700, 2000, 2250 and 2500rpm. At all engine speeds tested, results showed that torque and power outputs for PKO biodiesel were generally lower than those for petroleum diesel. Also, Peak torque for PKO biodiesel occurred at a lower engine speed compared to diesel.

  18. Evaluation of the thermodynamic process of indirect injection diesel engines by the First and Second Law

    SciTech Connect (OSTI)

    Li, J.; Zhou, L.; Pan, K.; Jiang, D. [Xi`an Jiaotong Univ. (China); Chae, J.

    1995-12-31T23:59:59.000Z

    Heat transfer losses in the swirl chamber, throttling losses at the connecting passage and combustion delay in the main chamber are considered as the three factors influencing the thermal efficiency of IDI diesel engines. This paper suggests a thermodynamic model, in which three idealized diesel engines including no passage throttling engine, adiabatic diesel engine for swirl chamber and DI diesel engine are assumed to isolate heat transfer losses, throttling losses and combustion delay in IDI diesel engines. The Second Law analysis is carried out by the thermodynamic state parameters calculated by the cycle simulation of engines based on the First Law. The effects of heat transfer losses in the swirl chamber, throttling losses at the connecting passage and combustion delay in the main chamber on the irreversibilities and availability losses during the engine cycle are analyzed in detail. The relative influences among the three losses are also investigated. The results of First Law analysis indicate that heat transfer losses in the swirl chamber at low load conditions and combustion delay in the main chamber at full load conditions are the main factors impairing the fuel economy of IDI diesel engines. However, the results of further analysis of the Second Law indicate that passage throttling is a key factor affecting the fuel economy of IDI diesel engines at full load conditions. On the basis of thermodynamic analysis, a modified design of connecting passage is made on a single cylinder IDI diesel engine.The modified connecting passage has different inclination angles at both sides of the passage, and reduces throttling losses at the connecting passage, shortens combustion delay and combustion period in the main chamber, and hence reduces the engine fuel consumption and smoke emission.

  19. Neural Modelling and Control of a Diesel Engine with Pollution Constraints Mustapha Ouladsine*, Grard Bloch**, Xavier Dovifaaz**

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Neural Modelling and Control of a Diesel Engine with Pollution Constraints Mustapha Ouladsine a neural approach for modelling and control of a turbocharged Diesel engine. A neural model, whose dynamics and outperform during transients the control schemes based on static mappings. Keywords: Diesel

  20. REVIEW OF TRANSAMERICA DELAVAL INC. DIESEL GENERATOR OWNERS' GROUP ENGINE REQUALIFICATION PROGRAM

    SciTech Connect (OSTI)

    Berlinger, C. H.

    1985-12-01T23:59:59.000Z

    In December 1983, 13 nuclear utilities that own TDI diesel generators formally established an Owners• Group to address concerns regarding the reliability and operability of these engines. The Owners' Group program for engine requalification consisted of four major elements: 1) resolution of known problems with potentially generic implications, 2) a design review and quality revalidation (DR/QR) effort aimed at identifying and correcting potential problems with the important engine components, 3) expanded engine testing and inspection, and 4) enhanced engine maintenance and surveillance (M/S) to maintain the qualification of the diesel engines for the lifetime of the nuclear plants that they service. In providing technical support to NRC, the PNL project staff, assisted by a number of diesel engine consultants, focused on the four major elements of the Owners' Group engine requalification program, addressing both generic and plant-specific areas.

  1. Control of the emissions of transportation and stationary diesel engines

    SciTech Connect (OSTI)

    Levendis, Y.A. [Northeastern Univ., Boston, MA (United States). Dept. of Mechanical, Industrial and Manufacturing Engineering

    1996-12-31T23:59:59.000Z

    This manuscript describes a novel exhaust aftertreatment system for effective reduction of all diesel engine emissions. This system employs high-efficiency ceramic filter elements and filtered exhaust gas recirculation (EGR) to control particulate and NO{sub x} emissions. The filters are periodically regenerated aerodynamically, that is, by pulses of compressed air flowing in the opposite to the exhaust direction. The fact that the filtration system is kept at moderate temperatures, at all times, promotes the condensation of volatile hydrocarbons on the soot. Results obtained from extensive road-testing of various configurations of such systems show that (a) soot filtration efficiencies of over 99% can be achieved, (b) volatile hydrocarbon reductions of over 50% are feasible by condensation and (c) 50% reduction of NO{sub x} can be obtained with 20% EGR. Additional benefits include capture of ash and sulfates. To accommodate engines of different sizes a multi-module system is proposed. The optimum number of filters and the frequency of regeneration varies according to the size of the engine. Upon regeneration, soot is collected in a separate chamber where it is incinerated or it is periodically removed by a vacuum system.

  2. Development of the Cooper-Bessemer CleanBurn gas-diesel (dual-fuel) engine

    SciTech Connect (OSTI)

    Blizzard, D.T. (Cooper-Bessemer Reciprocating Products Div., Cooper Industries, Grove City, PA (United States)); Schaub, F.S.; Smith, J.G. (Cooper-Bessemer Reciprocating Products Div., Cooper Industries, Mount Vernon, OH (United States))

    1992-07-01T23:59:59.000Z

    NO[sub x] emission legislation requirements for large-bore internal combustion engines have required engine manufacturers to continue to develop and improve techniques for exhaust emission reduction. This paper describes the development of the Cooper-Bessemer Clean Burn gas-diesel (dual-fuel) engine that results in NO[sub x] reductions of up to 92 percent as compared with an uncontrolled gas-diesel engine. Historically, the gas-diesel and diesel engine combustion systems have not responded to similar techniques of NO[sub x] reduction that have been successful on straight spark-ignited natural gas burning engines. NO[sub x] levels of a nominal 1.0 g/BHP-h, equal to the spark-ignited natural gas fueled engine, have been achieved for the gas-diesel and are described. In addition, the higher opacity exhaust plume characteristic of gas-diesel combustion is significantly reduced or eliminated. This achievement is considered to be a major breakthrough, and the concept can be applied to both new and retrofit applications.

  3. A Detailed Multi-Zone Thermodynamic Simulation For Direct-Injection Diesel Engine Combustion

    E-Print Network [OSTI]

    Xue, Xingyu 1985-

    2012-11-15T23:59:59.000Z

    A detailed multi-zone thermodynamic simulation has been developed for the direct-injection (DI) diesel engine combustion process. For the purpose of predicting heterogeneous type combustion systems, the model explores the formation of pre...

  4. Performance and Emission Characteristics of an Aircraft Turbo Diesel Engine using JET-A Fuel

    E-Print Network [OSTI]

    Underwood, Sean Christopher

    2008-05-05T23:59:59.000Z

    Performance and emission data was acquired by testing an aircraft turbo diesel engine with JET-A at the Mal Harned Propulsion Laboratory of the University of Kansas. The performance data was analyzed and compared to the presented data...

  5. Light-Duty Diesel EngineTechnology to Meet Future Emissions and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Meet Future Emissions and Performance Requirements of the U.S. Market Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance Requirements of the U.S....

  6. Efficiency analysis of varying EGR under PCI mode of combustion in a light duty diesel engine 

    E-Print Network [OSTI]

    Pillai, Rahul Radhakrishna

    2008-10-10T23:59:59.000Z

    The recent pollution norms have brought a strong emphasis on the reduction of diesel engine emissions. Low temperature combustion technology such as premixed compression ignition (PCI) has the capability to significantly and simultaneously reduce...

  7. A Detailed Multi-Zone Thermodynamic Simulation For Direct-Injection Diesel Engine Combustion 

    E-Print Network [OSTI]

    Xue, Xingyu 1985-

    2012-11-15T23:59:59.000Z

    A detailed multi-zone thermodynamic simulation has been developed for the direct-injection (DI) diesel engine combustion process. For the purpose of predicting heterogeneous type combustion systems, the model explores the formation of pre...

  8. Diesel Engine CO2 and SOx Emission Compliance Strategy for the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compliance Strategy for the Royal Navy (RN) and Royal Fleet Auxiliary (RFA) Flotillas Diesel Engine CO2 and SOx Emission Compliance Strategy for the Royal Navy (RN) and Royal...

  9. High Speed Flywheels for Integrated Energy Storage and Attitude Control

    E-Print Network [OSTI]

    Hall, Christopher D.

    High Speed Flywheels for Integrated Energy Storage and Attitude Control Christopher D. Hall. Decomposition of the space of internal torques separates the attitude control functionfrom the energy storage simultaneously performing energy storage and extraction operations. 1 Introduction The power engineering

  10. Comparative Experimental Investigation of Combustion, Performance and Emission in a Single Cylinder Thermal Barrier Coated Diesel Engine using Diesel and Neem Biodiesel

    E-Print Network [OSTI]

    M C Navindgi; Dr. Maheswar Dutta; Dr. B. Sudheer Prem Kumar

    Abstract- The use of methyl esters of vegetable oil known as biodiesel are increasingly popular because of their low impact on environment, green alternate fuel and most interestingly it's use in engines does not require major modification in the engine hardware. Use of biodiesel as sole fuel in conventional direct injection diesel engine results in combustion problems, hence it is proposed to use the biodiesel in low heat rejection (LHR) diesel engines with its significance characteristics of higher operating temperature, maximum heat release, higher brake thermal efficiency (BTE) and ability to handle the lower calorific value (CV) fuel. In this work biodiesel from Neem oil called as Neem oil methyl ester (NOME) was used as sole fuel in conventional diesel engine and LHR direct injection (Dl) diesel engine. The low heat rejection engine was developed with uniform ceramic coating of combustion chamber (includes piston crown, cylinder head, valves and cylinder liner) by partially stabilized /zirconia (PSZ) of 0.5 mm thickness. The experimental investigation was carried out in a single cylinder water-cooled LHR direct injection diesel engine. In this investigation, the combustion, performance and emission analysis were carried out in a diesel and biodiesel fueled conventional and LHR engine under identical operating conditions. The test result of biodiesel fueled LHR engine was quite identical to that of the conventional diesel engine. The brake thermal efficiency (BTE) of LHR engine with biodiesel is decreased marginally than LHR engine operated with diesel. Carbon monoxide (CO) and Hydrocarbon (HC) emission levels are decreased. The results of this comparative experimental investigation reveals that, some of the drawbacks of

  11. Advanced Modeling of Direct-Injection Diesel Engines

    Broader source: Energy.gov (indexed) [DOE]

    High EGR level and multiple- injection Application to DI Diesel Combustion Optimization Marc ZELLAT, Driss ABOURI, Thierry CONTE CD-adapco Group The development of CFD...

  12. Achieving Consistent Maximum Brake Torque with Varied Injection Timing in a DI Diesel Engine

    E-Print Network [OSTI]

    Kroeger, Timothy H

    2013-09-19T23:59:59.000Z

    The brake torque of a direct-injection diesel engine is known to plateau over a range of injection timings. Injection timing affects the engine’s ignition delay and the fractions of fuel which burn in premixed and diffusion modes. Therefore...

  13. Kalman Filtering for Real-Time Individual Cylinder Air Fuel Ratio Observer on a Diesel Engine Test Bench

    E-Print Network [OSTI]

    Kalman Filtering for Real-Time Individual Cylinder Air Fuel Ratio Observer on a Diesel Engine Test of a time-varying Kalman Filter based on a physics-based model for the engine dynamics. We prove Kalman filter. Performance is evaluated through test bench experiments on a 4 cylinder Diesel engine

  14. Controlling the start of combustion on an HCCI Diesel engine Mathieu HILLION, Jonathan CHAUVIN, and Nicolas PETIT

    E-Print Network [OSTI]

    Controlling the start of combustion on an HCCI Diesel engine Mathieu HILLION, Jonathan CHAUVIN of the combustion of HCCI engines during sharp transients. This approach complements existing airpath and fuelpath Combustion modes (HPC), including Homogeneous Charge Compression Ignition (HCCI). Consider a Diesel engine

  15. Galib, “Biodiesel from jatropha oil as an alternative fuel for diesel engine

    E-Print Network [OSTI]

    Kazi Mostafijur Rahman; Mohammad Mashud; Md. Roknuzzaman; Asadullah Al Galib

    Abstract — The world is getting modernized and industrialized day by day. As a result vehicles and engines are increasing. But energy sources used in these engines are limited and decreasing gradually. This situation leads to seek an alternative fuel for diesel engine. Biodiesel is an alternative fuel for diesel engine. The esters of vegetables oil animal fats are known as Biodiesel. This paper investigates the prospect of making of biodiesel from jatropha oil. Jatropha curcas is a renewable non-edible plant. Jatropha is a wildly growing hardy plant in arid and semi-arid regions of the country on degraded soils having low fertility and moisture. The seeds of Jatropha contain 50-60 % oil. In this study the oil has been converted to biodiesel by the well-known transesterification process and used it to diesel engine for performance evaluation.

  16. Application of Non-Thermal Plasma Assisted Catalyst Technology for Diesel Engine Emission Reduction

    SciTech Connect (OSTI)

    Herling, Darrell R.; Smith, Monty R.; Baskaran, Suresh; Kupe, J.

    2000-12-31T23:59:59.000Z

    This paper presents an overview of a non-thermal plasma assisted catalyst system as applied to a small displacement diesel powered vehicle. In addition to effectively reducing NOx emissions, it has been found that a non-thermal plasma can also destroy a portion of the particulate matter (PM) that is emitted from diesel engines. Delphi Automotive Systems in conjunction with Pacific Northwest National Laboratories has been developing such an exhaust aftertreatment system to reduce emissions form diesel vehicles. The results of testing and system evaluation will be discussed in general, and the effectiveness on reducing oxides of nitrogen and particulate matter emissions from diesel vehicles. Published in Future Engines-SP1559, SAW, Warrendale, PA

  17. Internship Students Engine / Powertrain Development FEV is offering challenging internships in the field of light-duty diesel powertrain. This internship is designed

    E-Print Network [OSTI]

    Hutcheon, James M.

    in the field of light-duty diesel powertrain. This internship is designed for Masters of Science candidates but are not limited to engine dynamometer testing of diesel engines, vehicle testing for emissions and performance: Harsha Nanjundaswamy Manager Diesel Engine Development Nanjundaswamy@FEV.COM FEV is a global engineering

  18. Multi-SISO Robust Crone Design for the Air Path Control of a Diesel Engine G. Colin*, P. Lanusse**, A. Louzimi*,

    E-Print Network [OSTI]

    Boyer, Edmond

    Multi-SISO Robust Crone Design for the Air Path Control of a Diesel Engine G. Colin*, P. Lanusse is the air path control of a turbocharged diesel engine with Exhaust Gas Recirculation (EGR). Simulation Model Control. Keywords: Engine control, Diesel engine, Robust control, MIMO system, Crone control

  19. Study of Performance Characteristics of Diesel Engine Fuelled with Diesel, Yellow Grease Biodiesel and its Blends

    E-Print Network [OSTI]

    Virender Singh; Shubham Saxena; Shibayan Ghosh; Ankit Agrawal

    Abstract — The feedstock used in our experiment for the production of biodiesel was Yellow Grease. The whole experiment was divided into two parts: Production and Testing. Production involves Transesterification of free fatty acids in yellow grease to form yellow grease alkyl esters. The process of testing involved calculation of the physio – chemical properties, acid value, density, kinematics viscosity and various performance characteristics. The properties obtained were similar to the standards of biodiesel set by ASTM D6751. The conclusions derived from the experiments conducted were that the break thermal efficiency with biodiesel blends was little lower than that of diesel. The break specific energy consumption for B20, B40, B60, B80 and B100 is slightly higher than neat diesel. At all loads, diesel was found to have the lowet exhaust tempearture and the temperature for the different blends showed the upward trend with increasing concentration of biodiesel in the blends.

  20. Biodiesel Production From Animal Fats And Its Impact On The Diesel Engine With Ethanol-Diesel Blends: A Review

    E-Print Network [OSTI]

    Darunde Dhiraj S; Prof Deshmukh Mangesh M

    Abstract — Mainly animal fats and vegetable oils are used for the production of biodiesel. Several types of fuels can be derived from triacylglycerol-containing feedstock. Biodiesel which is defined as the mono-alkyl esters of vegetable oils or animal fats. Biodiesel is produced by transesterifying the oil or fat with an alcohol (methanol/ethanol) under mild conditions in the presence of a base catalyst. This paper discuses fuel production, fuel properties, environmental effects including exhaust emissions and co-products. This also describes the use of glycerol which is the by-product in esterification process along with biodiesel. The impact of blending of biodiesel with ethanol and diesel on the diesel engine has described.

  1. Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

    2012-01-01T23:59:59.000Z

    Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

  2. Sizes, graphitic structures and fractal geometry of light-duty diesel engine particulates.

    SciTech Connect (OSTI)

    Lee, K. O.; Zhu, J.; Ciatti, S.; Choi, M. Y.; Energy Systems; Drexel Univ.

    2003-01-01T23:59:59.000Z

    The particulate matter of a light-duty diesel engine was characterized in its morphology, sizes, internal microstructures, and fractal geometry. A thermophoretic sampling system was employed to collect particulates directly from the exhaust manifold of a 1.7-liter turbocharged common-rail direct-injection diesel engine. The particulate samples collected at various engine-operating conditions were then analyzed by using a high-resolution transmission electron microscope (TEM) and an image processing/data acquisition system. Results showed that mean primary particle diameters (dp), and radii of gyration (Rg), ranged from 19.4 nm to 32.5 nm and 77.4 nm to 134.1 nm, respectively, through the entire engine-operating conditions of 675 rpm (idling) to 4000 rpm and 0% to 100% loads. It was also revealed that the other important parameters sensitive to the particulate formation, such as exhaust-gas recirculation (EGR) rate, equivalence ratio, and temperature, affected particle sizes significantly. Bigger primary particles were measured at higher EGR rates, higher equivalence ratios (fuel-rich), and lower exhaust temperatures. Fractal dimensions (D{sup f}) were measured at a range of 1.5 - 1.7, which are smaller than those measured for heavy-duty direct-injection diesel engine particulates in our previous study. This finding implies that the light-duty diesel engine used in this study produces more stretched chain-like shape particles, while the heavy-duty diesel engine emits more spherical particles. The microstructures of diesel particulates were observed at high TEM magnifications and further analyzed by a Raman spectroscope. Raman spectra revealed an atomic structure of the particulates produced at high engine loads, which is similar to that of typical graphite.

  3. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    SciTech Connect (OSTI)

    Blau, Peter Julian [ORNL

    2009-11-01T23:59:59.000Z

    The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continue to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and seats run for hundreds of hours in heavy-duty diesels provided insights into the kinds of complexity that the contact conditions in engines can produce, and suggested the physical basis for the current approach to modeling. The model presented here involves four terms, two representing the valve response and two for its mating seat material. The model's structure assumes that wear that takes place under a complex combination of plastic deformation, tangential shear, and oxidation. Tribolayers form, are removed, and may reform. Layer formation affects the friction forces in the interface, and in turn, the energy available to do work on the materials to cause wear. To provide friction data for the model at various temperatures, sliding contact experiments were conducted from 22 to 850 C in a pin-on-disk apparatus at ORNL. In order to account for the behavior of different materials and engine designs, parameters in all four terms of the model can be adjusted to account for wear-in and incubation periods before the dominant wear processes evolve to their steady-state rates. For example, the deformation rate is assumed to be maximum during the early stages of operation, and then, due to material work-hardening and the increase in nominal contact area (which reduces the load per unit area), decreases to a lower rate at long times. Conversely, the rate of abrasion increases with time or number of cycles due to the build-up of oxides and tribo-layers between contact surfaces. The competition between deformation and abrasion results in complex, non-linear behavior of material loss per cycle of operation. Furthermore, these factors are affected by valve design features, such as the angle of incline of the valve seat. Several modeling scenarios are presented to demonstrate how the wear profile versus number of cycles changes in response to: (a) different relative abrasion rates of the seat and valve materials, (b) the friction coefficient as a function of temperature, (c) the relative deformation contribution of valve and seat materials, and (d) an interruption in the dominant we

  4. Materials-Enabled High-Efficiency Diesel Engines (CRADA with...

    Broader source: Energy.gov (indexed) [DOE]

    UT-Battelle for the U.S. Department of Energy Overview Timeline * Develop supporting materials technology to enable Heavy-Duty diesel efficiency of 55%, while meeting prevailing...

  5. Effect of GTL Diesel Fuels on Emissions and Engine Performance

    Broader source: Energy.gov (indexed) [DOE]

    50 % GTL in EU-Diesel shows almost the same properties as neat GTL: a large reduction in soot emission and a higher EGR tolerance 19 DaimlerChrysler, RT, R. R. Maly,...

  6. 2006-01-1085 Air Path Estimation on Diesel HCCI Engine

    E-Print Network [OSTI]

    2006-01-1085 Air Path Estimation on Diesel HCCI Engine J. Chauvin, N. Petit, P. Rouchon ´Ecole des for an HCCI engine. Two observers are pro- posed. Both rely on physical assumptions on the com- bustion Charge Compression Ignition (HCCI) ­ has become of major interest in recent years. It requires the use

  7. Design of high temperature high speed electromagnetic axial thrust bearing

    E-Print Network [OSTI]

    Mohiuddin, Mohammad Waqar

    2002-01-01T23:59:59.000Z

    DESIGN OF HIGH TEMPERATURE HIGH SPEED ELECTROMAGNETIC AXIAL THRUST BEARING A Thesis by MOHAMMAD WAQAR MOHIUDDIN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 2002 Major Subject: Mechanical Engineering DESIGN OF HIGH TEMPERATURE HIGH SPEED ELECTROMAGNETIC AXIAL THRUST BEARING A Thesis by MOHAMMAD WAQAR MOHIUDDIN Submitted to Texas A&M University in partial fulfillment...

  8. Balancing of high speed, flexible rotating shafts across critical speeds 

    E-Print Network [OSTI]

    White, Gary Paul

    1977-01-01T23:59:59.000Z

    BALANCING OF HIGH SPEED, FLEXIBLE ROTATING SHAFTS ACROSS CRITICAL SPEEDS A Thesis by Gary Paul White Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... August 1977 Major Subject: Mechanical Engineering Gary Paul White 1977 BALANCING OF HIGH SPEED, FLEXIBLE ROTATING SHAFTS ACROSS CRITICAL SPEEDS A Thesis by GARY PAUL WHITE Approved as to style and content by: Head of Department Member August...

  9. Effect of translucence of engineering ceramics on heat transfer in diesel engines

    SciTech Connect (OSTI)

    Wahiduzzaman, S.; Morel, T. (Integral Technologies, Inc., Westmont, IL (United States))

    1992-04-01T23:59:59.000Z

    This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

  10. Effect of translucence of engineering ceramics on heat transfer in diesel engines. Final report

    SciTech Connect (OSTI)

    Wahiduzzaman, S.; Morel, T. [Integral Technologies, Inc., Westmont, IL (United States)

    1992-04-01T23:59:59.000Z

    This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

  11. Comparing the Performance of SunDiesel and Conventional Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and Engines Comparing the Performance of SunDiesel and Conventional Diesel in a Light-Duty Vehicle and...

  12. Decentralized robust control-system for a non-square MIMO system, the air-path of a turbocharged Diesel engine

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Diesel engine Abderrahim LAMARA*&** , Guillaume COLIN*, Patrick LANUSSE**, Yann CHAMAILLARD*, Alain of a turbocharged Diesel engine is proposed. The controller is designed using the CRONE (Commande Robuste d the performance of the proposed control-system. Keywords: Diesel engine air path, Robust control, CRONE

  13. Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines 2005 Diesel Engine Emissions...

  14. Manufacture and properties of continuous grain flow crankshafts for locomotive and power generation diesel engines

    SciTech Connect (OSTI)

    Antos, D.J.; Nisbett, E.G. [National Forge Co., Irvine, PA (United States)

    1997-12-31T23:59:59.000Z

    The bulk of the large crankshaft production volume is associated with the medium speed diesel engine market. These engines have seen intense development to obtain higher power outputs without change in the physical size of the crankshaft and at the same time there has been continuing pressure to reduce costs. Fatigue and bearing normal wear are the major technical hurdles that threaten the crankshaft life, and measures for dealing with these issues are described. Continuous grain flow (CGF) crankshafts are responsible for the continued integrity of these enhanced power output engines and the production of these crankshafts is described. Comparisons are made with the older slab forging crankshaft production method. The demand for the medium speed diesel engine and its natural gas derivative is strong and supports an aggressive engine building industry serving locomotive, marine and power generation markets. This demand in turn relies on practical national standards that serve the needs of the engine builder, material supplier and the end user.

  15. An evaluation of an optically-based, cylinder pressure sensor in a single-cylinder, research, diesel engine 

    E-Print Network [OSTI]

    Turner, Timothy Troy

    1994-01-01T23:59:59.000Z

    in head bolts were tested under a variety of operating conditions on a single cylinder, research, diesel engine. The sensors' pressure vs. crank angle output was compared with the output of a piezoelectric pressure transducer mounted, in the engine head...

  16. Reformulated diesel fuel

    DOE Patents [OSTI]

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-03-28T23:59:59.000Z

    Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

  17. Development of Low Temperature Combustion Modes to Reduce Overall Emissions from a Medium-Duty, Four Cylinder Diesel Engine

    E-Print Network [OSTI]

    Breen, Jonathan Robert

    2011-10-21T23:59:59.000Z

    generation. This engine system is used more commonly in the ground transportation, the maritime transportation, and the base-load power generation industries over the spark-ignition (i.e. gasoline) engine due to its improved fuel efficiency. The diesel... (LTC) engine systems are a very current topic of research inside the automotive industry. This novel combustion mode is heavily present in current literature due to its probable application in next generation diesel engines. Industry and academic...

  18. Engine performance and exhaust emissions from a diesel

    E-Print Network [OSTI]

    Powell, Jacob Joseph

    2009-05-15T23:59:59.000Z

    increases in oil prices and foreign energy dependency has led to a push to produce renewable fuels, which will supplement current reserves. Biodiesel is a clean-burning renewable fuel, that can be blended with petroleum diesel. It is important to understand...

  19. Engineering for sustainable development for bio-diesel production 

    E-Print Network [OSTI]

    Narayanan, Divya

    2009-05-15T23:59:59.000Z

    on their performance. The SD indicator priority score and each individual alternative’s performance score together are used to determine the most sustainable alternative. The proposed methodology for ESD is applied for bio-diesel production in this thesis. The results...

  20. Vehicle Technologies Office: AVTA- Diesel Internal Combusion Engine Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Downloadable data on the following vehicles is available: 2014 Chevrolet Cruze Diesel, 2013 Volkswagen Jetta TDI, and 2009 Volkswagen Jetta TDI.

  1. The study of an optimum method for inlet port performance in a D.I. diesel engine

    SciTech Connect (OSTI)

    Qi, G.; Zhou, J.; Liu, Z.; Chen, J. [Dalian Univ. of Technology (China)

    1995-12-31T23:59:59.000Z

    A new concept of synthetic performance coefficient of inlet port in D.I. diesel engines has been proposed from a viewpoint of efficiency of energy conversion in this paper. It makes the performance of various kinds of inlet ports in D.I. diesel engines compared with each other. Based on the regression analysis of the experimental results, it is found that the synthetic performance coefficient of inlet port has a close linear relation to the engine performance, and it can be used as a criterion to optimize the design of inlet port in D.I. diesel engines.

  2. Channel coding for high speed links

    E-Print Network [OSTI]

    Blitvic, Natasa

    2008-01-01T23:59:59.000Z

    This thesis explores the benefit of channel coding for high-speed backplane or chip-to-chip interconnects, referred to as the high-speed links. Although both power-constrained and bandwidth-limited, the high-speed links ...

  3. Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines

    E-Print Network [OSTI]

    Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines: · Oil samples can be collected during oil changes. Follow manufacturers recommendations on frequency (hours, mileage, etc) of oil changes. · Capture a sample from the draining oil while the oil is still hot

  4. High speed sampler and demultiplexer

    DOE Patents [OSTI]

    McEwan, T.E.

    1995-12-26T23:59:59.000Z

    A high speed sampling demultiplexer based on a plurality of sampler banks, each bank comprising a sample transmission line for transmitting an input signal, a strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates at respective positions along the sample transmission line for sampling the input signal in response to the strobe signal. Strobe control circuitry is coupled to the plurality of banks, and supplies a sequence of bank strobe signals to the strobe transmission lines in each of the plurality of banks, and includes circuits for controlling the timing of the bank strobe signals among the banks of samplers. Input circuitry is included for supplying the input signal to be sampled to the plurality of sample transmission lines in the respective banks. The strobe control circuitry can repetitively strobe the plurality of banks of samplers such that the banks of samplers are cycled to create a long sample length. Second tier demultiplexing circuitry is coupled to each of the samplers in the plurality of banks. The second tier demultiplexing circuitry senses the sample taken by the corresponding sampler each time the bank in which the sampler is found is strobed. A plurality of such samples can be stored by the second tier demultiplexing circuitry for later processing. Repetitive sampling with the high speed transient sampler induces an effect known as ``strobe kickout``. The sample transmission lines include structures which reduce strobe kickout to acceptable levels, generally 60 dB below the signal, by absorbing the kickout pulses before the next sampling repetition. 16 figs.

  5. High speed sampler and demultiplexer

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A high speed sampling demultiplexer based on a plurality of sampler banks, each bank comprising a sample transmission line for transmitting an input signal, a strobe transmission line for transmitting a strobe signal, and a plurality of sampling gates at respective positions along the sample transmission line for sampling the input signal in response to the strobe signal. Strobe control circuitry is coupled to the plurality of banks, and supplies a sequence of bank strobe signals to the strobe transmission lines in each of the plurality of banks, and includes circuits for controlling the timing of the bank strobe signals among the banks of samplers. Input circuitry is included for supplying the input signal to be sampled to the plurality of sample transmission lines in the respective banks. The strobe control circuitry can repetitively strobe the plurality of banks of samplers such that the banks of samplers are cycled to create a long sample length. Second tier demultiplexing circuitry is coupled to each of the samplers in the plurality of banks. The second tier demultiplexing circuitry senses the sample taken by the corresponding sampler each time the bank in which the sampler is found is strobed. A plurality of such samples can be stored by the second tier demultiplexing circuitry for later processing. Repetitive sampling with the high speed transient sampler induces an effect known as "strobe kickout". The sample transmission lines include structures which reduce strobe kickout to acceptable levels, generally 60 dB below the signal, by absorbing the kickout pulses before the next sampling repetition.

  6. The Detroit Diesel DELTA Engine for Light Trucks and SUVs - Year 2000 Update

    SciTech Connect (OSTI)

    Nabil S. Hakim; Charles E. Freese; Stanley P. Miller

    2000-06-19T23:59:59.000Z

    Detroit Diesel Corporation (DDC) is developing the DELTA 4.0L V6 engine, specifically for the North American light truck market. This market poses unique requirements for a diesel engine, necessitating a clean sheet engine design. DELTA was developed from a clean sheet of paper, with the first engine firing just 228 days later. The process began with a Quality Function Deployment (QFD) analysis, which prioritized the development criteria. The development process integrated a co-located, fully cross-functional team. Suppliers were fully integrated and maintained on-site representation. The first demonstration vehicle moved under its own power 12 weeks after the first engine fired. It was demonstrated to the automotive press 18 days later. DELTA has repeatedly demonstrated its ability to disprove historical North American diesel perceptions and compete directly with gasoline engines. This paper outlines the Generation 0.0 development process and briefly defines the engine. A brief indication of the Generation 0.5 development status is given.

  7. Diesel fuel component contribution to engine emissions and performance. Final report

    SciTech Connect (OSTI)

    Erwin, J.; Ryan, T.W. III; Moulton, D.S. [Southwest Research Institute, San Antonio, TX (United States)] [Southwest Research Institute, San Antonio, TX (United States)

    1994-11-01T23:59:59.000Z

    Contemporary diesel fuel is a blend of several refinery streams chosen to meet specifications. The need to increase yield of transportation fuel from crude oil has resulted in converting increased proportions of residual oil to lighter products. This conversion is accomplished by thermal, catalytic, and hydrocracking of high molecular weight materials rich in aromatic compounds. The current efforts to reformulate California diesel fuel for reduced emissions from existing engines is an example of another driving force affecting refining practice: regulations designed to reduce exhaust emissions. Although derived from petroleum crude oil, reformulated diesel fuel is an alternative to current specification-grade diesel fuel, and this alternative presents opportunities and questions to be resolved by fuel and engine research. Various concerned parties have argued that regulations for fuel reformulation have not been based on an adequate data base. Despite numerous studies, much ambiguity remains about the relationship of exhaust parameters to fuel composition, particularly for diesel fuel. In an effort to gather pertinent data, the automobile industry and the oil refiners have joined forces in the Air Quality Improvement Research Program (AUTO/OIL) to address this question for gasoline. The objective of that work is to define the relationship between gasoline composition and the magnitude and composition of the exhaust emissions. The results of the AUTO/OEL program will also be used, along with other data bases, to define the EPA {open_quotes}complex model{close_quotes} for reformulated gasolines. Valuable insights have been gained for compression ignition engines in the Coordinating Research Council`s VE-1 program, but no program similar to AUTO/OIL has been started for diesel fuel reformulation. A more detailed understanding of the fuel/performance relationship is a readily apparent need.

  8. Determination of performance characteristics of a one-cylinder diesel engine modified to burn low-Btu (lignite) gas

    E-Print Network [OSTI]

    Blacksmith, James Richard

    1979-01-01T23:59:59.000Z

    DETERMINATION OF PERFORMANCE CHARACTERISTICS OF A ONE-CYLINDER DIESEL ENGINE MODIFIED TO BURN LOW-BTU (LIGNITE) GAS A Thesis JAMES RICHARD BLACKSMITH Submitted to the Graduate College of Texas A86YI University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1979 Major Subject: Mechanical Engineering DETERMINATION OF PERFORMANCE CHARACTERISTICS OF A ONE-CYLINDER DIESEL ENGINE MODIFIED TO BURN LOW-BTU (LIGNITE) GAS A Thesis by JAMES RICHARD BLACKSMITH...

  9. Fabrication of small-orifice fuel injectors for diesel engines.

    SciTech Connect (OSTI)

    Woodford, J. B.; Fenske, G. R.

    2005-04-08T23:59:59.000Z

    Diesel fuel injector nozzles with spray hole diameters of 50-75 {micro}m have been fabricated via electroless nickel plating of conventionally made nozzles. Thick layers of nickel are deposited onto the orifice interior surfaces, reducing the diameter from {approx}200 {micro}m to the target diameter. The nickel plate is hard, smooth, and adherent, and covers the orifice interior surfaces uniformly.

  10. THIESEL 2010 Conference on Thermo-and Fluid Dynamic Processes in Diesel Engines Influence of Nozzle Geometry on Spray Shape, Particle Size, Spray

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    THIESEL 2010 Conference on Thermo- and Fluid Dynamic Processes in Diesel Engines Influence of Nozzle Geometry on Spray Shape, Particle Size, Spray Velocity and Air Entrainment of High Pressure Diesel Abstract. Air/fuel mixing process in the combustion chamber of Diesel engines plays an important role

  11. Analysis of C1, C2, and C10 through C33 particle-phase and semi-volatile organic compound emissions from heavy-duty diesel engines

    E-Print Network [OSTI]

    Wu, Mingshen

    from heavy-duty diesel engines Z. Gerald Liu a,*, Devin R. Berg a , Victoria N. Vasys a , Melissa E 18 November 2009 Keywords: Organic compound emissions Particulate matter emissions Heavy-duty diesel engines Aftertreatment technology Diesel particulate filter Chemical speciation a b s t r a c t To meet

  12. Extending Exhaust Gas Recirculation Limits in Diesel Engines Robert M. Wagner, Johney B. Green, Jr., John M. Storey, and C. Stuart Daw

    E-Print Network [OSTI]

    Tennessee, University of

    1 Extending Exhaust Gas Recirculation Limits in Diesel Engines Robert M. Wagner, Johney B. Green) for reduced nitro- gen oxide emissions from diesel engines. The research objective is to develop fundamental in- formation about the relationship between EGR parameters and diesel combustion instability

  13. Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

  14. Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control

    DOE Patents [OSTI]

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2011-03-15T23:59:59.000Z

    Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

  15. Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls Preserving Diesel Exhaust...

  16. Vibro-acoustical comfort in cars at idle : human perception of simulated sounds and vibrations from three and four cylinder diesel engines

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    three and four cylinder diesel engines Etienne Parizet, Maël Amari Laboratoire Vibrations Acoustique This paper deals with comfort in diesel cars running at idle. A bench was used to reproduce the vertical

  17. Biodiesel Emissions Testing with a Modern Diesel Engine - Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-10-399

    SciTech Connect (OSTI)

    Williams, A.

    2013-06-01T23:59:59.000Z

    To evaluate the emissions and performance impact of biodiesel in a modern diesel engine equipped with a diesel particulate filter. This testing is in support of the Non-Petroleum Based Fuels (NPBF) 2010 Annual Operating Plan (AOP).

  18. Sandia National Laboratories: light-duty diesel engine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paper Presented at American Society of Mechanical Engineers' (ASME) 2012 Internal Combustion Engine Division (ICED) Conference On August 28, 2013, in CRF, Energy, Energy...

  19. Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil...

    Broader source: Energy.gov (indexed) [DOE]

    Properties Affecting Fuel Economy and Engine Wear Effects of Fuel Dilution with Biodiesel on Lubricant Acidity, Oxidation and Corrosion Engine Lubricants: Trends and Challenges...

  20. Diesel fuel aromatic and cetane number effects on combustion and emissions from a prototype 1991 diesel engine

    SciTech Connect (OSTI)

    Sienicki, E.J.; Jass, R.E.; Slodowske, W.J.; McCarthy, C.I.; Krodel, A.L.

    1990-01-01T23:59:59.000Z

    This book reports on a prototype 1991-model diesel engine that was tested using EPA transient emissions procedures to determine the effect of fuel properties on combustion characteristics and exhaust emissions. The eleven test fuel set focused primarily on total aromatic content, multi-ring aromatic content, and cetane number, but other fuel variables were also studied. Hydrotreating was used to obtain reductions in fuel sulfur and aromatic content. Increasing cetane number and reducing aromatic content resulted in lower emissions of hydrocarbons and NO{sub x}. Particulate emission were best predicted by sulfur content, aromatic content and 90% distillation temperature. Multi-ring aromatics showed a greater significance that total aromatics on hydrocarbon and particulate emissions. combustion parameters were highly dependent on fuel cetane number.

  1. Clean and Efficient Diesel Engines - Designing for the Customer |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag" |Energy Diesel:Department of Energy

  2. Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection Strategies (AIS) for Ultra-low Emissions Diesel Engines Adaptive Injection Strategies (AIS) for Ultra-low Emissions Diesel Engines Presentation given at the 2007 Diesel...

  3. Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels

    E-Print Network [OSTI]

    Esquivel, Jason

    2010-01-16T23:59:59.000Z

    and help with course materials. Second I would like to Dr. Anand and Dr. Lau for helping me when I had academic troubles and seeing me through. Last but not least, I would like to thank Dr. Alvarado for sitting in on my committee on such short notice... but you are always in my heart, thanks to everyone for their support. vii ABBREVIATIONS/NOMENCLATURE AERL Advanced Engine Research Laboratory BSFC Brake Specific Fuel Consumption CO Carbon Monoxide CO 2 Carbon Dioxide CPO Compressor...

  4. Computational Fluid Dynamics Modeling of Diesel Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlled Compression Ignition (RCCI) Combustion in a Light-Duty Engine High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control...

  5. Durability of Diesel Engine Particulate Filters (Agreement ID...

    Broader source: Energy.gov (indexed) [DOE]

    approved Barriers * - Propulsion Materials Technology: * Changing internal combustion engine regimes Optimize to minimize fuel penalty & thermal stresses during regeneration *...

  6. Effects of diesel fuel combustion-modifier additives on In-cylinder soot formation in a heavy-duty Dl diesel engine.

    SciTech Connect (OSTI)

    Musculus, Mark P. (Sandia National Laboratories, Livermore, CA); Dietz, Jeff (The Lubrizol Corp.)

    2005-07-01T23:59:59.000Z

    Based on a phenomenological model of diesel combustion and pollutant-formation processes, a number of fuel additives that could potentially reduce in-cylinder soot formation by altering combustion chemistry have been identified. These fuel additives, or ''combustion modifiers'', included ethanol and ethylene glycol dimethyl ether, polyethylene glycol dinitrate (a cetane improver), succinimide (a dispersant), as well as nitromethane and another nitro-compound mixture. To better understand the chemical and physical mechanisms by which these combustion modifiers may affect soot formation in diesel engines, in-cylinder soot and diffusion flame lift-off were measured, using an optically-accessible, heavy-duty, direct-injection diesel engine. A line-of-sight laser extinction diagnostic was employed to measure the relative soot concentration within the diesel jets (''jetsoot'') as well as the rates of deposition of soot on the piston bowl-rim (''wall-soot''). An OH chemiluminescence imaging technique was utilized to measure the lift-off lengths of the diesel diffusion flames so that fresh oxygen entrainment rates could be compared among the fuels. Measurements were obtained at two operating conditions, using blends of a base commercial diesel fuel with various combinations of the fuel additives. The ethanol additive, at 10% by mass, reduced jet-soot by up to 15%, and reduced wall-soot by 30-40%. The other fuel additives also affected in-cylinder soot, but unlike the ethanol blends, changes in in-cylinder soot could be attributed solely to differences in the ignition delay. No statistically-significant differences in the diesel flame lift-off lengths were observed among any of the fuel additive formulations at the operating conditions examined in this study. Accordingly, the observed differences in in-cylinder soot among the fuel formulations cannot be attributed to differences in fresh oxygen entrainment upstream of the soot-formation zones after ignition.

  7. RC-1 organic Rankine bottoming cycle for an adiabatic diesel engine. Final report

    SciTech Connect (OSTI)

    DiNanno, L.R.; DiBella, F.A.; Koplow, M.D.

    1983-12-01T23:59:59.000Z

    A system analysis and preliminary design were conducted for an organic Rankine-cycle system to bottom the high-temperature waste heat of an adiabatic diesel engine. The bottoming cycle is a compact package that includes a cylindrical air-cooled condenser-regenerator module and other unique features. The bottoming cycle output is 56 horsepower at design point conditions when compounding the reference 317 horsepower turbocharged (TC) diesel engine with a resulting brake specific fuel consumption of 0.268 lb/hp-hr for the compound engine. The bottoming cycle when applied to a turbocompound (TCPD) diesel delivers a compound engine brake specific fuel consumption of 0.258 lb/hp-hr. This system for heavy-duty trnsport applications uses the organic working fluid RC-1, which is a mixture of 60 mole percent pentafluorobenzene (PFB) and 40 mole percent hexafluorobenzene (HFB). Included in these 1983 work efforts was the thermal stability testing of the RC-1 organic fluid in a dynamic fluid test loop that simulates the operation of Rankine-cycle. More than 1600 hours of operation were completed with results showing that the RC-1 is thermally stable up to 900/sup 0/F. This report describes the work performed for one of the multiple contracts awarded under the Department of Energy's Heavy-Duty Transport Technology Program.

  8. Alumina catalysts for reduction of NOx from methanol fueled diesel engine

    SciTech Connect (OSTI)

    Yamamoto, Toshiro; Noda, Akira; Sakamoto, Takashi; Sato, Yoshio [Ministry of Transport of Japan, Kumamoto (Japan)

    1996-09-01T23:59:59.000Z

    NOx selective reducing catalysts are expected to be used for lean-burn gasoline engines and diesel engines as an effective NOx reduction measure. The authors are interested in the combination of methanol, as a reducing agent, and alumina catalyst, and have considered the NOx reduction method using effectively much unburned methanol. In this report, in order to investigate the effect of NOx reduction by the alumina catalyst, the experiment was carried out by feeding the actual exhaust gas from the methanol engine into the alumina catalyst. As a result, it was confirmed that, without addition of any other reducing agents into the exhaust gas, the alumina catalyst has activity to reduce NOx.

  9. Thermophoretic effects on soot distribution in a direct-injection diesel engine

    SciTech Connect (OSTI)

    Abraham, J. [Univ. of Minnesota, Minneapolis, MN (United States)

    1996-09-01T23:59:59.000Z

    A recently developed stochastic particle approach for computing soot particle dynamics is implemented in a three-dimensional model for flows, sprays, combustion and emissions in Diesel engines. The model is applied to study the distribution of soot particles in a direct-injection Diesel engine. In particular, the effect of thermophoresis on soot distribution is examined. It is shown that thermophoresis could be important once the soot particles are brought close to the walls, i.e. within the boundary layer, by turbulent eddy convection or as a result of the orientation of the sprays. Thermophoresis does not appear to result in a change in the distribution of soot in the regions outside the boundary layer as the characteristic time associated with turbulent eddy convection is at least an order of magnitude shorter than that associated with thermophoresis and it and bulk convection are by far the dominant factors in determining the soot distribution.

  10. FAA (Federal Aviation Administration) academy correspondence study: Diesel engine generators. (Second edition)

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The course is designed for self study of basic principles, concepts, terminology and definitions of diesel engine generators and associated control panels. The course consists of four chapters. There is a lesson examination for each chapter and a final examination at the end of the course. Each chapter is divided into sections and practice problems follow many of these sections so that for self study an entire chapter can be read and all practice problems worked before starting a lesson examination.

  11. Efficiency Improvement in an Over the Road Diesel Powered Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    deer08schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste...

  12. Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube-Oil-Consumption Control

    E-Print Network [OSTI]

    Brown, Alan

    1 Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube the effectiveness of reducing engine lube-oil consumption as a means to reduce particulate pollutants. In this study-lube-oil-consumption designs, for example, could be an option with existing engines. AIR POLLUTION FROM SHIPS The motivation

  13. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    SciTech Connect (OSTI)

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30T23:59:59.000Z

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  14. The effect of fuel and engine design on diesel exhaust particle size distributions

    SciTech Connect (OSTI)

    Baumgard, K.J.; Johnson, J.H. [Michigan Technological Univ., Houghton, MI (United States)

    1996-09-01T23:59:59.000Z

    The objective of this research was to obtain diesel particle size distributions from a 1988 and a 1991 diesel engine using three different fuels and two exhaust control technologies (a ceramic particle trap and an oxidation catalytic converter). The particle size distributions from both engines were used to develop models to estimate the composition of the individual size particles. Nucleation theory of the H{sub 2}O and H{sub 2}SO{sub 4} vapor is used to predict when nuclei-mode particles will form in the dilution tunnel. Combining the theory with the experimental data, the conditions necessary in the dilution tunnel for particle formation are predicted. The paper also contains a discussion on the differences between the 1988 and 1991 engine`s particle size distributions. The results indicated that nuclei mode particles (0.0075--0.046 {micro}m) are formed in the dilution tunnel and consist of more than 80% H{sub 2}O-H{sub 2}SO{sub 4} particles when using the 1988 engine and 0.29 wt% sulfur fuel. Nucleation theory indicated that H{sub 2}O-H{sub 2}SO{sub 4} particles may form during dilution at 0.03 wt% fuel sulfur levels and above. The 1991 engine was designed for lower particulate emissions than the 1988 engine and the 1991 engine`s accumulation mode particles (0.046-1.0 {micro}m) were reduced more than 80% by volume compared to the 1988 engine using the same low sulfur fuel. The particle size composition model indicated that using low sulfur fuel and the 1991 engine, the nuclei mode contained more than 45% of the total solid particles and over 85% of the soluble organic fraction.

  15. New Feedstocks and Replacement Fuel Diesel Engine Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Challenges Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century...

  16. Engineering for sustainable development for bio-diesel production

    E-Print Network [OSTI]

    Narayanan, Divya

    2009-05-15T23:59:59.000Z

    Engineering for Sustainable Development (ESD) is an integrated systems approach, which aims at developing a balance between the requirements of the current stakeholders without compromising the ability of the future generations to meet their needs...

  17. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    SciTech Connect (OSTI)

    Hopman, Ulrich,; Kruiswyk, Richard W.

    2005-07-05T23:59:59.000Z

    Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

  18. Development of the hydraulically actuated electronically controlled unit injector for diesel engines

    SciTech Connect (OSTI)

    Yudanov, S.V.

    1995-12-31T23:59:59.000Z

    The key design factors of a Hydraulically actuated Electronically controlled Unit Injector (HEUI) which determine its injection rate, pressure, energy efficiency and accuracy of fuel delivery, and the correlations between these design factors and performance parameters, have been established. Two methods of fuel metering within an HEUI are compared in terms of injection accuracy, reliability and controllability. An HEUI design guidelines are outlined. The test results of latest HEUI developed for diesel engines with displacement 1--2.2 liter/cyl. are shown. It provides high injection pressure, rate and accuracy, low energy consumption, unusually wide range of fuel deliveries and readily fits into existing engines.

  19. Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report

    SciTech Connect (OSTI)

    Not Available

    2007-03-01T23:59:59.000Z

    Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

  20. High speed exhaust gas recirculation valve

    DOE Patents [OSTI]

    Fensom, Rod (Peterborough, GB); Kidder, David J. (Peterborough, GB)

    2005-01-18T23:59:59.000Z

    In order to minimize pollutants such as Nox, internal combustion engines typically include an exhaust gas recirculation (EGR) valve that can be used to redirect a portion of exhaust gases to an intake conduit, such as an intake manifold, so that the redirected exhaust gases will be recycled. It is desirable to have an EGR valve with fast-acting capabilities, and it is also desirable to have the EGR valve take up as little space as possible. An exhaust gas recirculation valve is provided that includes an exhaust passage tube, a valve element pivotally mounted within the exhaust passage tube, a linear actuator; and a gear train. The gear train includes a rack gear operatively connected to the linear actuator, and at least one rotatable gear meshing with the rack gear and operatively connected to the valve element to cause rotation of the valve element upon actuation of the linear actuator. The apparatus provides a highly compact package having a high-speed valve actuation capability.

  1. In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL; Parks, II, James E [ORNL; Cho, Kukwon [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Kokjohn, Sage [University of Wisconsin, Madison] [University of Wisconsin, Madison; Reitz, Rolf [University of Wisconsin] [University of Wisconsin

    2010-01-01T23:59:59.000Z

    In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

  2. Biological activity of exhaust emissions from two after-treatment device-equipped light-duty diesel engines

    SciTech Connect (OSTI)

    Carraro, E.; Locatelli, A.L.; Ferrero, C.; Fea, E.; Gilli, G. [Univ. of Turin (Italy)

    1995-10-01T23:59:59.000Z

    Whole diesel exhaust has recently been classified as a portable carcinogen, and particulate exhaust known to contain mutagenic and carcinogenic chemicals, has clearly shown to be mutagenic in several genotoxicity studies. The goal of this study was to determine whether, and to what extent, the installation of some exhaust aftertreatment devices on two light-duty diesel engines (1930 cc and 2500 cc) EGR-valve equipped may reduce mutagenic activity associated to particles collected during both USA and European driving cycles. The preliminary results point out the usefulness of mutagenicity tests in the research of even new more efficient automotive emission aftertreatment devices. The aim of this investigation is to determine whether, and to what range, the use of some new aftertreatment devices on light-duty diesel engines could reduce the particle-associated genotoxic potential of diesel emissions. 24 refs., 3 figs., 1 tab.

  3. Vehicle Technologies Office: AVTA - Diesel Internal Combusion...

    Energy Savers [EERE]

    Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles The Advanced Vehicle...

  4. Application and development of technologies for engine-condition-based maintenance of emergency diesel generators

    SciTech Connect (OSTI)

    Choi, K. H.; Sang, G.; Choi, L. Y. S.; Lee, B. O. [Korea Hydro and Nuclear Power Company Central Research Institue, 70, 1312 -gil Yuseong-daero Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

    2012-07-01T23:59:59.000Z

    The emergency diesel generator (EDG) of a nuclear power plant has the role of supplying emergency electric power to protect the reactor core system in the event of the loss of offsite power supply. Therefore, EDGs should be subject to periodic surveillance testing to verify their ability to supply specified frequencies and voltages at design power levels within a limited time. To maintain optimal reliability of EDGs, condition monitoring/diagnosis technologies must be developed. Changing from periodic disassemble maintenance to condition-based maintenance (CBM) according to predictions of equipment condition is recommended. In this paper, the development of diagnosis technology for CBM and the application of a diesel engine condition-analysis system are described. (authors)

  5. Investigation of Nitro-Organic Compounds in Diesel Engine Exhaust: Final Report, February 2007 - April 2008

    SciTech Connect (OSTI)

    Dane, J.; Voorhees, K. J.

    2010-06-01T23:59:59.000Z

    The National Renewable Energy Laboratory upgraded its ReFUEL engine and vehicle testing facility to speciate unregulated gas-phase emissions. To complement this capability, the laboratory contracted with the Colorado School of Mines (CSM) to study the effects of soy biodiesel fuel and a diesel particle filter (DPF) on emissions of polycyclic aromatic hydrocarbons (PAH) and nitro-polycyclic aromatic hydrocarbons (NPAH). CSM developed procedures to sample diesel particulate matter (PM) emissions from raw and diluted exhaust, with and without a DPF. They also developed improved procedures for extracting PAH and NPAH from the PM and quantifying them with a gas chromatograph-electron monochromator mass spectrometer. The study found the DPF generally reduced PAH emissions by 1 to 3 orders of magnitude. PAH conversion was lowest for B100, suggesting that PAHs were forming in the DPF. Orders of magnitude reductions were also found for NPAH emissions exiting the DPF.

  6. DELTA-DIESEL ENGINE LIGHT TRUCK APPLICATION Contract DE-FC05-97OR22606 Final Report

    SciTech Connect (OSTI)

    Hakim, Nabil Balnaves, Mike

    2003-05-27T23:59:59.000Z

    DELTA Diesel Engine Light Truck Application End of Contract Report DE-FC05-97-OR22606 EXECUTIVE SUMMARY This report is the final technical report of the Diesel Engine Light Truck Application (DELTA) program under contract DE-FC05-97-OR22606. During the course of this contract, Detroit Diesel Corporation analyzed, designed, tooled, developed and applied the ''Proof of Concept'' (Generation 0) 4.0L V-6 DELTA engine and designed the successor ''Production Technology Demonstration'' (Generation 1) 4.0L V-6 DELTA engine. The objectives of DELTA Program contract DE-FC05-97-OR22606 were to: Demonstrate production-viable diesel engine technologies, specifically intended for the North American LDT and SUV markets; Demonstrate emissions compliance with significant fuel economy advantages. With a clean sheet design, DDC produced the DELTA engine concept promising the following attributes: 30-50% improved fuel economy; Low cost; Good durability and reliability; Acceptable noise, vibration and harshness (NVH); State-of-the-art features; Even firing, 4 valves per cylinder; High pressure common rail fuel system; Electronically controlled; Turbocharged, intercooled, cooled EGR; Extremely low emissions via CLEAN Combustion{copyright} technology. To demonstrate the engine technology in the SUV market, DDC repowered a 1999 Dodge Durango with the DELTA Generation 0 engine. Fuel economy improvements were approximately 50% better than the gasoline engine replaced in the vehicle.

  7. Kinetic modelling of a surrogate diesel fuel applied to 3D auto-ignition in HCCI engines

    E-Print Network [OSTI]

    Bounaceur, Roda; Fournet, René; Battin-Leclerc, Frédérique; Jay, S; Da Cruz, A Pires

    2007-01-01T23:59:59.000Z

    The prediction of auto-ignition delay times in HCCI engines has risen interest on detailed chemical models. This paper described a validated kinetic mechanism for the oxidation of a model Diesel fuel (n-decane and ?-methylnaphthalene). The 3D model for the description of low and high temperature auto-ignition in engines is presented. The behavior of the model fuel is compared with that of n-heptane. Simulations show that the 3D model coupled with the kinetic mechanism can reproduce experimental HCCI and Diesel engine results and that the correct modeling of auto-ignition in the cool flame region is essential in HCCI conditions.

  8. Control method for turbocharged diesel engines having exhaust gas recirculation

    DOE Patents [OSTI]

    Kolmanovsky, Ilya V. (Ypsilanti, MI); Jankovic, Mrdjan J (Birmingham, MI); Jankovic, Miroslava (Birmingham, MI)

    2000-03-14T23:59:59.000Z

    A method of controlling the airflow into a compression ignition engine having an EGR and a VGT. The control strategy includes the steps of generating desired EGR and VGT turbine mass flow rates as a function of the desired and measured compressor mass airflow values and exhaust manifold pressure values. The desired compressor mass airflow and exhaust manifold pressure values are generated as a function of the operator-requested fueling rate and engine speed. The EGR and VGT turbine mass flow rates are then inverted to corresponding EGR and VGT actuator positions to achieve the desired compressor mass airflow rate and exhaust manifold pressure. The control strategy also includes a method of estimating the intake manifold pressure used in generating the EGR valve and VGT turbine positions.

  9. North American Market Challenges for Diesel Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForumEnginesVacantmagneticDepartmentNorth American

  10. Gearbox Reliability Collaborative High-Speed Shaft Calibration

    SciTech Connect (OSTI)

    Keller, J.; McNiff, B.

    2014-09-01T23:59:59.000Z

    Instrumentation has been added to the high-speed shaft, pinion, and tapered roller bearing pair of the Gearbox Reliability Collaborative gearbox to measure loads and temperatures. The new shaft bending moment and torque instrumentation was calibrated and the purpose of this document is to describe this calibration process and results, such that the raw shaft bending and torque signals can be converted to the proper engineering units and coordinate system reference for comparison to design loads and simulation model predictions.

  11. 2009-01-0366 In-cylinder Burned Gas Rate Estimation and Control on VVA Diesel Engines

    E-Print Network [OSTI]

    the combustion cham- bers of turbocharged Diesel engines equipped with low pressure EGR loop and VVA actuator. We engine. Using a high Exhaust Gas Recirculation (EGR) rate along with advanced combustion timing allows Monoxides (CO) emissions. To compensate the exhaust temperature reduction, an Internal Exhaust Gas

  12. Materials-Enabled High-Efficiency (MEHE) Heavy-Duty Diesel Engines

    SciTech Connect (OSTI)

    Kass, M.; Veliz, M. (Caterpillar, Inc.) [Caterpillar, Inc.

    2011-09-30T23:59:59.000Z

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UTBattelle, Inc. and Caterpillar, Inc. was to improve diesel engine efficiency by incorporating advanced materials to enable higher combustion pressures and temperatures necessary for improved combustion. The project scope also included novel materials for use in advanced components and designs associated with waste-heat recovery and other concepts for improved thermal efficiency. Caterpillar initially provided ORNL with a 2004 Tier 2 C15 ACERT diesel engine (designed for on-highway use) and two 600 hp motoring dynamometers. The first year of the CRADA effort was focused on establishing a heavy-duty experimental engine research cell. First year activities included procuring, installing and commissioning the cell infrastructure. Infrastructure components consisted of intake air handling system, water tower, exhaust handling system, and cell air conditioning. Other necessary infrastructure items included the fuel delivery system and bottled gas handling to support the analytical instrumentation. The second year of the CRADA focused on commissioning the dynamometer system to enable engine experimentation. In addition to the requirements associated with the dynamometer controller, the electrical system needed a power factor correction system to maintain continuity with the electrical grid. During the second year the engine was instrumented and baseline operated to confirm performance and commission the dynamometer. The engine performance was mapped and modeled according to requirements provided by Caterpillar. This activity was further supported by a Work-for-Others project from Caterpillar to evaluate a proprietary modeling system. A second Work-for-Others activity was performed to evaluate a novel turbocharger design. This project was highly successful and may lead to new turbocharger designs for Caterpillar heavy-duty diesel engines. During the third (and final) year of the CRADA, a novel valve material was evaluated to assess high temperature performance and durability. A series of prototype valves, composed of a unique nickel-alloy was placed in the engine head. The engine was aggressively operated using a transient test cycle for 200 hours. The valve recession was periodically measured to determine valve performance. Upon completion of the test the valves were removed and returned to Caterpillar for additional assessment. Industrial in-kind support was available throughout the project period. Review of the status and research results were carried out on a regular basis (meetings and telecons) which included direction for future work activities. A significant portion of the industrial support was in the form of information exchange and technical consultation.

  13. Investigation on Nitric Oxide and Soot of Biodiesel and Conventional Diesel using a Medium Duty Diesel Engine 

    E-Print Network [OSTI]

    Song, Hoseok

    2012-07-16T23:59:59.000Z

    Biodiesel has been suggested as an alternative fuel to the petroleum diesel fuel. It beneficially reduces regulated emission gases, but increases NOx (nitric oxide and nitrogen dioxide) Thus, the increase in NOx is the barrier for potential growth...

  14. Investigation on Nitric Oxide and Soot of Biodiesel and Conventional Diesel using a Medium Duty Diesel Engine

    E-Print Network [OSTI]

    Song, Hoseok

    2012-07-16T23:59:59.000Z

    Biodiesel has been suggested as an alternative fuel to the petroleum diesel fuel. It beneficially reduces regulated emission gases, but increases NOx (nitric oxide and nitrogen dioxide) Thus, the increase in NOx is the barrier for potential growth...

  15. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    SciTech Connect (OSTI)

    Gerke, Frank G.

    2001-08-05T23:59:59.000Z

    This cooperative program between the DOE Office of Heavy Vehicle Technology and Caterpillar, Inc. is aimed at demonstrating electric turbocompound technology on a Class 8 truck engine. This is a lab demonstration program, with no provision for on-truck testing of the system. The goal is to demonstrate the level of fuel efficiency improvement attainable with the electric turbocompound system. Also, electric turbocompounding adds an additional level of control to the air supply which could be a component in an emissions control strategy.

  16. Next Generation Diesel Engine Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForumEngines |NewStateDepartment of Energyof

  17. High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnology Validation »Engines | Department

  18. Effect of operating conditions on the size, morphology, and concentration of submicrometer particulates emitted from a diesel engine

    SciTech Connect (OSTI)

    Neer, Adam; Koylu, Umit O. [Department of Mechanical and Aerospace Engineering, University of Missouri-Rolla, Rolla, MO 65409-0050 (United States)

    2006-07-15T23:59:59.000Z

    Particulate emissions at the exhaust of a diesel engine were systematically investigated at different engine loads and speeds by rapid thermophoretic sampling followed by direct transmission electron microscope (TEM) visualization. Spherule and aggregate size distributions, aggregate fractal dimensions and prefactors, and particle volume fractions were comprehensively characterized using this novel technique, which provided new, accurate, and relevant data on diesel particulates compared to the abundant past studies involving questionable mobility sizing measurements. In contrast to the narrow (Gaussian) distributions of spherule sizes, there were broad variations in aggregate sizes that were approximated by a lognormal probability function with a geometric standard deviation of about 1.8. Mean spherule diameters were in the range 20-35 nm, and mean aggregate gyration diameters of 0.16-0.35 {mu}m were always smaller than the PM2.5 standard. Average sizes of both spherules and aggregates mostly increased with the relative engine load or overall equivalence ratio, which disagreed with the trends and correlations suggested by a recent study. Independent of engine operating condition, aggregate fractal dimension was 1.77+/-0.14, a nearly universal property that contradicted with the broad range of past values reported for diesel engines based on mobility-based experiments. The aggregate fractal prefactor, which was also necessary to fully characterize the morphology of diesel soot, was found to be 1.9+/-0.5. In addition to this new contribution, sampling/TEM experiments were also implemented for the first time in a diesel engine to estimate particle volume fractions, which were crucial for the determination of available specific surface areas. The present method was more accurate than the laser attenuation method for the relatively low particle volume fractions of 0.001-0.1 ppm emitted by the diesel engine considered here. (author)

  19. adicionado ao diesel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

  20. automotive diesel exhaust: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

  1. advanced automotive diesel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

  2. auxiliary diesel units: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

  3. EPA Clean Diesel Funding Assistance Program | Department of Energy

    Energy Savers [EERE]

    for projects to achieve significant reductions in diesel emissions in terms of tons of pollution produced by diesel engines and diesel emissions exposure, particularly from...

  4. Retrofit Diesel Emissions Control System Providing 50% NOxControl...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Emissions Control System Providing 50% NOxControl Retrofit Diesel Emissions Control System Providing 50% NOxControl 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  5. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Jakober, Chris A.

    2008-01-01T23:59:59.000Z

    emissions from gasoline and diesel motor vehicles. Environ.of four dilutions of diesel engine exhaust for a subchronicautomobiles and heavy-duty diesel trucks. Environ. Sci.

  6. Measurements of Diesel Truck Traffic Associated with Goods Movement

    E-Print Network [OSTI]

    Houston, Douglas; Krudysz, Margaret; Winer, Arthur

    2007-01-01T23:59:59.000Z

    Concentrations of PM2.5 and Diesel Exhaust Particles onPatterns of Measured Port Diesel Traffic. (a) Intersectionof particulate emissions from diesel engines: a review’, J.

  7. Requirements-Driven Diesel Catalyzed Particulate Trap Design...

    Broader source: Energy.gov (indexed) [DOE]

    Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization 2005 Diesel Engine...

  8. OH radical imaging in a DI diesel engine and the structure of the early diffusion flame

    SciTech Connect (OSTI)

    Dec, J.E.; Coy, E.B.

    1996-03-01T23:59:59.000Z

    Laser-sheet imaging studies have considerably advanced our understanding of diesel combustion; however, the location and nature of the flame zones within the combusting fuel jet have been largely unstudied. To address this issue, planar laser-induced fluorescence (PLIF) imaging of the OH radical has been applied to the reacting fuel jet of a direct-injection diesel engine of the ``heavy-duty`` size class, modified for optical access. An Nd:YAG-based laser system was used to pump the overlapping Q{sub 1}9 and Q{sub 2}8 lines of the (1,0) band of the A{yields}X transition at 284.01 nm, while the fluorescent emission from both the (0,O) and (1, I) bands (308 to 320 nm) was imaged with an intensified video camera. This scheme allowed rejection of elastically scattered laser light, PAH fluorescence, and laser-induced incandescence. OH PLIF is shown to be an excellent diagnostic for diesel diffusion flames. The signal is strong, and it is confined to a narrow region about the flame front because the threebody recombination reactions that reduce high flame-front OH concentrations to equilibrium levels occur rapidly at diesel pressures. No signal was evident in the fuel-rich premixed flame regions where calculations and burner experiments indicate that OH concentrations will be below detectable limits. Temporal sequences of OH PLIF images are presented showing the onset and development of the early diffusion flame up to the time that soot obscures the images. These images show that the diffusion flame develops around the periphery of the-downstream portion of the reacting fuel jet about half way through the premixed burn spike. Although affected by turbulence, the diffusion flame remains at the jet periphery for the rest of the imaged sequence.

  9. Soybean and Coconut Biodiesel Fuel Effects on Combustion Characteristics in a Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Han, Manbae [ORNL; Cho, Kukwon [ORNL; Sluder, Scott [ORNL; Wagner, Robert M [ORNL

    2008-01-01T23:59:59.000Z

    This study investigated the effects of soybean- and coconut-derived biodiesel fuels on combustion characteristics in a 1.7-liter direct injection, common rail diesel engine. Five sets of fuels were studied: 2007 ultra-low sulfur diesel (ULSD), 5% and 20% volumetric blends of soybean biodiesel with ULSD (soybean B5 and B20), and 5% and 20% volumetric blends of coconut biodiesel with ULSD (coconut B5 and B20). In conventional diesel combustion mode, particulate matter (PM) and nitrogen oxides (NO/dx) emissions were similar for all fuels studied except soybean B20. Soybean B20 produced the lowest PM but the highest NO/dx emissions. Compared with conventional diesel combustion mode, high efficiency clean combustion (HECC) mode, achieved by increased EGR and combustion phasing, significantly reduced both PM and NO/dx emissions for all fuels studied at the expense of higher hydrocarbon (HC) and carbon monoxide (CO) emissions and an increase in fuel consumption (less than 4%). ULSD, soybean B5, and coconut B5 showed no difference in exhaust emissions. However, PM emissions increased slightly for soybean B20 and coconut B20. NO/dx emissions increased significantly for soybean B20, while those for coconut B20 were comparable to ULSD. Differences in the chemical and physical properties of soybean and coconut biodiesel fuels compared with ULSD, such as higher fuel-borne oxygen, greater viscosity, and higher boiling temperatures, play a key role in combustion processes and, therefore, exhaust emissions. Furthermore, the highly unsaturated ester composition in soybean biodiesel can be another factor in the increase of NO/dx emissions.

  10. Operating temperature effects on nozzle coking in a cottonseed oil fueled diesel engine

    E-Print Network [OSTI]

    Yarbrough, Charles Michael

    1984-01-01T23:59:59.000Z

    J/'CA] volume rate of change [m /'CA) ? apparent rate of heat release [kJ/'CA] fuel air ratio [kg/kg] heat transfer coefficient [kJ/m 'K sec] ratio of specific heats connecting rod length [m] fuel lower heating value [kJ/kg] total mass of combustion gas...OPERATING TEMPERATURE EFFECTS ON NOZZLE COKING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis CHARLES MICHAEL YARBROUGH Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree cf...

  11. A Study of a Diesel Engine Based Micro-CHP System

    SciTech Connect (OSTI)

    Krishna, C.R.; Andrews, J.; Tutu, N.; Butcher, T.

    2010-08-31T23:59:59.000Z

    This project, funded by New York State Energy Research and Development Agency (NYSERDA), investigated the potential for an oil-fired combined heat and power system (micro-CHP system) for potential use in residences that use oil to heat their homes. Obviously, this requires the power source to be one that uses heating oil (diesel). The work consisted of an experimental study using a diesel engine and an analytical study that examined potential energy savings and benefits of micro-CHP systems for 'typical' locations in New York State. A search for a small diesel engine disclosed that no such engines were manufactured in the U.S. A single cylinder engine manufactured in Germany driving an electric generator was purchased for the experimental work. The engine was tested using on-road diesel fuel (15 ppm sulfur), and biodiesel blends. One of the main objectives was to demonstrate the possibility of operation in the so-called HCCI (Homogeneous Charge Compression Ignition) mode. The HCCI mode of operation of engines is being explored as a way to reduce the emission of smoke, and NOx significantly without exhaust treatment. This is being done primarily in the context of engines used in transportation applications. However, it is felt that in a micro-CHP application using a single cylinder engine, such an approach would confer those emission benefits and would be much easier to implement. This was demonstrated successfully by injecting the fuel into the engine air intake using a heated atomizer made by Econox Technologies LLC to promote significant vaporization before entering the cylinder. Efficiency and emission measurements were made under different electrical loads provided by two space heaters connected to the generator in normal and HCCI modes of operation. The goals of the analytical work were to characterize, from the published literature, the prime-movers for micro-CHP applications, quantify parametrically the expected energy savings of using micro-CHP systems instead of the conventional heating system, and analyze system approaches for interaction with the local electric utility. The primary energy savings between the space heating provided by a conventional space heating system with all the required electrical energy supplied by the grid and the micro-CHP system supplemented when needed by a conventional space heating and the grid supplied electricity. were calculated for two locations namely Long Island and Albany. The key results from the experimental work are summarized first and the results from the analytical work next. Experimental results: (1) The engine could be operated successfully in the normal and HCCI modes using both diesel and biodiesel blends. (2) The smoke levels are lower with biodiesel than with diesel in both modes of operation. (3) The NOx levels are lower with the HCCI mode of operation than with the normal mode for both fuels. (4) The engine efficiency in these tests is lower in the HCCI mode of operation. However, the system parameters were not optimized for such operation within the scope of this project. However, for an engine designed with such operation in mind, the efficiency would possibly be not lower. Analytical results: (1) The internal combustion engine (diesel engine in this case) is the only proven technology as a prime mover at present. However, as noted above, no U.S. engine is available at present. (2) For both locations, the use of a micro-CHP system results in primary energy savings. This is true whether the CHP system is used only to supply domestic hot water or to supply both hot water and space heat and even for a low efficiency system especially for the latter case. The size of the thermal storage (as long as it above a certain minimum) did not affect this. (3) For example, for a 2 kW CHP electrical efficiency of 25%, a typical house on Long Island will save about 30MBtu of energy per year for a combined space heat and domestic hot water system. This corresponds to annual energy savings of about 210 gallons oil equivalent per (4) The savings increased initially with the powe

  12. High Speed Pumps Are No Longer Limited to Low Flow Applications

    E-Print Network [OSTI]

    Burke, P. Y.

    Historically, the high-speed centrifugal pump was developed prior to World War II for rocket engine fuel pump applications for its advantages of light weight, compactness and dry running capability. Industrial derivatives were introduced in the 60’s...

  13. Design of a high-speed, meso-scale nanopositioners driven by electromagnetic actuators

    E-Print Network [OSTI]

    Golda, Dariusz, 1979-

    2008-01-01T23:59:59.000Z

    The purpose of this thesis is to generate the design and fabrication knowledge that is required to engineer high-speed, six-axis, meso-scale nanopositioners that are driven by electromagnetic actuators. When compared to ...

  14. Application of oxygen-enriched combustion for locomotive diesel engines. Phase 1

    SciTech Connect (OSTI)

    Poola, R.B.; Sekar, R.R.; Assanis, D.N.

    1996-09-01T23:59:59.000Z

    A thermodynamic simulation is used to study the effects of oxygen-enriched intake air on the performance and nitrogen oxide (NO) emissions of a locomotive diesel engine. The parasitic power of the air separation membrane required to supply the oxygen-enriched air is also estimated. For a given constraint on peak cylinder pressure, the gross and net power outputs of an engine operating under different levels of oxygen enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in an increase in net engine power of approximately 13% when intake air with an oxygen content of 28% by volume is used and fuel injection timing is retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure improves power by only 4%. If part of the significantly higher exhaust enthalpies available as a result of oxygen enrichment are recovered, the power requirements of the air separator membrane can be met, resulting in substantial net power improvements. Oxygen enrichment reduces particulate and visible smoke emissions but increases NO emissions. However, a combination of retarded fuel injection timing and post-treatment of exhaust gases may be adequate to meet the locomotive diesel engine NO{sub x} standards. Exhaust gas after-treatment and heat recovery would be required to realize the full potential of oxygen enrichment. Economic analysis shows that oxygen-enrichment technology is economically feasible and provides high returns on investment. The study also indicates the strong influence of membrane parasitic requirements and exhaust energy recovery on economic benefits. To obtain an economic advantage while using a membrane with higher parasitic power requirements, it is necessary to recover a part of the exhaust energy.

  15. Aftertreatment Technologies for Off-Highway Heavy-Duty Diesel Engines

    SciTech Connect (OSTI)

    Kass, M.D.

    2008-07-15T23:59:59.000Z

    The objective of this program was to explore a combination of advanced injection control and urea-selective catalytic reduction (SCR) to reduce the emissions of oxides of nitrogen (NOx) and particulate matter (PM) from a Tier 2 off-highway diesel engine to Tier 3 emission targets while maintaining fuel efficiency. The engine used in this investigation was a 2004 4.5L John Deere PowerTechTM; this engine was not equipped with exhaust gas recirculation (EGR). Under the original CRADA, the principal objective was to assess whether Tier 3 PM emission targets could be met solely by increasing the rail pressure. Although high rail pressure will lower the total PM emissions, it has a contrary effect to raise NOx emissions. To address this effect, a urea-SCR system was used to determine whether the enhanced NOx levels, associated with high rail pressure, could be reduced to Tier 3 levels. A key attraction for this approach is that it eliminates the need for a Diesel particulate filter (DPF) to remove PM emissions. The original CRADA effort was also performed using No.2 Diesel fuel having a maximum sulfur level of 500 ppm. After a few years, the CRADA scope was expanded to include exploration of advanced injection strategies to improve catalyst regeneration and to explore the influence of urea-SCR on PM formation. During this period the emission targets also shifted to meeting more stringent Tier 4 emissions for NOx and PM, and the fuel type was changed to ultra-low sulfur Diesel (ULSD) having a maximum sulfur concentration of 15 ppm. New discoveries were made regarding PM formation at high rail pressures and the influences of oxidation catalysts and urea-SCR catalysts. These results are expected to provide a pathway for lower PM and NOx emissions for both off- and on-highway applications. Industrial in-kind support was available throughout the project period. Review of the research results were carried out on a regular basis (annual reports and meetings) followed by suggestions for improvement in ongoing work and direction for future work. A significant portion of the industrial support was in the form of experimentation, data analysis, data exchange, and technical consultation.

  16. Performance of winter rape (Brassica napus) based fuel mixtures in diesel engines

    SciTech Connect (OSTI)

    Wagner, G.L.; Peterson, C.L.

    1982-01-01T23:59:59.000Z

    Winter rape is well adapted to the Palouse region of Northern Idaho and Eastern Washington. Nearly all of the current US production is grown in this region. Yields of 2200 to 2700 kg/ha with 45 percent oil content are common. Even though present production only 2000 to 2500 ha per year, the long history of production and good yields of oil make winter rape the best potential fuel vegetable oil crop for the region. Winter rape oil is more viscous than sunflower oil (50 cSt at 40/sup 0/C for winter rape and 35 cSt at 40/sup 0/C for sunflower oil) and about 17 times more viscous than diesel. The viscosity of the pure oil has been found too high for operation in typical diesel injector systems. Mixtures and/or additives are essential if the oil is to be a satisfactory fuel. Conversely, the fatty acid composition of witer rape oils is such that it is potentially a more favorable fuel because of reduced rates of oxidation and thermal polymerization. This paper will report on results of short and long term engine tests using winter rape, diesel, and commercial additives as the components. Selection of mixtures for long term screening tests was based on laboratory studies which included high temperature oxidation studies and temperature-viscosity data. Fuel temperature has been monitored at the outlet of the injector nozzle on operating engines so that viscosity comparisons at the actual injector temperature can be made. 1 figure, 3 tables.

  17. Engine Performance and Exhaust Emissions of a Diesel Engine From Various Biodiesel Feedstock 

    E-Print Network [OSTI]

    Santos, Bjorn Sanchez

    2011-02-22T23:59:59.000Z

    , vegetable oils, or recycled restaurant grease with alcohol and catalyst, is gaining popularity in recent years as a substitute for petroleum diesel. Ninety percent (90%) of U.S. biodiesel industry makes use of soybean oil as its feedstock. However, soybean...

  18. Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis

    E-Print Network [OSTI]

    Scora, George Alexander

    2011-01-01T23:59:59.000Z

    Model for Heavy Duty Diesel Vehicles. TransportationAir Contaminant Emissions from Diesel- fueled Engines. Factfor Measuring Emissions from Diesel Engines. 1. Regulated

  19. Production of Diesel Engine Turbocharger Turbine from Low Cost Titanium Powder

    SciTech Connect (OSTI)

    Muth, T. R.; Mayer, R. (Queen City Forging)

    2012-05-04T23:59:59.000Z

    Turbochargers in commercial turbo-diesel engines are multi-material systems where usually the compressor rotor is made of aluminum or titanium based material and the turbine rotor is made of either a nickel based superalloy or titanium, designed to operate under the harsh exhaust gas conditions. The use of cast titanium in the turbine section has been used by Cummins Turbo Technologies since 1997. Having the benefit of a lower mass than the superalloy based turbines; higher turbine speeds in a more compact design can be achieved with titanium. In an effort to improve the cost model, and develop an industrial supply of titanium componentry that is more stable than the traditional aerospace based supply chain, the Contractor has developed component manufacturing schemes that use economical Armstrong titanium and titanium alloy powders and MgR-HDH powders. Those manufacturing schemes can be applied to compressor and turbine rotor components for diesel engine applications with the potential of providing a reliable supply of titanium componentry with a cost and performance advantage over cast titanium.

  20. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

    SciTech Connect (OSTI)

    Gallant, Tom [Pacific Northwest National Laboratory (PNNL); Franz, Jim [Pacific Northwest National Laboratory (PNNL); Alnajjar, Mikhail [Pacific Northwest National Laboratory (PNNL); Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL; Sluder, Scott [ORNL; Cannella, William C [Chevron, USA; Fairbridge, Craig [National Centre for Upgrading Technology, Canada; Hager, Darcy [National Centre for Upgrading Technology, Canada; Dettman, Heather [CANMET Energy; Luecke, Jon [National Renewable Energy Laboratory (NREL); Ratcliff, Matthew A. [National Renewable Energy Laboratory (NREL); Zigler, Brad [National Renewable Energy Laboratory (NREL)

    2009-01-01T23:59:59.000Z

    The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

  1. Effect of Biodiesel Blending on the Speciation of Soluble Organic Fraction from a Light Duty Diesel Engine

    SciTech Connect (OSTI)

    Strzelec, Andrea [ORNL] [ORNL; Storey, John Morse [ORNL] [ORNL; Lewis Sr, Samuel Arthur [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Foster, Prof. Dave [University of Wisconsin] [University of Wisconsin; Rutland, Prof. Christopher J. [University of Wisconsin] [University of Wisconsin

    2010-01-01T23:59:59.000Z

    Soy methyl ester (SME) biodiesel was volumetrically blended with 2007 certification ultra low sulfur diesel (ULSD) fuel and run in a 1.7L direct-injection common rail diesel engine at one speed-load point (1500rpm, 2.6bar BMEP). Engine fueling rate and injection timing were adjusted to maintain a constant load, while particulate samples were collected in a diesel particulate filter (DPF) and with a dilution tunnel sampling train. The samples collected at these two locations were found to contain different levels of soluble organic fraction (SOF) and the different hydrocarbon species in the SOF. This observation indicates that traditional SOF measurements, in light of the specific sampling procedure used, may not be appropriate to DPF applications.

  2. Simultaneous Efficiency, NOx, and Smoke Improvements through Diesel/Gasoline Dual-Fuel Operation in a Diesel Engine

    E-Print Network [OSTI]

    Sun, Jiafeng

    2014-08-05T23:59:59.000Z

    analyzed to study cyclic variability (CV) and its influence on dual-fuel efficiency and emissions. Factors causing or influencing CV were identified. The CV in dual-fuel operation is more serious than that in diesel operation, in terms of magnitude. Most...

  3. Real-Time Combustion Torque Estimation on a Diesel Engine Test Bench Using Time-Varying Kalman Filtering

    E-Print Network [OSTI]

    Real-Time Combustion Torque Estimation on a Diesel Engine Test Bench Using Time-Varying Kalman sensor the easily available instantaneous crankshaft angle speed. The observer consists in a Kalman torque observer, we use a physics-based model underlying the role of time-varying inertia. A Kalman

  4. Evaluation of improved materials for stationary diesel engines operating on residual and coal based fuels. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Experimental results to date from an on-going research program on improved materials for stationary diesel engines using residual or coal-based fuels are presented with little discussion of conclusions about these results. Information is included on ring and liner wear, fuel oil qualities, ceramic materials, coatings, test procedures and equipment, and tribology test results. (LCL)

  5. Electric Vehicles Since the invention of the internal combustion engine in 1807 petrol and diesel vehicles have become a

    E-Print Network [OSTI]

    Hickman, Mark

    Electric Vehicles Since the invention of the internal combustion engine in 1807 petrol and diesel and adopted. Electric vehicles (EVs) in particular are leading the charge, with car manufacturers stepping up these vehicles; the current market for electric vehicles; the results from existing pilot project; as well

  6. Constrained motion planning for the airpath of a Diesel HCCI engine Jonathan Chauvin, Gilles Corde, and Nicolas Petit

    E-Print Network [OSTI]

    Constrained motion planning for the airpath of a Diesel HCCI engine Jonathan Chauvin, Gilles Corde (HCCI) mode. Conclusions stress the possibility of taking into account the non- minimum phase effects Ignition (HCCI) ­ has become of major interest. It requires the use of high Exhaust Gas Recirculation (EGR

  7. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    SciTech Connect (OSTI)

    E.T. (Skip) Robinson; James P. Meagher; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Siv Aasland; Charles Besecker; Jack Chen Bart A. van Hassel; Olga Polevaya; Rafey Khan; Piyush Pilaniwalla

    2002-12-31T23:59:59.000Z

    This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but was delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.

  8. Getting Serious About Biofuels ALTHOUGH RUDOLF DIESEL IMAGINED THAT HIS EPONYMOUS ENGINE WOULD BE FUELED BY VEGETABLE

    E-Print Network [OSTI]

    Getting Serious About Biofuels ALTHOUGH RUDOLF DIESEL IMAGINED THAT HIS EPONYMOUS ENGINE WOULD- outrequiringsubstantialmodificationofexistingvehiclesorofthefueldistributioninfrastructure:secu- rity of supply (biofuels can be produced locally in sustainable systems), lowernet of biomass transport determines the supply area of a biofuels processing facility and thus its scale

  9. A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine

    SciTech Connect (OSTI)

    Wang, Zihan; Srinivasan, Kalyan K.; Krishnan, Sundar R.; Som, Sibendu

    2012-04-24T23:59:59.000Z

    Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0���° BTDC to 10���° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends."

  10. Regulated and Unregulated Exhaust Emissions Comparison for Three Tier II Non-Road Diesel Engines Operating on Ethanol-Diesel Blends

    SciTech Connect (OSTI)

    Merritt, P. M.; Ulmet, V.; McCormick, R. L.; Mitchell, W. E.; Baumgard, K. J.

    2005-11-01T23:59:59.000Z

    Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent). Benzene emissions were reduced by up to 50 percent with the ethanol-blended fuels. Emissions of 1,3-butadiene were also substantially decreased, with reductions ranging from 24 to 82 percent. Isolated trends were noted for certain PAHs. There was a decrease in 1-nitropyrene with use of ethanol in all cases. Particulate phase 1-nitropyrene was reduced from 18 to 62 percent. There was also a general increase in the proportion of heavy PAHs in the particulate phase with ethanol use, and although less pronounced, a general decrease in light PAHs in the particulate phase.

  11. Combustion Control of Diesel Engines Using Injection Timing M. Hillion, H. Buhlbuck, and J. Chauvin

    E-Print Network [OSTI]

    is sufficient to provide a stable Diesel combustion at steady state. On the other hand, during transient

  12. ENSC 461: Four-Stroke Diesel Engine School of Engineering Science

    E-Print Network [OSTI]

    Bahrami, Majid

    and brake unit (HM 365), and internal combustion engine basic module (CT 159). Internal combustion engine basic module The internal combustion engine basic module forms the basis for investigations and experiments on internal combustion engines. This unit is equipped with mechanisms for measuring fuel and air

  13. Data Capture Technique for High Speed Signaling

    DOE Patents [OSTI]

    Barrett, Wayne Melvin (Rochester, MN); Chen, Dong (Croton On Hudson, NY); Coteus, Paul William (Yorktwon Heights, NY); Gara, Alan Gene (Mount Kisco, NY); Jackson, Rory (Eastchester, NY); Kopcsay, Gerard Vincent (Yorktown Hieghts, NY); Nathanson, Ben Jesse (Teaneck, NY); Vranas, Paylos Michael (Bedford Hills, NY); Takken, Todd E. (Brewster, NY)

    2008-08-26T23:59:59.000Z

    A data capture technique for high speed signaling to allow for optimal sampling of an asynchronous data stream. This technique allows for extremely high data rates and does not require that a clock be sent with the data as is done in source synchronous systems. The present invention also provides a hardware mechanism for automatically adjusting transmission delays for optimal two-bit simultaneous bi-directional (SiBiDi) signaling.

  14. The development and utilization of a high-speed laboratory rock drilling apparatus

    E-Print Network [OSTI]

    Day, Jeffrey Dale

    1988-01-01T23:59:59.000Z

    THE DEVELOPMENT AND UTILIZATION OF A HIGH-SPEED LABORATORY ROCK DRILLING APPARATUS A Thesis by JEFFREY DALE DAY Submitted to the Graduate College of Texas AGM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1988 Major Subject: Petroleum Engineering THE DEVELOPMENT AND UTILIZATION OF A HIGH-SPEED LABORATORY ROCK DRILLING APPARATUS A Thesis by JEFFREY DALE DAY Approved as to style and content by: Hans C. Juvkam-Wold (Chair of Committee...

  15. Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-duty Engine in Conjunction with Ultra Low Sulfur Fuel (Presentation)

    SciTech Connect (OSTI)

    Thornton, M.; Tatur, M.; Tomazic, D.; Weber, P.; Webb, C.

    2005-08-25T23:59:59.000Z

    Discusses the full useful life exhaust emission performance of a NOx (nitrogen oxides) adsorber and diesel particle filter equipped light-duty and medium-duty engine using ultra low sulfur diesel fuel.

  16. Diesel engine combustion and emissions from fuel to exhaust aftertreatment. SP-1113

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    There are many dimensions involved in any study of Diesel Engine Emissions. These dimensions include: the fuel used, how the fuel is presented into the combustion chamber, how the air is presented into the combustion chamber, the actual process of combustion and emissions formation, the treatment of the emissions after combustion, and the test methods used to quantify the emissions. All of these dimensions are covered in this publication. The fuel topics include: plant oil based fuels and gas dissolved in fuel oil. The air delivery to the combustion chamber is effected by both port performance and geometry and ambient conditions and these topics are included. The thermodynamics of the combustion process and modeling are included in this publication. Aftertreatment is included with a paper on particulate filters. A correlation study using the ISO8178 testing method is also included. All nine papers have been processed separately for inclusion on the database.

  17. REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1

    E-Print Network [OSTI]

    Minnesota, University of

    REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 1 DIESEL EXHAUST.D. and Megan Arnold University of Minnesota Department of Mechanical Engineering Center for Diesel Research....................................................................................... 3 Diesel aerosol size instrumentation............................................................ 4

  18. An optimization study on the control of NOx and particulate emissions from diesel engines

    SciTech Connect (OSTI)

    Larsen, C.; Oey, F.; Levendis, Y.A. [Northeastern Univ., Boston, MA (United States)

    1996-09-01T23:59:59.000Z

    This is an optimization study on the use of filtered exhaust gas recirculation (EGR) to reduce the NO emissions of diesel engines. Control of the particulate emissions and provisions for filtered EGR were achieved by an Aerodynamically Regenerated Trap (ART) with collection efficiencies in the order of 99%. The amount of EGR was regulated to provide for substantial NO reduction, without unacceptably decreasing the thermal efficiency of the engine or increasing the CO emissions. EGR regulation was accomplished by monitoring the injection pump setting which was correlated to the fuel flow rate, the speed of the engine, the amount of EGR flow, and the ambient air temperature. Through these parameters, the mixture strength expressed as the equivalence ratio {phi} was calculated and related to the power output of the engine. Thus, a map of engine performance parameters was generated and related to measured NO and CO emissions. A series of road tests showed that EGR most effectively reduces NO emissions at high {phi}`s (by a factor of two at 20% EGR) which, however, is accompanied by an increase in CO emissions by a factor of two, and a penalty in fuel economy by 8%. Benefits and losses can be optimized by automatically varying the level of EGR, using feedback from the aforementioned engine parameters. An algorithm was developed to govern the electrically controlled EGR valve and tests showed that the NO levels decreased by 30%, while the CO increased by 30%, showing no penalty in fuel economy. The resulting specific NO and CO emissions were well within the current US EPA standards.

  19. EXPERIMENTAL INVESTIGATIONS IN AN INSULATED DI DIESEL ENGINE WITH NEWLY DEVELOPED LUBRICANTS

    E-Print Network [OSTI]

    Rob Res; S Sunil; Kumar Reddy; S P Akbar Hussain

    Ever since the rise of fuel cost and rapidly depleting conventional energy sources the diesel engine manufacturers have been allocating a great deal of research for the improvement of the engine thermal efficiency and developing of alternative fuels. The alternative fuels developed should be renewable with low emissions. This recognizes alcohol as a preferable replacement because these are derived from indigenous sources and are renewable. But the alcohols by their nature do not make a good C.I Engine fuels and this can be ignited in the high temperature combustion chambers. So in the present work a thermally insulated (PSZ coated cylinder head, valves and air gap liner and air gap piston) engine is developed for improving fuel efficiency and to reduce the emissions. The low viscosity of alcohols leads to the problem of injection and equipment wear and tear. In order to compensate this, the fuel injection pressure has been reduced to 165 bar for the experimentation. Tests are conducted on a single cylinder 4-stroke, water-cooled 3.68 KW Kirloskar C.I. engine. Performance of lubricating oil plays an important role in determining the amount of power output and the improvement in the efficiency of the engine. At present first we tried the commercial lubricant for the experimentation. But the performance of this lubricant is inadequate at escalated thermal environment and the frictional losses are found to be higher. So in the present work new lubricants are developed and are further blended with different additives and analyzed the frictional losses to find the best oil.

  20. EXPERIMENTAL INVESTIGATION OF PERFORMANCE PARAMETERS OF SINGLE CYLINDER FOUR STROKE DI DIESEL ENGINE OPERATING ON NEEM OIL BIODIESEL AND ITS BLENDS

    E-Print Network [OSTI]

    Rob Res; Dharmendra Yadav; Nitin Shrivastava; Vipin Shrivastava

    Increasing oil prices, and global warming activates the research and development of substitute energy resources to maintain economic development. The methyl esters of vegetable oil, known as biodiesel are becoming popular because of their low ecological effect and potential as a green substitute for compression ignition engine. The main objective of this study is to investigate the performance of neem oil methyl ester on a single cylinder, four stroke, direct injection, and 8 HP capacity diesel engine. The Experimental research has been performed to analyze the performance of different blends 20 % (BD20), 50 % (BD50), and 100 % (BD100) of neem oil biodiesel. Biodiesel, when compared to conventional diesel fuel, results showed that the brake specific fuel consumption and brake specific energy consumption are higher and brake thermal efficiency less during testing of engine. The brake specific energy consumption is increased by 0.60 % to 8.25 % and brake thermal efficiency decreased by 0.57 % to 7.62 % at 12 kg engine brake load as compared to diesel fuel. When the fuel consumption of biodiesel is compared to diesel fuel it observed that the fuel consumption was increased by 2.5 % to 19.5 % than that of diesel fuel for B20, B50 and B100 bends at 12 kg engine brake load. It is observed that the performance of biodiesel blends is less as compared to plain diesel and during testing of diesel engine run normally for all engine loads. It is investigated that the neem oil biodiesel 20 % blend showed very close performance when compared to plain diesel and hence can be used as an alternative fuel for conventional diesel in the future.

  1. Thick Thermal Barrier Coatings (TTBCs) for Low Emission, High Efficiency Diesel Engine Components

    SciTech Connect (OSTI)

    M. Brad Beardsley, Caterpillar Inc.; Dr. Darrell Socie, University of Illinois; Dr. Ed Redja, University of Illinois; Dr. Christopher Berndt, State University of New York at Stony Brook

    2006-03-02T23:59:59.000Z

    The objective of this program was to advance the fundamental understanding of thick thermal barrier coating (TTBC) systems for application to low heat rejection diesel engine combustion chambers. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impede the application of thermal barrier coating to diesel engines.(1) Areas of TTBC technology examined in this program include powder characteristics and chemistry; bond coating composition, coating design, microstructure and thickness as they affect properties, durability, and reliability; and TTBC "aging" effects (microstructural and property changes) under diesel engine operating conditions. Fifteen TTBC ceramic powders were evaluated. These powders were selected to investigate the effects of different chemistries, different manufacturing methods, lot-to-lot variations, different suppliers and varying impurity levels. Each of the fifteen materials has been sprayed using 36 parameters selected by a design of experiments (DOE) to determine the effects of primary gas (Ar and N2), primary gas flow rate, voltage, arc current, powder feed rate, carrier gas flow rate, and spraying distance. The deposition efficiency, density, and thermal conductivity of the resulting coatings were measured. A coating with a high deposition efficiency and low thermal conductivity is desired from an economic standpoint. An optimum combination of thermal conductivity and disposition efficiency was found for each lot of powder in follow-on experiments and disposition parameters were chosen for full characterization.(2) Strengths of the optimized coatings were determined using 4-point bending specimens. The tensile strength was determined using free-standing coatings made by spraying onto mild steel substrates which were subsequently removed by chemical etching. The compressive strengths of the coatings were determined using composite specimens of ceramic coated onto stainless steel substrates, tested with the coating in compression and the steel in tension. The strength of the coating was determined from an elastic bi-material analysis of the resulting failure of the coating in compression.(3) Altough initial comparisons of the materials would appear to be straight forward from these results, the results of the aging tests of the materials are necessary to insure that trends in properties remain after long term exposure to a diesel environment. Some comparisons can be made, such as the comparison between for lot-to-lot variation. An axial fatigue test to determine the high cycle fatigue behavior of TTBCs was developed at the University of Illinois under funding from this program.(4) A fatigue test apparatus has been designed and initial work performed which demonstrates the ability to provide a routine method of axial testing of coating. The test fixture replaces the normal load frame and fixtures used to transmit the hydraulic oil loading to the sample with the TTBC specimen itself. The TTBC specimen is a composite metal/coating with stainless steel ends. The coating is sprayed onto a mild steel center tube section onto which the stainless steel ends are press fit. The specimen is then machined. After machining, the specimen is placed in an acid bath which etches the mild steel away leaving the TTBC attached to the the stainless steel ends. Plugs are then installed in the ends and the composite specimen loaded in the test fixture where the hydraulic oil pressurizes each end to apply the load. Since oil transmits the load, bending loads are minimized. This test fixture has been modified to allow piston ends to be attached to the specimen which allows tensile loading as well as compressive loading of the specimen. In addition to the room temperature data, specimens have been tested at 800 Degrees C with the surprising result that at high temperature, the TTBC exhibits much higher fatigue strength. Testing of the TTBC using tension/compression cycling has been con

  2. Diesel fuel component contributions to engine emissions and performance: Clean fuel study

    SciTech Connect (OSTI)

    Erwin, J.; Ryan, T.W. III; Moulten, D.S. [Southwest Research Inst., San Antonio, TX (United States)

    1994-08-01T23:59:59.000Z

    The emissions characteristics of diesel engines are dominated by current engine design parameters as long as the fuels conform to the current industry-accepted specifications. The current and future emissions standard, are low enough that the fuel properties and compositions are starting to play a more significant role in meeting the emerging standards. The potential role of the fuel composition has been recognized by state and federal government agencies, and for the first time, fuel specifications have become part of the emissions control legislation. In this work, five different fuel feed and blend stocks were hydrotreated to two levels of sulfur and aromatic content. These materials were then each distilled to seven or eight fractions of congruent boiling points. After this, the raw materials and all of the fractions were characterized by a complement of tests from American Society for Testing and Materials and by hydrocarbon-type analyses. The sample matrix was subjected to a series of combustion bomb and engine tests to determine the ignition, combustion, and emissions characteristics of each of the 80 test materials.

  3. Detroit Diesel Engine Technology for Light Duty Truck Applications - DELTA Engine Update

    SciTech Connect (OSTI)

    Freese, Charlie

    2000-08-20T23:59:59.000Z

    The early generation of the DELTA engine has been thoroughly tested and characterized in the virtual lab, during engine dynamometer testing, and on light duty trucks for personal transportation. This paper provides an up-to-date account of program findings. Further, the next generation engine design and future program plans will be briefly presented.

  4. Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assisted Diesel Combustion in a Common Rail Turbodiesel Engine Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine This study measured the effects of hydrogen...

  5. Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...

    Broader source: Energy.gov (indexed) [DOE]

    Assisted Diesel Combustion in a Common Rail Turbodiesel Engine P-3 Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine P-3 Gregory Lilik, Jos Martn...

  6. Design of oil consumption measuring system to determine the effects of evolving oil sump composition over time on diesel engine performance and emissions

    E-Print Network [OSTI]

    Ortiz-Soto, Elliott (Elliott A.)

    2006-01-01T23:59:59.000Z

    The automotive industry is currently struggling because of the increasingly stricter emissions standards that will take effect in the near future. Diesel engine emissions are of particular interest because they are still ...

  7. High speed infrared radiation thermometer, system, and method

    DOE Patents [OSTI]

    Markham, James R. (Middlefield, CT)

    2002-01-01T23:59:59.000Z

    The high-speed radiation thermometer has an infrared measurement wavelength band that is matched to the infrared wavelength band of near-blackbody emittance of ceramic components and ceramic thermal barrier coatings used in turbine engines. It is comprised of a long wavelength infrared detector, a signal amplifier, an analog-to-digital converter, an optical system to collect radiation from the target, an optical filter, and an integral reference signal to maintain a calibrated response. A megahertz range electronic data acquisition system is connected to the radiation detector to operate on raw data obtained. Because the thermometer operates optimally at 8 to 12 .mu.m, where emittance is near-blackbody for ceramics, interferences to measurements performed in turbine engines are minimized. The method and apparatus are optimized to enable mapping of surface temperatures on fast moving ceramic elements, and the thermometer can provide microsecond response, with inherent self-diagnostic and calibration-correction features.

  8. Comparison of Simulated and Experimental Combustion of Biodiesel Blends in a Single Cylinder Diesel HCCI Engine

    SciTech Connect (OSTI)

    Szybist, James P [ORNL; McFarlane, Joanna [ORNL; Bunting, Bruce G [ORNL

    2007-01-01T23:59:59.000Z

    The effect of biodiesel content on homogeneous charge compression ignition (HCCI) engine performance has been investigated both experimentally and by computer simulation. Combustion experiments were performed in a single cylinder HCCI engine using blends of soy biodiesel in ultra low sulfur diesel, with concentrations ranging from 0 to 50 vol% and equivalence ratios ( ) from 0.38 to 0.48. Data from the engine tests included combustion analysis and exhaust composition analysis with standard gaseous emissions equipment. The engine utilized a custom port fuel injection strategy to provide highly premixed charges of fuel and air, making it possible to compare the results with single zone chemical kinetics simulations that were performed using CHEMKIN III, with a reaction set including 670 species and over 3000 reactions. The reaction mechanism incorporated equations for the combustion of a paraffinic fuel, n-heptane, and an oxygenated component, methyl butanoate, as well as reactions for the formation of NOx. The zero-dimensional model did a reasonably good job of predicting the HCCI combustion event, correctly predicting intake temperature effects on the phasing of both low temperature heat release (LTHR) and the main combustion event. It also did a good job of predicting the magnitude of LTHR. Differences between the simulation and experimental data included the dependence on biodiesel concentration and the duration of both LTHR and the main combustion event. The probable reasons for these differences are the changing derived cetane number (DCN) of the model fuel blend with biodiesel concentration, and the inability of the model to account for stratification of temperature and . The simulation also showed that concentrations of intermediate species produced during LTHR are dependent on the magnitude of LTHR, but otherwise the addition of biodiesel has no discernable effect.

  9. Excitation and control of a high-speed induction generator

    E-Print Network [OSTI]

    Englebretson, Steven Carl

    2005-01-01T23:59:59.000Z

    This project investigates the use of a high speed, squirrel cage induction generator and power converter for producing DC electrical power onboard ships and submarines. Potential advantages of high speed induction generators ...

  10. High-speed cinematography of internal explosions for aviation security

    E-Print Network [OSTI]

    Settles, Gary S.

    High-speed cinematography of internal explosions for aviation security G.S. Settles1 , J.R. Benwood of a program to remedy this were shown. Having demonstrated high-speed schlieren shock wave cinematography

  11. Department of Energy Geo-Environmental Engineering Spring 2012 Diesel Engine Cost and Quality Improvement

    E-Print Network [OSTI]

    Demirel, Melik C.

    a cost saving workshop, production line evaluation, and research to save an average of $150 per engine. The team is to also determine ways to generate more cost saving ideas within the company. Approach business and finance major Outcomes The sponsor will save approximately $22 per engine as a result

  12. Light-Duty Drive Cycle Simulations of Diesel Engine-Out Exhaust Properties for an RCCI-Enabled Vehicle

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    In-cylinder blending of gasoline and diesel fuels to achieve low-temperature reactivity controlled compression ignition (RCCI) can reduce NOx and PM emissions while maintaining or improving brake thermal efficiency compared to conventional diesel combustion (CDC). Moreover, the dual-fueling RCCI is able to achieve these benefits by tailoring combustion reactivity over a wider range of engine operation than is possible with a single fuel. However, the currently demonstrated range of stable RCCI combustion just covers a portion of the engine speed-load range required in several light-duty drive cycles. This means that engines must switch from RCCI to CDC when speed and load fall outside of the stable RCCI range. In this study we investigated the impact of RCCI as it has recently been demonstrated on practical engine-out exhaust temperature and emissions by simulating a multi-mode RCCI-enabled vehicle operating over two urban and two highway driving cycles. To implement our simulations, we employed experimental engine maps for a multi-mode RCCI/CDC engine combined with a standard mid-size, automatic transmission, passenger vehicle in the Autonomie vehicle simulation platform. Our results include both detailed transient and cycle-averaged engine exhaust temperature and emissions for each case, and we note the potential implications of the modified exhaust properties on catalytic emissions control and utilization of waste heat recovery on future RCCI-enabled vehicles.

  13. Optimizing Low Temperature Diesel Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Consortium 2008 DOE Merit Review - UW-ERC 1 Optimizing Low Temperature Diesel Combustion Profs. Rolf Reitz, P. Farrell, D. Foster, J. Ghandhi, C. Rutland, S. Sanders Engine...

  14. Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine

    Broader source: Energy.gov (indexed) [DOE]

    to current diesel Aftertreatment effectiveness improvement Reduction in emission control fuel economy penalty Low impact vehicle integration for OEM application 5...

  15. acceptable light-duty diesel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

  16. Taiwan High Speed Rail Keeping passenger safety at the forefront

    E-Print Network [OSTI]

    Benefits Increased safety and reliability of the Taiwan High Speed Rail network through conditionTaiwan High Speed Rail Keeping passenger safety at the forefront Overview The Need Taiwan High Speed Rail Corporation (THSRC) needed a highly reliable, cost- effective and proactive means

  17. Insights on postinjection-associated soot emissions in direct injection diesel engines

    SciTech Connect (OSTI)

    Arregle, Jean; Pastor, Jose V.; Lopez, J. Javier; Garcia, Antonio [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera, s/n 46022, Valencia (Spain)

    2008-08-15T23:59:59.000Z

    A comprehensive study was carried out in order to better understand combustion behavior in a direct injection diesel engine when using postinjections. More specifically, the aim of the study is twofold: (1) to better understand the mechanism of a postinjection to reduce soot and (2) to improve the understanding of the contribution of the postinjection combustion on the total soot emissions by looking at the effect of the postinjection timing variation and the postinjection mass variation on the soot emissions associated with the postinjection. The study is focused only on far postinjections, and the explored operating conditions include the use of EGR. The first objective was fulfilled analyzing some results from a previous work adding only a few complementary results. Concerning the second objective, the basic idea behind the analysis performed is the search of appropriate parameters physically linked to the processes under analysis. These parameters are found based on the state-of-the-art of diesel combustion. For the effect of the postinjection timing, the physical parameter found was the temperature of the unburned gases at the end of injection, T{sub ug{sub E}}{sub oI}. It was checked that a threshold level of T{sub ug{sub E}}{sub oI} ({proportional_to}700 K for the cases explored here) exists below which soot is unable to be formed, independently of the postinjection size, and the amount of soot increases as the temperature increases beyond this threshold. For the effect of the postinjection size, the physical parameter that was found was DoI/ACT (the ratio between the actual duration of injection and the time necessary for mixing - the apparent combustion time). This parameter can quantify when the postinjection is able to produce soot (the threshold value is {proportional_to}0.37 for the cases explored here), and the amount of soot produced increases as this parameter increases beyond this threshold value. A function containing these two parameters has been fitted to the experimental soot emissions associated with the postinjection obtained in many engine operating conditions, and the appropriate quality of the fit demonstrates that these two parameters explain the main behaviors of the soot emissions associated with a postinjection. (author)

  18. High-speed electrical motor evaluation

    SciTech Connect (OSTI)

    Not Available

    1989-02-03T23:59:59.000Z

    Under this task, MTI conducted a general review of state-of-the-art high-speed motors. The purpose of this review was to assess the operating parameters, limitations and performance of existing motor designs, and to establish commercial sources for a motor compatible with the requirements of the Brayton-cycle system. After the motor requirements were established, a list of motor types, manufacturers and designs capable of achieving the requisite performance was compiled. This list was based on an in-house evaluation of designs. Following the establishment of these options, a technical evaluation of the designs selected was conducted. In parallel with their evaluations, MTI focused on the establishment of commercial sources.

  19. Active control system for high speed windmills

    DOE Patents [OSTI]

    Avery, D.E.

    1988-01-12T23:59:59.000Z

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed. 4 figs.

  20. Active control system for high speed windmills

    DOE Patents [OSTI]

    Avery, Don E. (45-437 Akimala St., Honolulu, HI 96744)

    1988-01-01T23:59:59.000Z

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed.

  1. High-speed CARIBU and Other Behemoths

    Broader source: Energy.gov [DOE]

    Question: Why did the caribou cross the road, at 76 million miles per hour? Answer: To catch up with the chicken. Visitors to the Department of Energy’s Argonne National Laboratory won’t actually encounter any hyper-speed fowl, but they will see a high-speed CARIBU, which recently started to chase other exotic beasts in the particle zoo. Argonne’s CARIBU – which stands for Californium Rare Isotope Breeder Upgrade – is designed to study the inner part of an atom known as its nucleus. A nucleus consists of a collection of two types of particles, the proton, with a positive charge, and the neutron, with no charge, just mass. Those particles themselves are made of even smaller particles called quarks. CARIBU creates extra-heavy (neutron-rich) nuclei, and then spits them out of a nozzle for acceleration.

  2. International Journal of Mechanical & Mechatronics IJMME-IJENS Vol: 10 No: 03 1 BIODIESEL FROM JATROPHA OIL AS AN ALTERNATIVE FUEL FOR DIESEL ENGINE

    E-Print Network [OSTI]

    Kazi Mostafijur Rahman; Mohammad Mashud; Md. Roknuzzaman; Asadullah Al Galib

    Abstract—The world is getting modernized and industrialized day by day. As a result vehicles and engines are increasing. But energy sources used in these engines are limited and decreasing gradually. This situation leads to seek an alternative fuel for diesel engine. Biodiesel is an alternative fuel for diesel engine. The esters of vegetables oil animal fats are known as Biodiesel. This paper investigates the prospect of making of biodiesel from jatropha oil. Jatropha curcas is a renewable non-edible plant. Jatropha is a wildly growing hardy plant in arid and semi-arid regions of the country on degraded soils having low fertility and moisture. The seeds of Jatropha contain 50-60 % oil. In this study the oil has been converted to biodiesel by the well-known transesterification process and used it to diesel engine for performance evaluation.

  3. Microwave Nitridation of Sintered Reaction Bonded Silicon Parts for Natural Gas Fueled Diesel Engines

    SciTech Connect (OSTI)

    Edler, J.; Kiggans, J.O.; Suman, A.W.; Tiegs, T.N.

    1999-01-01T23:59:59.000Z

    This cooperative project was a joint development program between Eaton Corporation and Lockheed Martin Energy Research (LMER). Cooperative work was of benefit to both parties. ORNL was able to assess up-scale of the microwave nitridation process using a more intricate-shaped part designed for application in advanced diesel engines. Eaton Corporation mined access to microwave facilities and expertise for the nitridation of SRBSN materials. The broad objective of the CRADA established with Eaton Corporation and ORNL was to develop cost-effective silicon nitride ceramics compared to the current materials available. The following conclusions can be made from the work performed under the CRADA: (1) Demonstrated that the binder burnout step can be incorporated into the SRBSN processing in the microwave furnace. (2) Scale-up of the microwave nitridation process using Eaton Corporation parts showed that the nitridation weight gains were essentially identical to those obtained by conventional heating. (3) Combined nitridation and sintering processes using silicon nitride beads as packing powders results in degradation of the mechanical properties. (4) Gelcasting of silicon nitride materials using Eaton Si mixtures was demonstrated.

  4. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, A.L.; Griffith, W.L.; Dorsey, G.F.; West, B.H.

    1998-05-05T23:59:59.000Z

    A method and matter of composition for controlling NO{sub x} emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO{sub x} produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  5. Low emissions diesel fuel

    DOE Patents [OSTI]

    Compere, Alicia L. (Knoxville, TN); Griffith, William L. (Oak Ridge, TN); Dorsey, George F. (Farragut, TN); West, Brian H. (Kingston, TN)

    1998-01-01T23:59:59.000Z

    A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  6. A Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Curran, H J

    2005-11-14T23:59:59.000Z

    A detailed chemical kinetic modeling approach is used to examine the phenomenon of suppression of sooting in diesel engines by addition of oxygenated hydrocarbon species to the fuel. This suppression, which has been observed experimentally for a few years, is explained kinetically as a reduction in concentrations of soot precursors present in the hot products of a fuel-rich diesel ignition zone when oxygenates are included. Oxygenates decrease the overall equivalence ratio of the igniting mixture, producing higher ignition temperatures and more radical species to consume more soot precursor species, leading to lower soot production. The kinetic model is also used to show how different oxygenates, ester structures in particular, can have different soot-suppression efficiencies due to differences in molecular structure of the oxygenated species.

  7. Production of Biodiesel from Vegetable Oil Using CaO Catalyst & Analysis of Its Performance in Four Stroke Diesel Engine

    E-Print Network [OSTI]

    Sruthi Gopal; Sajitha C. M; Uma Krishnakumar

    Abstract- The production of biodiesel from vegetable oils stands as a new versatile method of energy generation in the present scenario. Biodiesel is obtained by the transesterification of long chain fatty acids in presence of catalysts. Transesterification is an attractive and widely accepted technique. The purpose of the transesterification process is to lower the viscosity of the oil. The most important variables affecting methyl ester yield during the transesterification reaction are the molar ratio of alcohol to vegetable oil, reaction temperature, catalyst amount and time. Biodiesel is renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. It can be used in diesel engines by blending with conventional diesel in various proportions. Biodiesel seems to be a realistic fuel for future. It has become more attractive recently because of its environmental benefits. This paper discuses the production of biodiesel from

  8. High speed point derivative microseismic detector

    DOE Patents [OSTI]

    Uhl, James Eugene (Albuquerque, NM); Warpinski, Norman Raymond (Albuquerque, NM); Whetten, Ernest Blayne (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    A high speed microseismic event detector constructed in accordance with the present invention uses a point derivative comb to quickly and accurately detect microseismic events. Compressional and shear waves impinging upon microseismic receiver stations disposed to collect waves are converted into digital data and analyzed using a point derivative comb including assurance of quiet periods prior to declaration of microseismic events. If a sufficient number of quiet periods have passed, the square of a two point derivative of the incoming digital signal is compared to a trip level threshold exceeding the determined noise level to declare a valid trial event. The squaring of the derivative emphasizes the differences between noise and signal, and the valid event is preferably declared when the trip threshold has been exceeded over a temporal comb width to realize a comb over a given time period. Once a trial event has been declared, the event is verified through a spatial comb, which applies the temporal event comb to additional stations. The detector according to the present invention quickly and accurately detects initial compressional waves indicative of a microseismic event which typically exceed the ambient cultural noise level by a small amount, and distinguishes the waves from subsequent larger amplitude shear waves.

  9. High speed point derivative microseismic detector

    DOE Patents [OSTI]

    Uhl, J.E.; Warpinski, N.R.; Whetten, E.B.

    1998-06-30T23:59:59.000Z

    A high speed microseismic event detector constructed in accordance with the present invention uses a point derivative comb to quickly and accurately detect microseismic events. Compressional and shear waves impinging upon microseismic receiver stations disposed to collect waves are converted into digital data and analyzed using a point derivative comb including assurance of quiet periods prior to declaration of microseismic events. If a sufficient number of quiet periods have passed, the square of a two point derivative of the incoming digital signal is compared to a trip level threshold exceeding the determined noise level to declare a valid trial event. The squaring of the derivative emphasizes the differences between noise and signal, and the valid event is preferably declared when the trip threshold has been exceeded over a temporal comb width to realize a comb over a given time period. Once a trial event has been declared, the event is verified through a spatial comb, which applies the temporal event comb to additional stations. The detector according to the present invention quickly and accurately detects initial compressional waves indicative of a microseismic event which typically exceed the ambient cultural noise level by a small amount, and distinguishes the waves from subsequent larger amplitude shear waves. 9 figs.

  10. Advanced Technology Light Duty Diesel Aftertreatment System ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approach to Low Temperature NOx Emission Abatement Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

  11. The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow

    Broader source: Energy.gov (indexed) [DOE]

    diesel-powered light-duty vehicles 1990 1995 2000 2005 2010 2015 2020 2025 Energy Greenhouse effect CO 2 Exhaust gas emissions CO, NO x , HC, PM Importance Environmental driving...

  12. Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction

    Broader source: Energy.gov (indexed) [DOE]

    and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Richard Blint, Michael B. Viola and Steven J. Schmieg General Motors R&D Center Warren, MI 48090-9055 DEER 2009 Tuesday,...

  13. Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel Engine Exhaust Aftertreatment and Other Applications

    SciTech Connect (OSTI)

    Bromberg, L.; Cohn, D.R.; Heywood,J.; Rabinovich, A.

    2002-08-25T23:59:59.000Z

    Plasmatron reformers can provide attractive means for conversion of diesel fuel into hydrogen rich gas. The hydrogen rich gas can be used for improved NOx trap technology and other aftertreatment applications.

  14. Wear mechanism and wear prevention in coal-fueled diesel engines

    SciTech Connect (OSTI)

    Schwalb, J.A.

    1991-06-01T23:59:59.000Z

    Contamination of the lube-oil with hard abrasive particles leads to a three-body abrasive wear mechanism that highly accelerates piston ring/cylinder liner wear in coal-fueled diesel engines. One approach to reducing that wear is to modify the size and orientation of surface asperities on the cylinder to enhance the formation of a hydrodynamic film, and to provide avenues of escape for particles that would otherwise be trapped in the wear zone. Another approach is to introduce additives into the contaminated lube-oil that further enhance hydrodynamic film formation, form chemical films on the wearing surfaces, or form films on the contaminant particles. This work focuses on defining the effects of cylinder liner surface finish, various configurations of slots in the cylinder liner surface, and various additives in the contaminated lube-oil on the wear process. Wear tests were initiated in a bench apparatus using coal-ash contaminated lube-oil to test the various wear configurations. The results of these tests indicate that the formation of a hydrodynamic film between the ring and cylinder specimens is enhanced by increasing surface roughness, and by orienting the surface asperities normal to the direction of ring travel but modifications to the cylinder liner surface did not greatly reduce the wear rate. Additives to the lubricant seemed to have a much more significant effect on wear, with a dispersant additive highly accelerating the wear, while a detergent additive was able to reduce the wear almost to the rate achieved where there was no contaminant.

  15. High-speed electrochemistry using ultramicroelectrodes

    SciTech Connect (OSTI)

    Walsh, M.R.

    1989-01-01T23:59:59.000Z

    This research investigates the use of ultramicroelectrodes in performing electrochemistry on microsecond and nanosecond time scales. One purpose of this research was to look at new ways to apply ultramicroelectrodes to high speed experiments. Some of the aspects that are discussed in this thesis are: (a) A novel technique was developed for measuring currents on short time scales that involves conversion of the current to light using a light emitting diode and measuring the light intensity as a function of time using time correlated single photon counting (TCSPC). Computer processing of the light intensity data can convert this data back to current. The technique is capable of measurements on nanosecond time scales, but TCSPC requires tens or hundreds of millions of experiments to obtain a complete set of data and this frequently results in severe electrode fouling problems. (b) Potential step experiments were used instead of potential sweep experiments. Potential step experiments enable the separation in time of the faradaic and charging currents for chemical systems in which the faradaic impedance is greater than the uncompensated solution resistance. (c) For systems in which the faradaic impedance and uncompensated resistance are of the same order of magnitude, a computer simulation was developed which accounts for the interaction of the faradaic and double layer charging processes. (d) Application of short time scale experiments to the study of surface processes. Some processes studied in this work are the oxidation of clean platinum surfaces, electrode reactions of anthraquinone-2,6-disulfonic acid adsorbed on mercury, reductive hydrogen adsorption on platinum and double layer charging. (e) A study of the smallest available time constants was performed, taking into account non-idealities in the electrode such as stray capacitance and resistance of the electrode itself.

  16. High Speed/ Low Effluent Process for Ethanol

    SciTech Connect (OSTI)

    M. Clark Dale

    2006-10-30T23:59:59.000Z

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  17. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    Stang, John H.

    2005-12-19T23:59:59.000Z

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  18. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    John H. Stang

    2005-12-31T23:59:59.000Z

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  19. Effect of out-of-roundness on the performance of a diesel engine connecting-rod bearing

    SciTech Connect (OSTI)

    Vijayaraghavan, D.; Brewe, D.E.; Keith, T.G. Jr. (NASA, Lewis Research Center, Cleveland, OH (United States) Toledo Univ., OH (United States))

    1993-07-01T23:59:59.000Z

    In this paper, the dynamic performance of the Ruston and Hornsby VEB diesel engine connecting-rod bearing with circular and out-of-round profiles is analyzed. The effect of cavitation is considered by using a cavitation algorithm, which mimics JFO boundary conditions. The effect of mass inertia is accounted for by solving coupled nonlinear equations of motion. The journal profiles considered are circular, elliptical, semi-elliptical, and three lobe epicycloid. The predicted journal trajectory and other performance parameters for one complete load cycle are presented for all of the out-of-round profiles and are also compared with the predictions for the circular bearing. 18 refs.

  20. Update on Diesel Exhaust Emission Control Technology and Regulations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Technology and Regulations Update on Diesel Exhaust Emission Control Technology and Regulations 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation:...

  1. Comparison of Conventional Diesel and Reactivity Controlled Compressio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conventional Diesel and Reactivity Controlled Compression Ignition (RCCI) Combustion in a Light-Duty Engine Comparison of Conventional Diesel and Reactivity Controlled Compression...

  2. Advanced Diesel Common Rail Injection System for Future Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Common Rail Injection System for Future Emission Legislation Advanced Diesel Common Rail Injection System for Future Emission Legislation 2004 Diesel Engine Emissions Reduction...

  3. Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Chief Program Engineer, Light Duty Diesel, Ricardo adrian.greaney@ricardo.com Ricardo plc 2005 DEER 2005 Our industry has already made remarkable progress in light duty diesel...

  4. Effect of Biodiesel Blends on Diesel Particulate Filter Performance

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L.

    2006-11-01T23:59:59.000Z

    Presents results of tests of ultra-low sulfur diesel blended with soy-biodiesel at 5 percent using a Cummins ISB engine with a diesel particulate filter.

  5. High-Load Partially Premixed Combustion in a Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Load Partially Premixed Combustion in a Heavy-Duty Diesel Engine High-Load Partially Premixed Combustion in a Heavy-Duty Diesel Engine 2005 Diesel Engine Emissions Reduction...

  6. BIODIESEL AS AN ALTERNATE FUEL FOR POLLUTION CONTROL IN DIESEL ENGINE

    E-Print Network [OSTI]

    Mr. Paresh K. Kasundra; Prof Ashish; V. Gohil

    Diesel vehicles are the major source for air pollution; there is great potential for global warming due to discharge of greenhouse gases like CO2 from vehicles. Many lung problems are connected with particulate matter emitted by diesel vehicle including dust, soot and smoke. People are exposed to pollution even as they talk or when stir up the dust when they walk. Biodiesel is a non-toxic, biodegradable and renewable fuel. Compared to diesel fuel, biodiesel produces no sulfur, no net carbon dioxide, less carbon monoxide and more oxygen. More free oxygen leads to the complete combustion and reduced emission. Overall biodiesel emissions are very less compared to diesel fuel emissions which is promising pollution free environment. Abundant source of vegetable oil in India and its ease of conversion to biodiesel help to save large expenditure done on import of petroleum products and economic growth of country. Biodiesel also generates huge rural employment and degraded lands can be restored due to plantation of oil plants which help in reducing pollution. Extensive research is going on in different countries on different types of vegetable oils like sunflower oil, karanj oil, linseed oil, soya been oil, palm oil, and many more, which can be used in those countries as per availability, our research is in progress on CNSL and its blend with diesel, research is going on in right direction and likely to get surprising

  7. Ultra-High Speed Particle Image Velocimetry on Drop-on-Demand Jetting

    E-Print Network [OSTI]

    Castrejon-Pita, J.R.; Hoath, S.D.; Castrejon-Pita, A.A.; Morrison, N.F.; Hsiao, W.-K.; Hutchings, I.M.

    2011-01-01T23:59:59.000Z

    , Applied Mathematics Hsiao, Wen-Kai; University of Cambridge, Engineering Hutchings, Ian; University of Cambridge, Engineering Ultra-High Speed Particle Image Velocimetry on Drop-on- Demand Jetting José R. Castrejón-Pita, Stephen D. Hoath... ). The velocity response extracted from this point is shown in Fig. 3. Figure 3. Time variation of the fluid velocity as measured by PIV. See Figure 2. Numerical method The simulations were performed using computational methods similar to those reported...

  8. Fuel Effects on Combustion and Emissions of a Direct-Inection Diesel Engine Operating at Moderate to High Engine Speed and Load

    SciTech Connect (OSTI)

    Szybist, James P [ORNL; Szymkowicz, Patrick G. [General Motors Corporation; Northrop, William F [General Motors Corporation

    2012-01-01T23:59:59.000Z

    It is advantageous to increase the specific power output of diesel engines and to operate them at higher load for a greater portion of a driving cycle to achieve better thermal efficiency and thus reduce vehicle fuel consumption. Such operation is limited by excessive smoke formation at retarded injection timing and high rates of cylinder pressure rise at more advanced timing. Given this window of operation, it is desired to understand the influence of fuel properties such that optimum combustion performance and emissions can be retained over the range of fuels commonly available in the marketplace. It has been shown in previous studies that varying cetane number (CN) of diesel fuel has little effect on ignition delay at high engine load due to the domination of high cylinder temperature on ignition kinetics. The work here experimentally confirms that finding but also shows that emissions and combustion performance vary according to fuel reactivity. Data are examined from a direct-injection single cylinder research engine for eight common diesel fuels including soy-based biodiesel blends at two high load operating points with no exhaust gas recirculation (EGR) and at a moderate load with four levels of EGR. It is shown in the work that at high engine load where combustion is controlled by mixing processes, CN and other fuel properties have little effect on engine performance, although lower CN fuels produce a small increase in noise, smoke and CO emissions. Biodiesel blends increase NOX emissions and decreases CO and smoke emissions at high load, but otherwise have little effect on performance. At moderate load, higher CN fuels are more tolerant to EGR due to their better chemical reactivity at retarded injection timing, but all fuels produce comparable thermal efficiency at advanced combustion phasing regardless of EGR. In contrast to the high load conditions, there was no increase in NOX emissions for biodiesel at the moderate load condition. It is concluded that although higher CN does not significantly alter ignition delay at moderate to high loads it has a dominant influence on the acceptable injection timing range. Apart from CN effects, fuel oxygen content plays an independent role in reducing some emissions. It is therefore recommended that compensation for fuel ignitability and oxygen content be included in combustion control strategies to optimize emissions and performance of future diesel engines.

  9. Modeling the effects of EGR and injection pressure on soot formation in a High-Speed Direct-Injection (HSDI) diesel engine using a multi-step phenomenological soot model.

    SciTech Connect (OSTI)

    Reitz, Rolf D. (University of Wisconsin); Choi, Dae; Liu, Yi. (University of Wisconsin); RempleEwert, Bret H. (University of Wisconsin); Foster, David. (University of Wisconsin); Miles, Paul; Tao, Feng (University of Wisconsin)

    2005-01-01T23:59:59.000Z

    Low-temperature combustion concepts that utilize cooled EGR, early/retarded injection, high swirl ratios, and modest compression ratios have recently received considerable attention. To understand the combustion and, in particular, the soot formation process under these operating conditions, a modeling study was carried out using the KIVA-3V code with an improved phenomenological soot model. This multi-step soot model includes particle inception, surface growth, surface oxidation, and particle coagulation. Additional models include a piston-ring crevice model, the KH/RT spray breakup model, a droplet wall impingement model, a wall heat transfer model, and the RNG k-{var_epsilon} turbulence model. The Shell model was used to simulate the ignition process, and a laminar-and-turbulent characteristic time combustion model was used for the post-ignition combustion process. A low-load (IMEP=3 bar) operating condition was considered and the predicted in-cylinder pressures and heat release rates were compared with measurements. Predicted soot mass, soot particle size, soot number density distributions and other relevant quantities are presented and discussed. The effects of variable EGR rate (0-68%), injection pressure (600-1200 bar), and injection timing were studied. The predictions demonstrate that both EGR and retarded injection are beneficial for reducing NO{sub x} emissions, although the former has a more pronounced effect. Additionally, higher soot emissions are typically predicted for the higher EGR rates. However, when the EGR rate exceeds a critical value (over 65% in this study), the soot emissions decrease. Reduced soot emissions are also predicted when higher injection pressures or retarded injection timings are employed. The reduction in soot with retarded injection is less than what is observed experimentally, however.

  10. High Speed Rail in America Thomas Ducharme, Matt Schena,

    E-Print Network [OSTI]

    Nagurney, Anna

    to Washington D.C. · A renewed interest in High Speed Rail Due to increased congestion Desire for cheaper emissions by 2.8 million tons o High speed trains use 1/3 the energy of planes and 1/5 that of cars · Reduce Resulting in improvement to those lines o Reducing operating costs due to sharing rail · Increase in freight

  11. Design Techniques for High Speed Low Voltage and Low Power Non-Calibrated Pipeline Analog to Digital Converters

    E-Print Network [OSTI]

    Assaad, Rida Shawky

    2011-02-22T23:59:59.000Z

    DESIGN TECHNIQUES FOR HIGH SPEED LOW VOLTAGE AND LOW POWER NON-CALIBRATED PIPELINE ANALOG TO DIGITAL CONVERTERS A Dissertation by RIDA SHAWKY ASSAAD Submitted to the Office of Graduate Studies of Texas A&M University... in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2009 Major Subject: Electrical Engineering DESIGN TECHNIQUES FOR HIGH SPEED LOW VOLTAGE AND LOW POWER NON-CALIBRATED PIPELINE ANALOG TO DIGITAL...

  12. Time- and space-resolved quantitative LIF measurements of formaldehyde in a heavy-duty diesel engine

    SciTech Connect (OSTI)

    Donkerbroek, A.J.; van Vliet, A.P.; Klein-Douwel, R.J.H.; Meerts, W.L.; ter Meulen, J.J. [Institute for Molecules and Materials, Applied Physics, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands); Somers, L.M.T.; Frijters, P.J.M. [Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Dam, N.J. [Institute for Molecules and Materials, Applied Physics, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands); Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2010-01-15T23:59:59.000Z

    Formaldehyde (CH{sub 2}O) is a characteristic species for the ignition phase of diesel-like fuels. As such, the spatio-temporal distribution of formaldehyde is an informative parameter in the study of the ignition event in internal combustion engines, especially for new combustion modes like homogeneous charge compression ignition (HCCI). This paper presents quantitative data on the CH{sub 2}O distribution around diesel and n-heptane fuel sprays in the combustion chamber of a commercial heavy-duty diesel engine. Excitation of the 4{sub 0}{sup 1} band (355 nm) as well as the 4{sub 0}{sup 1}2{sub 0}{sup 1} band (339 nm) is applied. We use quantitative, spectrally resolved laser-induced fluorescence, calibrated by means of formalin seeding, to distinguish the contribution from CH{sub 2}O to the signal from those of other species formed early in the combustion. Typically, between 40% and 100% of the fluorescence in the wavelength range considered characteristic for formaldehyde is in fact due to other species, but the latter are also related to the early combustion. Numerical simulation of a homogeneous reactor of n-heptane and air yields concentrations that are in reasonable agreement with the measurements. Formaldehyde starts to be formed at about 2 CA (crank angle degrees) before the rise in main heat release. There appears to be a rather localised CH{sub 2}O formation zone relatively close to the injector, out of which formaldehyde is transported downstream by the fuel jet. Once the hot combustion sets in, formaldehyde quickly disappears. (author)

  13. A Comparison of Combustion and Emissions of Diesel Fuels and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated Fuels in a Modern DI Diesel Engine A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated...

  14. REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 2

    E-Print Network [OSTI]

    Minnesota, University of

    REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS Supplemental Report # 2 AEROSOL DYMAMICS Arnold University of Minnesota Department of Mechanical Engineering Center for Diesel Research................................................................................................. 3 Diesel aerosol composition and structure................................................... 3

  15. The Relationships of Diesel Fuel Properties, Chemistry, and HCCI Engine Performance as Determined by Principal Component Analysis

    SciTech Connect (OSTI)

    Bunting, Bruce G [ORNL; Crawford, Robert W [Rincon Ranch Consulting

    2007-01-01T23:59:59.000Z

    In order to meet common fuel specifications such as cetane number and volatility, a refinery must blend a number of refinery stocks derived from various process units in the refinery. Fuel chemistry can be significantly altered in meeting fuel specifications. Additionally, fuel specifications are seldom changed in isolation, and the drive to meet one specification may significantly alter other specifications or fuel chemistry. Homogeneous charge compression ignition (HCCI) engines depend on the kinetic behavior of a fuel to achieve reliable ignition and are expected to be more dependent on fuel specifications and chemistry than today's conventional engines. Regression analysis can help in determining the underlying relationships between fuel specifications, chemistry, and engine performance. Principal component analysis (PCA) was used in this work, because of its ability to deal with co-linear variables and to uncover 'hidden' relationships in the data. In this paper, a set of 11 diesel fuels with widely varying properties were run in a simple HCCI engine. Fuel properties and engine performance are examined to identify underlying fuel relationships and to determine the interplay between engine behavior and fuels. Results indicate that fuel efficiency is mainly controlled by a collection of specifications related to density and energy content and ignition characteristics are controlled mainly by cetane number.

  16. Comparison of Conventional Diesel and Reactivity Controlled...

    Broader source: Energy.gov (indexed) [DOE]

    DEER 10182012 Comparison of Conventional Diesel and Reactivity Controlled Compression Ignition (RCCI) Combustion in a Light-Duty Engine Rolf D. Reitz and Sage L. Kokjohn Engine...

  17. Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine - SAE World Congress

    SciTech Connect (OSTI)

    Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

    2012-01-01T23:59:59.000Z

    This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shown to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI). The effect of E85 on the Ad-hoc federal test procedure (FTP) modal points is explored along with the effect of load expansion through the light-duty diesel speed operating range. The Ad-hoc FTP modal points of 1500 rpm, 1.0bar brake mean effective pressure (BMEP); 1500rpm, 2.6bar BMEP; 2000rpm, 2.0bar BMEP; 2300rpm, 4.2bar BMEP; and 2600rpm, 8.8bar BMEP were explored. Previous results with 96 RON unleaded test gasoline (UTG-96) and ultra-low sulfur diesel (ULSD) showed that with stock hardware, the 2600rpm, 8.8bar BMEP modal point was not obtainable due to excessive cylinder pressure rise rate and unstable combustion both with and without the use of EGR. Brake thermal efficiency and emissions performance of RCCI operation with E85 and ULSD is explored and compared against conventional diesel combustion (CDC) and RCCI operation with UTG 96 and ULSD.

  18. DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE

    SciTech Connect (OSTI)

    Curran, Scott [ORNL; Briggs, Thomas E [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL

    2011-01-01T23:59:59.000Z

    In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

  19. DIESEL/HEAVY The diesel/heavy equipment certificate offers training in maintenance

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    DIESEL/HEAVY EQUIPMENT The diesel/heavy equipment certificate offers training in maintenance and repair of heavy equipment and trucks. Students will learn to work on electrical and air systems, diesel · Small Engines · Automotive Maintenance · Welding · Training for entry level heavy diesel equipment

  20. High speed imaging of transient non-Newtonian fluid phenomena

    E-Print Network [OSTI]

    Gallup, Benjamin H. (Benjamin Hodsdon), 1982-

    2004-01-01T23:59:59.000Z

    In this thesis, I investigate the utility of high speed imaging for gaining scientific insight into the nature of short-duration transient fluid phenomena, specifically applied to the Kaye effect. The Kaye effect, noted ...

  1. High-Speed Network Enables Industrial Internet | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Unveils High-Speed Network Infrastructure to Connect Machines, Data and People at Light...

  2. A high-speed hysteresis motor spindle for machining applications

    E-Print Network [OSTI]

    Bayless, Jacob D. (Jacob Daniel)

    2014-01-01T23:59:59.000Z

    An analysis of suitable drive technologies for use in a new high-speed machining spindle was performed to determine critical research areas. The focus is on a hysteresis motor topology using a solid, inherently-balanced ...

  3. Rotary-linear axes for high speed machining

    E-Print Network [OSTI]

    Liebman, Michael Kevin, 1974-

    2001-01-01T23:59:59.000Z

    This thesis presents the design, analysis, fabrication, and control of a rotary-linear axis; this axis is a key subsystem for high speed, 5-axis machine tools intended for fabricating centimeter-scale parts. The rotary-linear ...

  4. High speed air pneumatic wind shield wiping design

    E-Print Network [OSTI]

    Heyward, Moses A

    2005-01-01T23:59:59.000Z

    In this creative design process a number of designs were constructed, implemented and tested in order to assess the feasibility of using high speed to create a curtain to repel the rain from the automobile windshield instead ...

  5. On advancement of high speed atomic force microscope technology

    E-Print Network [OSTI]

    SooHoo, Kimberly E

    2008-01-01T23:59:59.000Z

    High speed atomic force microscopy (AFM) is a developing process in which nanoscale objects, such as crystal structures or strands of DNA, can be imaged at rates fast enough to watch processes as they occur. Although current ...

  6. High-Speed Parameter Estimation Algorithms For Nonlinear Smart Materials

    E-Print Network [OSTI]

    for ferroelectric, ferromagnetic, and ferroelastic materials is the estimation or identification of material alters the position of the cutting head. The nonlinear material behavior creates difficulty whenHigh-Speed Parameter Estimation Algorithms For Nonlinear Smart Materials Jon M. Ernstberger

  7. Hydrodynamic evaluation of high-speed semi-SWATH vessels

    E-Print Network [OSTI]

    Guttenplan, Adam (Adam David)

    2007-01-01T23:59:59.000Z

    High-speed semi-displacement vessels have enjoyed rapid development and widespread use over the past 25 years. Concurrent with their growth as viable commercial and naval platforms, has been the advancement of three-dimensional ...

  8. Optical investigation of the combustion behaviour inside the engine operating in HCCI mode and using alternative diesel fuel

    SciTech Connect (OSTI)

    Mancaruso, E.; Vaglieco, B.M. [Istituto Motori - CNR, Via Marconi, 8, 80125 Napoli (Italy)

    2010-04-15T23:59:59.000Z

    In order to understand the effect of both the new homogeneous charge compression ignition (HCCI) combustion process and the use of biofuel, optical measurements were carried out into a transparent CR diesel engine. Rape seed methyl ester was used and tests with several injection pressures were performed. OH and HCO radical were detected and their evolutions were analyzed during the whole combustion. Moreover, soot concentration was measured by means the two colour pyrometry method. The reduction of particulate emission with biodiesel as compared to the diesel fuel was noted. Moreover, this effect resulted higher increasing the injection pressure. In the case of RME the oxidation of soot depends mainly from O{sub 2} content of fuel and OH is responsible of the NO formation in the chamber as it was observed for NO{sub x} exhaust emission. Moreover, it was investigated the evolution of HCO and CO into the cylinder. HCO was detected at the start of combustion. During the combustion, HCO oxidizes due to the increasing temperature and it produces CO. Both fuels have similar trend, the highest concentrations are detected for low injection pressure. This effect is more evident for the RME fuel. (author)

  9. Experimental Studies for CPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels

    SciTech Connect (OSTI)

    Johnson, John; Naber, Jeffrey; Parker, Gordon; Yang, Song-Lin; Stevens, Andrews; Pihl, Josh

    2013-04-30T23:59:59.000Z

    The research carried out on this project developed experimentally validated Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF), and Selective Catalytic Reduction (SCR) high?fidelity models that served as the basis for the reduced order models used for internal state estimation. The high?fidelity and reduced order/estimator codes were evaluated by the industrial partners with feedback to MTU that improved the codes. Ammonia, particulate matter (PM) mass retained, PM concentration, and NOX sensors were evaluated and used in conjunction with the estimator codes. The data collected from PM experiments were used to develop the PM kinetics using the high?fidelity DPF code for both NO2 assisted oxidation and thermal oxidation for Ultra Low Sulfur Fuel (ULSF), and B10 and B20 biodiesel fuels. Nine SAE papers were presented and this technology transfer process should provide the basis for industry to improve the OBD and control of urea injection and fuel injection for active regeneration of the PM in the DPF using the computational techniques developed. This knowledge will provide industry the ability to reduce the emissions and fuel consumption from vehicles in the field. Four MS and three PhD Mechanical Engineering students were supported on this project and their thesis research provided them with expertise in experimental, modeling, and controls in aftertreatment systems.

  10. Development of Low-Cost Austenitic Stainless Gas-Turbine and Diesel Engine Components with Enhanced High-Temperature Reliability

    SciTech Connect (OSTI)

    Maziasz, P.J.; Swindeman, R.W.; Browning, P.F. (Solar Turbines, Inc.); Frary, M.E. (Caterpillar, Inc.); Pollard, M.J.; Siebenaler, C.W.; McGreevy, T.E.

    2004-06-01T23:59:59.000Z

    In July of 1999, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Solar Turbines, Inc. and Caterpillar, Inc. (Caterpillar Technical Center) to evaluate commercial cast stainless steels for gas turbine engine and diesel engine exhaust component applications relative to the materials currently being used. If appropriate, the goal was to develop cast stainless steels with improved performance and reliability rather than switch to more costly cast Ni-based superalloys for upgraded performance. The gas-turbine components considered for the Mercury-50 engine were the combustor housing and end-cover, and the center-frame hot-plate, both made from commercial CF8C cast austenitic stainless steel (Fe-l9Cr-12Ni-Nb,C), which is generally limited to use at below 650 C. The advanced diesel engine components considered for truck applications (C10, C12, 3300 and 3400) were the exhaust manifold and turbocharger housing made from commercial high SiMo ductile cast iron with uses limited to 700-750 C or below. Shortly after the start of the CRADA, the turbine materials emphasis changed to wrought 347H stainless steel (hot-plate) and after some initial baseline tensile and creep testing, it was confirmed that this material was typical of those comprising the abundant database; and by 2000, the emphasis of the CRADA was primarily on diesel engine materials. For the diesel applications, commercial SiMo cast iron and standard cast CN12 austenitic stainless steel (Fe-25Cr-13Ni-Nb,C,N,S) baseline materials were obtained commercially. Tensile and creep testing from room temperature to 900 C showed the CN12 austenitic stainless steel to have far superior strength compared to SiMo cast iron above 550 C, together with outstanding oxidation resistance. However, aging at 850 C reduced room-temperature ductility of the standard CN12, and creep-rupture resistance at 850 C was less than expected, which triggered a focused laboratory-scale alloy development effort on modified cast austenitic stainless steels at ORNL. Isothermal fatigue testing at 700 C also showed that standard CN12 was far superior to SiMo cast iron, but somewhat less than the desired behavior. During the first year, 3 new modified CF8C heats and 8 new modified CN12 heats were made, based on compositional changes specifically designed to change the nature, dispersion and stability of the as-cast and high-temperature aging-induced microstructures that consisted of carbides and other precipitate phases. Screening of the alloys at room-temperature and at 850 C (tensile and creep-rupture) showed -a ten-fold increase in rupture life of the best modified CN12 relative to the baseline material, better room-temperature ductility after aging, caused by less precipitation in the as-cast material and much less aging-induced precipitation. The best new modified CF8C steel showed strength at tensile and creep-rupture strength comparable to standard CN12 steel at 850 C, due to a unique and very stable microstructure. The CRADA was scheduled to end in July 2001, but was extended twice until July 2002. Based on the very positive results on the newly developed modified CF8C and CN12 cast austenitic stainless steels, a new CRADA with Caterpillar has been set up to commercially scale-up, test and evaluate, and make trial components from the new steels.

  11. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    SciTech Connect (OSTI)

    E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; John Hemmings

    2005-05-01T23:59:59.000Z

    This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and in International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.

  12. Large Eddy Simulation (LES) Applied to LTC/Diesel/Hydrogen Engine...

    Office of Environmental Management (EM)

    Large Eddy Simulation (LES) Applied to LTCDieselHydrogen Engine Combustion Research Large Eddy Simulation (LES) Applied to LTCDieselHydrogen Engine Combustion Research 2009 DOE...

  13. Fuel effects on flame lift-off under diesel conditions

    SciTech Connect (OSTI)

    Persson, Helena; Andersson, Oeivind; Egnell, Rolf [Lund University (Sweden). Dept. of Energy Sciences

    2011-01-15T23:59:59.000Z

    An apparent relation between the lift-off length under diesel conditions and the ignition quality of a fuel has previously been reported. To cast light on the underlying mechanism, the current study aims to separate flame lift-off effects of the chemical ignition delay from those of other fuel properties under diesel conditions. Flame lift-off was measured in an optical diesel engine by high-speed video imaging of OH-chemiluminescence. Fuel and ambient-gas properties were varied during the experiment. Only a weak correlation was found between ignition delay and lift-off length. The data indicate that this correlation is due to a common, stronger correlation with the ambient oxygen concentration. The chemical ignition delay and the fuel type had similar, weak effects on the lift-off length. A recently proposed mechanism for lift-off stabilization was used to interpret the results. It assumes that reactants approaching the lift-off position of the jet are mixed with high-temperature products found along the edges of the flame, which trigger autoignition. In this picture, the fuel effect is most likely due to differences in the amount of mixing with high-temperature products that is required for autoignition. In the current experiment, all lift-off effects seem to arise from variations in the reactant and product temperatures, induced by fuel and ambient properties. (author)

  14. Black Carbon Concentrations and Diesel Vehicle Emission Factors Derived from Coefficient of Haze Measurements in California: 1967-2003

    E-Print Network [OSTI]

    Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.

    2008-01-01T23:59:59.000Z

    Inventory for Heavy-Duty Diesel Truck Emissions. J. Air &T. A. Cackette (2001), Diesel engines: Environmental impact2003), http://www.arb.ca.gov/diesel/diesel.htm BAAQMD, Bay

  15. Heavy-duty H2-Diesel Dual Fuel Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudsonTargetingduty H2-Diesel Dual Fuel

  16. Impact of Real Field Diesel Quality Variability on Engine Emissions and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy PetroleumEnergy Lube-oil Phosphorus on DieselFuel

  17. Soot combustion during regeneration of filter ceramic traps for Diesel engines

    SciTech Connect (OSTI)

    Romero-Lopez, A.F.; Gutierrez-Salinas, R.; Garcia-Moreno, R.

    1996-09-01T23:59:59.000Z

    A retro-fit system for buses and heavy duty trucks is presented, along with the mathematical modeling of soot (particulate matter or PM) combustion. In spite of the fact that the use of ceramic traps has lost popularity in the US during the last few years, mainly due to the severe problems encountered during regeneration, a new approach to Diesel emissions control, is presented. The main objective is to attain the emissions levels set forth by the EPA for 1998, both on PM and NOx emissions. The very high levels of temperature required for thermal regeneration and elaborate controls, have almost eliminated the preference for ceramic filters. However, a new approach is presented by using catalyzed filters which considerably reduce the high temperature requirements. Along with the mathematical modeling a new hardware is presented, which is capable of performing filtering, regeneration, and operation with somewhat simpler and more economical controls. Improvements in the design of combustion chambers, higher injection pressures, better fuels and lubricants, etc., have made possible to re-think the concept of mechanical filtration of Diesel Particulate Matter (DPM). The development of the system has been partially sponsored by the Mexico City Government in an attempt to reduce the air pollution within the overloaded atmosphere of the large Mexico City Metropolitan Area (MCMA). Reported results are of the public domain.

  18. Control of Charge Dilution in Turbocharged Diesel Engines via Exhaust Valve Timing

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Compression Ignition (HCCI) engines high level of EGR can be used to indirectly control combustion initiation and HCCI engines [7, 10]. Conventional external EGR (eEGR), relies on a pressure drop from exhaust manifold

  19. ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine

    Broader source: Energy.gov (indexed) [DOE]

    and Progress Engine Out Emissions and Fuel Economy BSFC held constant via improved turbo match on low CR engine 11 Innovation You Can Depend On(tm) This presentation does not...

  20. Atmospheric Environment 38 (2004) 14171423 Measurements of ion concentration in gasoline and diesel

    E-Print Network [OSTI]

    Yu, Fangqun

    2004-01-01T23:59:59.000Z

    and diesel engine exhaust Fangqun Yua, *, Thomas Lannib , Brian P. Frankb a Atmospheric Sciences Research of a gasoline engine (K-car) and a diesel engine (diesel generator). Under the experimental set-up reported with most of the ions larger than 3 nm in the diesel engine exhaust. This difference in the measured ion

  1. High Efficiency Clean Combustion Engine Designs for Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program and Vehicle Technologies...

  2. Renewable Diesel

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Diesel Process Co-feed Renewable Oils to Diesel Hydrotreater 150-2400 psi Hydrogen, 600-800F Normal reaction is sulfur removal (HDS) At HDS Conditions Fat...

  3. Secondary Containment Design for a High Speed Centrifuge

    SciTech Connect (OSTI)

    Snyder, K.W.

    1999-03-01T23:59:59.000Z

    Secondary containment for high speed rotating machinery, such as a centrifuge, is extremely important for operating personnel safety. Containment techniques can be very costly, ungainly and time consuming to construct. A novel containment concept is introduced which is fabricated out of modular sections of polycarbonate glazed into a Unistrut metal frame. A containment study for a high speed centrifuge is performed which includes the development of parameters for secondary containment design. The Unistrut/polycarbonate shield framing concept is presented including design details and proof testing procedures. The economical fabrication and modularity of the design indicates a usefulness for this shielding system in a wide variety of containment scenarios.

  4. Multiply-agile encryption in high speed communication networks

    SciTech Connect (OSTI)

    Pierson, L.G. [Sandia National Labs., Albuquerque, NM (United States); Witzke, E.L. [RE/SPEC Inc., Albuquerque, NM (United States)

    1997-05-01T23:59:59.000Z

    Different applications have different security requirements for data privacy, data integrity, and authentication. Encryption is one technique that addresses these requirements. Encryption hardware, designed for use in high-speed communications networks, can satisfy a wide variety of security requirements if that hardware is key-agile, robustness-agile and algorithm-agile. Hence, multiply-agile encryption provides enhanced solutions to the secrecy, interoperability and quality of service issues in high-speed networks. This paper defines these three types of agile encryption. Next, implementation issues are discussed. While single-algorithm, key-agile encryptors exist, robustness-agile and algorithm-agile encryptors are still research topics.

  5. Investigation of Diesel combustion using multiple injection strategies for idling after cold start of passenger-car engines

    SciTech Connect (OSTI)

    Payri, F.; Broatch, A.; Salavert, J.M.; Martin, J. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Aptdo. 22012, E-46071 Valencia (Spain)

    2010-10-15T23:59:59.000Z

    A comprehensive investigation was carried out in order to better understand the combustion behaviour in a low compression ratio DI Diesel engine when multiple injection strategies are applied just after the engine cold starts in low temperature conditions (idling). More specifically, the aim of this study was twofold: on one hand, to understand the effect of the multiple injection strategies on the indicated mean effective pressure; on the other hand, to contribute to the understanding of combustion stability characterized by the coefficient of variation of indicated mean effective pressure. The first objective was fulfilled by analyzing the rate of heat release obtained by in-cylinder pressure diagnosis. The results showed that the timing of the pilot injection closest to the main injection was the most influential parameter based on the behaviour of the rate of heat release (regardless of the multiple injection strategy applied). For the second objective, the combustion stability was found to be correlated with the combustion centroid angle. The results showed a trend between them and the existence of a range of centroid angles where the combustion stability is strong enough. In addition, it was also evident that convenient split injection allows shifting the centroid to such a zone and improves combustion stability after start. (author)

  6. Reformulated diesel fuel and method

    DOE Patents [OSTI]

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-08-22T23:59:59.000Z

    A method for mathematically identifying at least one diesel fuel suitable for combustion in an automotive diesel engine with significantly reduced emissions and producible from known petroleum blendstocks using known refining processes, including the use of cetane additives (ignition improvers) and oxygenated compounds.

  7. Diesel Injection Shear-Stress Advanced Nozzle (DISSAN)

    Broader source: Energy.gov (indexed) [DOE]

    3th Diesel Engine-Efficiency and Emissions Research (DEER) Conference August 13, 2007 - Poster P-20 Detroit, MI...

  8. Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Cho, Kukwon [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

  9. HIGH SPEED RAIL COSTS, BENEFITS, AND FINANCING RAYMOND H. ELLIS

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    Corridor PHASE 1 ­ TAMPA TO ORLANDO #12;FLORIDA TAMPA ­ ORLANDO (PHASE 1) HSR CAPITAL COST · Estimated Incremental Capital Cost Capital Cost Year of (Billions (Billions Completion Expenditure Section 2010$) 2010$) of Section Capital Cost #12;CALIFORNIA HIGH SPEED RAIL PHASE 1 CAPITAL COSTS SECTION INCREMENTAL CAPITAL

  10. High-speed pulse-shape generator, pulse multiplexer

    DOE Patents [OSTI]

    Burkhart, Scott C. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.

  11. Simulations of High Speed Turbulent Jets in Crossflow Xiaochuan Chai

    E-Print Network [OSTI]

    Mahesh, Krishnan

    Simulations of High Speed Turbulent Jets in Crossflow Xiaochuan Chai and Krishnan Mahesh-expanded sonic jet injected into a supersonic crossflow and an over-expanded supersonic jet injected into a subsonic crossflow. A finite volume compressible Navier­Stokes solver developed by Park & Mahesh (2007

  12. Simulations of High Speed Turbulent Jets in Crossflows Xiaochuan Chai

    E-Print Network [OSTI]

    Mahesh, Krishnan

    Simulations of High Speed Turbulent Jets in Crossflows Xiaochuan Chai and Krishnan Mahesh-expanded sonic jet injected into a supersonic crossflow and an over-expanded supersonic jet injected into a subsonic crossflow, where the flow conditions are based on Santiago et al.'s (1997) and Beresh et al

  13. High Speed Rail in Greece : methods for evaluating economic impacts

    E-Print Network [OSTI]

    Radopoulou, Stefania Christina

    2010-01-01T23:59:59.000Z

    High Speed Rail is a mode that gains popularity every day. Many countries have such a network and others are on the way to adopting one. Greece, which is part of the European Union, is one of those countries that are looking ...

  14. SUPER HIGH-SPEED MINIATURIZED PERMANENT MAGNET SYNCHRONOUS MOTOR

    E-Print Network [OSTI]

    Wu, Thomas

    with the design of permanent magnet synchronous motors (PMSM) to operate at super-high speed with high efficiency. The designed and fabricated PMSM was successfully tested to run upto 210,000 rpm The designed PMSM has 2000 W concept of electrical machines. After that, the modeling of PMSM for dynamic simulation is provided

  15. Artificial Neural Nets and Cylinder Pressures in Diesel

    E-Print Network [OSTI]

    Sharkey, Amanda

    Artificial Neural Nets and Cylinder Pressures in Diesel Engine Fault Diagnosis * Gopi O diagnosis system for a diesel engine, which uses artificial neural nets to identify faults on the basis cylinder Ruston AP 230, medium speed Diesel engine was simulated. When tested on new data previously unseen

  16. A METHODOLOGY FOR IDENTIFICATION OF NARMAX MODELS APPLIED TO DIESEL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A METHODOLOGY FOR IDENTIFICATION OF NARMAX MODELS APPLIED TO DIESEL ENGINES 1 Gianluca Zito ,2 Ioan is illustrated by means of an automotive case study, namely a variable geometry turbocharged diesel engine identification procedure is illustrated. In section 3 a diesel engine system, used to test the procedure

  17. Performance Evaluation and Optimization of Diesel Fuel Properties and Chemistry in an HCCI Engine

    SciTech Connect (OSTI)

    Bunting, Bruce G [ORNL] [ORNL; Eaton, Scott J [ORNL] [ORNL; Crawford, Robert W [Rincon Ranch Consulting] [Rincon Ranch Consulting

    2009-01-01T23:59:59.000Z

    The nine CRC fuels for advanced combustion engines (FACE fuels) have been evaluated in a simple, premixed HCCI engine under varying conditions of fuel rate, air-fuel ratio, and intake temperature. Engine performance was found to vary mainly as a function of combustion phasing as affected by fuel cetane and engine control variables. The data was modeled using statistical techniques involving eigenvector representation of the fuel properties and engine control variables, to define engine response and allow optimization across the fuels for best fuel efficiency. In general, the independent manipulation of intake temperature and air-fuel ratio provided some opportunity for improving combustion efficiency of a specific fuel beyond the direct effect of targeting the optimum combustion phasing of the engine (near 5 CAD ATDC). High cetane fuels suffer performance loss due to easier ignition, resulting in lower intake temperatures, which increase HC and CO emissions and result in the need for more advanced combustion phasing. The FACE fuels also varied in T90 temperature and % aromatics, independent of cetane number. T90 temperature was found to have an effect on engine performance when combined with high centane, but % aromatics did not, when evaluated independently of cetane and T90.

  18. New York City Transit Diesel Hybrid-Electric Buses Final Results...

    Open Energy Info (EERE)

    on the cost, maintenance, operational, and emission characteristics of diesel hybrid-electric systems as one alternative to conventional diesel engines for heavy-duty transit...

  19. X-Ray Characterization of Diesel Sprays and the Effects of Nozzle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sprays and the Effects of Nozzle Geometry X-Ray Characterization of Diesel Sprays and the Effects of Nozzle Geometry 2004 Diesel Engine Emissions Reduction (DEER) Conference...

  20. Development Impacts of high-speed rail : megalopolis formation and implications for Portugal's Lisbon-Porto High-Speed Rail Link

    E-Print Network [OSTI]

    Melibaeva, Sevara (Sevara Mukhtarovna)

    2010-01-01T23:59:59.000Z

    High-speed rail (HSR) has been gaining acceptance worldwide with development of rail technology and rising concerns over climate change and congestion in airports and on roads. The implementation of high-speed rail lines ...

  1. Diesel Futures Forget the black soot and smoke. Modern diesel-powered cars are quiet, clean and fast.

    E-Print Network [OSTI]

    Diesel Futures Forget the black soot and smoke. Modern diesel-powered cars are quiet, clean at their tachometers to be sure that they were running. You would not expect that of a diesel, however. Yet these are diesel engines. The world has been looking to gas/electric hybrids and fuel cells for future fuel

  2. An investigation of late-combustion soot burnout in a DI diesel engine using simultaneous planar imaging of soot and OH radical

    SciTech Connect (OSTI)

    John E. Dec; Peter L. Kelly-Zion

    1999-10-01T23:59:59.000Z

    Diesel engine design continues to be driven by the need to improve performance while at the same time achieving further reductions in emissions. The development of new designs to accomplish these goals requires an understanding of how the emissions are produced in the engine. Laser-imaging diagnostics are uniquely capable of providing this information, and the understanding of diesel combustion and emissions formation has been advanced considerably in recent years by their application. However, previous studies have generally focused on the early and middle stages of diesel combustion. These previous laser-imaging studies do provide important insight into the soot formation and oxidation processes during the main combustion event. They indicate that prior to the end of injection, soot formation is initiated by fuel-rich premixed combustion (equivalence ratio > 4) near the upstream limit of the luminous portion of the reacting fuel jet. The soot is then oxidized at the diffusion flame around the periphery of the luminous plume. Under typical diesel engine conditions, the diffusion flame does not burn the remaining fuel and soot as rapidly as it is supplied, resulting in an expanding region of rich combustion products and soot. This is evident in natural emission images by the increasing size of the luminous soot cloud prior to the end of injection. Hence, the amount of soot in the combustion chamber typically increases until shortly after the end of fuel injection, at which time the main soot formation period ends and the burnout phase begins. Sampling valve and two-color pyrometry data indicate that the vast majority (more than 90%) of the soot formed is oxidized before combustion ends; however, it is generally thought that a small fraction of this soot from the main combustion zones is not consumed and is the source of tail pipe soot emissions.

  3. Diesel lubrication and cooling systems -- lubrication of the GM-71 series engines

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    The film shows, by the use of animation, the course of the oil through the engine. It describes how it lubricates each component part and explains the principle of the ventilation system.

  4. Transient Scuffing of Candidate Diesel Engine Materials at Temperatures up to 600oC

    SciTech Connect (OSTI)

    Blau, P.

    2003-06-20T23:59:59.000Z

    This milestone report summarizes the general characteristics of scuffing damage to solid surfaces, then describes transient effects on scuffing observed during oscillating sliding wear tests of candidate material pairs for high-temperature diesel engine applications, like waste-gate bushings in exhaust gas recirculation (EGR) systems. It is shown that oxidation and the formation of wear particle layers influence the friction of such components. In the case of metallic materials in cylindrical contacts where there is a generous clearance, debris layers can form which reduce the torque over time. For ceramic combinations, the opposite effect is observed. Here, the accumulation of wear debris leads to an increase in the turning torque. High-temperature transient scuffing behavior is considered in terms of a series of stages in which the composition and morphology of the contact is changing. These changes are used to explain the behavior of 11 material pairs consisting of stainless steels, Ni-based alloys, Co-based alloys, and structural ceramics.

  5. DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program

    SciTech Connect (OSTI)

    Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

    2012-10-26T23:59:59.000Z

    The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

  6. Mixing and flame structures inferred from OH-PLIF for conventional and low-temperature diesel engine combustion

    SciTech Connect (OSTI)

    Singh, Satbir [General Motors Research and Development, Warren, MI 48090 (United States); Musculus, Mark P.B. [Sandia National Laboratories, Livermore, CA 94551 (United States); Reitz, Rolf D. [Department of Mechanical Engineering, University of Wisconsin, Madison, WI 53706 (United States)

    2009-10-15T23:59:59.000Z

    The structure of first- and second-stage combustion is investigated in a heavy-duty, single-cylinder optical engine using chemiluminescence imaging, Mie-scatter imaging of liquid-fuel, and OH planar laser-induced fluorescence (OH-PLIF) along with calculations of fluorescence quenching. Three different diesel combustion modes are studied: conventional non-diluted high-temperature combustion (HTC) with either (1) short or (2) long ignition delay, and (3) highly diluted low-temperature combustion (LTC) with early fuel injection. For the short ignition delay HTC condition, the OH fluorescence images show that second-stage combustion occurs mainly on the fuel jet periphery in a thickness of about 1 mm. For the long ignition delay HTC condition, the second-stage combustion zone on the jet periphery is thicker (5-6 mm). For the early-injection LTC condition, the second-stage combustion is even thicker (20-25 mm) and occurs only in the down-stream regions of the jet. The relationship between OH concentration and OH-PLIF intensity over a range of equivalence ratios is estimated from quenching calculations using collider species concentrations predicted by chemical kinetics simulations of combustion. The calculations show that both OH concentration and OH-PLIF intensity peak near stoichiometric mixtures and fall by an order of magnitude or more for equivalence ratios less than 0.2-0.4 and greater than 1.4-1.6. Using the OH fluorescence quenching predictions together with OH-PLIF images, quantitative boundaries for mixing are established for the three engine combustion modes. (author)

  7. System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After-treatment Technologies

    E-Print Network [OSTI]

    de Weck, Olivier L.

    System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After;System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After-treatment Technologies Developing new aftertreatment technologies to meet emission regulations for diesel engines is a growing

  8. Development of a high speed crowbar for LANSCE

    SciTech Connect (OSTI)

    Friedrichs, C. Jr.; Lyles, J.T.M.; Doub, J.M.

    1997-08-01T23:59:59.000Z

    Each of the four 200 MHz Final Power Amplifiers (FPAs) in the LANSCE proton linac has its own capacitor bank and crowbar. The dissipation in the 10{Omega} crowbar limiting resistor is as high as 67 kW, and oil cooling is used. The authors stated upgrade goal was to substantially reduce the limiting resistor dissipation and eliminate the oil cooling. Early tests showed that the fault energy quickly rose to unacceptable levels as the current limiting resistance was reduced. FPA arcs are normally quenched by interrupting the FPA modulator current, and the crowbar waits 10 {mu}s for this to occur. The successful upgrade strategy was to replace the 10{Omega} resistor with a 3{Omega} air cooled resistor and to add a high speed crowbar circuit which operates only if there are simultaneous arcs in the FPA and its modulator. This paper describes the high speed circuit and its interface with the existing crowbar. Test results are also given.

  9. High Speed Reconfigurable FFT Design by Vedic Mathematics

    E-Print Network [OSTI]

    Raman, Ashish; Sarin, R K

    2010-01-01T23:59:59.000Z

    The Fast Fourier Transform (FFT) is a computationally intensive digital signal processing (DSP) function widely used in applications such as imaging, software-defined radio, wireless communication, instrumentation. In this paper, a reconfigurable FFT design using Vedic multiplier with high speed and small area is presented. Urdhava Triyakbhyam algorithm of ancient Indian Vedic Mathematics is utilized to improve its efficiency. In the proposed architecture, the 4x4 bit multiplication operation is fragmented reconfigurable FFT modules. The 4x4 multiplication modules are implemented using small 2x2bit multipliers. Reconfigurability at run time is provided for attaining power saving. The reconfigurable FFT has been designed, optimized and implemented on an FPGA based system. This reconfigurable FFT is having the high speed and small area as compared to the conventional FFT.

  10. High-speed Laser Micromachining with Copper Bromide Laser

    E-Print Network [OSTI]

    Balchev, I I; Minkovski, N I; Sabotinov, N V; Balchev, Ivaylo I.; Kostadinov, Ivan K.; Minkovski, Nikolai I.; Sabotinov, Nikola V.

    2006-01-01T23:59:59.000Z

    The application of the copper bromide (CuBr) laser as an attractive tool in the micro-machining of different materials has been demonstrated. High-quality drilling by trepanning and precision cutting was established on several materials with a negligible heat-affected zone (HAZ). That good performance was a result of the combination of high power visible radiation, short pulses, and close to the diffraction-limited laser beam quality with high-speed galvo scanner beam steering.

  11. Control Engineering Practice 16 (2008) 10811091 Motion planning for experimental airpath control of a diesel

    E-Print Network [OSTI]

    --including homogeneous charge-compres- sion ignition (HCCI)--has emerged as an efficient techno- logy with low pollution. HCCI engines use a premixed charge of fuel and air and require the use of high exhaust gas of the masses of air and burned gas in the intake manifold is thus needed for correct HCCI combustion, which

  12. Analytical Framework to Evaluate Emission Control Systems for Marine Engines

    E-Print Network [OSTI]

    Jayaram, Varalakshmi

    2010-01-01T23:59:59.000Z

    J. , Internal Combustion Engine Fundamentals. March 31stfrom a large ship diesel engine. Atmos. Environ. 2009, 43 (low-speed marine diesel engine. Aerosol Sci. Technol. 2007,

  13. Exhaust Heat Driven Rankine Cycle for a Heavy Duty Diesel Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandardGenerationEducational OpportunitiesEngineRecovery:

  14. Development of a Waste Heat Recovery System for Light Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Waste Heat Recovery System for Light Duty Diesel Engines Development of a Waste Heat Recovery System for Light Duty Diesel Engines Substantial increases in engine efficiency of a...

  15. CF8C PLus: A New Cast Stainless Steel for High-Temperature Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    engine * Cast stainless upgrade for SiMo cast-iron diesel engine exhaust components turbo-housing exhaust manifold C-15, 14.6L HD On- Highway Diesel Engine Materials Need: High...

  16. REVIEW OF DIESEL PARTICULATE MATTER SAMPLING FINAL REPORT

    E-Print Network [OSTI]

    Minnesota, University of

    REVIEW OF DIESEL PARTICULATE MATTER SAMPLING METHODS FINAL REPORT Prepared by David B. Kittelson of Mechanical Engineering Center for Diesel Research Minneapolis, MN January 14, 1999 #12;01/14/99 Page 2 TABLE ................................................................................................................5 DIESEL ENGINE TECHNOLOGY AND EMISSION REGULATIONS .............................7 PHYSICAL

  17. DIESEL FUEL LUBRICATION

    SciTech Connect (OSTI)

    Qu, Jun [ORNL

    2012-01-01T23:59:59.000Z

    The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

  18. Wear mechanism and wear prevention in coal-fueled diesel engines. Task 3, Traditional approaches to wear prevention

    SciTech Connect (OSTI)

    Schwalb, J.A.

    1991-06-01T23:59:59.000Z

    Contamination of the lube-oil with hard abrasive particles leads to a three-body abrasive wear mechanism that highly accelerates piston ring/cylinder liner wear in coal-fueled diesel engines. One approach to reducing that wear is to modify the size and orientation of surface asperities on the cylinder to enhance the formation of a hydrodynamic film, and to provide avenues of escape for particles that would otherwise be trapped in the wear zone. Another approach is to introduce additives into the contaminated lube-oil that further enhance hydrodynamic film formation, form chemical films on the wearing surfaces, or form films on the contaminant particles. This work focuses on defining the effects of cylinder liner surface finish, various configurations of slots in the cylinder liner surface, and various additives in the contaminated lube-oil on the wear process. Wear tests were initiated in a bench apparatus using coal-ash contaminated lube-oil to test the various wear configurations. The results of these tests indicate that the formation of a hydrodynamic film between the ring and cylinder specimens is enhanced by increasing surface roughness, and by orienting the surface asperities normal to the direction of ring travel but modifications to the cylinder liner surface did not greatly reduce the wear rate. Additives to the lubricant seemed to have a much more significant effect on wear, with a dispersant additive highly accelerating the wear, while a detergent additive was able to reduce the wear almost to the rate achieved where there was no contaminant.

  19. Materials-Enabled High-Efficiency Diesel Engines (CRADA with Caterpillar) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122 DOEDepartment of Energy Engines

  20. Materials-Enabled High-Efficiency Diesel Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122 DOEDepartment of Energy Engines1 DOE

  1. Materials-Enabled High-Efficiency Diesel Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122 DOEDepartment of Energy Engines1

  2. Engineering Engineering

    E-Print Network [OSTI]

    Keinan, Alon

    of global poverty and sustainability". An ESW course, offered by Civil & Environmental Engineering, teaches as an alternative to diesel fuel, storm-water management in the Virgin Islands, and construction of a bridge here

  3. Comparison of diesel spray combustion in different high-temperature, high-pressure facilities.

    SciTech Connect (OSTI)

    Christiansen, Caspar (Technical University of Denmark); Hermant, Laurent (IFP); Malbec, Louis-Marie (IFP); Bruneaux, Gilles (IFP); Genzale, Caroline L.; Pickett, Lyle M.; Schramm, Jesper (Technical University of Denmark)

    2010-05-01T23:59:59.000Z

    Diesel spray experiments at controlled high-temperature and high-pressure conditions offer the potential for an improved understanding of diesel combustion, and for the development of more accurate CFD models that will ultimately be used to improve engine design. Several spray chamber facilities capable of high-temperature, high-pressure conditions typical of engine combustion have been developed, but uncertainties about their operation exist because of the uniqueness of each facility. For the IMEM meeting, we describe results from comparative studies using constant-volume vessels at Sandia National Laboratories and IFP. Targeting the same ambient gas conditions (900 K, 60 bar, 22.8 kg/m{sup 3}, 15% oxygen) and sharing the same injector (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K), we describe detailed measurements of the temperature and pressure boundary conditions at each facility, followed by observations of spray penetration, ignition, and combustion using high-speed imaging. Performing experiments at the same high-temperature, high-pressure operating conditions is an objective of the Engine Combustion Network (http://www.ca.sandia.gov/ECN/), which seeks to leverage the research capabilities and advanced diagnostics of all participants in the ECN. We expect that this effort will generate a high-quality dataset to be used for advanced computational model development at engine conditions.

  4. Pressure modulated injection and its effect on combustion and emissions of a HD diesel engine

    SciTech Connect (OSTI)

    Erlach, H.; Chmela, F.; Cartellieri, W.; Herzog, P.

    1995-12-31T23:59:59.000Z

    The paper describes the concept selection, design and performance of a fuel injection equipment (FIE) which provides high flexibility in shaping the injection rate. With this injection system standard and boot shaped injection rates as well as pilot injections and post injections can be achieved throughout the hole speed and load range. Special emphasis was drawn to realize boot rate shaping by pressure modulation rather than by throttling the fuel flow (i.e.: the system is operated with fully opened needle during the whole injection period and no throttling device limits the fuel flow in front of the nozzle to reduce the injection rate). Initial engine tests on a single cylinder research engine with 2 liter displacement were carried out at one operating point (1,000 rpm, 200 mm{sup 3}/str = 75% of full load fueling). Boot and pilot (split) injection rate shaping strategies are compared to a standard injection without rate shaping. At constant smoke and BSFC the boot injection shows a considerable improvement potential in NOx emissions of up to {minus}14%, or NOx and BSFC can be reduced simultaneously by {minus}9% and {minus}7%, respectively. The results with pilot injection are less promising than the results with boot injection. Furthermore, they are sensitive to pilot timing and to injection pressure as well as fueling during pilot injection.

  5. Anti-air pollution & energy conservation system for automobiles using leaded or unleaded gasoline, diesel or alternate fuel

    DOE Patents [OSTI]

    Bose, Ranendra K. (14346 Jacob La., Centreville, VA 20120-3305)

    2002-06-04T23:59:59.000Z

    Exhaust gases from an internal combustion engine operating with leaded or unleaded gasoline or diesel or natural gas, are used for energizing a high-speed gas turbine. The convoluting gas discharge causes a first separation stage by stratifying of heavier and lighter exhaust gas components that exit from the turbine in opposite directions, the heavier components having a second stratifying separation in a vortex tube to separate combustible pollutants from non-combustible components. The non-combustible components exit a vortex tube open end to atmosphere. The lighter combustible, pollutants effected in the first separation are bubbled through a sodium hydroxide solution for dissolving the nitric oxide, formaldehyde impurities in this gas stream before being piped to the engine air intake for re-combustion, thereby reducing the engine's exhaust pollution and improving its fuel economy. The combustible, heavier pollutants from the second separation stage are piped to air filter assemblies. This gas stream convoluting at a high-speed through the top stator-vanes of the air filters, centrifugally separates the coalescent water, aldehydes, nitrogen dioxides, sulfates, sulfur, lead particles which collect at the bottom of the bowl, wherein it is periodically released to the roadway. Whereas, the heavier hydrocarbon, carbon particles are piped through the air filter's porous element to the engine air intake for re-combustion, further reducing the engine's exhaust pollution and improving its fuel economy.

  6. The high-speed after pulse measurement system for PMT

    E-Print Network [OSTI]

    Yaping Cheng; Sen Qian; Zhe Ning; Jingkai Xia; Wenwen Wang; Yifang Wang; Jun Cao; Xiaoshan Jiang; Zheng Wang; Xiaonan Li; Ming Qi; Yuekun Heng; Shulin Liu; Xiangcui Lei; Zhi Wu

    2014-04-24T23:59:59.000Z

    A system employing a desktop FADC has been developed to investigate the features of 8 inches Hamamatsu PMT. The system stands out for its high-speed and informative results as a consequence of adopting fast waveform sampling technology. Recording full waveforms allows us to perform digital signal processing, pulse shape analysis, and precision timing extraction. High precision after pulse time and charge distribution characteristics are presented in this manuscript. Other photomultipliers characteristics, such as dark rate and transit time spread, can also be obtained by exploiting waveform analysis using this system.

  7. Modular high speed counter employing edge-triggered code

    DOE Patents [OSTI]

    Vanstraelen, G.F.

    1993-06-29T23:59:59.000Z

    A high speed modular counter (100) utilizing a novel counting method in which the first bit changes with the frequency of the driving clock, and changes in the higher order bits are initiated one clock pulse after a 0'' to 1'' transition of the next lower order bit. This allows all carries to be known one clock period in advance of a bit change. The present counter is modular and utilizes two types of standard counter cells. A first counter cell determines the zero bit. The second counter cell determines any other higher order bit. Additional second counter cells are added to the counter to accommodate any count length without affecting speed.

  8. VERY HIGH-SPEED DRILL STRING COMMUNICATIONS NETWORK

    SciTech Connect (OSTI)

    David S. Pixton

    2002-11-01T23:59:59.000Z

    Testing of a high-speed digital data transmission system for drill pipe is described. Passive transmission of digital data through 1000 ft of telemetry drill pipe has been successfully achieved. Data rates of up to 2 Mbit/sec have been tested through the 1000 ft system with very low occurrence of data errors: required error correction effort is very low or nonexistent. Further design modifications have been made to improve manufacturability and high pressure robustness of the transmission line components. Failure mechanisms of previous designs at high pressure and high temperature are described. Present design limitations include high temperature application.

  9. High speed, long distance, data transmission multiplexing circuit

    DOE Patents [OSTI]

    Mariotti, Razvan (Boulder, CO)

    1991-01-01T23:59:59.000Z

    A high speed serial data transmission multiplexing circuit, which is operable to accurately transmit data over long distances (up to 3 Km), and to multiplex, select and continuously display real time analog signals in a bandwidth from DC to 100 Khz. The circuit is made fault tolerant by use of a programmable flywheel algorithm, which enables the circuit to tolerate one transmission error before losing synchronization of the transmitted frames of data. A method of encoding and framing captured and transmitted data is used which has a low overhead and prevents some particular transmitted data patterns from locking an included detector/decoder circuit.

  10. Study of deposit formation inside diesel injectors nozzles

    E-Print Network [OSTI]

    Wang, YinChun, Ph. D. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Diesel engines are widely used in heavy duty transportation applications such as in trucks, buses and ships because of their reliability and high torque output. A key diesel technology is the injection system which is ...

  11. airborne diesel soot: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and 30 kgm3 ) and ambient Daraio, Chiara 8 Investigation on Nitric Oxide and Soot of Biodiesel and Conventional Diesel using a Medium Duty Diesel Engine Texas A&M University -...

  12. High-speed rail commuting in the United States : a case study in California

    E-Print Network [OSTI]

    Kasuya, Shuichi, 1972-

    2005-01-01T23:59:59.000Z

    High-speed rail (HSR) is primarily for intermediate distance intercity passenger travel. The concept of high-speed rail commuting is to provide short distance commuting transportation service on dedicated HSR, by sharing ...

  13. Design, fabrication and mechanical optimization of a flexural high speed nanopositioning imaging stage

    E-Print Network [OSTI]

    Panas, Robert M. (Robert Matthew)

    2009-01-01T23:59:59.000Z

    The intent of this research is to generate the knowledge required to design, fabricate and operate a device capable of high speed nano-scale vertical positioning of microscopy samples. The high speed focusing device (HSFD) ...

  14. Light-Duty Diesel Market Potential in North America

    Broader source: Energy.gov (indexed) [DOE]

    Trends - Europe Specific Power (kWl) Future HSDI Diesel Engines Specific Power (hpl) Turbo Charged SI Engines 4V-SI Engines 80 60 20 0 40 100 60 20 0 40 80 2V-SI Engines 1930...

  15. College of Engineering 20052006 Student Design Showcase

    E-Print Network [OSTI]

    Wood, Stephen L.

    Engineering · Marine and Environmental Systems Ocean Engineering · Mechanical and Aerospace Engineering ......................................................................................................................... 39 Marine and Environmental Systems.................................................................... 43 PHISH--Perfected High-Speed Internal-Combustion Solar Hybrid

  16. Rain splash of dry sand revealed by high-speed imaging and sticky paper splash targets

    E-Print Network [OSTI]

    Rain splash of dry sand revealed by high-speed imaging and sticky paper splash targets David Jon by raindrop impacts. We use high-speed imaging of drop impacts on dry sand to describe the drop (2007), Rain splash of dry sand revealed by high-speed imaging and sticky paper splash targets, J

  17. Clean Coal Diesel Demonstration Project

    SciTech Connect (OSTI)

    Robert Wilson

    2006-10-31T23:59:59.000Z

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  18. Lubricant oil consumption effects on diesel exhaust ash emissions using a sulfur dioxide trace technique and thermogravimetry

    E-Print Network [OSTI]

    Plumley, Michael J

    2005-01-01T23:59:59.000Z

    A detailed experimental study was conducted targeting lubricant consumption effects on ,diesel exhaust ash levels using a model year 2002 5.9L diesel engine, high and low Sulfur commercial lubricants, and clean diesel ...

  19. Variability in Bioreactivity Linked to Changes in Size and Zeta Potential of Diesel Exhaust Particles in Human

    E-Print Network [OSTI]

    Garfunkel, Eric

    Variability in Bioreactivity Linked to Changes in Size and Zeta Potential of Diesel Exhaust) nanoparticles have been used in Europe as diesel fuel additives (EnviroxTM ). We attempted to examine the effects of particles emitted from a diesel engine burning either diesel (diesel exhaust particles, DEP

  20. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and...

    Energy Savers [EERE]

    On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel...

  1. Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion in a Light-Duty Diesel Engine Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine Six different fuels were investigated to study the...

  2. Can We Accurately Measure In-Use Emissions from Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    We Accurately Measure In-Use Emissions from Heavy-Duty Diesel Engines? Can We Accurately Measure In-Use Emissions from Heavy-Duty Diesel Engines? Poster presentation at the 2007...

  3. 7 things you might not know about diesel | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    By Louise Lerner * June 1, 2014 Tweet EmailPrint 7 interesting facts about diesel engines, and why they're an option for the sustainably-minded Diesel engines are more...

  4. Testing an Active Diesel Particulate Filter on a 2-Cycle Marine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Active Diesel Particulate Filter on a 2-Cycle Marine Engine Testing an Active Diesel Particulate Filter on a 2-Cycle Marine Engine Presentation given at DEER 2006, August 20-24,...

  5. Development of OTM Syngas Process and Testing of Syngas Derived Ulta-clean Fuels in Diesel Engines and Fuel Cells Budget Period 3

    SciTech Connect (OSTI)

    E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; Siv Aasland; Kjersti Kleveland; Ann Hooper; Leo Bonnell; John Hemmings; Jack Chen; Bart A. Van Hassel

    2004-12-31T23:59:59.000Z

    This topical report summarizes work accomplished for the Program from January 1, 2003 through December 31,2004 in the following task areas: Task 1--Materials Development; Task 2--Composite Development; Task 4--Reactor Design and Process Optimization; Task 8--Fuels and Engine Testing; 8.1 International Diesel Engine Program; and Task IO: Program Management. Most of the key technical objectives for this budget period were achieved. Only partial success was achieved relative to cycle testing under pressure Major improvements in material performance and element reliability have been achieved. A breakthrough material system has driven the development of a compact planar reactor design capable of producing either hydrogen or syngas. The planar reactor shows significant advantages in thermal efficiency and costs compared to either steam methane reforming with CO{sub 2} recovery or autothermal reforming. The fuel and engine testing program is complete The single cylinder test engine evaluation of UCTF fuels begun in Budget Period 2 was finished this budget period. In addition, a study to evaluate new fuel formulations for an HCCl engine was completed.

  6. Cleaning Up Diesel Engines

    Broader source: Energy.gov (indexed) [DOE]

    by 2016 * Features of rule - All GHG emissions from vehicle - CO 2 -equivalent per global warming potential - Fleet average standard - Preserves model choice Relative...

  7. Diesel knock noise from combustion phenomenon to perceived signals

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Diesel knock noise from combustion phenomenon to perceived signals O. Sauvagea , A. Lauracb , M for reducing Diesel knock are modifications of engine parameters used for controlling combustion processes filters allowing realistic overall Diesel noise re-synthesises from cylinder pressure signals. Cylinder

  8. Emissions and Performance Tradeoffs for Advanced Marine Diesel Propulsion

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    is designed that reduces smoke generation on an experimental marine Diesel engine equipped with a variable and emission generation in marine diesel propulsion. In comparison to the MIMO controller we considerEmissions and Performance Tradeoffs for Advanced Marine Diesel Propulsion Anna Stefanopoulouy

  9. High speed flow cytometer droplet formation system and method

    DOE Patents [OSTI]

    Van den Engh, Ger (Seattle, WA)

    2000-01-01T23:59:59.000Z

    A droplet forming flow cytometer system allows high speed processing without the need for high oscillator drive powers through the inclusion of an oscillator or piezoelectric crystal such as within the nozzle volume or otherwise unidirectionally coupled to the sheath fluid. The nozzle container continuously converges so as to amplify unidirectional oscillations which are transmitted as pressure waves through the nozzle volume to the nozzle exit so as to form droplets from the fluid jet. The oscillator is directionally isolated so as to avoid moving the entire nozzle container so as to create only pressure waves within the sheath fluid. A variation in substance concentration is achieved through a movable substance introduction port which is positioned within a convergence zone to vary the relative concentration of substance to sheath fluid while still maintaining optimal laminar flow conditions. This variation may be automatically controlled through a sensor and controller configuration. A replaceable tip design is also provided whereby the ceramic nozzle tip is positioned within an edge insert in the nozzle body so as to smoothly transition from nozzle body to nozzle tip. The nozzle tip is sealed against its outer surface to the nozzle body so it may be removable for cleaning or replacement.

  10. Hardware demonstration of high-speed networks for satellite applications.

    SciTech Connect (OSTI)

    Donaldson, Jonathon W.; Lee, David S.

    2008-09-01T23:59:59.000Z

    This report documents the implementation results of a hardware demonstration utilizing the Serial RapidIO{trademark} and SpaceWire protocols that was funded by Sandia National Laboratories (SNL's) Laboratory Directed Research and Development (LDRD) office. This demonstration was one of the activities in the Modeling and Design of High-Speed Networks for Satellite Applications LDRD. This effort has demonstrated the transport of application layer packets across both RapidIO and SpaceWire networks to a common downlink destination using small topologies comprised of commercial-off-the-shelf and custom devices. The RapidFET and NEX-SRIO debug and verification tools were instrumental in the successful implementation of the RapidIO hardware demonstration. The SpaceWire hardware demonstration successfully demonstrated the transfer and routing of application data packets between multiple nodes and also was able reprogram remote nodes using configuration bitfiles transmitted over the network, a key feature proposed in node-based architectures (NBAs). Although a much larger network (at least 18 to 27 nodes) would be required to fully verify the design for use in a real-world application, this demonstration has shown that both RapidIO and SpaceWire are capable of routing application packets across a network to a common downlink node, illustrating their potential use in real-world NBAs.

  11. assisted diesel generator: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    assisted combustion of ethanol a means of using nearly pure ethanol as a diesel engine fuel by using hydrogen rich gases to facilitate of combustion (SOC) A good...

  12. advanced diesel technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: diesel engine, an electric motor, a Lithium-Ion battery, and an Eaton automated manual transmission. The electric motor, clutch, transmission, inverter,...

  13. Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction

    Broader source: Energy.gov (indexed) [DOE]

    Dynamometer Evaluation of Plasma- Catalyst for Diesel NOx Reduction February 20, 2003 CRADA Protected Document and Data 2 Introduction * Engine dynamometer evaluation of...

  14. Advanced High Efficiency Clean Diesel Combustion with Low Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Combustion with Micro-Variable Circular-Orifice (MVCO) Fuel Injector and Adaptive PCCI Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines...

  15. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Model-Based Transient Calibration Optimization for Next Generation Diesel Engines Demonstrating Fuel Consumption and Emissions Reductions with...

  16. Review of SCR Technologies for Diesel Emission Control: Euruopean...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicles French perspective on diesel engines & emissions Potential Effect of Pollutantn Emissions on Global Warming: First Comparisong Using External Costs on Urban Buses...

  17. administered diesel exhaust: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Injection Diesel Engine Using Pongamia Oil CiteSeer Summary: Abstract The use of biodiesel, the methyl esters of vegetable oils are becoming popular due to their low...

  18. Modeling Combustion Control for High Power Diesel Mode Switching

    Broader source: Energy.gov (indexed) [DOE]

    Directions in Engine-Efficiency and Emissions Research Conference 2010 Modeling Combustion Control for High Power Diesel Mode Switching Siddhartha Banerjee, Christopher J. Rutland...

  19. Update on Diesel Exhaust Emission Control Technology and Regulations

    Broader source: Energy.gov (indexed) [DOE]

    diesel out of the PM inventory * Technology is the state of optimization and cost reduction - Regeneration * LDD and MDD: engine management * HDD: auxiliary exhaust injection -...

  20. Control Oriented Modeling and System Identification of a Diesel Generator Set (Genset)

    E-Print Network [OSTI]

    Li, Perry Y.

    Control Oriented Modeling and System Identification of a Diesel Generator Set (Genset) Kai Loon Cheong, Perry Y. Li and Jicheng Xia Abstract-- A diesel generator set (genset) refers to a diesel engine of a conventional PI regulator in the voltage closed control loop of a diesel driven generator is considered. In all

  1. Fuel and Fuel Additive Registration Testing of Ethanol-Diesel Blend for O2Diesel, Inc.

    SciTech Connect (OSTI)

    Fanick, E. R.

    2004-02-01T23:59:59.000Z

    O2 Diesel Inc. (formerly AAE Technologies Inc.) tested a heavy duty engine with O2Diesel (diesel fuel with 7.7% ethanol and additives) for regulated emissions and speciation of vapor-phase and semi-volatile hydrocarbon compounds. This testing was performed in support of EPA requirements for registering designated fuels and fuel additives as stipulated by sections 211(b) and 211(e) of the Clean Air Act.

  2. High-Speed Tandem Mass Spectrometric in Situ Imaging by Nanospray...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Situ Imaging by Nanospray Desorption Electrospray Ionization Mass Spectrometry. High-Speed Tandem Mass Spectrometric in Situ Imaging by Nanospray Desorption Electrospray...

  3. IMPLICATIONS OF JITTER ON HIGH SPEED SERIAL INTERFACE STANDARDS, SIMULATION, AND DESIGN

    E-Print Network [OSTI]

    Moon, Un-Ku

    1 IMPLICATIONS OF JITTER ON HIGH SPEED SERIAL INTERFACE STANDARDS, SIMULATION, AND DESIGN MSEE....................................................................................................................4 2. Jitter................................................................................................................................7 2.1. Deterministic Jitter

  4. Recent Developments in BMW's Diesel Technology

    SciTech Connect (OSTI)

    Steinparzer, F

    2003-08-24T23:59:59.000Z

    The image of BMW is very strongly associated to high power, sports biased, luxury cars in the premium car segment, however, particularly in the United States and some parts of Asia, the combination of a car in this segment with a diesel engine was up until now almost unthinkable. I feel sure that many people in the USA are not even aware that BMW produces diesel-powered cars. In Europe there is a completely contrary situation which, driven by the relative high fuel price, and the noticeable difference between gasoline and diesel prices, there has been a continuous growth in the diesel market since the early eighties. During this time BMW has accumulated more then 20 years experience in developing and producing powerful diesel engines for sports and luxury cars. BMW started the production of its 1st generation diesel engine in 1983 with a 2,4 l, turbocharged IDI engine in the 5 series model range. With a specific power of 35 kW/l, this was the most powerful diesel engine on the market at this time. In 1991 BMW introduced the 2nd generation diesel engine, beginning with a 2,5 l inline six, followed in 1994 by a 1,7 l inline four. All engines of this 2nd BMW diesel engine family were turbocharged and utilized an indirect injection combustion system. With the availability of high-pressure injection systems such as the common rail system, BMW developed its 3rd diesel engine family which consists of four different engines. The first was the 4-cylinder for the 3 series car in the spring of 1998, followed by the 6-cylinder in the fall of 1998 and then in mid 1999 by the worlds first V8 passenger car diesel with direct injection. Beginning in the fall of 2001 with the 4-cylinder, BMW reworked this DI engine family fundamentally. Key elements are an improved core engine design, the use of the common rail system of the 2nd generation and a new engine control unit with even better performance. Step by step, these technological improvements were introduce d to production for all members of this engine family and in all the different vehicle applications. In the next slide you can see the production volume of diesel engines by BMW. From the 1st family we produced {approx} 260,000 units over eight years and from the 2nd family {approx} 630,000 units were produced also during an eight year period. How successful the actual engine family with direct injection is can be seen in the increase of the production volume to 330,000 units for the year 2002 alone. The reason for this is that, in addition to the very low fuel consumption, this new engines provide excellent driving characteristics and a significant improvement in the level of noise and vibration. Page 2 of 5 In 2002, 26% of all BMW cars worldwide, and nearly 40% in Europe, were produced with a diesel engine under the hood. In the X5 we can see the biggest diesel success rate. Of all the X5 vehicles produced, 35% Worldwide and 68% in Europe are powered by a diesel engine.

  5. USCViterbi//Engineer ROMANCING KIDS WITH ROBOTS // MANY LIVES OF ENGINEERS

    E-Print Network [OSTI]

    Zhou, Chongwu

    to develop cleaner, more efficient diesel combustion engines. This is just one of many ground- breaking

  6. Business Case for Light-Duty Diesels

    Broader source: Energy.gov (indexed) [DOE]

    Laredo - Tallahassee (1039 miles) 2 days, 1 tank, 59 mpg Jeep Liberty CRD Factory fill B5 biodiesel Local production, local fuel 9 Cost of Diesel systems? The engine Modern PC...

  7. Model-based Adaptive Observers for Intake Leakage Detection in Diesel Riccardo Ceccarelli, Carlos Canudas-de-Wit, Philippe Moulin and Antonio Sciarretta

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Model-based Adaptive Observers for Intake Leakage Detection in Diesel Engines Riccardo Ceccarelli of diesel en- gine diagnosis by means of model-based adaptive observers. The problem is motivated Diesel engine testbed. I. INTRODUCTION Modern diesel engine has the potential of a significant reduction

  8. Model-based Adaptive Observers for Intake Leakage Detection in Diesel Riccardo Ceccarelli , Carlos Canudas-de-Wit, Philippe Moulin and Antonio Sciarretta

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Model-based Adaptive Observers for Intake Leakage Detection in Diesel Engines Riccardo Ceccarelli of diesel en- gine diagnosis by means of model-based adaptive observers. The problem is motivated diesel engine professional simulator AMEsim. I. INTRODUCTION Modern diesel engine has the potential

  9. DEVELOPMENT OF OTM SYNGAS PROCESS AND TESTING OF SYNGAS-DERIVED ULTRA-CLEAN FUELS IN DIESEL ENGINES AND FUEL CELLS

    SciTech Connect (OSTI)

    E.T. (Skip) Robinson; James P. Meagher; Ravi Prasad

    2001-10-31T23:59:59.000Z

    This topical report summarizes work accomplished for the Program from January 1 through September 15, 2001 in the following task areas: Task 1--materials development; Task 2--composite element development; Task 3--tube fabrication; Task 4--reactor design and process optimization; Task 5--catalyst development; Task 6--P-1 operation; Task 8--fuels and engine testing; and Task 10--project management. OTM benchmark material, LCM1, exceeds the commercial oxygen flux target and was determined to be sufficiently robust to carry on process development activities. Work will continue on second-generation OTM materials that will satisfy commercial life targets. Three fabrication techniques for composite elements were determined to be technically feasible. These techniques will be studied and a lead manufacturing process for both small and large-scale elements will be selected in the next Budget Period. Experiments in six P-0 reactors, the long tube tester (LTT) and the P-1 pilot plant were conducted. Significant progress in process optimization was made through both the experimental program and modeling studies of alternate reactor designs and process configurations. Three tailored catalyst candidates for use in OTM process reactors were identified. Fuels for the International diesel engine and Nuvera fuel cell tests were ordered and delivered. Fuels testing and engine development work is now underway.

  10. PM PEM’s On-Road Investigation – With and Without DPF Equipped Engines

    E-Print Network [OSTI]

    Durbin, T; Jung, H; Cocker III, D R; Johnson, K

    2009-01-01T23:59:59.000Z

    Under the Heavy-Duty Diesel Engine In-Use Testing Program,Emissions from Diesel Engines. 1. Regulated GaseousEmissions from Diesel Engines. 2. Sampling and Toxics and

  11. Diesel Truck Traffic in Low-Income and Minority Communities Adjacent to Ports: Environmental Justice Implications of Near-Roadway Land Use Conflicts

    E-Print Network [OSTI]

    Houston, Douglas; Krudysz, Margaret; Winer, Arthur

    2008-01-01T23:59:59.000Z

    Particulate Emissions from Diesel Engines: A Review. JournalExposure of PM2.5 and EC from Diesel and Gasoline Vehiclesa Major Highway with Heavy-Duty Diesel Traffic. Atmospheric

  12. Optimal Filters for High-Speed Compressive Detection in ...

    E-Print Network [OSTI]

    2013-02-14T23:59:59.000Z

    Feb 28, 2013 ... this to give an algorithm to design optimal filters to minimize the mean squared error ... Rapid identification and quantification of chemical species in complex mixtures is ..... model,” Optical Engineering 49(11), 113601 (2010).

  13. Driving Down Diesel Emissions

    E-Print Network [OSTI]

    Harley, Robert

    2013-01-01T23:59:59.000Z

    is adapted from “Effects of Diesel Particle Filter Retro?tst’s official: exposure to diesel exhaust harms human health.its rankings, shifting diesel exhaust from a probable to a

  14. An evaluation of an optically-based, cylinder pressure sensor in a single-cylinder, research, diesel engine

    E-Print Network [OSTI]

    Turner, Timothy Troy

    1994-01-01T23:59:59.000Z

    Engineers have long searched for a viable method to reliably measure cylinder pressure in real-world, internal combustion engines during normal operation. Although many devices to measure cylinder pressure in a laboratory situation exist, none exist...

  15. EPA Diesel Update

    Broader source: Energy.gov (indexed) [DOE]

    EPA Diesel Update 2005 DEER Conference Bill Charmley EPAOffice of Transportation and Air Quality August 22, 2005 2 Overview * Implementation update on mobile source diesel...

  16. ECEN 720 High-Speed Links: Circuits and Systems Lab1 -Transmission Lines

    E-Print Network [OSTI]

    Palermo, Sam

    1 ECEN 720 High-Speed Links: Circuits and Systems Lab1 - Transmission Lines Objective To learn about transmission lines and time-domain reflectometer (TDR). Introduction Wires are used to transmit. In high speed data communication chip design, the wires are often treated as transmission lines. Proper

  17. Improved understanding and control of high-speed jet interaction flows

    E-Print Network [OSTI]

    Srinivasan, Ravichandra

    2006-04-12T23:59:59.000Z

    include the use of jets for fuel injection in scramjets, for reaction control of high-speed aerodynamic bodies and as cooling jets for skins of high-speed vehicles. A necessary requirement in the use of transverse jets for these and other applications is a...

  18. AFRL-AFOSR-UK-TR-2012-0012 High Speed Compressor Study

    E-Print Network [OSTI]

    AFRL-AFOSR-UK-TR-2012-0012 High Speed Compressor Study Charles R. Stone University of Oxford (From ­ To) 1 January 2011 ­ 1 January 2012 4. TITLE AND SUBTITLE High Speed Compressor Study 5a of cryocoolers, with the goal of increasing the power per unit mass (or volume) of cryocooler compressors

  19. Status of ORNL/ENEA-Frascati Collaboration on IGNITOR High-Speed Pellet Injector*

    E-Print Network [OSTI]

    Status of ORNL/ENEA-Frascati Collaboration on IGNITOR High-Speed Pellet Injector* S. K. Combs, C. R June 15, 2011 #12;2! Background ­ ORNL History with High-Speed Pellet Injection ·Two-stage light gas development ·Accelerated plastic projectiles (4 and 6 mm) up to 5 km/s (single pellets) ·QUICKGUN Algorithm

  20. Bulk CMOS Device Optimization for High-Speed and Ultra-Low Power Operations

    E-Print Network [OSTI]

    Nyathi, Jabulani

    Bulk CMOS Device Optimization for High-Speed and Ultra-Low Power Operations Brent Bero and Jabulani- Interest in subthreshold design has increased due to the emergence of systems that require ultra-low power creating a clear divide between designing for high speed and ultra-low power. It might be beneficial