National Library of Energy BETA

Sample records for high-power kinetic hydropower

  1. Hydropower

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydropower - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  2. Energy 101: Hydropower

    ScienceCinema (OSTI)

    None

    2013-04-24

    Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

  3. Energy 101: Hydropower

    SciTech Connect (OSTI)

    2013-04-01

    Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

  4. Hydropower Projects

    Broader source: Energy.gov [DOE]

    This report covers the Wind and Water Power Technologies Office's hydropower project funding from fiscal years 2008 to 2014.

  5. History of Hydropower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    History of Hydropower History of Hydropower

  6. Hydropower Process Improvements

    Energy Savers [EERE]

    Hydropower Appropriations Hydropower Appropriations List of projects selected focusing on updating technologies and methods to improve the performance of conventional hydropower plants. PDF icon Hydropower Appropriations More Documents & Publications Site Characterization Awards Water Power Program: 2011 Peer Review Report Marine and Hydrokinetic Energy Projects

    Market Acceleration and Deployment Hydropower Market Acceleration and Deployment Hydropower Market Acceleration and Deployment

  7. MEMORANDUM OF UNDERSTANDING FOR HYDROPOWER SUSTAINABLE HYDROPOWER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SUSTAINABLE HYDROPOWER ACTION PLAN (PHASE II) March 2015 This page was intentionality left blank MEMORANDUM OF UNDERSTANDING FOR HYDROPOWER i List of Acronyms ..........................................................................................................................1 Executive Summary .....................................................................................................................3 Introduction

  8. First-ever Hydropower Market Report Covers Hydropower Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    First-ever Hydropower Market Report Covers Hydropower Generation Infrastructure First-ever Hydropower Market Report Covers Hydropower Generation Infrastructure May 28, 2015 -...

  9. Hydropower Projects

    SciTech Connect (OSTI)

    2015-04-02

    The Water Power Program helps industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity. Through support for public, private, and nonprofit efforts, the Water Power Program promotes the development, demonstration, and deployment of advanced hydropower devices and pumped storage hydropower applications. These technologies help capture energy stored by diversionary structures, increase the efficiency of hydroelectric generation, and use excess grid energy to replenish storage reserves for use during periods of peak electricity demand. In addition, the Water Power Program works to assess the potential extractable energy from domestic water resources to assist industry and government in planning for our nation’s energy future. From FY 2008 to FY 2014, DOE’s Water Power Program announced awards totaling approximately $62.5 million to 33 projects focused on hydropower. Table 1 provides a brief description of these projects.

  10. Improved Structure and Fabrication of Large, High-Power KHPS Rotors - Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Corren, Dean; Colby, Jonathan; Adonizio, Mary Ann

    2013-01-29

    Verdant Power, Inc, working in partnership with the National Renewable Energy Laboratory (NREL), Sandia National Laboratories (SNL), and the University of Minnesota St. Anthony Falls Laboratory (SAFL), among other partners, used evolving Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) models and techniques to improve the structure and fabrication of large, high-power composite Kinetic Hydropower System (KHPS) rotor blades. The objectives of the project were to: design; analyze; develop for manufacture and fabricate; and thoroughly test, in the lab and at full scale in the water, the improved KHPS rotor blade.

  11. Pumped Storage Hydropower

    Broader source: Energy.gov [DOE]

    In addition to traditional hydropower, pumped-storage hydropower (PSH)—A type of hydropower that works like a battery, pumping water from a lower reservoir to an upper reservoir for storage and...

  12. Hydropower in the Northwest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydropower produces no emissions. There are no gases or waste products that contribute to air pollution, acid rain or global warming. Hydropower is secure. Water from our rivers is...

  13. National Hydropower Map

    Broader source: Energy.gov [DOE]

    High-resolution map produced by Oak Ridge National Laboratory showing hydropower resources throughout the United States.

  14. Hydropower Market Report | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydropower Market Report Hydropower Market Report Hydropower Market Report Top 10 Things You Didn't Know about Hydropower An error occurred. Try watching this video on...

  15. Hydropower Baseline Cost Modeling

    SciTech Connect (OSTI)

    O'Connor, Patrick W.; Zhang, Qin Fen; DeNeale, Scott T.; Chalise, Dol Raj; Centurion, Emma E.

    2015-01-01

    Recent resource assessments conducted by the United States Department of Energy have identified significant opportunities for expanding hydropower generation through the addition of power to non-powered dams and on undeveloped stream-reaches. Additional interest exists in the powering of existing water resource infrastructure such as conduits and canals, upgrading and expanding existing hydropower facilities, and the construction new pumped storage hydropower. Understanding the potential future role of these hydropower resources in the nation’s energy system requires an assessment of the environmental and techno-economic issues associated with expanding hydropower generation. To facilitate these assessments, this report seeks to fill the current gaps in publically available hydropower cost-estimating tools that can support the national-scale evaluation of hydropower resources.

  16. 2014 Hydropower Market Report

    SciTech Connect (OSTI)

    Uria-Martinez, Rocio; O'Connor, Patrick W.; Johnson, Megan M.

    2015-04-30

    The U.S. hydropower fleet has been providing clean, reliable power for more than a hundred years. However, no systematic documentation exists of the U.S. fleet and the trends influencing it in recent years. This first-ever Hydropower Market Report seeks to fill this gap and provide industry and policy makers with a quantitative baseline on the distribution, capabilities, and status of hydropower in the United States.

  17. Flexible hydropower: boosting energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flexible hydropower: boosting energy Flexible hydropower: boosting energy New hydroelectric resource for Northern New Mexico supplies clean energy to homes, businesses and the Lab. December 16, 2014 Flexible hydropower: boosting energy Abiquiu Dam's low-flow turbine for hydroelectric generation creates a flexible energy source when water levels are lower or higher than usual. Energy sustainability is a daunting task: How do we develop top-notch innovations with some of the world's most powerful

  18. Flexible hydropower: boosting energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flexible hydropower: boosting energy New hydroelectric resource for Northern New Mexico ... Abiquiu Dam's low-flow turbine for hydroelectric generation creates a flexible energy ...

  19. Commonwealth Hydropower Program

    Broader source: Energy.gov [DOE]

    Through the Commonwealth Hydropower Initiative, the Massachusetts Clean Energy Center (MassCEC) offers grants for both feasibility studies and construction of hydroelectric facilities. Feasibility...

  20. Evaluating New Hydropower Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working to Ensure Environmental and Social Transparency The evaluation of opportunities for new hydropower development must include considerations of ecological and social ...

  1. Evaluating New Hydropower Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ensure Environmental and Social Transparency The evaluation of opportunities for new hydropower development must include considerations of ecological and social sustainability....

  2. Hydropower annual report 2003

    SciTech Connect (OSTI)

    Cada, Glenn F.; Carlson, Thomas J.; Dauble, Dennis D.; Hunt, Richard T.; Sale, Michael J.; Sommers, Garold L.

    2004-02-01

    This report describes hydropower activities supported by the U.S. Department of Energy (DOE) Wind and Hydropower Program during Fiscal Year 2003 (October 1, 2002 to September 30, 2003). Background on the program, FY03 accomplishments, and future plans are presented in the following sections.

  3. High Power Cryogenic Targets

    SciTech Connect (OSTI)

    Gregory Smith

    2011-08-01

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  4. Hydropower Appropriations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower Appropriations Hydropower Appropriations List of projects selected focusing on updating technologies and methods to improve the performance of conventional hydropower plants. PDF icon Hydropower Appropriations More Documents & Publications Site Characterization Awards Water Power Program: 2011 Peer Review Report Marine and Hydrokinetic Energy Projects

  5. Conventional Hydropower Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This fact sheet describes the DOE Water Power Program's conventional hydropower research and development efforts.

  6. high-power LEDs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high-power LEDs - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  7. High power microwave generator

    DOE Patents [OSTI]

    Ekdahl, Carl A. (Albuquerque, NM)

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  8. High power microwave generator

    DOE Patents [OSTI]

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  9. Hydropower research and development

    SciTech Connect (OSTI)

    1997-03-01

    This report is a compilation of information on hydropower research and development (R and D) activities of the Federal government and hydropower industry. The report includes descriptions of on-going and planned R and D activities, 1996 funding, and anticipated future funding. Summary information on R and D projects and funding is classified into eight categories: fish passage, behavior, and response; turbine-related; monitoring tool development; hydrology; water quality; dam safety; operations and maintenance; and water resources management. Several issues in hydropower R and D are briefly discussed: duplication; priorities; coordination; technical/peer review; and technology transfer/commercialization. Project information sheets from contributors are included as an appendix.

  10. 2011 Grants for Advanced Hydropower Technologies | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grants for Advanced Hydropower Technologies 2011 Grants for Advanced Hydropower Technologies 2011 Grants for Advanced Hydropower Technologies Click on an Awardee or Project Site...

  11. Xiaogushan Hydropower Company | Open Energy Information

    Open Energy Info (EERE)

    Xiaogushan Hydropower Company Jump to: navigation, search Name: Xiaogushan Hydropower Company Place: Zhangye, Gansu Province, China Sector: Hydro Product: Developer of Hydropower...

  12. CX-005428: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Structure and Fabrication of Large High-Power Kinetic Hydropower System Rotors ... waterpower technology - large, high power Kinetic Hydropower System (KHPS) rotors. ...

  13. Types of Hydropower Turbines

    Broader source: Energy.gov [DOE]

    There are two main types of hydro turbines: impulse and reaction. The type of hydropower turbine selected for a project is based on the height of standing water—referred to as "head"—and the flow,...

  14. 2015 Forum on Hydropower

    Broader source: Energy.gov [DOE]

    Discover how Canadian hydropower is learning lessons and building the future. Get updated on greenfield, rehabilitation, refurbishment and expansion projects going on across the country. Learn how...

  15. Hydropower Vision Text Version

    Broader source: Energy.gov [DOE]

    Linda Church Ciocci: Hydropower is woven in the very fabric of our nation. It is our largest source of renewable energy, provides the backbone of our electric system, has an incredible history....

  16. High power microwave generator

    DOE Patents [OSTI]

    Minich, Roger W. (Patterson, CA)

    1988-01-01

    A device (10) for producing high-powered and coherent microwaves is described. The device comprises an evacuated, cylindrical, and hollow real cathode (20) that is driven to inwardly field emit relativistic electrons. The electrons pass through an internally disposed cylindrical and substantially electron-transparent cylindrical anode (24), proceed toward a cylindrical electron collector electrode (26), and form a cylindrical virtual cathode (32). Microwaves are produced by spatial and temporal oscillations of the cylindrical virtual cathode (32), and by electrons that reflex back and forth between the cylindrical virtual cathode (32) and the cylindrical real cathode (20).

  17. Xishuangbanna Tianshengqiao Hydropower Development Co Ltd | Open...

    Open Energy Info (EERE)

    Tianshengqiao Hydropower Development Co Ltd Jump to: navigation, search Name: Xishuangbanna Tianshengqiao Hydropower Development Co., Ltd. Place: Xishuangbanna City, Yunnan...

  18. HIGH POWER PULSED OSCILLATOR

    DOE Patents [OSTI]

    Singer, S.; Neher, L.K.

    1957-09-24

    A high powered, radio frequency pulse oscillator is described for generating trains of oscillations at the instant an input direct voltage is impressed, or immediately upon application of a light pulse. In one embodiment, the pulse oscillator comprises a photo-multiplier tube with the cathode connected to the first dynode by means of a resistor, and adjacent dynodes are connected to each other through adjustable resistors. The ohmage of the resistors progressively increases from a very low value for resistors adjacent the cathode to a high value adjacent the plate, the last dynode. Oscillation occurs with this circuit when a high negative voltage pulse is applied to the cathode and the photo cathode is bombarded. Another embodiment adds capacitors at the resistor connection points of the above circuit to increase the duration of the oscillator train.

  19. First-ever Hydropower Market Report Covers Hydropower Generation Infrastructure

    Broader source: Energy.gov [DOE]

    The Energy Departments 2014 Hydropower Market Report was released last month in an effort to provide taxpayers and industry professionals with a snapshot of the growing hydropower industry in the...

  20. Microsoft PowerPoint - MVD Hydrokinetics, SW Regional Hydropower Conference, 10 June 2010, rev 1.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrokinetic Projects on the Mississippi River Mississippi River Southwestern Federal Hydropower Conference 10 June 2010 Jeff Artman, P.E. MVD Hydropower Business Line Manager Line Manager BUILDING STRONG ® 1 What are Hydrokinetic Projects? Hydrokinetic hydropower projects convert the kinetic energy of flowing water into electrical energy. Applications are where adequate velocity of flowing water to generate electricity exists. This can be from tidal currents, wave energy, or in our case...the

  1. High power connection system

    DOE Patents [OSTI]

    Schaefer, Christopher E.; Beer, Robert C.; McCall, Mark D.

    2000-01-01

    A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.

  2. Benefits of Hydropower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Hydropower Basics » Benefits of Hydropower Benefits of Hydropower Benefits of Hydropower Water power offers a number of advantages to the communities that they serve. Below are just some of the benefits that hydropower has over other methods of providing energy. Advantages of Hydropower: Hydropower is fueled by water, so it's a clean fuel source, meaning it won't pollute the air like power plants that burn fossil fuels, such as coal or natural gas. Hydroelectric power

  3. National Hydropower Association

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydropower Association - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  4. Hydropower Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower Market Report Top 10 Things You Didn't Know about Hydropower Test your energy knowledge by checking out these surprising facts about hydropower. Get Pumped about Pumped ...

  5. Conventional Hydropower Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    The US Department of Energy conducts research on conventional hydropower technologies to increase generation and improve existing means of generating hydroelectricity.

  6. National Hydropower Association Annual Conference

    Broader source: Energy.gov [DOE]

    Join industry leaders, state and federal regulatory officials, and key legislative staff to discuss technology, policy and future development options for the hydropower industry at the National...

  7. Glossary of Hydropower Terms | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glossary of Hydropower Terms Glossary of Hydropower Terms The glossary of terms defines the components that make up hydro turbines and hydropower plants. Visit Types of Hydropower Plants to view hydropower plant illustrations. Alternating current (AC): Electric current that reverses direction many times per second. Ancillary services: Capacity and energy services provided by power plants that are able to respond on short notice, such as hydropower plants, and are used to ensure stable

  8. Huadian Hongli Hydropower Investment Development Company | Open...

    Open Energy Info (EERE)

    Hongli Hydropower Investment Development Company Jump to: navigation, search Name: Huadian Hongli Hydropower Investment Development Company Place: Huadian City, Jilin Province,...

  9. International Hydropower Association | Open Energy Information

    Open Energy Info (EERE)

    International Hydropower Association Place: United Kingdom Zip: SM1 4JH Sector: Hydro Product: The International Hydropower Association is a non-governmental mutual association of...

  10. British Hydropower Association | Open Energy Information

    Open Energy Info (EERE)

    British Hydropower Association Place: Wimborne, Dorset, United Kingdom Zip: BH21 1QU Sector: Hydro Product: The British Hydropower Association (BHA) is a trade association which...

  11. Shimian Dagoutou Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    Dagoutou Hydropower Station Jump to: navigation, search Name: Shimian Dagoutou Hydropower Station Place: Ya'an, Sichuan Province, China Zip: 625400 Sector: Hydro Product:...

  12. Huitong County Gaoyongdong Hydropower Development | Open Energy...

    Open Energy Info (EERE)

    Huitong County Gaoyongdong Hydropower Development Jump to: navigation, search Name: Huitong County Gaoyongdong Hydropower Development Place: Huaihua city, Hunan Province, China...

  13. Liuyang Hedong Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    Liuyang Hedong Hydropower Station Jump to: navigation, search Name: Liuyang Hedong Hydropower Station Place: Liuyang, Hunan Province, China Zip: 410305 Sector: Hydro Product:...

  14. Eryuan Huian Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    Eryuan Huian Hydropower Station Jump to: navigation, search Name: Eryuan Huian Hydropower Station Place: Dali Bai Autonomous Prefecture, Yunnan Province, China Zip: 671200 Sector:...

  15. Tianlin Baxin Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    Baxin Hydropower Station Jump to: navigation, search Name: Tianlin Baxin Hydropower Station Place: Baise, Guangxi Autonomous Region, China Zip: 533000 Sector: Hydro Product:...

  16. Jiulong Wanbao Hydropower Corporation | Open Energy Information

    Open Energy Info (EERE)

    Wanbao Hydropower Corporation Jump to: navigation, search Name: Jiulong Wanbao Hydropower Corporation Place: Garze Tibetan Autonomous Prefecture, Sichuan Province, China Zip:...

  17. National Hydropower Association | Open Energy Information

    Open Energy Info (EERE)

    Hydropower Association Jump to: navigation, search Name: National Hydropower Association Place: Washington, DC Zip: 20001 Sector: Hydro Product: NHA is a non-profit national...

  18. Furong Hydropower Plant | Open Energy Information

    Open Energy Info (EERE)

    Furong Hydropower Plant Jump to: navigation, search Name: Furong Hydropower Plant Place: Shaanxi Province, China Zip: 725400 Sector: Hydro Product: China-based small hydro project...

  19. Diebu Kababanjiu Hydropower Ltd | Open Energy Information

    Open Energy Info (EERE)

    Kababanjiu Hydropower Ltd Jump to: navigation, search Name: Diebu Kababanjiu Hydropower Ltd. Place: Gansu Province, China Zip: 747400 Sector: Hydro Product: China-based small hydro...

  20. Jintai Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jintai Hydropower Co Ltd Jump to: navigation, search Name: Jintai Hydropower Co. Ltd. Place: Gansu Province, China Zip: 747000 Sector: Hydro Product: China-based small hydro...

  1. Ebian Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ebian Hydropower Co Ltd Jump to: navigation, search Name: Ebian Hydropower Co., Ltd Place: Leshan, Sichuan Province, China Zip: 614300 Sector: Hydro Product: China based small...

  2. Shimian Danihe Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    Danihe Hydropower Station Jump to: navigation, search Name: Shimian Danihe Hydropower Station Place: Ya'an, Sichuan Province, China Zip: 625400 Sector: Hydro Product: China-based...

  3. Qinghai Huanghe Zhongxing Hydropower Construction Development...

    Open Energy Info (EERE)

    Zhongxing Hydropower Construction Development Co Ltd Jump to: navigation, search Name: Qinghai Huanghe Zhongxing Hydropower Construction Development Co., Ltd Place: Qinghai...

  4. Solar, Wind, Hydropower: Home Renewable Energy Installations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar, Wind, Hydropower: Home Renewable Energy Installations Solar, Wind, Hydropower: Home Renewable Energy Installations April 17, 2013 - 1:44pm Addthis This Lakewood, Colorado ...

  5. Types of Hydropower Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drawing showing a cross section of an impoundment dam and hydropower plant. Transmission ... Drawing shows a micro hydropower plant. Intake gates allow water to flow through the ...

  6. EERE Success Story-First-ever Hydropower Market Report Covers Hydropower

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation Infrastructure | Department of Energy First-ever Hydropower Market Report Covers Hydropower Generation Infrastructure EERE Success Story-First-ever Hydropower Market Report Covers Hydropower Generation Infrastructure May 28, 2015 - 2:41pm Addthis EERE Success Story—First-ever Hydropower Market Report Covers Hydropower Generation Infrastructure The Energy Department's 2014 Hydropower Market Report was released last month in an effort to provide taxpayers and industry

  7. Assessing Hydropower in the West

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Megan M.; Uria Martinez, Rocio

    2015-06-01

    On April 27, the U.S. Department of Energy (DOE) released the 2014 Hydropower Market Report, which provides a quantitative baseline on the distribution, capabilities, and status of hydropower in the United States. Although the report shows many interesting trends and figures, this article focuses on those related to the western region.

  8. 2014 Hydropower Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On the front cover: Smithland Hydropower Project, Livingston County, KY (image courtesy of American Municipal Power). The plant-scheduled for completion in late 2015 or early 2016-will have an estimated rated capacity of 72 MW and an estimated annual production of 379 GWh. It is one of three projects being built by American Municipal Power at non-powered dams along the Ohio River. The photo was taken in November 2014. This report is being disseminated by the U.S. Department of Energy (DOE). As

  9. Hydropower Projects, Fiscal Years 2008-2014

    SciTech Connect (OSTI)

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Hydropower Projects from 2008 to 2014.

  10. Hydropower Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower Technology Basics Hydropower Technology Basics August 14, 2013 - 3:03pm Addthis Text Version Photo of the reservoir in front of a hydropower dam. Hydropower, or hydroelectric power, is the most common and least expensive source of renewable electricity in the United States today. According to the Energy Information Administration, more than 6% of the country's electricity was produced from hydropower resources in 2014, and about 48% of all renewable electricity generated in the United

  11. Hydropower Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Hydropower Basics Hydropower Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Most people associate water power with the Hoover Dam-a huge facility harnessing the power of an entire river behind its walls-but hydropower facilities come in all sizes. Some may be very large, but they can be tiny too, taking advantage of water flows in municipal water facilities or irrigation ditches. They can even be "dam-less,"

  12. Gansu Hongyuan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hongyuan Hydropower Co Ltd Jump to: navigation, search Name: Gansu Hongyuan Hydropower Co Ltd Place: Lanzhou, Gansu Province, China Sector: Hydro Product: A hydropower project...

  13. Sichuan Minjiang Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydropower Co Ltd Jump to: navigation, search Name: Sichuan Minjiang Hydropower Co Ltd Place: Sichuan Province, China Zip: 623007 Sector: Hydro Product: A hydropower developer in...

  14. Property:PotentialHydropowerSites | Open Energy Information

    Open Energy Info (EERE)

    Property Name PotentialHydropowerSites Property Type Number Description The number of potential hydropower sites in a place. Pages using the property "PotentialHydropowerSites"...

  15. High power gas laser amplifier

    DOE Patents [OSTI]

    Leland, Wallace T.; Stratton, Thomas F.

    1981-01-01

    A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.

  16. Making Hydropower More Eco-Friendly | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower More Eco-Friendly Making Hydropower More Eco-Friendly October 22, 2014 - 4:06pm Addthis Making Hydropower More Eco-Friendly Making Hydropower More Eco-Friendly Making Hydropower More Eco-Friendly Making Hydropower More Eco-Friendly Making Hydropower More Eco-Friendly Making Hydropower More Eco-Friendly Hoyt Battey Market Acceleration and Deployment Program Manager, Wind and Water Power Technologies Office MORE RESOURCES Learn more about the Sensor Fish project Subscribe to Water Power

  17. Draft Environmental Assessment Sleeping Giant Hydropower Project

    Energy Savers [EERE]

    Draft Environmental Assessment Sleeping Giant Hydropower Project Montana Area Office Great Plains Region October 2015 Draft Environmental Assessment Sleeping Giant Hydropower Project Table of Contents (Page 1 of 3) CHAPTER 1 - INTRODUCTION .................................................................................................................... 1 PROPOSED ACTION

  18. Hydropower Research & Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Hydropower Research & Development Hydropower Research & Development The Water Power Program's hydropower research and development (R&D) efforts focus on advancing technologies that produce electricity from elevation differences in falling or flowing water. For more than 100 years, hydropower has been an important source of flexible, low-cost, and emissions-friendly renewable energy. The program is currently leading efforts to increase the generating

  19. Harnessing Hydropower: The Earth's Natural Resource

    SciTech Connect (OSTI)

    2011-04-01

    This document is a layman's overview of hydroelectric power. It includes information on: History of Hydropower; Nature’s Water Cycle; Hydropower Plants; Turbines and Generators; Transmission Systems; power dispatching centers; and Substations. It goes on to discuss The Power Grid, Hydropower in the 21st Century; Energy and the Environment; and how hydropower is useful for Meeting Peak Demands. It briefly addresses how Western Area Power Administration is Responding to Environmental Concerns.

  20. Small Hydropower in the United States

    SciTech Connect (OSTI)

    Hadjerioua, Boualem; Johnson, Kurt

    2015-09-01

    Small hydropower, defined in this report as hydropower with a generating capacity of up to 10 MW typically built using existing dams, pipelines, and canals has substantial opportunity for growth. Existing small hydropower comprises about 75% of the current US hydropower fleet in terms of number of plants. The economic feasibility of developing new small hydropower projects has substantially improved recently, making small hydropower the type of new hydropower development most likely to occur. In 2013, Congress unanimously approved changes to simplify federal permitting requirements for small hydropower, lowering costs and reducing the amount of time required to receive federal approvals. In 2014, Congress funded a new federal incentive payment program for hydropower, currently worth approximately 1.5 cents/kWh. Federal and state grant and loan programs for small hydropower are becoming available. Pending changes in federal climate policy could benefit all renewable energy sources, including small hydropower. Notwithstanding remaining barriers, development of new small hydropower is expected to accelerate in response to recent policy changes.

  1. 2014 Hydropower Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Hydropower Market Report 2014 Hydropower Market Report A screenshot of the 2014 hydropower market report showing a dam under construction at sunset. The U.S. hydropower fleet has been providing clean, reliable power for more than a hundred years. However, no systematic documentation exists of the U.S. fleet and the trends influencing it in recent years. This first-ever Hydropower Market Report seeks to fill this gap and provide industry and policy makers with a quantitative baseline on the

  2. US hydropower resource assessment for Hawaii

    SciTech Connect (OSTI)

    Francfort, J.E.

    1996-09-01

    US DOE is developing an estimate of the undeveloped hydropower potential in US. The Hydropower Evaluation Software (HES) is a computer model developed by INEL for this purpose. HES measures the undeveloped hydropower resources available in US, using uniform criteria for measurement. The software was tested using hydropower information and data provided by Southwestern Power Administration. It is a menu-driven program that allows the PC user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes, and generate reports. This report describes the resource assessment results for the State of Hawaii.

  3. 2014 Water Power Program Peer Review Compiled Presentations: Hydropower

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Hydropower Technologies 2014 Water Power Program Peer Review Compiled Presentations: Hydropower Technologies The U.S. Department of Energy Water Power Program conducted the 2014 peer review meeting on hydropower technologies February 25-27. The compiled 2014 Hydropower Technologies Peer Review Presentations listed below are available for download. Existing Hydropower Existing Hydropower-Michael Reed, U.S. Department of Energy National Hydropower Asset

  4. Hydropower Baseline Cost Modeling, Version 2

    SciTech Connect (OSTI)

    O'Connor, Patrick W.

    2015-09-01

    Recent resource assessments conducted by the United States Department of Energy have identified significant opportunities for expanding hydropower generation through the addition of power to non-powered dams and on undeveloped stream-reaches. Additional interest exists in the powering of existing water resource infrastructure such as conduits and canals, upgrading and expanding existing hydropower facilities, and the construction new pumped storage hydropower. Understanding the potential future role of these hydropower resources in the nation’s energy system requires an assessment of the environmental and techno-economic issues associated with expanding hydropower generation. To facilitate these assessments, this report seeks to fill the current gaps in publically available hydropower cost estimating tools that can support the national-scale evaluation of hydropower resources.

  5. Conventional Hydropower Technologies Fact Sheet

    SciTech Connect (OSTI)

    2011-07-01

    This factsheet gives a description of the U.S. Department of Energy Water Power Program's efforts to increase generating capacity and efficiency at existing hydroelectric facilities, add hydroelectric generating capacity to non-powered dams, and reduce the environmental effects of hydropower.

  6. High-Power Rf Load

    DOE Patents [OSTI]

    Tantawi, Sami G.; Vlieks, Arnold E.

    1998-09-01

    A compact high-power RF load comprises a series of very low Q resonators, or chokes [16], in a circular waveguide [10]. The sequence of chokes absorb the RF power gradually in a short distance while keeping the bandwidth relatively wide. A polarizer [12] at the input end of the load is provided to convert incoming TE.sub.10 mode signals to circularly polarized TE.sub.11 mode signals. Because the load operates in the circularly polarized mode, the energy is uniformly and efficiently absorbed and the load is more compact than a rectangular load. Using these techniques, a load having a bandwidth of 500 MHz can be produced with an average power dissipation level of 1.5 kW at X-band, and a peak power dissipation of 100 MW. The load can be made from common lossy materials, such as stainless steel, and is less than 15 cm in length. These techniques can also produce loads for use as an alternative to ordinary waveguide loads in small and medium RF accelerators, in radar systems, and in other microwave applications. The design is easily scalable to other RF frequencies and adaptable to the use of other lossy materials.

  7. Hydropower Modernization Initiative Proposed Implementation Strategy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office eere.energy.gov 1 Mike Reed, Program Lead September 23, 2013 Hydropower Market Report May 2016 Update Rocio Uria-Martinez Megan Johnson Patrick O'Connor Oak Ridge National Laboratory Water Power Technologies Office eere.energy.gov 2 Introduction These slides provide updates to some of the key metrics included in the 2014 Hydropower Market Report, which was published in April 2015. The Hydropower Market Report aims to fill the existing gap regarding publicly available, comprehensive

  8. New Stream-Reach Hydropower Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Identifying and Evaluating New Hydropower Resources More than 65 GW of sustainable hydropower potential still exists in U.S. stream-reaches, according to a hydro- power resource assessment funded by the Department of Energy and executed by Oak Ridge National Laboratory. The New Stream-reach Development (NSD) project implemented an ad- vanced geo-spatial approach to analyze the potential for new hydropower development in U.S. stream-reaches that do not currently have hydroelectric facilities or

  9. Hydropower Memorandum of Understanding | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Memorandum of Understanding Hydropower Memorandum of Understanding The Department of Energy, the Department of the Interior, and the Department of the Army through the U.S. Army Corps of Engineers (collectively the "Agencies") signed the Memorandum of Understanding (MOU) for Hydropower on March 24, 2010, and extended it on March 24, 2015 for another five years. The MOU is helping meet the nation's needs for reliable, affordable, and environmentally sustainable hydropower by

  10. Hydropower Technology Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Development Hydropower Technology Development Hydropower Technology Development Hydroelectric power is the largest source of renewable electricity in the United States, producing about 6.3% of the nation's total electricity throughout the last decade. Even after a century of proven experience with this reliable renewable resource, significant opportunities still exist to expand the nation's hydropower resources through non-powered dams, water conveyance systems, pumped storage

  11. Pumped Storage and Potential Hydropower from Conduits

    SciTech Connect (OSTI)

    none,

    2015-02-25

    Th is Congressional Report, Pumped Storage Hydropower and Potential Hydropower from Conduits, addresses the technical flexibility that existing pumped storage facilities can provide to support intermittent renewable energy generation. This study considered potential upgrades or retrofit of these facilities, the technical potential of existing and new pumped storage facilities to provide grid reliability benefits, and the range of conduit hydropower opportunities available in the United States.

  12. Virtual Hydropower Prospector | Open Energy Information

    Open Energy Info (EERE)

    Website Website: hydropower.inl.govprospectorindex.shtml Country: United States Cost: Free Northern America Coordinates: 37.09024, -95.712891 Show Map Loading map......

  13. Vermont Small Hydropower Assistance Program Screening Criteria...

    Open Energy Info (EERE)

    LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Vermont Small Hydropower Assistance Program Screening Criteria Summary and Application InstructionsPermitting...

  14. Vermont Small Hydropower Assistance Program Application | Open...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Vermont Small Hydropower Assistance Program ApplicationLegal Abstract Application form for the Small...

  15. Relicensing and Environmental Issues Affecting Hydropower

    Reports and Publications (EIA)

    1998-01-01

    This article presents an overview of the hydropower industry and summarizes two recent events that have greatly influenced relicensing and environmental issues.

  16. Recreational Technical Assistance in Hydropower Licensing | Open...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Recreational Technical Assistance in Hydropower LicensingPermittingRegulatory...

  17. Colorado Energy Office: Colorado Small Hydropower Handbook |...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Colorado Energy Office: Colorado Small Hydropower HandbookPermitting...

  18. Hydropower Advancement Project (HAP): Audits and Feasibility...

    Broader source: Energy.gov (indexed) [DOE]

    Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades Office presentation icon 64hapornlsmith.ppt More Documents & ...

  19. Jingning County Baihe II Station Hydropower Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Baihe II Station Hydropower Co Ltd Jump to: navigation, search Name: Jingning County Baihe II Station Hydropower Co. Ltd. Place: Hangzhou, Zhejiang Province, China Zip: 310002...

  20. Small Hydropower Systems: Energy Efficiency and Renewable Energy Clearinghouse

    SciTech Connect (OSTI)

    Nachman-Hunt, N.

    2001-07-05

    This fact sheet introduces consumers to small hydropower systems, and includes information on how the systems work and how to assess a stream site for hydropower suitability.

  1. International Center for Small Hydropower INSHP | Open Energy...

    Open Energy Info (EERE)

    Hydropower (INSHP) Place: Hangzhou, Zhejiang Province, China Sector: Hydro Product: NGO charged with developing small hydropower projects in China. Coordinates: 30.252501,...

  2. Mabian Shichuang Hydropower Investment Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Shichuang Hydropower Investment Co Ltd Jump to: navigation, search Name: Mabian Shichuang Hydropower Investment Co., Ltd. Place: Leshan, Sichuan Province, China Zip: 614603 Sector:...

  3. Changde Taohuayuan Hydropower Investment Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Changde Taohuayuan Hydropower Investment Co Ltd Jump to: navigation, search Name: Changde Taohuayuan Hydropower Investment Co., Ltd. Place: Hunan Province, China Zip: 415001...

  4. Gansu Linhai Water Resource and Hydropower Investment Co Ltd...

    Open Energy Info (EERE)

    Water Resource and Hydropower Investment Co Ltd Jump to: navigation, search Name: Gansu Linhai Water Resource and Hydropower Investment Co., Ltd. Place: Lanzhou, Gansu Province,...

  5. Datian Xinyuan Hydropower Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Datian Xinyuan Hydropower Investment Co Ltd Jump to: navigation, search Name: Datian Xinyuan Hydropower Investment Co. Ltd. Place: Sanming, Fujian Province, China Zip: 366105...

  6. Wuyishan City Xiangrun Hydropower Investment Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Wuyishan City Xiangrun Hydropower Investment Co Ltd Jump to: navigation, search Name: Wuyishan City Xiangrun Hydropower Investment Co Ltd Place: Wuyishan, Fujian Province, China...

  7. Puge County Gongdefang Hydropower Station Investment and Development...

    Open Energy Info (EERE)

    Puge County Gongdefang Hydropower Station Investment and Development Co Ltd Jump to: navigation, search Name: Puge County Gongdefang Hydropower Station Investment and Development...

  8. Lin Cang Lin Jiang Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Lin Cang Lin Jiang Hydropower Development Co Ltd Jump to: navigation, search Name: Lin Cang Lin Jiang Hydropower Development Co., Ltd Place: Lincang City, China Zip: 677000 Sector:...

  9. Dali Yang er Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yang er Hydropower Development Co Ltd Jump to: navigation, search Name: Dali Yanger Hydropower Development Co Ltd Place: Dali Prefecture, Dali, Yunnan Province, China Zip: 625000...

  10. Hydropower and the Environment - Energy Explained, Your Guide...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...PublicInvolvementCommunityEducationValueoftheRiverPagesHydropower.aspx Hydropower Video - http:www.bpa.govPublicInvolvementCommunityEducationValueoftheRiverPages...

  11. Tianlin Baile River Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Baile River Hydropower Co Ltd Jump to: navigation, search Name: Tianlin Baile River Hydropower Co., Ltd. Place: Baise, Guangxi Autonomous Region, China Zip: 533300 Sector: Hydro...

  12. Title 50 CFR Part 221 Prescriptions in FERC Hydropower Licenses...

    Open Energy Info (EERE)

    in FERC Hydropower LicensesLegal Abstract Regulations governing Department of Commerce review of FERC hydropower license conditions under Federal Power Act. Published NA...

  13. Wenshan Xinhuiyuan Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Xinhuiyuan Hydropower Development Co Ltd Jump to: navigation, search Name: Wenshan Xinhuiyuan Hydropower Development Co., Ltd Place: Wenshan Chuang-Miao Autonomous, Yunnan...

  14. Zhaotong Lijing Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Lijing Hydropower Development Co Ltd Jump to: navigation, search Name: Zhaotong Lijing Hydropower Development Co. Ltd. Place: Yunnan Province, China Zip: 657400 Sector: Hydro...

  15. Lushui Jiansheng Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Jiansheng Hydropower Development Co Ltd Jump to: navigation, search Name: Lushui Jiansheng Hydropower Development Co. Ltd Place: Yunnan Province, China Zip: 673100 Sector: Hydro...

  16. Sanheyuan Hydropower Development Co Ltd in Sunan Yugur Autonomous...

    Open Energy Info (EERE)

    Sanheyuan Hydropower Development Co Ltd in Sunan Yugur Autonomous County Jump to: navigation, search Name: Sanheyuan Hydropower Development Co., Ltd. in Sunan Yugur Autonomous...

  17. Jiangxi Wugongshan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wugongshan Hydropower Co Ltd Jump to: navigation, search Name: Jiangxi Wugongshan Hydropower Co., Ltd. Place: Jian City, Jiangxi Province, China Zip: 3314011 Sector: Hydro Product:...

  18. Diebu Niaojiaga Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Niaojiaga Hydropower Development Co Ltd Jump to: navigation, search Name: Diebu Niaojiaga Hydropower Development Co., Ltd. Place: Lanzhou, Gansu Province, China Zip: 730050 Sector:...

  19. Heishui Jinyuan Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Jinyuan Hydropower Development Co Ltd Jump to: navigation, search Name: Heishui Jinyuan Hydropower Development Co., Ltd. Place: Sichuan Province, China Zip: 623500 Sector: Hydro...

  20. Xuanen Shiziguan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Xuanen Shiziguan Hydropower Co Ltd Jump to: navigation, search Name: Xuanen Shiziguan Hydropower Co. Ltd. Place: Enshi Tujia-Miao Autonomous Prefecture, China Zip: 445500 Sector:...

  1. Hunan Bolian Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hunan Bolian Hydropower Development Co Ltd Jump to: navigation, search Name: Hunan Bolian Hydropower Development Co. Ltd. Place: Zhangjiajie, Hunan Province, China Zip: 427200...

  2. Wutai Gengzhen Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wutai Gengzhen Hydropower Co Ltd Jump to: navigation, search Name: Wutai Gengzhen Hydropower Co., Ltd. Place: Shanxi Province, China Zip: 35512 Sector: Hydro Product: China-based...

  3. Gansu Tiangong Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tiangong Hydropower Development Co Ltd Jump to: navigation, search Name: Gansu Tiangong Hydropower Development Co. Ltd. Place: Dianxi City, Gansu Province, China Zip: 730500...

  4. Longshan County Wuyahe Hydropower Plant Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Longshan County Wuyahe Hydropower Plant Co Ltd Jump to: navigation, search Name: Longshan County Wuyahe Hydropower Plant Co. Ltd Place: Xinjiang Autonomous Region, China Zip:...

  5. Chongqing Pengshui Sanjiangkou Hydropower Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Sanjiangkou Hydropower Co Ltd Jump to: navigation, search Name: Chongqing Pengshui Sanjiangkou Hydropower Co., Ltd. Place: Chongqing, Chongqing Municipality, China Zip: 400060...

  6. Tanchang County Hongtu Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Tanchang County Hongtu Hydropower Development Co Ltd Jump to: navigation, search Name: Tanchang County Hongtu Hydropower Development Co. Ltd. Place: Longnan City, Gansu Province,...

  7. Zhangjiakou Jianghe Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Zhangjiakou Jianghe Hydropower Development Co Ltd Jump to: navigation, search Name: Zhangjiakou Jianghe Hydropower Development Co Ltd Place: Zhangjiakou, Hebei Province, China Zip:...

  8. Yangxian Longsheng Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Yangxian Longsheng Hydropower Development Co Ltd Jump to: navigation, search Name: Yangxian Longsheng Hydropower Development Co., Ltd. Place: Hanzhong, Jiangxi Province, China Zip:...

  9. Jian Gongge Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jian Gongge Hydropower Co Ltd Jump to: navigation, search Name: Jian Gongge Hydropower Co., Ltd. Place: Jian, Jiangxi Province, China Zip: 343100 Sector: Hydro Product: China-based...

  10. Fugong Hongda Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydropower Development Co Ltd Jump to: navigation, search Name: Fugong Hongda Hydropower Development Co. Ltd Place: Yunnan Province, China Sector: Hydro Product: Yunnan-based...

  11. Shidiaolou Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Shidiaolou Hydropower Development Co Ltd Jump to: navigation, search Name: Shidiaolou Hydropower Development Co., Ltd Place: Aaba Tibetan and Qiang nationality Autonomous...

  12. Yuliangwan Hydropower of Hongjiang District Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Yuliangwan Hydropower of Hongjiang District Co Ltd Jump to: navigation, search Name: Yuliangwan Hydropower of Hongjiang District Co Ltd Place: Huaihua, Hunan Province, China Zip:...

  13. Jianghua Dalinjiang Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dalinjiang Hydropower Co Ltd Jump to: navigation, search Name: Jianghua Dalinjiang Hydropower Co. Ltd. Place: Jianghua County, Hunan Province, China Zip: 418000 Sector: Hydro...

  14. Pingnan County Hengli Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hengli Hydropower Co Ltd Jump to: navigation, search Name: Pingnan County Hengli Hydropower Co Ltd Place: Fujian Province, China Zip: 352300 Sector: Hydro Product: China-based...

  15. Jiangxi Quannan Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Quannan Hydropower Development Co Ltd Jump to: navigation, search Name: Jiangxi Quannan Hydropower Development Co. Ltd Place: Ganzhou, Jiangxi Province, China Zip: 334000 Sector:...

  16. Dazhou Xiangyue Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Dazhou Xiangyue Hydropower Development Co Ltd Jump to: navigation, search Name: Dazhou Xiangyue Hydropower Development Co. Ltd. Place: Dazhou, Sichuan Province, China Zip: 635000...

  17. Zhaotong Jili Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jili Hydropower Co Ltd Jump to: navigation, search Name: Zhaotong Jili Hydropower Co. Ltd. Place: Zhaotong City, Yunnan Province, China Zip: 657400 Sector: Hydro Product:...

  18. Heishui Shuangyuan Hydropower Exploitation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Shuangyuan Hydropower Exploitation Co Ltd Jump to: navigation, search Name: Heishui Shuangyuan Hydropower Exploitation Co., Ltd Place: Chengdu City, Sichuan Province, China Zip:...

  19. Fugong Baihe Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Fugong Baihe Hydropower Development Co Ltd Jump to: navigation, search Name: Fugong Baihe Hydropower Development Co., Ltd. Place: Yunnan Province, China Zip: 673400 Sector: Hydro...

  20. Lijiang Nengda Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Nengda Hydropower Co Ltd Jump to: navigation, search Name: Lijiang Nengda Hydropower Co., Ltd. Place: Lijiang, Yunnan Province, China Zip: 674100 Sector: Hydro Product:...

  1. Zhouning Qianping Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Qianping Hydropower Development Co Ltd Jump to: navigation, search Name: Zhouning Qianping Hydropower Development Co., Ltd. Place: Fujian Province, China Sector: Hydro Product:...

  2. Fugong Hengda Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hengda Hydropower Development Co Ltd Jump to: navigation, search Name: Fugong Hengda Hydropower Development Co., Ltd. Place: Nujiang Lisu Autonomous Prefecture, Yunnan Province,...

  3. Qinghai Yulong Hydropower Construction Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Yulong Hydropower Construction Co Ltd Jump to: navigation, search Name: Qinghai Yulong Hydropower Construction Co., Ltd. Place: Xining, Qinghai Province, China Zip: 810001 Sector:...

  4. Zhaoping I Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydropower Development Co Ltd Jump to: navigation, search Name: Zhaoping I Hydropower Development Co., Ltd. Place: Hezhou, Guangxi Autonomous Region, China Sector: Hydro Product:...

  5. Yunxi Yuhuangtan Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Yunxi Yuhuangtan Hydropower Development Co Ltd Jump to: navigation, search Name: Yunxi Yuhuangtan Hydropower Development Co., Ltd. Place: Wuhan, Hubei Province, China Zip: 430071...

  6. Baoshan Xineng Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Baoshan Xineng Hydropower Development Co Ltd Jump to: navigation, search Name: Baoshan Xineng Hydropower Development Co Ltd Place: Yunnan Province, China Zip: 672711 Sector: Hydro...

  7. Shaanxi Wenjing Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wenjing Hydropower Co Ltd Jump to: navigation, search Name: Shaanxi Wenjing Hydropower Co., Ltd. Place: Xianyang City, Shaanxi Province, China Zip: 713700 Sector: Hydro Product:...

  8. Jinzhu Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jinzhu Hydropower Development Co Ltd Jump to: navigation, search Name: Jinzhu Hydropower Development Co., Ltd Place: Yongzhou, Hunan Province, China Zip: 425508 Sector: Hydro...

  9. Quanzhou Liupu Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Quanzhou Liupu Hydropower Co Ltd Jump to: navigation, search Name: Quanzhou Liupu Hydropower Co. Ltd Place: Beijing, Beijing Municipality, China Sector: Hydro Product:...

  10. Tianquan County Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tianquan County Hydropower Co Ltd Jump to: navigation, search Name: Tianquan County Hydropower Co., Ltd Place: Chengdu, Sichuan Province, China Zip: 610017 Sector: Hydro Product:...

  11. Langao Lanjiang Hydropower Construction and Development Co Ltd...

    Open Energy Info (EERE)

    Lanjiang Hydropower Construction and Development Co Ltd Jump to: navigation, search Name: Langao Lanjiang Hydropower Construction and Development Co., Ltd. Place: Xi'an, Shaanxi...

  12. Jiangxi Changjiang Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Jiangxi Changjiang Hydropower Development Co Ltd Jump to: navigation, search Name: Jiangxi Changjiang Hydropower Development Co., Ltd. Place: Jingdezhen, Jiangxi Province, China...

  13. Lianghe Dayingjiang Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Lianghe Dayingjiang Hydropower Development Co Ltd Jump to: navigation, search Name: Lianghe Dayingjiang Hydropower Development Co., Ltd. Place: Dehong Dai-Jingpo Autonomous...

  14. Yanshan Leqing Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Leqing Hydropower Development Co Ltd Jump to: navigation, search Name: Yanshan Leqing Hydropower Development Co., Ltd. Place: Shangrao City, Jiangsu Province, China Zip: 334500...

  15. Guangdong Dapu Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dapu Hydropower Co Ltd Jump to: navigation, search Name: Guangdong Dapu Hydropower Co., Ltd. Place: Meizhou, Guangdong Province, China Zip: 514223 Sector: Hydro Product:...

  16. Xinhua Chengyuan Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Xinhua Chengyuan Hydropower Development Co Ltd Jump to: navigation, search Name: Xinhua Chengyuan Hydropower Development Co. Ltd Place: Xinhua County, Loudi City, Hunan Province,...

  17. Hainan Runda Hydropower Plant Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Runda Hydropower Plant Development Co Ltd Jump to: navigation, search Name: Hainan Runda Hydropower Plant Development Co.Ltd. Place: Hainan Province, China Zip: 572700 Sector:...

  18. Yunlong Liyuan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yunlong Liyuan Hydropower Development Co Ltd Jump to: navigation, search Name: Yunlong Liyuan Hydropower Development Co., Ltd. Place: Yunnan Province, China Sector: Hydro Product:...

  19. Fuan Fucheng Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Fuan Fucheng Hydropower Co Ltd Jump to: navigation, search Name: Fuan Fucheng Hydropower Co., Ltd Place: Fuan City, Fujian Province, China Zip: 355000 Sector: Hydro Product:...

  20. Yumen Jiqianfeng Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jiqianfeng Hydropower Co Ltd Jump to: navigation, search Name: Yumen Jiqianfeng Hydropower Co., Ltd. Place: Yumen, Gansu Province, China Zip: 732850 Sector: Hydro Product:...

  1. Lanping Maohe Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Lanping Maohe Hydropower Development Co Ltd Jump to: navigation, search Name: Lanping Maohe Hydropower Development Co. Ltd. Place: Yunnan Province, China Sector: Hydro Product:...

  2. Hengyuan Xiaojianghe Hydropower Generating Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Hengyuan Xiaojianghe Hydropower Generating Co Ltd Jump to: navigation, search Name: Hengyuan Xiaojianghe Hydropower Generating Co. Ltd. Place: Yunnan Province, China Zip: 652400...

  3. Lijiang Xingneng Small Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Xingneng Small Hydropower Development Co Ltd Jump to: navigation, search Name: Lijiang Xingneng Small Hydropower Development Co., Ltd. Place: Lijiang, Yunnan Province, China Zip:...

  4. Qinghai Ruifa Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ruifa Hydropower Co Ltd Jump to: navigation, search Name: Qinghai Ruifa Hydropower Co., Ltd Place: Minhe County, Qinghai Province, China Zip: 810800 Sector: Hydro Product:...

  5. Yanling Xinsheng Hydropower Plant Ltd | Open Energy Information

    Open Energy Info (EERE)

    Xinsheng Hydropower Plant Ltd Jump to: navigation, search Name: Yanling Xinsheng Hydropower Plant Ltd Place: Zhuzhou, Hunan Province, China Zip: 412500 Sector: Hydro Product:...

  6. Sichuan Jiulong Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jiulong Hydropower Co Ltd Jump to: navigation, search Name: Sichuan Jiulong Hydropower Co., Ltd. Place: Chengdu City, Sichuan Province, China Zip: 610072 Sector: Hydro Product:...

  7. Yingjiang Menglang Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Menglang Hydropower Co Ltd Jump to: navigation, search Name: Yingjiang Menglang Hydropower Co., Ltd. Place: Yunnan Province, China Zip: 679300 Sector: Hydro Product: China-based...

  8. Wufeng Yiye Hydropower Generation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yiye Hydropower Generation Co Ltd Jump to: navigation, search Name: Wufeng Yiye Hydropower Generation Co Ltd Place: Yichang, Hubei Province, China Sector: Hydro Product:...

  9. Fugong Fangyuan Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Hydropower Development Co Ltd Jump to: navigation, search Name: Fugong Fangyuan Hydropower Development Co., Ltd. Place: Yunnan Province, China Zip: 673400 Sector: Hydro Product:...

  10. Yanyuan Lujiang Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Yanyuan Lujiang Hydropower Development Co Ltd Jump to: navigation, search Name: Yanyuan Lujiang Hydropower Development Co., Ltd. Place: Sichuan Province, China Zip: 615700 Sector:...

  11. Zhangjiajie Tumuxi Hydropower Plant Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tumuxi Hydropower Plant Co Ltd Jump to: navigation, search Name: Zhangjiajie Tumuxi Hydropower Plant Co. Ltd Place: Zhangjiajie city, Hunan Province, China Zip: 416600 Sector:...

  12. Wufeng Nanhe Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Nanhe Hydropower Development Co Ltd Jump to: navigation, search Name: Wufeng Nanhe Hydropower Development Co Ltd Place: Yichang, Hubei Province, China Zip: 443415 Sector: Hydro...

  13. Guangxi Dongba Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dongba Hydropower Co Ltd Jump to: navigation, search Name: Guangxi Dongba Hydropower Co., Ltd. Place: Baise, Guangxi Autonomous Region, China Zip: 533000 Sector: Hydro Product:...

  14. Longsheng County Yulong Hydropower Development Co Ltd | Open...

    Open Energy Info (EERE)

    Longsheng County Yulong Hydropower Development Co Ltd Jump to: navigation, search Name: Longsheng County Yulong Hydropower Development Co. Ltd. Place: Guilin, Guangxi Autonomous...

  15. Taohe Shangyou Mingzhu Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Taohe Shangyou Mingzhu Hydropower Development Co Ltd Jump to: navigation, search Name: Taohe Shangyou Mingzhu Hydropower Development Co Ltd Place: Lanzhou, Gansu Province, China...

  16. Longnan Huixin Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huixin Hydropower Co Ltd Jump to: navigation, search Name: Longnan Huixin Hydropower Co. Ltd. Place: Lanzhou, Gansu Province, China Zip: 730000 Sector: Hydro Product: Gansu-based...

  17. Lijiang Heen Jinzhuang Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Heen Jinzhuang Hydropower Co Ltd Jump to: navigation, search Name: Lijiang Heen Jinzhuang Hydropower Co.,Ltd Place: Lijiang, Yunnan Province, China Zip: 674100 Sector: Hydro...

  18. Xiangtang Xia Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Xiangtang Xia Hydropower Development Co Ltd Jump to: navigation, search Name: Xiangtang Xia Hydropower Development Co.,Ltd. Place: Qinghai Province, China Zip: 810800 Sector: Hydro...

  19. Songpan County Songchuan Hydropower Development Co Ltd | Open...

    Open Energy Info (EERE)

    Songchuan Hydropower Development Co Ltd Jump to: navigation, search Name: Songpan County Songchuan Hydropower Development Co., Ltd Place: Chengdu, Sichuan Province, China Zip:...

  20. Hubei Huaying Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huaying Hydropower Development Co Ltd Jump to: navigation, search Name: Hubei Huaying Hydropower Development Co., Ltd. Place: Hubei Province, China Zip: 445810 Product: Hubei-based...

  1. Vermont Small Hydropower Assistance Program Website | Open Energy...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Web Site: Vermont Small Hydropower Assistance Program Website Abstract The Vermont Small Hydropower Assistance Program...

  2. Hefeng Taoyuan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hefeng Taoyuan Hydropower Co Ltd Jump to: navigation, search Name: Hefeng Taoyuan Hydropower Co., Ltd Place: Hubei Province, China Zip: 445800 Sector: Hydro Product: China-based...

  3. Lincang City Xinshui Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Lincang City Xinshui Hydropower Development Co Ltd Jump to: navigation, search Name: Lincang City Xinshui Hydropower Development Co. Ltd. Place: Lincang, Yunnan Province, China...

  4. Shaowu Jintang Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jintang Hydropower Co Ltd Jump to: navigation, search Name: Shaowu Jintang Hydropower Co., Ltd. Place: Shaowu City, Fujian Province, China Zip: 354003 Sector: Hydro Product:...

  5. Yingjiang Huimin Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Huimin Hydropower Development Co Ltd Jump to: navigation, search Name: Yingjiang Huimin Hydropower Development Co., Ltd. Place: Yunnan Province, China Zip: 679300 Sector: Hydro...

  6. Erpu Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Erpu Hydropower Development Co Ltd Jump to: navigation, search Name: Erpu Hydropower Development Co.Ltd Place: Liangshan Yi Autonomous Prefecture, Sichuan Province, China Zip:...

  7. Gongshan Juyuan Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Gongshan Juyuan Hydropower Development Co Ltd Jump to: navigation, search Name: Gongshan Juyuan Hydropower Development Co., Ltd. Place: Yunnan Nujiang Lisu Autonomous Prefecture,...

  8. Pingwu County Yetang Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Yetang Hydropower Development Co Ltd Jump to: navigation, search Name: Pingwu County Yetang Hydropower Development Co. Ltd. Place: Mianyang, Sichuan Province, China Zip: 622564...

  9. Jianghua Jianqiao Hydropower Plant Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jianqiao Hydropower Plant Co Ltd Jump to: navigation, search Name: Jianghua Jianqiao Hydropower Plant Co., Ltd Place: Yongzhou, Hunan Province, China Zip: 425500 Sector: Hydro...

  10. Jianchuan Yundian Industry Hydropower Exploitation Co Ltd | Open...

    Open Energy Info (EERE)

    Jianchuan Yundian Industry Hydropower Exploitation Co Ltd Jump to: navigation, search Name: Jianchuan Yundian Industry Hydropower Exploitation Co., Ltd. Place: Dali Bai Autonomous...

  11. Xining Chengxiyuan Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Chengxiyuan Hydropower Development Co Ltd Jump to: navigation, search Name: Xining Chengxiyuan Hydropower Development Co., Ltd. Place: Xining, Qinghai Province, China Zip: 810000...

  12. Kangding Jineng Hydropower Exploitation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Hydropower Exploitation Co Ltd Jump to: navigation, search Name: Kangding Jineng Hydropower Exploitation Co., Ltd. Place: Ganzi Tibetan Autonomous Prefecture, Sichuan Province,...

  13. Songpan Baichuan Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Songpan Baichuan Hydropower Development Co Ltd Jump to: navigation, search Name: Songpan Baichuan Hydropower Development Co. Ltd. Place: Sichuan Province, China Zip: 623300 Sector:...

  14. Guangxi Dachuan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydropower Co Ltd Jump to: navigation, search Name: Guangxi Dachuan Hydropower Co. Ltd. Place: Baise, Guangxi Autonomous Region, China Zip: 533300 Sector: Hydro Product: China...

  15. Fuan Liyuan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydropower Development Co Ltd Jump to: navigation, search Name: Fuan Liyuan Hydropower Development Co., Ltd. Place: Fuan, Fujian Province, China Sector: Hydro Product: China-based...

  16. Geermu Nanshankou Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Geermu Nanshankou Hydropower Development Co Ltd Jump to: navigation, search Name: Geermu Nanshankou Hydropower Development Co.,Ltd Place: Geermu, Qinghai Province, China Zip:...

  17. Pailou Hydropower of Zhongfang County Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Pailou Hydropower of Zhongfang County Co Ltd Jump to: navigation, search Name: Pailou Hydropower of Zhongfang County Co., Ltd. Place: Huaihua, Hunan Province, China Zip: 418000...

  18. Anfu Guanshan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Anfu Guanshan Hydropower Development Co Ltd Jump to: navigation, search Name: Anfu Guanshan Hydropower Development Co.,Ltd Place: Jiangxi Province, China Zip: 343009 Sector: Hydro...

  19. Nujiang Guoli Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Guoli Hydropower Development Co Ltd Jump to: navigation, search Name: Nujiang Guoli Hydropower Development Co., Ltd. Place: Yunnan Province, China Zip: 673400 Sector: Hydro...

  20. Jianyang Longjiang Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Longjiang Hydropower Development Co Ltd Jump to: navigation, search Name: Jianyang Longjiang Hydropower Development Co., Ltd. Place: China Zip: 354208 Sector: Hydro Product:...

  1. Huihua Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huihua Hydropower Development Co Ltd Jump to: navigation, search Name: Huihua Hydropower Development Co., Ltd. Place: Yunnan Province, China Zip: 677700 Sector: Hydro Product:...

  2. Sanming Taijiang Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sanming Taijiang Hydropower Co Ltd Jump to: navigation, search Name: Sanming Taijiang Hydropower Co., Ltd. Place: Sanming, Fujian Province, China Zip: 365001 Sector: Hydro Product:...

  3. Jinping County Kaiyuan Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Kaiyuan Hydropower Development Co Ltd Jump to: navigation, search Name: Jinping County Kaiyuan Hydropower Development Co.,Ltd. Place: Guizhou Province, China Zip: 556700 Sector:...

  4. Federal Memorandum of Understanding for Hydropower | Open Energy...

    Open Energy Info (EERE)

    Federal Memorandum of Understanding for Hydropower Jump to: navigation, search Federal Memorandum of Understanding for Hydropower Hydroelectric-collage2.jpg Home Federal Inland...

  5. Nujiang Zhedian Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Zhedian Hydropower Development Co Ltd Jump to: navigation, search Name: Nujiang Zhedian Hydropower Development Co., Ltd Place: Yunnan Province, China Sector: Hydro Product:...

  6. Diebu Donglian Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Diebu Donglian Hydropower Development Co Ltd Jump to: navigation, search Name: Diebu Donglian Hydropower Development Co.,Ltd. Place: Gansu Province, China Zip: 747400 Sector: Hydro...

  7. Fugong Jiacheng Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Jiacheng Hydropower Development Co Ltd Jump to: navigation, search Name: Fugong Jiacheng Hydropower Development Co. Ltd Place: Yunnan Province, China Sector: Hydro Product:...

  8. Sanmenxia Luohe hydropower development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Sanmenxia Luohe hydropower development Co Ltd Jump to: navigation, search Name: Sanmenxia Luohe hydropower development Co. Ltd. Place: Sanmenxia, Henan Province, China Zip: 472200...

  9. Hanzhong Hengfa Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Hanzhong Hengfa Hydropower Development Co Ltd Jump to: navigation, search Name: Hanzhong Hengfa Hydropower Development Co. Ltd. Place: Hanzhong, Shaanxi Province, China Zip: 723200...

  10. Ziyang Dengxinqiao Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dengxinqiao Hydropower Co Ltd Jump to: navigation, search Name: Ziyang Dengxinqiao Hydropower Co., Ltd. Place: Shaanxi Province, China Zip: 725300 Sector: Hydro Product:...

  11. Aleo Manali Hydropower Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Manali Hydropower Pvt Ltd Jump to: navigation, search Name: Aleo Manali Hydropower Pvt Ltd Place: Kullu, Himachal Pradesh, India Zip: 203001 Sector: Hydro Product: Himachal-based...

  12. Xiahe Hengsheng Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hengsheng Hydropower Co Ltd Jump to: navigation, search Name: Xiahe Hengsheng Hydropower Co, Ltd Place: Lanzhou, Gansu Province, China Zip: 700030 Sector: Hydro Product:...

  13. Zixi Sanjiang Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zixi Sanjiang Hydropower Co Ltd Jump to: navigation, search Name: Zixi Sanjiang Hydropower Co Ltd Place: Fuzhou, Jiangxi Province, China Zip: 335300 Sector: Hydro Product:...

  14. Luquan Yunhong Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yunhong Hydropower Development Co Ltd Jump to: navigation, search Name: Luquan Yunhong Hydropower Development Co., Ltd Place: Yunnan Province, China Zip: 651500 Sector: Hydro...

  15. Jincheng Dongjiaohe Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jincheng Dongjiaohe Hydropower Co Ltd Jump to: navigation, search Name: Jincheng Dongjiaohe Hydropower Co., Ltd. Place: Jincheng City, Shaanxi Province, China Zip: 48000 Sector:...

  16. Jianyang Xinghu Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Xinghu Hydropower Co Ltd Jump to: navigation, search Name: Jianyang Xinghu Hydropower Co., Ltd. Place: Jianyang City, Fujian Province, China Zip: 354211 Sector: Hydro Product:...

  17. Heishui Sanlian Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Heishui Sanlian Hydropower Development Co Ltd Jump to: navigation, search Name: Heishui Sanlian Hydropower Development Co. Ltd. Place: Aba Tibetan and Qiang Autonomous Prefecture,...

  18. Fugong Fengyuan Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Fengyuan Hydropower Development Co Ltd Jump to: navigation, search Name: Fugong Fengyuan Hydropower Development Co., Ltd. Place: Yunnan Province, China Zip: 673400 Sector: Hydro...

  19. Qinghai Dangshun Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Dangshun Hydropower Development Co Ltd Jump to: navigation, search Name: Qinghai Dangshun Hydropower Development Co., Ltd. Place: Qinghai Province, China Zip: 811200 Sector: Hydro...

  20. Subei Chengda Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Subei Chengda Hydropower Co Ltd Jump to: navigation, search Name: Subei Chengda Hydropower Co., Ltd. Place: Gansu Province, China Zip: 736300 Sector: Hydro Product: Gansu-based...

  1. Yuexi Liyuan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yuexi Liyuan Hydropower Development Co Ltd Jump to: navigation, search Name: Yuexi Liyuan Hydropower Development Co. Ltd Place: Banqiao town, Sichuan Province, China Zip: 616650...

  2. Huanghe Hydropower Development Co Ltd Yellow River Group | Open...

    Open Energy Info (EERE)

    Huanghe Hydropower Development Co Ltd Yellow River Group Jump to: navigation, search Name: Huanghe Hydropower Development Co Ltd (Yellow River Group) Place: Xining, Qinghai...

  3. Yunnan Yingjiang Quanfa Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Quanfa Hydropower Co Ltd Jump to: navigation, search Name: Yunnan Yingjiang Quanfa Hydropower Co., Ltd. Place: Dehong Dai-Jingpo Autonomous Prefecture, Yunnan Province, China Zip:...

  4. Gansu Mingzhu Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Mingzhu Hydropower Development Co Ltd Jump to: navigation, search Name: Gansu Mingzhu Hydropower Development Co Ltd Place: Lanzhou, Gansu Province, China Zip: 730070 Sector: Hydro...

  5. Yangcheng Motan Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Yangcheng Motan Hydropower Development Co Ltd Jump to: navigation, search Name: Yangcheng Motan Hydropower Development Co., Ltd. Place: Shanxi Province, China Zip: 48100 Sector:...

  6. Longnan Huayu Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huayu Hydropower Co Ltd Jump to: navigation, search Name: Longnan Huayu Hydropower Co., Ltd. Place: Longnan, Gansu Province, China Zip: 746000 Sector: Hydro Product: Gansu-based...

  7. Daguan Shun an Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    an Hydropower Development Co Ltd Jump to: navigation, search Name: Daguan Shun'an Hydropower Development Co. Ltd. Place: Yunnan Province, China Zip: 657400 Sector: Hydro Product:...

  8. Yingjiang Nandihe Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Nandihe Hydropower Co Ltd Jump to: navigation, search Name: Yingjiang Nandihe Hydropower Co., Ltd Place: Yunnan Province, China Zip: 679300 Sector: Hydro Product: Yunnan-based...

  9. Yongzhou Zhongxin Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Zhongxin Hydropower Development Co Ltd Jump to: navigation, search Name: Yongzhou Zhongxin Hydropower Development Co., Ltd. Place: Yongzhou, Hunan Province, China Zip: 425800...

  10. Songtao Guanghe Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Songtao Guanghe Hydropower Development Co Ltd Jump to: navigation, search Name: Songtao Guanghe Hydropower Development Co., Ltd. Place: Tongren District, Guizhou Province, China...

  11. Xinjiang Heneng Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Heneng Hydropower Co Ltd Jump to: navigation, search Name: Xinjiang Heneng Hydropower Co., Ltd Place: Shawan County, Tacheng Prefecture, Xinjiang Autonomous Region, China Zip:...

  12. Fujian Fuyuan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydropower Co Ltd Jump to: navigation, search Name: Fujian Fuyuan Hydropower Co., Ltd Place: Shouning County, Fujian Province, China Zip: 355000 Sector: Hydro Product: Fujian-based...

  13. Gansu Huatang Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huatang Hydropower Development Co Ltd Jump to: navigation, search Name: Gansu Huatang Hydropower Development Co., Ltd. Place: China Sector: Hydro Product: China-based small hydro...

  14. Chaling Lianguan Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Chaling Lianguan Hydropower Development Co Ltd Jump to: navigation, search Name: Chaling Lianguan Hydropower Development Co. Ltd Place: Zhuzhou, Hunan Province, China Sector: Hydro...

  15. Jinggangshan Longgan Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Jinggangshan Longgan Hydropower Development Co Ltd Jump to: navigation, search Name: Jinggangshan Longgan Hydropower Development Co., Ltd. Place: Jian, Jiangxi Province, China Zip:...

  16. Wuyishan Jinning Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Jinning Hydropower Development Co Ltd Jump to: navigation, search Name: Wuyishan Jinning Hydropower Development Co., Ltd. Place: Wuyishan, Fujian Province, China Zip: 354300...

  17. Sichuan Yuantong Baixi Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Yuantong Baixi Hydropower Development Co Ltd Jump to: navigation, search Name: Sichuan Yuantong Baixi Hydropower Development Co., Ltd. Place: Sichuan Province, China Zip: 623200...

  18. Guangdong Meiyan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Meiyan Hydropower Co Ltd Jump to: navigation, search Name: Guangdong Meiyan Hydropower Co Ltd Place: Meizhou, Guangdong Province, China Zip: 514011 Sector: Hydro Product:...

  19. Qinghai Datonghe Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Datonghe Hydropower Development Co Ltd Jump to: navigation, search Name: Qinghai Datonghe Hydropower Development Co., Ltd. Place: Xining, Qinghai Province, China Zip: 810008...

  20. Lushui Huili Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huili Hydropower Development Co Ltd Jump to: navigation, search Name: Lushui Huili Hydropower Development Co. Ltd Place: Yunnan Province, China Zip: 673100 Sector: Hydro Product:...

  1. Wudu Xiangyu Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wudu Xiangyu Hydropower Development Co Ltd Jump to: navigation, search Name: Wudu Xiangyu Hydropower Development Co., Ltd. Place: Longnan, Gansu Province, China Zip: 74600 Sector:...

  2. Hunan Zhongzhou Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Zhongzhou Hydropower Development Co Ltd Jump to: navigation, search Name: Hunan Zhongzhou Hydropower Development Co., Ltd. Place: Shaoyang, Hunan Province, China Zip: 422200...

  3. Yumen Changyuan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Changyuan Hydropower Co Ltd Jump to: navigation, search Name: Yumen Changyuan Hydropower Co., Ltd. Place: Yumen City, Gansu Province, China Zip: 735211 Sector: Hydro Product:...

  4. Dodson Lindblom Hydropower Pvt Ltd DLHPPL | Open Energy Information

    Open Energy Info (EERE)

    Hydropower Pvt Ltd DLHPPL Jump to: navigation, search Name: Dodson-Lindblom Hydropower Pvt. Ltd. (DLHPPL) Place: Mumbai, Maharashtra, India Zip: 400057 Sector: Hydro Product:...

  5. Yingjiang Rongfa Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Rongfa Hydropower Co Ltd Jump to: navigation, search Name: Yingjiang Rongfa Hydropower Co., Ltd. Place: Dehong Dai-Jingpo Autonomous Prefecture, Yunnan Province, China Zip: 679300...

  6. Dingxiang Lingzidi Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dingxiang Lingzidi Hydropower Co Ltd Jump to: navigation, search Name: Dingxiang Lingzidi Hydropower Co., Ltd. Place: Shanxi Province, China Zip: 35407 Sector: Hydro Product:...

  7. Shimen Tiande Hydropower Exploitation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tiande Hydropower Exploitation Co Ltd Jump to: navigation, search Name: Shimen Tiande Hydropower Exploitation Co., Ltd. Place: Changde, Hunan Province, China Zip: 415300 Sector:...

  8. Minhou County Xingyuan Hydropower Generation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Minhou County Xingyuan Hydropower Generation Co Ltd Jump to: navigation, search Name: Minhou County Xingyuan Hydropower Generation Co. Ltd Place: Fujian Province, China Zip: 350100...

  9. Miyi Chengnan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Miyi Chengnan Hydropower Development Co Ltd Jump to: navigation, search Name: Miyi Chengnan Hydropower Development Co.,Ltd Place: Panzhihua, Sichuan Province, China Zip: 323000...

  10. Jingning County Jinkengyuan Hydropower Development Co Ltd | Open...

    Open Energy Info (EERE)

    Jinkengyuan Hydropower Development Co Ltd Jump to: navigation, search Name: Jingning County Jinkengyuan Hydropower Development Co., Ltd Place: Lishui, Zhejiang Province, China Zip:...

  11. Linjiawu Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Linjiawu Hydropower Development Co Ltd Jump to: navigation, search Name: Linjiawu Hydropower Development Co., Ltd. Place: Hangzhou city, Zhejiang Province, China Zip: 311700...

  12. Tongren Jiuzhou Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tongren Jiuzhou Hydropower Co Ltd Jump to: navigation, search Name: Tongren Jiuzhou Hydropower Co., Ltd. Place: Xining City, Qinghai Province, China Zip: 810000 Sector: Hydro...

  13. Zhangye Longhui Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydropower Co Ltd Jump to: navigation, search Name: Zhangye Longhui Hydropower Co., Ltd Place: Zhangye, Gansu Province, China Zip: 734000 Sector: Hydro Product: China-based small...

  14. Pingnan Daixi Liyudang Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Daixi Liyudang Hydropower Development Co Ltd Jump to: navigation, search Name: Pingnan Daixi Liyudang Hydropower Development Co., Ltd. Place: Fujian Province, China Zip: 352300...

  15. Zhenghe Hydropower Development of Zhijiang County Co Ltd | Open...

    Open Energy Info (EERE)

    Zhenghe Hydropower Development of Zhijiang County Co Ltd Jump to: navigation, search Name: Zhenghe Hydropower Development of Zhijiang County Co Ltd Place: Hunan Province, China...

  16. Sangzhi South Hydropower Exploitation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    South Hydropower Exploitation Co Ltd Jump to: navigation, search Name: Sangzhi South Hydropower Exploitation Co., Ltd Place: Sangzhi, Hunan Province, China Zip: 427100 Sector:...

  17. Hunan Jintaiyuan Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Jintaiyuan Hydropower Development Co Ltd Jump to: navigation, search Name: Hunan Jintaiyuan Hydropower Development Co. Ltd Place: Hunan Province, China Zip: 419400 Sector: Hydro...

  18. Gansu Ansheng Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ansheng Hydropower Development Co Ltd Jump to: navigation, search Name: Gansu Ansheng Hydropower Development Co., Ltd. Place: Lanzhou, Gansu Province, China Zip: 730070 Sector:...

  19. Xiaojin County Xinghua Water Resource and Hydropower Development...

    Open Energy Info (EERE)

    Xinghua Water Resource and Hydropower Development Co Ltd Jump to: navigation, search Name: Xiaojin County Xinghua Water Resource and Hydropower Development Co., Ltd. Place: Aba...

  20. FERC Division of Hydropower Administration and Compliance | Open...

    Open Energy Info (EERE)

    Division of Hydropower Administration and Compliance Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: FERC Division of Hydropower Administration and...

  1. File:Federal Hydropower - Southwestern Power Administration.pdf...

    Open Energy Info (EERE)

    Federal Hydropower - Southwestern Power Administration.pdf Jump to: navigation, search File File history File usage Metadata File:Federal Hydropower - Southwestern Power...

  2. File:Federal Hydropower - Western Area Power Administration.pdf...

    Open Energy Info (EERE)

    Hydropower - Western Area Power Administration.pdf Jump to: navigation, search File File history File usage Metadata File:Federal Hydropower - Western Area Power Administration.pdf...

  3. Hydropower Licensing and Endangered Species A Guide for Applicants...

    Open Energy Info (EERE)

    Hydropower Licensing and Endangered Species A Guide for Applicants, Contractors, and Staff Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Hydropower...

  4. Shouning County Hongyuan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydropower Co. Ltd. Place: Fujian Province, China Sector: Hydro Product: China-based small hydro project developer. References: Shouning County Hongyuan Hydropower Co. Ltd.1...

  5. Inner Mongolia Yellow River Sanshenggong Hydropower Co Ltd |...

    Open Energy Info (EERE)

    Sanshenggong Hydropower Co Ltd Jump to: navigation, search Name: Inner Mongolia Yellow River Sanshenggong Hydropower Co. Ltd Place: Dengkou County, Inner Mongolia Autonomous...

  6. Shangri La Green energy Hydropower development Co Ltd | Open...

    Open Energy Info (EERE)

    energy Hydropower development Co Ltd Jump to: navigation, search Name: Shangri-La Green-energy Hydropower development Co. Ltd. Place: Yunnan Province, China Zip: 674403 Sector:...

  7. Colorado Energy Office - Hydropower Website | Open Energy Information

    Open Energy Info (EERE)

    - Hydropower Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Colorado Energy Office - Hydropower Website Author Colorado Energy Office...

  8. Zhangye Heihe Hyaulic and Hydropower Construction Co Ltd | Open...

    Open Energy Info (EERE)

    Heihe Hyaulic and Hydropower Construction Co Ltd Jump to: navigation, search Name: Zhangye Heihe Hyaulic and Hydropower Construction Co., Ltd Place: Gansu Province, China Zip:...

  9. Upcoming Funding Opportunity to Advance Low-Impact Hydropower...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    hydropower drivetrain and civil works technologies for low-impact hydropower development. ... innovations in areas such as low-impact civil structures, alternative construction ...

  10. Debao V Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Debao V Hydropower Development Co Ltd Jump to: navigation, search Name: Debao V Hydropower Development Co., Ltd. Place: Baise, Guangxi Autonomous Region, China Sector: Hydro...

  11. Guangxi Baise Sanyuan Hydropower Generation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Sanyuan Hydropower Generation Co Ltd Jump to: navigation, search Name: Guangxi Baise Sanyuan Hydropower Generation Co., Ltd. Place: Baise, Guangxi Autonomous Region, China Zip:...

  12. Gansu Hezuo Anguo Hydropower Generation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Hezuo Anguo Hydropower Generation Co Ltd Jump to: navigation, search Name: Gansu Hezuo Anguo Hydropower Generation Co. Ltd. Place: Hezuo City, Gansu Province, China Zip: 747000...

  13. Nandan County Qiyuan Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Nandan County Qiyuan Hydropower Development Co Ltd Jump to: navigation, search Name: Nandan County Qiyuan Hydropower Development Co., Ltd. Place: Hechi, Guangxi Autonomous Region,...

  14. EERE Success Story-First-ever Hydropower Market Report Covers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This Hydropower Market Report filled the gap and provided industry and policy makers with a quantitative baseline on the distribution, capabilities, and status of hydropower in the ...

  15. High power laser perforating tools and systems

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  16. Discharge Physics of High Power Impulse Magnetron Sputtering...

    Office of Scientific and Technical Information (OSTI)

    Discharge Physics of High Power Impulse Magnetron Sputtering Citation Details In-Document Search Title: Discharge Physics of High Power Impulse Magnetron Sputtering High power ...

  17. Stream-reach Identification for New Run-of-River Hydropower Development through a Merit Matrix Based Geospatial Algorithm

    SciTech Connect (OSTI)

    Pasha, M. Fayzul K.; Yeasmin, Dilruba; Kao, Shih-Chieh; Hadjerioua, Boualem; Wei, Yaxing; Smith, Brennan T

    2014-01-01

    Even after a century of development, the total hydropower potential from undeveloped rivers is still considered to be abundant in the United States. However, unlike evaluating hydropower potential at existing hydropower plants or non-powered dams, locating a feasible new hydropower plant involves many unknowns, and hence the total undeveloped potential is harder to quantify. In light of the rapid development of multiple national geospatial datasets for topography, hydrology, and environmental characteristics, a merit matrix based geospatial algorithm is proposed to help identify possible hydropower stream-reaches for future development. These hydropower stream-reaches sections of natural streams with suitable head, flow, and slope for possible future development are identified and compared using three different scenarios. A case study was conducted in the Alabama-Coosa-Tallapoosa (ACT) and Apalachicola-Chattahoochee-Flint (ACF) hydrologic subregions. It was found that a merit matrix based algorithm, which is based on the product of hydraulic head, annual mean flow, and average channel slope, can help effectively identify stream-reaches with high power density and small surface inundation. The identified stream-reaches can then be efficiently evaluated for their potential environmental impact, land development cost, and other competing water usage in detailed feasibility studies . Given that the selected datasets are available nationally (at least within the conterminous US), the proposed methodology will have wide applicability across the country.

  18. Final Environmental Assessment Sleeping Giant Hydropower Project

    Energy Savers [EERE]

    Environmental Assessment Sleeping Giant Hydropower Project Montana Area Office Great Plains Region November 2015 Adopted 1/11/2016 by Western Area Power Administration as DOE/EA-2022 Final Environmental Assessment Sleeping Giant Hydropower Project Table of Contents (Page 1 of 3) CHAPTER 1 - INTRODUCTION .................................................................................................................... 1 PROPOSED ACTION

  19. US hydropower resource assessment for Iowa

    SciTech Connect (OSTI)

    Francfort, J.E.

    1995-12-01

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Iowa.

  20. U.S. Hydropower Resource Assessment - California

    SciTech Connect (OSTI)

    A. M. Conner; B. N. Rinehart; J. E. Francfort

    1998-10-01

    The U.S. Department of Energy is developing an estimate of the underdeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of California.

  1. US hydropower resource assessment for Utah

    SciTech Connect (OSTI)

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Utah.

  2. US hydropower resource assessment for Montana

    SciTech Connect (OSTI)

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Montana.

  3. US hydropower resource assessment for Colorado

    SciTech Connect (OSTI)

    Francfort, J.E.

    1994-05-01

    The US Department of Energy is developing an estimate of the hydropower development potential in this country. Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE, menu-driven software application. HES allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Colorado.

  4. US hydropower resource assessment for New Jersey

    SciTech Connect (OSTI)

    Connor, A.M.; Francfort, J.E.

    1996-03-01

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of New Jersey.

  5. US hydropower resource assessment for Washington

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1997-07-01

    The U.S. Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Washington.

  6. US hydropower resource assessment for Wisconsin

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1996-05-01

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Wisconsin.

  7. Hydropower, adaptive management, and biodiversity

    SciTech Connect (OSTI)

    Wieringa, M.J.; Morton, A.G.

    1996-11-01

    Adaptive management is a policy framework within which an iterative process of decision making is allowed based on the observed responses to and effectiveness of previous decisions. The use of adaptive management allows science-based research and monitoring of natural resource and ecological community responses, in conjunction with societal values and goals, to guide decisions concerning man`s activities. The adaptive management process has been proposed for application to hydropower operations at Glen Canyon Dam on the Colorado River, a situation that requires complex balancing of natural resources requirements and competing human uses. This example is representative of the general increase in public interest in the operation of hydropower facilities and possible effects on downstream natural resources and of the growing conflicts between uses and users of river-based resources. This paper describes the adaptive management process, using the Glen Canyon Dam example, and discusses ways to make the process work effectively in managing downstream natural resources and biodiversity. 10 refs., 2 figs.

  8. Hydropower: Setting a Course for Our Energy Future

    SciTech Connect (OSTI)

    Not Available

    2004-07-01

    Hydropower is an annual publication that provides an overview of the Department of Energy's Hydropower Program. The mission of the program is to conduct research and development that will increase the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity.

  9. Hydropower

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volunteers - Sign Up About Science Bowl Curriculum and Activities How to Build a Motor The Great Marble Drop How to Build a Turbine How to Build a Tower Classroom...

  10. Fact Sheet: Sustainable Development of Hydropower Initiative | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Sustainable Development of Hydropower Initiative Fact Sheet: Sustainable Development of Hydropower Initiative A fact sheet detailling the mission behind the Clean Energy Ministerial in Washington D.C on July 19th and July 20th where ministers pledged to establish the Sustainable Development of Hydropower Initiative. PDF icon Fact Sheet: Sustainable Development of Hydropower Initiative More Documents & Publications “Sustainable development of hydropower in third

  11. Hydropower Market Acceleration and Deployment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market Acceleration and Deployment Hydropower Market Acceleration and Deployment Hydropower Market Acceleration and Deployment Hydropower significantly contributes to the nation's renewable energy portfolio. In fact, over the last decade, the United States obtained over 6% of its electricity from hydropower sources. As the largest source of renewable electricity in the United States, there remains vast untapped resource potential in hydropower. The Water Power Program works to do the following:

  12. New Hydropower, Hidden in Plain Sight | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower, Hidden in Plain Sight New Hydropower, Hidden in Plain Sight December 16, 2015 - 10:04am Addthis New Hydropower, Hidden in Plain Sight Timothy J. Welch Hydropower Program Manager, Wind and Water Power Technologies Office What You Need to Know About Section 242 Funding The Energy Department began accepting applications today from hydropower owners and operators that produced hydroelectric power in 2014 from new equipment added to an existing dam or conduit since 2005. Applications for

  13. New Stream-Reach Hydropower Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The New Stream-reach Development (NSD) project implemented an ad- vanced geo-spatial approach to analyze the potential for new hydropower development in U.S. stream-reaches that do ...

  14. Microsoft Word - Hydropower Council Agenda 2007.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Hydropower Council Vicksburg, Mississippi June 12, 2007 Tuesday, June 12 1:00 p.m. Welcome Vicksburg District 1:05 p.m. Introductions All 1:15 p.m. Presentation of the...

  15. Hydropower Market Report May 2016 Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power Technologies Office eere.energy.gov 1 Mike Reed, Program Lead September 23, 2013 Hydropower Market Report May 2016 Update Rocio Uria-Martinez Megan Johnson Patrick ...

  16. Boosting America's Hydropower Output | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boosting America's Hydropower Output Boosting America's Hydropower Output October 9, 2012 - 2:10pm Addthis The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. City of Boulder employees celebrate the completion of the Boulder Canyon Hydroelectric Modernization project. | Photo courtesy of the city of

  17. Brainpower for Hydropower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brainpower for Hydropower Brainpower for Hydropower May 10, 2012 - 4:27pm Addthis Mark Cecchini-Beaver at the University of Idaho is one of ten new participants in the Hydro Fellowship Program. | Photo courtesy of the Hydro Research Foundation. Mark Cecchini-Beaver at the University of Idaho is one of ten new participants in the Hydro Fellowship Program. | Photo courtesy of the Hydro Research Foundation. Jonathan Bartlett Wind Powering America National Coordinator What are the key facts? Today

  18. Pumped Storage and Potential Hydropower from Conduits

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY United States Department of Energy Washington, DC 20585 Message from the Secretary Th is Congressional Report, Pumped Storage Hydropower and Potential Hydropower from Conduits, addresses the technical flexibility that existing pumped storage facilities can provide to support intermittent renewable energy generation . This study considered potential upgrades or retrofit of these facilities, the technical potential of existing and new pumped storage facilities to provide grid reliability

  19. Hydropower Resource Assessment of Brazilian Streams

    SciTech Connect (OSTI)

    Douglas G. Hall

    2011-09-01

    The Idaho National Laboratory (INL) in collaboration with the U.S. Geological Survey (USGS) with the assistance of the Empresa de Pesquisa Energetica (EPE) and the Agencia Nacional de Energia Electrica (ANEEL) has performed a comprehensive assessment of the hydropower potential of all Brazilian natural streams. The methodology by which the assessment was performed is described. The results of the assessment are presented including an estimate of the hydropower potential for all of Brazil, and the spatial distribution of hydropower potential thus providing results on a state by state basis. The assessment results have been incorporated into a geographic information system (GIS) application for the Internet called the Virtual Hydropower Prospector do Brasil. VHP do Brasil displays potential hydropower sites on a map of Brazil in the context of topography and hydrography, existing power and transportation infrastructure, populated places and political boundaries, and land use. The features of the application, which includes tools for finding and selecting potential hydropower sites and other features and displaying their attributes, is fully described.

  20. BEAM INSTRUMENTATION FOR HIGH POWER HADRON BEAMS

    SciTech Connect (OSTI)

    Aleksandrov, Alexander V

    2013-01-01

    This presentation will describe developments in the beam diagnostics which support the understanding and operation of high power hadron accelerators. These include the measurement of large dynamic range transverse and longitudinal beam profiles, beam loss detection, and non-interceptive diagnostics.

  1. Laser Seeding Yields High-Power Coherent Terahertz Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Seeding Yields High-Power Coherent Terahertz Radiation Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Wednesday, 25 April 2007 00:00 Researchers at ...

  2. Discharge Physics of High Power Impulse Magnetron Sputtering...

    Office of Scientific and Technical Information (OSTI)

    Discharge Physics of High Power Impulse Magnetron Sputtering Citation Details In-Document Search Title: Discharge Physics of High Power Impulse Magnetron Sputtering You are ...

  3. High power impulse magnetron sputtering and related discharges...

    Office of Scientific and Technical Information (OSTI)

    High power impulse magnetron sputtering and related discharges: Scalable plasma sources ... Citation Details In-Document Search Title: High power impulse magnetron sputtering and ...

  4. Method and apparatus for improved high power impulse magnetron...

    Office of Scientific and Technical Information (OSTI)

    Patent: Method and apparatus for improved high power impulse magnetron sputtering Citation Details In-Document Search Title: Method and apparatus for improved high power impulse ...

  5. High Power Laser Innovation Sparks Geothermal Power Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Power Laser Innovation Sparks Geothermal Power Potential High Power Laser Innovation Sparks Geothermal Power Potential May 29, 2015 - 11:02am Addthis The Energy Department's ...

  6. Novel Manufacturing Technologies for High Power Induction and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Permanent Magnet Electric Motors Novel Manufacturing Technologies for High Power ... More Documents & Publications Novel Manufacturing Technologies for High Power Induction ...

  7. Planar Optical Waveguide Coupler Transformers for High-Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Planar Optical Waveguide Coupler Transformers for High-Power Solar Enegy Collection and Transmission Planar Optical Waveguide Coupler Transformers for High-Power Solar Enegy ...

  8. High Power UV LED Industrial Curing Systems

    SciTech Connect (OSTI)

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  9. New Stream-Reach Hydropower Development (NSD) Fact Sheet

    SciTech Connect (OSTI)

    2014-04-25

    This fact sheet explores the more than 65 gigawatts (GW) of sustainable hydropower potential in U.S. stream-reaches, according to the hydropower resource assessment funded by DOE and executed by Oak Ridge National Laboratory.

  10. Memorandum of Understanding for Hydropower Two-Year Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TWO-YEAR PROGRESS REPORT April 2012 Energy Efficiency & Renewable Energy MEMORANDUM OF UNDERSTANDING FOR HYDROPOWER 2 TABLE OF CONTENTSCONTENTS Hydropower Memorandum of Understanding .................................................................................1 Two-Year Progress Report ...............................................................................................................1 List of Acronyms

  11. A New Vision for U.S. Hydropower

    SciTech Connect (OSTI)

    2014-04-30

    The U.S. Department of Energy (DOE) Water Power Program is looking toward the future of the hydropower industry by initiating the development of a long-range national Hydropower Vision.

  12. Xiahe Hengfa Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Xiahe Hengfa Hydropower Co Ltd Jump to: navigation, search Name: Xiahe Hengfa Hydropower Co.Ltd Place: Lanzhou, Gansu Province, China Zip: 700030 Sector: Hydro Product: Gansu-based...

  13. Quantifying the Value of Hydropower in the Electric Grid: Final...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value)-Modeling and Analysis of Value of Advanced Pumped Storage Hydropower in the U.S. Quantifying Fl Value of Hydro in ...

  14. Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings

    SciTech Connect (OSTI)

    2003-09-01

    This document summarizes the opportunities and challenges for low-cost renewable hydrogen production from wind and hydropower. The Workshop on Electrolysis Production of Hydrogen from Wind and Hydropower was held September 9-10, 2003.

  15. NOAA Hydropower and Fish Passage webpage | Open Energy Information

    Open Energy Info (EERE)

    NOAA Hydropower and Fish Passage webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: NOAA Hydropower and Fish Passage webpage Author National...

  16. US Fish and Wildlife Service Hydropower Licensing webpage | Open...

    Open Energy Info (EERE)

    US Fish and Wildlife Service Hydropower Licensing webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: US Fish and Wildlife Service Hydropower...

  17. Oregon Department of Energy Small, Low-Impact Hydropower Website...

    Open Energy Info (EERE)

    Hydropower Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Department of Energy Small, Low-Impact Hydropower Website Abstract The...

  18. Hydropower Still in the Mix | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Hydropower has the potential to increase the flexibility and stability of the U.S. ... By modeling and analyzing the value of hydropower assets and pumped storage in power system ...

  19. Conventional Hydropower Technologies, Wind And Water Power Program (WWPP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Fact Sheet) | Department of Energy Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US Department of Energy conducts research on conventional hydropower technologies to increase generation and improve existing means of generating hydroelectricity. PDF icon Conventional Hydropower Technologies More Documents & Publications Water Power for a Clean Energy Future

  20. EERE Success Story- Hydropower Fellowship Program Leading Students to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Careers | Department of Energy Hydropower Fellowship Program Leading Students to Industry Careers EERE Success Story- Hydropower Fellowship Program Leading Students to Industry Careers April 20, 2016 - 12:15pm Addthis EERE Success Story— Hydropower Fellowship Program Leading Students to Industry Careers The Hydro Research Foundation's (HRF) Hydro Fellowship Program allowed outstanding up-and-coming student fellows to conduct hydropower-related research-all made possible by a

  1. Hydropower Resource Assessment and Characterization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    » Hydropower Resource Assessment and Characterization Hydropower Resource Assessment and Characterization The Water Power Program has released reports and maps that assess the total technically recoverable energy available in the nation's powered dams, non-powered dams, and untapped stream-reaches. These resource assessments are pivotal to understanding hydropower's potential for future electricity production. Hydropower already provides 6-8% of the nation's electricity, but more potential

  2. Los Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Resources to New Mexico | Department of Energy County Completes Abiquiu Hydropower Project, Bringing New Clean Energy Resources to New Mexico Los Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean Energy Resources to New Mexico April 21, 2011 - 12:00am Addthis WASHINGTON, D.C. - U.S. Energy Secretary Steven Chu issued the following statement on the completion and startup today of the Abiquiu Hydropower Project in New Mexico - the first hydropower project funded by

  3. Pumped Storage and Potential Hydropower from Conduits | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Pumped Storage and Potential Hydropower from Conduits Pumped Storage and Potential Hydropower from Conduits This U.S. Department of Energy Report to Congress, Pumped Storage Hydropower and Potential Hydropower from Conduits, addresses the technical flexibility that existing pumped storage facilities can provide to support intermittent renewable energy generation. This study considered potential upgrades or retrofit of these facilities, the technical potential of existing and new

  4. Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compiled Presentations: Hydropower Technologies Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

  5. MHK Technologies/Kinetic Hydropower System KHPS | Open Energy...

    Open Energy Info (EERE)

    Project(s) where this technology is utilized *MHK ProjectsRoosevelt Island Tidal Energy RITE *MHK ProjectsCornwall Ontario River Energy CORE Technology Resource Click here...

  6. High power, high frequency, vacuum flange

    DOE Patents [OSTI]

    Felker, Brian (Livermore, CA); McDaniel, Michael R. (Manteca, CA)

    1993-01-01

    An improved waveguide flange is disclosed for high power operation that helps prevent arcs from being initiated at the junctions between waveguide sections. The flanges at the end of the waveguide sections have counterbores surrounding the waveguide tubes. When the sections are bolted together the counterbores form a groove that holds a fully annealed copper gasket. Each counterbore has a beveled step that is specially configured to insure the gasket forms a metal-to-metal vacuum seal without gaps or sharp edges. The resultant inner surface of the waveguide is smooth across the junctions between waveguide sections, and arcing is prevented.

  7. High power, high frequency, vacuum flange

    DOE Patents [OSTI]

    Felker, B.; McDaniel, M.R.

    1993-03-23

    An improved waveguide flange is disclosed for high power operation that helps prevent arcs from being initiated at the junctions between waveguide sections. The flanges at the end of the waveguide sections have counter bores surrounding the waveguide tubes. When the sections are bolted together the counter bores form a groove that holds a fully annealed copper gasket. Each counterbore has a beveled step that is specially configured to insure the gasket forms a metal-to-metal vacuum seal without gaps or sharp edges. The resultant inner surface of the waveguide is smooth across the junctions between waveguide sections, and arcing is prevented.

  8. A New Vision for United States Hydropower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A New Vision for United States Hydropower A New Vision for United States Hydropower The U.S. Department of Energy (DOE) Water Power Program is looking toward the future of the hydropower industry by initiating the development of a long-range national Hydropower Vision. This landmark vision will establish the analytical basis for an ambitious roadmap to usher in a new era of growth in sustainable domestic hydropower over the next half century. Included in this effort will be: A close examination

  9. Large-Scale Hydropower Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Hydropower » Large-Scale Hydropower Basics Large-Scale Hydropower Basics August 14, 2013 - 3:11pm Addthis Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 megawatts (MW) in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a dam and a reservoir to retain water from a river. When the

  10. President Obama Signs Two Bills to Boost Small Hydropower Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy President Obama Signs Two Bills to Boost Small Hydropower Projects President Obama Signs Two Bills to Boost Small Hydropower Projects August 14, 2013 - 12:06pm Addthis President Obama on August 9 signed into law two bills aimed at boosting development of small U.S. hydropower projects. The bills, H.R. 267, the Hydropower Regulatory Efficiency Act, and H.R. 678, the Bureau of Reclamation Small Conduit Hydropower Development and Rural Jobs Act, are expected to help unlock

  11. Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value)-Modeling and Analysis of Value of Advanced Pumped Storage Hydropower in the U.S.

    Broader source: Energy.gov [DOE]

    Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value)-Modeling and Analysis of Value of Advanced Pumped Storage Hydropower in the U.S.

  12. High power density solid oxide fuel cells

    DOE Patents [OSTI]

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  13. Feedthrough terminal for high-power cell

    DOE Patents [OSTI]

    Kaun, T.D.

    1982-05-28

    A feedthrough terminal for a high power electrochemical storage cell providing low resistance coupling to the conductive elements therein while isolating the terminal electrode from the highly corrosive environment within the cell is disclosed. A large diameter, cylindrical copper electrode is enclosed in a stainless steel tube with a BN powder feedthrough seal maintained around the stainless steel tube by means of facing insulative bushings and an outer sleeve. One end of the copper conductor is silver-brazed directly to a flat, butterfly bus bar within the cell, with the adjacent end of the surrounding outer feedthrough sleeve welded to the bus bar. A threaded seal is fixedly positioned on a distal portion of the stainless steel tube immediately adjacent the distal insulative bushing so as to compress the feedthrough seal in tight fitting relation around the stainless steel tube in providing a rugged, leak-proof electrical feedthrough terminal for the power cell.

  14. High-Power Options for LANSCE

    SciTech Connect (OSTI)

    Garnett, Robert W.

    2011-01-01

    The LANSCE linear accelerator at Los Alamos National Laboratory has a long history of successful beam operations at 800 kW. We have recently studied options for restoration of high-power operations including approaches for increasing the performance to multi-MW levels. In this paper we will discuss the results of this study including the present limitations of the existing accelerating structures at LANSCE, and the high-voltage and RF systems that drive them. Several options will be discussed and a preferred option will be presented that will enable the first in a new generation of scientific facilities for the materials community. The emphasis of this new facility is 'Matter-Radiation Interactions in Extremes' (MaRIE) which will be used to discover and design the advanced materials needed to meet 21st century national security and energy security challenges.

  15. Status of High Power Tests of Normal Conducting Short Standing...

    Office of Scientific and Technical Information (OSTI)

    Status of High Power Tests of Normal Conducting Short Standing Wave Structures Citation Details In-Document Search Title: Status of High Power Tests of Normal Conducting Short Standing ...

  16. Measuring Tiny Waves with High Power Particle Beams | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab Measuring Tiny Waves with High Power Particle Beams American Fusion News Category: U.S. Universities Link: Measuring Tiny Waves with High Power Particle Beams

  17. New High-Power Laser Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Power Laser Technology New High-Power Laser Technology December 10, 2013 - 10:38am Addthis Foro Energy partners with Dept of Energy to commercialize high power lasers for the oil, natural gas, geothermal, and mining industries. photo courtesy of Foro Energy. Foro Energy partners with Dept of Energy to commercialize high power lasers for the oil, natural gas, geothermal, and mining industries. photo courtesy of Foro Energy. The Geothermal Technologies Office (GTO) partners with cutting- edge

  18. High Power Laser Innovation Sparks Geothermal Power Potential | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy High Power Laser Innovation Sparks Geothermal Power Potential High Power Laser Innovation Sparks Geothermal Power Potential May 29, 2015 - 11:02am Addthis The Energy Department's project partner Foro Energy lab tests a high power laser tool with a patented technology that could maximize heat recovery from geothermal wells. Source: Foro Energy. The Energy Department's project partner Foro Energy lab tests a high power laser tool with a patented technology that could maximize heat

  19. High power linear pulsed beam annealer

    DOE Patents [OSTI]

    Strathman, Michael D. (Concord, CA); Sadana, Devendra K. (Berkeley, CA); True, Richard B. (Sunnyvale, CA)

    1983-01-01

    A high power pulsed electron beam is produced in a system comprised of an electron gun having a heated cathode, control grid, focus ring, and a curved drift tube. The drift tube is maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring and to thereby eliminate space charge. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube and imparts motion on electrons in a spiral path for shallow penetration of the electrons into a target. The curvature of the tube is selected so there is no line of sight between the cathode and a target holder positioned within a second drift tube spaced coaxially from the curved tube. The second tube and the target holder are maintained at a reference voltage that decelerates the electrons. A second coil surrounding the second drift tube maintains the electron beam focused about the axis of the second drift tube and compresses the electron beam to the area of the target. The target holder can be adjusted to position the target where the cross section of the beam matches the area of the target.

  20. High power, high beam quality regenerative amplifier

    DOE Patents [OSTI]

    Hackel, Lloyd A.; Dane, Clifford B.

    1993-01-01

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  1. High power, high beam quality regenerative amplifier

    DOE Patents [OSTI]

    Hackel, L.A.; Dane, C.B.

    1993-08-24

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  2. High power pulsed magnicon at 34-GHz

    SciTech Connect (OSTI)

    Nezhevenko, O.A.; Yakovlev, V.P.; Ganguly, A.K.; Hirshfield, J.L. [Omega-P Inc., 202008 Yale Station, New Haven, Connecticut 06520 (United States)

    1999-05-01

    A high efficiency, high power magnicon amplifier at 34.272 GHz has been designed as a radiation source to drive multi-TeV electron-positron linear colliders. Simulations show peak output power of 45 MW in a 1.5 microsecond wide pulse with an efficiency of 45{percent} and gain of 55 dB. The repetition rate is 10 Hz. The amplifier is a frequency tripler, or third harmonic amplifier, in that the output frequency of 34.272 GHz is three times the input drive frequency of 11.424 GHz. Thus the rotating TM{sub 110} modes in the drive cavity, 3 gain cavities and double decoupled penultimate cavities are resonant near 11.424 GHz; and the rotating TM{sub 310} mode in the output cavity is resonant at 34.272 GHz. A 500 kV, 200 A high area compression electron gun will provide a low emittance electron beam with a diameter of about 0.8 mm. A superconducting solenoid magnet will provide a magnetic field of 13 kG in the deflection system and 22 kG in the output cavity. A collector for the spent beam has also been designed. Detailed simulation results for the operation of the entire magnicon amplifier (gun, magnetic system, rf system and collector) will be given. {copyright} {ital 1999 American Institute of Physics.}

  3. 16 Projects To Advance Hydropower Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology September 6, 2011 - 11:24am Addthis U.S. Department Energy Secretary Steven Chu and U.S. Department of the Interior Secretary Ken Salazar announced nearly $17 million in funding over the next three years for research and development projects to advance hydropower technology. The list of 16 projects in 11 different states can be found here. Applicant Location Award Amount; Funding is from DOE unless otherwise

  4. Innovative Hydropower Technology Now Powering an Apple Data Center |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydropower Technology Now Powering an Apple Data Center Innovative Hydropower Technology Now Powering an Apple Data Center November 24, 2015 - 9:43am Addthis Innovative Hydropower Technology Now Powering an Apple Data Center Sarah Wagoner Sarah Wagoner Communications Specialist, Wind and Water Power Technologies Office Above: Completed Intake Structure. Water from the irrigation canal is divided in two as it approaches the plant. The existing drop structure (foreground)

  5. Effects of Climate Change on Federal Hydropower (Report to Congress) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Effects of Climate Change on Federal Hydropower (Report to Congress) Effects of Climate Change on Federal Hydropower (Report to Congress) The U.S. Department of Energy (DOE), in consultation with the federal Power Marketing Administrations (PMAs) and other federal agencies, including federal dam owners, has prepared a comprehensive assessment examining the effects of climate change on water available for hydropower at federal facilities and on the marketing of power from

  6. U.S. Hydropower Potential from Existing Non-powered Dams | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy U.S. Hydropower Potential from Existing Non-powered Dams U.S. Hydropower Potential from Existing Non-powered Dams U.S. Hydropower Potential from Existing Non-powered Dams

  7. National Park Service Hydropower Assistance webpage | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: National Park Service Hydropower Assistance webpage Abstract This webpage provides information on the...

  8. Wencheng County Baiwanshan Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd. Place: Wenzhou City, Zhejiang Province, China Zip: 325304 Sector: Hydro Product: Chinese developer of mini hydro plants. References: Wencheng County Baiwanshan Hydropower Co...

  9. Yunnan Dianneng Chuxiong Hydropower Development Co Ltd | Open...

    Open Energy Info (EERE)

    Development Co., Ltd. Place: Chuxiong City, China Zip: 675000 Sector: Hydro Product: Chinese developer of small hydro plants. References: Yunnan Dianneng Chuxiong Hydropower...

  10. Hydropower, Wave and Tidal Technologies Available for Licensing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydropower, Wave and Tidal Marketing Summaries TAG CLOUD TAG CLOUD TAG CLOUD rotor surface erosion icing powder patent flow coated substrate oil real actuated ...

  11. Rucheng County Yuzaikou Hydropower Company Limited | Open Energy...

    Open Energy Info (EERE)

    Place: Nandong Town, Hunan Province, China Zip: 423000 Sector: Hydro Product: Hydroelectric developer References: Rucheng County Yuzaikou Hydropower Company Limited1 This...

  12. Indonesia-GTZ Mini-Hydropower Schemes for Sustainable Economic...

    Open Energy Info (EERE)

    "Energy supplies generated by mini-hydropower to selected rural areas in Sulawesi, Java and Sumatra are improved. Local economic cycles triggered by this are able to generate...

  13. Conventional Hydropower Technologies, Wind And Water Power Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Environmental Impacts of Increased Hydroelectric Development at Existing Dams Hydropower ...

  14. Conventional Hydropower Technologies, Wind And Water Power Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US Department of Energy ...

  15. Successfully Streamlining Low-Impact Hydropower Permitting: Colorado...

    Open Energy Info (EERE)

    for the Entire Country Jump to: navigation, search OpenEI Reference LibraryAdd to library Case Study: Successfully Streamlining Low-Impact Hydropower Permitting: Colorado's Model...

  16. Federal Memorandum of Understanding for Hydropower/Resources...

    Open Energy Info (EERE)

    Group Participating Agencies Resources MOU Related Resources Hydropower Resources Assessment at Existing Reclamation Facilities An Assessment of Energy Potential at Non-Powered...

  17. Zhouning Houlongxi Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zhouning Houlongxi Hydropower Co Ltd Place: Fujian Province, China Zip: 355400 Sector: Hydro Product: China-based small hydro project developer. References: Zhouning Houlongxi...

  18. Nandan Hongyuan Hydropower Exploitation Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Exploitation Co Ltd Jump to: navigation, search Name: Nandan Hongyuan Hydropower Exploitation Co., Ltd. Place: Hechi, Guangxi Autonomous Region, China Zip: 547200 Sector: Hydro...

  19. Vermont Small Hydropower Assistance Program Summary | Open Energy...

    Open Energy Info (EERE)

    to library PermittingRegulatory Guidance - Supplemental Material: Vermont Small Hydropower Assistance Program SummaryPermittingRegulatory GuidanceSupplemental Material...

  20. Fugong Hongyuan Hydropower Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Fugong Hongyuan Hydropower Development Co., Ltd. Place: Nujiang Lisu Autonomous Prefecture, Yunnan Province, China Sector: Hydro Product: Yunnan-based developer of a CDM-registered...

  1. Pingnan Houlongxi Hydropower Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Pingnan Houlongxi Hydropower Co., Ltd. Place: Fujian Province, China Zip: 352300 Sector: Hydro Product: Fujian-based developer of small hydro projects. References: Pingnan...

  2. Hydropower Regulatory Efficiency Act of 2013 | Open Energy Information

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Legal Document- BillBill: Hydropower Regulatory Efficiency Act of 2013Legal Abstract Amends statutory provisions related...

  3. Yongchang Dongfang Hydropower Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Development Co Ltd Jump to: navigation, search Name: Yongchang Dongfang Hydropower Development Co. Ltd. Place: Gansu Province, China Zip: 737100 Sector: Hydro Product: China-based...

  4. EA-2022: Sleeping Giant Hydropower Project; Helena, Montana ...

    Broader source: Energy.gov (indexed) [DOE]

    Plant site at Canyon Ferry Dam on the Missouri River near Helena, Montana. The new hydropower generator would interconnect to Western's transmission system at an existing...

  5. Hongyuan Hydropower Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hongyuan Hydropower Development Co. Ltd Place: Ankang City, Shaanxi Province, China Zip: 725300 Sector: Hydro Product: Akang City-based developer of CDM small hydro plants....

  6. Vermont Small Hydropower Assistance Program Site-Specific Determinatio...

    Open Energy Info (EERE)

    to library PermittingRegulatory Guidance - Supplemental Material: Vermont Small Hydropower Assistance Program Site-Specific Determinations SummaryPermittingRegulatory...

  7. Laboratory Demonstration of a New American Low-Head Hydropower...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Demonstration of a New American Low-Head Hydropower Turbine Office presentation icon 68bhydrogreensmallhydroch11.ppt More Documents & Publications Real World ...

  8. EERE Success Story- Hydropower Fellowship Program Leading Students...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE Success Story Hydropower Fellowship Program Leading Students to Industry Careers The Hydro Research Foundation's (HRF) Hydro Fellowship Program allowed outstanding ...

  9. The Next Generation of Hydropower Engineers and Scientists |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Next Generation of Hydropower Engineers and Scientists August 11, 2011 - 12:31pm Addthis Hydro Research Foundation Fellows. | Image courtesy of the Hydro Research Foundation ...

  10. Power Builds Ships Northwest Hydropower Helps Win World War II

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume One Film Collection Volume Two 75th Anniversary Hydropower in the Northwest Woody Guthrie Videos Strategic Direction Branding & Logos Power of the River History Book...

  11. FERC Hydropower Licensing and Endangered Species - A Guide for...

    Open Energy Info (EERE)

    FERC Hydropower Licensing and Endangered Species - A Guide for Applicants, Contractors, and Staff Jump to: navigation, search OpenEI Reference LibraryAdd to library Permitting...

  12. Vermont Small Hydropower Assistance Program Overview | Open Energy...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Vermont Small Hydropower Assistance Program OverviewPermittingRegulatory...

  13. Colorado Energy Office, Small Hydropower Handbook | Open Energy...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Colorado Energy Office, Small Hydropower HandbookPermittingRegulatory...

  14. Rongjiang County Sanjunyan Small Hydropower Station | Open Energy...

    Open Energy Info (EERE)

    Station Place: Guizhou Province, China Zip: 557200 Sector: Hydro Product: China-based small hydro project developer. References: Rongjiang County Sanjunyan Small Hydropower...

  15. Category:Hydropower Regulatory Roadmap Sections | Open Energy...

    Open Energy Info (EERE)

    Community Login | Sign Up Search Category Edit History Category:Hydropower Regulatory Roadmap Sections Jump to: navigation, search RAPID Toolkit Add.png Add a Section Pages in...

  16. FERC Hydropower Licensing Guidelines webpage | Open Energy Information

    Open Energy Info (EERE)

    Guidelines webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: FERC Hydropower Licensing Guidelines webpage Abstract This webpage provides...

  17. Chapter 4: Advancing Clean Electric Power Technologies | Hydropower...

    Broader source: Energy.gov (indexed) [DOE]

    through upgrades to make aging hydropower units more efficient, more flexible, more fish-friendly, and capable of aeration to improve water quality. Some facilities have...

  18. Huge Potential for Hydropower: Assessment Highlights New Possible...

    Broader source: Energy.gov (indexed) [DOE]

    Researchers used new advancements in geospatial analysis to provide a first-of-its-kind look at the nation's developable hydropower potential. Several environmental, technical and ...

  19. Antu County 303 Hydropower Station Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co., Ltd. Place: Jilin Province, China Zip: 133613 Sector: Hydro Product: China-based small hydro CDM project developer. References: Antu County 303 Hydropower Station Co.,...

  20. Hydropower Vision Task Force Charter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Hydropower Vision Task Force Charter.pdf More Documents & Publications State Energy Advisory Board November 2011 Meeting Guide to Community Energy Strategic Planning State ...

  1. Development of High Power Density Driveline for Vehicles | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss058_fenske_2011_o.pdf More Documents & Publications Development of High Power Density Driveline for Vehicles Vehicle Technologies Office Merit Review 2014: Development of High Power Density Driveline for Vehicles Vehicle Technologies Office Merit Review 2015: Development of High Power Density

  2. Modeling Combustion Control for High Power Diesel Mode Switching...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling Combustion Control for High Power Diesel Mode Switching Poster presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in ...

  3. High Power Performance Lithium Ion Battery - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search High Power Performance Lithium Ion Battery Lawrence ... have increased the power performance of lithium ion batteries by over 20 percent by ...

  4. Laser Seeding Yields High-Power Coherent Terahertz Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Researchers at Berkeley ... by femtoslicing (see "Tailored Terahertz Pulses from a Laser-Modulated Electron Beam"). ...

  5. Energy Storage Testing and Analysis High Power and High Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Analysis High Power and High Energy Development Energy Storage Testing and ... Testing Overview and Progress of the Battery Testing, Analysis, and Design Activity ...

  6. High-Power Batteries | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Batteries Our goal is to develop and apply a new biologically inspired, low cost, ... exceptionally high power and stability as anodes and cathodes for lithium ion batteries. ...

  7. U.S. hydropower resource assessment for Oregon

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1998-03-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Oregon.

  8. U.S. hydropower resource assessment for Connecticut

    SciTech Connect (OSTI)

    Francfort, J.E.; Rinehart, B.N.

    1995-07-01

    The Department of Energy is developing an estimate of the undeveloped hydro-power potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Connecticut.

  9. U.S. hydropower resource assessment for Arizona

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1997-10-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Arizona.

  10. U.S. hydropower resource assessment for New York

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1998-08-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of New York.

  11. Spatiotemporal temperature and density characterization of high-power

    Office of Scientific and Technical Information (OSTI)

    atmospheric flashover discharges over inert poly(methyl methacrylate) and energetic pentaerythritol tetranitrate dielectric surfaces (Journal Article) | SciTech Connect Spatiotemporal temperature and density characterization of high-power atmospheric flashover discharges over inert poly(methyl methacrylate) and energetic pentaerythritol tetranitrate dielectric surfaces Citation Details In-Document Search Title: Spatiotemporal temperature and density characterization of high-power atmospheric

  12. Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades

    Broader source: Energy.gov [DOE]

    Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades

  13. DOE Hydropower Program Annual Report for FY 2002

    SciTech Connect (OSTI)

    Garold L. Sommers; R. T. Hunt

    2003-07-01

    The U.S. Department of Energy (DOE) conducts research on advanced hydropower technology through its hydropower program, which is organized under the Office of Wind and Hydropower Technologies within the Office of Energy Efficiency and Renewable Energy. This annual report describes the various projects supported by the hydropower program in FY 2002. The program=s current focus is on improving the environmental performance of hydropower projects by addressing problems such as fish mortality during passage through turbines, alteration of instream habitat, and water quality in tailwaters. A primary goal of this research is to develop new, environmentally friendly technology. DOE-funded projects have produced new conceptual designs for turbine systems, and these are now being tested in pilot-scale laboratory tests and in the field. New design approaches range from totally new turbine runners to modifications of existing designs. Biological design criteria for these new turbines have also been developed in controlled laboratory tests of fish response to physical stresses, such as hydraulic shear and pressure changes. These biocriteria are being combined with computational tools to locate and eliminate areas inside turbine systems that are damaging to fish. Through the combination of laboratory, field, and computational studies, new solutions are being found to environmental problems at hydropower projects. The diverse program activities continue to make unique contributions to clean energy production in the U.S. By working toward technology improvements that can reduce environmental problems, the program is helping to reposition hydropower as an acceptable, renewable, domestic energy choice.

  14. Making a Difference: Hydropower and Our Clean Energy Future | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy a Difference: Hydropower and Our Clean Energy Future Making a Difference: Hydropower and Our Clean Energy Future November 5, 2015 - 9:52am Addthis Making a Difference: Hydropower and Our Clean Energy Future Sarah Wagoner Sarah Wagoner Communications Specialist, Wind and Water Power Technologies Office Not much beats stepping outside and taking a deep breath of fresh air. Guess what-you can thank hydropower for contributing to that! Since hydropower is fueled by water, it is a

  15. $26.6 Million for Hydropower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    $26.6 Million for Hydropower $26.6 Million for Hydropower April 5, 2011 - 4:52pm Addthis Ice Harbor Dam | Photo courtesy of the US Army Corps of Engineers Ice Harbor Dam | Photo courtesy of the US Army Corps of Engineers Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs Today, the Department of Energy and the Department of Interior announced $26.6 million of available funding for companies and entrepreneurs looking to advance hydropower. "By

  16. A Boost for Hydropower (and the Economy) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower (and the Economy) A Boost for Hydropower (and the Economy) September 20, 2010 - 5:29pm Addthis The 91-year old Cheoah Dam in Robbinsville, North Carolina. The 91-year old Cheoah Dam in Robbinsville, North Carolina. Jacques Beaudry-Losique Director, Wind & Water Program There are approximately 2,400 hydropower dams in the U.S., many of which have not undergone a significant upgrade in decades. These older dams present a great opportunity to expand clean energy across the country,

  17. How Hydropower Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    There are several types of hydroelectric facilities; they are all powered by the kinetic energy of flowing water as it moves downstream. Turbines and generators convert the energy ...

  18. Mechanical Analysis of High Power Internally Cooled Annular Fuel (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Mechanical Analysis of High Power Internally Cooled Annular Fuel Citation Details In-Document Search Title: Mechanical Analysis of High Power Internally Cooled Annular Fuel Annular fuel with internal flow is proposed to allow higher power density in pressurized water reactors. The structural behavior issues arising from the higher flow rate required to cool the fuel are assessed here, including buckling, vibrations, and potential wear problems. Five flow-induced

  19. High power laser downhole cutting tools and systems

    SciTech Connect (OSTI)

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-01-20

    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  20. High power laser workover and completion tools and systems

    SciTech Connect (OSTI)

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-10-28

    Workover and completion systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser workover and completion of a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform laser workover and completion operations in such boreholes deep within the earth.

  1. Apparatus for advancing a wellbore using high power laser energy

    SciTech Connect (OSTI)

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  2. Background radiation measurements at high power research reactors (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Background radiation measurements at high power research reactors Citation Details In-Document Search This content will become publicly available on October 23, 2016 Title: Background radiation measurements at high power research reactors Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino

  3. Laser Seeding Yields High-Power Coherent Terahertz Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Seeding Yields High-Power Coherent Terahertz Radiation Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Wednesday, 25 April 2007 00:00 Researchers at Berkeley Lab have been exploring the ways coherent synchrotron radiation (CSR) is generated in electron storage rings when femtosecond lasers are used to carve out ultrafast x-ray pulses by femtoslicing (see "Tailored Terahertz Pulses from a Laser-Modulated Electron Beam"). In their most recent work, the

  4. Microsoft Word - FINAL 2013 HydropowerCouncilAgenda 060513

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southwestern Federal Hydropower Council The Earl Cabell Federal Building 1100 Commerce Street Red River Room Floor 7, Room 752A Dallas, Texas June 11 - 12, 2013 Monday, June 10 ...

  5. President Obama Signs Two Bills to Boost Small Hydropower Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of certain other low-impact hydropower projects, such as projects that add power generation to the nation's existing non-powered dams and closed-loop pumped storage projects. ...

  6. Title 43 CFR 45 Conditions and Prescriptions in FERC Hydropower...

    Open Energy Info (EERE)

    5 Conditions and Prescriptions in FERC Hydropower Licenses Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 43 CFR 45...

  7. Upcoming Funding Opportunity to Advance Low-Impact Hydropower Technologies

    Broader source: Energy.gov [DOE]

    On March 18, EEREs Water Power Program announced a Notice of Intent to issue a funding opportunity titled Research and Development of Innovative Technologies for Low Impact Hydropower Development...

  8. Bureau of Reclamation Small Conduit Hydropower Development and...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Bureau of Reclamation Small Conduit Hydropower Development and Rural Jobs Act of 2013Legal...

  9. Microsoft Word - FINAL 2014 Hydropower Meeting Agenda 061114

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HYDROPOWER MEETING Tulsa District Headquarters 1605 S 101 East Avenue Tulsa, Oklahoma June ... District Headquarters 1605 S 101 East Avenue Tulsa, Oklahoma June 18 - 19, 2014 5:00 p.m. ...

  10. Office of Wind and Hydropower Technologies Wind Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Comment Program Response EPRI-Alden Fish-Friendly Turbine 3.8 3.6 X Focuses on DOE ... improve turbine design and hydropower operations to minimize impact on fish. No response. ...

  11. Microsoft Word - FINAL 2012HydropowerCouncilAgenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AGENDA 2012 Southwestern Federal Hydropower Council BLAKELY MOUNTAIN DAM PROJECT OFFICE Mountain Pine, Arkansas June 12 - 13, 2012 Tuesday, June 12 1:00 p.m. Welcome Vicksburg ...

  12. Microsoft Word - FINAL_2015_Hydropower_Council_Agenda_061215...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southwestern Federal Hydropower Council Dewey Short Visitor Center 4500 State Highway 165 Branson, Missouri June 16-17, 2015 Tuesday, June 16 1:00 p.m. Welcome SWL 1:05 p.m....

  13. Microsoft Word - FINAL 2010 Hydropower Council Agenda 052510...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southwestern Federal Hydropower Council Hilton Promenade at Branson Landing Branson, Missouri June 8 - 9, 2010 Tuesday, June 8 1:00 p.m. Welcome Little Rock District 1:05 p.m....

  14. Microsoft Word - FINAL 2014 HydropowerCouncilAgenda 060914

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southwestern Federal Hydropower Council Tulsa District Headquarters 1605 S 101 East Avenue Tulsa, Oklahoma June 17 - 18, 2014 Tuesday, June 17 8:30 a.m. HDC Partnering Meeting HDC,...

  15. Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings

    Fuel Cell Technologies Publication and Product Library (EERE)

    This document summarizes the opportunities and challenges for low-cost renewable hydrogen production from wind and hydropower. The Workshop on Electrolysis Production of Hydrogen from Wind and Hydropo

  16. Los Alamos County Completes Abiquiu Hydropower Project, Bringing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Clean Energy Resources to New Mexico Los Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean Energy Resources to New Mexico April 21, 2011 - 12:00am Addthis ...

  17. DOE Hydropower Program Annual Report for FY 2000

    SciTech Connect (OSTI)

    Sale, M. J.; Cada, G. F.; Dauble, D. D.; Rinehart, B. N.; Sommers, G. L.; Flynn, J. V.; Brookshier, P. A.

    2001-04-17

    This report describes the activities of the U.S. Department of Energy (DOE) Hydropower Program during Fiscal Year 2000 (October 1, 1999, to September 30, 2000). Background, current activities, and future plans are presented in the following sections for all components of the Program. Program focus for FY 2000 was on (1) advanced turbine development, (2) basic and applied R&D, (3) environmental mitigation, (4) low head/low power hydropower technology, and (5) technology transfer.

  18. Projecting changes in annual hydropower generation using regional runoff data: an assessment of the United States federal hydropower plants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kao, Shih-Chieh; Sale, Michael J; Ashfaq, Moetasim; Uria Martinez, Rocio; Kaiser, Dale Patrick; Wei, Yaxing; Diffenbaugh, Noah

    2015-01-01

    Federal hydropower plants account for approximately half of installed US conventional hydropower capacity, and are an important part of the national renewable energy portfolio. Utilizing the strong linear relationship between the US Geological Survey WaterWatch runoff and annual hydropower generation, a runoff-based assessment approach is introduced in this study to project changes in annual and regional hydropower generation in multiple power marketing areas. Future climate scenarios are developed with a series of global and regional climate models, and the model output is bias-corrected to be consistent with observed data for the recent past. Using this approach, the median decrease inmore » annual generation at federal projects is projected to be less than 2 TWh, with an estimated ensemble uncertainty of 9 TWh. Although these estimates are similar to the recently observed variability in annual hydropower generation, and may therefore appear to be manageable, significantly seasonal runoff changes are projected and it may pose significant challenges in water systems with higher limits on reservoir storage and operational flexibility. Future assessments will be improved by incorporating next-generation climate models, by closer examination of extreme events and longer-term change, and by addressing the interactions among hydropower and other water uses.« less

  19. Projecting changes in annual hydropower generation using regional runoff data: an assessment of the United States federal hydropower plants

    SciTech Connect (OSTI)

    Kao, Shih-Chieh; Sale, Michael J; Ashfaq, Moetasim; Uria Martinez, Rocio; Kaiser, Dale Patrick; Wei, Yaxing; Diffenbaugh, Noah

    2015-01-01

    Federal hydropower plants account for approximately half of installed US conventional hydropower capacity, and are an important part of the national renewable energy portfolio. Utilizing the strong linear relationship between the US Geological Survey WaterWatch runoff and annual hydropower generation, a runoff-based assessment approach is introduced in this study to project changes in annual and regional hydropower generation in multiple power marketing areas. Future climate scenarios are developed with a series of global and regional climate models, and the model output is bias-corrected to be consistent with observed data for the recent past. Using this approach, the median decrease in annual generation at federal projects is projected to be less than 2 TWh, with an estimated ensemble uncertainty of 9 TWh. Although these estimates are similar to the recently observed variability in annual hydropower generation, and may therefore appear to be manageable, significantly seasonal runoff changes are projected and it may pose significant challenges in water systems with higher limits on reservoir storage and operational flexibility. Future assessments will be improved by incorporating next-generation climate models, by closer examination of extreme events and longer-term change, and by addressing the interactions among hydropower and other water uses.

  20. A HIGH-POWER L-BAND RF WINDOW

    SciTech Connect (OSTI)

    R. RIMMER; G. KOEHLER; ET AL

    2001-05-01

    This paper discusses the design, fabrication and testing of a high power alumina disk window in WR1500 waveguide at L Band, suitable for use in the NLC damping ring RF cavities at 714 MHz and the LEDA Accelerator at 700 MHz. The design is based on the fabrication methods used for the successful PEP-II cavity windows. Four prototype windows at 700 MHz have been produced by LBNL for testing at LANL. The RF design and simulation using MAFIA, laboratory cold test measurements, fabrication methods and preliminary high power test results are discussed.

  1. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, Viet; Dylla, III, Henry Frederick

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  2. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  3. DOE: Quantifying the Value of Hydropower in the Electric Grid

    SciTech Connect (OSTI)

    2012-12-31

    The report summarizes research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. Methods are described for valuation and planning of pumped storage and conventional hydropower. The project team conducted plant case studies, electric system modeling, market analysis, cost data gathering, and evaluations of operating strategies and constraints. Five other reports detailing these research results are available a project website, www.epri.com/hydrogrid. With increasing deployment of wind and solar renewable generation, many owners, operators, and developers of hydropower have recognized the opportunity to provide more flexibility and ancillary services to the electric grid. To quantify value of services, this study focused on the Western Electric Coordinating Council region. A security-constrained, unit commitment and economic dispatch model was used to quantify the role of hydropower for several future energy scenarios up to 2020. This hourly production simulation considered transmission requirements to deliver energy, including future expansion plans. Both energy and ancillary service values were considered. Addressing specifically the quantification of pumped storage value, no single value stream dominated predicted plant contributions in various energy futures. Modeling confirmed that service value depends greatly on location and on competition with other available grid support resources. In this summary, ten different value streams related to hydropower are described. These fell into three categories; operational improvements, new technologies, and electricity market opportunities. Of these ten, the study was able to quantify a monetary value in six by applying both present day and future scenarios for operating the electric grid. This study confirmed that hydropower resources across the United States contribute significantly to operation of the grid in terms of energy, capacity, and ancillary services. Many potential improvements to existing hydropower plants were found to be cost-effective. Pumped storage is the most likely form of large new hydro asset expansions in the U.S. however, justifying investments in new pumped storage plants remains very challenging with current electricity market economics. Even over a wide range of possible energy futures, up to 2020, no energy future was found to bring quantifiable revenues sufficient to cover estimated costs of plant construction. Value streams not quantified in this study may provide a different cost-benefit balance and an economic tipping point for hydro. Future studies are essential in the quest to quantify the full potential value. Additional research should consider the value of services provided by advanced storage hydropower and pumped storage at smaller time steps for integration of variable renewable resources, and should include all possible value streams such as capacity value and portfolio benefits i.e.; reducing cycling on traditional generation.

  4. Estimation of economic parameters of U.S. hydropower resources

    SciTech Connect (OSTI)

    Hall, Douglas G.; Hunt, Richard T.; Reeves, Kelly S.; Carroll, Greg R.

    2003-06-01

    Tools for estimating the cost of developing and operating and maintaining hydropower resources in the form of regression curves were developed based on historical plant data. Development costs that were addressed included: licensing, construction, and five types of environmental mitigation. It was found that the data for each type of cost correlated well with plant capacity. A tool for estimating the annual and monthly electric generation of hydropower resources was also developed. Additional tools were developed to estimate the cost of upgrading a turbine or a generator. The development and operation and maintenance cost estimating tools, and the generation estimating tool were applied to 2,155 U.S. hydropower sites representing a total potential capacity of 43,036 MW. The sites included totally undeveloped sites, dams without a hydroelectric plant, and hydroelectric plants that could be expanded to achieve greater capacity. Site characteristics and estimated costs and generation for each site were assembled in a database in Excel format that is also included within the EERE Library under the title, “Estimation of Economic Parameters of U.S. Hydropower Resources - INL Hydropower Resource Economics Database.”

  5. Best Practices Implementation for Hydropower Efficiency and Utilization Improvement

    SciTech Connect (OSTI)

    Smith, Brennan T; Zhang, Qin Fen; March, Patrick; Cones, Marvin; Dham, Rajesh; Spray, Michael

    2012-01-01

    By using best practices to manage unit and plant efficiency, hydro owner/operators can achieve significant improvements in overall plant performance, resulting in increased generation and profitability and, frequently, reduced maintenance costs. The Hydropower Advancement Project (HAP) was initiated by the Wind and Hydropower Technologies Program within the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy to develop and implement a systematic process with standard methodology, based on the best practices of operations, maintenance and upgrades; to identify the improvement opportunities at existing hydropower facilities; and to predict and trend the overall condition and improvement opportunity within the U.S. hydropower fleet. The HAP facility assessment includes both quantitative condition ratings and data-based performance analyses. However, this paper, as an overview document for the HAP, addresses the general concepts, project scope and objectives, best practices for unit and plant efficiency, and process and methodology for best practices implementation for hydropower efficiency and utilization improvement.

  6. Device for wavefront correction in an ultra high power laser

    DOE Patents [OSTI]

    Ault, Earl R. (Livermore, CA); Comaskey, Brian J. (Walnut Creek, CA); Kuklo, Thomas C. (Oakdale, CA)

    2002-01-01

    A system for wavefront correction in an ultra high power laser. As the laser medium flows past the optical excitation source and the fluid warms its index of refraction changes creating an optical wedge. A system is provided for correcting the thermally induced optical phase errors.

  7. Transmutation and energy-production with high power accelerators

    SciTech Connect (OSTI)

    Lawrence, G.P.

    1995-07-01

    Accelerator-driven transmutation offers attractive new solutions to complex nuclear problems. This paper outlines the basics of the technology, summarizes the key application areas, and discusses designs of and performance issues for the high-power proton accelerators that are required.

  8. Energy Department Issues New Report, Highlights the Success and Potential of American Hydropower

    Broader source: Energy.gov [DOE]

    First report of its kind quantifies the current size, scope and variability of our nation’s hydropower supplies.

  9. Laboratory Demonstration of a New American Low-Head Hydropower Turbine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New American Low-Head Hydropower Turbine Office presentation icon 68b_hydrogreen_small_hydro_ch_11.ppt More Documents & Publications Real World Demonstration of a New American Low-Head Hydropower Unit Turbine Aeration Physical Modeling and Software Design Scalable Low-head Axial-type Venturi-flow

  10. Life Cycle Assessments Confirm the Need for Hydropower and Nuclear Energy

    SciTech Connect (OSTI)

    Gagnon, L.

    2004-10-03

    This paper discusses the use of life cycle assessments to confirm the need for hydropower and nuclear energy.

  11. A Holistic Framework for Environmental Flows Determination in Hydropower Contexts

    SciTech Connect (OSTI)

    McManamay, Ryan A; Bevelhimer, Mark S

    2013-05-01

    Among the ecological science community, the consensus view is that the natural flow regime sustains the ecological integrity of river systems. This prevailing viewpoint by many environmental stakeholders has progressively led to increased pressure on hydropower dam owners to change plant operations to affect downstream river flows with the intention of providing better conditions for aquatic biological communities. Identifying the neccessary magnitude, frequency, duration, timing, or rate of change of stream flows to meet ecological needs in a hydropower context is challenging because the ecological responses to changes in flows may not be fully known, there are usually a multitude of competing users of flow, and implementing environmental flows usually comes at a price to energy production. Realistically, hydropower managers must develop a reduced set of goals that provide the most benefit to the identified ecological needs. As a part of the Department of Energy (DOE) Water Power Program, the Instream Flow Project (IFP) was carried out by Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Argon National Laboratory (ANL) as an attempt to develop tools aimed at defining environmental flow needs for hydropower operations. The application of these tools ranges from national to site-specific scales; thus, the utility of each tool will depend on various phases of the environmental flow process. Given the complexity and sheer volume of applications used to determine environmentally acceptable flows for hydropower, a framework is needed to organize efforts into a staged process dependent upon spatial, temporal, and functional attributes. By far, the predominant domain for determining environmental flows related to hydropower is within the Federal Energy Regulatory Commission (FERC) relicensing process. This process can take multiple years and can be very expensive depending on the scale of each hydropower project. The utility of such a framework is that it can expedite the environmental flow process by 1) organizing data and applications to identify predictable relationships between flows and ecology, and 2) suggesting when and where tools should be used in the environmental flow process. In addition to regulatory procedures, a framework should also provide the coordination for a comprehensive research agenda to guide the science of environmental flows. This research program has further reaching benefits than just environmental flow determination by providing modeling applications, data, and geospatial layers to inform potential hydropower development. We address several objectives within this document that highlight the limitations of existing environmental flow paradigms and their applications to hydropower while presenting a new framework catered towards hydropower needs. Herein, we address the following objectives: 1) Provide a brief overview of the Natural Flow Regime paradigm and existing environmental flow frameworks that have been used to determine ecologically sensitive stream flows for hydropower operations. 2) Describe a new conceptual framework to aid in determining flows needed to meet ecological objectives with regard to hydropower operations. The framework is centralized around determining predictable relationships between flow and ecological responses. 3) Provide evidence of how efforts from ORNL, PNNL, and ANL have filled some of the gaps in this broader framework, and suggest how the framework can be used to set the stage for a research agenda for environmental flow.

  12. Lac Courte Oreilles Band of Lake Superior Chippewa Indians- 2010 Hydropower Project

    Broader source: Energy.gov [DOE]

    The feasibility study of hydropower will answer three questions: 1) How can hydropower be developed to create a sustainable economic stream that contributes to the financial viability of the tribe? 2) How can this venture meet the energy needs of the community? 3) How can hydropower be developed without jeopardizing Mother Earth or the cultural beliefs of the tribe?

  13. Quantifying the Value of Hydropower in the Electric Grid. Final Report

    SciTech Connect (OSTI)

    Key, T.

    2013-02-01

    The report summarizes a 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. The study looked at existing large hydropower operations in the U.S., models for different electricity futures, markets, costs of existing and new technologies as well as trends related to hydropower investments in other parts of the world.

  14. Memorandum of Understanding for Hydropower Two-Year Progress Report

    SciTech Connect (OSTI)

    2012-04-01

    On March 24, 2010, the Department of the Army (DOA) through the U.S. Army Corps of Engineers (USACE or Corps), the Department of Energy, and the Department of the Interior signed the Memorandum of Understanding (MOU) for Hydropower. The purpose of the MOU is to “help meet the nation’s needs for reliable, affordable, and environmentally sustainable hydropower by building a long-term working relationship, prioritizing similar goals, and aligning ongoing and future renewable energy development efforts.” This report documents efforts so far.

  15. Interim survey report, Wailua River hydropower, Kauai, Hawaii

    SciTech Connect (OSTI)

    Not Available

    1982-09-01

    Installation of hydroelectric facilities on the South Fork Wailua River three and five miles upstream of Wailua Falls on the Island of Kauai, Hawaii is proposed. The hydroelectric facilities would provide an additional source of energy for the island, effectively utilizing available waters. Addition of hydropower to the island's power system, which is primarily reliant on fuel and diesel oils, would diversify the system's base. Hydropower diversion would reduce flows downstream of the structures, affecting fishery, recreational, and aesthetic resources. Construction activities would disturb approximately 2.7 acres of cropland and create temporary turbidity downstream of the sites.

  16. DOE Hydropower Program Biennial Report for FY 2005-2006

    SciTech Connect (OSTI)

    Sale, Michael J.; Cada, Glenn F.; Acker, Thomas L.; Carlson, Thomas; Dauble, Dennis D.; Hall, Douglas G.

    2006-07-01

    This report describes the progress of the R&D conducted in FY 2005-2006 the under four program areas at the time: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices); (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis); (3) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications); and (4) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology).

  17. DOE Hydropower Program Annual Report for FY 2004

    SciTech Connect (OSTI)

    Sommers, Garold L.; Hunt, Richard T.; Cada, Glenn F.; Sale, Michael J.; Dauble, Dennis D.; Carlson, Thomas; Ahlgrimm, James; Acker, Tomas L.

    2005-02-01

    This report describes the progress of the R&D conducted in FY 2004 the under four program areas at the time: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices); (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis); (3) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications); and (4) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology).

  18. DOE Hydropower Program Biennial Report for FY 2005-2006

    SciTech Connect (OSTI)

    Sale, Michael J; Cada, Glenn F; Acker, Thomas L.; Carlson, Thomas; Dauble, Dennis D.; Hall, Douglas G.

    2006-07-01

    SUMMARY The U.S. Department of Energy (DOE) Hydropower Program is part of the Office of Wind and Hydropower Technologies, Office of Energy Efficiency and Renewable Energy. The Program's mission is to conduct research and development (R&D) that will increase the technical, societal, and environmental benefits of hydropower. The Department's Hydropower Program activities are conducted by its national laboratories: Idaho National Laboratory (INL) [formerly Idaho National Engineering and Environmental Laboratory], Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and National Renewable Energy Laboratory (NREL), and by a number of industry, university, and federal research facilities. Programmatically, DOE Hydropower Program R&D activities are conducted in two areas: Technology Viability and Technology Application. The Technology Viability area has two components: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices) and (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis). The Technology Application area also has two components: (1) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications) and (2) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology). This report describes the progress of the R&D conducted in FY 2005-2006 under all four program areas. Major accomplishments include the following: Conducted field testing of a Retrofit Aeration System to increase the dissolved oxygen content of water discharged from the turbines of the Osage Project in Missouri. Contributed to the installation and field testing of an advanced, minimum gap runner turbine at the Wanapum Dam project in Washington. Completed a state-of-the-science review of hydropower optimization methods and published reports on alternative operating strategies and opportunities for spill reduction. Carried out feasibility studies of new environmental performance measurements of the new MGR turbine at Wanapum Dam, including measurement of behavioral responses, biomarkers, bioindex testing, and the use of dyes to assess external injuries. Evaluated the benefits of mitigation measures for instream flow releases and the value of surface flow outlets for downstream fish passage. Refined turbulence flow measurement techniques, the computational modeling of unsteady flows, and models of blade strike of fish. Published numerous technical reports, proceedings papers, and peer-reviewed literature, most of which are available on the DOE Hydropower website. Further developed and tested the sensor fish measuring device at hydropower plants in the Columbia River. Data from the sensor fish are coupled with a computational model to yield a more detailed assessment of hydraulic environments in and around dams. Published reports related to the Virtual Hydropower Prospector and the assessment of water energy resources in the U.S. for low head/low power hydroelectric plants. Convened a workshop to consider the environmental and technical issues associated with new hydrokinetic and wave energy technologies. Laboratory and DOE staff participated in numerous workshops, conferences, coordination meetings, planning meetings, implementation meetings, and reviews to transfer the results of DOE-sponsored research to end-users.

  19. Designing high power targets with computational fluid dynamics (CFD)

    SciTech Connect (OSTI)

    Covrig, S. D.

    2013-11-07

    High power liquid hydrogen (LH2) targets, up to 850 W, have been widely used at Jefferson Lab for the 6 GeV physics program. The typical luminosity loss of a 20 cm long LH2 target was 20% for a beam current of 100 ?A rastered on a square of side 2 mm on the target. The 35 cm long, 2500 W LH2 target for the Qweak experiment had a luminosity loss of 0.8% at 180 ?A beam rastered on a square of side 4 mm at the target. The Qweak target was the highest power liquid hydrogen target in the world and with the lowest noise figure. The Qweak target was the first one designed with CFD at Jefferson Lab. A CFD facility is being established at Jefferson Lab to design, build and test a new generation of low noise high power targets.

  20. High-Power Microwave Transmission and Mode Conversion Program

    SciTech Connect (OSTI)

    Vernon, Ronald J.

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  1. Technology requirements for high-power Lithium Lorentz Force accelerators

    SciTech Connect (OSTI)

    Polk, J.; Frisbee, R.; Krauthamer, S.; Tikhonov, V.; Semenikhin, S.; Kim, V.

    1997-01-01

    Lithium Lorentz Force Accelerators (LFA{close_quote}s) are capable of processing very high power levels and are therefore applicable to a wide range of challenging missions. An analysis of a reusable orbit transfer vehicle with a solar or nuclear electric power source was performed to assess the applicability of high-power LFA{close_quote}s to this mission and to define engine performance and lifetime goals to help guide the technology development program. For this class of missions, the emphasis must be on achieving high efficiency at an Isp of 4000{endash}5000 s at power levels of 200{endash}250 kWe. The engines must demonstrate very reliable operation for a service life of about 3000 hours. These goals appear to be achievable with engine technologies currently under development. {copyright} {ital 1997 American Institute of Physics.}

  2. Method and apparatus for improved high power impulse magnetron sputtering

    DOE Patents [OSTI]

    Anders, Andre

    2013-11-05

    A high power impulse magnetron sputtering apparatus and method using a vacuum chamber with a magnetron target and a substrate positioned in the vacuum chamber. A field coil being positioned between the magnetron target and substrate, and a pulsed power supply and/or a coil bias power supply connected to the field coil. The pulsed power supply connected to the field coil, and the pulsed power supply outputting power pulse widths of greater that 100 .mu.s.

  3. Laser Seeding Yields High-Power Coherent Terahertz Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Researchers at Berkeley Lab have been exploring the ways coherent synchrotron radiation (CSR) is generated in electron storage rings when femtosecond lasers are used to carve out ultrafast x-ray pulses by femtoslicing (see "Tailored Terahertz Pulses from a Laser-Modulated Electron Beam"). In their most recent work, the researchers reported the first observation of seeding an instability of the electron beam by the

  4. Laser Seeding Yields High-Power Coherent Terahertz Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Researchers at Berkeley Lab have been exploring the ways coherent synchrotron radiation (CSR) is generated in electron storage rings when femtosecond lasers are used to carve out ultrafast x-ray pulses by femtoslicing (see "Tailored Terahertz Pulses from a Laser-Modulated Electron Beam"). In their most recent work, the researchers reported the first observation of seeding an instability of the electron beam by the

  5. Laser Seeding Yields High-Power Coherent Terahertz Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Researchers at Berkeley Lab have been exploring the ways coherent synchrotron radiation (CSR) is generated in electron storage rings when femtosecond lasers are used to carve out ultrafast x-ray pulses by femtoslicing (see "Tailored Terahertz Pulses from a Laser-Modulated Electron Beam"). In their most recent work, the researchers reported the first observation of seeding an instability of the electron beam by the

  6. Laser Seeding Yields High-Power Coherent Terahertz Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Researchers at Berkeley Lab have been exploring the ways coherent synchrotron radiation (CSR) is generated in electron storage rings when femtosecond lasers are used to carve out ultrafast x-ray pulses by femtoslicing (see "Tailored Terahertz Pulses from a Laser-Modulated Electron Beam"). In their most recent work, the researchers reported the first observation of seeding an instability of the electron beam by the

  7. Laser Seeding Yields High-Power Coherent Terahertz Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Researchers at Berkeley Lab have been exploring the ways coherent synchrotron radiation (CSR) is generated in electron storage rings when femtosecond lasers are used to carve out ultrafast x-ray pulses by femtoslicing (see "Tailored Terahertz Pulses from a Laser-Modulated Electron Beam"). In their most recent work, the researchers reported the first observation of seeding an instability of the electron beam by the

  8. High power femtosecond lasers at ELI-NP

    SciTech Connect (OSTI)

    Dabu, Razvan

    2015-02-24

    Specifications of the high power laser system (HPLS) designed for nuclear physics experiments are presented. Configuration of the 2 × 10 PW femtosecond laser system is described. In order to reach the required laser beam parameters, advanced laser techniques are proposed for the HPLS: parametric amplification and cross-polarized wave generation for the intensity contrast improvement and spectral broadening, acousto-optic programmable filters to compensate for spectral phase dispersion, optical filters for spectrum management, combined methods for transversal laser suppression.

  9. Method and apparatus for tuning high power lasers

    DOE Patents [OSTI]

    Hutchinson, Donald P.; Vandersluis, Kenneth L.

    1977-04-19

    This invention relates to high power gas lasers that are adapted to be tuned to a desired lasing wavelength through the use of a gas cell to lower the gain at a natural lasing wavelength and "seeding" the laser with a beam from a low power laser which is lasing at the desired wavelength. This tuning is accomplished with no loss of power and produces a pulse with an altered pulse shape. It is potentially applicable to all gas lasers.

  10. Active high-power RF switch and pulse compression system

    DOE Patents [OSTI]

    Tantawi, Sami G.; Ruth, Ronald D.; Zolotorev, Max

    1998-01-01

    A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.

  11. Water Energy Resource Data from Idaho National Laboratory's Virtual Hydropower Prospector

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The mission of the U.S. Department of Energy's (DOE's) Hydropower Program is to conduct research and development (R&D) that will improve the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity, adding diversity to the nation's energy supply. The Virtual Hydropower Prospector is a GIS application to locate and evaluate natural stream water energy resources. In the interactive data map the U.S. is divided into 20 hydrologic regions. The Prospector tool applies an analytical process to determine the gross power potential of these regions and helps users to site potential hydropower projects.

  12. Methodology and Process for Condition Assessment at Existing Hydropower Plants

    SciTech Connect (OSTI)

    Zhang, Qin Fen; Smith, Brennan T; Cones, Marvin; March, Patrick; Dham, Rajesh; Spray, Michael

    2012-01-01

    Hydropower Advancement Project was initiated by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy to develop and implement a systematic process with a standard methodology to identify the opportunities of performance improvement at existing hydropower facilities and to predict and trend the overall condition and improvement opportunity within the U.S. hydropower fleet. The concept of performance for the HAP focuses on water use efficiency how well a plant or individual unit converts potential energy to electrical energy over a long-term averaging period of a year or more. The performance improvement involves not only optimization of plant dispatch and scheduling but also enhancement of efficiency and availability through advanced technology and asset upgrades, and thus requires inspection and condition assessment for equipment, control system, and other generating assets. This paper discusses the standard methodology and process for condition assessment of approximately 50 nationwide facilities, including sampling techniques to ensure valid expansion of the 50 assessment results to the entire hydropower fleet. The application and refining process and the results from three demonstration assessments are also presented in this paper.

  13. Quadrennial Technology Review 2015: Technology Assessments--Hydropower

    SciTech Connect (OSTI)

    Sam Baldwin, Gilbert Bindewald, Austin Brown, Charles Chen, Kerry Cheung, Corrie Clark, Joe Cresko,

    2015-10-07

    Hydropower has provided reliable and flexible base and peaking power generation in the United States for more than a century, contributing on average 10.5% of cumulative U.S. power sector net generation over the past six and one-half decades (1949–2013). It is the nation’s largest source of renewable electricity, with 79 GW of generating assets and 22 GW of pumped-storage assets in service, with hydropower providing half of all U.S. renewable power-sector generation (50% in 2014). In addition to this capacity, the U.S. Department of Energy (DOE) has identified greater than 80 GW of new hydropower resource potential: at least 5 GW from rehabilitation and expansion of existing generating assets, up to 12 GW of potential at existing dams without power facilities, and over 60 GW of potential low-impact new development (LIND) in undeveloped stream reaches. However, despite this growth potential, hydropower capacity and production growth have stalled in recent years, with existing assets even experiencing decreases in capacity and production from lack of sustaining investments in infrastructure and increasing constraints on water use.

  14. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods

    DOE Patents [OSTI]

    Rinzler, Charles C.; Gray, William C.; Faircloth, Brian O.; Zediker, Mark S.

    2016-02-23

    A monitoring and detection system for use on high power laser systems, long distance high power laser systems and tools for performing high power laser operations. In particular, the monitoring and detection systems provide break detection and continuity protection for performing high power laser operations on, and in, remote and difficult to access locations.

  15. Regulatory approaches for addressing dissolved oxygen concerns at hydropower facilities

    SciTech Connect (OSTI)

    Peterson, Mark J.; Cada, Glenn F.; Sale, Michael J.; Eddlemon, Gerald K.

    2003-03-01

    Low dissolved oxygen (DO) concentrations are a common water quality problem downstream of hydropower facilities. At some facilities, structural improvements (e.g. installation of weir dams or aerating turbines) or operational changes (e.g., spilling water over the dam) can be made to improve DO levels. In other cases, structural and operational approaches are too costly for the project to implement or are likely to be of limited effectiveness. Despite improvements in overall water quality below dams in recent years, many hydropower projects are unable to meet state water quality standards for DO. Regulatory agencies in the U.S. are considering or implementing dramatic changes in their approach to protecting the quality of the Nations waters. New policies and initiatives have emphasized flexibility, increased collaboration and shared responsibility among all parties, and market-based, economic incentives. The use of new regulatory approaches may now be a viable option for addressing the DO problem at some hydropower facilities. This report summarizes some of the regulatory-related options available to hydropower projects, including negotiation of site-specific water quality criteria, use of biological monitoring, watershed-based strategies for the management of water quality, and watershed-based trading. Key decision points center on the health of the local biological communities and whether there are contributing impacts (i.e., other sources of low DO effluents) in the watershed. If the biological communities downstream of the hydropower project are healthy, negotiation for site-specific water quality standards or biocriteria (discharge performance criteria based on characteristics of the aquatic biota) might be pursued. If there are other effluent dischargers in the watershed that contribute to low DO problems, watershed-scale strategies and effluent trading may be effective. This report examines the value of regulatory approaches by reviewing their use in other

  16. Electron beam diagnostic for profiling high power beams

    DOE Patents [OSTI]

    Elmer, John W.; Palmer, Todd A.; Teruya, Alan T.

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  17. Optical power splitter for splitting high power light

    DOE Patents [OSTI]

    English, Jr., Ronald E.; Christensen, John J.

    1995-01-01

    An optical power splitter for the distribution of high-power light energy has a plurality of prisms arranged about a central axis to form a central channel. The input faces of the prisms are in a common plane which is substantially perpendicular to the central axis. A beam of light which is substantially coaxial to the central axis is incident on the prisms and at least partially strikes a surface area of each prism input face. The incident beam also partially passes through the central channel.

  18. Optical power splitter for splitting high power light

    DOE Patents [OSTI]

    English, R.E. Jr.; Christensen, J.J.

    1995-04-18

    An optical power splitter for the distribution of high-power light energy has a plurality of prisms arranged about a central axis to form a central channel. The input faces of the prisms are in a common plane which is substantially perpendicular to the central axis. A beam of light which is substantially coaxial to the central axis is incident on the prisms and at least partially strikes a surface area of each prism input face. The incident beam also partially passes through the central channel. 5 figs.

  19. Region Qinghai Dangshun Hydropower Development Co Ltd Qinghai...

    Open Energy Info (EERE)

    Avenida De La Playa La Jolla California Efficiency Created high power yellow amber red LED light technology http www quanlight com Southern CA Area QuantaSol Limited...

  20. R&D ERL: High power RF systems

    SciTech Connect (OSTI)

    Zaltsman, A.

    2010-01-15

    The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2.5 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.

  1. High power RF systems for the BNL ERL project

    SciTech Connect (OSTI)

    Zaltsman, A.; Lambiase, R.

    2011-03-28

    The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.

  2. PREDICTION OF TOTAL DISSOLVED GAS EXCHANGE AT HYDROPOWER DAMS

    SciTech Connect (OSTI)

    Hadjerioua, Boualem; Pasha, MD Fayzul K; Stewart, Kevin M; Bender, Merlynn; Schneider, Michael L.

    2012-07-01

    Total dissolved gas (TDG) supersaturation in waters released at hydropower dams can cause gas bubble trauma in fisheries resulting in physical injuries and eyeball protrusion that can lead to mortality. Elevated TDG pressures in hydropower releases are generally caused by the entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin. The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. These dam operations are constrained by state and federal water quality standards for TDG saturation which balance the benefits of spillway operations designed for Endangered Species Act (ESA)-listed fisheries versus the degradation to water quality as defined by TDG saturation. In the 1970s, the United States Environmental Protection Agency (USEPA), under the federal Clean Water Act (Section 303(d)), established a criterion not to exceed the TDG saturation level of 110% in order to protect freshwater and marine aquatic life. The states of Washington and Oregon have adopted special water quality standards for TDG saturation in the tailrace and forebays of hydropower facilities on the Columbia and Snake Rivers where spillway operations support fish passage objectives. The physical processes that affect TDG exchange at hydropower facilities have been studied throughout the CRB in site-specific studies and routine water quality monitoring programs. These data have been used to quantify the relationship between project operations, structural properties, and TDG exchange. These data have also been used to develop predictive models of TDG exchange to support real-time TDG management decisions. These empirically based predictive models have been developed for specific projects and account for both the fate of spillway and powerhouse flows in the tailrace channel and resultant exchange in route to the next downstream dam. Currently, there exists a need to summarize the general finding from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow the formulation of optimal daily water regulation schedules subject to water quality constraints for TDG supersaturation. A generalized TDG exchange model can also be applied to other hydropower dams that affect TDG pressures in tailraces and can be used to develop alternative operational and structural measures to minimize TDG generation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases. TDG data from hydropower facilities located throughout the northwest region of the United States will be used to identify relationships between TDG exchange and relevant dependent variables. Data analysis and regression techniques will be used to develop predictive TDG exchange expressions for various structural categories.

  3. Hydropower - Energy Explained, Your Guide To Understanding Energy - Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Hydropower Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for Future

  4. Microsoft PowerPoint - SW HydropowerCouncil-060910.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Budget Concept Southwest Federal Hydropower Council 9 June 2010 Gary Loew Programs Integration Division Civil Works Directorate. HQUSACE Civil Works Directorate. HQUSACE BUILDING STRONG ® 1 US Army Corps of Engineers BUILDING STRONG ® AGENDA * Budgets and Appropriations Trends * Where we are * Where we're headed Where we re headed * Does our Budget process represent our Mission? * One solution to future funding--Inland Waterways * The Problem * Study History and Results * Study History and

  5. Background radiation measurements at high power research reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ashenfelter, J.; Yeh, M.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; et al

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the backgroundmore » fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.« less

  6. Plasma Switch for High-Power Active Pulse Compressor

    SciTech Connect (OSTI)

    Hirshfield, Jay L.

    2013-11-04

    Results are presented from experiments carried out at the Naval Research Laboratory X-band magnicon facility on a two-channel X-band active RF pulse compressor that employed plasma switches. Experimental evidence is shown to validate the basic goals of the project, which include: simultaneous firing of plasma switches in both channels of the RF circuit, operation of quasi-optical 3-dB hybrid directional coupler coherent superposition of RF compressed pulses from both channels, and operation of the X-band magnicon directly in the RF pulse compressor. For incident 1.2 ?s pulses in the range 0.63 ? 1.35 MW, compressed pulses of peak powers 5.7 ? 11.3 MW were obtained, corresponding to peak power gain ratios of 8.3 ? 9.3. Insufficient bakeout and conditioning of the high-power RF circuit prevented experiments from being conducted at higher RF input power levels.

  7. Very low pressure high power impulse triggered magnetron sputtering

    DOE Patents [OSTI]

    Anders, Andre; Andersson, Joakim

    2013-10-29

    A method and apparatus are described for very low pressure high powered magnetron sputtering of a coating onto a substrate. By the method of this invention, both substrate and coating target material are placed into an evacuable chamber, and the chamber pumped to vacuum. Thereafter a series of high impulse voltage pulses are applied to the target. Nearly simultaneously with each pulse, in one embodiment, a small cathodic arc source of the same material as the target is pulsed, triggering a plasma plume proximate to the surface of the target to thereby initiate the magnetron sputtering process. In another embodiment the plasma plume is generated using a pulsed laser aimed to strike an ablation target material positioned near the magnetron target surface.

  8. Possible high power limitations from RF pulsed heating

    SciTech Connect (OSTI)

    Pritzkau, D.P.; Bowden, G.B.; Menegat, A.; Siemann, R.H. [Stanford Linear Accelerator Center, Stanford University, California 94309 (United States)

    1999-05-01

    One of the possible limitations to achieving high power in RF structures is damage to metal surfaces due to RF pulsed heating. Such damage may lead to degradation of RF performance. An experiment to study RF pulsed heating on copper has been developed at SLAC. The experiment consists of operating two pillbox cavities in the TE{sub 011} mode using a 50 MW X-Band klystron. The estimated temperature rise of the surface of copper is 350&hthinsp;{degree}C for a power input of 20 MW to each cavity with a pulse length of 1.5 {mu}s. Preliminary results from an experiment performed earlier are presented. A revised design for continued experiments is also presented along with relevant theory and calculations. {copyright} {ital 1999 American Institute of Physics.}

  9. Background radiation measurements at high power research reactors

    SciTech Connect (OSTI)

    Ashenfelter, J.; Yeh, M.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yen, Y. -R.; Zhang, C.; Zhang, X.

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  10. EERE Wind and Hydropower Technologies Program Technology Review (Deep Dive) for Under Secretaries Johnson and Koonin

    SciTech Connect (OSTI)

    McCluer, Megan

    2009-09-04

    September 4, 2009 presentation highlighting the Wind and Hydropower Program, addressing program goals and objectives, budgets, technology pathways, breakthroughs, and DOE solutions to market barriers.

  11. EERE Wind and Hydropower Technologies Program Technology Review (Deep Dive) for Under Secretaries Johnson and Koonin

    SciTech Connect (OSTI)

    2009-09-01

    September 4, 2009 presentation highlighting the Wind and Hydropower Program, addressing program goals and objectives, budgets, technology pathways, breakthroughs, and DOE solutions to market barriers.

  12. Energy Department to Fund R&D to Advance Low-Impact Hydropower...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    While hydropower already supplies roughly 7% of America's electricity and is the leading ... prefabricated structures, water impoundment structures, and water conveyance systems. ...

  13. Energy Department Announces $4.4 Million to Support Next-Generation Advanced Hydropower Manufacturing

    Broader source: Energy.gov [DOE]

    The Energy Department today announced $4.4 million to support the application of advanced materials and manufacturing techniques to the development of next-generation hydropower technologies.

  14. Real World Demonstration of a New American Low-Head Hydropower Unit |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Real World Demonstration of a New American Low-Head Hydropower Unit Real World Demonstration of a New American Low-Head Hydropower Unit Real World Demonstration of a New American Low-Head Hydropower Unit Office presentation icon 69d_hydrogreen_hydro_demonstration_12.ppt More Documents & Publications Laboratory Demonstration of a New American Low-Head Hydropower Turbine Turbine Aeration Physical Modeling and Software Design Scalable Low-head Axial-type Venturi-flow

  15. Real World Demonstration of a New American Low-Head Hydropower...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real World Demonstration of a New American Low-Head Hydropower Unit Office presentation icon 69dhydrogreenhydrodemonstration12.ppt More Documents & Publications Laboratory ...

  16. Energy Department Awards $6.5 Million to Advance Low Environmental Impact Hydropower Technologies

    Broader source: Energy.gov [DOE]

    Today, the Energy Department announced seven organizations selected to receive $6.5 million to advance the manufacturing and installation of low environmental impact hydropower technologies. The...

  17. High-power Laser Interaction With Low-density C-Cu Foams (Journal...

    Office of Scientific and Technical Information (OSTI)

    High-power Laser Interaction With Low-density C-Cu Foams Citation Details In-Document Search Title: High-power Laser Interaction With Low-density C-Cu Foams You are accessing a ...

  18. Self-organization and self-limitation in high power impulse magnetron...

    Office of Scientific and Technical Information (OSTI)

    Self-organization and self-limitation in high power impulse magnetron sputtering Citation Details In-Document Search Title: Self-organization and self-limitation in high power ...

  19. Boosted HCCI for High Power without Engine Knock, and with Ultra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boosted HCCI for High Power without Engine Knock, and with Ultra-Low NOX Emissions Boosted HCCI for High Power without Engine Knock, and with Ultra-Low NOX Emissions Advanced ...

  20. High-Power Electrodes for Lithium-Ion Batteries | U.S. DOE Office...

    Office of Science (SC) Website

    High-Power Electrodes for Lithium-Ion Batteries Energy Frontier Research Centers (EFRCs) ... High-Power Electrodes for Lithium-Ion Batteries Print Text Size: A A A FeedbackShare ...

  1. Control system for high power laser drilling workover and completion unit

    SciTech Connect (OSTI)

    Zediker, Mark S; Makki, Siamak; Faircloth, Brian O; DeWitt, Ronald A; Allen, Erik C; Underwood, Lance D

    2015-05-12

    A control and monitoring system controls and monitors a high power laser system for performing high power laser operations. The control and monitoring system is configured to perform high power laser operation on, and in, remote and difficult to access locations.

  2. Plasma potential mapping of high power impulse magnetron sputtering discharges

    SciTech Connect (OSTI)

    Rauch, Albert; Mendelsberg, Rueben J.; Sanders, Jason M.; Anders, Andre

    2011-12-20

    Pulsed emissive probe techniques have been used to determine the plasma potential distribution of high power impulse magnetron sputtering (HiPIMS) discharges. An unbalanced magnetron with a niobium target in argon was investigated for pulse length of 100 ?s at a pulse repetition rate of 100 Hz, giving a peak current of 170 A. The probe data were taken with a time resolution of 20 ns and a spatial resolution of 1 mm. It is shown that the local plasma potential varies greatly in space and time. The lowest potential was found over the targets racetrack, gradually reaching anode potential (ground) several centimeters away from the target. The magnetic pre-sheath exhibits a funnel-shaped plasma potential resulting in an electric field which accelerates ions toward the racetrack. In certain regions and times, the potential exhibits weak local maxima which allow for ion acceleration to the substrate. Knowledge of the local E and static B fields lets us derive the electrons EB drift velocity, which is about 105 m/s and shows structures in space and time.

  3. High power continuous-wave titanium:sapphire laser

    DOE Patents [OSTI]

    Erbert, Gaylen V.; Bass, Isaac L.; Hackel, Richard P.; Jenkins, Sherman L.; Kanz, Vernon K.; Paisner, Jeffrey A.

    1993-01-01

    A high-power continuous-wave laser resonator (10) is provided, wherein first, second, third, fourth, fifth and sixth mirrors (11-16) form a double-Z optical cavity. A first Ti:Sapphire rod (17) is disposed between the second and third mirrors (12,13) and at the mid-point of the length of the optical cavity, and a second Ti:Sapphire rod (18) is disposed between the fourth and fifth mirrors (14,15) at a quarter-length point in the optical cavity. Each Ti:Sapphire rod (17,18) is pumped by two counter-propagating pump beams from a pair of argon-ion lasers (21-22, 23-24). For narrow band operation, a 3-plate birefringent filter (36) and an etalon (37) are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors (101, 192) are disposed between the first and second mirrors (11, 12) to form a triple-Z optical cavity. A third Ti:Sapphire rod (103) is disposed between the seventh and eighth mirrors (101, 102) at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers (104, 105).

  4. Development of a high-power lithium-ion battery.

    SciTech Connect (OSTI)

    Jansen, A. N.

    1998-09-02

    Safety is a key concern for a high-power energy storage system such as will be required in a hybrid vehicle. Present lithium-ion technology, which uses a carbon/graphite negative electrode, lacks inherent safety for two main reasons: (1) carbon/graphite intercalates lithium at near lithium potential, and (2) there is no end-of-charge indicator in the voltage profile that can signal the onset of catastrophic oxygen evolution from the cathode (LiCoO{sub 2}). Our approach to solving these safety/life problems is to replace the graphite/carbon negative electrode with an electrode that exhibits stronger two-phase behavior further away from lithium potential, such as Li{sub 4}Ti{sub 5}O{sub 12}. Cycle-life and pulse-power capability data are presented in accordance with the Partnership for a New Generation of Vehicles (PNGV) test procedures, as well as a full-scale design based on a spreadsheet model.

  5. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect (OSTI)

    Mekhiche, Mike; Dufera, Hiz; Montagna, Deb

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy� technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  6. High Power Hydrogen Injector with Beam Focusing for Plasma Heating

    SciTech Connect (OSTI)

    Deichuli, P.P.; Ivanov, A.A.; Korepanov, S.A.; Mishagin, V.V.; Sorokin, A.V.; Stupishin, N.V

    2005-01-15

    High power neutral beam injector has been developed with the atom energy of 25 keV, a current of 60 A, and several milliseconds pulse duration. Six of these injectors will be used for upgrade of the atomic injection system at central cell of a Gas Dynamic Trap (GDT) device and 2 injectors are planned for SHIP experiment.The injector ion source is based on an arc discharge plasma box. The plasma emitter is produced by a 1 kA arc discharge in hydrogen. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase its efficiency and improve homogeneity of the plasma emitter. The ion beam is extracted by a 4-electrodes ion optical system (IOS). Initial beam diameter is 200 mm. The grids of the IOS have a spherical curvature for geometrical focusing of the beam. The optimal IOS geometry and grid potentials were found with the numerical simulation to provide precise beam formation. The measured angular divergence of the beam is 0.02 rad, which corresponds to the 2.5 cm Gaussian radius of the beam profile measured at focal point.

  7. High power linear pulsed beam annealer. [Patent application

    DOE Patents [OSTI]

    Strathman, M.D.; Sadana, D.K.; True, R.B.

    1980-11-26

    A high power pulsed electron beam system for annealing semiconductors is comprised of an electron gun having a heated cathode, control grid and focus ring for confining the pulsed beam of electrons to a predetermined area, and a curved drift tube. The drift tube and an annular Faraday shield between the focus ring and the drift tube are maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring, thereby eliminating space charge limitations on the emission of electrons from said gun. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube. The magnetic field produced by the coil around the curved tube imparts motion to electrons in a spiral path for shallow penetration of the electrons into a target. It also produces a scalloped profile of the electron beam. A second drift tube spaced a predetermined distance from the curved tube is positioned with its axis aligned with the axis of the first drift tube. The second drift tube and the target holder are maintained at a reference voltage between the cathode voltage and the curved tube voltage to decelerate the electrons. A second coil surrounding the second drift tube, maintains the electron beam focused about the axis of the second drift tube. The magnetic field of the second coil comprises the electron beam to the area of the semiconductor on the target holder.

  8. High power continuous-wave titanium:sapphire laser

    DOE Patents [OSTI]

    Erbert, G.V.; Bass, I.L.; Hackel, R.P.; Jenkins, S.L.; Kanz, V.K.; Paisner, J.A.

    1993-09-21

    A high-power continuous-wave laser resonator is provided, wherein first, second, third, fourth, fifth and sixth mirrors form a double-Z optical cavity. A first Ti:sapphire rod is disposed between the second and third mirrors and at the mid-point of the length of the optical cavity, and a second Ti:sapphire rod is disposed between the fourth and fifth mirrors at a quarter-length point in the optical cavity. Each Ti:sapphire rod is pumped by two counter-propagating pump beams from a pair of argon-ion lasers. For narrow band operation, a 3-plate birefringent filter and an etalon are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors are disposed between the first and second mirrors to form a triple-Z optical cavity. A third Ti:sapphire rod is disposed between the seventh and eighth mirrors at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers. 5 figures.

  9. Overview of High Power Vacuum Dry RF Load Designs

    SciTech Connect (OSTI)

    Krasnykh, Anatoly

    2015-08-27

    A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is to use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.

  10. Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine

    Broader source: Energy.gov [DOE]

    Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine

  11. 51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

    Broader source: Energy.gov [DOE]

    51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

  12. "Fish Friendly" Hydropower Turbine Development and Deployment. Alden Turbine Preliminary Engineering and Model Testing

    SciTech Connect (OSTI)

    Dixon, D.

    2011-10-01

    This report presents the results of a collaborative research project funded by the Electric Power Research Institute (EPRI), the U.S. Department of Energy (DOE), and hydropower industry partners with the objective of completing the remaining developmental engineering required for a “fish-friendly” hydropower turbine called the Alden turbine.

  13. 2014 Water Power Program Peer Review: Hydropower Technologies, Compiled Presentations (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Hydropower Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

  14. High-power optical-fiber transport network

    SciTech Connect (OSTI)

    Cohen, S.J; Paris, R.D.

    1994-12-31

    In the U-AVLIS Program, organic dye laser chains generate the high-power, tunable laser light required by the uranium photoionization process. Up to fifteen chains of large-bore copper vapor lasers (CVLs) serve as the excitation source for these dye laser chains. Due to physical constraints and other considerations, the copper and dye laser systems are physically separated within the U-AVLIS Program`s Laser Demonstration Facility (LDF). An optical network is therefore required that serves as the conduit to efficiently transport the multi-kilowatt CVL beams to the dye lasers chains. Approximately ten years ago, the program began investigating the use of large-core optical-fiber cables as an alternative means of transporting CVL light. At that time, it was decided to separate the portion of the discrete delivery network that transported laser light to the dye master oscillators (DMOs) of the dye laser chains and convert that to an optical-fiber delivery approach. This first step in using optical fibers to transport CVL light to the low-power `front end` of the system was very successful and to date, several hundred thousand hours of routine, fiber-pumped DMO operation have been recorded. A key advantage in using optical fibers to deliver pump light to the DMOs is that the alignment of the optical fiber to the laser cavity is fixed, eliminating the need to make adjustments after the initial setup. Based on the experience gained pumping the DMOs with light delivered by optical fibers, nearly four years ago the more challenging task of converting the entire discrete copper laser delivery system to an optical-fiber-based network was begun.

  15. Safety approaches for high power modular laser operation

    SciTech Connect (OSTI)

    Handren, R.T.

    1993-03-01

    Approximately 20 years ago, a program was initiated at the Lawrence Livermore National Laboratory (LLNL) to study the feasibility of using lasers to separate isotopes of uranium and other materials. Of particular interest has been the development of a uranium enrichment method for the production of commercial nuclear power reactor fuel to replace current more expensive methods. The Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program has progressed to the point where a plant-scale facility to demonstrate commercial feasibility has been built and is being tested. The U-AVLIS Program uses copper vapor lasers which pump frequency selective dye lasers to photoionize uranium vapor produced by an electron beam. The selectively ionized isotopes are electrostatically collected. The copper lasers are arranged in oscillator/amplifier chains. The current configuration consists of 12 chains, each with a nominal output of 800 W for a system output in excess of 9 kW. The system requirements are for continuous operation (24 h a day, 7 days a week) and high availability. To meet these requirements, the lasers are designed in a modular form allowing for rapid change-out of the lasers requiring maintenance. Since beginning operation in early 1985, the copper lasers have accumulated over 2 million unit hours at a >90% availability. The dye laser system provides approximately 2.5 kW average power in the visible wavelength range. This large-scale laser system has many safety considerations, including high-power laser beams, high voltage, and large quantities ({approximately}3000 gal) of ethanol dye solutions. The Laboratory`s safety policy requires that safety controls be designed into any process, equipment, or apparatus in the form of engineering controls. Administrative controls further reduce the risk to an acceptable level. Selected examples of engineering and administrative controls currently being used in the U-AVLIS Program are described.

  16. Optimization Studies for ISOL Type High-Powered Targets

    SciTech Connect (OSTI)

    Remec, Igor; Ronningen, Reginald Martin

    2013-09-24

    The research studied one-step and two-step Isotope Separation on Line (ISOL) targets for future radioactive beam facilities with high driver-beam power through advanced computer simulations. As a target material uranium carbide in the form of foils was used because of increasing demand for actinide targets in rare-isotope beam facilities and because such material was under development in ISAC at TRIUMF when this project started. Simulations of effusion were performed for one-step and two step targets and the effects of target dimensions and foil matrix were studied. Diffusion simulations were limited by availability of diffusion parameters for UCx material at reduced density; however, the viability of the combined diffusion?effusion simulation methodology was demonstrated and could be used to extract physical parameters such as diffusion coefficients and effusion delay times from experimental isotope release curves. Dissipation of the heat from the isotope-producing targets is the limiting factor for high-power beam operation both for the direct and two-step targets. Detailed target models were used to simulate proton beam interactions with the targets to obtain the fission rates and power deposition distributions, which were then applied in the heat transfer calculations to study the performance of the targets. Results indicate that a direct target, with specification matching ISAC TRIUMF target, could operate in 500-MeV proton beam at beam powers up to ~40 kW, producing ~8 1013 fission/s with maximum temperature in UCx below 2200 C. Targets with larger radius allow higher beam powers and fission rates. For the target radius in the range 9-mm to 30-mm the achievable fission rate increases almost linearly with target radius, however, the effusion delay time also increases linearly with target radius.

  17. DOE Hydropower Program Annual Report for FY 2003

    SciTech Connect (OSTI)

    ?ada, Glenn F.; Carlson, Thomas J.; Dauble, Dennis D.; Hunt, Richard T.; Sale, Michael J.; Sommers, Garold L.

    2004-02-01

    This report describes the progress of the R&D conducted in FY 2003 the under four program areas at the time: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Testing of the Alden/NREC pilot scale runner, and Improved Mitigation Practices); (2) Supporting Research and Testing (Biological Design Criteria, Computer and Physical Modeling, Instrumentation and Controls, and Environmental Analysis); (3) Systems Integration and Technology Acceptance (Wind/Hydro Integration Studies and Technical Support and Outreach); and (4) Engineering and Analysis (Innovative Technology Characterization).

  18. Effects of Climate Change on Federal Hydropower. Report to Congress

    SciTech Connect (OSTI)

    2013-08-01

    This is a formal Department of Energy report to Congress. It outlines the findings of an assessment directed by Congress in Section 9505 of the SECURE Water Act of 2009 (Public Law 111-11), the US Department of Energy (DOE), in consultation with the federal Power Marketing Administrations (PMAs) and other federal agencies, including federal dam owners, has prepared a comprehensive assessment examining the effects of climate change on water available for hydropower at federal facilities and on the marketing of power from these federal facilities.

  19. EA-2022: Sleeping Giant Hydropower Project; Helena, Montana

    Broader source: Energy.gov [DOE]

    The Bureau of Reclamation (Montana Area Office), with DOE’s Western Area Power Administration (Upper Great Plains Region) as a cooperating agency, is preparing an EA that will assess the potential environmental impacts of a proposal to develop a 9.4 megawatt hydroelectric project at the existing Helena Valley Pumping Plant site at Canyon Ferry Dam on the Missouri River near Helena, Montana. The new hydropower generator would interconnect to Western’s transmission system at an existing transmission line originating at Canyon Ferry Dam.

  20. User's Guide Virtual Hydropower Prospector Version 1.1

    SciTech Connect (OSTI)

    Douglas G. Hall; Sera E. White; Julie A. Brizzee; Randy D. Lee

    2005-11-01

    The Virtual Hydropower Prospector is a web-based geographic information system (GIS) application for displaying U.S. water energy resource sites on hydrologic region maps. The application assists the user in locating sites of interest and performing preliminary, development feasibility assessments. These assessments are facilitated by displaying contextual features in addition to the water energy resource sites such as hydrograpy, roads, power infrastructure, populated places, and land use and control. This guide provides instructions for operating the application to select what features are displayed and the extent of the map view. It also provides tools for selecting features of particular interest and displaying their attribute information.