Powered by Deep Web Technologies
Note: This page contains sample records for the topic "high-level waste tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Nondestructive examination of DOE high-level waste storage tanks  

SciTech Connect (OSTI)

A number of DOE sites have buried tanks containing high-level waste. Tanks of particular interest am double-shell inside concrete cylinders. A program has been developed for the inservice inspection of the primary tank containing high-level waste (HLW), for testing of transfer lines and for the inspection of the concrete containment where possible. Emphasis is placed on the ultrasonic examination of selected areas of the primary tank, coupled with a leak-detection system capable of detecting small leaks through the wall of the primary tank. The NDE program is modelled after ASME Section XI in many respects, particularly with respects to the sampling protocol. Selected testing of concrete is planned to determine if there has been any significant degradation. The most probable failure mechanisms are corrosion-related so that the examination program gives major emphasis to possible locations for corrosion attack.

Bush, S.; Bandyopadhyay, K.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; van Rooyen, D.; Weeks, J.

1995-05-01T23:59:59.000Z

2

DOE high-level waste tank safety program. Final report  

SciTech Connect (OSTI)

The overall objective of the work was to provide LANL with support to the DOE High-Level Waste Tank Safety Program. This effort included direct support to the DOE High-Level Waste Tank Working Groups, development of a database to track all identified safety issues, development of requirements for waste tank modernization, evaluation of external comments regarding safety-related guidance/instruction developed previously, examination of current federal and state regulations associated with DOE Tank farm operations, and performance of a conduct of operations review. All tasks which were assigned under this Task Order were completed. Descriptions of the objectives of each task and effort performed to complete each objective is provided.

NONE

1998-11-01T23:59:59.000Z

3

Corrosion and failure processes in high-level waste tanks  

SciTech Connect (OSTI)

A large amount of radioactive waste has been stored safely at the Savannah River and Hanford sites over the past 46 years. The aim of this report is to review the experimental corrosion studies at Savannah River and Hanford with the intention of identifying the types and rates of corrosion encountered and indicate how these data contribute to tank failure predictions. The compositions of the High-Level Wastes, mild steels used in the construction of the waste tanks and degradation-modes particularly stress corrosion cracking and pitting are discussed. Current concerns at the Hanford Site are highlighted.

Mahidhara, R.K.; Elleman, T.S.; Murty, K.L. [North Carolina State Univ., Raleigh, NC (United States)

1992-11-01T23:59:59.000Z

4

CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315  

SciTech Connect (OSTI)

In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by closure operations. Subsequent down selection was based on compressive strength and saturated hydraulic conductivity results. Fresh slurry property results were used as the first level of screening. A high range water reducing admixture and a viscosity modifying admixture were used to adjust slurry properties to achieve flowable grouts. Adiabatic calorimeter results were used as the second level screening. The third level of screening was used to design mixes that were consistent with the fill material parameters used in the F-Tank Farm Performance Assessment which was developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closures.

Langton, C.; Burns, H.; Stefanko, D.

2012-01-10T23:59:59.000Z

5

Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks  

SciTech Connect (OSTI)

This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

WILLIS, W.L.

2000-06-15T23:59:59.000Z

6

High-level waste tank farm set point document  

SciTech Connect (OSTI)

Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Farms. The setpoint document will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DPSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREAS listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope.

Anthony, J.A. III

1995-01-15T23:59:59.000Z

7

Cementitious Grout for Closing SRS High Level Waste Tanks - 12315  

SciTech Connect (OSTI)

In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. Ancillary equipment abandoned in the tanks will also be filled to the extent practical. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and to be chemically reducing with a reduction potential (Eh) of -200 to -400. Grouts with this chemistry stabilize potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted to support the mass placement strategy developed by Savannah River Remediation (SRR) Closure Operations. Subsequent down selection was based on compressive strength and saturated hydraulic conductivity results. Fresh slurry property results were used as the first level of screening. A high range water reducing admixture and a viscosity modifying admixture were used to adjust slurry properties to achieve flowable grouts. Adiabatic calorimeter results were used as the second level screening. The third level of screening was used to design mixes that were consistent with the fill material parameters used in the F-Tank Farm Performance Assessment which was developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closures. The cement and slag contents of a mix selected for filling Tanks 18-F and 19-F should be limited to no more than 125 and 210 lbs/cyd, respectively, to limit the heat generated as the result of hydration reaction during curing and thereby enable mass pour placement. Trial mixes with water to total cementitious materials ratios of 0.550 to 0.580 and 125 lbs/cyd of cement and 210 lbs/cyd of slag met the strength and permeability requirements. Mix LP no.8-16 was selected for closing SRS Tanks 18-F and 19-F because it meets or exceeds the design requirements with the least amount of Portland cement and blast furnace slag. This grout is expected to flow at least 45 feet. A single point of discharge should be sufficient for unrestricted flow conditions. However, additional entry points should be identified as back-up in case restrictions in the tank impede flow. The LP no.8 series of trial mixes had surprisingly high design compressive strengths (2000 to 4000/5000 psi) which were achieved at extended curing times (28 to 90 days, respectively) given the small amount of Portland cement in the mixes (100 to 185 lbs/cyd). The grouts were flowable structural fills containing 3/8 inch gravel and concrete sand aggregate. These grouts did not segregate and require no compaction. They have low permeabilities (? 10{sup -9} cm/s) and are consequen

Langton, C.A.; Stefanko, D.B.; Burns, H.H. [Savannah River National Laboratory (United States); Waymer, J.; Mhyre, W.B. [URS Quality and Testing (United States); Herbert, J.E.; Jolly, J.C. Jr. [Savannah River Remediation, LLC, Savannah River Site, Aiken, SC 29808 (United States)

2012-07-01T23:59:59.000Z

8

High level waste tank farm setpoint document. Revision 1  

SciTech Connect (OSTI)

Revision 1 modifies Attachment I of this Technical Report as a result of a meeting which was held Friday, January 27, 1994 between Maintenance, Work Control, and Engineering to discuss report contents. Upon completion of the meeting, the Flow Chart was edited accordingly. Attachment 2 is modified for clerical reasons. Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Fanns. The setpoint document (Appendix 2) will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREAS listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope.

Anthony, J.A. III

1995-01-31T23:59:59.000Z

9

Tank waste remediation system high-level waste feed processability assessment report  

SciTech Connect (OSTI)

This study evaluates the effect of feed composition on the performance of the high-level vitrification process. It is assumed in this study that the tank wastes are retrieved and blended by tank farms, producing 12 different blends from the single-shell tank farms, two blends of double-shell tank waste, and a separately defined all-tank blend. This blending scenario was chosen only for evaluating the impact of composition on the volume of high- level waste glass produced. Special glass compositions were formulated for each waste blend based on glass property models and the properties of similar glasses. These glasses were formulated to meet the applicable viscosity, electrical conductivity, and liquidus temperature constraints for the identified candidate melters. Candidate melters in this study include the low-temperature stirred melter, which operates at 1050{degrees}C; the reference Hanford Waste Vitrification Plant liquid-fed ceramic melter, which operates at 1150{degrees}C; and the high-temperature, joule-heated melter and the cold-crucible melter, which operate over a temperature range of 1150{degrees}C to 1400{degrees}C. In the most conservative case, it is estimated that 61,000 MT of glass will be produced if the Site`s high-level wastes are retrieved by tank farms and processed in the reference joule-heated melter. If an all-tank blend was processed under the same conditions, the reference melter would produce 21,250 MT of glass. If cross-tank blending were used, it is anticipated that $2.0 billion could be saved in repository disposal costs (based on an average disposal cost of $217,000 per canister) by blending the S, SX, B, and T Tank Farm wastes with other wastes prior to vitrification. General blending among all the tank farms is expected to produce great potential benefit.

Lambert, S.L. [Westinghouse Hanford Co., Richland, WA (United States); Kim, D.S. [Pacific Northwest Lab., Richland, WA (United States)

1994-12-01T23:59:59.000Z

10

Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks  

SciTech Connect (OSTI)

This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

ROGERS, C.A.

2000-02-17T23:59:59.000Z

11

3-D MAPPING TECHNOLOGIES FOR HIGH LEVEL WASTE TANKS  

SciTech Connect (OSTI)

This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame time-of-flight data (3D image) collected with a single laser pulse, high frame rates, direct calculation of range, blur-free images without motion distortion, no need for precision scanning mechanisms, ability to combine 3D flash LIDAR with 2D cameras for 2D texture over 3D depth, and no moving parts. The major disadvantage of the 3D flash LIDAR camera is the cost of approximately $150,000, not including the software development time and repackaging of the camera for deployment in the waste tanks.

Marzolf, A.; Folsom, M.

2010-08-31T23:59:59.000Z

12

Tank waste remediation system phase I high-level waste feed processability assessment report  

SciTech Connect (OSTI)

This report evaluates the effects of feed composition on the Phase I high-level waste immobilization process and interim storage facility requirements for the high-level waste glass.Several different Phase I staging (retrieval, blending, and pretreatment) scenarios were used to generate example feed compositions for glass formulations, testing, and glass sensitivity analysis. Glass models and data form laboratory glass studies were used to estimate achievable waste loading and corresponding glass volumes for various Phase I feeds. Key issues related to feed process ability, feed composition, uncertainty, and immobilization process technology are identified for future consideration in other tank waste disposal program activities.

Lambert, S.L.; Stegen, G.E., Westinghouse Hanford

1996-08-01T23:59:59.000Z

13

Structural integrity and potential failure modes of hanford high-level waste tanks  

SciTech Connect (OSTI)

Structural Integrity of the Hanford High-Level Waste Tanks were evaluated based on the existing Design and Analysis Documents. All tank structures were found adequate for the normal operating and seismic loads. Potential failure modes of the tanks were assessed by engineering interpretation and extrapolation of the existing engineering documents.

Han, F.C.

1996-09-30T23:59:59.000Z

14

High-Level Liquid Waste Tank Integrity Workshop - 2008  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTSSeparationHelping toLiquid Waste Tank

15

Progress in High-Level Waste Tank Cleaning at the Idaho National Environmental and Engineering Laboratory  

SciTech Connect (OSTI)

The Department of Energy Idaho Operations Office (DOE-ID) is making preparations to close two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy (DOE) orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 300,000 gallon tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). Design, development, and deployment of a remotely operated tank cleaning system were completed in August 2001. The system incorporates many commercially available components, which have been adapted for application in cleaning high-level waste tanks. The system also uses existing waste transfer technology (steam-jets) to remove tank heel solids from the tank bottoms during the cleaning operations. By using this existing transfer system and commercially available equipment, the cost of developing custom designed cleaning equipment can be avoided. Remotely operated directional spray nozzles, automatic rotating wash balls, video monitoring equipment, decontamination spray-rings, and tank specific access interface devices have been integrated to provide a system that efficiently cleans tank walls and heel solids in an acidic, radioactive environment. This system is also compliant with operational and safety performance requirements at INTEC. Through the deployment of the tank cleaning system, the INEEL High Level Waste Program has demonstrated the capability to clean tanks to meet RCRA clean closure standards and DOE closure performance measures. The tank cleaning system deployed at the INTEC offers unique advantages over other approaches evaluated at the INEEL and throughout the DOE Complex. The system's ability to agitate and homogenize the tank heel sludge will simplify verification-sampling techniques and reduce the total quantity of samples required to demonstrate compliance with the performance standards. This will reduce tank closure budget requirements and improve closure-planning schedules.

Lockie, K. A.; McNaught, W. B.

2002-02-26T23:59:59.000Z

16

HIGH LEVEL WASTE TANK CLOSURE PROJECT AT THE IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY  

SciTech Connect (OSTI)

The Department of Energy, Idaho Operations Office (DOE-ID) is in the process of closing two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 1.14 million liter (300,000 gallon) tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). The INTEC Tank Farm Facility (TFF) Closure sequence consists of multiple steps to be accomplished through the existing tank riser access points. Currently, the tank risers contain steam and process waste lines associated with the steam jets, corrosion coupons, and liquid level indicators. As necessary, this equipment will be removed from the risers to allow adequate space for closure equipment and activities. The basic tank closure sequence is as follows: Empty the tank to the residual heel using the existing jets; Video and sample the heel; Replace steam jets with new jet at a lower position in the tank, and remove additional material; Flush tank, piping and secondary containment with demineralized water; Video and sample the heel; Evaluate decontamination effectiveness; Displace the residual heel with multiple placements of grout; and Grout piping, vaults and remaining tank volume. Design, development, and deployment of a remotely operated tank cleaning system were completed in June 2002. The system incorporates many commercially available components, which have been adapted for application in cleaning high-level waste tanks. The system is cost-effective since it also utilizes existing waste transfer technology (steam jets), to remove tank heel solids from the tank bottoms during the cleaning operations. Remotely operated directional spray nozzles, automatic rotating wash balls, video monitoring equipment, decontamination spray-rings, and tank -specific access interface devices have been integrated to provide a system that efficiently cleans tank walls and heel solids in an acidic, radioactive environment. Through the deployment of the tank cleaning system, the INEEL High Level Waste Program has cleaned tanks to meet RCRA clean closure standards and DOE closure performance measures. Design, development, and testing of tank grouting delivery equipment were completed in October 2002. The system incorporates lessons learned from closures at other DOE facilities. The grout will be used to displace the tank residuals remaining after the cleaning is complete. To maximize heel displacement to the discharge pump, grout was placed in a sequence of five positions utilizing two riser locations. The project is evaluating the use of six positions to optimize the residuals removed. After the heel has been removed and the residuals stabilized, the tank, piping, and secondary containment will be grouted.

Quigley, K.D.; Wessman, D

2003-02-27T23:59:59.000Z

17

Progress in resolving Hanford Site high-level waste tank safety issues  

SciTech Connect (OSTI)

Interim storage of alkaline, high-level radioactive waste, from two generations of spent fuel reprocessing and waste management activities, has resulted in the accumulation of 238 million liters of waste in Hanford Site single and double-shell tanks. Before the 1990`s, the stored waste was believed to be: (1) chemically unreactive under its existing storage conditions and plausible accident scenarios; and (2) chemically stable. This paradigm was proven incorrect when detailed evaluation of tank contents and behavior revealed a number of safety issues and that the waste was generating flammable and noxious gases. In 1990, the Waste Tank Safety Program was formed to focus on identifying safety issues and resolving the ferrocyanide, flammable gas, organic, high heat, noxious vapor, and criticality issues. The tanks of concern were placed on Watch Lists by safety issue. This paper summarizes recent progress toward resolving Hanford Site high-level radioactive waste tank safety issues, including modeling, and analyses, laboratory experiments, monitoring upgrades, mitigation equipment, and developing a strategy to screen tanks for safety issues.

Babad, H.; Eberlein, S.J.; Johnson, G.D.; Meacham, J.E.; Osborne, J.W.; Payne, M.A.; Turner, D.A.

1995-02-01T23:59:59.000Z

18

Overview of Hanford Site High-Level Waste Tank Gas and Vapor Dynamics  

SciTech Connect (OSTI)

Hanford Site processes associated with the chemical separation of plutonium from uranium and other fission products produced a variety of volatile, semivolatile, and nonvolatile organic and inorganic waste chemicals that were sent to high-level waste tanks. These chemicals have undergone and continue to undergo radiolytic and thermal reactions in the tanks to produce a wide variety of degradation reaction products. The origins of the organic wastes, the chemical reactions they undergo, and their reaction products have recently been examined by Stock (2004). Stock gives particular attention to explaining the presence of various types of volatile and semivolatile organic species identified in headspace air samples. This report complements the Stock report by examining the storage of volatile and semivolatile species in the waste, their transport through any overburden of waste to the tank headspaces, the physical phenomena affecting their concentrations in the headspaces, and their eventual release into the atmosphere above the tanks.

Huckaby, James L.; Mahoney, Lenna A.; Droppo, James G.; Meacham, Joseph E.

2004-08-31T23:59:59.000Z

19

High Level Waste Tank Closure Project at the Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

The Department of Energy, Idaho Operations Office (DOE-ID) is making preparations to close two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 300,000 gallon tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). The INTEC Tank Farm Facility (TFF) Closure sequence consists of multiple steps to be accomplished through the existing tank riser access points. Currently, the tank risers contain steam and process waste lines associated with the steam jets, corrosion coupons, and liquid level indicators. As necessary, this equipment will be removed from the risers to allow adequate space for closure equipment and activities.

Wessman, D. L.; Quigley, K. D.

2002-02-27T23:59:59.000Z

20

EIS-0063: Waste Management Operations, Double-Shell Tanks for Defense High Level Radioactive Waste Storage, Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this statement to evaluate the existing tank design and consider additional specific design and safety feature alternatives for the thirteen tanks being constructed for storage of defense high-level radioactive liquid waste at the Hanford Site in Richland, Washington. This statement supplements ERDA-1538, "Final Environmental Statement on Waste Management Operation."

Note: This page contains sample records for the topic "high-level waste tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DELPHI expert panel evaluation of Hanford high level waste tank failure modes and release quantities  

SciTech Connect (OSTI)

The Failure Modes and Release Quantities of the Hanford High Level Waste Tanks due to postulated accident loads were established by a DELPHI Expert Panel consisting of both on-site and off-site experts in the field of Structure and Release. The Report presents the evaluation process, accident loads, tank structural failure conclusion reached by the panel during the two-day meeting.

Dunford, G.L.; Han, F.C.

1996-09-30T23:59:59.000Z

22

THE RETRIEVAL KNOWLEDGE CENTER EVALUATION OF LOW TANK LEVEL MIXING TECHNOLOGIES FOR DOE HIGH LEVEL WASTE TANK RETRIEVAL 10516  

SciTech Connect (OSTI)

The Department of Energy (DOE) Complex has over two-hundred underground storage tanks containing over 80-million gallons of legacy waste from the production of nuclear weapons. The majority of the waste is located at four major sites across the nation and is planned for treatment over a period of almost forty years. The DOE Office of Technology Innovation & Development within the Office of Environmental Management (DOE-EM) sponsors technology research and development programs to support processing advancements and technology maturation designed to improve the costs and schedule for disposal of the waste and closure of the tanks. Within the waste processing focus area are numerous technical initiatives which included the development of a suite of waste removal technologies to address the need for proven equipment and techniques to remove high level radioactive wastes from the waste tanks that are now over fifty years old. In an effort to enhance the efficiency of waste retrieval operations, the DOE-EM Office of Technology Innovation & Development funded an effort to improve communications and information sharing between the DOE's major waste tank locations as it relates to retrieval. The task, dubbed the Retrieval Knowledge Center (RKC) was co-lead by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) with core team members representing the Oak Ridge and Idaho sites, as well as, site contractors responsible for waste tank operations. One of the greatest challenges to the processing and closure of many of the tanks is complete removal of all tank contents. Sizeable challenges exist for retrieving waste from High Level Waste (HLW) tanks; with complications that are not normally found with tank retrieval in commercial applications. Technologies currently in use for waste retrieval are generally adequate for bulk removal; however, removal of tank heels, the materials settled in the bottom of the tank, using the same technology have proven to be difficult. Through the RKC, DOE-EM funded an evaluation of adaptable commercial technologies that could assist with the removal of the tank heels. This paper will discuss the efforts and results of developing the RKC to improve communications and discussion of tank waste retrieval through a series of meetings designed to identify technical gaps in retrieval technologies at the DOE Hanford and Savannah River Sites. This paper will also describe the results of an evaluation of commercially available technologies for low level mixing as they might apply to HLW tank heel retrievals.

Fellinger, A.

2009-12-08T23:59:59.000Z

23

High-Level Waste Tank Cleaning and Field Characterization at the West Valley Demonstration Project  

SciTech Connect (OSTI)

The West Valley Demonstration Project (WVDP) is nearing completion of radioactive high-level waste (HLW) retrieval from its storage tanks and subsequent vitrification of the HLW into borosilicate glass. Currently, 99.5% of the sludge radioactivity has been recovered from the storage tanks and vitrified. Waste recovery of cesium-137 (Cs-137) adsorbed on a zeolite media during waste pretreatment has resulted in 97% of this radioactivity being vitrified. Approximately 84% of the original 1.1 x 1018 becquerels (30 million curies) of radioactivity was efficiently vitrified from July 1996 to June 1998 during Phase I processing. The recovery of the last 16% of the waste has been challenging due to a number of factors, primarily the complex internal structural support system within the main 2.8 million liter (750,000 gallon) HLW tank designated 8D-2. Recovery of this last waste has become exponentially more challenging as less and less HLW is available to mobilize and transfer to the Vitrification Facility. This paper describes the progressively more complex techniques being utilized to remove the final small percentage of radioactivity from the HLW tanks, and the multiple characterization technologies deployed to determine the quantity of Cs-137, strontium-90 (Sr-90), and alpha-transuranic (alpha-TRU) radioactivity remaining in the tanks.

Drake, J. L.; McMahon, C. L.; Meess, D. C.

2002-02-26T23:59:59.000Z

24

Guidelines for development of structural integrity programs for DOE high-level waste storage tanks  

SciTech Connect (OSTI)

Guidelines are provided for developing programs to promote the structural integrity of high-level waste storage tanks and transfer lines at the facilities of the Department of Energy. Elements of the program plan include a leak-detection system, definition of appropriate loads, collection of data for possible material and geometric changes, assessment of the tank structure, and non-destructive examination. Possible aging degradation mechanisms are explored for both steel and concrete components of the tanks, and evaluated to screen out nonsignificant aging mechanisms and to indicate methods of controlling the significant aging mechanisms. Specific guidelines for assessing structural adequacy will be provided in companion documents. Site-specific structural integrity programs can be developed drawing on the relevant portions of the material in this document.

Bandyopadhyay, K.; Bush, S.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; Rooyen, D. van; Weeks, J.

1997-01-01T23:59:59.000Z

25

High performance gamma measurements of equipment retrieved from Hanford high-level nuclear waste tanks  

SciTech Connect (OSTI)

The cleanup of high level defense nuclear waste at the Hanford site presents several progressive challenges. Among these is the removal and disposal of various components from buried active waste tanks to allow new equipment insertion or hazards mitigation. A unique automated retrieval system at the tank provides for retrieval, high pressure washing, inventory measurement, and containment for disposal. Key to the inventory measurement is a three detector HPGe high performance gamma spectroscopy system capable of recovering data at up to 90% saturation (200,000 counts per second). Data recovery is based on a unique embedded electronic pulser and specialized software to report the inventory. Each of the detectors have different shielding specified through Monte Carlo simulation with the MCNP program. This shielding provides performance over a dynamic range of eight orders of magnitude. System description, calibration issues and operational experiences are discussed.

Troyer, G.L.

1997-03-17T23:59:59.000Z

26

Collaboration, Automation, and Information Management at Hanford High Level Radioactive Waste (HLW) Tank Farms  

SciTech Connect (OSTI)

Washington River Protection Solutions (WRPS), operator of High Level Radioactive Waste (HLW) Tank Farms at the Hanford Site, is taking an over 20-year leap in technology, replacing systems that were monitored with clipboards and obsolete computer systems, as well as solving major operations and maintenance hurdles in the area of process automation and information management. While WRPS is fully compliant with procedures and regulations, the current systems are not integrated and do not share data efficiently, hampering how information is obtained and managed.

Aurah, Mirwaise Y.; Roberts, Mark A.

2013-12-12T23:59:59.000Z

27

Evaluation of West Valley High-Level Waste Tank Lay-Up Strategies  

SciTech Connect (OSTI)

The primary objective of the task summarized in this paper was to demonstrate a methodology for evaluating alternative strategies for preclosure lay-up of the two high-level waste (HLW) storage tanks at the West Valley Demonstration Project (WVDP). Lay-up is defined as the period between operational use of tanks for waste storage and final closure. The U.S. Department of Energy (DOE) is planning to separate the environmental impact statement (EIS) for completion of closure of the WVDP into two separate EISs. The first EIS will cover only waste management and decontamination. DOE expects to complete this EIS in about 18 months. The second EIS will cover final decommissioning and closure and may take up to five years to complete. This approach has been proposed to expedite continued management of the waste and decontamination activities in advance of the final EIS and its associated Record of Decision on final site closure. Final closure of the WVDP site may take 10 to 15 years; therefore, the tanks need to be placed in a safe, stable condition with minimum surveillance during an extended lay-up period. The methodology developed for ranking the potential strategies for lay-up of the WVDP tanks can be used to provide a basis for a decision on the preferred path forward. The methodology is also applicable to determining preferred lay-up approaches at other DOE sites. Some of the alternative strategies identified for the WVDP should also be considered for implementation at the other DOE sites. Each site has unique characteristics that would require unique considerations for lay-up.

McClure, L. W.; Henderson, J. C.; Elmore, M. R.

2002-02-25T23:59:59.000Z

28

Savannah River Site High-Level Waste Tank Closure Final Environmental Impact Statement  

SciTech Connect (OSTI)

The U.S. Atomic Energy Commission, a U.S. Department of Energy (DOE) predecessor agency, established the Savannah River Site (SRS) near Aiken, South Carolina, in the early 1950s. The primary mission of SRS was to produce nuclear materials for national defense. With the end of the Cold War and the reduction in the size of the United States stockpile of nuclear weapons, the SRS mission has changed. While national defense is still an important facet of the mission, SRS no longer produces nuclear materials and the mission is focused on material stabilization, environmental restoration, waste management, and decontamination and decommissioning of facilities that are no longer needed. As a result of its nuclear materials production mission, SRS generated large quantities of high-level radioactive waste (HLW). The HLW resulted from dissolving spent reactor fuel and nuclear targets to recover the valuable radioactive isotopes. DOE had stored the HLW in 51 large underground storage tanks located in the F- and H-Area Tank Farms at SRS. DOE has emptied and closed two of those tanks. DOE is treating the HLW, using a process called vitrification. The highly radioactive portion of the waste is mixed with a glass like material and stored in stainless steel canisters at SRS, pending shipment to a geologic repository for disposal. This process is currently underway at SRS in the Defense Waste Processing Facility (DWPF). The HLW tanks at SRS are of four different types, which provide varying degrees of protection to the environment due to different degrees of containment. The tanks are operated under the authority of the Atomic Energy Act of 1954 (AEA) and DOE Orders issued under the AEA. The tanks are permitted by the South Carolina Department of Health and Environmental Control (SCDHEC) under South Carolina wastewater regulations, which require permitted facilities to be closed after they are removed from service. DOE has entered into an agreement with the U.S. Environmental Protection Agency (EPA) and SCDHEC to close the HLW tanks after they have been removed from service. Closure of the HLW tanks would comply with DOE's responsibilities under the AEA and the South Carolina closure requirements and be carried out under a schedule agreed to by DOE, EPA, and SCDHEC. There are several ways to close the HLW tanks. DOE has prepared this Environmental Impact Statement (EIS) to ensure that the public and DOE's decision makers have a thorough understanding of the potential environmental impacts of alternative means of closing the tanks. This Summary: (1) describes the HLW tanks and the closure process, (2) describes the National Environmental Policy Act (NEPA) process that DOE is using to aid in decision making, (3) summarizes the alternatives for closing the HLW tanks and identifies DOE.s preferred alternative, and (4) identifies the major conclusions regarding environmental impacts, areas of controversy, and issues that remain to be resolved as DOE proceeds with the HLW tank closure process.

N /A

2002-05-31T23:59:59.000Z

29

ESTIMATING HIGH LEVEL WASTE MIXING PERFORMANCE IN HANFORD DOUBLE SHELL TANKS  

SciTech Connect (OSTI)

The ability to effectively mix, sample, certify, and deliver consistent batches of high level waste (HLW) feed from the Hanford double shell tanks (DSTs) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. The Department of Energy's (DOE's) Tank Operations Contractor (TOC), Washington River Protection Solutions (WRPS) is currently demonstrating mixing, sampling, and batch transfer performance in two different sizes of small-scale DSTs. The results of these demonstrations will be used to estimate full-scale DST mixing performance and provide the key input to a programmatic decision on the need to build a dedicated feed certification facility. This paper discusses the results from initial mixing demonstration activities and presents data evaluation techniques that allow insight into the performance relationships of the two small tanks. The next steps, sampling and batch transfers, of the small scale demonstration activities are introduced. A discussion of the integration of results from the mixing, sampling, and batch transfer tests to allow estimating full-scale DST performance is presented.

THIEN MG; GREER DA; TOWNSON P

2011-01-13T23:59:59.000Z

30

Feed specification for the double-shell tank/single shell tank waste blend for high-level waste vitrification process and melter testing  

SciTech Connect (OSTI)

The High-Level Waste (HLW) Vitrification Program is developing technology for the Department of Energy to immobilize high-level and transuranic waste as glass for permanent disposal. In support of the program, Pacific Northwest Laboratory (PNL) is conducting laboratory-scale melter feed preparation studies and HLW melter testing which require a simulated HLW feed. The simulant HLW feed represents a blend of the waste from 177 single shell and double shell tanks. The waste blend composition is based on normalized track radionuclide components (TRAC), historical tank data, and assumptions on the pretreatment of the waste. The HLW simulant feed specification for the waste blend composition provides direction for the preparation of laboratory-scale and large-scale HLW blend simulant to be used in melter feed preparation studies and melter testing.

Tracey, E.M.; Merz, M.D.; Patello, G.K.; Wiemers, K.D.

1996-02-01T23:59:59.000Z

31

Application of Quantitative NDE Techniques to High Level Waste Storage Tanks  

SciTech Connect (OSTI)

As various issues make the continued usage of high-level waste storage tanks attractive, there is an increasing need to sharpen the assessment of their structural integrity. One aspect of a structural integrity program, nondestructive evaluation, is the focus of this paper. In September 2000, a program to support the sites was initiated jointly by Tanks Focus Area and Characterization, Monitoring, and Sensor Technologies Crosscutting Program of the Office of Environmental Management, Department of Energy (DOE). The vehicle was the Center for Nondestructive Evaluation, one of the National Science Foundation's Industry/University Cooperative Research Centers that is operated in close collaboration with the Ames Laboratory, USDOE. The support activities that have been provided by the center will be reviewed. Included are the organization of a series of annual workshops to allow the sites to share experiences and develop coordinated approaches to common problems, the development of an electronic source of relevant information, and assistance of the sites on particular technical problems. Directions and early results on some of these technical assistance projects are emphasized. Included are the discussion of theoretical analysis of ultrasonic wave propagation in curved plates to support the interpretation of tandem synthetic aperture focusing data to detect flaws in the knuckle region of double shell tanks; the evaluation of guided ultrasonic waves, excited by couplant free, electromagnetic acoustic transducers, to rapidly screen for inner wall corrosion in tanks; the use of spread spectrum techniques to gain information about the structural integrity of concrete domes; and the use of magnetic techniques to identify the alloys used in the construction of tanks.

Thompson, R. B.; Rehbein, D. K.; Bastiaans, G.; Terry, M.; Alers, R.

2002-02-25T23:59:59.000Z

32

HIGH-LEVEL WASTE FEED CERTIFICATION IN HANFORD DOUBLE-SHELL TANKS  

SciTech Connect (OSTI)

The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOE's River Protection Project (RPP) mission modeling and WTP facility modeling assume that individual 3785 cubic meter (l million gallon) HLW feed tanks are homogenously mixed, representatively sampled, and consistently delivered to the WTP. It has been demonstrated that homogenous mixing ofHLW sludge in Hanford DSTs is not likely achievable with the baseline design thereby causing representative sampling and consistent feed delivery to be more difficult. Inconsistent feed to the WTP could cause additional batch-to-batch operational adjustments that reduce operating efficiency and have the potential to increase the overall mission length. The Hanford mixing and sampling demonstration program will identify DST mixing performance capability, will evaluate representative sampling techniques, and will estimate feed batch consistency. An evaluation of demonstration program results will identify potential mission improvement considerations that will help ensure successful mission completion. This paper will discuss the history, progress, and future activities that will define and mitigate the mission risk.

THIEN MG; WELLS BE; ADAMSON DJ

2010-01-14T23:59:59.000Z

33

High level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 6  

SciTech Connect (OSTI)

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 6) outlines the standards and requirements for the sections on: Environmental Restoration and Waste Management, Research and Development and Experimental Activities, and Nuclear Safety.

Not Available

1994-04-01T23:59:59.000Z

34

Assessment of chemical vulnerabilities in the Hanford high-level waste tanks  

SciTech Connect (OSTI)

The purpose of this report is to summarize results of relevant data (tank farm and laboratory) and analysis related to potential chemical vulnerabilities of the Hanford Site waste tanks. Potential chemical safety vulnerabilities examined include spontaneous runaway reactions, condensed phase waste combustibility, and tank headspace flammability. The major conclusions of the report are the following: Spontaneous runaway reactions are not credible; condensed phase combustion is not likely; and periodic releases of flammable gas can be mitigated by interim stabilization.

Meacham, J.E. [and others

1996-02-15T23:59:59.000Z

35

Probabilistic safety assessment for Hanford high-level waste tank 241-SY-101  

SciTech Connect (OSTI)

Los Alamos National Laboratory (Los Alamos) is performing a comprehensive probabilistic safety assessment (PSA), which will include consideration of external events for the 18 tank farms at the Hanford Site. This effort is sponsored by the Department of Energy (DOE/EM, EM-36). Even though the methodology described herein will be applied to the entire tank farm, this report focuses only on the risk from the weapons-production wastes stored in tank number 241-SY-101, commonly known as Tank 101-SY, as configured in December 1992. This tank, which periodically releases ({open_quotes}burps{close_quotes}) a gaseous mixture of hydrogen, nitrous oxide, ammonia, and nitrogen, was analyzed first because of public safety concerns associated with the potential for release of radioactive tank contents should this gas mixture be ignited during one of the burps. In an effort to mitigate the burping phenomenon, an experiment is being conducted in which a large pump has been inserted into the tank to determine if pump-induced circulation of the tank contents will promote a slow, controlled release of the gases. At the Hanford Site there are 177 underground tanks in 18 separate tank farms containing accumulated liquid/sludge/salt cake radioactive wastes from 50 yr of weapons materials production activities. The total waste volume is about 60 million gal., which contains approximately 120 million Ci of radioactivity.

MacFarlane, D.R.; Bott, T.F.; Brown, L.F.; Stack, D.W. [Los Alamos National Lab., NM (United States)] [Los Alamos National Lab., NM (United States); Kindinger, J.; Deremer, R.K.; Medhekar, S.R.; Mikschl, T.J. [PLG, Inc., Newport Beach, CA (United States)] [PLG, Inc., Newport Beach, CA (United States)

1994-05-01T23:59:59.000Z

36

HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT  

SciTech Connect (OSTI)

The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea transfers utilizing STPs from July 2006 to August 2007. This operation and successful removal of sludge material meets requirement of approximately 19,000 to 28,000 liters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. Removal of the last 35% of sludge was exponentially more difficult, as less and less sludge was available to mobilize and the lighter sludge particles were likely removed during the early mixing campaigns. The removal of the 72,000 liters (19,000 gallons) of sludge was challenging due to a number factors. One primary factor was the complex internal cooling coil array within Tank 6 that obstructed mixer discharge jets and impacted the Effective Cleaning Radius (ECR) of the Submersible Mixer Pumps. Minimal access locations into the tank through tank openings (risers) presented a challenge because the available options for equipment locations were very limited. Mechanical Sludge Removal activities using SMPs caused the sludge to migrate to areas of the tank that were outside of the SMP ECR. Various SMP operational strategies were used to address the challenge of moving sludge from remote areas of the tank to the transfer pump. This paper describes in detail the Mechanical Sludge Removal activities and mitigative solutions to cooling coil obstructions and other challenges. The performance of the WOW system and SMP operational strategies were evaluated and the resulting lessons learned are described for application to future Mechanical Sludge Removal operations.

Jolly, R; Bruce Martin, B

2008-01-15T23:59:59.000Z

37

Hanford high level waste (HLW) tank mixer pump safe operating envelope reliability assessment  

SciTech Connect (OSTI)

The US Department of Energy and its contractor, Westinghouse Corp., are responsible for the management and safe storage of waste accumulated from processing defense reactor irradiated fuels for plutonium recovery at the Hanford Site. These wastes, which consist of liquids and precipitated solids, are stored in underground storage tanks pending final disposition. Currently, 23 waste tanks have been placed on a safety watch list because of their potential for generating, storing, and periodically releasing various quantities of hydrogen and other gases. Tank 101-SY in the Hanford SY Tank Farm has been found to release hydrogen concentrations greater than the lower flammable limit (LFL) during periodic gas release events. In the unlikely event that an ignition source is present during a hydrogen release, a hydrogen burn could occur with a potential to release nuclear waste materials. To mitigate the periodic gas releases occurring from Tank 101-SY, a large mixer pump currently is being installed in the tank to promote a sustained release of hydrogen gas to the tank dome space. An extensive safety analysis (SA) effort was undertaken and documented to ensure the safe operation of the mixer pump after it is installed in Tank 101-SY.1 The SA identified a need for detailed operating, alarm, and abort limits to ensure that analyzed safety limits were not exceeded during pump operations.

Fischer, S.R. [Los Alamos National Lab., NM (United States); Clark, J. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)

1993-10-01T23:59:59.000Z

38

High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 4  

SciTech Connect (OSTI)

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 4) presents the standards and requirements for the following sections: Radiation Protection and Operations.

Not Available

1994-04-01T23:59:59.000Z

39

High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 2  

SciTech Connect (OSTI)

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Document (S/RID) is contained in multiple volumes. This document (Volume 2) presents the standards and requirements for the following sections: Quality Assurance, Training and Qualification, Emergency Planning and Preparedness, and Construction.

Not Available

1994-04-01T23:59:59.000Z

40

Probability, consequences, and mitigation for lightning strikes of Hanford high level waste tanks  

SciTech Connect (OSTI)

The purpose of this report is to summarize selected lightning issues concerning the Hanford Waste Tanks. These issues include the probability of a lightning discharge striking the area immediately adjacent to a tank including a riser, the consequences of significant energy deposition from a lightning strike in a tank, and mitigating actions that have been or are being taken. The major conclusion of this report is that the probability of a lightning strike deposition sufficient energy in a tank to cause an effect on employees or the public is unlikely;but there are insufficient, quantitative data on the tanks and waste to prove that. Protection, such as grounding of risers and air terminals on existing light poles, is recommended.

Zach, J.J.

1996-06-05T23:59:59.000Z

Note: This page contains sample records for the topic "high-level waste tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Probability, consequences, and mitigation for lightning strikes to Hanford site high-level waste tanks  

SciTech Connect (OSTI)

The purpose of this report is to summarize selected lightning issues concerning the Hanford Waste Tanks. These issues include the probability of lightning discharge striking the area immediately adjacent to a tank including a riser, the consequences of significant energy deposition from a lightning strike in a tank, and mitigating actions that have been or are being taken. The major conclusion of this report is that the probability of a lightning strike depositing sufficient energy in a tank to cause an effect on employees or the public is unlikely;but there are insufficient, quantitative data on the tanks and waste to prove that. Protection, such as grounding of risers and air terminals on existing light poles, is recommended.

Zach, J.J.

1996-08-01T23:59:59.000Z

42

Demonstration of Small Tank Tetraphenylborate Precipitation Process Using Savannah River Site High Level Waste  

SciTech Connect (OSTI)

This report details the experimental effort to demonstrate the continuous precipitation of cesium from Savannah River Site High Level Waste using sodium tetraphenylborate. In addition, the experiments examined the removal of strontium and various actinides through addition of monosodium titanate.

Peters, T.B.

2001-09-10T23:59:59.000Z

43

Seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances  

SciTech Connect (OSTI)

This document provides guidelines for the design and evaluation of underground high-level waste storage tanks due to seismic loads. Attempts were made to reflect the knowledge acquired in the last two decades in the areas of defining the ground motion and calculating hydrodynamic loads and dynamic soil pressures for underground tank structures. The application of the analysis approach is illustrated with an example. The guidelines are developed for specific design of underground storage tanks, namely double-shell structures. However, the methodology discussed is applicable for other types of tank structures as well. The application of these and of suitably adjusted versions of these concepts to other structural types will be addressed in a future version of this document.

Bandyopadhyay, K.; Cornell, A.; Costantino, C.; Kennedy, R.; Miller, C.; Veletsos, A.

1993-01-01T23:59:59.000Z

44

RADIOACTIVE HIGH LEVEL WASTE TANK PITTING PREDICTIONS: AN INVESTIGATION INTO CRITICAL SOLUTION CONCENTRATIONS  

SciTech Connect (OSTI)

A series of cyclic potentiodynamic polarization tests was performed on samples of ASTM A537 carbon steel in support of a probability-based approach to evaluate the effect of chloride and sulfate on corrosion the steel?s susceptibility to pitting corrosion. Testing solutions were chosen to systemically evaluate the influence of the secondary aggressive species, chloride, and sulfate, in the nitrate based, high-level wastes. The results suggest that evaluating the combined effect of all aggressive species, nitrate, chloride, and sulfate, provides a consistent response for determining corrosion susceptibility. The results of this work emphasize the importance for not only nitrate concentration limits, but also chloride and sulfate concentration limits.

Hoffman, E.

2012-11-08T23:59:59.000Z

45

STATUS OF THE DEVELOPMENT OF IN-TANK/AT-TANK SEPARATIONS TECHNOLOGIES FOR FOR HIGH-LEVEL WASTE PROCESSING FOR THE U.S. DEPARTMENT OF ENERGY  

SciTech Connect (OSTI)

Within the U.S. Department of Energy's (DOE) Office of Technology Innovation and Development, the Office of Waste Processing manages a research and development program related to the treatment and disposition of radioactive waste. At the Savannah River (South Carolina) and Hanford (Washington) Sites, approximately 90 million gallons of waste are distributed among 226 storage tanks (grouped or collocated in 'tank farms'). This waste may be considered to contain mixed and stratified high activity and low activity constituent waste liquids, salts and sludges that are collectively managed as high level waste (HLW). A large majority of these wastes and associated facilities are unique to the DOE, meaning many of the programs to treat these materials are 'first-of-a-kind' and unprecedented in scope and complexity. As a result, the technologies required to disposition these wastes must be developed from basic principles, or require significant re-engineering to adapt to DOE's specific applications. Of particular interest recently, the development of In-tank or At-Tank separation processes have the potential to treat waste with high returns on financial investment. The primary objective associated with In-Tank or At-Tank separation processes is to accelerate waste processing. Insertion of the technologies will (1) maximize available tank space to efficiently support permanent waste disposition including vitrification; (2) treat problematic waste prior to transfer to the primary processing facilities at either site (i.e., Hanford's Waste Treatment and Immobilization Plant (WTP) or Savannah River's Salt Waste Processing Facility (SWPF)); and (3) create a parallel treatment process to shorten the overall treatment duration. This paper will review the status of several of the R&D projects being developed by the U.S. DOE including insertion of the ion exchange (IX) technologies, such as Small Column Ion Exchange (SCIX) at Savannah River. This has the potential to align the salt and sludge processing life cycle, thereby reducing the Defense Waste Processing Facility (DWPF) mission by 7 years. Additionally at the Hanford site, problematic waste streams, such as high boehmite and phosphate wastes, could be treated prior to receipt by WTP and thus dramatically improve the capacity of the facility to process HLW. Treatment of boehmite by continuous sludge leaching (CSL) before receipt by WTP will dramatically reduce the process cycle time for the WTP pretreatment facility, while treatment of phosphate will significantly reduce the number of HLW borosilicate glass canisters produced at the WTP. These and other promising technologies will be discussed.

Aaron, G.; Wilmarth, B.

2011-09-19T23:59:59.000Z

46

Seismic design and evaluation guidelines for the Department of Energy High-Level Waste Storage Tanks and Appurtenances  

SciTech Connect (OSTI)

This document provides seismic design and evaluation guidelines for underground high-level waste storage tanks. The guidelines reflect the knowledge acquired in the last two decades in defining seismic ground motion and calculating hydrodynamic loads, dynamic soil pressures and other loads for underground tank structures, piping and equipment. The application of the guidelines is illustrated with examples. The guidelines are developed for a specific design of underground storage tanks, namely double-shell structures. However, the methodology discussed is applicable for other types of tank structures as well. The application of these and of suitably adjusted versions of these concepts to other structural types will be addressed in a future version of this document. The original version of this document was published in January 1993. Since then, additional studies have been performed in several areas and the results are included in this revision. Comments received from the users are also addressed. Fundamental concepts supporting the basic seismic criteria contained in the original version have since then been incorporated and published in DOE-STD-1020-94 and its technical basis documents. This information has been deleted in the current revision.

Bandyopadhyay, K.; Cornell, A.; Costantino, C.; Kennedy, R.; Miller, C.; Veletsos, A.

1995-10-01T23:59:59.000Z

47

High Performance Zero-Bleed CLSM/Grout Mixes for High-Level Waste Tank Closures Strategic Research and Development - FY99 Report  

SciTech Connect (OSTI)

The overall objective of this program, SRD-99-08, was to design and test suitable materials, which can be used to close high-level waste tanks at SRS. Fill materials can be designed to perform several functions including chemical stabilization and/or physical encapsulation of incidental waste so that the potential for transport of contaminants into the environment is reduced. Also they are needed to physically stabilize the void volume in the tanks to prevent/minimize future subsidence and inadvertent intrusion. The intent of this work was to develop a zero-bleed soil CLSM (ZBS-CLSM) and a zero-bleed concrete mix (ZBC) which meet the unique placement and stabilization/encapsulation requirements for high-level waste tank closures. These mixes in addition to the zero-bleed CLSM mixes formulated for closure of Tanks 17-F and 20-F provide design engineers with a suite of options for specifying materials for future tank closures.

Langton, C.A.

2000-08-11T23:59:59.000Z

48

EIS-0062: Double-Shell Tanks for Defense High Level Waste Storage, Savannah River Site, Aiken, SC  

Broader source: Energy.gov [DOE]

This EIS analyzes the impacts of the various design alternatives for the construction of fourteen 1.3 million gallon high-activity radioactive waste tanks. The EIS further evaluates the effects of these alternative designs on tank durability, on the ease of waste retrieval from such tanks, and the choice of technology and timing for long-term storage or disposal of the wastes.

49

High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 7  

SciTech Connect (OSTI)

This Requirements Identification Document (RID) describes an Occupational Health and Safety Program as defined through the Relevant DOE Orders, regulations, industry codes/standards, industry guidance documents and, as appropriate, good industry practice. The definition of an Occupational Health and Safety Program as specified by this document is intended to address Defense Nuclear Facilities Safety Board Recommendations 90-2 and 91-1, which call for the strengthening of DOE complex activities through the identification and application of relevant standards which supplement or exceed requirements mandated by DOE Orders. This RID applies to the activities, personnel, structures, systems, components, and programs involved in maintaining the facility and executing the mission of the High-Level Waste Storage Tank Farms.

Not Available

1994-04-01T23:59:59.000Z

50

Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 2: Final report  

SciTech Connect (OSTI)

The objective of DOE`s Radioactive Waste Tank Remediation Technology Focus Area is to identify and develop new technologies that will reduce the risk and/or cost of remediating DOE underground waste storage tanks and tank contents. There are, however, many more technology investment opportunities than the current budget can support. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program. The report identifies the project objectives and provides a description of the model. Development of the first ``demonstration`` version of this model and a trial application have been completed and the results are presented. This model will continue to evolve as it undergoes additional user review and testing.

Peters, B.B.; Cameron, R.J.; McCormack, W.D. [Enserch Environmental Corp., Richland, WA (United States)

1994-08-01T23:59:59.000Z

51

High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 7. Revision 1  

SciTech Connect (OSTI)

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 7) presents the standards and requirements for the following sections: Occupational Safety and Health, and Environmental Protection.

Burt, D.L.

1994-04-01T23:59:59.000Z

52

Hanford Tank Waste Information Enclosure 1 Hanford Tank Waste Information  

E-Print Network [OSTI]

Hanford Tank Waste Information Enclosure 1 1 Hanford Tank Waste Information 1.0 Summary This information demonstrates the wastes in the twelve Hanford Site tanks meet the definition of transuranic (TRU. The wastes in these twelve (12) tanks are not high-level waste (HLW), and contain more than 100 nanocuries

53

PAIRWISE BLENDING OF HIGH LEVEL WASTE (HLW)  

SciTech Connect (OSTI)

The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending.

CERTA, P.J.

2006-02-22T23:59:59.000Z

54

High Level Waste Tank Farm Replacement Project for the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Environmental Assessment  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0831, for the construction and operation of the High-Level Waste Tank Farm Replacement (HLWTFR) Project for the Idaho Chemical Processing Plant located at the Idaho National Engineering Laboratory (INEL). The HLWTFR Project as originally proposed by the DOE and as analyzed in this EA included: (1) replacement of five high-level liquid waste storage tanks with four new tanks and (2) the upgrading of existing tank relief piping and high-level liquid waste transfer systems. As a result of the April 1992 decision to discontinue the reprocessing of spent nuclear fuel at INEL, DOE believes that it is unlikely that the tank replacement aspect of the project will be needed in the near term. Therefore, DOE is not proposing to proceed with the replacement of the tanks as described in this-EA. The DOE`s instant decision involves only the proposed upgrades aspect of the project described in this EA. The upgrades are needed to comply with Resource Conservation and Recovery Act, the Idaho Hazardous Waste Management Act requirements, and the Department`s obligations pursuant to the Federal Facilities Compliance Agreement and Consent Order among the Environmental Protection Agency, DOE, and the State of Idaho. The environmental impacts of the proposed upgrades are adequately covered and are bounded by the analysis in this EA. If DOE later proposes to proceed with the tank replacement aspect of the project as described in the EA or as modified, it will undertake appropriate further review pursuant to the National Environmental Policy Act.

Not Available

1993-06-01T23:59:59.000Z

55

High-Level Waste Requirements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The guide provides the criteria for determining which DOE radioactive wastes are to be managed as high-level waste in accordance with DOE M 435.1-1.

1999-07-09T23:59:59.000Z

56

High-Level Waste Melter Study Report  

SciTech Connect (OSTI)

At the Hanford Site in Richland, Washington, the path to site cleanup involves vitrification of the majority of the wastes that currently reside in large underground tanks. A Joule-heated glass melter is the equipment of choice for vitrifying the high-level fraction of these wastes. Even though this technology has general national and international acceptance, opportunities may exist to improve or change the technology to reduce the enormous cost of accomplishing the mission of site cleanup. Consequently, the U.S. Department of Energy requested the staff of the Tanks Focus Area to review immobilization technologies, waste forms, and modifications to requirements for solidification of the high-level waste fraction at Hanford to determine what aspects could affect cost reductions with reasonable long-term risk. The results of this study are summarized in this report.

Perez, Joseph M.; Bickford, Dennis F.; Day, Delbert E.; Kim, Dong-Sang; Lambert, Steven L.; Marra, Sharon L.; Peeler, David K.; Strachan, Denis M.; Triplett, Mark B.; Vienna, John D.; Wittman, Richard S.

2001-07-13T23:59:59.000Z

57

High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 4  

SciTech Connect (OSTI)

Radiation protection of personnel and the public is accomplished by establishing a well defined Radiation Protection Organization to ensure that appropriate controls on radioactive materials and radiation sources are implemented and documented. This Requirements Identification Document (RID) applies to the activities, personnel, structures, systems, components, and programs involved in executing the mission of the Tank Farms. The physical boundaries within which the requirements of this RID apply are the Single Shell Tank Farms, Double Shell Tank Farms, 242-A Evaporator-Crystallizer, 242-S, T Evaporators, Liquid Effluent Retention Facility (LERF), Purgewater Storage Facility (PWSF), and all interconnecting piping, valves, instrumentation, and controls. Also included is all piping, valves, instrumentation, and controls up to and including the most remote valve under Tank Farms control at any other Hanford Facility having an interconnection with Tank Farms. The boundary of the structures, systems, components, and programs to which this RID applies, is defined by those that are dedicated to and/or under the control of the Tank Farms Operations Department and are specifically implemented at the Tank Farms.

Not Available

1994-04-01T23:59:59.000Z

58

Optimizing High Level Waste Disposal  

SciTech Connect (OSTI)

If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being evaluated at Idaho National Laboratory and the facilities we’ve designed to evaluate options and support optimization.

Dirk Gombert

2005-09-01T23:59:59.000Z

59

High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 5  

SciTech Connect (OSTI)

The Fire Protection functional area for the Hanford Site Tank Farm facilities and support structures is based on the application of relevant DOE orders, regulations, and industry codes and standards. The fire protection program defined in this document may be divided into three areas: (1) organizational, (2) administrative programmatic features, and (3) technical features. The information presented in each section is in the form of program elements and orders, regulations, industry codes, and standards that serve as the attributes of a fire protection program for the Tank Farm facilities. Upon completion this document will be utilized as the basis to evaluate compliance of the fire protection program being implemented for the Tank Farm facilities with the requirements of DOE orders and industry codes and standards.

Not Available

1994-04-01T23:59:59.000Z

60

EVOLUTION OF CHEMICAL CONDITIONS AND ESTIMATED SOLUBILITY CONTROLS ON RADIONUCLIDES IN THE RESIDUAL WASTE LAYER DURING POST-CLOSURE AGING OF HIGH-LEVEL WASTE TANKS  

SciTech Connect (OSTI)

This document provides information specific to H-Area waste tanks that enables a flow and transport model with limited chemical capabilities to account for varying waste release from the tanks through time. The basis for varying waste release is solubilities of radionuclides that change as pore fluids passing through the waste change in composition. Pore fluid compositions in various stages were generated by simulations of tank grout degradation. The first part of the document describes simulations of the degradation of the reducing grout in post-closure tanks. These simulations assume flow is predominantly through a water saturated porous medium. The infiltrating fluid that reacts with the grout is assumed to be fluid that has passed through the closure cap and into the tank. The results are three stages of degradation referred to as Reduced Region II, Oxidized Region II, and Oxidized Region III. A reaction path model was used so that the transitions between each stage are noted by numbers of pore volumes of infiltrating fluid reacted. The number of pore volumes to each transition can then be converted to time within a flow and transport model. The bottoms of some tanks in H-Area are below the water table requiring a different conceptual model for grout degradation. For these simulations the reacting fluid was assumed to be 10% infiltrate through the closure cap and 90% groundwater. These simulations produce an additional four pore fluid compositions referred to as Conditions A through D and were intended to simulate varying degrees of groundwater influence. The most probable degradation path for the submerged tanks is Condition C to Condition D to Oxidized Region III and eventually to Condition A. Solubilities for Condition A are estimated in the text for use in sensitivity analyses if needed. However, the grout degradation simulations did not include sufficient pore volumes of infiltrating fluid for the grout to evolve to Condition A. Solubility controls for use in a flow and transport model were estimated for 27 elements in each of the chemical stages generated in the grout simulations plus local groundwater. The grout simulations were run with the initial infiltrating fluid in equilibrium with atmospheric oxygen to account for degradation of the reduction capacity of the grout. However, a lower Eh was used in pore fluids in the oxidizing conditions used to estimate solubilities to be more consistent with measured Eh values and natural systems. Solubilities of plutonium are affected by this decision, but those of other elements are not. In addition, the baseline for H-Area tanks is that they will be washed with oxalic acid prior to being filled with grout. Hence, oxalate was included in the pore fluids by assuming equilibrium with calcium oxalate. Solubility estimates were done by equilibrating a solubility controlling phase for each element with the pore fluid compositions using The Geochemist’s Workbench®. Condition B pore fluids are similar to Condition D. Therefore, solubilities for Condition B were not estimated, but assumed to be the same as in Condition D. In general solubility controlling phases were selected to bias solubilities to higher values. Several elements had no solubility controls and solubility estimates for other elements were omitted because the elements had short half-lives or were present in residual waste in very low amounts. For these it is recommended that release from the tank be instantaneous when the tank liner is breached. There is considerable uncertainty in this approach to enabling a flow and transport model to account for variable waste release. Yet, it is also flexible and requires much less computing time than a fully coupled reactive transport model. This allows some of the uncertainty to be addressed by multiple flow and transport sensitivity cases. Some of the uncertainties are addressed within this document. These include uncertainty in infiltrate composition, grout mineralogy, and disposition of certain components during the simulations. Uncertainty in the solubility estima

Denham, M.; Millings, M.

2012-08-28T23:59:59.000Z

Note: This page contains sample records for the topic "high-level waste tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

EIS-0113: Disposal of Hanford Defense High-Level, Transuranic and Tank Waste, Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this EIS to examine the potential environmental impacts of final disposal options for legacy and future radioactive defense wastes stored at the Hanford Site.

62

High Level Waste System Plan Revision 9  

SciTech Connect (OSTI)

Revision 9 of the High Level Waste System Plan documents the current operating strategy of the HLW System at SRS to receive, store, treat, and dispose of high-level waste.

Davis, N.R.; Wells, M.N.; Choi, A.S.; Paul, P.; Wise, F.E.

1998-04-01T23:59:59.000Z

63

Ferrocyanide tank waste stability  

SciTech Connect (OSTI)

Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove [sup 137]CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes.

Fowler, K.D.

1993-01-01T23:59:59.000Z

64

Citizen Contributions to the Closure of High-Level Waste (HLW) Tanks 18 and 19 at the Department of Energy's (DOE) Savannah River Site (SRS) - 13448  

SciTech Connect (OSTI)

Citizen involvement in DOE's decision-making for the environmental cleanup from DOE's management of its nuclear wastes across the DOE complex has had a positive effect on the cleanup of its SRS site, characterized by an acceleration of cleanup not only for the Transuranic wastes at SRS, but also for DOE's first two closures of HLW tanks, both of which occurred at SRS. The Citizens around SRS had pushed successfully for the closures of Tanks 17 and 20 in 1997, becoming the first closures of HLW tanks under regulatory guidance in the USA. However, since then, HLW tank closures ceased due to a lawsuit, the application of new tank clean-up technology, interagency squabbling between DOE and NRC over tank closure criteria, and finally and almost fatally, from budget pressures. Despite an agreement with its regulators for the closure of Tanks 18 and 19 by the end of calendar year 2012, the outlook in Fall 2011 to close these two tanks had dimmed. It was at this point that the citizens around SRS became reengaged with tank closures, helping DOE to reach its agreed upon milestone. (authors)

Lawless, W.F. [Paine College, Departments of Math and Psychology, 1235 15th Street, Augusta, GA 30901 (United States)] [Paine College, Departments of Math and Psychology, 1235 15th Street, Augusta, GA 30901 (United States)

2013-07-01T23:59:59.000Z

65

FLUIDIZED BED STEAM REFORMING ENABLING ORGANIC HIGH LEVEL WASTE DISPOSAL  

SciTech Connect (OSTI)

Waste streams planned for generation by the Global Nuclear Energy Partnership (GNEP) and existing radioactive High Level Waste (HLW) streams containing organic compounds such as the Tank 48H waste stream at Savannah River Site have completed simulant and radioactive testing, respectfully, by Savannah River National Laboratory (SRNL). GNEP waste streams will include up to 53 wt% organic compounds and nitrates up to 56 wt%. Decomposition of high nitrate streams requires reducing conditions, e.g. provided by organic additives such as sugar or coal, to reduce NOX in the off-gas to N2 to meet Clean Air Act (CAA) standards during processing. Thus, organics will be present during the waste form stabilization process regardless of the GNEP processes utilized and exists in some of the high level radioactive waste tanks at Savannah River Site and Hanford Tank Farms, e.g. organics in the feed or organics used for nitrate destruction. Waste streams containing high organic concentrations cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by pretreatment. The alternative waste stabilization pretreatment process of Fluidized Bed Steam Reforming (FBSR) operates at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). The FBSR process has been demonstrated on GNEP simulated waste and radioactive waste containing high organics from Tank 48H to convert organics to CAA compliant gases, create no secondary liquid waste streams and create a stable mineral waste form.

Williams, M

2008-05-09T23:59:59.000Z

66

High-level waste melter alternatives assessment report  

SciTech Connect (OSTI)

This document describes the Tank Waste Remediation System (TWRS) High-Level Waste (HLW) Program`s (hereafter referred to as HLW Program) Melter Candidate Assessment Activity performed in fiscal year (FY) 1994. The mission of the TWRS Program is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and encapsulated strontium and cesium isotopic sources) in an environmentally sound, safe, and cost-effective manner. The goal of the HLW Program is to immobilize the HLW fraction of pretreated tank waste into a vitrified product suitable for interim onsite storage and eventual offsite disposal at a geologic repository. Preparation of the encapsulated strontium and cesium isotopic sources for final disposal is also included in the HLW Program. As a result of trade studies performed in 1992 and 1993, processes planned for pretreatment of tank wastes were modified substantially because of increasing estimates of the quantity of high-level and transuranic tank waste remaining after pretreatment. This resulted in substantial increases in needed vitrification plant capacity compared to the capacity of original Hanford Waste Vitrification Plant (HWVP). The required capacity has not been finalized, but is expected to be four to eight times that of the HWVP design. The increased capacity requirements for the HLW vitrification plant`s melter prompted the assessment of candidate high-capacity HLW melter technologies to determine the most viable candidates and the required development and testing (D and T) focus required to select the Hanford Site HLW vitrification plant melter system. An assessment process was developed in early 1994. This document describes the assessment team, roles of team members, the phased assessment process and results, resulting recommendations, and the implementation strategy.

Calmus, R.B.

1995-02-01T23:59:59.000Z

67

Tank Closure and Waste Management Environmental Impact Statement...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

due to releases of radionuclides and chemicals from the high-level radioactive waste tanks, Fast Flux Test Facility decommissioning, and waste management activities over long...

68

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.

West, B.; Waltz, R.

2010-06-21T23:59:59.000Z

69

USE OF AN EQUILIBRIUM MODEL TO FORECAST DISSOLUTION EFFECTIVENESS, SAFETY IMPACTS, AND DOWNSTREAM PROCESSABILITY FROM OXALIC ACID AIDED SLUDGE REMOVAL IN SAVANNAH RIVER SITE HIGH LEVEL WASTE TANKS 1-15  

SciTech Connect (OSTI)

This thesis details a graduate research effort written to fulfill the Magister of Technologiae in Chemical Engineering requirements at the University of South Africa. The research evaluates the ability of equilibrium based software to forecast dissolution, evaluate safety impacts, and determine downstream processability changes associated with using oxalic acid solutions to dissolve sludge heels in Savannah River Site High Level Waste (HLW) Tanks 1-15. First, a dissolution model is constructed and validated. Coupled with a model, a material balance determines the fate of hypothetical worst-case sludge in the treatment and neutralization tanks during each chemical adjustment. Although sludge is dissolved, after neutralization more is created within HLW. An energy balance determines overpressurization and overheating to be unlikely. Corrosion induced hydrogen may overwhelm the purge ventilation. Limiting the heel volume treated/acid added and processing the solids through vitrification is preferred and should not significantly increase the number of glass canisters.

KETUSKY, EDWARD

2005-10-31T23:59:59.000Z

70

High-level radioactive wastes. Supplement 1  

SciTech Connect (OSTI)

This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

McLaren, L.H. (ed.)

1984-09-01T23:59:59.000Z

71

JET MIXING ANALYSIS FOR SRS HIGH-LEVEL WASTE RECOVERY  

SciTech Connect (OSTI)

The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four slurry pumps located within the tank liquid. The slurry pump may be fixed in position or they may rotate depending on the specific mixing requirements. The high-level waste in Tank 48 contains insoluble solids in the form of potassium tetraphenyl borate compounds (KTPB), monosodium titanate (MST), and sludge. Tank 48 is equipped with 4 slurry pumps, which are intended to suspend the insoluble solids prior to transfer of the waste to the Fluidized Bed Steam Reformer (FBSR) process. The FBSR process is being designed for a normal feed of 3.05 wt% insoluble solids. A chemical characterization study has shown the insoluble solids concentration is approximately 3.05 wt% when well-mixed. The project is requesting a Computational Fluid Dynamics (CFD) mixing study from SRNL to determine the solids behavior with 2, 3, and 4 slurry pumps in operation and an estimate of the insoluble solids concentration at the suction of the transfer pump to the FBSR process. The impact of cooling coils is not considered in the current work. The work consists of two principal objectives by taking a CFD approach: (1) To estimate insoluble solids concentration transferred from Tank 48 to the Waste Feed Tank in the FBSR process and (2) To assess the impact of different combinations of four slurry pumps on insoluble solids suspension and mixing in Tank 48. For this work, several different combinations of a maximum of four pumps are considered to determine the resulting flow patterns and local flow velocities which are thought to be associated with sludge particle mixing. Two different elevations of pump nozzles are used for an assessment of the flow patterns on the tank mixing. Pump design and operating parameters used for the analysis are summarized in Table 1. The baseline pump orientations are chosen by the previous work [Lee et. al, 2008] and the initial engineering judgement for the conservative flow estimate since the modeling results for the other pump orientations are compared with the baseline results. As shown in Table 1, the present study assumes that each slurry pump has 900 gpm flowrate for the tank mixing analysis, although the Standard Operating Procedure for Tank 48 currently limits the actual pump speed and flowrate to a value less than 900 gpm for a 29 inch liquid level. Table 2 shows material properties and weight distributions for the solids to be modeled for the mixing analysis in Tank 48.

Lee, S.

2011-07-05T23:59:59.000Z

72

High-level waste qualification: Managing uncertainty  

SciTech Connect (OSTI)

Qualification of high-level waste implies specifications driven by risk against which performance can be assessed. The inherent uncertainties should be addressed in the specifications and statistical methods should be employed to appropriately manage these uncertainties. Uncertainties exist whenever measurements are obtained, sampling is employed, or processes are affected by systematic or random perturbations. This paper presents the approach and statistical methods currently employed by Pacific Northwest Laboratory (PNL) and West Valley Nuclear Services (WVNS) to characterize, minimize, and control uncertainties pertinent to a waste-form acceptance specification concerned with product consistency.

Pulsipher, B.A. [Pacific Northwest Lab., Richland, WA (United States)

1993-12-31T23:59:59.000Z

73

High Level Waste System Impacts from Acid Dissolution of Sludge  

SciTech Connect (OSTI)

This research evaluates the ability of OLI{copyright} equilibrium based software to forecast Savannah River Site High Level Waste system impacts from oxalic acid dissolution of Tank 1-15 sludge heels. Without further laboratory and field testing, only the use of oxalic acid can be considered plausible to support sludge heel dissolution on multiple tanks. Using OLI{copyright} and available test results, a dissolution model is constructed and validated. Material and energy balances, coupled with the model, identify potential safety concerns. Overpressurization and overheating are shown to be unlikely. Corrosion induced hydrogen could, however, overwhelm the tank ventilation. While pH adjustment can restore the minimal hydrogen generation, resultant precipitates will notably increase the sludge volume. OLI{copyright} is used to develop a flowsheet such that additional sludge vitrification canisters and other negative system impacts are minimized. Sensitivity analyses are used to assess the processability impacts from variations in the sludge/quantities of acids.

KETUSKY, EDWARD

2006-04-20T23:59:59.000Z

74

Tank Waste Disposal Program redefinition  

SciTech Connect (OSTI)

The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

1991-10-01T23:59:59.000Z

75

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.

West, B.; Waltz, R.

2012-06-21T23:59:59.000Z

76

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

West, B.; Waltz, R.

2011-06-23T23:59:59.000Z

77

Progress of the High Level Waste Program at the Defense Waste Processing Facility - 13178  

SciTech Connect (OSTI)

The Defense Waste Processing Facility at the Savannah River Site treats and immobilizes High Level Waste into a durable borosilicate glass for safe, permanent storage. The High Level Waste program significantly reduces environmental risks associated with the storage of radioactive waste from legacy efforts to separate fissionable nuclear material from irradiated targets and fuels. In an effort to support the disposition of radioactive waste and accelerate tank closure at the Savannah River Site, the Defense Waste Processing Facility recently implemented facility and flowsheet modifications to improve production by 25%. These improvements, while low in cost, translated to record facility production in fiscal years 2011 and 2012. In addition, significant progress has been accomplished on longer term projects aimed at simplifying and expanding the flexibility of the existing flowsheet in order to accommodate future processing needs and goals. (authors)

Bricker, Jonathan M.; Fellinger, Terri L.; Staub, Aaron V.; Ray, Jeff W.; Iaukea, John F. [Savannah River Remediation, Aiken, South Carolina, 29808 (United States)] [Savannah River Remediation, Aiken, South Carolina, 29808 (United States)

2013-07-01T23:59:59.000Z

78

Radioactive tank waste remediation focus area  

SciTech Connect (OSTI)

EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

NONE

1996-08-01T23:59:59.000Z

79

High level waste characterization in support of low level waste certification. I. HLW supernate radionuclide characterization  

SciTech Connect (OSTI)

High Level Waste Programs has radioactive waste storage, treatment and processing facilities that are located in the F and H Areas at the Savannah River Site. These facilities include the Effluent Treatment Facility (ETF), F and H Area Tank Farms, Extended Sludge Processing (ESP), and In-Tank Precipitation (ITP). Job wastes are generated from operation, maintenance, and construction activities inside radiological areas. These items may have been contaminated with radioactive supernate, salt, and sludge material. Most of these wastes will be disposed of in the E-area Vaults. Therefore, an isotopic and hazardous characterization must be performed. The characterization of HLW supernate radionuclides is discussed in Chapter I. The characterization for salt and sludge phases, which can also contaminate LLW, will be included in other Chapters.

Jamison, M.E.; d`Entremont, P.D.; Clemmons, J.S.; Bess, C.E.; Brown, D.F.

1994-07-08T23:59:59.000Z

80

Hanford Site River Protection Project High-Level Waste Safe Storage and Retrieval  

SciTech Connect (OSTI)

This paper provides an update from last year and describes project successes and issues associated with the management and work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of mixed and high-level waste currently in aging tanks at the Hanford Site. The Hanford Site is a 560 square-mile area in southeastern Washington State near Richland, Washington.

Aromi, E. S.; Raymond, R. E.; Allen, D. I.; Payne, M. A.; DeFigh-Price, C.; Kristofzski, J. G.; Wiegman, S. A.

2002-02-25T23:59:59.000Z

Note: This page contains sample records for the topic "high-level waste tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Ferrocyanide tank waste stability. Supplement 2  

SciTech Connect (OSTI)

Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove {sup 137}CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes.

Fowler, K.D.

1993-01-01T23:59:59.000Z

82

Determination of total cyanide in Hanford Site high-level wastes  

SciTech Connect (OSTI)

Nickel ferrocyanide compounds (Na{sub 2-x}Cs{sub x}NiFe (CN){sub 6}) were produced in a scavenging process to remove {sup 137}Cs from Hanford Site single-shell tank waste supernates. Methods for determining total cyanide in Hanford Site high-level wastes are needed for the evaluation of potential exothermic reactions between cyanide and oxidizers such as nitrate and for safe storage, processing, and management of the wastes in compliance with regulatory requirements. Hanford Site laboratory experience in determining cyanide in high-level wastes is summarized. Modifications were made to standard cyanide methods to permit improved handling of high-level waste samples and to eliminate interferences found in Hanford Site waste matrices. Interferences and associated procedure modifications caused by high nitrates/nitrite concentrations, insoluble nickel ferrocyanides, and organic complexants are described.

Winters, W.I. [Westinghouse Hanford Co., Richland, WA (United States); Pool, K.H. [Pacific Northwest Lab., Richland, WA (United States)

1994-05-01T23:59:59.000Z

83

Demonstrating Reliable High Level Waste Slurry Sampling Techniques to Support Hanford Waste Processing  

SciTech Connect (OSTI)

The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HL W) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOC must demonstrate the ability to adequately mix and sample high-level waste feed to meet the WTP Waste Acceptance Criteria and Data Quality Objectives. The sampling method employed must support both TOC and WTP requirements. To facilitate information transfer between the two facilities the mixing and sampling demonstrations are led by the One System Integrated Project Team. The One System team, Waste Feed Delivery Mixing and Sampling Program, has developed a full scale sampling loop to demonstrate sampler capability. This paper discusses the full scale sampling loops ability to meet precision and accuracy requirements, including lessons learned during testing. Results of the testing showed that the Isolok(R) sampler chosen for implementation provides precise, repeatable results. The Isolok(R) sampler accuracy as tested did not meet test success criteria. Review of test data and the test platform following testing by a sampling expert identified several issues regarding the sampler used to provide reference material used to judge the Isolok's accuracy. Recommendations were made to obtain new data to evaluate the sampler's accuracy utilizing a reference sampler that follows good sampling protocol.

Kelly, Steven E.

2013-11-11T23:59:59.000Z

84

RECENT PROGRESS IN DOE WASTE TANK CLOSURE  

SciTech Connect (OSTI)

The USDOE complex currently has over 330 underground storage tanks that have been used to process and store radioactive waste generated from the production of weapons materials. These tanks contain over 380 million liters of high-level and low-level radioactive waste. The waste consists of radioactively contaminated sludge, supernate, salt cake or calcine. Most of the waste exists at four USDOE locations, the Hanford Site, the Savannah River Site, the Idaho Nuclear Technology and Engineering Center and the West Valley Demonstration Project. A summary of the DOE tank closure activities was first issued in 2001. Since then, regulatory changes have taken place that affect some of the sites and considerable progress has been made in closing tanks. This paper presents an overview of the current regulatory changes and drivers and a summary of the progress in tank closures at the various sites over the intervening six years. A number of areas are addressed including closure strategies, characterization of bulk waste and residual heel material, waste removal technologies for bulk waste, heel residuals and annuli, tank fill materials, closure system modeling and performance assessment programs, lessons learned, and external reviews.

Langton, C

2008-02-01T23:59:59.000Z

85

Hanford high-level waste evaporator/crystallizer corrosion evaluation  

SciTech Connect (OSTI)

The US Department of Energy, Hanford Site nuclear reservation, located in Southeastern Washington State, is currently home to 61 Mgal of radioactive waste stored in 177 large underground storage tanks. As an intermediate waste volume reduction, the 242-A Evaporator/Crystallizer processes waste solutions from most of the operating laboratories and plants on the Hanford Site. The waste solutions are concentrated in the Evaporator/Crystallizer to a slurry of liquid and crystallized salts. This concentrated slurry is returned to Hanford Site waste tanks at a significantly reduced volume. The Washington State Department of Ecology Dangerous Waste Regulations, WAC 173-393 require that a tank system integrity assessment be completed and maintained on file at the facility for all dangerous waste tank systems. This corrosion evaluation was performed in support of the 242-A Evaporator/Crystallizer Tank System Integrity Assessment Report. This corrosion evaluation provided a comprehensive compatibility study of the component materials and corrosive environments. Materials used for the Evaporator components and piping include austenitic stainless steels (SS) (primarily ASTM A240, Type 304L) and low alloy carbon steels (CS) (primarily ASTM A53 and A106) with polymeric or asbestos gaskets at flanged connections. Building structure and secondary containment is made from ACI 301-72 Structural Concrete for Buildings and coated with a chemically resistant acrylic coating system.

Ohl, P.C.; Carlos, W.C.

1993-10-01T23:59:59.000Z

86

Hanford Tank Waste - Near Source Treatment of Low Activity Waste  

SciTech Connect (OSTI)

Abstract only. Treatment and disposition of Hanford Site waste as currently planned consists of 100+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory of this waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most of the leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

Ramsey, William Gene

2013-08-15T23:59:59.000Z

87

The High-Level Radioactive Waste Act (Manitoba, Canada)  

Broader source: Energy.gov [DOE]

Manitoba bars the storage of high-level radioactive wastes from spent nuclear fuel, not intended for research purposes, that was produced at a nuclear facility or in a nuclear reactor outside the...

88

Handbook of high-level radioactive waste transportation  

SciTech Connect (OSTI)

The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government`s system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government`s program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project.

Sattler, L.R.

1992-10-01T23:59:59.000Z

89

Water borne transport of high level nuclear waste in very deep borehole disposal of high level nuclear waste  

E-Print Network [OSTI]

The purpose of this report is to examine the feasibility of the very deep borehole experiment and to determine if it is a reasonable method of storing high level nuclear waste for an extended period of time. The objective ...

Cabeche, Dion Tunick

2011-01-01T23:59:59.000Z

90

Waste gas combustion in a Hanford radioactive waste tank  

SciTech Connect (OSTI)

It has been observed that a high-level radioactive waste tank generates quantities of hydrogen, ammonia, nitrous oxide, and nitrogen that are potentially well within flammability limits. These gases are produced from chemical and nuclear decay reactions in a slurry of radioactive waste materials. Significant amounts of combustible and reactant gases accumulate in the waste over a 110- to 120-d period. The slurry becomes Taylor unstable owing to the buoyancy of the gases trapped in a matrix of sodium nitrate and nitrite salts. As the contents of the tank roll over, the generated waste gases rupture through the waste material surface, allowing the gases to be transported and mixed with air in the cover-gas space in the dome of the tank. An ignition source is postulated in the dome space where the waste gases combust in the presence of air resulting in pressure and temperature loadings on the double-walled waste tank. This analysis is conducted with hydrogen mixing studies HMS, a three-dimensional, time-dependent fluid dynamics code coupled with finite-rate chemical kinetics. The waste tank has a ventilation system designed to maintain a slight negative gage pressure during normal operation. We modeled the ventilation system with the transient reactor analysis code (TRAC), and we coupled these two best-estimate accident analysis computer codes to model the ventilation system response to pressures and temperatures generated by the hydrogen and ammonia combustion.

Travis, J.R.; Fujita, R.K.; Spore, J.W.

1994-07-01T23:59:59.000Z

91

Hanford Site Tank Waste Remediation System. Waste management 1993 symposium papers and viewgraphs  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives.

Not Available

1993-05-01T23:59:59.000Z

92

Phase I high-level waste pretreatment and feed staging plan  

SciTech Connect (OSTI)

This document provides the preliminary planning basis for the U.S. Department of Energy (DOE) to provide a sufficient quantity of high-level waste feed to the privatization contractor during Phase I. By this analysis of candidate high-level waste feed sources, the initial quantity of high-level waste feed totals more than twice the minimum feed requirements. The flexibility of the current infrastructure within tank farms provides a variety of methods to transfer the feed to the privatization contractor`s site location. The amount and type of pretreatment (sludge washing) necessary for the Phase I processing can be tailored to support the demonstration goals without having a significant impact on glass volume (i.e., either inhibited water or caustic leaching can be used).

Manuel, A.F.

1996-02-05T23:59:59.000Z

93

Vitrification and testing of a Hanford high-level waste sample. Part 1: Glass fabrication, and chemical and radiochemical analysis  

SciTech Connect (OSTI)

The Hanford radioactive tank waste will be separated into low-activity waste and high-level waste that will both be vitrified into borosilicate glasses. To demonstrate the feasibility of vitrification and the durability of the high-level waste glass, a high-level waste sample from Tank AZ-101 was processed to glass in a hot cell and analyzed with respect to chemical composition, radionuclide content, waste loading, and the presence of crystalline phases and then tested for leachability. The glass was analyzed with inductively coupled plasma-atomic emission spectroscopy, inductively coupled plasma-mass spectrometry, ? energy spectrometry, ? spectrometry, and liquid scintillation counting. The WISE Uranium Project calculator was used to calculate the main sources of radioactivity to the year 3115. The observed crystallinity and the results of leachability testing of the glass will be reported in Part 2 of this paper.

Hrma, Pavel R.; Crum, Jarrod V.; Bates, Derrick J.; Bredt, Paul; Greenwood, Lawrence R.; Smith, H D.

2005-10-01T23:59:59.000Z

94

Operating experience during high-level waste vitrification at the West Valley Demonstration Project  

SciTech Connect (OSTI)

This report provides a summary of operational experiences, component and system performance, and lessons learned associated with the operation of the Vitrification Facility (VF) at the West Valley Demonstration Project (WVDP). The VF was designed to convert stored high-level radioactive waste (HLW) into a stable waste form (borosilicate glass) suitable for disposal in a federal repository. Following successful completion on nonradioactive test, HLW processing began in July 1995. Completion of Phase 1 of HLW processing was reached on 10 June 1998 and represented the processing of 9.32 million curies of cesium-137 (Cs-137) and strontium-90 (Sr-90) to fill 211 canisters with over 436,000 kilograms of glass. With approximately 85% of the total estimated curie content removed from underground waste storage tanks during Phase 1, subsequent operations will focus on removal of tank heel wastes.

Valenti, P.J.; Elliott, D.I.

1999-01-01T23:59:59.000Z

95

EIS-0287: Idaho High-Level Waste and Facilities Disposition Final...  

Office of Environmental Management (EM)

: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) EIS-0287: Idaho High-Level Waste and Facilities Disposition...

96

Glass Property Data and Models for Estimating High-Level Waste Glass Volume  

SciTech Connect (OSTI)

This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition models were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.

Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang; Hrma, Pavel R.

2009-10-05T23:59:59.000Z

97

Spanish high level radioactive waste management system issues  

SciTech Connect (OSTI)

The Empresa Nacional de Residuous Radiactivos, S.A. (ENRESA) was set up in 1984 as a state-owned limited liability company to be responsible for the management of all kinds of radioactive wastes in Spain. This paper provides an overview of the strategy and main lines of action stated in the third General Radioactive Waste Plan, currently in force, for the management of spent nuclear fuel and high-level wastes, as well as an outline of the main related projects, either being developed or foreseen. Aspects concerning the organizational structure, the economic and financing system and the international co-operational are also included.

Ulibarri, A.; Veganzones, A. [ENRESA, Madrid (Spain)

1993-12-31T23:59:59.000Z

98

WRPS MEETING THE CHALLENGE OF TANK WASTE  

SciTech Connect (OSTI)

Washington River Protection Solutions (WRPS) is the Hanford tank operations contractor, charged with managing one of the most challenging environmental cleanup projects in the nation. The U.S. Department of Energy hired WRPS to manage 56 million gallons of high-level radioactive waste stored in 177 underground tanks. The waste is the legacy of 45 years of plutonium production for the U. S. nuclear arsenal. WRPS mission is three-fold: safely manage the waste until it can be processed and immobilized; develop the tools and techniques to retrieve the waste from the tanks, and build the infrastructure needed to deliver the waste to the Waste Treatment Plant (WTP) when it begins operating. WTP will 'vitrify' the waste by mixing it with silica and other materials and heating it in an electric melter. Vitrification turns the waste into a sturdy glass that will isolate the radioactivity from the environment. It will take more than 20 years to process all the tank waste. The tank waste is a complex highly radioactive mixture of liquid, sludge and solids. The radioactivity, chemical composition of the waste and the limited access to the underground storage tanks makes retrieval a challenge. Waste is being retrieved from aging single-shell tanks and transferred to newer, safer double-shell tanks. WRPS is using a new technology known as enhanced-reach sluicing to remove waste. A high-pressure stream of liquid is sprayed at 100 gallons per minute through a telescoping arm onto a hard waste layer several inches thick covering the waste. The waste is broken up, moved to a central pump suction and removed from the tank. The innovative Mobile Arm Retrieval System (MARS) is also being used to retrieve waste. MARS is a remotely operated, telescoping arm installed on a mast in the center of the tank. It uses multiple technologies to scrape, scour and rake the waste toward a pump for removal. The American Reinvestment and Recovery Act (ARRA) provided nearly $326 million over two-and-a-half years to modernize the infrastructure in Hanford's tank farms. WRPS issued 850 subcontracts totaling more than $152 million with nearly 76 percent of that total awarded to small businesses. WRPS used the funding to upgrade tank farm infrastructure, develop technologies to retrieve and consolidate tank waste and extend the life of two critical operating facilities needed to feed waste to the WTP. The 222-S Laboratory analyzes waste to support waste retrievals and transfers. The laboratory was upgraded to support future WTP operations with a new computer system, new analytical equipment, a new office building and a new climate-controlled warehouse. The 242-A Evaporator was upgraded with a control-room simulator for operator training and several upgrades to aging equipment. The facility is used to remove liquid from the tank waste, creating additional storage space, necessary for continued waste retrievals and WTP operation. The One System Integrated Project Team is ajoint effort ofWRPS and Bechtel National to identify and resolve common issues associated with commissioning, feeding and operating the Waste Treatment Plant. Two new facilities are being designed to support WTP hot commlsslomng. The Interim Hanford Storage project is planned to store canisters of immobilized high-level radioactive waste glass produced by the vitrification plant. The facility will use open racks to store the 15-foot long, two-foot diameter canisters of waste, which require remote handling. The Secondary Liquid Waste Treatment Project is a major upgrade to the existing Effluent Treatment Facility at Hanford so it can treat about 10 million gallons of liquid radioactive and hazardous effluent a year from the vitrification plant. The One System approach brings the staff of both companies together to identify and resolve WTP safety issues. A questioning attitude is encouraged and an open forum is maintained for employees to raise issues. WRPS is completing its mission safely with record-setting safety performance. Since WRPS took over the Hanford Tank Operations Contract in October 2

BRITTON JC

2012-02-21T23:59:59.000Z

99

High level waste facilities -- Continuing operation or orderly shutdown  

SciTech Connect (OSTI)

Two options for Environmental Impact Statement No action alternatives describe operation of the radioactive liquid waste facilities at the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory. The first alternative describes continued operation of all facilities as planned and budgeted through 2020. Institutional control for 100 years would follow shutdown of operational facilities. Alternatively, the facilities would be shut down in an orderly fashion without completing planned activities. The facilities and associated operations are described. Remaining sodium bearing liquid waste will be converted to solid calcine in the New Waste Calcining Facility (NWCF) or will be left in the waste tanks. The calcine solids will be stored in the existing Calcine Solids Storage Facilities (CSSF). Regulatory and cost impacts are discussed.

Decker, L.A.

1998-04-01T23:59:59.000Z

100

Identification of potential transuranic waste tanks at the Hanford Site  

SciTech Connect (OSTI)

The purpose of this document is to identify potential transuranic (TRU) material among the Hanford Site tank wastes for possible disposal at the Waste Isolation Pilot Plant (WIPP) as an alternative to disposal in the high-level waste (HLW) repository. Identification of such material is the initial task in a trade study suggested in WHC-EP-0786, Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The scope of this document is limited to the identification of those tanks that might be segregated from the HLW for disposal as TRU, and the bases for that selection. It is assumed that the tank waste will be washed to remove soluble inert material for disposal as low-level waste (LLW), and the washed residual solids will be vitrified for disposal. The actual recommendation of a disposal strategy for these materials will require a detailed cost/benefit analysis and is beyond the scope of this document.

Colburn, R.P.

1995-05-05T23:59:59.000Z

Note: This page contains sample records for the topic "high-level waste tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

HIGH ALUMINUM HLW (HIGH LEVEL WASTE ) GLASSES FOR HANFORDS WTP (WASTE TREATMENT PROJECT)  

SciTech Connect (OSTI)

This paper presents the results of glass formulation development and melter testing to identify high waste loading glasses to treat high-Al high level waste (HLW) at Hanford. Previous glass formulations developed for this HLW had high waste loadings but their processing rates were lower that desired. The present work was aimed at improving the glass processing rate while maintaining high waste loadings. Glass formulations were designed, prepared at crucible-scale and characterized to determine their properties relevant to processing and product quality. Glass formulations that met these requirements were screened for melt rates using small-scale tests. The small-scale melt rate screening included vertical gradient furnace (VGF) and direct feed consumption (DFC) melter tests. Based on the results of these tests, modified glass formulations were developed and selected for larger scale melter tests to determine their processing rate. Melter tests were conducted on the DuraMelter 100 (DMIOO) with a melt surface area of 0.11 m{sup 2} and the DuraMelter 1200 (DMI200) HLW Pilot Melter with a melt surface area of 1.2 m{sup 2}. The newly developed glass formulations had waste loadings as high as 50 wt%, with corresponding Al{sub 2}O{sub 3} concentration in the glass of 26.63 wt%. The new glass formulations showed glass production rates as high as 1900 kg/(m{sup 2}.day) under nominal melter operating conditions. The demonstrated glass production rates are much higher than the current requirement of 800 kg/(m{sup 2}.day) and anticipated future enhanced Hanford Tank Waste Treatment and Immobilization Plant (WTP) requirement of 1000 kg/(m{sup 2}.day).

KRUGER AA; BOWAN BW; JOSEPH I; GAN H; KOT WK; MATLACK KS; PEGG IL

2010-01-04T23:59:59.000Z

102

Tank waste remediation system integrated technology plan. Revision 2  

SciTech Connect (OSTI)

The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

1995-02-28T23:59:59.000Z

103

Waste tank characterization sampling limits  

SciTech Connect (OSTI)

This document is a result of the Plant Implementation Team Investigation into delayed reporting of the exotherm in Tank 241-T-111 waste samples. The corrective actions identified are to have immediate notification of appropriate Tank Farm Operations Shift Management if analyses with potential safety impact exceed established levels. A procedure, WHC-IP-0842 Section 12.18, ``TWRS Approved Sampling and Data Analysis by Designated Laboratories`` (WHC 1994), has been established to require all tank waste sampling (including core, auger and supernate) and tank vapor samples be performed using this document. This document establishes levels for specified analysis that require notification of the appropriate shift manager. The following categories provide numerical values for analysis that may indicate that a tank is either outside the operating specification or should be evaluated for inclusion on a Watch List. The information given is intended to translate an operating limit such as heat load, expressed in Btu/hour, to an analysis related limit, in this case cesium-137 and strontium-90 concentrations. By using the values provided as safety flags, the analytical laboratory personnel can notify a shift manager that a tank is in potential violation of an operating limit or that a tank should be considered for inclusion on a Watch List. The shift manager can then take appropriate interim measures until a final determination is made by engineering personnel.

Tusler, L.A.

1994-09-02T23:59:59.000Z

104

Technical requirements specification for tank waste retrieval  

SciTech Connect (OSTI)

This document provides the technical requirements specification for the retrieval of waste from the underground storage tanks at the Hanford Site. All activities covered by this scope are conducted in support of the Tank Waste Remediation System (TWRS) mission.

Lamberd, D.L.

1996-09-26T23:59:59.000Z

105

A COMPARISON OF HANFORD AND SAVANNAH RIVER SITE HIGH-LEVEL WASTES  

SciTech Connect (OSTI)

This study is a simple comparison of high-level waste from plutonium production stored in tanks at the Hanford and Savannah River sites. Savannah River principally used the PUREX process for plutonium separation. Hanford used the PUREX, Bismuth Phosphate, and REDOX processes, and reprocessed many wastes for recovery of uranium and fission products. Thus, Hanford has 55 distinct waste types, only 17 of which could be at Savannah River. While Hanford and Savannah River wastes both have high concentrations of sodium nitrate, caustic, iron, and aluminum, Hanford wastes have higher concentrations of several key constituents. The factors by which average concentrations are higher in Hanford salt waste than in Savannah River waste are 67 for {sup 241}Am, 4 for aluminum, 18 for chromium, 10 for fluoride, 8 for phosphate, 6 for potassium, and 2 for sulfate. The factors by which average concentrations are higher in Hanford sludges than in Savannah River sludges are 3 for chromium, 19 for fluoride, 67 for phosphate, and 6 for zirconium. Waste composition differences must be considered before a waste processing method is selected: A method may be applicable to one site but not to the other.

HILL RC PHILIP; REYNOLDS JG; RUTLAND PL

2011-02-23T23:59:59.000Z

106

EIS-0356: Retrieval, Treatment and Disposal of Tank Wastes and Closure of Single-Shell Tanks at the Hanford Site, Richland, WA  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's proposed retrieval, treatment, and disposal of the waste being managed in the high-level waste (HLW) tank farms at the Hanford Site near Richland, Washington, and closure of the 149 single-shell tanks (SSTs) and associated facilities in the HLW tank farms.

107

Deep borehole disposal of high-level radioactive waste.  

SciTech Connect (OSTI)

Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

2009-07-01T23:59:59.000Z

108

Defense High-Level Waste Leaching Mechanisms Program. Final report  

SciTech Connect (OSTI)

The Defense High-Level Waste Leaching Mechanisms Program brought six major US laboratories together for three years of cooperative research. The participants reached a consensus that solubility of the leached glass species, particularly solubility in the altered surface layer, is the dominant factor controlling the leaching behavior of defense waste glass in a system in which the flow of leachant is constrained, as it will be in a deep geologic repository. Also, once the surface of waste glass is contacted by ground water, the kinetics of establishing solubility control are relatively rapid. The concentrations of leached species reach saturation, or steady-state concentrations, within a few months to a year at 70 to 90/sup 0/C. Thus, reaction kinetics, which were the main subject of earlier leaching mechanisms studies, are now shown to assume much less importance. The dominance of solubility means that the leach rate is, in fact, directly proportional to ground water flow rate. Doubling the flow rate doubles the effective leach rate. This relationship is expected to obtain in most, if not all, repository situations.

Mendel, J.E. (compiler)

1984-08-01T23:59:59.000Z

109

E-Print Network 3.0 - aging high-level waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

or transportation of high-level radioactive waste... on which the Secretary begins disposal of ... Source: U.S. Nuclear Waste Technical Review Board Collection: Fission and...

110

Transmutation of high-level radioactive waste - Perspectives  

E-Print Network [OSTI]

In a fast neutron spectrum essentially all long-lived actinides (e.g. Plutonium) undergo fission and thus can be transmuted into generally short lived fission products. Innovative nuclear reactor concepts e.g. accelerator driven systems (ADS) are currently in development that foresee a closed fuel cycle. The majority of the fissile nuclides (uranium, plutonium) shall be used for power generation and only fission products will be put into final disposal that needs to last for a historical time scale of only 1000 years. For the transmutation of high-level radioactive waste a lot of research and development is still required. One aspect is the precise knowledge of nuclear data for reactions with fast neutrons. Nuclear reactions relevant for transmutation are being investigated in the framework of the european project ERINDA. First results from the new neutron time-of-flight facility nELBE at Helmholtz-Zentrum Dresden-Rossendorf will be presented.

Junghans, Arnd; Grosse, Eckart; Hannaske, Roland; Kögler, Toni; Massarczyk, Ralf; Schwengner, Ronald; Wagner, Andreas

2014-01-01T23:59:59.000Z

111

TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING  

SciTech Connect (OSTI)

This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

SAMS TL; MENDOZA RE

2010-08-11T23:59:59.000Z

112

TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING  

SciTech Connect (OSTI)

This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

SAMS TL

2010-07-07T23:59:59.000Z

113

ROAD MAP FOR DEVELOPMENT OF CRYSTAL-TOLERANT HIGH LEVEL WASTE GLASSES  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is building a Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is being temporarily stored in 177 underground tanks. Efforts are being made to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. This road map guides the research and development for formulation and processing of crystaltolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objective is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will also be addressed in this road map. The planned research described in this road map is motivated by the potential for substantial economic benefits (significant reductions in glass volumes) that will be realized if the current constraints (T1% for WTP and TL for DWPF) are approached in an appropriate and technically defensible manner for defense waste and current melter designs. The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal-tolerant high-level waste (HLW) glasses targeting high waste loadings while still meeting process related limits and melter lifetime expectancies. The modeling effort will be an iterative process, where model form and a broader range of conditions, e.g., glass composition and temperature, will evolve as additional data on crystal accumulation are gathered. Model validation steps will be included to guide the development process and ensure the value of the effort (i.e., increased waste loading and waste throughput). A summary of the stages of the road map for developing the crystal-tolerant glass approach, their estimated durations, and deliverables is provided.

Fox, K.; Peeler, D.; Herman, C.

2014-05-15T23:59:59.000Z

114

RECENT PROCESS AND EQUIPMENT IMPROVEMENTS TO INCREASE HIGH LEVEL WASTE THROUGHPUT AT THE DEFENSE WASTE PROCESSING FACILITY  

SciTech Connect (OSTI)

The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) began stabilizing high level waste (HLW) in a glass matrix in 1996. Over the past few years, there have been several process and equipment improvements at the DWPF to increase the rate at which the high level waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process to upsets, thereby minimizing downtime and increasing production. Improvements due to optimization of waste throughput with increased HLW loading of the glass resulted in a 6% waste throughput increase based upon operational efficiencies. Improvements in canister production include the pour spout heated bellows liner (5%), glass surge (siphon) protection software (2%), melter feed pump software logic change to prevent spurious interlocks of the feed pump with subsequent dilution of feed stock (2%) and optimization of the steam atomized scrubber (SAS) operation to minimize downtime (3%) for a total increase in canister production of 12%. A number of process recovery efforts have allowed continued operation. These include the off gas system pluggage and restoration, slurry mix evaporator (SME) tank repair and replacement, remote cleaning of melter top head center nozzle, remote melter internal inspection, SAS pump J-Tube recovery, inadvertent pour scenario resolutions, dome heater transformer bus bar cooling water leak repair and new Infra-red camera for determination of glass height in the canister are discussed.

Odriscoll, R; Allan Barnes, A; Jim Coleman, J; Timothy Glover, T; Robert Hopkins, R; Dan Iverson, D; Jeff Leita, J

2008-01-15T23:59:59.000Z

115

Standard guide for sampling radioactive tank waste  

E-Print Network [OSTI]

1.1 This guide addresses techniques used to obtain grab samples from tanks containing high-level radioactive waste created during the reprocessing of spent nuclear fuels. Guidance on selecting appropriate sampling devices for waste covered by the Resource Conservation and Recovery Act (RCRA) is also provided by the United States Environmental Protection Agency (EPA) (1). Vapor sampling of the head-space is not included in this guide because it does not significantly affect slurry retrieval, pipeline transport, plugging, or mixing. 1.2 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2011-01-01T23:59:59.000Z

116

EIS-0212: Safe Interim Storage of Hanford Tank Wastes, Hanford Site, Richland, WA  

Broader source: Energy.gov [DOE]

This environmental impact statement asseses Department of Energy and Washington State Department of Ecology maintanence of safe storage of high-level radioactive wastes currently stored in the older single-shell tanks, the Watchlist Tank 101-SY, and future waste volumes associated with tank farm and other Hanford facility operations, including a need to provide a modern safe, reliable, and regulatory-compliant replacement cross-site transfer capability. The purpose of this action is to prevent uncontrolled releases to the environment by maintaining safe storage of high-level tank wastes.

117

Remote Handling Equipment for a High-Level Waste Waste Package Closure System  

SciTech Connect (OSTI)

High-level waste will be placed in sealed waste packages inside a shielded closure cell. The Idaho National Laboratory (INL) has designed a system for closing the waste packages including all cell interior equipment and support systems. This paper discusses the material handling aspects of the equipment used and operations that will take place as part of the waste package closure operations. Prior to construction, the cell and support system will be assembled in a full-scale mockup at INL.

Kevin M. Croft; Scott M. Allen; Mark W. Borland

2006-04-01T23:59:59.000Z

118

PLUTONIUM/HIGH-LEVEL VITRIFIED WASTE BDBE DOSE CALCULATION  

SciTech Connect (OSTI)

In accordance with the Nuclear Waste Policy Amendments Act of 1987, Yucca Mountain was designated as the site to be investigated as a potential repository for the disposal of high-level radioactive waste. The Yucca Mountain site is an undeveloped area located on the southwestern edge of the Nevada Test Site (NTS), about 100 miles northwest of Las Vegas. The site currently lacks rail service or an existing right-of-way. If the Yucca Mountain site is found suitable for the repository, rail service is desirable to the Office of Civilian Waste Management (OCRWM) Program because of the potential of rail transportation to reduce costs and to reduce the number of shipments relative to highway transportation. A Preliminary Rail Access Study evaluated 13 potential rail spur options. Alternative routes within the major options were also developed. Each of these options was then evaluated for potential land use conflicts and access to regional rail carriers. Three potential routes having few land use conflicts and having access to regional carriers were recommended for further investigation. Figure 1-1 shows these three routes. The Jean route is estimated to be about 120 miles long, the Carlin route to be about 365 miles long, and Caliente route to be about 365 miles long. The remaining ten routes continue to be monitored and should any of the present conflicts change, a re-evaluation of that route will be made. Complete details of the evaluation of the 13 routes can be found in the previous study. The DOE has not identified any preferred route and recognizes that the transportation issues need a full and open treatment under the National Environmental Policy Act. The issue of transportation will be included in public hearings to support development of the Environmental Impact Statement (EIS) proceedings for either the Monitored Retrievable Storage Facility or the Yucca Mountain Project or both.

D.C. Richardson

2003-03-19T23:59:59.000Z

119

CHARACTERIZATION OF DEFENSE NUCLEAR WASTE USING HAZARDOUS WASTE GUIDANCE. APPLICATIONS TO HANFORD SITE ACCELERATED HIGH-LEVEL WASTE TREATMENT AND DISPOSAL MISSION0  

SciTech Connect (OSTI)

Federal hazardous waste regulations were developed for management of industrial waste. These same regulations are also applicable for much of the nation's defense nuclear wastes. At the U.S. Department of Energy's (DOE) Hanford Site in southeast Washington State, one of the nation's largest inventories of nuclear waste remains in storage in large underground tanks. The waste's regulatory designation and its composition and form constrain acceptable treatment and disposal options. Obtaining detailed knowledge of the tank waste composition presents a significant portion of the many challenges in meeting the regulatory-driven treatment and disposal requirements for this waste. Key in applying the hazardous waste regulations to defense nuclear wastes is defining the appropriate and achievable quality for waste feed characterization data and the supporting evidence demonstrating that applicable requirements have been met at the time of disposal. Application of a performance-based approach to demonstrating achievable quality standards will be discussed in the context of the accelerated high-level waste treatment and disposal mission at the Hanford Site.

Hamel, William; Huffman, Lori; Lerchen, Megan; Wiemers, Karyn

2003-02-27T23:59:59.000Z

120

Tank Farms and Waste Feed Delivery - 12507  

SciTech Connect (OSTI)

The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are solid and semi-solid wastes. Known as salt-cakes, they have the consistency of wet beach sand. Some of the waste resembles small broken ice, or whitish crystals. Because the original pumps inside the tanks were designed to remove only liquid waste, other methods have been developed to reach the remaining waste. Access to the tank waste is through long, typically skinny pipes, called risers, extending out of the tanks. It is through these pipes that crews are forced to send machines and devices into the tanks that are used to break up the waste or push it toward a pump. These pipes range in size from just a few inches to just over a foot in diameter because they were never intended to be used in this manner. As part of the agreement regulating Hanford cleanup, crews must remove at least 99% of the material in every tank on the site, or at least as much waste that can be removed based on available technology. To date, seven single-shell tanks have been emptied, and work is underway in another 10 tanks in preparation for additional retrieval activities. Two barriers have been installed over single-shell tanks to prevent the intrusion of surface water down to the tanks, with additional barriers planned for the future. Single and double-shell tank integrity analyses are ongoing. Because the volume of the waste generated through plutonium production exceeded the capacity of the single-shell tanks, between 1968 and 1986 Hanford engineers built 28 double-shell tanks. These tanks were studied and made with a second shell to surround the carbon steel and reinforced concrete. The double-shell tanks have not leaked any of their waste. (authors)

Fletcher, Thomas; Charboneau, Stacy; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-level waste tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

High-level waste issues and resolutions document  

SciTech Connect (OSTI)

The High-Level Waste (HLW) Issues and Resolutions Document recognizes US Department of Energy (DOE) complex-wide HLW issues and offers potential corrective actions for resolving these issues. Westinghouse Management and Operations (M&O) Contractors are effectively managing HLW for the Department of Energy at four sites: Idaho National Engineering Laboratory (INEL), Savannah River Site (SRS), West Valley Demonstration Project (WVDP), and Hanford Reservation. Each site is at varying stages of processing HLW into a more manageable form. This HLW Issues and Resolutions Document identifies five primary issues that must be resolved in order to reach the long-term objective of HLW repository disposal. As the current M&O contractor at DOE`s most difficult waste problem sites, Westinghouse recognizes that they have the responsibility to help solve some of the complexes` HLW problems in a cost effective manner by encouraging the M&Os to work together by sharing expertise, eliminating duplicate efforts, and sharing best practices. Pending an action plan, Westinghouse M&Os will take the initiative on those corrective actions identified as the responsibility of an M&O. This document captures issues important to the management of HLW. The proposed resolutions contained within this document set the framework for the M&Os and DOE work cooperatively to develop an action plan to solve some of the major complex-wide problems. Dialogue will continue between the M&Os, DOE, and other regulatory agencies to work jointly toward the goal of storing, treating, and immobilizing HLW for disposal in an environmentally sound, safe, and cost effective manner.

Not Available

1994-05-01T23:59:59.000Z

122

A summary of available information on ferrocyanide tank wastes  

SciTech Connect (OSTI)

Ferrocyanide wastes were generated at the Hanford site during the mid to late 1950s to make more tank space available for the storage of high level nuclear waste. The ferrocyanide process was developed as a method of removing {sup 137}Cs from existing waste solutions and from process solutions that resulted from the recovery of valuable uranium in waste tanks. During the coarse of the research associated with the ferrocyanide process, it was discovered that ferrocyanide materials when mixed with NaNO{sub 3} and/or NaNO{sub 2} exploded. This chemical reactivity became an issue in the 1980s when the safety associated with the storage of ferrocyanide wastes in Hanford tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety associated with these wastes and the current research and waste management programs. Over the past three years, numerous explosive test have been carried out using milligram quantities of cyanide compounds. These tests provide information on the nature of possible tank reactions. On heating a mixture of ferrocyanide and nitrate or nitrite, an explosive reaction normally begins at about 240{degrees}C, but may occur well below 200{degrees}C in the presence of catalysts or organic compounds that may act as initiators. The energy released is highly dependent on the course of the reaction. Three attempts to model hot spots in local areas of the tanks indicate a very low probability of having a hot spot large enough and hot enough to be of concern. The main purpose of this document is to inform the members of the Tank Waste Science Panel of the background and issues associated with the ferrocyanide wastes. Hopefully, this document fulfills similar needs outside of the framework of the Tank Waste Science Panel. 50 refs., 9 figs., 7 tabs.

Burger, L.L.; Strachan, D.M. (Pacific Northwest Lab., Richland, WA (United States)); Reynolds, D.A. (Westinghouse Hanford Co., Richland, WA (United States)); Schulz, W.W. (Schulz (W.W.), Wilmington, DE (United States))

1991-10-01T23:59:59.000Z

123

FY 1996 Tank waste analysis plan  

SciTech Connect (OSTI)

This Tank Waste Analysis Plan (TWAP) describes the activities of the Tank Waste Remediation System (TWRS) Characterization Project to plan, schedule, obtain, and document characterization information on Hanford waste tanks. This information is required to meet several commitments of Programmatic End-Users and the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement. This TWAP applies to the activities scheduled to be completed in fiscal year 1996.

Homi, C.S.

1996-09-18T23:59:59.000Z

124

EIS-0081: Long-Term Management of Liquid High-Level Radioactive Waste Stored at Western New York Nuclear Service Center, West Valley, New York  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy Office of Terminal Waste Disposal and Remedial Action prepared this statement to analyze the environmental and socioeconomic impacts resulting from the Department’s proposed action to construct and operate facilities necessary to solidify the liquid high level wastes currently stored in underground tanks at Wes t Valley, New York.

125

Tank waste remediation system (TWRS) mission analysis  

SciTech Connect (OSTI)

The Tank Waste Remediation System Mission Analysis provides program level requirements and identifies system boundaries and interfaces. Measures of success appropriate to program level accomplishments are also identified.

Rieck, R.H.

1996-10-03T23:59:59.000Z

126

Laboratory Report on Performance Evaluation of Key Constituents during Pre-Treatment of High Level Waste Direct Feed  

SciTech Connect (OSTI)

The analytical capabilities of the 222-S Laboratory are tested against the requirements for an optional start up scenario of the Waste Treatment and Immobilization Plant on the Hanford Site. In this case, washed and in-tank leached sludge would be sent directly to the High Level Melter, bypassing Pretreatment. The sludge samples would need to be analyzed for certain key constituents in terms identifying melter-related issues and adjustment needs. The analyses on original tank waste as well as on washed and leached material were performed using five sludge samples from tanks 241-AY-102, 241-AZ-102, 241-AN-106, 241-AW-105, and 241-SY-102. Additionally, solid phase characterization was applied to determine the changes in mineralogy throughout the pre-treatment steps.

Huber, Heinz J.

2013-06-24T23:59:59.000Z

127

Investigations in Ceramicrete Stabilization of Hanford Tank Wastes  

SciTech Connect (OSTI)

This paper provides a summary of investigations done on feasibility of using Ceramicrete technology to stabilize high level salt waste streams typical of Hanford and other sites. We used two non-radioactive simulants that covered the range of properties from low activity to high level liquids and sludges. One represented tank supernate, containing Cr, Pb, and Ag as the major hazardous metals, and Cs as the fission products; the other, a waste sludge, contained Cd, Cr, Ag, Ni, and Ba as the major hazardous contaminants, and Cs, and Tc as the fission products.

Wagh, A. S.; Antink, A.; Maloney, M. D.; Thomson, G. H.

2003-02-26T23:59:59.000Z

128

PROGRESS & CHALLENGES IN CLEANUP OF HANFORDS TANK WASTES  

SciTech Connect (OSTI)

The River Protection Project (RPP), which is managed by the Department of Energy (DOE) Office of River Protection (ORP), is highly complex from technical, regulatory, legal, political, and logistical perspectives and is the largest ongoing environmental cleanup project in the world. Over the past three years, ORP has made significant advances in its planning and execution of the cleanup of the Hartford tank wastes. The 149 single-shell tanks (SSTs), 28 double-shell tanks (DSTs), and 60 miscellaneous underground storage tanks (MUSTs) at Hanford contain approximately 200,000 m{sup 3} (53 million gallons) of mixed radioactive wastes, some of which dates back to the first days of the Manhattan Project. The plan for treating and disposing of the waste stored in large underground tanks is to: (1) retrieve the waste, (2) treat the waste to separate it into high-level (sludge) and low-activity (supernatant) fractions, (3) remove key radionuclides (e.g., Cs-137, Sr-90, actinides) from the low-activity fraction to the maximum extent technically and economically practical, (4) immobilize both the high-level and low-activity waste fractions by vitrification, (5) interim store the high-level waste fraction for ultimate disposal off-site at the federal HLW repository, (6) dispose the low-activity fraction on-site in the Integrated Disposal Facility (IDF), and (7) close the waste management areas consisting of tanks, ancillary equipment, soils, and facilities. Design and construction of the Waste Treatment and Immobilization Plant (WTP), the cornerstone of the RPP, has progressed substantially despite challenges arising from new seismic information for the WTP site. We have looked closely at the waste and aligned our treatment and disposal approaches with the waste characteristics. For example, approximately 11,000 m{sup 3} (2-3 million gallons) of metal sludges in twenty tanks were not created during spent nuclear fuel reprocessing and have low fission product concentrations. We plan to treat these wastes as transuranic waste (TRU) for disposal at the Waste Isolation Pilot Plant (WIPP), which will reduce the WTP system processing time by three years. We are also developing and testing bulk vitrification as a technology to supplement the WTP LAW vitrification facility for immobilizing the massive volume of LAW. We will conduct a full-scale demonstration of the Demonstration Bulk Vitrification System by immobilizing up to 1,100 m{sup 3} (300,000 gallons) of tank S-109 low-curie soluble waste from which Cs-137 had previously been removed. This past year has been marked by both progress and new challenges. The focus of our tank farm work has been retrieving waste from the old single-shell tanks (SSTs). We have completed waste retrieval from three SSTs and are conducting retrieval operations on an additional three SSTs. While most waste retrievals have gone about as expected, we have faced challenges with some recalcitrant tank heel wastes that required enhanced approaches. Those enhanced approaches ranged from oxalic acid additions to deploying a remote high-pressure water lance. As with all large, long-term projects that employ first of a kind technologies, we continue to be challenged to control costs and maintain schedule. However, it is most important to work safely and to provide facilities that will do the job they are intended to do.

HEWITT, W.M.; SCHEPENS, R.

2006-01-23T23:59:59.000Z

129

Tank Waste Remediation System Guide  

SciTech Connect (OSTI)

The scope, number and complexity of Tank Waste Remediation System (TWRS) decisions require an integrated, consistent, and logical approach to decision making. TWRS has adopted a seven-step decision process applicable to all decisions. Not all decisions, however, require the same degree of rigor/detail. The decision impact will dictate the appropriate required detail. In the entire process, values, both from the public as well as from the decision makers, play a key role. This document concludes with a general discussion of the implementation process that includes the roles of concerned parties.

Robershotte, M.A.; Dirks, L.L.; Seaver, D.A.; Bothers, A.J.; Madden, M.S.

1995-06-01T23:59:59.000Z

130

C-106 High-Level Waste Solids: Washing/Leaching and Solubility Versus Temperature Studies  

SciTech Connect (OSTI)

This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing and caustic leaching on the composition of the Hanford tank C-106 high-level waste (HLW) solids. The objective of this work was to determine the composition of the C-106 solids remaining after washing with 0.01M NaOH or leaching with 3M NaOH. Another objective of this test was to determine the solubility of various C-106 components as a function of temperature. The work was conducted according to test plan BNFL-TP-29953-8,Rev. 0, Determination of the Solubility of HLW Sludge Solids. The test went according to plan, with only minor deviations from the test plan. The deviations from the test plan are discussed in the experimental section.

GJ Lumetta; DJ Bates; PK Berry; JP Bramson; LP Darnell; OT Farmer III; LR Greenwood; FV Hoopes; RC Lettau; GF Piepel; CZ Soderquist; MJ Steele; RT Steele; MW Urie; JJ Wagner

2000-01-26T23:59:59.000Z

131

An Investigation into the Oxidation State of Molybdenum in Simplified High Level Nuclear Waste Glass Compositions  

E-Print Network [OSTI]

An Investigation into the Oxidation State of Molybdenum in Simplified High Level Nuclear Waste of Mo in glasses containing simplified simulated high level nuclear waste (HLW) streams has been originating from the reprocessing of spent nuclear fuel. Experiments using simulated nuclear waste streams

Sheffield, University of

132

The Hanford Story: Tank Waste Cleanup  

Broader source: Energy.gov [DOE]

This fourth chapter of The Hanford Story explains how the DOE Office of River Protection will use the Waste Treatment Plant to treat the 56 million gallons of radioactive waste in the Tank Farms.

133

Double shell tank waste analysis plan  

SciTech Connect (OSTI)

Waste analysis plan for the double shell tanks. SD-WM-EV-053 is Superseding SD-WM-EV-057.This document provides the plan for obtaining information needed for the safe waste handling and storage of waste in the Double Shell Tank Systems. In Particular it addresses analysis necessary to manage waste according to Washington Administrative Code 173-303 and Title 40, parts 264 and 265 of the Code of Federal Regulations.

Mulkey, C.H.; Jones, J.M.

1994-12-15T23:59:59.000Z

134

Independent Assessment of the Savannah River Site High-Level Waste Salt Disposition Alternatives Evaluation  

SciTech Connect (OSTI)

This report presents the results of the Independent Project Evaluation (IPE) Team assessment of the Westinghouse Savannah River Company High-Level Waste Salt Disposition Systems Engineering (SE) Team's deliberations, evaluations, and selections. The Westinghouse Savannah River Company concluded in early 1998 that production goals and safety requirements for processing SRS HLW salt to remove Cs-137 could not be met in the existing In-Tank Precipitation Facility as currently configured for precipitation of cesium tetraphenylborate. The SE Team was chartered to evaluate and recommend an alternative(s) for processing the existing HLW salt to remove Cs-137. To replace the In-Tank Precipitation process, the Savannah River Site HLW Salt Disposition SE Team downselected (October 1998) 140 candidate separation technologies to two alternatives: Small-Tank Tetraphenylborate (TPB) Precipitation (primary alternative) and Crystalline Silicotitanate (CST) Nonelutable Ion Exchange (backup alternative). The IPE Team, commissioned by the Department of Energy, concurs that both alternatives are technically feasible and should meet all salt disposition requirements. But the IPE Team judges that the SE Team's qualitative criteria and judgments used in their downselection to a primary and a backup alternative do not clearly discriminate between the two alternatives. To properly choose between Small-Tank TPB and CST Ion Exchange for the primary alternative, the IPE Team suggests the following path forward: Complete all essential R and D activities for both alternatives and formulate an appropriate set of quantitative decision criteria that will be rigorously applied at the end of the R and D activities. Concurrent conceptual design activities should be limited to common elements of the alternatives.

J. T. Case (DOE-ID); M. L. Renfro (INEEL)

1998-12-01T23:59:59.000Z

135

Progress Continues Toward Closure of Two Underground Waste Tanks...  

Office of Environmental Management (EM)

Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site...

136

Development of Crystal-Tolerant High-Level Waste Glasses  

SciTech Connect (OSTI)

Twenty five glasses were formulated. They were batched from HLW AZ-101 simulant or raw chemicals and melted and tested with a series of tests to elucidate the effect of spinel-forming components (Ni, Fe, Cr, Mn, and Zn), Al, and noble metals (Rh2O3 and RuO2) on the accumulation rate of spinel crystals in the glass discharge riser of the high-level waste (HLW) melter. In addition, the processing properties of glasses, such as the viscosity and TL, were measured as a function of temperature and composition. Furthermore, the settling of spinel crystals in transparent low-viscosity fluids was studied at room temperature to access the shape factor and hindered settling coefficient of spinel crystals in the Stokes equation. The experimental results suggest that Ni is the most troublesome component of all the studied spinel-forming components producing settling layers of up to 10.5 mm in just 20 days in Ni-rich glasses if noble metals or a higher concentration of Fe was not introduced in the glass. The layer of this thickness can potentially plug the bottom of the riser, preventing glass from being discharged from the melter. The noble metals, Fe, and Al were the components that significantly slowed down or stopped the accumulation of spinel at the bottom. Particles of Rh2O3 and RuO2, hematite and nepheline, acted as nucleation sites significantly increasing the number of crystals and therefore decreasing the average crystal size. The settling rate of ?10-?m crystal size around the settling velocity of crystals was too low to produce thick layers. The experimental data for the thickness of settled layers in the glasses prepared from AZ-101 simulant were used to build a linear empirical model that can predict crystal accumulation in the riser of the melter as a function of concentration of spinel-forming components in glass. The developed model predicts the thicknesses of accumulated layers quite well, R2 = 0.985, and can be become an efficient tool for the formulation of the crystal-tolerant HLW glasses for higher waste loading. A physical modeling effort revealed that the Stokes and Richardson-Zaki equations can be used to adequately predict the accumulation rate of spinel crystals of different sizes and concentrations in the glass discharge riser of HLW melters. The determined shape factor for the glass beads was only 0.73% lower than the theoretical shape factor for a perfect sphere. The shape factor for the spinel crystals matched the theoretically predicted value to within 10% and was smaller than that of the beads, given the larger drag force caused by the larger surface area-to-volume ratio of the octahedral crystals. In the hindered settling experiments, both the glass bead and spinel suspensions were found to follow the predictions of the Richardson-Zaki equation with the exponent n = 3.6 and 2.9 for glass beads and spinel crystals, respectively.

Matyas, Josef; Vienna, John D.; Schaible, Micah J.; Rodriguez, Carmen P.; Crum, Jarrod V.; Arrigoni, Alyssa L.; Tate, Rachel M.

2010-12-17T23:59:59.000Z

137

Specialized video systems for use in waste tanks  

SciTech Connect (OSTI)

The Robotics Development Group at the Savannah River Site is developing a remote video system for use in underground radioactive waste storage tanks at the Savannah River Site, as a portion of its site support role. Viewing of the tank interiors and their associated annular spaces is an extremely valuable tool in assessing their condition and controlling their operation. Several specialized video systems have been built that provide remote viewing and lighting, including remotely controlled tank entry and exit. Positioning all control components away from the facility prevents the potential for personnel exposure to radiation and contamination. The SRS waste tanks are nominal 4.5 million liter (1.3 million gallon) underground tanks used to store liquid high level radioactive waste generated by the site, awaiting final disposal. The typical waste tank (Figure 1) is of flattened shape (i.e. wider than high). The tanks sit in a dry secondary containment pan. The annular space between the tank wall and the secondary containment wall is continuously monitored for liquid intrusion and periodically inspected and documented. The latter was historically accomplished with remote still photography. The video systems includes camera, zoom lens, camera positioner, and vertical deployment. The assembly enters through a 125 mm (5 in) diameter opening. A special attribute of the systems is they never get larger than the entry hole during camera aiming etc. and can always be retrieved. The latest systems are easily deployable to a remote setup point and can extend down vertically 15 meters (50ft). The systems are expected to be a valuable asset to tank operations.

Anderson, E.K.; Robinson, C.W.; Heckendorn, F.M.

1992-01-01T23:59:59.000Z

138

Specialized video systems for use in waste tanks. Revision 1  

SciTech Connect (OSTI)

The Robotics Development Group at the Savannah River Site is developing a remote video system for use in underground radioactive waste storage tanks at the Savannah River Site, as a portion of its site support role. Viewing of the tank interiors and their associated annular spaces is an extremely valuable tool in assessing their condition and controlling their operation. Several specialized video systems have been built that provide remote viewing and lighting, including remotely controlled tank entry and exit. Positioning all control components away from the facility prevents the potential for personnel exposure to radiation and contamination. The SRS waste tanks are nominal 4.5 million liter (1.3 million gallon) underground tanks used to store liquid high level radioactive waste generated by the site, awaiting final disposal. The typical waste tank (Figure 1) is of flattened shape (i.e. wider than high). The tanks sit in a dry secondary containment pan. The annular space between the tank wall and the secondary containment wall is continuously monitored for liquid intrusion and periodically inspected and documented. The latter was historically accomplished with remote still photography. The video systems includes camera, zoom lens, camera positioner, and vertical deployment. The assembly enters through a 125 mm (5 in) diameter opening. A special attribute of the systems is they never get larger than the entry hole during camera aiming etc. and can always be retrieved. The latest systems are easily deployable to a remote setup point and can extend down vertically 15 meters (50ft). The systems are expected to be a valuable asset to tank operations.

Anderson, E.K.; Robinson, C.W.; Heckendorn, F.M.

1992-11-01T23:59:59.000Z

139

Tank Waste and Waste Processing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

breakthrough immobilization technologies. Currently projects are focusing on: In-tank sludge washing at Hanford Enhanced waste processing at Idaho, Hanford, and Savannah River...

140

Enclosure 3 DOE Response to EPA Question Regarding "High-Level Liquid Radioactive Waste"  

E-Print Network [OSTI]

to date, which is from the definitions in the Nuclear Waste Policy Act: The term "high-level radioactive waste" means-- (A) the highly radioactive material resulting from the reprocessing of spent nuclear fuel of waste streams as from the applicable definition of HLW in the Nuclear Waste Policy Act. 5/11/20051 #12

Note: This page contains sample records for the topic "high-level waste tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511  

SciTech Connect (OSTI)

The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolution of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been effectively purified and collected in the Mercury Purification Cell (MPC) since 2008. A significant cleaning campaign aims to bring the MPC back up to facility housekeeping standards. Two significant investigations are being undertaken to restore mercury collection. The SMECT mercury pump has been removed from the tank and will be functionally tested. Also, research is being conducted by the Savannah River National Laboratory to determine the effects of antifoam addition on the behavior of mercury. These path forward items will help us better understand what is occurring in the mercury collection system and ultimately lead to an improved DWPF production rate and mercury recovery rate. (authors)

Behrouzi, Aria [Savannah River Remediation, LLC (United States); Zamecnik, Jack [Savannah River National Laboratory, Aiken, South Carolina, 29808 (United States)

2012-07-01T23:59:59.000Z

142

TWRS retrieval and disposal mission, immobilized high-level waste storage plan  

SciTech Connect (OSTI)

This project plan has a two fold purpose. First, it provides a plan specific to the Hanford Tank Waste Remediation System (TWRS) Immobilized High-Level Waste (EMW) Storage Subproject for the Washington State Department of Ecology (Ecology) that meets the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestone M-90-01 (Ecology et al. 1996) and is consistent with the project plan content guidelines found in Section 11.5 of the Tri-Party Agreement action plan. Second, it provides an upper tier document that can be used as the basis for future subproject line item construction management plans. The planning elements for the construction management plans are derived from applicable U.S. Department of Energy (DOE) planning guidance documents (DOE Orders 4700.1 (DOE 1992a) and 430.1 (DOE 1995)). The format and content of this project plan are designed to accommodate the plan`s dual purpose. A cross-check matrix is provided in Appendix A to explain where in the plan project planning elements required by Section 11.5 of the Tri-Party Agreement are addressed.

Calmus, R.B.

1998-01-07T23:59:59.000Z

143

PERFORMANCE OF A BURIED RADIOACTIVE HIGH LEVEL WASTE GLASS AFTER 24 YEARS  

SciTech Connect (OSTI)

A radioactive high level waste glass was made in 1980 with Savannah River Site (SRS) Tank 15 waste. This glass was buried in the SRS burial ground for 24 years but lysimeter data was only available for the first 8 years. The glass was exhumed and analyzed in 2004. The glass was predicted to be very durable and laboratory tests confirmed the durability response. The laboratory results indicated that the glass was very durable as did analysis of the lysimeter data. Scanning electron microscopy of the glass burial surface showed no significant glass alteration consistent with the results of the laboratory and field tests. No detectable Pu, Am, Cm, Np, or Ru leached from the glass into the surrounding sediment. Leaching of {beta}/{delta} from {sup 90}Sr and {sup 137}Cs in the glass was diffusion controlled. Less than 0.5% of the Cs and Sr in the glass leached into the surrounding sediment, with >99% of the leached radionuclides remaining within 8 centimeters of the glass pellet.

Jantzen, C; Daniel Kaplan, D; Ned Bibler, N; David Peeler, D; John Plodinec, J

2008-05-05T23:59:59.000Z

144

Annual radioactive waste tank inspection program -- 1993  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1993 to evaluate these vessels, and evaluations based on data accrued by inspections made since the tanks were constructed, are the subject of this report. The 1993 inspection program revealed that the condition of the Savannah River Site waste tanks had not changed significantly from that reported in the previous annual report. No new leaksites were observed. No evidence of corrosion or materials degradation was observed in the waste tanks. However, degradation was observed on covers of the concrete encasements for the out-of-service transfer lines to Tanks 1 through 8.

McNatt, F.G. Sr.

1994-05-01T23:59:59.000Z

145

Chemical Stabilization of Hanford Tank Residual Waste  

SciTech Connect (OSTI)

Three different chemical treatment methods were tested for their ability to stabilize residual waste from Hanford tank C-202 for reducing contaminant release (Tc, Cr, and U in particular). The three treatment methods tested were lime addition [Ca(OH)2], an in-situ Ceramicrete waste form based on chemically bonded phosphate ceramics, and a ferrous iron/goethite treatment. These approaches rely on formation of insoluble forms of the contaminants of concern (lime addition and ceramicrete) and chemical reduction followed by co-precipitation (ferrous iron/goethite incorporation treatment). The results have demonstrated that release of the three most significant mobile contaminants of concern from tank residual wastes can be dramatically reduced after treatment compared to contact with simulated grout porewater without treatment. For uranium, all three treatments methods reduced the leachable uranium concentrations by well over three orders of magnitude. In the case of uranium and technetium, released concentrations were well below their respective MCLs for the wastes tested. For tank C-202 residual waste, chromium release concentrations were above the MCL but were considerably reduced relative to untreated tank waste. This innovative approach has the potential to revolutionize Hanford’s tank retrieval process, by allowing larger volumes of residual waste to be left in tanks while providing an acceptably low level of risk with respect to contaminant release that is protective of the environment and human health. Such an approach could enable DOE to realize significant cost savings through streamlined retrieval and closure operations.

Cantrell, Kirk J.; Um, Wooyong; Williams, Benjamin D.; Bowden, Mark E.; Gartman, Brandy N.; Lukens, Wayne W.; Buck, Edgar C.; Mausolf, Edward J.

2014-03-01T23:59:59.000Z

146

Northeast High-Level Radioactive Waste Transportation Task Force Agenda  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2EnergyDepartment ofNewsNortheast High-Level

147

High-Level Waste Corporate Board, Mark Gilbertson  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTSSeparationHelping toLiquidHigh-Level

148

West Valley Demonstration Project High-Level Waste Management  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department ofEnergy Is Everywhere! Webinar: EnergyDRAFT_19507_1 High-Level

149

EM Tank Waste Subcommittee Report for SRS and Hanford Tank Waste...  

Office of Environmental Management (EM)

liability. EM estimates that retrieval and processing of waste contained within these tanks will be completed between the years 2050 and 2062. A number of strategies are being...

150

Annual radioactive waste tank inspection program - 1996  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1996 to evaluate these vessels, and evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

McNatt, F.G.

1997-04-01T23:59:59.000Z

151

Annual Radioactive Waste Tank Inspection Program - 1998  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site separations processes are contained in large underground carbon steel tanks. Inspections made during 1998 to evaluate these vessels and auxiliary appurtenances, along with evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

McNatt, F.G.

1999-10-27T23:59:59.000Z

152

Annual radioactive waste tank inspection program - 1999  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1999 to evaluate these vessels and auxiliary appurtenances along with evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report.

Moore, C.J.

2000-04-14T23:59:59.000Z

153

Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991  

SciTech Connect (OSTI)

Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed. The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust.

Bryan, S.A.; Pederson, L.R.; Ryan, J.L.; Scheele, R.D.; Tingey, J.M.

1992-08-01T23:59:59.000Z

154

Radioactive Tank Waste Remediation Focus Area. Technology summary  

SciTech Connect (OSTI)

In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

NONE

1995-06-01T23:59:59.000Z

155

Design and operating features of the high-level waste vitrification system for the West Valley demonstration project  

SciTech Connect (OSTI)

A liquid-fed joule-heated ceramic melter system is the reference process for immobilization of the high-level liquid waste in the US and several foreign countries. This system has been under development for over ten years at Pacific Northwest Laboratory and other national laboratories operated for the US Department of Energy. Pacific Northwest Laboratory contributed to this research through its Nuclear Waste Treatment Program and used applicable data to design and test melters and related systems using remote handling of simulated radioactive wastes. This report describes the equipment designed in support of the high-level waste vitrification program at West Valley, New York. Pacific Northwest Laboratory worked closely with West Valley Nuclear Services Company to design a liquid-fed ceramic melter, a liquid waste preparation and feed tank and pump, an off-gas treatment scrubber, and an enclosed turntable for positioning the waste canisters. Details of these designs are presented including the rationale for the design features and the alternatives considered.

Siemens, D.H.; Beary, M.M.; Barnes, S.M.; Berger, D.N.; Brouns, R.A.; Chapman, C.C.; Jones, R.M.; Peters, R.D.; Peterson, M.E.

1986-03-01T23:59:59.000Z

156

RESORCINOL-FORMALDEHYDE ION EXCHANGE RESIN CHEMISTRY FOR HIGH LEVEL WASTE TREATMENT  

SciTech Connect (OSTI)

A principal goal at the Savannah River Site is to safely dispose of the large volume of liquid nuclear waste held in many storage tanks. In-tank ion exchange technology is being considered for cesium removal using a polymer resin made of resorcinol formaldehyde that has been engineered into microspheres. The waste under study is generally lower in potassium and organic components than Hanford waste; therefore, the resin performance was evaluated with actual dissolved salt waste. The ion exchange performance and resin chemistry results are discussed.

Nash, C.; Duignan, M.

2010-01-14T23:59:59.000Z

157

HLW-OVP-97-0068 High Level Waste Management Division High-Level Waste System Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuided Self-Assembly of GoldHAWCHIGS flux4-00n High Level6

158

Program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks  

SciTech Connect (OSTI)

This program plan describes the activities being conducted for the resolution of the flammable gas problem that is associated with 23 high-level waste tanks at the Hanford Site. The classification of the wastes in all of these tanks is not final and some wastes may not be high-level wastes. However, until the characterization and classification is complete, all the tanks are treated as if they contain high-level waste. Of the 23 tanks, Tank 241-SY-101 (referred to as Tank 101-SY) has exhibited significant episodic releases of flammable gases (hydrogen and nitrous oxide) for the past 10 years. The major near-term focus of this program is for the understanding and stabilization of this tank. An understanding of the mechanism for gas generation and the processes for the episodic release will be obtained through sampling of the tank contents, laboratory studies, and modeling of the tank behavior. Additional information will be obtained through new and upgraded instrumentation for the tank. A number of remediation, or stabilization, concepts will be evaluated for near-term (2 to 3 years) applications to Tank 101-SY. Detailed safety assessments are required for all activities that will occur in the tank (sampling, removal of equipment, and addition of new instruments). This program plan presents a discussion of each task, provides schedules for near-term activities, and gives a summary of the expected work for fiscal years 1991, 1992, and 1993. 16 refs., 7 figs., 8 tabs.

Johnson, G.D. (comp.)

1991-08-01T23:59:59.000Z

159

High-Level Waste Corporate Board Meeting Agenda  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTSSeparationHelping toLiquid Waste

160

High-Level Waste Corporate Board Performance Assessment Subcommittee  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTSSeparationHelping toLiquid WasteLevel

Note: This page contains sample records for the topic "high-level waste tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

High-level waste vitrification off-gas cleanup technology  

SciTech Connect (OSTI)

This brief overview is intended to be a basis for discussion of needs and problems existing in the off-gas clean-up technology. A variety of types of waste form and processes are being developed in the United States and abroad. A description of many of the processes can be found in the Technical Alternative Documents (TAD). Concurrently, off-gas processing systems are being developed with most of the processes. An extensive review of methodology as well as decontamination factors can be found in the literature. Since it is generally agreed that the most advanced solidification process is vitrification, discussion here centers about the off-gas problems related to vitrification. With a number of waste soldification facilities around the world in operation, it can be shown that present technology can satisfy the present requirement for off-gas control. However, a number of areas within the technology base show potential for improvement. Fundamental as well as verification studies are needed to obtain the improvements.

Hanson, M.S.

1980-01-01T23:59:59.000Z

162

Design of a high-level waste repository system for the United States  

E-Print Network [OSTI]

This report presents a conceptual design for a High Level Waste disposal system for fuel discharged by U.S. commercial power reactors, using the Yucca Mountain repository site recently designated by federal legislation. ...

Driscoll, Michael J.

1988-01-01T23:59:59.000Z

163

Risk-informing decisions about high-level nuclear waste repositories  

E-Print Network [OSTI]

Performance assessments (PAs) are important sources of information for societal decisions in high-level radioactive waste (HLW) management, particularly in evaluating safety cases for proposed HLW repository development. ...

Ghosh, Suchandra Tina, 1973-

2004-01-01T23:59:59.000Z

164

Feasibility of lateral emplacement in very deep borehole disposal of high level nuclear waste  

E-Print Network [OSTI]

The U.S. Department of Energy recently filed a motion to withdraw the Nuclear Regulatory Commission license application for the High Level Waste Repository at Yucca Mountain in Nevada. As the U.S. has focused exclusively ...

Gibbs, Jonathan Sutton

2010-01-01T23:59:59.000Z

165

Tank Closure and Waste Management Environmental Impact Statement...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

which includes disposition of the SSTs, ancillary equipment, and soils. The SST (149 tanks) and DST (28 tanks) systems contain both hazardous and radioactive waste (mixed...

166

Tank Closure and Waste Management Environmental Impact Statement...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Retrieval, Treatment, and Disposal of Tank Waste and Closure of Single-Shell Tanks at the Hanford Site, Richland, Washington" and "Environmental Impact Statement for the...

167

Project plan for resolution of the organic waste tank safety issues at the Hanford Site  

SciTech Connect (OSTI)

A multi-year project plan for the Organic Safety Project has been developed with the objective of resolving the organic safety issues associated with the High Level Waste (HLW) in Hanford`s single-shell tanks (SSTS) and double-shell tanks (DSTs). The objective of the Organic Safety Project is to ensure safe interim storage until retrieval for pretreatment and disposal operations begins, and to resolve the organic safety issues by September 2001. Since the initial identification of organics as a tank waste safety issue, progress has been made in understanding the specific aspects of organic waste combustibility, and in developing and implementing activities to resolve the organic safety issues.

Meacham, J.E.

1996-10-03T23:59:59.000Z

168

A One System Integrated Approach to Simulant Selection for Hanford High Level Waste Mixing and Sampling Tests  

SciTech Connect (OSTI)

The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broad spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described.

Thien, Mike G. [Washington River Protection Solutions, LLC, Richland, WA (United States); Barnes, Steve M. [URS, Richland, WA (United States)

2013-01-17T23:59:59.000Z

169

A One System Integrated Approach to Simulant Selection for Hanford High Level Waste Mixing and Sampling Tests - 13342  

SciTech Connect (OSTI)

The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broad spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described. (authors)

Thien, Mike G. [Washington River Protection Solutions, LLC, P.O Box 850, Richland WA, 99352 (United States)] [Washington River Protection Solutions, LLC, P.O Box 850, Richland WA, 99352 (United States); Barnes, Steve M. [Waste Treatment Plant, 2435 Stevens Center Place, Richland WA 99354 (United States)] [Waste Treatment Plant, 2435 Stevens Center Place, Richland WA 99354 (United States)

2013-07-01T23:59:59.000Z

170

PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS  

SciTech Connect (OSTI)

The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to {approx}18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m{sup 3} of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m{sup 3}3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions. The incorporation of 1 wt % Pu in the glass did not adversely impact glass viscosity (as assessed using Hf surrogate) or glass durability. Finally, evaluation of DWPF glass pour samples that had Pu concentrations below the 897 g/m{sup 3} limit showed that Pu concentrations in the glass pour stream were close to targeted compositions in the melter feed indicating that Pu neither volatilized from the melt nor stratified in the melter when processed in the DWPF melter.

Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

2011-01-04T23:59:59.000Z

171

Tank Waste Remediation System tank waste pretreatment and vitrification process development testing requirements assessment  

SciTech Connect (OSTI)

A multi-faceted study was initiated in November 1993 to provide assurance that needed testing capabilities, facilities, and support infrastructure (sampling systems, casks, transportation systems, permits, etc.) would be available when needed for process and equipment development to support pretreatment and vitrification facility design and construction schedules. This first major report provides a snapshot of the known testing needs for pretreatment, low-level waste (LLW) and high-level waste (HLW) vitrification, and documents the results of a series of preliminary studies and workshops to define the issues needing resolution by cold or hot testing. Identified in this report are more than 140 Hanford Site tank waste pretreatment and LLW/HLW vitrification technology issues that can only be resolved by testing. The report also broadly characterizes the level of testing needed to resolve each issue. A second report will provide a strategy(ies) for ensuring timely test capability. Later reports will assess the capabilities of existing facilities to support needed testing and will recommend siting of the tests together with needed facility and infrastructure upgrades or additions.

Howden, G.F.

1994-10-24T23:59:59.000Z

172

Production of a High-Level Waste Glass from Hanford Waste Samples  

SciTech Connect (OSTI)

The HLW glass was produced from a HLW sludge slurry (Envelope D Waste), eluate waste streams containing high levels of Cs-137 and Tc-99, solids containing both Sr-90 and transuranics (TRU), and glass-forming chemicals. The eluates and Sr-90/TRU solids were obtained from ion-exchange and precipitation pretreatments, respectively, of other Hanford supernate samples (Envelopes A, B and C Waste). The glass was vitrified by mixing the different waste streams with glass-forming chemicals in platinum/gold crucibles and heating the mixture to 1150 degree C. Resulting glass analyses indicated that the HLW glass waste form composition was close to the target composition. The targeted waste loading of Envelope D sludge solids in the HLW glass was 30.7 wt percent, exclusive of Na and Si oxides. Condensate samples from the off-gas condenser and off-gas dry-ice trap indicated that very little of the radionuclides were volatilized during vitrification. Microstructure analysis of the HLW glass using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Analysis (EDAX) showed what appeared to be iron spinel in the HLW glass. Further X-Ray Diffraction (XRD) analysis confirmed the presence of nickel spinel trevorite (NiFe2O4). These crystals did not degrade the leaching characteristics of the glass. The HLW glass waste form passed leach tests that included a standard 90 degree C Product Consistency Test (PCT) and a modified version of the United States Environmental Protection Agency Toxicity Characteristic Leaching Procedure (TCLP).

Crawford, C.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Farrara, D.M.; Ha, B.C.; Bibler, N.E.

1998-09-01T23:59:59.000Z

173

Tank Waste Remediation System fiscal year 1996 multi-year program plan WBS 1.1. Revision 1, Appendix A  

SciTech Connect (OSTI)

This document is a compilation of data relating to the Tank Waste Remediation System Multi-Year Program. Topics discussed include: management systems; waste volume, transfer and evaporation management; transition of 200 East and West areas; ferricyanide, volatile organic vapor, and flammable gas management; waste characterization; retrieval from SSTs and DSTs; heat management; interim storage; low-level and high-level radioactive waste management; and tank farm closure.

NONE

1995-09-01T23:59:59.000Z

174

Rethinking the Hanford Tank Waste Program  

SciTech Connect (OSTI)

The program to treat and dispose of the highly radioactive wastes stored in underground tanks at the U.S. Department of Energy's Hanford site has been studied. A strategy/management approach to achieve an acceptable (technically sound) end state for these wastes has been developed in this study. This approach is based on assessment of the actual risks and costs to the public, workers, and the environment associated with the wastes and storage tanks. Close attention should be given to the technical merits of available waste treatment and stabilization methodologies, and application of realistic risk reduction goals and methodologies to establish appropriate tank farm cleanup milestones. Increased research and development to reduce the mass of non-radioactive materials in the tanks requiring sophisticated treatment is highly desirable. The actual cleanup activities and milestones, while maintaining acceptable safety standards, could be more focused on a risk-to-benefit cost effectiveness, as agreed to by the involved stakeholders and in accordance with existing regulatory requirements. If existing safety standards can be maintained at significant cost savings under alternative plans but with a change in the Tri-Party Agreement (a regulatory requirement), those plans should be carried out. The proposed strategy would also take advantage of the lessons learned from the activities and efforts in the first phase of the two-phased cleanup of the Hanford waste tank farms.

Parker, F. L.; Clark, D. E.; Morcos, N.

2002-02-26T23:59:59.000Z

175

Thermal and Radiolytic Gas Generation in Hanford High-Level Waste  

SciTech Connect (OSTI)

The Hanford Site has 177 underground storage tanks containing radioactive wastes that are complex mixes of radioactive and chemical products. Some of these wastes are known to generate and retain large quantities of flammable gases consisting of hydrogen, nitrous oxide, nitrogen, and ammonia. Because these gases are flammable and have the potential for rapid release, the gas generation rate for each tank must be determined to establish the flammability hazard (Johnson et al. 1997). An understanding of gas generation is important to operation of the waste tanks for several reasons. First, knowledge of the overall rate of generation is needed to verify that any given tank has sufficient ventilation to ensure that flammable gases are maintained at a safe level within the dome space. Understanding the mechanisms for production of the various gases is important so that future waste operations do not create conditions that promote the production of hydrogen, ammonia, and nitrous oxide. Studying the generation of gases also provides important data for the composition of the gas mixture, which in turn is needed to assess the flammability characteristics. Finally, information about generation of gases, including the influence of various chemical constituents, temperature, and dose, would aid in assessing the future behavior of the waste during interim storage, implementation of controls, and final waste treatment. This paper summarizes the current knowledge of gas generation pathways and discusses models used in predicting gas generation rates from actual Hanford radioactive wastes. A comparison is made between measured gas generation rates and rates by the predictive models.

Bryan, Samuel A.; Pederson, Larry R.; King, C. M.

2000-01-31T23:59:59.000Z

176

Reevaluation Of Vitrified High-Level Waste Form Criteria For Potential Cost Savings At The Defense Waste Processing Facility  

SciTech Connect (OSTI)

At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form.

Ray, J. W.; Marra, S. L.; Herman, C. C.

2013-01-09T23:59:59.000Z

177

Reevaluation of Vitrified High-Level Waste Form Criteria for Potential Cost Savings at the Defense Waste Processing Facility - 13598  

SciTech Connect (OSTI)

At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form. (authors)

Ray, J.W. [Savannah River Remediation (United States)] [Savannah River Remediation (United States); Marra, S.L.; Herman, C.C. [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

178

Sequential Thermo-Hydraulic Modeling of Variably Saturated Flow in High-Level Radioactive Waste Repository  

E-Print Network [OSTI]

Sequential Thermo-Hydraulic Modeling of Variably Saturated Flow in High-Level Radioactive Waste-Malabry, France Key words: waste repository, geological disposal, thermo- hydraulic modeling Introduction The most developed a sequential model to predict the coupled thermo-hydraulic processes at a cell-scale radioactive

Boyer, Edmond

179

West Valley demonstration project: alternative processes for solidifying the high-level wastes  

SciTech Connect (OSTI)

In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied.

Holton, L.K.; Larson, D.E.; Partain, W.L.; Treat, R.L.

1981-10-01T23:59:59.000Z

180

Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste  

SciTech Connect (OSTI)

Some of Hanford`s underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford`s organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes` future storage. This work focused on the equilibrium water content and did not investigate the various factors such as @ ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures.

Scheele, R.D.; Bredt, P.R.; Sell, R.L.

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-level waste tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION FINAL REPORT 08R1360-1  

SciTech Connect (OSTI)

This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat transfer and glass melting rate. The WTP HLW melter has a glass surface area of 3.75 m{sup 2} and depth of {approx}1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HLW waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150 C and by increasing the waste loading in the glass product. Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage. The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet WTP Contract terms. The WTP's overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulfur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previous experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings. Results of this work have demonstrated the feasibility of increases in wasteloading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. It is expected that these higher waste loading glasses will reduce the HLW canister production requirement by about 25% or more.

KRUGER AA; MATLACK KS; KOT W; PEGG IL; JOSEPH I; BARDAKCI T; GAN H; GONG W; CHAUDHURI M

2010-01-04T23:59:59.000Z

182

Enclosure 1 Additional Information on Hanford Tank Wastes  

E-Print Network [OSTI]

Enclosure 1 Additional Information on Hanford Tank Wastes Introduction The U. S. Nuclear Regulatory of Energy to the U. S. Environmental Protection Agency addressing the Hanford Tank and K Basin Wastes (CBFO stored in two tanks (designated as tanks 241-AW-103 and 241-AW-105) at the Hanford Site are not high

183

Tank waste remediation system operation and utilization plan,vol. I {ampersand} II  

SciTech Connect (OSTI)

The U.S. Department of Energy Richland Operations Office (RL) is in the first stages of contracting with private companies for the treatment and immobilization of tank wastes. The components of tank waste retrieval, treatment, and immobilization have been conceived in two phases (Figure 1.0-1). To meet RL's anticipated contractual requirements, the Project Hanford Management Contractor (PHMC) companies will be required to provide waste feeds to the private companies consistent with waste envelopes that define the feeds in terms of quantity, and concentration of both chemicals and radionuclides. The planning that supports delivery of the feed must be well thought out in four basic areas: (1) Low-activity waste (LAW)/high-level waste (HLW) feed staging plans. How is waste moved within the existing tanks to deliver waste that corresponds to the defined feed envelopes to support the Private Contractor's processing schedule and processing rate? (2) Single-shell tank (SST) retrieval sequence. How are Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1994) milestones for SST retrieval integrated into the Phase I processing to set the stage for Phase II processing to complete the mission? (3) Tank Waste Remediation System (TWRS) process flowsheet. How do materials flow from existing tank inventories through: (1) blending and pretreatment functions in the double-shell tanks (DSTs), (2) contractor processing facilities, and (3) stored waste forms (Figure 1.0-2); (4) Storage and disposal of the immobilized low-activity waste (ILAW) and immobilized high-level waste (IHLW) product. How is the ILAW and IHLW product received from the private companies, the ILAW disposed onsite, and the IHLW stored onsite until final disposal?

Kirkbride, R.A.

1997-09-01T23:59:59.000Z

184

DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER  

SciTech Connect (OSTI)

The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this analysis is to support Site Recommendation reports and to assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the Development Plan ''Design Analysis for the Defense High-Level Waste Disposal Container'' (CRWMS M&O 2000c) with no deviations from the plan.

G. Radulesscu; J.S. Tang

2000-06-07T23:59:59.000Z

185

Hanford immobilized low-activity tank waste performance assessment  

SciTech Connect (OSTI)

The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis to set requirements on the waste form and the facility design that will protect the long-term public health and safety and protect the environment.

Mann, F.M.

1998-03-26T23:59:59.000Z

186

Tank Closure and Waste Management Environmental Impact Statement...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at Hanford under Waste Management Alternative 1. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington 5-1164 Table...

187

Final Environmental Impact Statement for the Tank Waste Remediation...  

Broader source: Energy.gov (indexed) [DOE]

hazardous, and mixed waste. This waste is stored in 177 large underground storage tanks and in approximately 60 smaller active and inactive miscellaneous underground storage...

188

A Survey of Vapors in the Headspaces of Single-Shell Waste Tanks  

SciTech Connect (OSTI)

This report summarizes data on the organic vapors in the single-shell high level radioactive waste tanks at the Hanford site to support a forthcoming toxicological study. All data were obtained from the Tank Characterization Database (PNNL 1999). The TCD contains virtually all the available tank headspace characterization data from 1992 to the present, and includes data for 109 different single-shell waste tanks. Each single-shell tank farm and all major waste types are represented. Descriptions of the sampling and analysis methods have been given elsewhere (Huckaby et al. 1995, Huckaby et al. 1996), and references for specific data are available in the TCD. This is a revision of a report with the same title issued on March 1, 2000 (Stock and Huckaby 2000).

Stock, Leon M.; Huckaby, James L.

2000-10-31T23:59:59.000Z

189

Annual report of tank waste treatability  

SciTech Connect (OSTI)

This report has been prepared as part of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) and constitutes completion of Tri-Party Agreement milestone M-04-00C for fiscal year 1992. This report provides a summary of treatment activities for newly generated waste, existing double-shell tank waste, and existing single-shell tank waste, as well as a summary of grout disposal feasibility, glass disposal feasibility, alternate methods for disposal, and safety issues which may impact the treatment and disposal of existing defense nuclear wastes. This report is an update of the 1991 report and is intended to provide traceability for the documentation of the areas listed above by statusing the studies, activities, and issues which occurred in these areas over the period of March 1, 1991, through February 29, 1992.

Barker, S.A. (Westinghouse Hanford Co., Richland, WA (United States)); Lane, A.G. (Los Alamos Technical Associates, Inc., NM (United States))

1992-09-01T23:59:59.000Z

190

Annual report of tank waste treatability  

SciTech Connect (OSTI)

This report has been prepared as part of the Hanford Federal Facility Agreement and Consent Order* (Tri-Party Agreement) and constitutes completion of Tri-Party Agreement milestone M-04-00D for fiscal year 1993. This report provides a summary of treatment activities for newly generated waste, existing double-shell tank waste, and existing single-shell tank waste, as well as a summary of grout disposal feasibility, glass disposal feasibility, alternate methods for disposal, and safety issues which may impact the treatment and disposal of existing defense nuclear wastes. This report is an update of the 1992 report and is intended to provide traceability for the documentation by statusing the studies, activities, and issues which occurred in these areas listed above over the period of March 1, 1992, through February 28, 1993. Therefore, ongoing studies, activities, and issues which were documented in the previous (1992) report are addressed in this (1993) report.

Lane, A.G. [Los Alamos Technical Associates, Inc., NM (United States); Kirkbride, R.A. [Westinghouse Hanford Co., Richland, WA (United States)

1993-09-01T23:59:59.000Z

191

Dangerous Waste Characteristics of Waste from Hanford Tank 241-S-109  

SciTech Connect (OSTI)

Existing analytical data from samples taken from Hanford Tank 241-S-109, along with process knowledge of the wastes transferred to this tank, are reviewed to determine whether dangerous waste characteristics currently assigned to all waste in Hanford underground storage tanks are applicable to this tank waste. Supplemental technologies are examined to accelerate the Hanford tank waste cleanup mission and to accomplish the waste treatment in a safer and more efficient manner. The goals of supplemental technologies are to reduce costs, conserve double-shell tank space, and meet the scheduled tank waste processing completion date of 2028.

Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

2004-11-05T23:59:59.000Z

192

The Savannah River Site Replacement High Level Radioactive Waste Evaporator Project  

SciTech Connect (OSTI)

The Replacement High Level Waste Evaporator Project was conceived in 1985 to reduce the volume of the high level radioactive waste Process of the high level waste has been accomplished up to this time using Bent Tube type evaporators and therefore, that type evaporator was selected for this project. The Title I Design of the project was 70% completed in late 1990. The Department of Energy at that time hired an independent consulting firm to perform a complete review of the project. The DOE placed a STOP ORDER on purchasing the evaporator in January 1991. Essentially, no construction was to be done on this project until all findings and concerns dealing with the type and design of the evaporator are resolved. This report addresses two aspects of the DOE design review; (1) Comparing the Bent Tube Evaporator with the Forced Circulation Evaporator, (2) The design portion of the DOE Project Review - concentrated on the mechanical design properties of the evaporator. 1 ref.

Presgrove, S.B. (Bechtel Savannah River, Inc., North Augusta, SC (United States))

1992-01-01T23:59:59.000Z

193

The Savannah River Site Replacement High Level Radioactive Waste Evaporator Project  

SciTech Connect (OSTI)

The Replacement High Level Waste Evaporator Project was conceived in 1985 to reduce the volume of the high level radioactive waste Process of the high level waste has been accomplished up to this time using Bent Tube type evaporators and therefore, that type evaporator was selected for this project. The Title I Design of the project was 70% completed in late 1990. The Department of Energy at that time hired an independent consulting firm to perform a complete review of the project. The DOE placed a STOP ORDER on purchasing the evaporator in January 1991. Essentially, no construction was to be done on this project until all findings and concerns dealing with the type and design of the evaporator are resolved. This report addresses two aspects of the DOE design review; (1) Comparing the Bent Tube Evaporator with the Forced Circulation Evaporator, (2) The design portion of the DOE Project Review - concentrated on the mechanical design properties of the evaporator. 1 ref.

Presgrove, S.B. [Bechtel Savannah River, Inc., North Augusta, SC (United States)

1992-08-01T23:59:59.000Z

194

Tank waste remediation system mission analysis report  

SciTech Connect (OSTI)

This document describes and analyzes the technical requirements that the Tank Waste Remediation System (TWRS) must satisfy for the mission. This document further defines the technical requirements that TWRS must satisfy to supply feed to the private contractors` facilities and to store or dispose the immobilized waste following processing in these facilities. This document uses a two phased approach to the analysis to reflect the two-phased nature of the mission.

Acree, C.D.

1998-01-09T23:59:59.000Z

195

Small Waste Tank Sampling and Retrieval System  

SciTech Connect (OSTI)

At the Test Reactor Area of the Idaho National Engineering and Environmental Laboratory (INEEL), four 1500-gal catch tanks were found to contain RCRAhazardous waste. A system was needed to obtain a representative sample of the liquid, as well as the hardpacked heels, and to ultimately homogenize and remove the tank contents for disposal. After surveying the available technologies, the AEA Fluidic Pulse Mixing and Retrieval System was chosen for a technology demonstration. A demonstration, conducted with nonhazardous surrogate material, proved that the system was capable of loosening the hard-packed heel, homogenizing the entire tank contents, and collecting a representative sample. Based on the success of the demonstration, a detailed evaluation was done to determine the applicability of the system to other tanks. The evaluation included the sorting of data on more than 700 tanks to select candidates for further deployment of the system. A detailed study was also done to determine if the purchase of a second system would be cost effective. The results of the evaluation indicated that a total of thirteen tanks at the INEEL are amenable to sampling and/or remediation using the AEA Fluidic Pulse Mixing and Retrieval System. Although the currently-owned system appears sufficient for the needs of one INEEL program, it is insufficient to meet the combined needs at the INEEL. The INEEL will commence operation of the system on the TRA-730 Catch Tank System in June 2002.

Magleby, Mary Theresa

2002-08-01T23:59:59.000Z

196

Solvent extraction in the treatment of acidic high-level liquid waste : where do we stand?  

SciTech Connect (OSTI)

During the last 15 years, a number of solvent extraction/recovery processes have been developed for the removal of the transuranic elements, {sup 90}Sr and {sup 137}Cs from acidic high-level liquid waste. These processes are based on the use of a variety of both acidic and neutral extractants. This chapter will present an overview and analysis of the various extractants and flowsheets developed to treat acidic high-level liquid waste streams. The advantages and disadvantages of each extractant along with comparisons of the individual systems are discussed.

Horwitz, E. P.; Schulz, W. W.

1998-06-18T23:59:59.000Z

197

Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction  

SciTech Connect (OSTI)

Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation.

R.A. Levich; J.S. Stuckless

2006-09-25T23:59:59.000Z

198

Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste  

DOE Patents [OSTI]

Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

Boatner, Lynn A. (Oak Ridge, TN); Sales, Brian C. (Oak Ridge, TN)

1989-01-01T23:59:59.000Z

199

Crystallization In High Level Waste (HLW) Glass Melters: Operational Experience From The Savannah River Site  

SciTech Connect (OSTI)

processing strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal tolerant high level waste (HLW) glasses targeting higher waste loadings while still meeting process related limits and melter lifetime expectancies. This report provides a review of the scaled melter testing that was completed in support of the Defense Waste Processing Facility (DWPF) melter. Testing with scaled melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by K-3 refractory corrosion versus spinels that precipitated from the HLW glass melt pool. This report includes a review of the crystallization observed with the scaled melters and the full scale DWPF melters (DWPF Melter 1 and DWPF Melter 2). Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for WTP. Operation of the first and second (current) DWPF melters has demonstrated that the strategy of using a liquidus temperature predictive model combined with a 100 °C offset from the normal melter operating temperature of 1150 °C (i.e., the predicted liquidus temperature (TL) of the glass must be 1050 °C or less) has been successful in preventing any detrimental accumulation of spinel in the DWPF melt pool, and spinel has not been observed in any of the pour stream glass samples. Spinel was observed at the bottom of DWPF Melter 1 as a result of K-3 refractory corrosion. Issues have occurred with accumulation of spinel in the pour spout during periods of operation at higher waste loadings. Given that both DWPF melters were or have been in operation for greater than 8 years, the service life of the melters has far exceeded design expectations. It is possible that the DWPF liquidus temperature approach is conservative, in that it may be possible to successfully operate the melter with a small degree of allowable crystallization in the glass. This could be a viable approach to increasing waste loading in the glass assuming that the crystals are suspended in the melt and swept out through the riser and pour spout. Additional study is needed, and development work for WTP might be leveraged to support a different operating limit for the DWPF. Several recommendations are made regarding considerations that need to be included as part of the WTP crystal tolerant strategy based on the DWPF development work and operational data reviewed here. These include: Identify and consider the impacts of potential heat sinks in the WTP melter and glass pouring system; Consider the contributions of refractory corrosion products, which may serve to nucleate additional crystals leading to further accumulation; Consider volatilization of components from the melt (e.g., boron, alkali, halides, etc.) and determine their impacts on glass crystallization behavior; Evaluate the impacts of glass REDuction/OXidation (REDOX) conditions and the distribution of temperature within the WTP melt pool and melter pour chamber on crystal accumulation rate; Consider the impact of precipitated crystals on glass viscosity; Consider the impact of an accumulated crystalline layer on thermal convection currents and bubbler effectiveness within the melt pool; Evaluate the impact of spinel accumulation on Joule heating of the WTP melt pool; and Include noble metals in glass melt experiments because of their potential to act as nucleation site

Fox, K. M.

2014-02-27T23:59:59.000Z

200

Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes  

DOE Patents [OSTI]

Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

Boatner, L.A.; Sales, B.C.

1984-04-11T23:59:59.000Z

Note: This page contains sample records for the topic "high-level waste tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes  

SciTech Connect (OSTI)

The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage.

Harmon, K.M.; Johnson, A.B. Jr.

1984-04-01T23:59:59.000Z

202

2020 Vision for Tank Waste Cleanup (One System Integration) - 12506  

SciTech Connect (OSTI)

The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The Cleanup of Hanford's 56 million gallons of radioactive and chemical waste stored in 177 large underground tanks represents the Department's largest and most complex environmental remediation project. Sixty percent by volume of the nation's high-level radioactive waste is stored in the underground tanks grouped into 18 'tank farms' on Hanford's central plateau. Hanford's mission to safely remove, treat and dispose of this waste includes the construction of a first-of-its-kind Waste Treatment Plant (WTP), ongoing retrieval of waste from single-shell tanks, and building or upgrading the waste feed delivery infrastructure that will deliver the waste to and support operations of the WTP beginning in 2019. Our discussion of the 2020 Vision for Hanford tank waste cleanup will address the significant progress made to date and ongoing activities to manage the operations of the tank farms and WTP as a single system capable of retrieving, delivering, treating and disposing Hanford's tank waste. The initiation of hot operations and subsequent full operations of the WTP are not only dependent upon the successful design and construction of the WTP, but also on appropriately preparing the tank farms and waste feed delivery infrastructure to reliably and consistently deliver waste feed to the WTP for many decades. The key components of the 2020 vision are: all WTP facilities are commissioned, turned-over and operational, achieving the earliest possible hot operations of completed WTP facilities, and supplying low-activity waste (LAW) feed directly to the LAW Facility using in-tank/near tank supplemental treatment technologies. A One System Integrated Project Team (IPT) was recently formed to focus on developing and executing the programs that will be critical to successful waste feed delivery and WTP startup. The team is comprised of members from Bechtel National, Inc. (BNI), Washington River Protection Solutions LLC (WRPS), and DOE-ORP and DOE-WTP. The IPT will combine WTP and WRPS capabilities in a mission-focused model that is clearly defined, empowered and cost efficient. The genesis for this new team and much of the 2020 vision is based on the work of an earlier team that was tasked with identifying the optimum approach to startup, commissioning, and turnover of WTP facilities for operations. This team worked backwards from 2020 - a date when the project will be completed and steady-state operations will be underway - and identified success criteria to achieving safe and efficient operations of the WTP. The team was not constrained by any existing contract work scope, labor, or funding parameters. Several essential strategies were identified to effectively realize the one-system model of integrated feed stream delivery, WTP operations, and product delivery, and to accomplish the team's vision of hot operations beginning in 2016: - Use a phased startup and turnover approach that will allow WTP facilities to be transitioned to an operational state on as short a timeline as credible. - Align Tank Farm (TF) and WTP objectives such that feed can be supplied to the WTP when it is required for hot operations. - Ensure immobilized waste and waste recycle streams can be recei

Harp, Benton; Charboneau, Stacy; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

203

The dilemma of siting a high-level nuclear waste repository  

SciTech Connect (OSTI)

This books presents a siting process that the authors believe will prove successful within the adversarial world that characterizes most attempts to build waste-disposal facilities. They come to the following conclusions: a volunatary siting process stands the best chance of breaking the `not-in-my-backyard` problem; and without public acknowledgement that a facility is needed, any proposal to build a high-level nuclear waste storage facility will meet with opposition.

Easterline, D.; Kunreuther, H.

1995-12-31T23:59:59.000Z

204

CSER 94-004: Criticality safety of double-shell waste storage tanks  

SciTech Connect (OSTI)

This criticality safety evaluation covers double-shell waste storage tanks (DSTs), double-contained receiver tanks (DCRTs), vault tanks, and the 242-A Evaporator located in the High Level Waste (HLW) Tank Farms on the Hanford Site. Limits and controls are specified and the basis for ensuring criticality safety is discussed. A minimum limit of 1,000 is placed upon the solids/plutonium mass ratio in incoming waste. The average solids/Pu mass ratio over all waste in tank farms is estimated to be about 74,500, about 150 times larger than required to assure subcriticality in homogeneous waste. PFP waste in Tank-102-SY has an estimated solids/Pu mass ratio of 10,000. Subcriticality is assured whenever the plutonium concentration is less than 2.6 g. The median reported plutonium concentration for 200 samples of waste solids is about 0.01 g (0.038 g/gal). A surveillance program is proposed to increase the knowledge of the waste and provide added assurance of the high degree of subcriticality.

Rogers, C.A.

1994-09-22T23:59:59.000Z

205

EIS-0189: Tank Waste Remediation System (TWRS), Richland, WA (Programmatic)  

Broader source: Energy.gov [DOE]

This environmental impact statement evaluates the Department of Energy (DOE)'s, in cooperation with the Washington State Department of Ecology (Ecology), decisions on how to properly manage and dispose of Hanford Site tank waste and encapsulated cesium and strontium to reduce existing and potential future risk to the public, Site workers, and the environment. The waste includes radioactive, hazardous, and mixed waste currently stored in 177 underground storage tanks, approximately 60 other smaller active and inactive miscellaneous underground storage tanks (MUSTs), and additional Site waste likely to be added to the tank waste, which is part of the tank farm system. In addition, DOE proposes to manage and dispose of approximately 1,930 cesium and strontium capsules that are by-products of tank waste. The tank waste and capsules are located in the 200 Areas of the Hanford Site near Richland, Washington.

206

Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)  

SciTech Connect (OSTI)

The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

Burgard, K.C.

1998-04-09T23:59:59.000Z

207

Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)  

SciTech Connect (OSTI)

The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

Burgard, K.C.

1998-06-02T23:59:59.000Z

208

Development of high-waste loaded high-level nuclear waste glasses for high-temperature melter  

SciTech Connect (OSTI)

This paper describes the approach taken in formulating glasses that can be processed at 1150 to 1500{degrees}C by applying glass property/composition models developed at Pacific Northwest Laboratory. Compositions and melting temperatures for glasses with high waste loading that are acceptable and able to be processed were determined for two different Hanford waste types. The glasses meet high-level waste glass acceptability criteria and are suitable for processing in a continuous Joule-heated melter.

Kim, D.S.; Hrma, P.; Lamar, D.A.; Elliott, M.L. [Pacific Northwest Lab., Richland, WA (United States)

1994-12-31T23:59:59.000Z

209

Development of high-waste loaded high-level nuclear waste glasses for high-temperature melter  

SciTech Connect (OSTI)

This paper describes the approach taken in formulating glasses that can be processed at 1150 to 1500{degrees}C by applying glass property/composition models developed at Pacific Northwest Laboratory. Compositions and melting temperatures for glasses with high waste loading that are acceptable and able to be processed were determined for two different Hanford waste types. The glasses meet high-level waste glass acceptability criteria and are suitable for processing in a continuous Joule-heated melter.

Kim, D.S.; Hrma, P.R.; Lamar, D.A.; Elliott, M.L.

1994-04-01T23:59:59.000Z

210

Mineral formation during simulated leaks of Hanford waste tanks  

E-Print Network [OSTI]

Mineral formation during simulated leaks of Hanford waste tanks Youjun Deng a , James B. Harsh a handling by M. Gascoyne Abstract Highly-alkaline waste solutions have leaked from underground tanks mimicking tank leak conditions at the US DOE Hanford Site. In batch experiments, Si-rich solutions

Flury, Markus

211

Technical basis for classification of low-activity waste fraction from Hanford site tanks  

SciTech Connect (OSTI)

The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level waste, for disposal is a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

Petersen, C.A.

1996-09-20T23:59:59.000Z

212

Technical basis for classification of low-activity waste fraction from Hanford site tanks  

SciTech Connect (OSTI)

The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level wastes, for disposal in a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

Petersen, C.A., Westinghouse Hanford

1996-07-17T23:59:59.000Z

213

Organic Tanks Safety Program: Waste aging studies  

SciTech Connect (OSTI)

The underground storage tanks at the Hanford Complex contain wastes generated from many years of plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct on several specific safety issues, including potential energy releases from these tanks. This report details the first year`s findings of a study charged with determining how thermal and radiological processes may change the composition of organic compounds disposed to the tank. Their approach relies on literature precedent, experiments with simulated waste, and studies of model reactions. During the past year, efforts have focused on the global reaction kinetics of a simulated waste exposed to {gamma} radiation, the reactions of organic radicals with nitrite ion, and the decomposition reactions of nitro compounds. In experiments with an organic tank non-radioactive simulant, the authors found that gas production is predominantly radiolytically induced. Concurrent with gas generation they observe the disappearance of EDTA, TBP, DBP and hexone. In the absence of radiolysis, the TBP readily saponifies in the basic medium, but decomposition of the other compounds required radiolysis. Key organic intermediates in the model are C-N bonded compounds such as oximes. As discussed in the report, oximes and nitro compounds decompose in strong base to yield aldehydes, ketones and carboxylic acids (from nitriles). Certain aldehydes can react in the absence of radiolysis to form H{sub 2}. Thus, if the pathways are correct, then organic compounds reacting via these pathways are oxidizing to lower energy content. 75 refs.

Camaioni, D.M.; Samuels, W.D.; Lenihan, B.D.; Clauss, S.A.; Wahl, K.L.; Campbell, J.A.

1994-11-01T23:59:59.000Z

214

Turning the Corner on Hanford Tank Waste Cleanup-From Safe Storage to Closure  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP) which is responsible for the disposition of 204,000 cubic meters (54 million gallons) of high-level radioactive waste that have accumulated in large underground tanks at the Hanford Site since 1944. ORP continues to make good progress on improving the capability to treat Hanford tank waste. Design of the waste vitrification facilities is proceeding well and construction will begin within the next year. Progress is also being made in reducing risk to the worker and the environment from the waste currently stored in the tank farms. Removal of liquids from single-shell tanks (SSTs) is on schedule and we will begin removing solids (salt cake) from a tank (241-U-107) in 2002. There is a sound technical foundation for the waste vitrification facilities. These initial facilities will be capable of treating (vitrifying) the bulk of Hanford tank waste and are the corners tone of the clean-up strategy. ORP recognizes that as the near-term work is performed, it is vital that there be an equally strong and defensible plan for completing the mission. ORP is proceeding on a three-pronged approach for moving the mission forward. First, ORP will continue to work aggressively to complete the waste vitrification facilities. ORP intends to provide the most capable and robust facilities to maximize the amount of waste treated by these initial facilities by 2028 (regulatory commitment for completion of waste treatment). Second, and in parallel with completing the waste vitrification facilities, ORP is beginning to consider how best to match the hazard of the waste to the disposal strategy. The final piece of our strategy is to continue to move forward with actions to reduce risk in the tank farms and complete cleanup.

Boston, H. L.; Cruz, E. J.; Coleman, S. J.

2002-02-25T23:59:59.000Z

215

Waste Acceptance for Vitrified Sludge from Oak Ridge Tank Farms  

SciTech Connect (OSTI)

The Tanks Focus Area of the DOE`s Office of Science and Technology (EM-50) has funded the Savannah River Technology Center (SRTC) to develop formulations which can incorporate sludges from Oak Ridge Tank Farms into immobilized glass waste forms. The four tank farms included in this study are: Melton Valley Storage Tanks (MVST), Bethel Valley Evaporation Service Tanks (BVEST), Gunite and Associated Tanks (GAAT), and Old Hydrofracture Tanks (OHF).The vitrified waste forms must be sent for disposal either at the Waste Isolation Pilot Plant (WIPP) or the Nevada Test Site (NTS). Waste loading in the glass is the major factor in determining where the waste will be sent and whether the waste will be remote-handled (RH) or contact-handled (CH). In addition, the waste loading significantly impacts the costs of vitrification operations and transportation to and disposal within the repository.This paper focuses on disposal options for the vitrified Oak Ridge Tank sludge waste as determined by the WIPP (1) and NTS (2) Waste Acceptance Criteria (WAC). The concentrations for both Transuranic (TRU) and beta/gamma radionuclides in the glass waste form will be presented a a function of sludge waste loading. These radionuclide concentrations determine whether the waste forms will be TRU (and therefore disposed of at WIPP) and whether the waste forms will be RH or CH.

Harbour, J.R. [Westinghouse Savannah River Company, AIKEN, SC (United States); Andrews, M.K.

1998-03-01T23:59:59.000Z

216

International program to study subseabed disposal of high-level radioactive wastes  

SciTech Connect (OSTI)

This report provides an overview of the international program to study seabed disposal of nuclear wastes. Its purpose is to inform legislators, other policy makers, and the general public as to the history of the program, technological requirements necessary for feasibility assessment, legal questions involved, international coordination of research, national policies, and research and development activities. Each of these major aspects of the program is presented in a separate section. The objective of seabed burial, similar to its continental counterparts, is to contain and to isolate the wastes. The subseabed option should not be confuesed with past practices of ocean dumping which have introduced wastes into ocean waters. Seabed disposal refers to the emplacement of solidified high-level radioactive waste (with or without reprocessing) in certain geologically stable sediments of the deep ocean floor. Specially designed surface ships would transport waste canisters from a port facility to the disposal site. Canisters would be buried from a few tens to a few hundreds of meters below the surface of ocean bottom sediments, and hence would not be in contact with the overlying ocean water. The concept is a multi-barrier approach for disposal. Barriers, including waste form, canister, ad deep ocean sediments, will separate wastes from the ocean environment. High-level wastes (HLW) would be stabilized by conversion into a leach-resistant solid form such as glass. This solid would be placed inside a metallic canister or other type of package which represents a second barrier. The deep ocean sediments, a third barrier, are discussed in the Feasibility Assessment section. The waste form and canister would provide a barrier for several hundred years, and the sediments would be relied upon as a barrier for thousands of years. 62 references, 3 figures, 2 tables.

Carlin, E.M.; Hinga, K.R.; Knauss, J.A.

1984-01-01T23:59:59.000Z

217

Tank waste remediation system (TWRS) privatization contractor samples waste envelope D material 241-C-106  

SciTech Connect (OSTI)

This report represents the Final Analytical Report on Tank Waste Remediation System (TWRS) Privatization Contractor Samples for Waste Envelope D. All work was conducted in accordance with ''Addendum 1 of the Letter of Instruction (LOI) for TWRS Privatization Contractor Samples Addressing Waste Envelope D Materials - Revision 0, Revision 1, and Revision 2.'' (Jones 1996, Wiemers 1996a, Wiemers 1996b) Tank 241-C-1 06 (C-106) was selected by TWRS Privatization for the Part 1A Envelope D high-level waste demonstration. Twenty bottles of Tank C-106 material were collected by Westinghouse Hanford Company using a grab sampling technique and transferred to the 325 building for processing by the Pacific Northwest National Laboratory (PNNL). At the 325 building, the contents of the twenty bottles were combined into a single Initial Composite Material. This composite was subsampled for the laboratory-scale screening test and characterization testing, and the remainder was transferred to the 324 building for bench-scale preparation of the Privatization Contractor samples.

Esch, R.A.

1997-04-14T23:59:59.000Z

218

Technology Evaluation for Conditioning of Hanford Tank Waste Using Solids Segregation and Size Reduction  

SciTech Connect (OSTI)

The Savannah River National Laboratory and the Pacific Northwest National Laboratory team performed a literature search on current and proposed technologies for solids segregation and size reduction of particles in the slurry feed from the Hanford Tank Farm. The team also investigated technology research performed on waste tank slurries, both real and simulated, and reviewed academic theory applicable to solids segregation and size reduction. This review included text book applications and theory, commercial applications suitable for a nuclear environment, research of commercial technologies suitable for a nuclear environment, and those technologies installed in a nuclear environment, including technologies implemented at Department of Energy facilities. Information on each technology is provided in this report along with the advantages and disadvantages of the technologies for this application. Any technology selected would require testing to verify the ability to meet the High-Level Waste Feed Waste Acceptance Criteria to the Hanford Tank Waste Treatment and Immobilization Plant Pretreatment Facility.

Restivo, Michael L.; Stone, M. E.; Herman, D. T.; Lambert, Daniel P.; Duignan, Mark R.; Smith, Gary L.; Wells, Beric E.; Lumetta, Gregg J.; Enderlin, Carl W.; Adkins, Harold E.

2014-04-24T23:59:59.000Z

219

Reference design and operations for deep borehole disposal of high-level radioactive waste.  

SciTech Connect (OSTI)

A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall, the results of the reference design development and the cost analysis support the technical feasibility of the deep borehole disposal concept for high-level radioactive waste.

Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

2011-10-01T23:59:59.000Z

220

Technical Exchange on Improved Design and Performance of High Level Waste Melters - Final Report  

SciTech Connect (OSTI)

SIA Radon is responsible for management of low- and intermediate-level radioactive waste (LILW) produced in Central Russia. In cooperation with Minatom organizations Radon carries out R and D programs on treatment of simulated high level waste (HLW) as well. Radon scientists deal with a study of materials for LILW, HLW, and Nuclear Power Plants (NPP) wastes immobilization, and development and testing of processes and technologies for waste treatment and disposal. Radon is mostly experienced in LILW vitrification. This experience can be carried over to HLW vitrification especially in field of melting systems. The melter chosen as a basic unit for the vitrification plant is a cold crucible. Later on Radon experience in LILW vitrification as well as our results on simulated HLW vitrification are briefly described.

SK Sundaram; ML Elliott; D Bickford

1999-11-19T23:59:59.000Z

Note: This page contains sample records for the topic "high-level waste tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Alternatives for high-level waste forms, containers, and container processing systems  

SciTech Connect (OSTI)

This study evaluates alternatives for high-level waste forms, containers, container processing systems, and onsite interim storage. Glass waste forms considered are cullet, marbles, gems, and monolithic glass. Small and large containers configured with several combinations of overpack confinement and shield casks are evaluated for these waste forms. Onsite interim storage concepts including canister storage building, bore holes, and storage pad were configured with various glass forms and canister alternatives. All favorable options include the monolithic glass production process as the waste form. Of the favorable options the unshielded 4- and 7-canister overpack options have the greatest technical assurance associated with their design concepts due to their process packaging and storage methods. These canisters are 0.68 m and 0.54 m in diameter respectively and 4.57 m tall. Life-cycle costs are not a discriminating factor in most cases, varying typically less than 15 percent.

Crawford, T.W.

1995-09-22T23:59:59.000Z

222

CRITICAL ASSUMPTIONS IN THE F-TANK FARM CLOSURE OPERATIONAL DOCUMENTATION REGARDING WASTE TANK INTERNAL CONFIGURATIONS  

SciTech Connect (OSTI)

The intent of this document is to provide clarification of critical assumptions regarding the internal configurations of liquid waste tanks at operational closure, with respect to F-Tank Farm (FTF) closure documentation. For the purposes of this document, FTF closure documentation includes: (1) Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the FTF PA) (SRS-REG-2007-00002), (2) Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site (DOE/SRS-WD-2012-001), (3) Tier 1 Closure Plan for the F-Area Waste Tank Systems at the Savannah River Site (SRR-CWDA-2010-00147), (4) F-Tank Farm Tanks 18 and 19 DOE Manual 435.1-1 Tier 2 Closure Plan Savannah River Site (SRR-CWDA-2011-00015), (5) Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 (SRRCWDA-2010-00003), and (6) Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the Tank 18/Tank 19 Special Analysis) (SRR-CWDA-2010-00124). Note that the first three FTF closure documents listed apply to the entire FTF, whereas the last three FTF closure documents listed are specific to Tanks 18 and 19. These two waste tanks are expected to be the first two tanks to be grouted and operationally closed under the current suite of FTF closure documents and many of the assumptions and approaches that apply to these two tanks are also applicable to the other FTF waste tanks and operational closure processes.

Hommel, S.; Fountain, D.

2012-03-28T23:59:59.000Z

223

High-level waste borosilicate glass: A compendium of corrosion characteristics. Volume 3  

SciTech Connect (OSTI)

The objective of this document is to summarize scientific information pertinent to evaluating the extent to which high-level waste borosilicate glass corrosion and the associated radionuclide release processes are understood for the range of environmental conditions to which waste glass may be exposed in service. Alteration processes occurring within the bulk of the glass (e.g., devitrification and radiation-induced changes) are discussed insofar as they affect glass corrosion. Volume III contains a bibliography of glass corrosion studies, including studies that are not cited in Volumes I and II.

Cunnane, J.C. [comp.; Bates, J.K.; Bradley, C.R. [Argonne National Lab., IL (United States)] [and others

1994-03-01T23:59:59.000Z

224

Annual report of tank waste treatability  

SciTech Connect (OSTI)

This report has been prepared as part of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) and constitutes completion of Tri-Party Agreement Milestone M-04-00 for fiscal year 1991. This report provides a summary of treatment activities for newly generated waste, existing double-shell tank waste, and existing single-shell tank waste, as well as a summary of grout disposal feasibility, glass disposal feasibility, alternate methods of disposal, and safety issues which may impact the treatment and disposal of existing defense nuclear wastes. This report is an update of the 1990 report and is intended to provide traceability for the documentation of the areas listed above by statusing the studies, activities, and issues which occurred in these areas over the period of March 1, 1990, through February 28, 1991. Therefore, ongoing studies, activities, and issues which were documented in the previous (1990) report are addressed in this subsequent (1991) report. 40 refs., 4 figs., 3 tabs.

Giese, K.A.

1991-09-01T23:59:59.000Z

225

High-level waste borosilicate glass: A compendium of corrosion characteristics. Volume 2  

SciTech Connect (OSTI)

The objective of this document is to summarize scientific information pertinent to evaluating the extent to which high-level waste borosilicate glass corrosion and the associated radionuclide release processes are understood for the range of environmental conditions to which waste glass may be exposed in service. Alteration processes occurring within the bulk of the glass (e.g., devitrification and radiation-induced changes) are discussed insofar as they affect glass corrosion.This document is organized into three volumes. Volumes I and II represent a tiered set of information intended for somewhat different audiences. Volume I is intended to provide an overview of waste glass corrosion, and Volume 11 is intended to provide additional experimental details on experimental factors that influence waste glass corrosion. Volume III contains a bibliography of glass corrosion studies, including studies that are not cited in Volumes I and II. Volume I is intended for managers, decision makers, and modelers, the combined set of Volumes I, II, and III is intended for scientists and engineers working in the field of high-level waste.

Cunnane, J.C. [comp.; Bates, J.K.; Bradley, C.R. [Argonne National Lab., IL (United States)] [and others

1994-03-01T23:59:59.000Z

226

Spray Calciner/In-Can Melter high-level waste solidification technical manual  

SciTech Connect (OSTI)

This technical manual summarizes process and equipment technology developed at Pacific Northwest Laboratory over the last 20 years for vitrification of high-level liquid waste by the Spray Calciner/In-Can Melter process. Pacific Northwest Laboratory experience includes process development and demonstration in laboratory-, pilot-, and full-scale equipment using nonradioactive synthetic wastes. Also, laboratory- and pilot-scale process demonstrations have been conducted using actual high-level radioactive wastes. In the course of process development, more than 26 tonnes of borosilicate glass have been produced in 75 canisters. Four of these canisters contained radioactive waste glass. The associated process and glass chemistry is discussed. Technology areas described include calciner feed treatment and techniques, calcination, vitrification, off-gas treatment, glass containment (the canister), and waste glass chemistry. Areas of optimization and site-specific development that would be needed to adapt this base technology for specific plant application are indicated. A conceptual Spray Calciner/In-Can Melter system design and analyses are provided in the manual to assist prospective users in evaluating the process for plant application, to provide equipment design information, and to supply information for safety analyses and environmental reports. The base (generic) technology for the Spray Calciner/In-Can Melter process has been developed to a point at which it is ready for plant application.

Larson, D.E. (ed.)

1980-09-01T23:59:59.000Z

227

Safety analysis report vitrified high level waste type B shipping cask  

SciTech Connect (OSTI)

This Safety Analysis Report describes the design, analyses, and principle features of the Vitrified High Level Waste (VHLW) Cask. In preparing this report a detailed evaluation of the design has been performed to ensure that all safety, licensing, and operational goals for the cask and its associated Department of Energy program can be met. The functions of this report are: (1) to fully document that all functional and regulatory requirements of 10CFR71 can be met by the package; and (2) to document the design and analyses of the cask for review by the Nuclear Regulatory Commission. The VHLW Cask is the reusable shipping package designed by GNSI under Department of Energy contract DE-AC04-89AL53-689 for transportation of Vitrified High Level Waste, and to meet the requirements for certification under 10CFR71 for a Type B(U) package. The VHLW cask has been designed as packaging for transport of canisters of Vitrified High Level Waste solidified at Department of Energy facilities.

NONE

1995-03-01T23:59:59.000Z

228

Application of curium measurements for safeguarding at reprocessing plants. Study 1: High-level liquid waste and Study 2: Spent fuel assemblies and leached hulls  

SciTech Connect (OSTI)

In large-scale reprocessing plants for spent fuel assemblies, the quantity of plutonium in the waste streams each year is large enough to be important for nuclear safeguards. The wastes are drums of leached hulls and cylinders of vitrified high-level liquid waste. The plutonium amounts in these wastes cannot be measured directly by a nondestructive assay (NDA) technique because the gamma rays emitted by plutonium are obscured by gamma rays from fission products, and the neutrons from spontaneous fissions are obscured by those from curium. The most practical NDA signal from the waste is the neutron emission from curium. A diversion of waste for its plutonium would also take a detectable amount of curium, so if the amount of curium in a waste stream is reduced, it can be inferred that there is also a reduced amount of plutonium. This report studies the feasibility of tracking the curium through a reprocessing plant with neutron measurements at key locations: spent fuel assemblies prior to shearing, the accountability tank after dissolution, drums of leached hulls after dissolution, and canisters of vitrified high-level waste after separation. Existing pertinent measurement techniques are reviewed, improvements are suggested, and new measurements are proposed. The authors integrate these curium measurements into a safeguards system.

Rinard, P.M.; Menlove, H.O.

1996-03-01T23:59:59.000Z

229

Waste acceptance and waste loading for vitrified Oak Ridge tank waste  

SciTech Connect (OSTI)

The Office of Science and Technology of the DOE has funded a joint project between the Oak Ridge National Laboratory (ORNL) and the Savannah River Technology Center (SRTC) to evaluate vitrification and grouting for the immobilization of sludge from ORNL tank farms. The radioactive waste is from the Gunite and Associated Tanks (GAAT), the Melton Valley Storage Tanks (MVST), the Bethel Valley Evaporator Service Tanks (BVEST), and the Old Hydrofractgure Tanks (OHF). Glass formulation development for sludge from these tanks is discussed in an accompanying article for this conference (Andrews and Workman). The sludges contain transuranic radionuclides at levels which will make the glass waste form (at reasonable waste loadings) TRU. Therefore, one of the objectives for this project was to ensure that the vitrified waste form could be disposed of at the Waste Isolation Pilot Plant (WIPP). In order to accomplish this, the waste form must meet the WIPP Waste Acceptance Criteria (WAC). An alternate pathway is to send the glass waste forms for disposal at the Nevada Test Site (NTS). A sludge waste loading in the feed of 6 wt percent will lead to a waste form which is non-TRU and could potentially be disposed of at NTS. The waste forms would then have to meet the requirements of the NTS WAC. This paper presents SRTC`s efforts at demonstrating that the glass waste form produced as a result of vitrification of ORNL sludge will meet all the criteria of the WIPP WAC or NTS WAC.

Harbour, J.R.; Andrews, M.K.

1997-06-06T23:59:59.000Z

230

Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford tank initiative: Applications to the AX Tank Farm  

SciTech Connect (OSTI)

A combined engineering and geochemistry approach is recommended for the stabilization of waste in decommissioned tanks and contaminated soils at the AX Tank Farm, Hanford, WA. A two-part strategy of desiccation and gettering is proposed for treatment of the in-tank residual wastes. Dry portland cement and/or fly ash are suggested as an effective and low-cost desiccant for wicking excess moisture from the upper waste layer. Getters work by either ion exchange or phase precipitation to reduce radionuclide concentrations in solution. The authors recommend the use of specific natural and man-made compounds, appropriately proportioned to the unique inventory of each tank. A filler design consisting of multilayered cementitous grout with interlayered sealant horizons should serve to maintain tank integrity and minimize fluid transport to the residual waste form. External tank soil contamination is best mitigated by placement of grouted skirts under and around each tank, together with installation of a cone-shaped permeable reactive barrier beneath the entire tank farm. Actinide release rates are calculated from four tank closure scenarios ranging from no action to a comprehensive stabilization treatment plan (desiccant/getters/grouting/RCRA cap). Although preliminary, these calculations indicate significant reductions in the potential for actinide transport as compared to the no-treatment option.

Balsley, S.D.; Krumhansl, J.L.; Borns, D.J. [Sandia National Labs., Albuquerque, NM (United States); McKeen, R.G. [Alliance for Transportation Research, Albuquerque, NM (United States)

1998-07-01T23:59:59.000Z

231

Tank Closure and Waste Management Environmental Impact Statement...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site and lists the plants and animals evaluated in this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington. Potential...

232

Tank Closure and Waste Management Environmental Impact Statement...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cumulative impacts presented in Chapter 6 of this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington. The cumulative...

233

Tank Closure and Waste Management Environmental Impact Statement...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

orders of magnitude within the same series of figures. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington 5-396 Figure...

234

Tank Closure and Waste Management Environmental Impact Statement...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

describes the public comment process for the Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (Draft TC & WM...

235

Tank Closure and Waste Management Environmental Impact Statement...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

provides information on the basis for the chemical and radionuclide composition in the tanks, as well as equipment, soils, and waste forms. These data, along with information...

236

Independent Oversight Activity Report, Hanford Waste Tank Farms...  

Office of Environmental Management (EM)

Previously Identified Items Regarding Positive Ventilation of Hanford Underground Waste Tanks HIAR-HANFORD-2013-10-28 This Independent Oversight Activity Report documents an...

237

Summary Of Cold Crucible Vitrification Tests Results With Savannah River Site High Level Waste Surrogates  

SciTech Connect (OSTI)

The cold crucible inductive melting (CCIM) technology successfully applied for vitrification of low- and intermediate-level waste (LILW) at SIA Radon, Russia, was tested to be implemented for vitrification of high-level waste (HLW) stored at Savannah River Site, USA. Mixtures of Sludge Batch 2 (SB2) and 4 (SB4) waste surrogates and borosilicate frits as slurries were vitrified in bench- (236 mm inner diameter) and full-scale (418 mm inner diameter) cold crucibles. Various process conditions were tested and major process variables were determined. Melts were poured into 10L canisters and cooled to room temperature in air or in heat-insulated boxes by a regime similar to Canister Centerline Cooling (CCC) used at DWPF. The products with waste loading from ~40 to ~65 wt.% were investigated in details. The products contained 40 to 55 wt.% waste oxides were predominantly amorphous; at higher waste loadings (WL) spinel structure phases and nepheline were present. Normalized release values for Li, B, Na, and Si determined by PCT procedure remain lower than those from EA glass at waste loadings of up to 60 wt.%.

Stefanovsky, Sergey; Marra, James; Lebedev, Vladimir

2014-01-13T23:59:59.000Z

238

Processing constraints on high-level nuclear waste glasses for Hanford Waste Vitrification Plant  

SciTech Connect (OSTI)

The work presented in this paper is a part of a major technology program supported by the US Department of Energy (DOE) in preparation for the planned operation of the Hanford Waste Vitrification Plant (HWVP). Because composition of Hanford waste varies greatly, processability is a major concern for successful vitrification. This paper briefly surveys general aspects of waste glass processability and then discusses their ramifications for specific examples of Hanford waste streams.

Hrma, P. [Pacific Northwest Lab., Richland, WA (United States)

1993-12-31T23:59:59.000Z

239

Idaho High-Level Waste & Facilities Disposition, Final Environmental Impact Statement  

SciTech Connect (OSTI)

This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. After considering comments on the Draft EIS (DOE/EIS-0287D), as well as information on available treatment technologies, DOE and the State of Idaho have identified separate preferred alternatives for waste treatment. DOE's preferred alternative for waste treatment is performance based with the focus on placing the wastes in forms suitable for disposal. Technologies available to meet the performance objectives may be chosen from the action alternatives analyzed in this EIS. The State of Idaho's Preferred Alternative for treating mixed transuranic waste/SBW and calcine is vitrification, with or without calcine separations. Under both the DOE and State of Idaho preferred alternatives, newly generated liquid waste would be segregated after 2005, stored or treated directly and disposed of as low-level, mixed low-level, or transuranic waste depending on its characteristics. The objective of each preferred alternative is to enable compliance with the legal requirement to have INEEL HLW road ready by a target date of 2035. Both DOE and the State of Idaho have identified the same preferred alternative for facilities disposition, which is to use performance-based closure methods for existing facilities and to design new facilities consistent with clean closure methods.

N /A

2002-10-11T23:59:59.000Z

240

Examination of Uranium(VI) Leaching During Ligand Promoted Dissolution of Waste Tank Sludge Surrogates  

E-Print Network [OSTI]

in Hanford waste tank sludge simulants. J. Nucl. Sci.from simulated tank waste sludges. Sep. Sci. Tech. 38(2),Dissolution of Waste Tank Sludge Surrogates. In preparation,

Powell, Brian A.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-level waste tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Examination of Uranium(VI) Leaching During Ligand Promoted Dissolution of Waste Tank Sludge Surrogates  

E-Print Network [OSTI]

speciation in Hanford waste tank sludge simulants. J. Nucl.and Sr(II) from simulated tank waste sludges. Sep. Sci.Promoted Dissolution of Waste Tank Sludge Surrogates. In

Powell, Brian A.

2008-01-01T23:59:59.000Z

242

An ultrasonic instrument for measuring density and viscosity of tank waste  

SciTech Connect (OSTI)

An estimated 381,000 m{sup 3}/1.1 x 10{sup 9} Ci of radioactive waste are stored in high-level waste tanks at the Hanford Savannah River, Idaho Nuclear Engineering and Environmental Laboratory, and West Valley facilities. This nuclear waste has created one of the most complex waste management and cleanup problems that face the United States. Release of radioactive materials into the environment from underground waste tanks requires immediate cleanup and waste retrieval. Hydraulic mobilization with mixer pumps will be used to retrieve waste slurries and salt cakes from storage tanks. To ensure that transport lines in the hydraulic system will not become plugged, the physical properties of the slurries must be monitored. Characterization of a slurry flow requires reliable measurement of slurry density, mass flow, viscosity, and volume percent of solids. Such measurements are preferably made with on-line nonintrusive sensors that can provide continuous real-time monitoring. With the support of the U.S. Department of Energy (DOE) Office of Environmental Management (EM-50), Argonne National Laboratory (ANL) is developing an ultrasonic instrument for in-line monitoring of physical properties of radioactive tank waste.

Sheen, S.H.; Chien, H.T.; Raptis, A.C.

1997-10-01T23:59:59.000Z

243

ENHANCED DOE HIGH LEVEL WASTE MELTER THROUGHPUT STUDIES: SRNL GLASS SELECTION STRATEGY  

SciTech Connect (OSTI)

The Department of Energy has authorized a team of glass formulation and processing experts at the Savannah River National Laboratory (SRNL), the Pacific Northwest National Laboratory (PNNL), and the Vitreous State Laboratory (VSL) at Catholic University of America to develop a systematic approach to increase high level waste melter throughput (by increasing waste loading with minimal or positive impacts on melt rate). This task is aimed at proof-of-principle testing and the development of tools to improve waste loading and melt rate, which will lead to higher waste throughput. Four specific tasks have been proposed to meet these objectives (for details, see WSRC-STI-2007-00483): (1) Integration and Oversight, (2) Crystal Accumulation Modeling (led by PNNL)/Higher Waste Loading Glasses (led by SRNL), (3) Melt Rate Evaluation and Modeling, and (4) Melter Scale Demonstrations. Task 2, Crystal Accumulation Modeling/Higher Waste Loading Glasses is the focus of this report. The objective of this study is to provide supplemental data to support the possible use of alternative melter technologies and/or implementation of alternative process control models or strategies to target higher waste loadings (WLs) for the Defense Waste Processing Facility (DWPF)--ultimately leading to higher waste throughputs and a reduced mission life. The glass selection strategy discussed in this report was developed to gain insight into specific technical issues that could limit or compromise the ability of glass formulation efforts to target higher WLs for future sludge batches at the Savannah River Site (SRS). These technical issues include Al-dissolution, higher TiO{sub 2} limits and homogeneity issues for coupled-operations, Al{sub 2}O{sub 3} solubility, and nepheline formation. To address these technical issues, a test matrix of 28 glass compositions has been developed based on 5 different sludge projections for future processing. The glasses will be fabricated and characterized based on the protocols outlined in the SRNL Task and Quality Assurance (QA) plan.

Raszewski, F; Tommy Edwards, T; David Peeler, D

2008-01-23T23:59:59.000Z

244

Double Shell Tank (DST) Process Waste Sampling Subsystem Specification  

SciTech Connect (OSTI)

This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied to the Double-Shell Tank (DST) Process Waste Sampling Subsystem which supports the first phase of Waste Feed Delivery.

RASMUSSEN, J.H.

2000-05-03T23:59:59.000Z

245

HIGH LEVEL WASTE (HLW) VITRIFICATION EXPERIENCE IN THE US: APPLICATION OF GLASS PRODUCT/PROCESS CONTROL TO OTHERHLW AND HAZARDOUS WASTES  

SciTech Connect (OSTI)

Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. At the Savannah River Site (SRS) actual HLW tank waste has successfully been processed to stringent product and process constraints without any rework into a stable borosilicate glass waste since 1996. A unique 'feed forward' statistical process control (SPC) has been used rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. In SQC, the glass product is sampled after it is vitrified. Individual glass property models form the basis for the 'feed forward' SPC. The property models transform constraints on the melt and glass properties into constraints on the feed composition. The property models are mechanistic and depend on glass bonding/structure, thermodynamics, quasicrystalline melt species, and/or electron transfers. The mechanistic models have been validated over composition regions well outside of the regions for which they were developed because they are mechanistic. Mechanistic models allow accurate extension to radioactive and hazardous waste melts well outside the composition boundaries for which they were developed.

Jantzen, C; James Marra, J

2007-09-17T23:59:59.000Z

246

Regulatory Framework for Salt Waste Disposal and Tank Closure at the Savannah River Site - 13663  

SciTech Connect (OSTI)

The end of the Cold War has left a legacy of approximately 37 million gallons of radioactive waste in the aging waste tanks at the Department of Energy's Savannah River Site (SRS). A robust program is in place to remove waste from these tanks, treat the waste to separate into a relatively small volume of high-level waste and a large volume of low-level waste, and to actively dispose of the low-level waste on-site and close the waste tanks and associated ancillary structures. To support performance-based, risk-informed decision making and to ensure compliance with all regulatory requirements, the U.S. Department of Energy (DOE) and its current and past contractors have worked closely with the South Carolina Department of Health and Environmental Control (SCDHEC), the U.S. Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) to develop and implement a framework for on-site low-level waste disposal and closure of the SRS waste tanks. The Atomic Energy Act of 1954, as amended, provides DOE the authority to manage defense-related radioactive waste. DOE Order 435.1 and its associated manual and guidance documents detail this radioactive waste management process. The DOE also has a requirement to consult with the NRC in determining that waste that formerly was classified as high-level waste can be safely managed as either low-level waste or transuranic waste. Once DOE makes a determination, NRC then has a responsibility to monitor DOE's actions in coordination with SCDHEC to ensure compliance with the Title 10 Code of Federal Regulations Part 61 (10CFR61), Subpart C performance objectives. The management of hazardous waste substances or components at SRS is regulated by SCDHEC and the EPA. The foundation for the interactions between DOE, SCDHEC and EPA is the SRS Federal Facility Agreement (FFA). Managing this array of requirements and successfully interacting with regulators, consultants and stakeholders is a challenging task but ensures thorough and thoughtful processes for disposing of the SRS low-level waste and the closure of the tank farm facilities. (authors)

Thomas, Steve; Dickert, Ginger [Savannah River Remediation LLC, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River Remediation LLC, Savannah River Site, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

247

Iraq liquid radioactive waste tanks maintenance and monitoring program plan.  

SciTech Connect (OSTI)

The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tank inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.

Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad (Iraq Ministry of Science and Technology)

2011-10-01T23:59:59.000Z

248

WASTE CONDITIONING FOR TANK HEEL TRANSFER  

SciTech Connect (OSTI)

This report summarizes the research carried out at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) for the fiscal year 1998 (FY98) under the Tank Focus Area (TFA) project ''Waste Conditioning for Tank Slurry Transfer.'' The objective of this project is to determine the effect of chemical and physical properties on the waste conditioning process and transfer. The focus of this research consisted in building a waste conditioning experimental facility to test different slurry simulants under different conditions, and analyzing their chemical and physical properties. This investigation would provide experimental data and analysis results that can make the tank waste conditioning process more efficient, improve the transfer system, and influence future modifications to the waste conditioning and transfer system. A waste conditioning experimental facility was built in order to test slurry simulants. The facility consists of a slurry vessel with several accessories for parameter control and sampling. The vessel also has a lid system with a shaft-mounted propeller connected to an air motor. In addition, a circulation system is connected to the slurry vessel for simulant cooling and heating. Experimental data collection and analysis of the chemical and physical properties of the tank slurry simulants has been emphasized. For this, one waste slurry simulant (Fernald) was developed, and another two simulants (SRS and Hanford) obtained from DOE sites were used. These simulants, composed of water, soluble metal salts, and insoluble solid particles, were used to represent the actual radioactive waste slurries from different DOE sites. The simulants' chemical and physical properties analyzed include density, viscosity, pH, settling rate, and volubility. These analyses were done to samples obtained from different experiments performed at room temperature but different mixing time and strength. The experimental results indicate that the viscosity of the slurries follow the Bingham plastic model, especially when the solids concentration is increased. At low concentrations slurries may behave as Newtonian fluids. The three simulants follow a similar settling rate behavior. This behavior can be explained as a combination of one or more decreasing exponential curves. This means that the particle settling rate of the simulants decreases exponentially as time increases. The pH range for the three simulants was from 8 to 13 at all concentrations. The SRS simulant showed the highest pH, around 12; the other two simulants, Hanford and Fernald, had about the same pH range, from 3 to 9. When comparing volubility of the three simulants at the same concentration, SRS simulant showed higher volubility, followed by the Hanford simulant and the Fernald simulant, in that order. Further work is scheduled for next year (FY99) in this project, when other parameters like simulants particle size distribution, particle shape, and crystallization behavior will be studied. The same tests performed this period also will be performed at different temperatures for data comparison.

M.A. Ebadian, Ph.D.

1999-01-01T23:59:59.000Z

249

Engineering report of plasma vitrification of Hanford tank wastes  

SciTech Connect (OSTI)

This document provides an analysis of vendor-derived testing and technology applicability to full scale glass production from Hanford tank wastes using plasma vitrification. The subject vendor testing and concept was applied in support of the Hanford LLW Vitrification Program, Tank Waste Remediation System.

Hendrickson, D.W.

1995-05-12T23:59:59.000Z

250

E-Print Network 3.0 - aqueous tank waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: by tank truck. The various wastes, when received, are pumped to storage tanks, then blended to produce... of Liquid Fluid Wastes General Description Light...

251

GEOCHEMICAL TESTING AND MODEL DEVELOPMENT - RESIDUAL TANK WASTE TEST PLAN  

SciTech Connect (OSTI)

This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

CANTRELL KJ; CONNELLY MP

2010-03-09T23:59:59.000Z

252

E-Print Network 3.0 - actual hanford high-level Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

three major facilities are planned: a pretreatment facility, a high-level... -shell tanks) that contain millions of liters of high-level liquid waste. The 400 Area is...

253

Low level tank waste disposal study  

SciTech Connect (OSTI)

Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

Mullally, J.A.

1994-09-29T23:59:59.000Z

254

Preliminary Waste Form Compliance Plan for the Idaho National Engineering and Environmental Laboratory High-Level Waste  

SciTech Connect (OSTI)

The Department of Energy (DOE) has specific technical and documentation requirements for high-level waste (HLW) that is to be placed in a federal repository. This document describes in general terms the strategy to be used at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that vitrified HLW, if produced at the INEEL, meets these requirements. Waste form, canister, quality assurance, and documentation specifications are discussed. Compliance strategy is given, followed by an overview of how this strategy would be implemented for each specification.

B. A. Staples; T. P. O'Holleran

1999-05-01T23:59:59.000Z

255

Potential Application Of Radionuclide Scaling Factors To High Level Waste Characterization  

SciTech Connect (OSTI)

Production sources, radiological properties, relative solubilities in waste, and laboratory analysis techniques for the forty-five radionuclides identified in Hanford?s Waste Treatment and Immobilization Plant (WTP) Feed Acceptance Data Quality Objectives (DQO) document are addressed in this report. Based on Savannah River Site (SRS) experience and waste characteristics, thirteen of the radionuclides are judged to be candidates for potential scaling in High Level Waste (HLW) based on the concentrations of other radionuclides as determined through laboratory measurements. The thirteen radionuclides conducive to potential scaling are: Ni-59, Zr-93, Nb-93m, Cd-113m, Sn-121m, Sn-126, Cs-135, Sm-151, Ra-226, Ra-228, Ac-227, Pa-231, and Th-229. The ability to scale radionuclides is useful from two primary perspectives: 1) it provides a means of checking the radionuclide concentrations that have been determined by laboratory analysis; and 2) it provides a means of estimating radionuclide concentrations in the absence of a laboratory analysis technique or when a complex laboratory analysis technique fails. Along with the rationale for identifying and applying the potential scaling factors, this report also provides examples of using the scaling factors to estimate concentrations of radionuclides in current SRS waste and into the future. Also included in the report are examples of independent laboratory analysis techniques that can be used to check results of key radionuclide analyses. Effective utilization of radionuclide scaling factors requires understanding of the applicable production sources and the chemistry of the waste. As such, the potential scaling approaches identified in this report should be assessed from the perspective of the Hanford waste before reaching a decision regarding WTP applicability.

Reboul, S. H.

2013-09-30T23:59:59.000Z

256

Conceptual modular description of the high-level waste management system for system studies model development  

SciTech Connect (OSTI)

This document presents modular descriptions of possible alternative components of the federal high-level radioactive waste management system and the procedures for combining these modules to obtain descriptions for alternative configurations of that system. The 20 separate system component modules presented here can be combined to obtain a description of any of the 17 alternative system configurations (i.e., scenarios) that were evaluated in the MRS Systems Studies program (DOE 1989a). First-approximation descriptions of other yet-undefined system configurations could also be developed for system study purposes from this database. The descriptions include, in a modular format, both functional descriptions of the processes in the waste management system, plus physical descriptions of the equipment and facilities necessary for performance of those functions.

McKee, R.W.; Young, J.R.; Konzek, G.J.

1992-08-01T23:59:59.000Z

257

Contaminant Release from Residual Waste in Closed Single-Shell Tanks and Other Waste Forms Associated with the Tanks  

SciTech Connect (OSTI)

This chapter describes the release of contaminants from the various waste forms that are anticipated to be associated with closure of the single-shell tanks. These waste forms include residual sludge or saltcake that will remain in the tanks after waste retrieval. Other waste forms include engineered glass and cementitious materials as well as contaminated soil impacted by previous tank leaks. This chapter also describes laboratory testing to quantify contaminant release and how the release data are used in performance/risk assessments for the tank waste management units and the onsite waste disposal facilities. The chapter ends with a discussion of the surprises and lessons learned to date from the testing of waste materials and the development of contaminant release models.

Deutsch, William J.

2008-01-17T23:59:59.000Z

258

Cost estimate of high-level radioactive waste containers for the Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

This report summarizes the bottoms-up cost estimates for fabrication of high-level radioactive waste disposal containers based on the Site Characterization Plan Conceptual Design (SCP-CD). These estimates were acquired by Babcock and Wilcox (B&S) under sub-contract to Lawrence Livermore National Laboratory (LLNL) for the Yucca Mountain Site Characterization Project (YMP). The estimates were obtained for two leading container candidate materials (Alloy 825 and CDA 715), and from other three vendors who were selected from a list of twenty solicited. Three types of container designs were analyzed that represent containers for spent fuel, and for vitrified high-level waste (HLW). The container internal structures were assumed to be AISI-304 stainless steel in all cases, with an annual production rate of 750 containers. Subjective techniques were used for estimating QA/QC costs based on vendor experience and the specifications derived for the LLNL-YMP Quality Assurance program. In addition, an independent QA/QC analysis is reported which was prepared by Kasier Engineering. Based on the cost estimates developed, LLNL recommends that values of $825K and $62K be used for the 1991 TSLCC for the spent fuel and HLW containers, respectively. These numbers represent the most conservative among the three vendors, and are for the high-nickel anstenitic steel (Alloy 825). 6 refs., 7 figs.

Russell, E.W.; Clarke, W. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States); Domian, H.A. [Babcock and Wilcox Co., Lynchburg, VA (United States)] [Babcock and Wilcox Co., Lynchburg, VA (United States); Madson, A.A. [Kaiser Engineers California Corp., Oakland, CA (United States)] [Kaiser Engineers California Corp., Oakland, CA (United States)

1991-08-01T23:59:59.000Z

259

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts  

SciTech Connect (OSTI)

The overall goal of this research conducted under the auspices of the USDOE Environmental Management Science Program (EMSP) is to provide a scientific foundation upon which the feasibility of new liquid-liquid extraction chemistry applicable to the bulk reduction of the volume of tank waste can be evaluated. Disposal of high-level nuclear waste is horrendously expensive, in large part because the actual radioactive matter in the tanks has been diluted over 10,000-fold by ordinary inorganic chemicals. Quite simply, if the radioactive matter and bulk inorganic chemicals could be separated into separate streams, large cost savings would accrue, because the latter stream is much cheaper to dispose of. In principle, one could remove the radionuclides from the waste, leaving behind the bulk of the waste; or one could remove certain bulk chemicals from the waste, leaving behind the radionuclides. The preponderance of effort over the past two decades has focused on the former approach, which produces a high-level stream for vitrification and a low-activity stream for either vitrification (Hanford) or grout (Savannah River). At Hanford, a particular concern arises in that vitrification of a large volume of low-activity waste will be unacceptably expensive. To make matters worse, a projected future deficit of tank space may necessitate construction of expensive new tanks. These problems have raised questions as to whether a solution could be devised based on separation of sodium from the waste, resulting in the reduction of the total volume of waste that must be vitrified.

Moyer, Bruce A.; Lumetta, Gregg J.; Marchand, Alan P.

2002-06-01T23:59:59.000Z

260

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts  

SciTech Connect (OSTI)

The overall goal of this research conducted under the auspices of the USDOE Environmental Management Science Program (EMSP) is to provide a scientific foundation upon which the feasibility of new liquid- liquid extraction chemistry applicable to the bulk reduction of the volume of tank waste can be evaluated. Disposal of high- level nuclear waste is horrendously expensive, in large part because the actual radioactive matter in the tanks has been diluted over 10,000-fold by ordinary inorganic chemicals.1 Quite simply, if the radioactive matter and bulk inorganic chemicals could be separated into separate streams, large cost savings would accrue, because the latter stream is much cheaper to dispose of. In principle, one could remove the radionuclides from the waste, leaving behind the bulk of the waste; or one could remove certain bulk chemicals from the waste, leaving behind a mixture of radionuclides and minor inorganic salts. The preponderance of effort over the past two decades has focused on the former approach, which produces a high- level stream for vitrification and a low-activity stream for either vitrification (Hanford) or grout (Savannah River). At Hanford, a particular concern arises in that vitrification of a large volume of low-activity waste will be unacceptably expensive. To make matters worse, a projected future deficit of tank space may necessitate construction of expensive new tanks. These problems have raised questions as to whether a solution could be devised based on separation of sodium from the waste, resulting in the reduction of the total volume of waste that must be vitrified.

Moyer, Bruce A; Lumetta, Gregg J.; Marchand, Alan P.

2003-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-level waste tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Granite disposal of U.S. high-level radioactive waste.  

SciTech Connect (OSTI)

This report evaluates the feasibility of disposing U.S. high-level radioactive waste in granite several hundred meters below the surface of the earth. The U.S. has many granite formations with positive attributes for permanent disposal. Similar crystalline formations have been extensively studied by international programs, two of which, in Sweden and Finland, are the host rocks of submitted or imminent repository license applications. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in granite media. In this report we develop scoping performance analyses, based on the applicable features, events, and processes (FEPs) identified by international investigators, to support generic conclusions regarding post-closure safety. Unlike the safety analyses for disposal in salt, shale/clay, or deep boreholes, the safety analysis for a mined granite repository depends largely on waste package preservation. In crystalline rock, waste packages are preserved by the high mechanical stability of the excavations, the diffusive barrier of the buffer, and favorable chemical conditions. The buffer is preserved by low groundwater fluxes, favorable chemical conditions, backfill, and the rigid confines of the host rock. An added advantage of a mined granite repository is that waste packages would be fairly easy to retrieve, should retrievability be an important objective. The results of the safety analyses performed in this study are consistent with the results of comprehensive safety assessments performed for sites in Sweden, Finland, and Canada. They indicate that a granite repository would satisfy established safety criteria and suggest that a small number of FEPs would largely control the release and transport of radionuclides. In the event the U.S. decides to pursue a potential repository in granite, a detailed evaluation of these FEPs would be needed to inform site selection and safety assessment.

Freeze, Geoffrey A.; Mariner, Paul E.; Lee, Joon H.; Hardin, Ernest L.; Goldstein, Barry; Hansen, Francis D.; Price, Ronald H.; Lord, Anna Snider

2011-08-01T23:59:59.000Z

262

Tank Waste and Waste Processing | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR8, 2013 FINAL MEETING SUMMARY7,Tank Waste and

263

Dangerous Waste Characteristics of Contact-Handled Transuranic Mixed Wastes from the Hanford Tanks  

SciTech Connect (OSTI)

This report summarizes existing analytical data from samples taken from the Hanford tanks designated as potentially containing transuranic mixed process wastes. Process knowledge of the wastes transferred to these tanks has been reviewed to determine whether the dangerous waste characteristics now assigned to all Hanford underground storage tanks are applicable to these particular wastes. Supplemental technologies are being examined to accelerate the Hanford tank waste cleanup mission and accomplish waste treatment safely and efficiently. To date, 11 Hanford waste tanks have been designated as potentially containing contact-handled (CH) transuranic mixed (TRUM) wastes. The CH-TRUM wastes are found in single-shell tanks B-201 through B-204, T-201 through T-204, T-104, T-110, and T-111. Methods and equipment to solidify and package the CH-TRUM wastes are part of the supplemental technologies being evaluated. The resulting packages and wastes must be acceptable for disposal at the Waste Isolation Pilot Plant (WIPP). The dangerous waste characteristics being considered include ignitability, corrosivity, reactivity, and toxicity arising from the presence of 2,4,5-trichlorophenol at levels above the dangerous waste threshold. The analytical data reviewed include concentrations of sulfur, sulfate, cyanide, 2,4,5-trichlorophenol, total organic carbon, and oxalate; the composition of the tank headspace, pH, and mercury. Differential scanning calorimetry results were used to determine the energetics of the wastes as a function of temperature.

Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

2004-08-31T23:59:59.000Z

265

Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford Tank Initiative: Applications to the AX tank farm  

SciTech Connect (OSTI)

This report investigates five technical areas for stabilization of decommissioned waste tanks and contaminated soils at the Hanford Site AX Farm. The investigations are part of a preliminary evacuation of end-state options for closure of the AX Tanks. The five technical areas investigated are: (1) emplacement of cementations grouts and/or other materials; (2) injection of chemicals into contaminated soils surrounding tanks (soil mixing); (3) emplacement of grout barriers under and around the tanks; (4) the explicit recognition that natural attenuation processes do occur; and (5) combined geochemical and hydrological modeling. Research topics are identified in support of key areas of technical uncertainty, in each of the five areas. Detailed cost-benefit analyses of the technologies are not provided. This investigation was conducted by Sandia National Laboratories, Albuquerque, New Mexico, during FY 1997 by tank Focus Area (EM-50) funding.

Becker, D.L.

1997-11-03T23:59:59.000Z

266

High Waste Loading Glass Formulations for Hanford High-Aluminum High-Level Waste Streams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILLAdministrationHigh SchoolHighHIGH WASTE

267

ACTUAL WASTE TESTING OF GYCOLATE IMPACTS ON THE SRS TANK FARM  

SciTech Connect (OSTI)

Glycolic acid is being studied as a replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste Tank Farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the Tank Farm were addressed via a literature review and simulant testing, but several outstanding issues remained. This report documents the actual-waste tests to determine the impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The objectives of this study are to address the following: ? Determine the extent to which sludge constituents (Pu, U, Fe, etc.) dissolve (the solubility of sludge constituents) in the glycolate-containing 2H-evaporator feed. ? Determine the impact of glycolate on the sorption of fissile (Pu, U, etc.) components onto sodium aluminosilicate solids. The first objective was accomplished through actual-waste testing using Tank 43H and 38H supernatant and Tank 51H sludge at Tank Farm storage conditions. The second objective was accomplished by contacting actual 2H-evaporator scale with the products from the testing for the first objective. There is no anticipated impact of up to 10 g/L of glycolate in DWPF recycle to the Tank Farm on tank waste component solubilities as investigated in this test. Most components were not influenced by glycolate during solubility tests, including major components such as aluminum, sodium, and most salt anions. There was potentially a slight increase in soluble iron with added glycolate, but the soluble iron concentration remained so low (on the order of 10 mg/L) as to not impact the iron to fissile ratio in sludge. Uranium and plutonium appear to have been supersaturated in 2H-evaporator feed solution mixture used for this testing. As a result, there was a reduction of soluble uranium and plutonium as a function of time. The change in soluble uranium concentration was independent of added glycolate concentration. The change in soluble plutonium content was dependent on the added glycolate concentration, with higher levels of glycolate (5 g/L and 10 g/L) appearing to suppress the plutonium solubility. The inclusion of glycolate did not change the dissolution of or sorption onto actual-waste 2H-evaporator pot scale to an extent that will impact Tank Farm storage and concentration. The effects that were noted involved dissolution of components from evaporator scale and precipitation of components onto evaporator scale that were independent of the level of added glycolate.

Martino, C.

2014-05-28T23:59:59.000Z

268

The effect of high-level waste glass composition on spinel liquidus temperature  

SciTech Connect (OSTI)

Spinel crystals precipitate in high-level waste glasses containing Fe, Cr, Ni , Mn, Zn, and Ru. The liquidus temperature (TL) of spinel as the primary crystallization phase is a function of glass composition and the spinel solubility (c0) is a function of both glass composition and temperature (T). Previously reported models of TL as a function of composition are based on TL measured directly, which requires laborious experimental procedures. Viewing the curve of c0 versus T as the liquidus line allows a significant broadening of the composition region for model fitting. This paper estimates TL as a function of composition based on c0 data obtained with the X-ray diffraction technique.

Hrma, Pavel R.; Riley, Brian J.; Crum, Jarrod V.; Matyas, Josef

2014-01-15T23:59:59.000Z

269

The effect of high-level waste glass composition on spinel liquidus temperature  

SciTech Connect (OSTI)

Spinel crystals precipitate in high-level waste glasses containing Fe, Cr, Ni, Mn, Zn, and Ru. The liquidus temperature (T{sub L}d) of spinel as the primary crystallization phase is a function of glass composition, and the spinel solubility (c{sub o}) is a function of both glass composition and temperature (T). Previously reported models of T{sub L} as a function of composition are based on T{sub L} measured directly, which requires laborious experimental procedures. Viewing the curve of c{sub o} versus T as the liquidus line allows a significant broadening of the composition region for model fitting. This paper estimates T{sub L} as a function of composition based on c{sub o} data obtained with the X-ray diffraction technique.

Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Riley, Brian J. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Crum, Jarrod V. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hrma, Pavel [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Matyas, Josef [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

2012-11-15T23:59:59.000Z

270

Shale disposal of U.S. high-level radioactive waste.  

SciTech Connect (OSTI)

This report evaluates the feasibility of high-level radioactive waste disposal in shale within the United States. The U.S. has many possible clay/shale/argillite basins with positive attributes for permanent disposal. Similar geologic formations have been extensively studied by international programs with largely positive results, over significant ranges of the most important material characteristics including permeability, rheology, and sorptive potential. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in shale media. We develop scoping performance analyses, based on the applicable features, events, and processes identified by international investigators, to support a generic conclusion regarding post-closure safety. Requisite assumptions for these analyses include waste characteristics, disposal concepts, and important properties of the geologic formation. We then apply lessons learned from Sandia experience on the Waste Isolation Pilot Project and the Yucca Mountain Project to develop a disposal strategy should a shale repository be considered as an alternative disposal pathway in the U.S. Disposal of high-level radioactive waste in suitable shale formations is attractive because the material is essentially impermeable and self-sealing, conditions are chemically reducing, and sorption tends to prevent radionuclide transport. Vertically and laterally extensive shale and clay formations exist in multiple locations in the contiguous 48 states. Thermal-hydrologic-mechanical calculations indicate that temperatures near emplaced waste packages can be maintained below boiling and will decay to within a few degrees of the ambient temperature within a few decades (or longer depending on the waste form). Construction effects, ventilation, and the thermal pulse will lead to clay dehydration and deformation, confined to an excavation disturbed zone within a few meters of the repository, that can be reasonably characterized. Within a few centuries after waste emplacement, overburden pressures will seal fractures, resaturate the dehydrated zones, and provide a repository setting that strongly limits radionuclide movement to diffusive transport. Coupled hydrogeochemical transport calculations indicate maximum extents of radionuclide transport on the order of tens to hundreds of meters, or less, in a million years. Under the conditions modeled, a shale repository could achieve total containment, with no releases to the environment in undisturbed scenarios. The performance analyses described here are based on the assumption that long-term standards for disposal in clay/shale would be identical in the key aspects, to those prescribed for existing repository programs such as Yucca Mountain. This generic repository evaluation for shale is the first developed in the United States. Previous repository considerations have emphasized salt formations and volcanic rock formations. Much of the experience gained from U.S. repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, is applied here to scoping analyses for a shale repository. A contemporary understanding of clay mineralogy and attendant chemical environments has allowed identification of the appropriate features, events, and processes to be incorporated into the analysis. Advanced multi-physics modeling provides key support for understanding the effects from coupled processes. The results of the assessment show that shale formations provide a technically advanced, scientifically sound disposal option for the U.S.

Sassani, David Carl; Stone, Charles Michael; Hansen, Francis D.; Hardin, Ernest L.; Dewers, Thomas A.; Martinez, Mario J.; Rechard, Robert Paul; Sobolik, Steven Ronald; Freeze, Geoffrey A.; Cygan, Randall Timothy; Gaither, Katherine N.; Holland, John Francis; Brady, Patrick Vane

2010-05-01T23:59:59.000Z

271

Supplement Analysis for the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement  

SciTech Connect (OSTI)

In October 2002, DOE issued the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (Final EIS) (DOE 2002) that provided an analysis of the potential environmental consequences of alternatives/options for the management and disposition of Sodium Bearing Waste (SBW), High-Level Waste (HL W) calcine, and HLW facilities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL), now known as the Idaho National Laboratory (INL) and referred to hereafter as the Idaho Site. Subsequent to the issuance of the Final EIS, DOE included the requirement for treatment of SBW in the Request for Proposals for Environmental Management activities on the Idaho Site. The new Idaho Cleanup Project (ICP) Contractor identified Steam Reforming as their proposed method to treat SBW; a method analyzed in the Final EIS as an option to treat SBW. The proposed Steam Reforming process for SBW is the same as in the Final EIS for retrieval, treatment process, waste form and transportation for disposal. In addition, DOE has updated the characterization data for both the HLW Calcine (BBWI 2005a) and SBW (BBWI 2004 and BBWI 2005b) and identified two areas where new calculation methods are being used to determine health and safety impacts. Because of those changes, DOE has prepared this supplement analysis to determine whether there are ''substantial changes in the proposed action that are relevant to environmental concerns'' or ''significant new circumstances or information'' within the meaning of the Council of Environmental Quality and DOE National Environmental Policy Act (NEPA) Regulations (40 CFR 1502.9 (c) and 10 CFR 1021.314) that would require preparation of a Supplemental EIS. Specifically, this analysis is intended to determine if: (1) the Steam Reforming Option identified in the Final EIS adequately bounds impacts from the Steam Reforming Process proposed by the new ICP Contractor using the new characterization data, (2) the new characterization data is significantly different than the data presented in the Final EIS, (3) the new calculation methods present a significant change to the impacts described in the Final EIS, and (4) would the updated characterization data cause significant changes in the environmental impacts for the action alternatives/options presented in the Final EIS. There are no other aspects of the Final EIS that require additional review because DOE has not identified any additional new significant circumstances or information that would warrant such a review.

N /A

2005-06-30T23:59:59.000Z

272

THE STRUCTURAL CHEMISTRY OF MOLYBDENUM IN MODEL HIGH LEVEL NUCLEAR WASTE GLASSES, INVESTIGATED BY MO K-EDGE X-RAY ABSORPTION  

E-Print Network [OSTI]

THE STRUCTURAL CHEMISTRY OF MOLYBDENUM IN MODEL HIGH LEVEL NUCLEAR WASTE GLASSES, INVESTIGATED of molybdenum in model UK high level nuclear waste glasses was investigated by X-ray Absorption Spectroscopy (XAS). Molybdenum K-edge XAS data were acquired from several inactive simulant high level nuclear waste

Sheffield, University of

273

Annotated bibliography for the design of waste packages for geologic disposal of spent fuel and high-level waste  

SciTech Connect (OSTI)

This bibliography identifies documents that are pertinent to the design of waste packages for geologic disposal of nuclear waste. The bibliography is divided into fourteen subject categories so that anyone wishing to review the subject of leaching, for example, can turn to the leaching section and review the abstracts of reports which are concerned primarily with leaching. Abstracts are also cross referenced according to secondary subject matter so that one can get a complete list of abstracts for any of the fourteen subject categories. All documents which by their title alone appear to deal with the design of waste packages for the geologic disposal of spent fuel or high-level waste were obtained and reviewed. Only those documents which truly appear to be of interest to a waste package designer were abstracted. The documents not abstracted are listed in a separate section. There was no beginning date for consideration of a document for review. About 1100 documents were reviewed and about 450 documents were abstracted.

Wurm, K.J.; Miller, N.E.

1982-11-01T23:59:59.000Z

274

Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography  

SciTech Connect (OSTI)

This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Melter Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling

Larson, D.E.

1996-09-01T23:59:59.000Z

275

Hanford Waste Tank Bump Accident and Consequence Analysis  

SciTech Connect (OSTI)

This report provides a new evaluation of the Hanford tank bump accident analysis and consequences for incorporation into the Authorization Basis. The analysis scope is for the safe storage of waste in its current configuration in single-shell and double-shell tanks.

BRATZEL, D.R.

2000-06-20T23:59:59.000Z

276

Maximum surface level and temperature histories for Hanford waste tanks  

SciTech Connect (OSTI)

Radioactive defense waste resulting from the chemical processing of spent nuclear fuel has been accumulating at the Hanford Site since 1944. This waste is stored in underground waste-storage tanks. The Hanford Site Tank Farm Facilities Interim Safety Basis (ISB) provides a ready reference to the safety envelope for applicable tank farm facilities and installations. During preparation of the ISB, tank structural integrity concerns were identified as a key element in defining the safety envelope. These concerns, along with several deficiencies in the technical bases associated with the structural integrity issues and the corresponding operational limits/controls specified for conduct of normal tank farm operations are documented in the ISB. Consequently, a plan was initiated to upgrade the safety envelope technical bases by conducting Accelerated Safety Analyses-Phase 1 (ASA-Phase 1) sensitivity studies and additional structural evaluations. The purpose of this report is to facilitate the ASA-Phase 1 studies and future analyses of the single-shell tanks (SSTs) and double-shell tanks (DSTs) by compiling a quantitative summary of some of the past operating conditions the tanks have experienced during their existence. This report documents the available summaries of recorded maximum surface levels and maximum waste temperatures and references other sources for more specific data.

Flanagan, B.D.; Ha, N.D.; Huisingh, J.S.

1994-09-02T23:59:59.000Z

277

Characterization of the BVEST waste tanks located at ORNL  

SciTech Connect (OSTI)

During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report discusses the analytical characterization data for the supernatant and sludge in the BVEST waste tanks W-21, W-22, and W-23. The isotopic data presented in this report supports the position that fissile isotopes of uranium and plutonium were denatured as required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). In general, the BVEST sludge was found to be hazardous based on RCRA characteristics and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. The characteristics of the BVEST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP.

Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

1997-01-01T23:59:59.000Z

278

APPLICATION OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT HANFORD  

SciTech Connect (OSTI)

A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORP/DOE), through Columbia Energy & Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper discusses results of pre-project pilot-scale testing by Columbia Energy and ongoing technology maturation development scope through fiscal year 2012, including planned additional pilot-scale and full-scale simulant testing and operation with actual radioactive tank waste.

TEDESCHI AR; WILSON RA

2010-01-14T23:59:59.000Z

279

Flammable gas tank waste level reconciliation for 241-SX-105  

SciTech Connect (OSTI)

Fluor Daniel Northwest was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 241-SX-105 (SX-105, typical). The trapped gas evaluation document states that Tank SX-105 exceeds the 25% of the lower flammable limit criterion, based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the Welty Report is the basis for this letter report. The Welty Report is also a part of the trapped gas evaluation document criteria. The Welty Report contains various tank information, including: physical information, status, levels, and dry wells. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unaccounted for surface level rise. From 1973 through 1980, the Welty Report tracked Tank SX-105 transfers and reported a net cumulative change of 20.75 in. This surface level increase is from an unknown source or is unaccounted for. Duke Engineering and Services Hanford and Lockheed Martin Hanford Corporation are interested in determining the validity of unexplained surface level changes reported in the Welty Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unaccounted for surface level changes as shown in the Welty Report from 1973 through 1980. Tank SX-105 initially received waste from REDOX starting the second quarter of 1955. After June 1975, the tank primarily received processed waste (slurry) from the 242-S Evaporator/Crystallizer and transferred supernate waste to Tanks S-102 and SX-102. The Welty Report shows a cumulative change of 20.75 in. from June 1973 through December 1980.

Brevick, C.H.; Gaddie, L.A.

1997-06-23T23:59:59.000Z

280

SUMO, System performance assessment for a high-level nuclear waste repository: Mathematical models  

SciTech Connect (OSTI)

Following completion of the preliminary risk assessment of the potential Yucca Mountain Site by Pacific Northwest Laboratory (PNL) in 1988, the Office of Civilian Radioactive Waste Management (OCRWM) of the US Department of Energy (DOE) requested the Performance Assessment Scientific Support (PASS) Program at PNL to develop an integrated system model and computer code that provides performance and risk assessment analysis capabilities for a potential high-level nuclear waste repository. The system model that has been developed addresses the cumulative radionuclide release criteria established by the US Environmental Protection Agency (EPA) and estimates population risks in terms of dose to humans. The system model embodied in the SUMO (System Unsaturated Model) code will also allow benchmarking of other models being developed for the Yucca Mountain Project. The system model has three natural divisions: (1) source term, (2) far-field transport, and (3) dose to humans. This document gives a detailed description of the mathematics of each of these three divisions. Each of the governing equations employed is based on modeling assumptions that are widely accepted within the scientific community.

Eslinger, P.W.; Miley, T.B.; Engel, D.W.; Chamberlain, P.J. II

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-level waste tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

MODELING ANALYSIS FOR GROUT HOPPER WASTE TANK  

SciTech Connect (OSTI)

The Saltstone facility at Savannah River Site (SRS) has a grout hopper tank to provide agitator stirring of the Saltstone feed materials. The tank has about 300 gallon capacity to provide a larger working volume for the grout nuclear waste slurry to be held in case of a process upset, and it is equipped with a mechanical agitator, which is intended to keep the grout in motion and agitated so that it won't start to set up. The primary objective of the work was to evaluate the flow performance for mechanical agitators to prevent vortex pull-through for an adequate stirring of the feed materials and to estimate an agitator speed which provides acceptable flow performance with a 45{sup o} pitched four-blade agitator. In addition, the power consumption required for the agitator operation was estimated. The modeling calculations were performed by taking two steps of the Computational Fluid Dynamics (CFD) modeling approach. As a first step, a simple single-stage agitator model with 45{sup o} pitched propeller blades was developed for the initial scoping analysis of the flow pattern behaviors for a range of different operating conditions. Based on the initial phase-1 results, the phase-2 model with a two-stage agitator was developed for the final performance evaluations. A series of sensitivity calculations for different designs of agitators and operating conditions have been performed to investigate the impact of key parameters on the grout hydraulic performance in a 300-gallon hopper tank. For the analysis, viscous shear was modeled by using the Bingham plastic approximation. Steady state analyses with a two-equation turbulence model were performed. All analyses were based on three-dimensional results. Recommended operational guidance was developed by using the basic concept that local shear rate profiles and flow patterns can be used as a measure of hydraulic performance and spatial stirring. Flow patterns were estimated by a Lagrangian integration technique along the flow paths from the material feed inlet.

Lee, S.

2012-01-04T23:59:59.000Z

282

EA-0915: Waste Tank Safety Program Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to resolve waste tank safety issues at the Hanford Site near the City of Richland, Washington, and to reduce the risks associated with...

283

EM-31 RETRIEVAL KNOWLEDGE CENTER MEETING REPORT: MOBILIZE AND DISLODGE TANK WASTE HEELS  

SciTech Connect (OSTI)

The Retrieval Knowledge Center sponsored a meeting in June 2009 to review challenges and gaps to retrieval of tank waste heels. The facilitated meeting was held at the Savannah River Research Campus with personnel broadly representing tank waste retrieval knowledge at Hanford, Savannah River, Idaho, and Oak Ridge. This document captures the results of this meeting. In summary, it was agreed that the challenges to retrieval of tank waste heels fell into two broad categories: (1) mechanical heel waste retrieval methodologies and equipment and (2) understanding and manipulating the heel waste (physical, radiological, and chemical characteristics) to support retrieval options and subsequent processing. Recent successes and lessons from deployments of the Sand and Salt Mantis vehicles as well as retrieval of C-Area tanks at Hanford were reviewed. Suggestions to address existing retrieval approaches that utilize a limited set of tools and techniques are included in this report. The meeting found that there had been very little effort to improve or integrate the multiple proven or new techniques and tools available into a menu of available methods for rapid insertion into baselines. It is recommended that focused developmental efforts continue in the two areas underway (low-level mixing evaluation and pumping slurries with large solid materials) and that projects to demonstrate new/improved tools be launched to outfit tank farm operators with the needed tools to complete tank heel retrievals effectively and efficiently. This document describes the results of a meeting held on June 3, 2009 at the Savannah River Site in South Carolina to identify technology gaps and potential technology solutions to retrieving high-level waste (HLW) heels from waste tanks within the complex of sites run by the U. S. Department of Energy (DOE). The meeting brought together personnel with extensive tank waste retrieval knowledge from DOE's four major waste sites - Hanford, Savannah River, Idaho, and Oak Ridge. The meeting was arranged by the Retrieval Knowledge Center (RKC), which is a technology development project sponsored by the Office of Technology Innovation & Development - formerly the Office of Engineering and Technology - within the DOE Office of Environmental Management (EM).

Fellinger, A.

2010-02-16T23:59:59.000Z

284

Design and performance of atomizing nozzles for spray calcination of high-level wastes  

SciTech Connect (OSTI)

A key aspect of high-level liquid-waste spray calcination is waste-feed atomization by using air atomizing nozzles. Atomization substantially increases the heat transfer area of the waste solution, which enhances rapid drying. Experience from the spray-calciner operations has demonstrated that nozzle flow conditions that produce 70-..mu.. median-volume-diameter or smaller spray droplets are required for small-scale spray calciners (drying capacity less than 80 L/h). For large-scale calciners (drying capacity greater than 300 L/h), nozzle flow conditions that produce 100-..mu.. median-volume-diameter or smaller spray droplets are required. Mass flow ratios of 0.2 to 0.4, depending on nozzle size, are required for proper operation of internal-mix atomizing nozzles. Both internal-mix and external-mix nozzles have been tested at PNL. Due to the lower airflow requirements and fewer large droplets produced, the internal-mix nozzle has been chosen for primary development in the spray calciner program at PNL. Several nozzle air-cap materials for internal-mix nozzles have been tested for wear resistance. Results show that nozzle air caps of stainless steel and Cer-vit (a machineable glass ceramic) are suceptible to rapid wear by abrasive slurries, whereas air caps of alumina and reaction-bonded silicon nitride show only slow wear. Longer-term testing is necessary to determine more accurately the actual frequency of nozzle replacement. Atomizing nozzle air caps of alumina are subject to fracture from thermal shock, whereas air caps of silicon nitride and Cer-vit are not. Fractured nozzles are held in place by the air-cap retaining ring and continue to atomize satisfactorily. Therefore, fractures caused by thermal shocking do not necessarily result in nozzle failure.

Miller, F.A.; Stout, L.A.

1981-05-01T23:59:59.000Z

285

Thermal-mechanical modeling of deep borehole disposal of high-level radioactive waste.  

SciTech Connect (OSTI)

Disposal of high-level radioactive waste, including spent nuclear fuel, in deep (3 to 5 km) boreholes is a potential option for safely isolating these wastes from the surface and near-surface environment. Existing drilling technology permits reliable and cost-effective construction of such deep boreholes. Conditions favorable for deep borehole disposal in crystalline basement rocks, including low permeability, high salinity, and geochemically reducing conditions, exist at depth in many locations, particularly in geologically stable continental regions. Isolation of waste depends, in part, on the effectiveness of borehole seals and potential alteration of permeability in the disturbed host rock surrounding the borehole. Coupled thermal-mechanical-hydrologic processes induced by heat from the radioactive waste may impact the disturbed zone near the borehole and borehole wall stability. Numerical simulations of the coupled thermal-mechanical response in the host rock surrounding the borehole were conducted with three software codes or combinations of software codes. Software codes used in the simulations were FEHM, JAS3D, Aria, and Adagio. Simulations were conducted for disposal of spent nuclear fuel assemblies and for the higher heat output of vitrified waste from the reprocessing of fuel. Simulations were also conducted for both isotropic and anisotropic ambient horizontal stress in the host rock. Physical, thermal, and mechanical properties representative of granite host rock at a depth of 4 km were used in the models. Simulation results indicate peak temperature increases at the borehole wall of about 30 C and 180 C for disposal of fuel assemblies and vitrified waste, respectively. Peak temperatures near the borehole occur within about 10 years and decline rapidly within a few hundred years and with distance. The host rock near the borehole is placed under additional compression. Peak mechanical stress is increased by about 15 MPa (above the assumed ambient isotropic stress of 100 MPa) at the borehole wall for the disposal of fuel assemblies and by about 90 MPa for vitrified waste. Simulated peak volumetric strain at the borehole wall is about 420 and 2600 microstrain for the disposal of fuel assemblies and vitrified waste, respectively. Stress and volumetric strain decline rapidly with distance from the borehole and with time. Simulated peak stress at and parallel to the borehole wall for the disposal of vitrified waste with anisotropic ambient horizontal stress is about 440 MPa, which likely exceeds the compressive strength of granite if unconfined by fluid pressure within the borehole. The relatively small simulated displacements and volumetric strain near the borehole suggest that software codes using a nondeforming grid provide an adequate approximation of mechanical deformation in the coupled thermal-mechanical model. Additional modeling is planned to incorporate the effects of hydrologic processes coupled to thermal transport and mechanical deformation in the host rock near the heated borehole.

Arnold, Bill Walter; Hadgu, Teklu

2010-12-01T23:59:59.000Z

286

Chemical species of plutonium in Hanford radioactive tank waste  

SciTech Connect (OSTI)

Large quantities of radioactive wastes have been generated at the Hanford Site over its operating life. The wastes with the highest activities are stored underground in 177 large (mostly one million gallon volume) concrete tanks with steel liners. The wastes contain processing chemicals, cladding chemicals, fission products, and actinides that were neutralized to a basic pH before addition to the tanks to prevent corrosion of the steel liners. Because the mission of the Hanford Site was to provide plutonium for defense purposes, the amount of plutonium lost to the wastes was relatively small. The best estimate of the amount of plutonium lost to all the waste tanks is about 500 kg. Given uncertainties in the measurements, some estimates are as high as 1,000 kg (Roetman et al. 1994). The wastes generally consist of (1) a sludge layer generated by precipitation of dissolved metals from aqueous wastes solutions during neutralization with sodium hydroxide, (2) a salt cake layer formed by crystallization of salts after evaporation of the supernate solution, and (3) an aqueous supernate solution that exists as a separate layer or as liquid contained in cavities between sludge or salt cake particles. The identity of chemical species of plutonium in these wastes will allow a better understanding of the behavior of the plutonium during storage in tanks, retrieval of the wastes, and processing of the wastes. Plutonium chemistry in the wastes is important to criticality and environmental concerns, and in processing the wastes for final disposal. Plutonium has been found to exist mainly in the sludge layers of the tanks along with other precipitated metal hydrous oxides. This is expected due to its low solubility in basic aqueous solutions. Tank supernate solutions do not contain high concentrations of plutonium even though some tanks contain high concentrations of complexing agents. The solutions also contain significant concentrations of hydroxide which competes with other potential complexants. The sodium nitrate and sodium phosphate salts that form most of the salt cake layers have little interaction with plutonium in the wastes and contain relatively small plutonium concentrations. For these reasons the authors consider plutonium species in the sludges and supernate solutions only. The low concentrations of plutonium in waste tank supernate solutions and in the solid sludges prevent identification of chemical species of plutonium by ordinary analytical techniques. Spectrophotometric measurements are not sensitive enough to identify plutons oxidation states or complexes in these waste solutions. Identification of solid phases containing plutonium in sludge solids by x-ray diffraction or by microscopic techniques would be extremely difficult. Because of these technical problems, plutonium speciation was extrapolated from known behavior observed in laboratory studies of synthetic waste or of more chemically simple systems.

Barney, G.S.

1997-10-22T23:59:59.000Z

287

Hanford tank residual waste – contaminant source terms and release models  

SciTech Connect (OSTI)

Residual waste is expected to be left in 177 underground storage tanks after closure at the U.S. Department of Energy’s Hanford Site in Washington State (USA). In the long term, the residual wastes represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt%, respectively. Aluminum concentrations are high (8.2 to 29.1 wt%) in some tanks (C-103, C-106, and S-112) and relatively low (<1.5 wt%) in other tanks (C-202 and C-203). Gibbsite is a common mineral in tanks with high Al concentrations, while non-crystalline U-Na-C-O-P±H phases are common in the U-rich residual wastes from tanks C-202 and C-203. Iron oxides/hydroxides have been identified in all residual waste samples studied to date. Contaminant release from the residual wastes was studied by conducting batch leach tests using distilled deionized water, a Ca(OH)2-saturated solution, or a CaCO3-saturated water. Uranium release concentrations are highly dependent on waste and leachant compositions with dissolved U concentrations one or two orders of magnitude higher in the tests with high U residual wastes, and also higher when leached with the CaCO3-saturated solution than with the Ca(OH)2-saturated solution. Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH)2-saturated solution than by the CaCO3-saturated solution. In general, Tc is much less leachable (<10 wt% of the available mass in the waste) than previously predicted. This may be due to the coprecipitation of trace concentrations of Tc in relatively insoluble phases such as Fe oxide/hydroxide solids.

Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.; Lindberg, Michael J.; Serne, R. Jeffrey

2011-08-23T23:59:59.000Z

288

Survey of waste package designs for disposal of high-level waste/spent fuel in selected foreign countries  

SciTech Connect (OSTI)

This report presents the results of a survey of the waste package strategies for seven western countries with active nuclear power programs that are pursuing disposal of spent nuclear fuel or high-level wastes in deep geologic rock formations. Information, current as of January 1989, is given on the leading waste package concepts for Belgium, Canada, France, Federal Republic of Germany, Sweden, Switzerland, and the United Kingdom. All but two of the countries surveyed (France and the UK) have developed design concepts for their repositories, but none of the countries has developed its final waste repository or package concept. Waste package concepts are under study in all the countries surveyed, except the UK. Most of the countries have not yet developed a reference concept and are considering several concepts. Most of the information presented in this report is for the current reference or leading concepts. All canisters for the wastes are cylindrical, and are made of metal (stainless steel, mild steel, titanium, or copper). The canister concepts have relatively thin walls, except those for spent fuel in Sweden and Germany. Diagrams are presented for the reference or leading concepts for canisters for the countries surveyed. The expected lifetimes of the conceptual canisters in their respective disposal environment are typically 500 to 1,000 years, with Sweden's copper canister expected to last as long as one million years. Overpack containers that would contain the canisters are being considered in some of the countries. All of the countries surveyed, except one (Germany) are currently planning to utilize a buffer material (typically bentonite) surrounding the disposal package in the repository. Most of the countries surveyed plan to limit the maximum temperature in the buffer material to about 100{degree}C. 52 refs., 9 figs.

Schneider, K.J.; Lakey, L.T.; Silviera, D.J.

1989-09-01T23:59:59.000Z

289

WIPP TRANSURANIC WASTE How has the WIPP TRU Waste Inventory Changed  

E-Print Network [OSTI]

of tank waste from the Hanford site that is currently managed as high-level waste. None of this waste has that these Hanford tank wastes will be treated and will eventually be able to meet the WIPP waste acceptance criteria on the Hanford Tank Waste and K-Basin Sludges that were included in the waste inventory for recertifica- tion

290

Clean option: An alternative strategy for Hanford Tank Waste Remediation. Volume 2, Detailed description of first example flowsheet  

SciTech Connect (OSTI)

Disposal of high-level tank wastes at the Hanford Site is currently envisioned to divide the waste between two principal waste forms: glass for the high-level waste (HLW) and grout for the low-level waste (LLW). The draft flow diagram shown in Figure 1.1 was developed as part of the current planning process for the Tank Waste Remediation System (TWRS), which is evaluating options for tank cleanup. The TWRS has been established by the US Department of Energy (DOE) to safely manage the Hanford tank wastes. It includes tank safety and waste disposal issues, as well as the waste pretreatment and waste minimization issues that are involved in the ``clean option`` discussed in this report. This report describes the results of a study led by Pacific Northwest Laboratory to determine if a more aggressive separations scheme could be devised which could mitigate concerns over the quantity of the HLW and the toxicity of the LLW produced by the reference system. This aggressive scheme, which would meet NRC Class A restrictions (10 CFR 61), would fit within the overall concept depicted in Figure 1.1; it would perform additional and/or modified operations in the areas identified as interim storage, pretreatment, and LLW concentration. Additional benefits of this scheme might result from using HLW and LLW disposal forms other than glass and grout, but such departures from the reference case are not included at this time. The evaluation of this aggressive separations scheme addressed institutional issues such as: radioactivity remaining in the Hanford Site LLW grout, volume of HLW glass that must be shipped offsite, and disposition of appropriate waste constituents to nonwaste forms.

Swanson, J.L.

1993-09-01T23:59:59.000Z

291

Technology of high-level nuclear waste disposal. Advances in the science and engineering of the management of high-level nuclear wastes. Volume 1  

SciTech Connect (OSTI)

The papers in this volume cover the following subjects: waste isolation and the natural geohydrologic system; repository perturbations of the natural system; radionuclide migration through the natural system; and repository design technology. Individual papers are abstracted.

Hofmann, P.L.; Breslin, J.J. (eds.)

1981-01-01T23:59:59.000Z

292

Characterization of the MVST waste tanks located at ORNL  

SciTech Connect (OSTI)

During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns of the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report only discusses the analytical characterization data for the MVST waste tanks. The isotopic data presented in this report support the position that fissile isotopes of uranium and plutonium were ``denatured`` as required by administrative controls. In general, MVST sludge was found to be both hazardous by RCRA characteristics and the transuranic alpha activity was well about the limit for TRU waste. The characteristics of the MVST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat, were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste requirements for disposal of the waste in WIPP.

Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

1996-12-01T23:59:59.000Z

293

Engineering development of a lightweight high-pressure scarifier for tank waste retrieval  

SciTech Connect (OSTI)

The Retrieval Process Development and Enhancements Program (RPD&E) is sponsored by the U.S. Department of Energy Tanks Focus Area to investigate existing and emerging retrieval processes suitable for the retrieval of high-level radioactive waste inside underground storage tanks. This program, represented by industry, national laboratories, and academia, seeks to provide a technical and cost basis to support site-remediation decisions. Part of this program has involved the development of a high-pressure waterjet dislodging system and pneumatic conveyance integrated as a scarifier. Industry has used high-pressure waterjet technology for many years to mine, cut, clean, and scarify materials with a broad range of properties. The scarifier was developed as an alternate means of retrieving waste inside Hanford single-shell tanks, particularly hard, stubborn waste. Testing of the scarifier has verified its ability to retrieve a wide range of tank waste ranging from extremely hard waste that is resistant to other dislodging means to soft sludge and even supernatant fluid. Since the scarifier expends water at a low rate and recovers most of the water as it is used, the scarifier is well suited for retrieval of tanks that leak and cannot be safely sluiced or applications where significant waste dilution is not acceptable. Although the original scarifier was effective, it became evident that a lighter, more compact version that would be compatible with light weight deployment systems under development, such as the Light Duty Utility Arm, was needed. At the end of FY 95, the Light Weight Scarifier (LWS) was designed to incorporate the features of the original scarifier in a smaller, lighter end effector. During FY 96, the detailed design of the LWS was completed and two prototypes were fabricated.

Hatchell, B.K.

1997-09-01T23:59:59.000Z

294

Low-temperature lithium diffusion in simulated high-level boroaluminosilicate nuclear waste glasses  

SciTech Connect (OSTI)

Ion exchange is recognized as an integral, if underrepresented, mechanism influencing glass corrosion. However, due to the formation of various alteration layers in the presence of water, it is difficult to conclusively deconvolute the mechanisms of ion exchange from other processes occurring simultaneously during corrosion. In this work, an operationally inert non-aqueous solution was used as an alkali source material to isolate ion exchange and study the solid-state diffusion of lithium. Specifically, the experiments involved contacting glass coupons relevant to the immobilization of high-level nuclear waste, SON68 and CJ-6, which contained Li in natural isotope abundance, with a non-aqueous solution of 6LiCl dissolved in dimethyl sulfoxide at 90 °C for various time periods. The depth profiles of major elements in the glass coupons were measured using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Lithium interdiffusion coefficients, DLi, were then calculated based on the measured depth profiles. The results indicate that the penetration of 6Li is rapid in both glasses with the simplified CJ-6 glass (D6Li ? 4.0-8.0 × 10-21 m2/s) exhibiting faster exchange than the more complex SON68 glass (DLi ? 2.0-4.0 × 10-21 m2/s). Additionally, sodium ions present in the glass were observed to participate in ion exchange reactions; however, different diffusion coefficients were necessary to fit the diffusion profiles of the two alkali ions. Implications of the diffusion coefficients obtained in the absence of alteration layers to the long-term performance of nuclear waste glasses in a geological repository system are also discussed.

Neeway, James J.; Kerisit, Sebastien N.; Gin, Stephane; Wang, Zhaoying; Zhu, Zihua; Ryan, Joseph V.

2014-12-01T23:59:59.000Z

295

E-Print Network 3.0 - acidic tank waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

> >> 1 Attachment A PPOP 08.10 Summary: but not limited to: < East and West Condensate Tanks < DFT < Waste Pit < Surge Tank < Softeners < Polishers < RO... < Refrigerant Storage...

296

Sedimentation behavior of noble metal particles in simulated high-level waste borosilicate glasses  

SciTech Connect (OSTI)

Solubility of noble metal elements (NME) in the melted borosilicate glass is much smaller than its normal concentration of the high level liquid waste. Thus most of NME show small particles in the melted glass and tend to sediment in the bottom region of the vitrification melter due to their higher density than that of glass. Experiments of the sedimentation of NME particles in the melted glass were carried out under static condition. Three conditions of initial NME concentration (1.1, 3.0, 6.1 wt % with an equivalent for each oxide) in the simulated glass were set and held at 1100 C. degrees up to 2880 hours. The specimen with 1.1 wt % initial NME concentration indicated zone settling, and the settling rate of the interface is constant: 2.4 mm/h. This sedimentation behavior is the type of rapid settling. Following the rapid settling, the settling rate goes gradually slower; this is the type of compressive settling. The specimens with 3.0 wt % and 6.1 wt % initial NME concentration showed compression settling from the beginning. From the settling curve of the interface, the maximum concentration of NME in sediment was estimated to be around 23- 26 wt %. Growth of NME particles was observed by holding at 1100 C. degrees for up to 2880 hours. The viscosity becomes higher as NME concentration increases and the dependence on shear rate becomes simultaneously stronger. The effect of the particle growth to viscosity appears to be not significant.

Nakajima, M.; Ohyama, K.; Morikawa, Y.; Miyauchi, A.; Yamashita, T. [Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1109 (Japan); Komamine, S.; Ochi, E. [Japan Nuclear Fuel Limited, Bussan-Bldg. Bekkan, 1-1-5 Nishi-Shinbashi Minato-ku, Tokyo 105-0003 (Japan)

2013-07-01T23:59:59.000Z

297

US Department of Energy Storage of Spent Fuel and High Level Waste  

SciTech Connect (OSTI)

ABSTRACT This paper provides an overview of the Department of Energy's (DOE) spent nuclear fuel (SNF) and high level waste (HLW) storage management. Like commercial reactor fuel, DOE's SNF and HLW were destined for the Yucca Mountain repository. In March 2010, the DOE filed a motion with the Nuclear Regulatory Commission (NRC) to withdraw the license application for the repository at Yucca Mountain. A new repository is now decades away. The default for the commercial and DOE research reactor fuel and HLW is on-site storage for the foreseeable future. Though the motion to withdraw the license application and delay opening of a repository signals extended storage, DOE's immediate plans for management of its SNF and HLW remain the same as before Yucca Mountain was designated as the repository, though it has expanded its research and development efforts to ensure safe extended storage. This paper outlines some of the proposed research that DOE is conducting and will use to enhance its storage systems and facilities.

Sandra M Birk

2010-10-01T23:59:59.000Z

298

Oxidative Alkaline leaching of Americium from simulated high-level nuclear waste sludges  

SciTech Connect (OSTI)

Oxidative alkaline leaching has been proposed to pre-treat the high-level nuclear waste sludges to remove some of the problematic (e.g., Cr) and/or non-radioactive (e.g., Na, Al) constituents before vitrification. It is critical to understand the behavior of actinides, americium and plutonium in particular, in oxidative alkaline leaching. We have studied the leaching behavior of americium from four different sludge simulants (BiPO{sub 4}, BiPO{sub 4 modified}, Redox, PUREX) using potassium permanganate and potassium persulfate in alkaline solutions. Up to 60% of americium sorbed onto the simulants is leached from the sludges by alkaline persulfate and permanganate. The percentage of americium leached increases with [NaOH] (between 1.0 and 5.0 M). The initial rate of americium leaching by potassium persulfate increases in the order BiPO{sub 4} sludge < Redox sludge < PUREX sludge. The data are most consistent with oxidation of Am{sup 3+} in the sludge to either AmO{sub 2}{sup +} or AmO{sub 2}{sup 2+} in solution. Though neither of these species is expected to exhibit long-term stability in solution, the potential for mobilization of americium from sludge samples would have to be accommodated in the design of any oxidative leaching process for real sludge samples.

Reed, Wendy A.; Garnov, Alexander Yu.; Rao, Linfeng; Nash, Kenneth L.; Bond, Andrew H.

2004-01-23T23:59:59.000Z

299

Alternate approaches to verifying the structural adequacy of the Defense High Level Waste Shipping Cask  

SciTech Connect (OSTI)

In the early 1980s, the US Department of Energy/Defense Programs (DOE/DP) initiated a project to develop a safe and efficient transportation system for defense high level waste (DHLW). A long-standing objective of the DHLW transportation project is to develop a truck cask that represents the leading edge of cask technology as well as one that fully complies with all applicable DOE, Nuclear Regulatory Commission (NRC), and Department of Transportation (DOT) regulations. General Atomics (GA) designed the DHLW Truck Shipping Cask using state-of-the-art analytical techniques verified by model testing performed by Sandia National Laboratories (SNL). The analytical techniques include two approaches, inelastic analysis and elastic analysis. This topical report presents the results of the two analytical approaches and the model testing results. The purpose of this work is to show that there are two viable analytical alternatives to verify the structural adequacy of a Type B package and to obtain an NRC license. It addition, this data will help to support the future acceptance by the NRC of inelastic analysis as a tool in packaging design and licensing.

Zimmer, A.; Koploy, M.

1991-12-01T23:59:59.000Z

300

Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass Ceramics  

SciTech Connect (OSTI)

A technology maturation plan (TMP) was developed for immobilization of high-level waste (HLW) raffinate in a glass ceramics waste form using a cold-crucible induction melter (CCIM). The TMP was prepared by the following process: 1) define the reference process and boundaries of the technology being matured, 2) evaluate the technology elements and identify the critical technology elements (CTE), 3) identify the technology readiness level (TRL) of each of the CTE’s using the DOE G 413.3-4, 4) describe the development and demonstration activities required to advance the TRLs to 4 and 6 in order, and 5) prepare a preliminary plan to conduct the development and demonstration. Results of the technology readiness assessment identified five CTE’s and found relatively low TRL’s for each of them: • Mixing, sampling, and analysis of waste slurry and melter feed: TRL-1 • Feeding, melting, and pouring: TRL-1 • Glass ceramic formulation: TRL-1 • Canister cooling and crystallization: TRL-1 • Canister decontamination: TRL-4 Although the TRL’s are low for most of these CTE’s (TRL-1), the effort required to advance them to higher values. The activities required to advance the TRL’s are listed below: • Complete this TMP • Perform a preliminary engineering study • Characterize, estimate, and simulate waste to be treated • Laboratory scale glass ceramic testing • Melter and off-gas testing with simulants • Test the mixing, sampling, and analyses • Canister testing • Decontamination system testing • Issue a requirements document • Issue a risk management document • Complete preliminary design • Integrated pilot testing • Issue a waste compliance plan A preliminary schedule and budget were developed to complete these activities as summarized in the following table (assuming 2012 dollars). TRL Budget Year MSA FMP GCF CCC CD Overall $M 2012 1 1 1 1 4 1 0.3 2013 2 2 1 1 4 1 1.3 2014 2 3 1 1 4 1 1.8 2015 2 3 2 2 4 2 2.6 2016 2 3 2 2 4 2 4.9 2017 2 3 3 2 4 2 9.8 2018 3 3 3 3 4 3 7.9 2019 3 3 3 3 4 3 5.1 2020 3 3 3 3 4 3 14.6 2021 3 3 3 3 4 3 7.3 2022 3 3 3 3 4 3 8.8 2023 4 4 4 4 4 4 9.1 2024 5 5 5 5 5 5 6.9 2025 6 6 6 6 6 6 6.9 CCC = canister cooling and crystallization; FMP = feeding, melting, and pouring; GCF = glass ceramic formulation; MSA = mixing, sampling, and analyses. This TMP is intended to guide the development of the glass ceramics waste form and process to the point where it is ready for industrialization.

Vienna, John D.; Crum, Jarrod V.; Sevigny, Gary J.; Smith, G L.

2012-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "high-level waste tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories  

SciTech Connect (OSTI)

The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available.

Not Available

1983-06-01T23:59:59.000Z

302

Role of Congress in the High Level Radioactive Waste Odyssey: The Wisdom and Will of the Congress - 13096  

SciTech Connect (OSTI)

Congress has had a dual role with regard to high level radioactive waste, being involved in both its creation and its disposal. A significant amount of time has passed between the creation of the nation's first high level radioactive waste and the present day. The pace of addressing its remediation has been highly irregular. Congress has had to consider the technical, regulatory, and political issues and all have had specific difficulties. It is a true odyssey framed by an imperative and accountability, by a sense of urgency, by an ability or inability to finish the job and by consequences. Congress had set a politically acceptable course by 1982. However, President Obama intervened in the process after he took office in January 2009. Through the efforts of his Administration, by the end of 2012, the US government has no program to dispose of high level radioactive waste and no reasonable prospect of a repository for high level radioactive waste. It is not obvious how the US government program will be reestablished or who will assume responsibility for leadership. The ultimate criteria for judging the consequences are 1) the outcome of the ongoing NRC's Nuclear Waste Confidence Rulemaking and 2) the concomitant permissibility of nuclear energy supplying electricity from operating reactors in the US. (authors)

Vieth, Donald L. [DOE/NVOO Project Manager for Yucca Mountain, 1982 thru 1987, 1154 Cheltenham Place, Maineville, OH 45039 (United States)] [DOE/NVOO Project Manager for Yucca Mountain, 1982 thru 1987, 1154 Cheltenham Place, Maineville, OH 45039 (United States); Voegele, Michael D. [Nye County Nuclear Waste Repository Project Office, 7404 Oak Grove Ave, Las Vegas, NV 89117 (United States)] [Nye County Nuclear Waste Repository Project Office, 7404 Oak Grove Ave, Las Vegas, NV 89117 (United States)

2013-07-01T23:59:59.000Z

303

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts  

SciTech Connect (OSTI)

The purpose of this research involving collaboration between Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) is to explore new approaches to the separation of sodium hydroxide, sodium nitrate, and other sodium salts from high-level alkaline tank waste. The principal potential benefit is a major reduction in disposed waste volume, obviating the building of expensive new waste tanks and reducing the costs of vitrification. Principles of ion recognition are being researched toward discovery of liquid-liquid extraction systems that selectively separate sodium hydroxide and sodium nitrate from other waste components. The successful concept of pseudo hydroxide extraction using fluorinated alcohols and phenols is being developed at ORNL and PNNL toward a greater understanding of the controlling equilibria, role of solvation, and of synergistic effects involving crown ethers. Synthesis efforts are being directed toward enhanced sodium binding by crown ethers, both neutral and proton-ionizable. Studies with real tank waste at PNNL will provide feedback toward solvent compositions that have promising properties.

Moyer, Bruce A.; Bonnesen, Peter V.; Custelcean, Radu; Delmau, Laetitia H.; Engle, Nancy L.; Kang, Hyun-Ah; Keever, Tamara J.; Marchand, Alan P.; Gadthula, Srinivas; Gore, Vinayak K.; Huang, Zilin; Sivappa, Rasapalli; Tirunahari, Pavan K.; Levitskaia, Tatiana G.; Lumetta, Gregg J.

2005-09-26T23:59:59.000Z

304

Hanford tank waste operation simulator operational waste volume projection verification and validation procedure  

SciTech Connect (OSTI)

The Hanford Tank Waste Operation Simulator is tested to determine if it can replace the FORTRAN-based Operational Waste Volume Projection computer simulation that has traditionally served to project double-shell tank utilization. Three Test Cases are used to compare the results of the two simulators; one incorporates the cleanup schedule of the Tri Party Agreement.

HARMSEN, R.W.

1999-10-28T23:59:59.000Z

305

Potential role of ABC-assisted repositories in U.S. plutonium and high-level waste disposition  

SciTech Connect (OSTI)

This paper characterizes the issues involving deep geologic disposal of LWR spent fuel rods, then presents results of an investigation to quantify the potential role of Accelerator-Based Conversion (ABC) in an integrated national nuclear materials and high level waste disposition strategy. The investigation used the deep geological repository envisioned for Yucca Mt., Nevada as a baseline and considered complementary roles for integrated ABC transmutation systems. The results indicate that although a U.S. geologic waste repository will continue to be required, waste partitioning and accelerator transmutation of plutonium, the minor actinides, and selected long-lived fission products can result in the following substantial benefits: plutonium burndown to near zero levels, a dramatic reduction of the long term hazard associated with geologic repositories, an ability to place several-fold more high level nuclear waste in a single repository, electricity sales to compensate for capital and operating costs.

Berwald, David; Favale, Anthony; Myers, Timothy; McDaniel, Jerry [Grumman Aerospace Corporation, Bethpage New York 11714 (United States); Bechtel Corporation, 50 Beal St., San Francisco, California 94105 (United States)

1995-09-15T23:59:59.000Z

306

Radioactive waste from transmutation of technetium: a model for anticipating characteristics of high level waste from transmutation  

SciTech Connect (OSTI)

At this early stage in the conceptualization of fuel treatment and radioisotope transmutation for the disposition of nuclear wastes, it is possible to anticipate some characteristics of the waste stream resulting from the deployment of advanced technologies. Fission products and actinides cannot be completely destroyed by transmutation even with continuous purification and recycle. This is demonstrated for technetium in this analysis, but is true for all radioisotopes. Also, some of the reaction products are themselves long-lived radioactive isotopes. The purification and recycle steps produce nuclear wastes that must be planned for geologic disposal. Five radioisotopes have been identified to be produced in abundance by transmutation of technetium using fast neutrons. Four of these isotopes may be more benign than the original technetium-99 because of their longer half lives. However, one isotope, molybdenum-93 with a half life of four thousand years, may be troublesome. All of the isotopes arising from the transmutation process that end up in high level waste must be examined in terms of their behavior in geologic disposal. In selecting goals for chemical separations, the technologists must consider the entire cycle of separation and transmutation before applying the performance expected in a single separation to implications concerning a repository. A separation efficiency of 0.95 can translate into the disposal of as much as 30 to 60 percent of the technetium in the repository if down stream losses are not controlled. In this case, the treatment may have little impact on anticipated off site radiation from technetium. The destruction of technetium through continuous recycle requires the cost of increased neutron dose and increased space in reactors that must be considered in design of fuel treatment systems. (authors)

Seitz, M.G. [Booz Allen Hamilton, Washington DC (United States)

2007-07-01T23:59:59.000Z

307

Technology of high-level nuclear waste disposal. Advances in the science and engineering of the management of high-level nuclear wastes. Volume 2  

SciTech Connect (OSTI)

The twenty papers in this volume are divided into three parts: site exploration and characterization; repository development and design; and waste package development and design. These papers represent the status of technology that existed in 1981 and 1982. Individual papers were processed for inclusion in the Energy Data Base.

Hofmann, P.L. (ed.)

1982-01-01T23:59:59.000Z

308

Hanford Tank Farms Waste Certification Flow Loop Test Plan  

SciTech Connect (OSTI)

A future requirement of Hanford Tank Farm operations will involve transfer of wastes from double shell tanks to the Waste Treatment Plant. As the U.S. Department of Energy contractor for Tank Farm Operations, Washington River Protection Solutions anticipates the need to certify that waste transfers comply with contractual requirements. This test plan describes the approach for evaluating several instruments that have potential to detect the onset of flow stratification and critical suspension velocity. The testing will be conducted in an existing pipe loop in Pacific Northwest National Laboratory’s facility that is being modified to accommodate the testing of instruments over a range of simulated waste properties and flow conditions. The testing phases, test matrix and types of simulants needed and the range of testing conditions required to evaluate the instruments are described

Bamberger, Judith A.; Meyer, Perry A.; Scott, Paul A.; Adkins, Harold E.; Wells, Beric E.; Blanchard, Jeremy; Denslow, Kayte M.; Greenwood, Margaret S.; Morgen, Gerald P.; Burns, Carolyn A.; Bontha, Jagannadha R.

2010-01-01T23:59:59.000Z

309

A systematic look at Tank Waste Remediation System privatization  

SciTech Connect (OSTI)

The mission of the Tank Waste Remediation System (TWRS) Program is to store, treat, immobilize, and dispose, or prepare for disposal, the Hanford radioactive tank waste in an environmentally sound, safe, and cost effective manner. Highly radioactive Hanford waste includes current and future tank waste plus the cesium and strontium capsules. In the TWRS program, as in other Department of Energy (DOE) clean-up activities, there is an increasing gap between the estimated funding required to enable DOE to meet all of its clean-up commitments and level of funding that is perceived to be available. Privatization is one contracting/management approach being explored by DOE as a means to achieve cost reductions and as a means to achieve a more outcome-oriented program. Privatization introduces the element of competition, a proven means of establishing true cost as well as achieving significant cost reduction.

Holbrook, J.H.; Duffy, M.A.; Vieth, D.L.; Sohn, C.L.

1996-01-01T23:59:59.000Z

310

Organic tanks safety program FY96 waste aging studies  

SciTech Connect (OSTI)

Uranium and plutonium production at the Hanford Site produced large quantities of radioactive by-products and contaminated process chemicals, which are stored in underground tanks awaiting treatment and disposal. Having been made strongly alkaline and then subjected to successive water evaporation campaigns to increase storage capacity, the wastes now exist in the physical forms of salt cakes, metal oxide sludges, and partially saturated aqueous brine solutions. The tanks that contain organic process chemicals mixed with nitrate/nitrite salt wastes may be at risk for fuel- nitrate combustion accidents. The purpose of the Waste Aging Task is to elucidate how chemical and radiological processes will have aged or degraded the organic compounds stored in the tanks. Ultimately, the task seeks to develop quantitative measures of how aging changes the energetic properties of the wastes. This information will directly support efforts to evaluate the hazard as well as to develop potential control and mitigation strategies.

Camaioni, D.M.; Samuels, W.D.; Linehan, J.C.; Clauss, S.A.; Sharma, A.K.; Wahl, K.L.; Campbell, J.A.

1996-10-01T23:59:59.000Z

311

Value-based performance measures for Hanford Tank Waste Remedition System (TWRS) Program  

SciTech Connect (OSTI)

The Tank Waste Remediation Systems (TWRS) Program is responsible for the safe storage, retrieval, treatment, and preparation for disposal of high-level waste currently stored in underground storage tanks at the Hanford site in Richland. The TWRS program has adopted a logical approach to decision making that is based on systems engineering and decision analysis (Westinghouse Hanford Company, 1995). This approach involves the explicit consideration of stakeholder values and an evaluation of the TWRS alternatives in terms of these values. Such evaluations need to be consistent across decisions. Thus, an effort was undertaken to develop a consistent, quantifiable set of measures that can be used by TVVRS to assess alternatives against the stakeholder values. The measures developed also met two additional requirements: 1) the number of measure should be relatively small; and 2) performance with respect to the measures should be relatively easy to estimate.

Keeney, R.L.; von Winterfeldt, D.

1996-01-01T23:59:59.000Z

312

Double Shell Tank (DST) Process Waste Sampling Subsystem Definition Report  

SciTech Connect (OSTI)

This report defines the Double-Shell Tank (DST) Process Waste Sampling Subsystem (PWSS). This subsystem definition report fully describes and identifies the system boundaries of the PWSS. This definition provides a basis for developing functional, performance, and test requirements (i.e., subsystem specification), as necessary, for the PWSS. The resultant PWSS specification will include the sampling requirements to support the transfer of waste from the DSTs to the Privatization Contractor during Phase 1 of Waste Feed Delivery.

RASMUSSEN, J.H.

2000-04-25T23:59:59.000Z

313

Tank waste source term inventory validation. Volume 1. Letter report  

SciTech Connect (OSTI)

The sample data for selection of 11 radionuclides and 24 chemical analytes were extracted from six separate sample data sets, were arranged in a tabular format and were plotted on scatter plots for all of the 149 single-shell tanks, the 24 double-shell tanks and the four aging waste tanks. The solid and liquid sample data was placed in separate tables and plots. The sample data and plots were compiled from the following data sets: characterization raw sample data, recent core samples, D. Braun data base, Wastren (Van Vleet) data base, TRAC and HTCE inventories. This document is Volume I of the Letter Report entitled Tank Waste Source Term Inventory Validation.

Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

1995-04-28T23:59:59.000Z

314

Behavior of Uranium(VI) during HEDPA Leaching for Aluminum Dissolution in Tank Waste Sludges  

E-Print Network [OSTI]

Aluminum Dissolution in Tank Waste Sludges Brian A. PowellThe underground storage tanks at the Hanford site containtime, the material in the tanks has stratified to produce a

Powell, Brian A.; Rao, Linfeng; Nash, Kenneth L.; Martin, Leigh

2006-01-01T23:59:59.000Z

315

Flammable gas tank waste level reconciliation for 241-S-111  

SciTech Connect (OSTI)

Fluor Daniel Northwest (FDNW) was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 241-S-111. The trapped gas evaluation document states that Tank S-111 exceeds the 25% of the lower flammable-limit criterion, based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the Welty Report is the basis for this letter report. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unaccounted for surface level rise. From 1973 through 1980, the Welty Report tracked Tank S-111 transfers. This surface level increase is from an unknown source or is unaccounted for. Duke Engineering and Services Hanford and Lockheed Martin Hanford Corporation are interested in determining the validity of the unexplained surface level changes reported in the Welty Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unaccounted for surface level changes as shown in the Welty Report from 1973 through 1980. Tank S-111 initially received waste from REDOX in 1952, and after April 1974, primarily received processed waste slurry from the 242-S Evaporator/Crystallizer and transferred supernatant waste to Tank S-102. From the FDNW review and comparisons of the Welty Report versus other daily records for Tank S-111, FDNW determined that the majority of the time, the Welty Report is consistent with daily records. Surface level decreases that occurred following saltwell pumping were identified as unaccounted for decreases in the Welty Report, however they were probably a continued settlement caused by saltwell pumping of the interstitial liquids. Because the flammable/trapped gas issue is linked to the unexplained increase in the surface level, FDNW recommends that all occurrence reports, concerning tank waste level increases or decreases from 1970 through 1980, be reevaluated for acceptability of the evaluation as to the root cause of the occurrence.

Brevick, C.H.; Gaddis, L.A.

1997-06-23T23:59:59.000Z

316

INTERNATIONAL STUDY OF ALUMINUM IMPACTS ON CRYSTALLIZATION IN U.S. HIGH LEVEL WASTE GLASS  

SciTech Connect (OSTI)

The objective of this task was to develop glass formulations for (Department of Energy) DOE waste streams with high aluminum concentrations to avoid nepheline formation while maintaining or meeting waste loading and/or waste throughput expectations as well as satisfying critical process and product performance related constraints. Liquidus temperatures and crystallization behavior were carefully characterized to support model development for higher waste loading glasses. The experimental work, characterization, and data interpretation necessary to meet these objectives were performed among three partnering laboratories: the V.G. Khlopin Radium Institute (KRI), Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL). Projected glass compositional regions that bound anticipated Defense Waste Processing Facility (DWPF) and Hanford high level waste (HLW) glass regions of interest were developed and used to generate glass compositions of interest for meeting the objectives of this study. A thorough statistical analysis was employed to allow for a wide range of waste glass compositions to be examined while minimizing the number of glasses that had to be fabricated and characterized in the laboratory. The glass compositions were divided into two sets, with 45 in the test matrix investigated by the U.S. laboratories and 30 in the test matrix investigated by KRI. Fabrication and characterization of the US and KRI-series glasses were generally handled separately. This report focuses mainly on the US-series glasses. Glasses were fabricated and characterized by SRNL and PNNL. Crystalline phases were identified by X-ray diffraction (XRD) in the quenched and canister centerline cooled (CCC) glasses and were generally iron oxides and spinels, which are not expected to impact durability of the glass. Nepheline was detected in five of the glasses after the CCC heat treatment. Chemical composition measurements for each of the glasses were conducted following an analytical plan. A review of the individual oxides for each glass revealed that there were no errors in batching significant enough to impact the outcome of the study. A comparison of the measured compositions of the replicates indicated an acceptable degree of repeatability as the percent differences for most of the oxides were less than 5% and percent differences for all of the oxides were less than 10 wt%. Chemical durability was measured using the Product Consistency Test (PCT). All but two of the study glasses had normalized leachate for boron (NL [B]) values that were well below that of the Environmental Assessment (EA) reference glass. The two highest NL [B] values were for the CCC versions of glasses US-18 and US-27 (10.498 g/L and 15.962 g/L, respectively). Nepheline crystallization was identified by qualitative XRD in five of the US-series glasses. Each of these five glasses (US-18, US-26, US-27, US-37 and US-43) showed a significant increase in NL [B] values after the CCC heat treatment. This reduction in durability can be attributed to the formation of nepheline during the slow cooling cycle and the removal of glass formers from the residual glass network. The liquidus temperature (T{sub L}) of each glass in the study was determined by both optical microscopy and XRD methods. The correlation coefficient of the measured XRD TL data versus the measured optical TL data was very good (R{sup 2} = 0.9469). Aside from a few outliers, the two datasets aligned very well across the entire temperature range (829 C to 1312 C for optical data and 813 C to 1310 C for XRD crystal fraction data). The data also correlated well with the predictions of a PNNL T{sub L} model. The correlation between the measured and calculated data had a higher degree of merit for the XRD crystal fraction data than for the optical data (higher R{sup 2} value of 0.9089 versus 0.8970 for the optical data). The SEM-EDS analysis of select samples revealed the presence of undissolved RuO{sub 2} in all glasses due to the low solubility of RuO{sub 2} in borosilicate glass. These

Fox, K; David Peeler, D; Tommy Edwards, T; David Best, D; Irene Reamer, I; Phyllis Workman, P; James Marra, J

2008-09-23T23:59:59.000Z

317

Waste Tank Organic Safety Project: Analysis of liquid samples from Hanford waste tank 241-C-103  

SciTech Connect (OSTI)

A suite of physical and chemical analyses has been performed in support of activities directed toward the resolution of an Unreviewed Safety Question concerning the potential for a floating organic layer in Hanford waste tank 241-C-103 to sustain a pool fire. The analysis program was the result of a Data Quality Objectives exercise conducted jointly with staff from Westinghouse Hanford Company and Pacific Northwest Laboratory (PNL). The organic layer has been analyzed for flash point, organic composition including volatile organics, inorganic anions and cations, radionuclides, and other physical and chemical parameters needed for a safety assessment leading to the resolution of the Unreviewed Safety Question. The aqueous layer underlying the floating organic material was also analyzed for inorganic, organic, and radionuclide composition, as well as other physical and chemical properties. This work was conducted to PNL Quality Assurance impact level III standards (Good Laboratory Practices).

Pool, K.H.; Bean, R.M.

1994-03-01T23:59:59.000Z

318

HANFORD SITE RIVER PROTECTION PROJECT (RPP) TRANSURANIC (TRU) TANK WASTE IDENTIFICATION & PLANNING FOR REVRIEVAL TREATMENT & EVENTUAL DISPOSAL AT WIPP  

SciTech Connect (OSTI)

The CH2M HILL Manford Group, Inc. (CHG) conducts business to achieve the goals of the Office of River Protection (ORP) at Hanford. As an employee owned company, CHG employees have a strong motivation to develop innovative solutions to enhance project and company performance while ensuring protection of human health and the environment. CHG is responsible to manage and perform work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of legacy mixed radioactive waste currently at the Hanford Site tank farms. Safety and environmental awareness is integrated into all activities and work is accomplished in a manner that achieves high levels of quality while protecting the environment and the safety and health of workers and the public. This paper focuses on the innovative strategy to identify, retrieve, treat, and dispose of Hanford Transuranic (TRU) tank waste at the Waste Isolation Pilot Plant (WIPP).

KRISTOFZSKI, J.G.; TEDESCHI, R.; JOHNSON, M.E.; JENNINGS, M

2006-01-18T23:59:59.000Z

319

Hazard evaluation for transfer of waste from tank 241-SY-101 to tank 241-SY-102  

SciTech Connect (OSTI)

Tank 241-SY-101 waste level growth is an emergent, high priority issue. The purpose of this document is to record the hazards evaluation process and document potential hazardous conditions that could lead to the release of radiological and toxicological material from the proposed transfer of a limited quantity (approximately 100,000 gallons) of waste from Tank 241-SY-101 to Tank 241-SY-102. The results of the hazards evaluation were compared to the current Tank Waste Remediation System (TWRS) Basis for Interim Operation (HNF-SD-WM-BIO-001, 1998, Revision 1) to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. Comparison to LA-UR-92-3196, A Safety Assessment for Proposed Pump Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-SY-101, was also made in the case of transfer pump removal activities. Revision 1 of this document deletes hazardous conditions no longer applicable to the current waste transfer design and incorporates hazardous conditions related to the use of an above ground pump pit and overground transfer line. This document is not part of the AB and is not a vehicle for requesting authorization of the activity; it is only intended to provide information about the hazardous conditions associated with this activity. The AB Control Decision process will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis.

SHULTZ, M.V.

1999-04-05T23:59:59.000Z

320

Use of depleted uranium metal as cask shielding in high-level waste storage, transport, and disposal systems  

SciTech Connect (OSTI)

The US DOE has amassed over 555,000 metric tons of depleted uranium from its uranium enrichment operations. Rather than dispose of this depleted uranium as waste, this study explores a beneficial use of depleted uranium as metal shielding in casks designed to contain canisters of vitrified high-level waste. Two high-level waste storage, transport, and disposal shielded cask systems are analyzed. The first system employs a shielded storage and disposal cask having a separate reusable transportation overpack. The second system employs a shielded combined storage, transport, and disposal cask. Conceptual cask designs that hold 1, 3, 4 and 7 high-level waste canisters are described for both systems. In all cases, cask design feasibility was established and analyses indicate that these casks meet applicable thermal, structural, shielding, and contact-handled requirements. Depleted uranium metal casting, fabrication, environmental, and radiation compatibility considerations are discussed and found to pose no serious implementation problems. About one-fourth of the depleted uranium inventory would be used to produce the casks required to store and dispose of the nearly 15,400 high-level waste canisters that would be produced. This study estimates the total-system cost for the preferred 7-canister storage and disposal configuration having a separate transportation overpack would be $6.3 billion. When credits are taken for depleted uranium disposal cost, a cost that would be avoided if depleted uranium were used as cask shielding material rather than disposed of as waste, total system net costs are between $3.8 billion and $5.5 billion.

Yoshimura, H.R.; Ludwigsen, J.S.; McAllaster, M.E. [and others

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-level waste tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Chemistry of application of calcination/dissolution to the Hanford tank waste inventory  

SciTech Connect (OSTI)

Approximately 330,000 metric tons of sodium-rich radioactive waste originating from separation of plutonium from irradiated uranium fuel are stored in underground tanks at the Hanford Site in Washington State. Fractionation of the waste into low-level waste (LLW) and high-level waste (HLW) streams is envisioned via partial water dissolution and limited radionuclide extraction operations. Under optimum conditions, LLW would contain most of the chemical bulk while HLW would contain virtually all of the transuranic and fission product activity. Calcination at around 850 C, followed by water dissolution, has been proposed as an alternative initial treatment of Hanford Site waste to improve waste dissolution and the envisioned LLW/HLW split. Results of literature and laboratory studies are reported on the application of calcination/dissolution (C/D) to the fractionation of the Hanford Site tank waste inventory. Both simulated and genuine Hanford Site waste materials were used in the lab tests. To evaluation confirmed that C/D processing reduced the amount of several components from the waste. The C/D dissolutions of aluminum and chromium allow redistribution of these waste components from the HLW to the LLW fraction. Comparisons of simple water-washing with C/D processing of genuine Hanford Site waste are also reported based on material (radionuclide and chemical) distributions to solution and solid residue phases. The lab results show that C/D processing yielded superior dissolution of aluminum and chromium sludges compared to simple water dissolution. 57 refs., 26 figs., 18 tabs.

Delegard, C.H.; Elcan, T.D.; Hey, B.E.

1994-05-01T23:59:59.000Z

322

Hanford Tanks 241-C-202 and 241-C-203 Residual Waste Contaminant Release Models and Supporting Data  

SciTech Connect (OSTI)

As directed by Congress, the U. S. Department of Energy (DOE) established the Office of River Protection in 1998 to manage DOE's largest, most complex environmental cleanup project – retrieval of radioactive waste from Hanford tanks for treatment and eventual disposal. Sixty percent by volume of the nation's high-level radioactive waste is stored at Hanford in aging deteriorating tanks. If not cleaned up, this waste is a threat to the Columbia River and the Pacific Northwest. CH2M Hill Hanford Group, Inc., is the Office of River Protection's prime contractor responsible for the storage, retrieval, and disposal of Hanford's tank waste. As part of this effort, CH2M HILL Hanford Group, Inc. contracted with Pacific Northwest National Laboratory (PNNL) to develop release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for DOE.

Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Mattigod, Shas V.; Schaef, Herbert T.; Arey, Bruce W.

2007-09-13T23:59:59.000Z

323

Hanford low-level tank waste interim performance assessment  

SciTech Connect (OSTI)

The Hanford Low-Level Tank Waste Interim Performance Assessment examines the long-term environmental and human health effects associated with the disposal of the low-level fraction of the Hanford single and double-shell tank waste in the Hanford Site 200 East Area. This report was prepared as a good management practice to provide needed information about the relationship between the disposal system design and performance early in the disposal system project cycle. The calculations in this performance assessment show that the disposal of the low-level fraction can meet environmental and health performance objectives.

Mann, F.M.

1997-09-12T23:59:59.000Z

324

Hanford low-level tank waste interim performance assessment  

SciTech Connect (OSTI)

The Hanford Low-Level Tank Waste Interim Performance Assessment examines the long-term environmental and human health effects associated with the disposal of the low-level fraction of the Hanford single- and double-shell tank waste in the Hanford Site 200 East Area. This report was prepared as a good management practice to provide needed information about the relationship between the disposal system design and its performance as early as possible in the project cycle. The calculations in this performance assessment show that the disposal of the low-level fraction can meet environmental and health performance objectives.

Mann, F.M.

1996-09-16T23:59:59.000Z

325

E-Print Network 3.0 - alkaline tank waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ty of wasted feed affect tank water quality. As pelleted feeds are introduced... the tanks to wash out the waste by-products. Additionally, the oxygen concentration within the...

326

EXPERIMENTAL METHODS TO ESTIMATE ACCUMULATED SOLIDS IN NUCLEAR WASTE TANKS  

SciTech Connect (OSTI)

The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream; Magnetic wand used to manually remove stainless steel solids from samples and the tank heel; Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas; Laser rangefinders to determine the volume and shape of the solids mounds; Core sampler to determine the stainless steel solids distribution within the solids mounds; Computer driven positioner that placed the laser rangefinders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These devices and techniques were very effective to estimate the movement, location, and concentrations of the solids representing plutonium and are expected to perform well at a larger scale. The operation of the techniques and their measurement accuracies will be discussed as well as the overall results of the accumulated solids test.

Duignan, M.; Steeper, T.; Steimke, J.

2012-12-10T23:59:59.000Z

327

Assessment of degradation concerns for spent fuel, high-level wastes, and transuranic wastes in monitored retrievalbe storage  

SciTech Connect (OSTI)

It has been concluded that there are no significant degradation mechanisms that could prevent the design, construction, and safe operation of monitored retrievable storage (MRS) facilities. However, there are some long-term degradation mechanisms that could affect the ability to maintain or readily retrieve spent fuel (SF), high-level wastes (HLW), and transuranic wastes (TRUW) several decades after emplacement. Although catastrophic failures are not anticipated, long-term degradation mechanisms have been identified that could, under certain conditions, cause failure of the SF cladding and/or failure of TRUW storage containers. Stress rupture limits for Zircaloy-clad SF in MRS range from 300 to 440/sup 0/C, based on limited data. Additional tests on irradiated Zircaloy (3- to 5-year duration) are needed to narrow this uncertainty. Cladding defect sizes could increase in air as a result of fuel density decreases due to oxidation. Oxidation tests (3- to 5-year duration) on SF are also needed to verify oxidation rates in air and to determine temperatures below which monitoring of an inert cover gas would not be required. Few, if any, changes in the physical state of HLW glass or canisters or their performance would occur under projected MRS conditions. The major uncertainty for HLW is in the heat transfer through cracked glass and glass devitrification above 500/sup 0/C. Additional study of TRUW is required. Some fraction of present TRUW containers would probably fail within the first 100 years of MRS, and some TRUW would be highly degraded upon retrieval, even in unfailed containers. One possible solution is the design of a 100-year container. 93 references, 28 figures, 17 tables.

Guenther, R.J.; Gilbert, E.R.; Slate, S.C.; Partain, W.L.; Divine, J.R.; Kreid, D.K.

1984-01-01T23:59:59.000Z

328

Application of value of information of tank waste characterization: A new paradigm for defining tank waste characterization requirements  

SciTech Connect (OSTI)

This report presents the rationale for adopting a recommended characterization strategy that uses a risk-based decision-making framework for managing the Tank Waste Characterization program at Hanford. The risk-management/value-of-information (VOI) strategy that is illustrated explicitly links each information-gathering activity to its cost and provides a mechanism to ensure that characterization funds are spent where they can produce the largest reduction in risk. The approach was developed by tailoring well-known decision analysis techniques to specific tank waste characterization applications. This report illustrates how VOI calculations are performed and demonstrates that the VOI approach can definitely be used for real Tank Waste Remediation System (TWRS) characterization problems.

Fassbender, L.L.; Brewster, M.E.; Brothers, A.J. [and others

1996-11-01T23:59:59.000Z

329

Soil load above Hanford waste storage tanks (2 volumes)  

SciTech Connect (OSTI)

This document is a compilation of work performed as part of the Dome Load Control Project in 1994. Section 2 contains the calculations of the weight of the soil over the tank dome for each of the 75-feet-diameter waste-storage tanks located at the Hanford Site. The chosen soil specific weight and soil depth measured at the apex of the dome crown are the same as those used in the primary analysis that qualified the design. Section 3 provides reference dimensions for each of the tank farm sites. The reference dimensions spatially orient the tanks and provide an outer diameter for each tank. Section 4 summarizes the available soil surface elevation data. It also provides examples of the calculations performed to establish the present soil elevation estimates. The survey data and other data sources from which the elevation data has been obtained are printed separately in Volume 2 of this Supporting Document. Section 5 contains tables that provide an overall summary of the present status of dome loads. Tables summarizing the load state corresponding to the soil depth and soil specific weight for the original qualification analysis, the gravity load requalification for soil depth and soil specific weight greater than the expected actual values, and a best estimate condition of soil depth and specific weight are presented for the Double-Shell Tanks. For the Single-Shell Tanks, only the original qualification analysis is available; thus, the tabulated results are for this case only. Section 6 provides a brief overview of past analysis and testing results that given an indication of the load capacity of the waste storage tanks that corresponds to a condition approaching ultimate failure of the tank. 31 refs.

Pianka, E.W. [Advent Engineering Services, Inc., San Ramon, CA (United States)

1995-01-25T23:59:59.000Z

330

ALPHN: A computer program for calculating ([alpha], n) neutron production in canisters of high-level waste  

SciTech Connect (OSTI)

The rate of neutron production from ([alpha], n) reactions in canisters of immobilized high-level waste containing borosilicate glass or glass-ceramic compositions is significant and must be considered when estimating neutron shielding requirements. The personal computer program ALPHA calculates the ([alpha], n) neutron production rate of a canister of vitrified high-level waste. The user supplies the chemical composition of the glass or glass-ceramic and the curies of the alpha-emitting actinides present. The output of the program gives the ([alpha], n) neutron production of each actinide in neutrons per second and the total for the canister. The ([alpha], n) neutron production rates are source terms only; that is, they are production rates within the glass and do not take into account the shielding effect of the glass. For a given glass composition, the user can calculate up to eight cases simultaneously; these cases are based on the same glass composition but contain different quantities of actinides per canister. In a typical application, these cases might represent the same canister of vitrified high-level waste at eight different decay times. Run time for a typical problem containing 20 chemical species, 24 actinides, and 8 decay times was 35 s on an IBM AT personal computer. Results of an example based on an expected canister composition at the Defense Waste Processing Facility are shown.

Salmon, R.; Hermann, O.W.

1992-10-01T23:59:59.000Z

331

ALPHN: A computer program for calculating ({alpha}, n) neutron production in canisters of high-level waste  

SciTech Connect (OSTI)

The rate of neutron production from ({alpha}, n) reactions in canisters of immobilized high-level waste containing borosilicate glass or glass-ceramic compositions is significant and must be considered when estimating neutron shielding requirements. The personal computer program ALPHA calculates the ({alpha}, n) neutron production rate of a canister of vitrified high-level waste. The user supplies the chemical composition of the glass or glass-ceramic and the curies of the alpha-emitting actinides present. The output of the program gives the ({alpha}, n) neutron production of each actinide in neutrons per second and the total for the canister. The ({alpha}, n) neutron production rates are source terms only; that is, they are production rates within the glass and do not take into account the shielding effect of the glass. For a given glass composition, the user can calculate up to eight cases simultaneously; these cases are based on the same glass composition but contain different quantities of actinides per canister. In a typical application, these cases might represent the same canister of vitrified high-level waste at eight different decay times. Run time for a typical problem containing 20 chemical species, 24 actinides, and 8 decay times was 35 s on an IBM AT personal computer. Results of an example based on an expected canister composition at the Defense Waste Processing Facility are shown.

Salmon, R.; Hermann, O.W.

1992-10-01T23:59:59.000Z

332

Using Photogrammetry to Estimate Tank Waste Volumes from Video  

SciTech Connect (OSTI)

Washington River Protection Solutions (WRPS) contracted with HiLine Engineering & Fabrication, Inc. to assess the accuracy of photogrammetry tools as compared to video Camera/CAD Modeling System (CCMS) estimates. This test report documents the results of using photogrammetry to estimate the volume of waste in tank 241-C-I04 from post-retrieval videos and results using photogrammetry to estimate the volume of waste piles in the CCMS test video.

Field, Jim G. [Washington River Protection Solutions, LLC, Richland, WA (United States)

2013-03-27T23:59:59.000Z

333

METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE  

SciTech Connect (OSTI)

Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771, Flammable Gas Safety Isme Resolution. Appendices A through I provide supporting information. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste and characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 6 is the annual update of the flammable gas Waste Groups for DSTs and SSTs.

TU, T.A.

2007-01-04T23:59:59.000Z

334

METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE  

SciTech Connect (OSTI)

Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 5 is the annual update of the methodology and calculations of the flammable gas Waste Groups for DSTs and SSTs.

BARKER, S.A.

2006-07-27T23:59:59.000Z

335

A postmortem assessment of environmental compliance of a high-level radioactive waste repository, Hanford Site, Washington  

E-Print Network [OSTI]

the engineered barrier and the accessible environment. The concept of geochemical retarda'tion has been analyzed by Domenico et al. (1988) from a regulatory point of view and the following discussion is a summary of their work. As discussed previously, a...A POSTMORTEM ASSESSMENT OF ENVIRONMENTAL COMPLIANCE OF A HIGH-LEVEL RADIOACTIVE WASTE REPOSITORY, HANFORD SITE, WASHINGTON A Thesis by RUDOLF HARALD WILHELM PETRINI Submitted to the Graduate College of Texas A & M University in partial...

Petrini, Rudolf Harald Wilhelm

1988-01-01T23:59:59.000Z

336

TECHNICAL ASSESSMENT OF FRACTIONAL CRYSTALLIZATION FOR TANK WASTE PRETREATMENT AT THE DOE HANFORD SITE  

SciTech Connect (OSTI)

Radioactive wastes from one hundred seventy-seven underground storage tanks in the 200 Area of the Department of Energy (DOE) Hanford Site in Washington State will be retrieved, treated and stored either on site or at an approved off-site repository. DOE is currently planning to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions, which would be treated and permanently disposed in separate facilities. A significant volume of the wastes in the Hanford tanks is currently classified as medium Curie waste, which will require separation and treatment at the Waste Treatment Plant (WTP). Because of the specific challenges associated with treating this waste stream, DOE EM-21 funded a project to investigate the feasibility of using fractional crystallization as a supplemental pretreatment technology. The two process requirements for fractional crystallization to be successfully applied to Hanford waste include: (1) evaporation of water from the aqueous solution to enrich the activity of soluble {sup 137}Cs, resulting in a higher activity stream to be sent to the WTP, and (2) separation of the crystalline salts that are enriched in sodium, carbonate, sulfate, and phosphate and sufficiently depleted in {sup 137}Cs, to produce a second stream to be sent to Bulk Vitrification. Phase I of this project has just been completed by COGEMA/Georgia Institute of Technology. The purpose of this report is to document an independent expert review of the Phase I results with recommendations for future testing. A team of experts with significant experience at both the Hanford and Savannah River Sites was convened to conduct the review at Richland, Washington the week of November 14, 2005.

HAMILTON, D.W.

2006-01-03T23:59:59.000Z

337

Road Map for Development of Crystal-Tolerant High Level Waste Glasses  

SciTech Connect (OSTI)

This road map guides the research and development for formulation and processing of crystal-tolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objective is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) is also addressed in this road map.

Matyas, Josef; Vienna, John D.; Peeler, David; Fox, Kevin; Herman, Connie; Kruger, Albert A.

2014-05-31T23:59:59.000Z

338

The French national program for spent fuel and high-level waste management  

SciTech Connect (OSTI)

From its very beginning, the French national program for spent fuel and HLW management is aimed at the recycling of energetic materials and the safe disposal of nuclear waste. Spent fuel reprocessing is the cornerstone of this program, since it directly opens the way to energetic material recycling, waste minimization and safe conditioning. It is complemented by the HLW management program which is defined by the HLW disposal regulation and the Waste Act issued in 1991.

Giraud, J.P.; Demontalembert, J.A. [COGEMA, Velizy-Villacoublay (France)

1993-12-31T23:59:59.000Z

339

DOE/EIS-0287 Idaho High-Level Waste & Facilities Disposition...  

Broader source: Energy.gov (indexed) [DOE]

-5 . No offsite transportation would occur. At INEEL - The estimated number of latent cancer fatalities in the population within 50 miles of INTEC related to waste processing...

340

Preventing Buoyant Displacement Gas Release Events in Hanford Double-Shell Waste Tanks  

SciTech Connect (OSTI)

This report summarizes the predictive methods used to ensure that waste transfer operations in Hanford waste tanks do not create waste configurations that lead to unsafe gas release events. The gas release behavior of the waste in existing double-shell tanks has been well characterized, and the flammable gas safety issues associated with safe storage of waste in the current configuration are being formally resolved. However, waste is also being transferred between double-shell tanks and from single-shell tanks into double-shell tanks by saltwell pumping and sluicing that create new wastes and waste configurations that have not been studied as well. Additionally, planning is underway for various waste transfer scenarios to support waste feed delivery to the proposed vitrification plant. It is critical that such waste transfers do not create waste conditions with the potential for dangerous gas release events.

Meyer, Perry A.; Stewart, Charles W.

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-level waste tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Deflagration studies on waste Tank 101-SY: Test plan  

SciTech Connect (OSTI)

Waste slurries produced during the recovery of plutonium and uranium from irradiated fuel are stored in underground storage tanks. While a variety of waste types have been generated, of particular concern are the wastes stored in Tank 101-SY. A slurry growth-gas evolution cycle has been observed since 1981. The waste consists of a thick slurry, consisting of a solution high in NaOH, NaNO{sub 3}, NaAlO{sub 2}, dissolved organic complexants (EDTA, HEDTA, NTA, and degradation products), other salts (sulfates and phosphates), and radionuclides (primarily cesium and strontium). During a gas release the major gaseous species identified include: hydrogen and nitrous oxide (N{sub 2}O). Significant amounts of nitrogen may also be present. Traces of ammonia, carbon oxides, and other nitrogen oxides are also detected. Air and water vapor are also present in the tank vapor space. The purpose of the deflagration study is to determine risks of the hydrogen, nitrous oxide, nitrogen, and oxygen system. To be determined are pressure and temperature as a function of composition of reacting gases and the concentration of gases before and after the combustion event. Analyses of gases after the combustion event will be restricted to those tests that had an initial concentration of {le}8% hydrogen. This information will be used to evaluate safety issues related to periodic slurry growth and flammable gas releases from Tank 101-SY. the conditions to be evaluated will simulate gases in the vapor space above the salt cake as well as gases that potentially are trapped in pockets within/under the waste. The deflagration study will relate experimental laboratory results to conditions in the existing tanks.

Cashdollar, K.L.; Zlochower, I.A.; Hertzberg, M.

1991-07-01T23:59:59.000Z

342

FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125  

SciTech Connect (OSTI)

Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactive species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.

TEDESCHI AR; CORBETT JE; WILSON RA; LARKIN J

2012-01-26T23:59:59.000Z

343

Rapid Migration of Radionuclides Leaked from High-Level Water Tanks; A Study of Salinity Gradients, Wetted Path Geometry and Water Vapor Transport  

SciTech Connect (OSTI)

The basis of this study was the hypothesis that the physical and chemical properties of hypersaline tank waste could lead to wetting from instability and fingered flow following a tank leak. Thus, the goal of this project was to develop an understanding of the impacts of the properties of hypersaline fluids on transport through the unsaturated zone beneath Hanford's Tank Farms. There were three specific objectives (i) to develop an improved conceptualization of hypersaline fluid transport in laboratory (ii) to identify the degree to which field conditions mimic the flow processes observed in the laboratory and (iii) to provide a validation data set to establish the degree to which the conceptual models, embodied in a numerical simulator, could explain the observed field behavior. As hypothesized, high ionic strength solutions entering homogeneous pre-wetted porous media formed unstable wetting fronts atypical of low ionic strength infiltration. In the field, this mechanism could for ce flow in vertical flow paths, 5-15 cm in width, bypassing much of the media and leading to waste penetration to greater depths than would be predicted by current conceptual models. Preferential flow may lead to highly accelerated transport through large homogeneous units, and must be included in any conservative analysis of tank waste losses through coarse-textured units. However, numerical description of fingered flow using current techniques has been unreliable, thereby precluding tank-scale 3-D simulation of these processes. A new approach based on nonzero, hysteretic contract angles and fluid-dependent liquid entry has been developed for the continuum scale modeling of fingered flow. This approach has been coupled with and adaptive-grid finite-difference solver to permit the prediction of finger formation and persistence form sub centimeter scales to the filed scale using both scalar and vector processors. Although laboratory experiments demonstrated that elevated surface tens ion of imbibing solutions can enhance vertical fingered flow, this phenomenon was not observed in the field. Field tests showed that the fingered flow behavior was overwhelmed by the variability in texture resulting from differences in the depositional environment. Field plumes were characterized by lateral spreading with an average width to depth aspect ratio of 4. For both vertical fingers and lateral flow, the high ionic strength contributed to the vapor phase dilution of the waste, which increased waste volume and pushed the wetting from well beyond what would have occurred if the volume of material had remained unchanged from that initially released into the system. It was also observed that following significant vapor-phase dilution of this waste simulants that streams of colloids were ejected from the sediment surfaces. It was shown that due to the high-sodium content of the tank wastes the colloids were deflocculated below a critical salt concentration in Hanford sediments. Th e released colloids, which at the site would be expected to carry the bulk of the sorbed heavy metals and radioisotopes, were mobile though coarse Hanford sediments, but clogged finer layers. The developments resulting from this study are already being applied at Hanford in the nonisothermal prediction of the hypersaline, high pH waste migration in tank farms and in the development of inverse methods for history matching under DOE's Groundwater/Vadose Zone Integration Project at Hanford.

Anderson l. Ward; Glendon W. Gee; John S. Selker; Clay Cooper

2002-04-24T23:59:59.000Z

344

Rapid Migration of Radionuclides Leaked from High-Level Water Tanks: A Study of Salinity Gradients, Wetted Path Geometry and Water Vapor Transport  

SciTech Connect (OSTI)

The basis of this study was the hypothesis that the physical and chemical properties of hypersaline tank waste could lead to wetting from instability and fingered flow following a tank leak. Thus, the goal of this project was to develop an understanding of the impacts of the properties of hypersaline fluids on transport through the unsaturated zone beneath Hanford's Tank Farms. There were three specific objectives (i) to develop an improved conceptualization of hypersaline fluid transport in laboratory (ii) to identify the degree to which field conditions mimic the flow processes observed in the laboratory and (iii) to provide a validation data set to establish the degree to which the conceptual models, embodied in a numerical simulator, could explain the observed field behavior. As hypothesized, high ionic strength solutions entering homogeneous pre-wetted porous media formed unstable wetting fronts a typical of low ionic strength infiltration. In the field, this mechanism could force flow in vertical flow paths, 5-15 cm in width, bypassing much of the media and leading to waste penetration to greater depths than would be predicted by current conceptual models. Preferential flow may lead to highly accelerated transport through large homogeneous units, and must be included in any conservative analysis of tank waste losses through coarse-textured units. However, numerical description of fingered flow using current techniques has been unreliable, thereby precluding tank-scale 3-D simulation of these processes. A new approach based on nonzero, hysteretic contact angles and fluid-dependent liquid entry has been developed for the continuum scale modeling of fingered flow. This approach has been coupled with and adaptive-grid finite-difference solver to permit the prediction of finger formation and persistence form sub centimeter scales to the filed scale using both scalar and vector processors. Although laboratory experiments demonstrated that elevated surface tension of imbibing solutions can enhance vertical fingered flow, this phenomenon was not observed in the field. Field tests of showed that the fingered flow behavior was overwhelmed by the variability in texture resulting from differences in the depositional environment. Field plumes were characterized by lateral spreading with an average width to depth aspect ratio of 4. For both vertical fingers and lateral flow, the high ionic strength contributed to the vapor phase dilution of the waste, which increased waste volume and pushed the wetting from well beyond what would have occurred if the volume of material had remained unchanged from that initially released into the system. It was also observed that following significant vapor-phase dilution of the waste simulants that streams of colloids were ejected from the sediment surfaces. It was shown that due to the high-sodium content of the tank wastes the colloids were deflocculated below a critical salt concentration in Hanford sediment s. The released colloids, which at the site would be expected to carry the bulk of the sorbed heavy metals and radioisotopes, were mobile though coarse Hanford sediments, but clogged finer layers. The developments resulting from this study are already being applied at Hanford in the nonisothermal prediction of the hypersaline, high pH waste migration in tank farms and in the development of inverse methods for history matching under DOE's Groundwater/Vadose Zone Integration Project at Hanford.

Anderson L. Ward; Glendon W. Gee; John S. Selker; Caly Cooper

2002-04-24T23:59:59.000Z

345

Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1  

SciTech Connect (OSTI)

The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements.

Groth, B.D.

1995-01-11T23:59:59.000Z

346

FLAMMABILITY AND CONSEQUENCE ANALYSIS FOR MCU WASTE TANKS  

SciTech Connect (OSTI)

The Savannah River Site of Department of Energy will use the new Modular Caustic Side Solvent Extraction Unit (MCU) to process the waste stream by removing/reducing Cs-137 using Caustic Side Solvent Extraction (CSSX) technology. The CSSX technology utilizes multicomponent organic solvent and annular centrifugal contactors to extract Cs-137 from waste salt solution. Due to the radiolysis of the aqueous nuclear wastes, hydrogen generation is expected in the MCU holding tanks. The hydrogen from radiolysis and the vapor from the organic component of the solvent, Isopar-L, may form a composite flammable gas mixture, resulting in a shorter time to flammability than that of a pure hydrogen environment. It has been found that the time-to-Lower Flammability Limit (LFL) and stoichiometric concentration (SC) vary greatly from tank to tank, and could be decreased significantly by the presence of the Isopar-L. However, neither the deflagration nor the detonation event would challenge the Evaluation Guideline for any of the tanks at any liquid level.

Knight, J; Mukesh Gupta, M

2007-02-13T23:59:59.000Z

347

Some Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository Study (The Yucca Mountain Project)  

SciTech Connect (OSTI)

The safe disposal of radioactive waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels for plants, animals, and humans. All of the countries currently studying the options for disposing of high-level nuclear waste (HLW) have selected deep geologic formations to be the primary barrier for accomplishing this isolation. In U.S.A., the Nuclear Waste Policy Act of 1982 (as amended in 1987) designated Yucca Mountain in Nevada as the potential site to be characterized for high-level nuclear waste (HLW) disposal. Long-term containment of waste and subsequent slow release of radionuclides into the geosphere will rely on a system of natural and engineered barriers including a robust waste containment design. The waste package design consists of a highly corrosion resistant Ni-based Alloy 22 cylindrical barrier surrounding a Type 316 stainless steel inner structural vessel. The waste package is covered by a mailbox-shaped drip shield composed primarily of Ti Grade 7 with Ti Grade 24 structural support members. The U.S. Yucca Mountain Project has been studying and modeling the degradation issues of the relevant materials for some 20 years. This paper reviews the state-of-the-art understanding of the degradation processes based on the past 20 years studies on Yucca Mountain Project (YMP) materials degradation issues with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the 10,000 years regulatory period. This paper provides an overview of the current understanding of the likely degradation behavior of the waste package and drip shield in the repository after the permanent closure of the facility. The degradation scenario discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking of Alloy 22 and titanium alloys. The effects of microbial activity and radiation on degradation of Alloy 22 and titanium alloys are also discussed. Further, for titanium alloys, the effects of fluorides, bromides, calcium ions, and galvanic coupling to less noble metals are further considered. It is concluded that, as far as materials degradation is concerned, the materials and design adopted in the U.S. Yucca Mountain Project will provide sufficient safety margins within the 10,000-years regulatory period.

F. Hua; P. Pasupathi; N. Brown; K. Mon

2005-09-19T23:59:59.000Z

348

Strontium and cesium release mechanisms during unsaturated flow through waste-weathered Hanford sediments  

E-Print Network [OSTI]

Plutonium from Simulated Hanford Tank-Waste Sludges. Separ.Containing Tank Waste at Hanford. Separ. Sci. Technol. 2005,T. B. , Sr/TRU Removal from Hanford High Level Waste. Separ.

Chang, H.

2013-01-01T23:59:59.000Z

349

Development of a Thermodynamic Model for the Hanford Tank Waste Operations Simulator - 12193  

SciTech Connect (OSTI)

The Hanford Tank Waste Operations Simulator (HTWOS) is the current tool used by the Hanford Tank Operations Contractor for system planning and assessment of different operational strategies. Activities such as waste retrievals in the Hanford tank farms and washing and leaching of waste in the Waste Treatment and Immobilization Plant (WTP) are currently modeled in HTWOS. To predict phase compositions during these activities, HTWOS currently uses simple wash and leach factors that were developed many years ago. To improve these predictions, a rigorous thermodynamic framework has been developed based on the multi-component Pitzer ion interaction model for use with several important chemical species in Hanford tank waste. These chemical species are those with the greatest impact on high-level waste glass production in the WTP and whose solubility depends on the processing conditions. Starting with Pitzer parameter coefficients and species chemical potential coefficients collated from open literature sources, reconciliation with published experimental data led to a self-consistent set of coefficients known as the HTWOS Pitzer database. Using Gibbs energy minimization with the Pitzer ion interaction equations in Microsoft Excel,1 a number of successful predictions were made for the solubility of simple mixtures of the chosen species. Currently, this thermodynamic framework is being programmed into HTWOS as the mechanism for determining the solid-liquid phase distributions for the chosen species, replacing their simple wash and leach factors. Starting from a variety of open literature sources, a collection of Pitzer parameters and species chemical potentials, as functions of temperature, was tested for consistency and accuracy by comparison with available experimental thermodynamic data (e.g., osmotic coefficients and solubility). Reconciliation of the initial set of parameter coefficients with the experimental data led to the development of the self-consistent set known as the HTWOS Pitzer database. Using Microsoft Excel to formulate the Gibbs energy minimization method and the multi-component Pitzer ion interaction equations, several predictions of the solubility of solute mixtures at various temperatures were made using the HTWOS Pitzer database coefficients. Examples of these predictions are shown in Figure 3 and Figure 4. A listing of the entire HTWOS Pitzer database can be found in RPP-RPT-50703. Currently, work is underway to install the Pitzer ion interaction model in HTWOS as the mechanism for determining the solid-liquid phase distributions of select waste constituents during tank retrievals and subsequent washing and leaching of the waste. Validation of the Pitzer ion interaction model in HTWOS will be performed with analytical laboratory data of actual tank waste. This change in HTWOS is expected to elicit shifts in mission criteria, such as mission end date and quantity of high-level waste glass produced by WTP, as predicted by HTWOS. These improvements to the speciation calculations in HTWOS, however, will establish a better planning basis and facilitate more effective and efficient future operations of the WTP. (authors)

Carter, Robert; Seniow, Kendra [Washington River Protection Solutions, LLC, Richland, Washington (United States)

2012-07-01T23:59:59.000Z

350

High level waste storage tanks 242-A evaporator S/RID phase II assessment report  

SciTech Connect (OSTI)

This document, the Standards/Requirements Identification Document (S/RID) Phase 2 Assessment Report for the subject facility, represents the results of a Performance Assessment to determine whether procedures containing S/RID requirements are fully implemented by field personnel in the field. It contains a summary report and three attachments; an assessment schedule, performance objectives, and assessments for selected functional areas.

Biebesheimer, E.

1996-09-27T23:59:59.000Z

351

High level waste storage tanks 242-A evaporator standards/requirement identification document  

SciTech Connect (OSTI)

This document, the Standards/Requirements Identification Document (S/RIDS) for the subject facility, represents the necessary and sufficient requirements to provide an adequate level of protection of the worker, public health and safety, and the environment. It lists those source documents from which requirements were extracted, and those requirements documents considered, but from which no requirements where taken. Documents considered as source documents included State and Federal Regulations, DOE Orders, and DOE Standards

Biebesheimer, E.

1996-01-01T23:59:59.000Z

352

Alternative concepts for treatment and disposal of Hanford site high-level waste in tanks  

SciTech Connect (OSTI)

Some innovative approaches have recently been proposed that may have significant schedule, cost, or environmental advantages which could improve the current HLW program strategy. Three general categories of alternative concepts are now under consideration: (1) process/product alternatives, (2) facility layout options, and (3) contracting strategies. This report compares the alternate approaches to the current program baseline to illustrate their potential significance and to identify the risks associated with each approach.

Claghorn, R.D.; Powell, W.J.

1994-12-01T23:59:59.000Z

353

Tank Waste Committee Summaries - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManus Site-Inactive TWPCarbonTakeRV 14800TankSection

354

Building the institutional capacity for managing commercial high-level radioactive waste  

SciTech Connect (OSTI)

In July 1981, the Office of Nuclear Waste Management of the Department of Energy contracted with the National Academy of Public Administration for a study of institutional issues associated with the commercial radioactive waste management program. The two major sets of issues which the Academy was asked to investigate were (1) intergovernmental relationships, how federal, state, local and Indian tribal council governments relate to each other in the planning and implementation of a waste management program, and (2) interagency relationships, how the federal agencies with major responsibilities in this public policy arena interact with each other. The objective of the study was to apply the perspectives of public administration to a difficult and controversial question - how to devise and execute an effective waste management program workable within the constraints of the federal system. To carry out this task, the Academy appointed a panel composed of individuals whose background and experience would provide the several types of knowledge essential to the effort. The findings of this panel are presented along with the executive summary. The report consists of a discussion of the search for a radioactive waste management strategy, and an analysis of the two major groups of institutional issues: (1) intergovernmental, the relationship between the three major levels of government; and (2) interagency, the relationships between the major federal agencies having responsibility for the waste management program.

None

1982-05-01T23:59:59.000Z

355

CHEMICAL ANALYSIS OF SIMULATED HIGH LEVEL WASTE GLASSES TO SUPPORT SULFATE SOLUBILITY MODELING  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms both within the DOE complex and to some extent at U.K. sites. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerated cleanup missions. Much of the previous work on improving sulfate retention in waste glasses has been done on an empirical basis, making it difficult to apply the findings to future waste compositions despite the large number of glass systems studied. A more fundamental, rather than empirical, model of sulfate solubility in glass, under development at Sheffield Hallam University (SHU), could provide a solution to the issues of sulfate solubility. The model uses the normalized cation field strength index as a function of glass composition to predict sulfate capacity, and has shown early success for some glass systems. The objective of the current scope is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DOE waste vitrification efforts, allowing for enhanced waste loadings and waste throughput. A series of targeted glass compositions was selected to resolve data gaps in the current model. SHU fabricated these glasses and sent samples to the Savannah River National Laboratory (SRNL) for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for simulated waste glasses fabricated SHU in support of sulfate solubility model development. A review of the measured compositions revealed that there are issues with the B{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} concentrations missing their targeted values by a significant amount for several of the study glasses. SHU is reviewing the fabrication of these glasses and the chemicals used in batching them to identify the source of these issues. The measured sulfate concentrations were all below their targeted values. This is expected, as the targeted concentrations likely exceeded the solubility limit for sulfate in these glass compositions. Some volatilization of sulfate may also have occurred during fabrication of the glasses. Measurements of the other oxides in the study glasses were reasonably close to their targeted values

Fox, K.; Marra, J.

2014-08-14T23:59:59.000Z

356

Evaluation Of The Integrated Solubility Model, A Graded Approach For Predicting Phase Distribution In Hanford Tank Waste  

SciTech Connect (OSTI)

The mission of the DOE River Protection Project (RPP) is to store, retrieve, treat and dispose of Hanford's tank waste. Waste is retrieved from the underground tanks and delivered to the Waste Treatment and Immobilization Plant (WTP). Waste is processed through a pretreatment facility where it is separated into low activity waste (LAW), which is primarily liquid, and high level waste (HLW), which is primarily solid. The LAW and HLW are sent to two different vitrification facilities and glass canisters are then disposed of onsite (for LAW) or shipped off-site (for HLW). The RPP mission is modeled by the Hanford Tank Waste Operations Simulator (HTWOS), a dynamic flowsheet simulator and mass balance model that is used for mission analysis and strategic planning. The integrated solubility model (ISM) was developed to improve the chemistry basis in HTWOS and better predict the outcome of the RPP mission. The ISM uses a graded approach to focus on the components that have the greatest impact to the mission while building the infrastructure for continued future improvement and expansion. Components in the ISM are grouped depending upon their relative solubility and impact to the RPP mission. The solubility of each group of components is characterized by sub-models of varying levels of complexity, ranging from simplified correlations to a set of Pitzer equations used for the minimization of Gibbs Energy.

Pierson, Kayla L.; Belsher, Jeremy D.; Seniow, Kendra R.

2012-10-19T23:59:59.000Z

357

METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE  

SciTech Connect (OSTI)

The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as a waste group B (or A) tank identifies the potential for an induced flammable gas release hazard, the hazard only exists for specific operations that can release the retained gas in the tank at a rate and quantity that results in reaching 100% of the lower flammability limit in the tank headspace. The identification and evaluation of tank farm operations that could cause an induced flammable gas release hazard in a waste group B (or A) tank are included in other documents. The third criterion is the buoyancy ratio. This criterion addresses tanks that are not waste group C double-shell tanks and have an energy ratio {ge} 3.0. For these double-shell tanks, the buoyancy ratio considers whether the saturated solids can retain sufficient gas to exceed neutral buoyancy relative to the supernatant layer and therefore have buoyant displacement gas release events. If the buoyancy ratio is {ge} 1.0, that double-shell tank is assigned to waste group A. These tanks are considered to have a potential spontaneous buoyant displacement flammable gas release hazard in addition to a potential induced flammable gas release hazard. This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 8 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs.

WEBER RA

2009-01-16T23:59:59.000Z

358

METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE  

SciTech Connect (OSTI)

This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 7 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs. The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as a waste group B (or A) tank identifies the potential for an induced flammable gas release hazard, the hazard only exists for specific operations that can release the retained gas in the tank at a rate and quantity that results in reaching 100% of the lower flammability limit in the tank headspace. The identification and evaluation of tank farm operations that could cause an induced flammable gas release hazard in a waste group B (or A) tank are included in other documents. The third criterion is the buoyancy ratio. This criterion addresses tanks that are not waste group C double-shell tanks and have an energy ratio {ge} 3.0. For these double-shell tanks, the buoyancy ratio considers whether the saturated solids can retain sufficient gas to exceed neutral buoyancy relative to the supernatant layer and therefore have buoyant displacement gas release events. If the buoyancy ratio is {ge} 1.0, that double-shell tank is assigned to waste group A. These tanks are considered to have a potential spontaneous buoyant displacement flammable gas release hazard in addition to a potential induced flammable gas release hazard.

FOWLER KD

2007-12-27T23:59:59.000Z

359

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation and Recycle of Sodium Hydroxide and Sodium Nitrate  

SciTech Connect (OSTI)

Disposal of high-level nuclear waste is horrendously expensive, in large part because the actual radioactive matter in the tanks has been diluted over 1000-fold by ordinary inorganic chemicals. Treatment processes themselves can exacerbate the problem by adding further volume to the waste. Waste retrieval and sludge washing, for example, will require copious amounts of sodium hydroxide. If the needed sodium hydroxide could be separated from the waste and recycled, however, the addition of fresh sodium hydroxide could be avoided, ultimately reducing the final waste volume and associated disposal costs. The major objective of this research is to explore new liquid-liquid extraction approaches to the selective separation of sodium hydroxide from alkaline high-level wastes stored in underground tanks at the Hanford and Savannah River sites. Consideration is also given to separating potassium and abundant anions, including nitrate, nitrite, aluminate, and carbonate. Salts of these ions represent possible additional value for recycle, alternative disposal, or even use as commodity chemicals. A comprehensive approach toward understanding the extractive chemistry of these salts is envisioned, involving systems of varying complexity, from use of simple solvents to new bifunctional host molecules for ion-pair recognition. These extractants will ideally require no adjustment of the waste composition and will release the extracted salt into water, thereby consuming no additional chemicals and producing no additional waste volume. The overall goal of this research is to provide a scientific foundation upon which the feasibility of new liquid-liquid extraction chemistry applicable to the bulk reduction of the volume of tank waste can be evaluated.

Moyer, Bruce A.; Marchand, Alan P.

2001-06-01T23:59:59.000Z

360

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation and Recycle of Sodium Hydroxide and Sodium Nitrate  

SciTech Connect (OSTI)

The objective of this research is to explore new liquid-liquid extraction approaches to the selective separation of major sodium salts from alkaline high-level wastes stored in underground tanks at Hanford, Savannah River, and Oak Ridge sites. Disposal of high level waste is horrendously expensive, in large part because the actual radioactive matter in the tanks has been diluted over 1000-fold by ordinary inorganic chemicals. Since the residual bulk chemicals must still undergo expensive treatment and disposal after most of the hazardous radionuclides have been removed, large cost savings will result from processes that reduce the overall waste volume. It is proposed that major cost savings can be expected if sodium hydroxide needed for sludge washing can be obtained from the waste itself, thus avoiding the addition of yet another bulk chemical to the waste and still further increase of the waste volume and disposal cost. Secondary priority is given to separating potassium an d abundant anions, including nitrate, nitrite, aluminate, and carbonate. Salts of these ions represent possible additional value for recycle, alternative disposal, or even use as commodity chemicals. A comprehensive approach toward understanding the extractive chemistry of these salts is envisioned, involving systems of varying complexity, from use of simple solvents to new bifunctional host molecules for ion-pair recognition. These extractants will ideally require no adjustment of the waste composition and will release the extracted salt into water, thereby consuming no additional chemicals and producing no additional waste volume. The overall goal of this research is to provide a scientific foundation upon which the feasibility of new liquid-liquid extraction chemistry applicable to the bulk reduction of the volume of tank waste can be evaluated.

Moyer, Bruce A.; Marchand, Alan P.; Bryan, Jeffrey C.; Bonnesen, Peter V.

1999-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "high-level waste tank" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation and Recycle of Sodium Hydroxide and Sodium Nitrate  

SciTech Connect (OSTI)

Disposal of high- level waste is horrendously expensive, in large part because the actual radioactive matter in the tanks has been diluted over 1000-fold by ordinary inorganic chemicals. Treatment processes themselves can exacerbate the problem by adding further volume to the waste. Waste retrieval and sludge washing, for example, will require copious amounts of sodium hydroxide. If the needed sodium hydroxide could be separated from the waste and recycled, however, the addition of fresh sodium hydroxide could be avoided, ultimately reducing the final waste volume and associated disposal costs. The major objective of this research is to explore new liquid- liquid extraction approaches to the selective separation of sodium hydroxide from alkaline high-level wastes stored in underground tanks at the Hanford and Savannah River sites. Consideration is also given to separating potassium and abundant anions, including nitrate, nitrite, aluminate, and carbonate. Salts of these ions represent possible additional value for recycle, alternative disposal, or even use as commodity chemicals. A comprehensive approach toward understanding the extractive chemistry of these salts is envisioned, involving systems of varying complexity, from use of simple solvents to new bifunctional host molecules for ion-pair recognition. These extractants will ideally require no adjustment of the waste composition and will release the extracted salt into water, thereby consuming no additional chemicals and producing no additional waste volume. The overall goal of this research is to provide a scientific foundation upon which the feasibility of new liquid-liquid extraction chemistry applicable to the bulk reduction of the volume of tank waste can be evaluated.

Moyer, Bruce A.; Marchand, Alan P.

2000-06-01T23:59:59.000Z

362

STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE [SEC 1 & 2  

SciTech Connect (OSTI)

Flammable gases such as hydrogen, ammonia, and methane are observed in the tank dome space of the Hanford Site high-level waste tanks. This report assesses the steady-state flammability level under normal and off-normal ventilation conditions in the tank dome space for 177 double-shell tanks and single-shell tanks at the Hanford Site. The steady-state flammability level was estimated from the gas concentration of the mixture in the dome space using estimated gas release rates, Le Chatelier's rule and lower flammability limits of fuels in an air mixture. A time-dependent equation of gas concentration, which is a function of the gas release and ventilation rates in the dome space, has been developed for both soluble and insoluble gases. With this dynamic model, the time required to reach the specified flammability level at a given ventilation condition can be calculated. In the evaluation, hydrogen generation rates can be calculated for a given tank waste composition and its physical condition (e.g., waste density, waste volume, temperature, etc.) using the empirical rate equation model provided in Empirical Rate Equation Model and Rate Calculations of Hydrogen Generation for Hanford Tank Waste, HNF-3851. The release rate of other insoluble gases and the mass transport properties of the soluble gas can be derived from the observed steady-state gas concentration under normal ventilation conditions. The off-normal ventilation rate is assumed to be natural barometric breathing only. A large body of data is required to do both the hydrogen generation rate calculation and the flammability level evaluation. For tank waste that does not have sample-based data, a statistical-based value from probability distribution regression was used based on data from tanks belonging to a similar waste group. This report (Revision 3) updates the input data of hydrogen generation rates calculation for 177 tanks using the waste composition information in the Best-Basis Inventory Detail Report in the Tank Waste Information Network System, and the waste temperature data in the Surveillance Analysis Computer System (SACS) (dated July 2003). However, the release rate of methane, ammonia, and nitrous oxide is based on the input data (dated October 1999) as stated in Revision 0 of this report. Scenarios for adding waste to existing waste levels (dated July 2003) have been studied to determine the gas generation rates and the effect of smaller dome space on the flammability limits to address the issues of routine water additions and other possible waste transfer operations. In the flammability evaluation with zero ventilation, the sensitivity to waste temperature and to water addition was calculated for double-shell tanks 241-AY-102, 241-AN-102,241-AZ-101,241-AN-107,241-AY-101 and 241-AZ-101. These six have the least margin to flammable conditions among 28 double-shell tanks.

HU, T.A.

2003-09-30T23:59:59.000Z

363

Conditioning matrices from high level waste resulting from pyrochemical processing in fluorine salt  

SciTech Connect (OSTI)

Separating the actinides from the fission products through reductive extraction by aluminium in a LiF/AlF{sub 3} medium is a process investigated for pyrometallurgical reprocessing of spent fuel. The process involves separation by reductive salt-metal extraction. After dissolving the fuel or the transmutation target in a salt bath, the noble metal fission products are first extracted by contacting them with a slightly reducing metal. After extracting the metal fission products, then the actinides are selectively separated from the remaining fission products. In this hypothesis, all the unrecoverable fission products would be conditioned as fluorides. Therefore, this process will generate first a metallic waste containing the 'reducible' fission products (Pd, Mo, Ru, Rh, Tc, etc.) and a fluorine waste containing alkali-metal, alkaline-earth and rare earth fission products. Immobilization of these wastes in classical borosilicate glasses is not feasible due to the very low solubility of noble metals, and of fluoride in these hosts. Alternative candidates have therefore been developed including silicate glass/ceramic system for fluoride fission products and metallic ones for noble metal fission products. These waste-forms were evaluated for their confinement properties like homogeneity, waste loading, volatility during the elaboration process, chemical durability, etc. using appropriate techniques. (authors)

Grandjean, Agnes; Advocat, Thierry; Bousquet, Nicolas [SCDV - Service de Confinement des Dechets et Vitrification - Laboratoire d'Etudes de Base sur les Verres, CEA Valrho, Centre de Marcoule, 30207 Bagnols sur Ceze (France); Jegou, Christophe [SECM - Service d'Etude du Confinement et Materiaux - Laboratoire des Materiaux et Procedes Actifs - CEA Valrho, Centre de Marcoule, 30207 Bagnols sur Ceze (France)

2007-07-01T23:59:59.000Z

364

HLW-OVP-94-00n High Level Waste Management Division HLW System Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuided Self-Assembly of GoldHAWCHIGS flux4-00n High Level

365

Tank waste remediation system fiscal year 1998 multi-year work plan WBS 1.1  

SciTech Connect (OSTI)

The TWRS Project Mission is to manage and immobilize for disposal the Hanford Site radioactive tank waste and cesium (Cs)/strontium (Sr) capsules in a safe, environmentally sound, and cost-effective manner. The scope includes all activities needed to (1) resolve safety issues; (2) operate, maintain, and upgrade the tank farms and supporting infrastructure; (3) characterize, retrieve, pretreat, and immobilize the waste for disposal and tank farm closure; and (4) use waste minimization and evaporation to manage tank waste volumes to ensure that the tank capacities of existing DSTs are not exceeded. The TWRS Project is responsible for closure of assigned operable units and D&D of TWRS facilities.

Lenseigne, D.L., Westinghouse Hanford, Richland, WA

1997-09-15T23:59:59.000Z

366

The integrated tank waste management plan at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

DOE`s Environmental Management Program at Oak Ridge has developed an integrated tank waste management plan that combines the accelerated deployment of innovative technologies with an aggressive waste transfer schedule. Oak Ridge is cleaning out waste from aging underground storage tanks in preparation of waste processing, packaging and final safe disposal. During remediation this plan will reduce the risk of environmental, worker, and civilian exposure, save millions of dollars, and cut years off of tank remediation schedules at Oak Ridge.

Billingsley, K. [STEP, Inc., Oak Ridge, TN (United States); Mims, C. [Dept. of Energy, Oak Ridge, TN (United States). Oak Ridge Operations Office; Robinson, S. [Oak Ridge National Lab., TN (United States)

1998-06-01T23:59:59.000Z

367

COMBINED RETENTION OF MOLYBDENUM AND SULFUR IN SIMULATED HIGH LEVEL WASTE GLASS  

SciTech Connect (OSTI)

This study was undertaken to investigate the effect of elevated sulfate and molybdenum concentrations in nuclear waste glasses. A matrix of 24 glasses was developed and the glasses were tested for acceptability based on visual observations, canister centerline-cooled heat treatments, and chemical composition analysis. Results from the chemical analysis of the rinse water from each sample were used to confirm the presence of SO{sup 2-}{sub 4} and MoO{sub 3} on the surface of glasses as well as other components which might form water soluble compounds with the excess sulfur and molybdenum. A simple, linear model was developed to show acceptable concentrations of SO{sub 4}{sup 2-} and MoO{sub 3} in an example waste glass composition. This model was constructed for scoping studies only and is not ready for implementation in support of actual waste vitrification. Several other factors must be considered in determining the limits of sulfate and molybdenum concentrations in the waste vitrification process, including but not limited to, impacts on refractory and melter component corrosion, effects on the melter off-gas system, and impacts on the chemical durability and crystallization of the glass product.

Fox, K.

2009-10-16T23:59:59.000Z

368

Comments on a paper tilted `The sea transport of vitrified high-level radioactive wastes: Unresolved safety issues`  

SciTech Connect (OSTI)

The cited paper estimates the consequences that might occur should a purpose-built ship transporting Vitrified High Level Waste (VHLW) be involved in a severe collision that causes the VHLW canisters in one Type-B package to spill onto the floor of a major ocean fishing region. Release of radioactivity from VHLW glass logs, failure of elastomer cask seals, failure of VHLW canisters due to stress corrosion cracking (SCC), and the probabilities of the hypothesized accident scenario, of catastrophic cask failure, and of cask recovery from the sea are all discussed.

Sprung, J.L.; McConnell, P.E.; Nigrey, P.J.; Ammerman, D.J. [and others

1997-05-01T23:59:59.000Z

369

Development of integraded mechanistically-based degradation-mode models for performance assessment of high-level waste containers  

SciTech Connect (OSTI)

A key component of the Engineered Barrier System (EBS) being designed for containment of spent-fuel and high-level waste at the proposed geological repository at Yucca Mountain, Nevada is a two-tayer canister. In this particular design, the inner barrier is made of a corrosion resistant material (CRM) such as Alloy 825, 625 or C-22, while the outer barrier is made of a corrosion-allowance material (CAM) such as A516 Gr 55 or Monel 400. At the present time, Alloy C- 22 and A516 Gr 55 are favored.

Farmer, J. C., LLNL

1998-06-01T23:59:59.000Z

370

Performance assessment of the direct disposal in unsaturated tuff or spent nuclear fuel and high-level waste owned by USDOE: Volume 2, Methodology and results  

SciTech Connect (OSTI)

This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservations. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM.

Rechard, R.P. [ed.

1995-03-01T23:59:59.000Z

371

Functions and requirements document for interim store solidified high-level and transuranic waste  

SciTech Connect (OSTI)

The functions, requirements, interfaces, and architectures contained within the Functions and Requirements (F{ampersand}R) Document are based on the information currently contained within the TWRS Functions and Requirements database. The database also documents the set of technically defensible functions and requirements associated with the solidified waste interim storage mission.The F{ampersand}R Document provides a snapshot in time of the technical baseline for the project. The F{ampersand}R document is the product of functional analysis, requirements allocation and architectural structure definition. The technical baseline described in this document is traceable to the TWRS function 4.2.4.1, Interim Store Solidified Waste, and its related requirements, architecture, and interfaces.

Smith-Fewell, M.A., Westinghouse Hanford

1996-05-17T23:59:59.000Z

372

Materials performance in a high-level radioactive waste vitrification system  

SciTech Connect (OSTI)

The Defense Waste Processing Facility (DWPF) is a Department of Energy Facility designed to vitrify highly radioactive waste. An extensive materials evaluation program has been completed on key components in the DWPF after twelve months of operation using nonradioactive simulated wastes. Results of the visual inspections of the feed preparation system indicate that the system components, which were fabricated from Hastelloy C-276, should achieve their design lives. Significant erosion was observed on agitator blades that process glass frit slurries; however, design modifications should mitigate the erosion. Visual inspections of the DWPF melter top head and off gas components, which were fabricated from Inconel 690, indicated that varying degrees of degradation occurred. Most of the components will perform satisfactorily for their two year design life. The components that suffered significant attack were the borescopes, primary film cooler brush, and feed tubes. Changes in the operation of the film cooler brush and design modifications to the feed tubes and borescopes is expected to extend their service lives to two years. A program to investigate new high temperature engineered materials and alloys with improved oxidation and high temperature corrosion resistance will be initiated.

Imrich, K.J.; Chandler, G.T.

1996-06-17T23:59:59.000Z

373

Preliminary total-system analysis of a potential high-level nuclear waste repository at Yucca Mountain  

SciTech Connect (OSTI)

The placement of high-level radioactive wastes in mined repositories deep underground is considered a disposal method that would effectively isolate these wastes from the environment for long periods of time. This report describes modeling performed at PNL for Yucca Mountain between May and November 1991 addressing the performance of the entire repository system related to regulatory criteria established by the EPA in 40 CFR Part 191. The geologic stratigraphy and material properties used in this study were chosen in cooperation with performance assessment modelers at Sandia National Laboratories (SNL). Sandia modeled a similar problem using different computer codes and a different modeling philosophy. Pacific Northwest Laboratory performed a few model runs with very complex models, and SNL performed many runs with much simpler (abstracted) models.

Eslinger, P.W.; Doremus, L.A.; Engel, D.W.; Miley, T.B.; Murphy, M.T.; Nichols, W.E.; White, M.D. [Pacific Northwest Lab., Richland, WA (United States); Langford, D.W.; Ouderkirk, S.J. [Westinghouse Hanford Co., Richland, WA (United States)

1993-01-01T23:59:59.000Z

374

PHYSICAL CHARACTERIZATION OF VITREOUS STATE LABORATORY AY102/C106 AND AZ102 HIGH LEVEL WASTE MELTER FEED SIMULANTS (U)  

SciTech Connect (OSTI)

The objective of this task is to characterize and report specified physical properties and pH of simulant high level waste (HLW) melter feeds (MF) processed through the scaled melters at Vitreous State Laboratories (VSL). The HLW MF simulants characterized are VSL AZ102 straight hydroxide melter feed, VSL AZ102 straight hydroxide rheology adjusted melter feed, VSL AY102/C106 straight hydroxide melter feed, VSL AY102/C106 straight hydroxide rheology adjusted melter feed, and Savannah River National Laboratory (SRNL) AY102/C106 precipitated hydroxide processed sludge blended with glass former chemicals at VSL to make melter feed. The physical properties and pH were characterized using the methods stated in the Waste Treatment Plant (WTP) characterization procedure (Ref. 7).

Hansen, E

2005-03-31T23:59:59.000Z

375

Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program  

SciTech Connect (OSTI)

The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board`s view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program.

Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

1993-03-01T23:59:59.000Z

376

EMAB Tank Waste Subcommittee Report Presentation  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement ||More EmphasisofEMABTank Waste Subcommittee

377

Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices  

SciTech Connect (OSTI)

This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

Rechard, R.P. [ed.

1993-12-01T23:59:59.000Z

378

Hanford Tank Waste Treatment and Immobilization Plant (WTP) Waste Feed Qualification Program Development Approach - 13114  

SciTech Connect (OSTI)

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is a nuclear waste treatment facility being designed and constructed for the U.S. Department of Energy by Bechtel National, Inc. and subcontractor URS Corporation (under contract DE-AC27-01RV14136 [1]) to process and vitrify radioactive waste that is currently stored in underground tanks at the Hanford Site. A wide range of planning is in progress to prepare for safe start-up, commissioning, and operation. The waste feed qualification program is being developed to protect the WTP design, safety basis, and technical basis by assuring acceptance requirements can be met before the transfer of waste. The WTP Project has partnered with Savannah River National Laboratory to develop the waste feed qualification program. The results of waste feed qualification activities will be implemented using a batch processing methodology, and will establish an acceptable range of operator controllable parameters needed to treat the staged waste. Waste feed qualification program development is being implemented in three separate phases. Phase 1 required identification of analytical methods and gaps. This activity has been completed, and provides the foundation for a technically defensible approach for waste feed qualification. Phase 2 of the program development is in progress. The activities in this phase include the closure of analytical methodology gaps identified during Phase 1, design and fabrication of laboratory-scale test apparatus, and determination of the