National Library of Energy BETA

Sample records for high-intensity discharge incandescent

  1. ,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen"

    U.S. Energy Information Administration (EIA) Indexed Site

    B39. Lighting Equipment, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Lit Buildings","Lighting Equipment (more than one may apply)" ,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen" "All Buildings ................",67338,64321,38156,60344,20666,19223,17926 "Building Floorspace" "(Square

  2. ,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen"

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Lighting Equipment, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Lit Buildings","Lighting Equipment (more than one may apply)" ,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen" "All Buildings ................",4657,4172,2193,3778,607,430,572 "Building Floorspace" "(Square Feet)"

  3. High intensity discharge device containing oxytrihalides

    DOE Patents [OSTI]

    Lapatovich, Walter P.; Keeffe, William M.; Liebermann, Richard W.; Maya, Jakob

    1987-01-01

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO.sub.2, with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube.

  4. High intensity discharge device containing oxytrihalides

    DOE Patents [OSTI]

    Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.

    1987-06-09

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.

  5. High-Intensity Discharge Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics August 15, 2013 - 5:59pm Addthis Illustration of a high-intensity discharge (HID) lIllustration amp. The lamp is a tall cylindrical shape, and a cutout of the outer tube shows the materials inside. A long, thin cylinder called the arc tube runs through the lamp between two electrodes. The space around the arc tube is labeled as a vacuum. High-intensity discharge (HID) lighting can provide high efficacy and long

  6. 2014-05-05 Issuance: Test Procedures for High-Intensity Discharge...

    Energy Savers [EERE]

    Test Procedures for High-Intensity Discharge Lamps; Supplemental Notice of Proposed Rulemaking 2014-05-05 Issuance: Test Procedures for High-Intensity Discharge Lamps; Supplemental ...

  7. ISSUANCE 2015-12-02: Energy Conservation Program: Energy Conservation Standards for High-Intensity Discharge Lamps, Final Determination

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for High-Intensity Discharge Lamps, Final Determination

  8. Max Tech and Beyond: High-Intensity Discharge Lamps

    SciTech Connect (OSTI)

    Scholand, Michael

    2012-04-01

    High-intensity discharge (HID) lamps are most often found in industrial and commercial applications, and are the light source of choice in street and area lighting, and sports stadium illumination. HID lamps are produced in three types - mercury vapor (MV), high pressure sodium (HPS) and metal halide (MH). Of these, MV and MH are considered white-light sources (although the MV exhibits poor color rendering) and HPS produces a yellow-orange color light. A fourth lamp, low-pressure sodium (LPS), is not a HID lamp by definition, but it is used in similar applications and thus is often grouped with HID lamps. With the notable exception of MV which is comparatively inefficient and in decline in the US from both a sales and installed stock point of view; HPS, LPS and MH all have efficacies over 100 lumens per watt. The figure below presents the efficacy trends over time for commercially available HID lamps and LPS, starting with MV and LPS in 1930's followed by the development of HPS and MH in the 1960's. In HID lamps, light is generated by creating an electric arc between two electrodes in an arc tube. The particles in the arc are partially ionized, making them electrically conductive, and a light-emitting 'plasma' is created. This arc occurs within the arc tube, which for most HID lamps is enclosed within an evacuated outer bulb that thermally isolates and protects the hot arc tube from the surroundings. Unlike a fluorescent lamp that produces visible light through down-converting UV light with phosphors, the arc itself is the light source in an HID lamp, emitting visible radiation that is characteristic of the elements present in the plasma. Thus, the mixture of elements included in the arc tube is one critical factor determining the quality of the light emitted from the lamp, including its correlated color temperature (CCT) and color rendering index (CRI). Similar to fluorescent lamps, HID lamps require a ballast to start and maintain stable operating conditions, and

  9. DEVICE AND METHOD FOR PRODUCING A HIGH INTENSITY ARC DISCHARGE

    DOE Patents [OSTI]

    Luce, J.S.

    1960-01-01

    A device is described for producing an energetic d-c carbon arc discharge between widely spaced electrodes with arc currents in excess of 100 amperes in a magnetic field of about 3000 gauss and witnin an evacuated enclo sure at a pressure of about 10/sup -5/ mm Hg. No defining electrodes are used in the device, thus essentially eliminating the problems of shorting which heretofore limited the amount of current that could be produced in an arc discharge. The energetic carbon arc discharge is sustained by the potential across the electrodes and by carbon ions and electrons released from the electrodes during arc operation. A large part of the potential drop of the arc occurs along the arc and many energetic electrons reach the anode because the arc pressure is relatively low, and few collisions occur. The carbon discharge is also an efficient ion pump.

  10. 2014-05-05 Issuance: Test Procedures for High-Intensity Discharge Lamps;

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supplemental Notice of Proposed Rulemaking | Department of Energy Test Procedures for High-Intensity Discharge Lamps; Supplemental Notice of Proposed Rulemaking 2014-05-05 Issuance: Test Procedures for High-Intensity Discharge Lamps; Supplemental Notice of Proposed Rulemaking This document is a pre-publication Federal Register supplemental notice of proposed rulemaking regarding test procedures for high-intesity discharge lamps, as issued by the Deputy Assistant Secretary for Energy

  11. Spatiotemporal study of the local thermodynamic equilibrium deviations in high-intensity discharge lamps

    SciTech Connect (OSTI)

    Helali, H.; Bchir, T.; Araoud, Z.; Charrada, K.

    2013-04-15

    The aim of this work is to study the local thermodynamic equilibrium (LTE) deviations in arc discharges plasma generated in high-intensity discharge lamps operating under an ac (50 Hz) power supply. To achieve this goal, we elaborate a two-temperature, two-dimensional, and time-depending model. We have found numerical results almost reproducing the experimental data, which allows us to validate this model. After validation, we have discussed different energy term effects on the LTE deviations.

  12. Contribution to the numerical study of turbulence in high intensity discharge lamps

    SciTech Connect (OSTI)

    Kaziz, S.; Ben Ahmed, R.; Helali, H.; Gazzah, H.; Charrada, K. [Unite d'Etude des Milieux Ionises et Reactifs, IPEIM, 5019 route de Kairouan Monastir (Tunisia)

    2011-07-15

    We present in this paper a comparison between results obtained with a laminar and turbulent models for high-pressure mercury arc. The two models are based on the resolution of bidimensional time-dependent equations by a semi-implicit finite-element code. The numerical computation of turbulent model is solved with large eddy simulation model; this approach takes into account the various scales of turbulence by a filtering method on each scale. The results show the quantitative influence of turbulence on the flow fields and also the difference between laminar and turbulent effects on the dynamic thermal behaviour and on the characteristics of the discharge.

  13. Photonically Engineered Incandescent Emitter

    DOE Patents [OSTI]

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2005-03-22

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  14. Photonically engineered incandescent emitter

    DOE Patents [OSTI]

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2003-08-26

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  15. Incandescent Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting » Incandescent Lighting Incandescent Lighting Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lamps are often considered the least energy efficient type of electric lighting commonly found in residential buildings. Although

  16. High efficiency incandescent lighting

    DOE Patents [OSTI]

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  17. Incandescent Lighting | Department of Energy

    Office of Environmental Management (EM)

    courtesy of iStockphotoTokenPhoto. Incandescent lamps are often considered the least energy efficient type of electric lighting commonly found in residential buildings....

  18. Laser-induced incandescence (LII)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    induced incandescence (LII) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  19. Incandescent Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incandescent Lighting Basics Incandescent Lighting Basics August 16, 2013 - 10:00am Addthis Incandescent lamps consist of a wire filament inside a glass bulb that is usually filled with inert gas, and they produce light when an electric current heats the filament to a high temperature. Incandescent lamps have a low efficacy (10-17 lumens per watt) compared with other lighting options-because most of the energy released is in the form of heat rather than light-and a short average operating life

  20. Energy-Saving Incandescents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    lightbulbs - high-resolution EPS (2.15 MB) More Documents & Publications Energy-Saving Incandescents CFL Lightbulbs CFL Lightbulbs

  1. How Energy-Efficient Light Bulbs Compare with Traditional Incandescent...

    Office of Environmental Management (EM)

    Energy-Efficient Light Bulbs Compare with Traditional Incandescents How Energy-Efficient Light Bulbs Compare with Traditional Incandescents November 5, 2014 - 11:39pm Addthis By...

  2. Dual LED/incandescent security fixture

    DOE Patents [OSTI]

    Gauna, Kevin Wayne

    2005-06-21

    A dual LED and incandescent security lighting system uses a hybrid approach to LED illumination. It combines an ambient LED illuminator with a standard incandescent lamp on a motion control sensor. The LED illuminator will activate with the onset of darkness (daylight control) and typically remain on during the course of the night ("always on"). The LED illumination, typically amber, is sufficient to provide low to moderate level lighting coverage to the wall and ground area adjacent to and under the fixture. The incandescent lamp is integrated with a motion control circuit and sensor. When movement in the field of view is detected (after darkness), the incandescent lamp is switched on, providing an increased level of illumination to the area. Instead of an "always on" LED illuminator, the LEDs may also be switched off when the incandescent lamp is switched on.

  3. Energy-Saving Incandescents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    lighbulbs - high-resolution JPG (3.85 MB) More Documents & Publications Energy-Saving Incandescents CFL Lightbulbs Which Bulb Is Right for You? (High-Resolution JPG Billboard)

  4. A Bright Idea: New Efficiency Standards for Incandescent and Fluorescent

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lights | Department of Energy A Bright Idea: New Efficiency Standards for Incandescent and Fluorescent Lights A Bright Idea: New Efficiency Standards for Incandescent and Fluorescent Lights July 21, 2009 - 5:18pm Addthis John Lippert Pretty soon, lighting is going to get a lot more efficient. New standards for incandescent reflector bulbs, general purpose fluorescent bulbs, and regular incandescent bulbs are going into effect beginning in approximately three years. You may be curious about

  5. High Intensity Polarized Electron Gun

    SciTech Connect (OSTI)

    Redwine, Robert P.

    2012-07-31

    The goal of the project was to investigate the possibility of building a very high intensity polarized electron gun for the Electron-Ion Collider. This development is crucial for the eRHIC project. The gun implements a large area cathode, ring-shaped laser beam and active cathode cooling. A polarized electron gun chamber with a large area cathode and active cathode cooling has been built and tested. A preparation chamber for cathode activation has been built and initial tests have been performed. Major parts for a load-lock chamber, where cathodes are loaded into the vacuum system, have been manufactured.

  6. Max Tech and Beyond: High-Intensity Discharge Lamps (Technical...

    Office of Scientific and Technical Information (OSTI)

    ... MH lamps, and more specifically, ceramic MH lamps are continuing to improve in efficacy as well as light quality, manufacturability and lamp life. Within an HID lamp, the ...

  7. Very high efficacy electrodeless high intensity discharge lamps

    DOE Patents [OSTI]

    Johnson, P.D.

    1985-10-03

    An electrodeless arc lamp comprises an outer jacket hermetically sealing and thermally protecting an arc tube inside which has an upwardly convex bottom center section. The absence of chemically reactive electrode material makes it possible to use metal halides other than iodides. The tube contains chlorides, bromides or a mixture thereof of scandium and sodium in a nearly equimolar relationship in addition to mercury and an inert gas. Good color balance can be obtained at reduced reservoir temperature and with less power loss. Reduction in wall temperature makes it possible to attain longer lamp life.

  8. Very high efficacy electrodeless high intensity discharge lamps

    DOE Patents [OSTI]

    Johnson, Peter D.

    1987-01-01

    An electrodeless arc lamp comprises an outer jacket hermetically sealing and thermally protecting an arc tube inside which has an upwardly convex bottom center section. The absence of chemically reactive electrode material makes it possible to use metal halides other than iodides. The tube contains chlorides, bromides or a mixture thereof of scandium and sodium in a nearly equimolar relationship in addition to mercury and an inert gas. Good color balance can be obtained at reduced reservoir temperature and with less power loss. Reduction in wall temperature makes it possible to attain longer lamp life.

  9. How Energy-Efficient Light Bulbs Compare with Traditional Incandescents |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electricity & Fuel » Lighting » How Energy-Efficient Light Bulbs Compare with Traditional Incandescents How Energy-Efficient Light Bulbs Compare with Traditional Incandescents By replacing your home's five most frequently used light fixtures or bulbs with models that have earned the ENERGY STAR, you can save $75 each year. By replacing your home's five most frequently used light fixtures or bulbs with models that have earned the ENERGY STAR, you can save $75 each

  10. High intensity electron cyclotron resonance proton source for low energy high intensity proton accelerator

    SciTech Connect (OSTI)

    Roychowdhury, P.; Chakravarthy, D. P.

    2009-12-15

    Electron cyclotron resonance (ECR) proton source at 50 keV, 50 mA has been designed, developed, and commissioned for the low energy high intensity proton accelerator (LEHIPA). Plasma characterization of this source has been performed. ECR plasma was generated with 400-1100 W of microwave power at 2.45 GHz, with hydrogen as working gas. Microwave was fed in the plasma chamber through quartz window. Plasma density and temperature was studied under various operating conditions, such as microwave power and gas pressure. Langmuir probe was used for plasma characterization using current voltage variation. The typical hydrogen plasma density and electron temperature measured were 7x10{sup 11} cm{sup -3} and 6 eV, respectively. The total ion beam current of 42 mA was extracted, with three-electrode extraction geometry, at 40 keV of beam energy. The extracted ion current was studied as a function of microwave power and gas pressure. Depending on source pressure and discharge power, more than 30% total gas efficiency was achieved. The optimization of the source is under progress to meet the requirement of long time operation. The source will be used as an injector for continuous wave radio frequency quadrupole, a part of 20 MeV LEHIPA. The required rms normalized emittance of this source is less than 0.2 {pi} mm mrad. The simulated value of normalized emittance is well within this limit and will be measured shortly. This paper presents the study of plasma parameters, first beam results, and the status of ECR proton source.

  11. COLLIMATION OPTIMIZATION IN HIGH INTENSITY RINGS.

    SciTech Connect (OSTI)

    CATALAN-LASHERAS,N.

    2001-06-18

    In high intensity proton rings, collimation is needed in order to maintain reasonable levels of residual activation and allow hands-on maintenance. Small acceptance to emittance ratio and restrained longitudinal space become important restrictions when dealing with low energy rings. The constraints and specifications when designing a collimation system for this type of machine will be reviewed. The SNS accumulator ring will serve as an examples long which we will illustrate the optimization path. Experimental studies of collimation with 1.3 GeV proton beams are currently under way in the U-70 machine in Protvino. The first results will be presented.

  12. High intensity, pulsed thermal neutron source

    DOE Patents [OSTI]

    Carpenter, J.M.

    1973-12-11

    This invention relates to a high intensity, pulsed thermal neutron source comprising a neutron-producing source which emits pulses of fast neutrons, a moderator block adjacent to the last neutron source, a reflector block which encases the fast neutron source and the moderator block and has a thermal neutron exit port extending therethrough from the moderator block, and a neutron energy- dependent decoupling reflector liner covering the interior surfaces of the thermal neutron exit port and surrounding all surfaces of the moderator block except the surface viewed by the thermal neutron exit port. (Official Gazette)

  13. The High Intensity Horizon at Fermilab

    SciTech Connect (OSTI)

    Tschirhart, R.S.; /Fermilab

    2012-05-01

    Fermilab's high intensity horizon is 'Project-X' which is a US led initiative with strong international participation that aims to realize a next generation proton source that will dramatically extend the reach of Intensity Frontier research. The Project-X research program includes world leading sensitivity in long-baseline and short-baseline neutrino experiments, a rich program of ultra-rare muon and kaon decays, opportunities for next-generation electric dipole moment experiments and other nuclear/particle physics probes, and a platform to investigate technologies for next generation energy applications. A wide range of R&D activities has supported mission critical accelerator subsystems, such as high-gradient superconducting RF accelerating structures, efficient RF power systems, cryo-modules and cryogenic refrigeration plants, advanced beam diagnostics and instrumentation, high-power targetry, as well as the related infrastructure and civil construction preparing for a construction start of a staged program as early as 2017.

  14. Production of high intensity radioactive beams

    SciTech Connect (OSTI)

    Nitschke, J.M.

    1990-04-01

    The production of radioactive nuclear beams world-wide is reviewed. The projectile fragmentation and the ISOL approaches are discussed in detail, and the luminosity parameter is used throughout to compare different production methods. In the ISOL approach a thin and a thick target option are distinguished. The role of storage rings in radioactive beam research is evaluated. It is concluded that radioactive beams produced by the projectile fragmentation and the ISOL methods have complementary characteristics and can serve to answer different scientific questions. The decision which kind of facility to build has to depend on the significance and breadth of these questions. Finally a facility for producing a high intensity radioactive beams near the Coulomb barrier is proposed, with an expected luminosity of {approximately}10{sup 39} cm{sup {minus}2} s{sup {minus}1}, which would yield radioactive beams in excess of 10{sup 11} s{sup {minus}1}. 9 refs., 3 figs., 7 tabs.

  15. SYNCHROTRONS AND ACCUMULATORS FOR HIGH INTENSITY PROTONS: ISSUES AND EXPERIENCES.

    SciTech Connect (OSTI)

    WEI,J.

    2000-06-30

    This paper summarizes physical and engineering issues of high-intensity synchrotrons and accumulators, and discusses future applications and outlook.

  16. CALiPER Benchmark Report: Performance of Incandescent A Type and Decorative Lamps and LED Replacements

    SciTech Connect (OSTI)

    Lingard, R. D.; Myer, M. A.; Paget, M. L.

    2008-11-01

    This benchmark report addresses common omnidirectional incandescent lamps - A-type and small decorative, candelabra-type lamps - and their commercially available light-emitting diode (LED) replacements.

  17. EA-1911: Energy Conservation Standards for Certain Reflector, Elliptical Reflector, and Bulged Reflector Incandescent Lamps

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proposal to amend energy conservation standards for Certain Reflector, Elliptical Reflector, and Bulged Reflector Incandescent Lamps.

  18. High intensity x-ray source using liquid gallium target

    DOE Patents [OSTI]

    Smither, Robert K.; Knapp, Gordon S.; Westbrook, Edwin M.; Forster, George A.

    1990-01-01

    A high intensity x-ray source that uses a flowing stream of liquid gallium as a target with the electron beam impinging directly on the liquid metal.

  19. Ultrafast Charge Dynamics Initiated by High-Intensity, Ultrashort...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Ultrafast Charge Dynamics Initiated by High-Intensity, Ultrashort Laser-Matter Interaction Citation ... We report results of recent experiment in which such charge ...

  20. The Fermilab Main Injector: high intensity operation and beam...

    Office of Scientific and Technical Information (OSTI)

    Title: The Fermilab Main Injector: high intensity operation and beam loss control Authors: Brown, Bruce C. ; Adamson, Philip ; Capista, David ; Chou, Weiren ; Kourbanis, Ioanis ; ...

  1. The Fermilab Main Injector: high intensity operation and beam...

    Office of Scientific and Technical Information (OSTI)

    operation and beam loss control Citation Details In-Document Search Title: The Fermilab Main Injector: high intensity operation and beam loss control You are accessing a ...

  2. Operating temperatures for a convectively cooled recessed incandescent light fixture

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Toor, I.

    1980-12-01

    Test results are given for the operation of a recessed incandescent light fixture intended for residential use. The fixture is labeled for use in direct contact with attic thermal insulation. Temperature control of the powered fixture is provided by convective heat transfer from the ceiling side of the fixture. The fixture was operated at power levels up to two times the rated power of 75 watts and under thermal insulations up to R-40. In all operating configurations tested the fixture surface in contact with attic insulation was found to be less than 175/sup 0/C. The observed surface temperatures are judged to be safe for operation in contact with loose-fill or batt-type insulations. It was observed that the power leads inside one fixture configuration are exposed to temperatures as high as 168/sup 0/C. The electrical insulation could, therefore, have a limited life. The properties of the internal fixture wiring were not, however, studied in detail.

  3. Fourth order resonance of a high intensity linear accelerator...

    Office of Scientific and Technical Information (OSTI)

    For a high intensity beam, the 4nu1 resonance of a linear accelerator is manifested through the octupolar term of space charge potential when the depressed phase advance sigma ...

  4. Drift tube suspension for high intensity linear accelerators

    DOE Patents [OSTI]

    Liska, Donald J.; Schamaun, Roger G.; Clark, Donald C.; Potter, R. Christopher; Frank, Joseph A.

    1982-01-01

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  5. Drift tube suspension for high intensity linear accelerators

    DOE Patents [OSTI]

    Liska, D.J.; Schamaun, R.G.; Clark, D.C.; Potter, R.C.; Frank, J.A.

    1980-03-11

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  6. HIGH-INTENSITY, HIGH CHARGE-STATE HEAVY ION SOURCES

    SciTech Connect (OSTI)

    ALESSI,J.G.

    2004-08-16

    There are many accelerator applications for high intensity heavy ion sources, with recent needs including dc beams for RIA, and pulsed beams for injection into synchrotrons such as RHIC and LHC. The present status of sources producing high currents of high charge state heavy ions is reviewed. These sources include ECR, EBIS, and Laser ion sources. Benefits and limitations for these type sources are described. Possible future improvements in these sources are also mentioned.

  7. ORBIT : BEAM DYNAMICS CALCULATIONS FOR HIGH - INTENSITY RINGS.

    SciTech Connect (OSTI)

    HOLMES,J.A.; DANILOV,V.; GALAMBOS,J.; SHISHLO,A.; COUSINEAU,S.; CHOU,W.; MICHELOTTI,L.; OSTIGUY,F.; WEI,J.

    2002-06-03

    We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK the introduction of a treatment magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings.

  8. High intensity neutrino source superconducting solenoid cyrostat design

    SciTech Connect (OSTI)

    Page, T.M.; Nicol, T.H.; Feher, S.; Terechkine, I.; Tompkins, J.; /Fermilab

    2006-06-01

    Fermi National Accelerator Laboratory (FNAL) is involved in the development of a 100 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. The solenoid cryostat will house the helium vessel, suspension system, thermal shield, multilayer insulation, power leads, instrumentation, a vacuum vessel and cryogenic distribution lines. This paper discusses the requirements and detailed design of these superconducting solenoid cryostats.

  9. Device for providing high-intensity ion or electron beam

    DOE Patents [OSTI]

    McClanahan, Edwin D.; Moss, Ronald W.

    1977-01-01

    A thin film of a low-thermionic-work-function material is maintained on the cathode of a device for producing a high-current, low-pressure gas discharge by means of sputter deposition from an auxiliary electrode. The auxiliary electrode includes a surface with a low-work-function material, such as thorium, uranium, plutonium or one of the rare earth elements, facing the cathode but at a disposition and electrical potential so as to extract ions from the gas discharge and sputter the low-work-function material onto the cathode. By continuously replenishing the cathode film, high thermionic emissions and ion plasmas can be realized and maintained over extended operating periods.

  10. High-intensity positron microprobe at Jefferson Lab

    SciTech Connect (OSTI)

    Golge, Serkan; Vlahovic, Branislav; Wojtsekhowski, Bogdan B.

    2014-06-19

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 1010 e+/s. Reaching this intensity in our design relies on the transport of positrons (T+ below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system, transport of the beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.

  11. High-intensity positron microprobe at Jefferson Lab

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Golge, Serkan; Vlahovic, Branislav; Wojtsekhowski, Bogdan B.

    2014-06-19

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 1010 e+/s. Reaching this intensity in our design relies on the transport of positrons (T+ below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system, transport of themore » beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.« less

  12. The WARP Code: Modeling High Intensity Ion Beams

    SciTech Connect (OSTI)

    Grote, David P.; Friedman, Alex; Vay, Jean-Luc; Haber, Irving

    2005-03-15

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse 'slice' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP{sub s}ummary.html.

  13. The WARP Code: Modeling High Intensity Ion Beams

    SciTech Connect (OSTI)

    Grote, D P; Friedman, A; Vay, J L; Haber, I

    2004-12-09

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse ''slice'' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP{_}summary.html.

  14. Glass Strengthening via High-Intensity Plasma-Arc Heating

    SciTech Connect (OSTI)

    Wereszczak, Andrew A; Harper, David C; Duty, Chad E; Patel, P

    2010-01-01

    The use of a high-intensity plasma-arc lamp was used to irradiate the surface of soda-lime silicate glass tiles to determine if an increase in strength could be achieved. The lamp had a power density of 3500 W/cm2, a processing area of 1 cm x 10 cm, irradiated near-infrared heating at a wavelength between 0.2 1.4 m, and was controlled to unidirectionally sweep across 50-mm-square tiles at a constant speed of 8 mm/s. Ring-on-ring (RoR) equibiaxial flexure and 4 pt uni-directional flexure testings of entire tiles were used to measure and compare failure stress distributions of treated and untreated glass. Even with non-optimized processing conditions, RoR failure stress increased by approximately 25% and the 4 pt bend failure stress increased by approximately 65%. Strengthening was due to a fire-polishing-like mechanism. The arc-lamp heat-treatment caused the location of the strength-limiting flaws in the 4-pt-bend tiles to change; namely, failure initiation occurred on the gage section surface for the treated glass whereas it occurred at a gage section edge for the untreated. Arc-lamp heat-treatment is attractive not only because it provides strengthening, but because it can (non-contact) process large amounts of glass quickly and inexpensively, and is a process that either a glass manufacturer or end-user can readily employ.

  15. H- Ion Sources for High Intensity Proton Drivers

    SciTech Connect (OSTI)

    Johnson, Rolland Paul; Dudnikov, Vadim

    2015-02-20

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency, reliability and availability for pulsed operation as used in the ORNL Spallation Neutron Source . At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power 1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with 4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the aluminum nitride (AlN) discharge chamber for 32 days at high discharge power in an RF SPS with an external antenna. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. While this project demonstrated the advantages of the pulsed version of the SA RF SPS as an upgrade to the ORNL Spallation Neutron Source, it led to a possibility for upgrades to CW machines like the many cyclotrons used for commercial applications. Four appendices contain important details of the work carried out under this grant.

  16. DOE Publishes Final Rule for the Request for Exclusion of 100 Watt R20 Short Incandescent Reflector Lamps from Energy Conservation Standards

    Broader source: Energy.gov [DOE]

    The Department of Energy has published a final rule regarding the request for exclusion of 100 Watt R20 short incandescent reflector lamps from energy conservation standards.

  17. Flexible pulse delay control up to picosecond for high-intensity...

    Office of Scientific and Technical Information (OSTI)

    Title: Flexible pulse delay control up to picosecond for high-intensity twin electron bunches Authors: Zhang, Zhen ; Ding, Yuantao ; Emma, Paul ; Huang, Zhirong ; Marinelli, ...

  18. Development of Time Resolved X-ray Spectroscopy in High Intensity...

    Office of Scientific and Technical Information (OSTI)

    Title: Development of Time Resolved X-ray Spectroscopy in High Intensity Laser-Plasma Interactions Authors: Notley, M ; Weber, R ; Fell, B ; Jefferies, J ; Freeman, R ; Mackinnon, ...

  19. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    Broader source: Energy.gov [DOE]

    Report forecasting the U.S. energy savings of LED white-light sources compared to conventional white-light sources (i.e., incandescent, halogen, fluorescent, and high-intensity discharge) over the...

  20. Response of High-Tc Superconductor Metamaterials to High Intensity THz

    Office of Scientific and Technical Information (OSTI)

    Radiation (Conference) | SciTech Connect Response of High-Tc Superconductor Metamaterials to High Intensity THz Radiation Citation Details In-Document Search Title: Response of High-Tc Superconductor Metamaterials to High Intensity THz Radiation Authors: Grady, Nathaniel [1] ; Perkins Jr., Bradford G. [2] ; Hwang, Harold Y. [2] ; Brandt, Nate [2] ; Torchinsky, Darius [2] ; Singh, Ranjan [1] ; Yan, Li [3] ; Jia, Quanxi [1] ; Trugman, Stuart A. [1] ; Taylor, Antoinette J. [1] ; Nelson, Keith

  1. Overview of the High Intensity Neutrino Source Linac R&D program at Fermilab

    SciTech Connect (OSTI)

    Webber, R.C.; Appollinari, G.; Carneiro, J.P.; Gonin, I.; Hanna, B.; Hays, S.; Khabiboulline, T.; Lanfranco, G.; Madrak, R.L.; Moretti, A.; Nicol, T.; /Fermilab /Argonne

    2008-09-01

    The Fermilab High Intensity Neutrino Source (HINS) Linac R&D program is building a first-of-a-kind 60 MeV superconducting H- linac. The HINS Linac incorporates superconducting solenoids for transverse focusing, high power RF vector modulators for independent control of multiple cavities powered from a single klystron, and superconducting spoke-type accelerating cavities starting at 10 MeV. This will be the first application and demonstration of any of these technologies in a low-energy, high-intensity proton/H- linear accelerator. The HINS effort is relevant to a high intensity, superconducting H- linac that might serve the next generation of neutrino physics and muon storage ring/collider experiments. An overview of the HINS program, machine design, status, and outlook is presented.

  2. A High Intensity Multi-Purpose D-D Neutron Generator for Nuclear Engineering Laboratories

    SciTech Connect (OSTI)

    Ka-Ngo Leung; Jasmina L. Vujic; Edward C. Morse; Per F. Peterson

    2005-11-29

    This NEER project involves the design, construction and testing of a low-cost high intensity D-D neutron generator for teaching nuclear engineering students in a laboratory environment without radioisotopes or a nuclear reactor. The neutron generator was designed, fabricated and tested at Lawrence Berkeley National Laboratory (LBNL).

  3. Surface area generation and droplet size control in solvent extraction systems utilizing high intensity electric fields

    DOE Patents [OSTI]

    Scott, Timothy C.; Wham, Robert M.

    1988-01-01

    A method and system for solvent extraction where droplets are shattered by a high intensity electric field. These shattered droplets form a plurality of smaller droplets which have a greater combined surface area than the original droplet. Dispersion, coalescence and phase separation are accomplished in one vessel through the use of the single pulsing high intensity electric field. Electric field conditions are chosen so that simultaneous dispersion and coalescence are taking place in the emulsion formed in the electric field. The electric field creates a large amount of interfacial surface area for solvent extraction when the droplet is disintegrated and is capable of controlling droplet size and thus droplet stability. These operations take place in the presence of a counter current flow of the continuous phase.

  4. Numerical simulations of stripping effects in high-intensity hydrogen ion linacs

    SciTech Connect (OSTI)

    Carneiro, J.-P.; Mustapha, B.; Ostroumov, P.N.; /Argonne

    2008-12-01

    Numerical simulations of H{sup -} stripping losses from blackbody radiation, electromagnetic fields, and residual gas have been implemented into the beam dynamics code TRACK. Estimates of the stripping losses along two high-intensity H{sup -} linacs are presented: the Spallation Neutron Source linac currently being operated at Oak Ridge National Laboratory and an 8 GeV superconducting linac currently being designed at Fermi National Accelerator Laboratory.

  5. Electric characteristics of germanium Vertical Multijunction (VMJ) photovoltaic cells under high intensity illumination

    SciTech Connect (OSTI)

    Unishkov, V.A.

    1997-03-01

    This paper presents the results of the performance evaluation of Vertical Multijunction (VMJ) germanium (Ge) photovoltaic (PV) cells. Vertical Multijunction Germanium Photovoltaic cells offer several advantages for Thermophotovoltaic (TPV) applications such as high intensity light conversion, low series resistance, more efficient coupling to lower temperature sources, high output voltage, simplified heat rejection system as well as potentially simple fabrication technology and low cost photovoltaic converter device. {copyright} {ital 1997 American Institute of Physics.}

  6. Picosecond 14.7 nm interferometry of high intensity laser-produced plasmas

    SciTech Connect (OSTI)

    Dunn, J; Filevich, J; Smith, R F; Moon, S J; Rocca, J J; Keenan, R; Nilsen, J; Shlyaptsev, V N; Hunter, J R; Ng, A; Marconi, M C

    2004-10-14

    We have developed a compact, 14.7 nm, sub-5 ps x-ray laser source at LLNL together with a Mach-Zehnder type Diffraction Grating Interferometer built at Colorado State University for probing dense, high intensity laser-produced plasmas. The short wavelength and pulse length of the probe reduces refraction and absorption effects within the plasma and minimizes plasma motion blurring. This unique diagnostic capability gives precise 2-D density profile snapshots and is generating new data for rapidly evolving laser-heated plasmas. A review of the results from dense, mm-scale line focus plasma experiments will be described with detailed comparisons to hydrodynamic simulations.

  7. New X-Ray Matter Interaction Observed at Ultra-High Intensity | U.S. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science (SC) New X-Ray Matter Interaction Observed at Ultra-High Intensity Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 08.05.16 New

  8. ISSUANCE 2015-01-26: Energy Conservation Program: Energy Conservation Standards for High-Intensity Lamps, Notice to Reopen Comment Period

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for High-Intensity Lamps, Notice to Reopen Comment Period

  9. REPORT OF THE SNOWMASS M6 WORKING GROUP ON HIGH INTENSITY PROTON SOURCES.

    SciTech Connect (OSTI)

    CHOU,W.; WEI,J.

    2001-08-14

    The M6 working group had more than 40 active participants (listed in Section 4). During the three weeks at Snowmass, there were about 50 presentations, covering a wide range of topics associated with high intensity proton sources. The talks are listed in Section 5. This group also had joint sessions with a number of other working groups, including E1 (Neutrino Factories and Muon Colliders), E5 (Fixed-Target Experiments), M1 (Muon Based Systems), T4 (Particle Sources), T5 (Beam dynamics), T7 (High Performance Computing) and T9 (Diagnostics). The M6 group performed a survey of the beam parameters of existing and proposed high intensity proton sources, in particular, of the proton drivers. The results are listed in Table 1. These parameters are compared with the requirements of high-energy physics users of secondary beams in Working Groups E1 and E5. According to the consensus reached in the E1 and E5 groups, the U.S. HEP program requires an intense proton source, a 1-4 MW Proton Driver, by the end of this decade.

  10. 2014-04-11 Issuance: Energy Conservation Standards for General Service Fluorescent Lamps and Incandescent Reflector Lamps; Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of proposed rulemaking regarding energy conservation standards for general service fluorescent lamps and incandescent reflectors lamps, as issued by the Assistant Secretary for Energy Efficiency and Renewable Energy on April 11, 2014.

  11. SU-E-J-04: Integration of Interstitial High Intensity Therapeutic Ultrasound Applicators On a Clinical MRI-Guided High Intensity Focused Ultrasound Treatment Planning Software Platform

    SciTech Connect (OSTI)

    Ellens, N; Partanen, A; Ghoshal, G; Burdette, E; Farahani, K

    2015-06-15

    Purpose: Interstitial high intensity therapeutic ultrasound (HITU) applicators can be used to ablate tissue percutaneously, allowing for minimally-invasive treatment without ionizing radiation [1,2]. The purpose of this study was to evaluate the feasibility and usability of combining multielement interstitial HITU applicators with a clinical magnetic resonance imaging (MRI)-guided focused ultrasound software platform. Methods: The Sonalleve software platform (Philips Healthcare, Vantaa, Finland) combines anatomical MRI for target selection and multi-planar MRI thermometry to provide real-time temperature information. The MRI-compatible interstitial US applicators (Acoustic MedSystems, Savoy, IL, USA) had 1–4 cylindrical US elements, each 1 cm long with either 180° or 360° of active surface. Each applicator (4 Fr diameter, enclosed within a 13 Fr flexible catheter) was inserted into a tissue-mimicking agar-silica phantom. Degassed water was circulated around the transducers for cooling and coupling. Based on the location of the applicator, a virtual transducer overlay was added to the software to assist targeting and to allow automatic thermometry slice placement. The phantom was sonicated at 7 MHz for 5 minutes with 6–8 W of acoustic power for each element. MR thermometry data were collected during and after sonication. Results: Preliminary testing indicated that the applicator location could be identified in the planning images and the transducer locations predicted within 1 mm accuracy using the overlay. Ablation zones (thermal dose ≥ 240 CEM43) for 2 active, adjacent US elements ranged from 18 mm × 24 mm (width × length) to 25 mm × 25 mm for the 6 W and 8 W sonications, respectively. Conclusion: The combination of interstitial HITU applicators and this software platform holds promise for novel approaches in minimally-invasive MRI-guided therapy, especially when bony structures or air-filled cavities may preclude extracorporeal HIFU.[1] Diederich et al

  12. High-intensity laser-driven proton acceleration enhancement from hydrogen containing ultrathin targets

    SciTech Connect (OSTI)

    Dollar, F.; Reed, S. A.; Matsuoka, T.; Bulanov, S. S.; Chvykov, V.; Kalintchenko, G.; McGuffey, C.; Rousseau, P.; Thomas, A. G. R.; Willingale, L.; Yanovsky, V.; Krushelnick, K.; Maksimchuk, A.; Litzenberg, D. W.

    2013-09-30

    Laser driven proton acceleration experiments from micron and submicron thick targets using high intensity (2 × 10{sup 21} W/cm{sup 2}), high contrast (10{sup −15}) laser pulses show an enhancement of maximum energy when hydrogen containing targets were used instead of non-hydrogen containing. In our experiments, using thin (<1μm) plastic foil targets resulted in maximum proton energies that were consistently 20%–100% higher than when equivalent thickness inorganic targets, including Si{sub 3}N{sub 4} and Al, were used. Proton energies up to 20 MeV were measured with a flux of 10{sup 7} protons/MeV/sr.

  13. MR-Guided High-Intensity Focused Ultrasound: Current Status of an Emerging Technology

    SciTech Connect (OSTI)

    Napoli, Alessandro Anzidei, Michele Ciolina, Federica Marotta, Eugenio Cavallo Marincola, Beatrice Brachetti, Giulia Mare, Luisa Di Cartocci, Gaia Boni, Fabrizio Noce, Vincenzo Bertaccini, Luca Catalano, Carlo

    2013-10-15

    The concept of ideal tumor surgery is to remove the neoplastic tissue without damaging adjacent normal structures. High-intensity focused ultrasound (HIFU) was developed in the 1940s as a viable thermal tissue ablation approach. In clinical practice, HIFU has been applied to treat a variety of solid benign and malignant lesions, including pancreas, liver, prostate, and breast carcinomas, soft tissue sarcomas, and uterine fibroids. More recently, magnetic resonance guidance has been applied for treatment monitoring during focused ultrasound procedures (magnetic resonance-guided focused ultrasound, MRgFUS). Intraoperative magnetic resonance imaging provides the best possible tumor extension and dynamic control of energy deposition using real-time magnetic resonance imaging thermometry. We introduce the fundamental principles and clinical indications of the MRgFUS technique; we also report different treatment options and personal outcomes.

  14. Radiation Dose Measurement for High-Intensity Laser Interactions with Solid Targets at SLAC

    SciTech Connect (OSTI)

    Liang, Taiee

    2015-09-25

    A systematic study of photon and neutron radiation doses generated in high-intensity laser-solid interactions is underway at SLAC National Accelerator Laboratory. We found that these laser-solid experiments are being performed using a 25 TW (up to 1 J in 40 fs) femtosecond pulsed Ti:sapphire laser at the Linac Coherent Light Source’s (LCLS) Matter in Extreme Conditions (MEC) facility. Additionally, radiation measurements were performed with passive and active detectors deployed at various locations inside and outside the target chamber. Results from radiation dose measurements for laser-solid experiments at SLAC MEC in 2014 with peak intensity between 1018 to 7.1x1019 W/cm2 are presented.

  15. Liquid lithium target as a high intensity, high energy neutron source

    DOE Patents [OSTI]

    Parkin, Don M.; Dudey, Norman D.

    1976-01-01

    This invention provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then "boil off" or evaporate a neutron.

  16. Spectroscopic study of gold nanoparticle formation through high intensity laser irradiation of solution

    SciTech Connect (OSTI)

    Nakamura, Takahiro Sato, Shunichi; Herbani, Yuliati; Ursescu, Daniel; Banici, Romeo; Dabu, Razvan Victor

    2013-08-15

    A spectroscopic study of the gold nanoparticle (NP) formation by high-intensity femtosecond laser irradiation of a gold ion solution was reported. The effect of varying energy density of the laser on the formation of gold NPs was also investigated. The surface plasmon resonance (SPR) peak of the gold nanocolloid in real-time UV-visible absorption spectra during laser irradiation showed a distinctive progress; the SPR absorption peak intensity increased after a certain irradiation time, reached a maximum and then gradually decreased. During this absorption variation, at the same time, the peak wavelength changed from 530 to 507 nm. According to an empirical equation derived from a large volume of experimental data, the estimated mean size of the gold NPs varied from 43.4 to 3.2 nm during the laser irradiation. The mean size of gold NPs formed at specific irradiation times by transmission electron microscopy showed the similar trend as that obtained in the spectroscopic analysis. From these observations, the formation mechanism of gold NPs during laser irradiation was considered to have two steps. The first is a reduction of gold ions by reactive species produced through a non-linear reaction during high intensity laser irradiation of the solution; the second is the laser fragmentation of produced gold particles into smaller pieces. The gold nanocolloid produced after the fragmentation by excess irradiation showed high stability for at least a week without the addition of any dispersant because of the negative charge on the surface of the nanoparticles probably due to the surface oxidation of gold nanoparticles. A higher laser intensity resulted in a higher efficiency of gold NPs fabrication, which was attributed to a larger effective volume of the reaction.

  17. High-order harmonics from bow wave caustics driven by a high-intensity laser

    SciTech Connect (OSTI)

    Pirozhkov, A.S.; Kando, M.; Esirkepov, T.Zh.; and others

    2012-07-11

    We propose a new mechanism of high-order harmonic generation during an interaction of a high-intensity laser pulse with underdense plasma. A tightly focused laser pulse creates a cavity in plasma pushing electrons aside and exciting the wake wave and the bow wave. At the joint of the cavity wall and the bow wave boundary, an annular spike of electron density is formed. This spike surrounds the cavity and moves together with the laser pulse. Collective motion of electrons in the spike driven by the laser field generates high-order harmonics. A strong localization of the electron spike, its robustness to oscillations imposed by the laser field and, consequently, its ability to produce high-order harmonics is explained by catastrophe theory. The proposed mechanism explains the experimental observations of high-order harmonics with the 9 TW J-KAREN laser (JAEA, Japan) and the 120 TW Astra Gemini laser (CLF RAL, UK) [A. S. Pirozhkov, et al., arXiv:1004.4514 (2010); A. S. Pirozhkov et al, AIP Proceedings, this volume]. The theory is corroborated by high-resolution two-and three-dimensional particle-in-cell simulations.

  18. Intial characterization fo a commerical electron gun for profiling high intensity proton beams in Project X

    SciTech Connect (OSTI)

    Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.; Thangaraj, J.C.T.; Zhang, D.; Blokland, W.; /Oak Ridge

    2011-03-01

    Measuring the profile of a high-intensity proton beam is problematic in that traditional invasive techniques such as flying wires don't survive the encounter with the beam. One alternative is the use of an electron beam as a probe of the charge distribution in the proton beam as was done at the Spallation Neutron Source at ORNL. Here we present an initial characterization of the beam from a commercial electron gun from Kimball Physics, intended for use in the Fermilab Main Injector for Project X. Despite the fact that the horizontal spot size is abnormally large in the high current measurement, the spot size at the downstream cross X2 is reasonable in the context of measuring the deflection. A thin foil OTR would help with the beam heating and should be tried. The next phase of this experiment is to simulate the proton beam with a pair of current carrying wires and to design and construct a fast deflector. Some of the remaining issues to be considered include determining the minimum beam current needed to observe the deflected beam for a given sweep time and the impact of longitudinal variations in the charge density of the bunch.

  19. High-intensity, high-brightness polarized and unpolarized beam production in charge-exchange collisions

    SciTech Connect (OSTI)

    Zelenski, A.; Ritter, J.; Zubets, V.; Steski, D.; Atoian, G.; Davydenko, V.; Ivanov, A.; Kolmogorov, A.

    2011-03-28

    Basic limitations on the high-intensity H{sup -} ion beam production were experimentally studied in charge-exchange collisions of the neutral atomic hydrogen beam in the Na-vapour jet ionizer cell. These studies are the part of the polarized source upgrade (to 10 mA peak current and 85% polarization) project for RHIC. In the source the atomic hydrogen beam of a 5-10 keV energy and total (equivalent) current up to 5 A is produced by neutralization of proton beam in pulsed hydrogen gas target. Formation of the proton beam (from the surface of the plasma emitter with a low transverse ion temperature {approx}0.2 eV) is produced by four-electrode spherical multi-aperture ion-optical system with geometrical focusing. The hydrogen atomic beam intensity up to 1.0 A/cm{sup 2} (equivalent) was obtained in the Na-jet ionizer aperture of a 2.0 cm diameter. At the first stage of the experiment H-beam with 36 mA current, 5 keV energy and {approx}1.0 cm {center_dot} mrad normalized emittance was obtained using the flat grids and magnetic focusing.

  20. Characterization of the fast electrons distribution produced in a high intensity laser target interaction

    SciTech Connect (OSTI)

    Westover, B.; Lawrence Livermore National Laboratory, Livermore, California 94550 ; Chen, C. D.; Patel, P. K.; McLean, H.; Beg, F. N.

    2014-03-15

    Experiments on the Titan laser (?150?J, 0.7ps, 2נ10{sup 20}Wcm{sup ?2}) at the Lawrence Livermore National Laboratory were carried out in order to study the properties of fast electrons produced by high-intensity, short pulse laser interacting with matter under conditions relevant to Fast Ignition. Bremsstrahlung x-rays produced by these fast electrons were measured by a set of compact filter-stack based x-ray detectors placed at three angles with respect to the target. The measured bremsstrahlung signal allows a characterization of the fast electron beam spectrum, conversion efficiency of laser energy into fast electron kinetic energy and angular distribution. A Monte Carlo code Integrated Tiger Series was used to model the bremsstrahlung signal and infer a laser to fast electron conversion efficiency of 30%, an electron slope temperature of about 2.2?MeV, and a mean divergence angle of 39. Simulations were also performed with the hybrid transport code ZUMA which includes fields in the target. In this case, a conversion efficiency of laser energy to fast electron energy of 34% and a slope temperature between 1.5?MeV and 4?MeV depending on the angle between the target normal direction and the measuring spectrometer are found. The observed temperature of the bremsstrahlung spectrum, and therefore the inferred electron spectrum are found to be angle dependent.

  1. Effects of aggregate morphology and size on laser-induced incandescence and scattering from black carbon (mature soot)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bambha, Ray P.; Michelsen, Hope A.

    2015-07-03

    We have used a Single-Particle Soot Photometer (SP2) to measure time-resolved laser-induced incandescence (LII) and laser scatter from combustion-generated mature soot with a fractal dimension of 1.88 extracted from a burner. We have also made measurements on restructured mature-soot particles with a fractal dimension of 2.3–2.4. We reproduced the LII and laser-scatter temporal profiles with an energy- and mass-balance model, which accounted for heating of particles passed through a CW-laser beam over laser–particle interaction times of ~10 μs. Furthermore, the results demonstrate a strong influence of aggregate size and morphology on LII and scattering signals. Conductive cooling competes with absorptivemore » heating on these time scales; the effects are reduced with increasing aggregate size and fractal dimension. These effects can lead to a significant delay in the onset of the LII signal and may explain an apparent low bias in the SP2 measurements for small particle sizes, particularly for fresh, mature soot. The results also reveal significant perturbations to the measured scattering signal from LII interference and suggest rapid expansion of the aggregates during sublimation.« less

  2. Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Michael, James B.; Venkateswaran, Prabhakar; Shaddix, Christopher R.; Meyer, Terrence R.

    2015-04-08

    Planar laser-induced incandescence (LII) imaging is reported at repetition rates up to 100 kHz using a burst-mode laser system to enable studies of soot formation dynamics in highly turbulent flames. Furthermore, to quantify the accuracy and uncertainty of relative soot volume fraction measurements, the temporal evolution of the LII field in laminar and turbulent flames is examined at various laser operating conditions. Under high-speed repetitive probing, it is found that LII signals are sensitive to changes in soot physical characteristics when operating at high laser fluences within the soot vaporization regime. For these laser conditions, strong planar LII signals aremore » observed at measurement rates up to 100 kHz but are primarily useful for qualitative tracking of soot structure dynamics. However, LII signals collected at lower fluences allow sequential planar measurements of the relative soot volume fraction with a sufficient signal-to-noise ratio at repetition rates of 10–50 kHz. Finally, guidelines for identifying and avoiding the onset of repetitive probe effects in the LII signals are discussed, along with other potential sources of measurement error and uncertainty.« less

  3. Production of high intensity {sup 48}Ca for the 88-Inch Cyclotron and other updates

    SciTech Connect (OSTI)

    Benitez, J. Y.; Hodgkinson, A.; Lyneis, C. M. Strohmeier, M.; Thullier, T.; Todd, D.; Xie, D.; Franzen, K. Y.

    2014-02-15

    Recently the Versatile ECR for NUclear Science (VENUS) ion source was engaged in a 60-day long campaign to deliver high intensity {sup 48}Ca{sup 11+} beam to the 88-Inch Cyclotron. As the first long term use of VENUS for multi-week heavy-element research, new methods were developed to maximize oven to target efficiency. First, the tuning parameters of VENUS for injection into the cyclotron proved to be very different than those used to tune VENUS for maximum beam output of the desired charge state immediately following its bending magnet. Second, helium with no oxygen support gas was used to maximize the efficiency. The performance of VENUS and its low temperature oven used to produce the stable requested 75 e?A of {sup 48}Ca{sup 11+} beam current was impressive. The consumption of {sup 48}Ca in VENUS using the low temperature oven was checked roughly weekly, and was found to be on average 0.27 mg/h with an ionization efficiency into the 11+ charge state of 5.0%. No degradation in performance was noted over time. In addition, with the successful operation of VENUS the 88-Inch cyclotron was able to extract a record 2 p?A of {sup 48}Ca{sup 11+}, with a VENUS output beam current of 219 e?A. The paper describes the characteristics of the VENUS tune used for maximum transport efficiency into the cyclotron as well as ongoing efforts to improve the transport efficiency from VENUS into the cyclotron. In addition, we briefly present details regarding the recent successful repair of the cryostat vacuum system.

  4. Investigation of Generation, Acceleration, Transport and Final Focusing of High-Intensity Heavy Ion Beams from Sources to Targets

    SciTech Connect (OSTI)

    Chiping Chen

    2006-10-26

    Under the auspices of the research grant, the Intense Beam Theoretical Research Goup at Massachusetts Institute of Technology's Plasma Science and Fusion Center made significant contributions in a number of important areas in the HIF and HEDP research, including: (a) Derivation of rms envelope equations and study of rms envelope dynamics for high-intensity heavy ion beams in a small-aperture AG focusing transport systems; (b) Identification of a new mechanism for chaotic particle motion, halo formation, and beam loss in high-intensity heavy ion beams in a small-aperture AG focusing systems; Development of elliptic beam theory; (d) Study of Physics Issues in the Neutralization Transport Experiment (NTX).

  5. Sampling strategies for subsampled segmented EPI PRF thermometry in MR guided high intensity focused ultrasound

    SciTech Connect (OSTI)

    Oden, Henrik Diakite, Mahamadou; Todd, Nick; Minalga, Emilee; Payne, Allison; Parker, Dennis L.

    2014-09-15

    Purpose: To investigate k-space subsampling strategies to achieve fast, large field-of-view (FOV) temperature monitoring using segmented echo planar imaging (EPI) proton resonance frequency shift thermometry for MR guided high intensity focused ultrasound (MRgHIFU) applications. Methods: Five different k-space sampling approaches were investigated, varying sample spacing (equally vs nonequally spaced within the echo train), sampling density (variable sampling density in zero, one, and two dimensions), and utilizing sequential or centric sampling. Three of the schemes utilized sequential sampling with the sampling density varied in zero, one, and two dimensions, to investigate sampling the k-space center more frequently. Two of the schemes utilized centric sampling to acquire the k-space center with a longer echo time for improved phase measurements, and vary the sampling density in zero and two dimensions, respectively. Phantom experiments and a theoretical point spread function analysis were performed to investigate their performance. Variable density sampling in zero and two dimensions was also implemented in a non-EPI GRE pulse sequence for comparison. All subsampled data were reconstructed with a previously described temporally constrained reconstruction (TCR) algorithm. Results: The accuracy of each sampling strategy in measuring the temperature rise in the HIFU focal spot was measured in terms of the root-mean-square-error (RMSE) compared to fully sampled truth. For the schemes utilizing sequential sampling, the accuracy was found to improve with the dimensionality of the variable density sampling, giving values of 0.65?C, 0.49?C, and 0.35?C for density variation in zero, one, and two dimensions, respectively. The schemes utilizing centric sampling were found to underestimate the temperature rise, with RMSE values of 1.05?C and 1.31?C, for variable density sampling in zero and two dimensions, respectively. Similar subsampling schemes with variable

  6. High-intensity ion sources for accelerators with emphasis on H-beam formation and transport

    SciTech Connect (OSTI)

    Keller, Roderich

    2009-01-01

    This paper lays out the fundamental working principles of a variety of high-current ion sources for accelerators in a tutorial manner, and gives examples of specific source types such as d. c. discharge- and rf-driven multicusp sources. Penning-type and ECR-based sources while discussing those principles, pointing out general performance limits as well as the performance parameters of specific sources. Laser-based, two-chamber-. and surface-ionization sources are briefly mentioned. Main aspects of this review are particle feed. ionization mechanism, beam formation and beam transport. Issues seen with beam formation and low-energy transport of negative hydrogen-ion beams are treated in detail.

  7. Quantification of online removal of refractory black carbon using laser-induced incandescence in the single particle soot photometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aiken, Allison C.; McMeeking, Gavin R.; Levin, Ezra J. T.; Dubey, Manvendra K.; DeMott, Paul J.; Kreidenweis, Sonia M.

    2016-04-05

    Refractory black carbon (rBC) is an aerosol that has important impacts on climate and human health. rBC is often mixed with other species, making it difficult to isolate and quantify its important effects on physical and optical properties of ambient aerosol. To solve this measurement challenge, a new method to remove rBC was developed using laser-induced incandescence (LII) by Levin et al. in 2014. Application of the method with the Single Particle Soot Photometer (SP2) is used to determine the effects of rBC on ice nucleating particles (INP). Here, we quantify the efficacy of the method in the laboratory usingmore » the rBC surrogate Aquadag. Polydisperse and mobility-selected samples (100–500 nm diameter, 0.44–36.05 fg), are quantified by a second SP2. Removal rates are reported by mass and number. For the mobility-selected samples, the average percentages removed by mass and number of the original size are 88.9 ± 18.6% and 87.3 ± 21.9%, respectively. Removal of Aquadag is efficient for particles >100 nm mass-equivalent diameter (dme), enabling application for microphysical studies. However, the removal of particles ≤100 nm dme is less efficient. Absorption and scattering measurements are reported to assess its use to isolate brown carbon (BrC) absorption. Scattering removal rates for the mobility-selected samples are >90% on average, yet absorption rates are 53% on average across all wavelengths. Therefore, application to isolate effects of microphysical properties determined by larger sizes is promising, but will be challenging for optical properties. Lastly, the results reported also have implications for other instruments employing internal LII, e.g., the Soot Particle Aerosol Mass Spectrometer (SP-AMS).« less

  8. A high intensity solar cell invention: The edge-illuminated vertical multi-junction (VNJ) solar cell

    SciTech Connect (OSTI)

    Sater, B.L.

    1992-08-07

    This report contains a summary of a High Intensity Solar Cell (HI Cell) development carried out under the NIST/DOE Energy-Related Invention Program. The HI Cell, or Edge-Illuminated vertical Multi-junction Solar Cell, eliminates most major problems encountered with other concentrator solar cell designs. Its high voltage and low series resistance features make it ideally suited for efficient operation at high intensities. Computer modeling shows efficiencies near 30% at 500 suns intensity are possible with state-of-art processing. Development of a working model was largely successful before encountering an unexpected problem during the last fabrication step with the anti-reflection coating. Unfortunately, funding was exhausted before its resolution. Recommendations are made to resolve the AR coating problem and to integrate all the knowledge gained during this development into a viable prototype model. The invention will provide the technical and economic performance needed to make photovoltaic systems cost-effective for wide use.

  9. A high intensity solar cell invention: The edge-illuminated vertical multi-junction (VNJ) solar cell. Final report

    SciTech Connect (OSTI)

    Sater, B.L.

    1992-08-07

    This report contains a summary of a High Intensity Solar Cell (HI Cell) development carried out under the NIST/DOE Energy-Related Invention Program. The HI Cell, or Edge-Illuminated vertical Multi-junction Solar Cell, eliminates most major problems encountered with other concentrator solar cell designs. Its high voltage and low series resistance features make it ideally suited for efficient operation at high intensities. Computer modeling shows efficiencies near 30% at 500 suns intensity are possible with state-of-art processing. Development of a working model was largely successful before encountering an unexpected problem during the last fabrication step with the anti-reflection coating. Unfortunately, funding was exhausted before its resolution. Recommendations are made to resolve the AR coating problem and to integrate all the knowledge gained during this development into a viable prototype model. The invention will provide the technical and economic performance needed to make photovoltaic systems cost-effective for wide use.

  10. Nonsputtering impulse magnetron discharge

    SciTech Connect (OSTI)

    Khodachenko, G. V.; Mozgrin, D. V.; Fetisov, I. K.; Stepanova, T. V.

    2012-01-15

    Experiments with quasi-steady high-current discharges in crossed E Multiplication-Sign B fields in various gases (Ar, N{sub 2}, H{sub 2}, and SF{sub 6}) and gas mixtures (Ar/SF{sub 6} and Ar/O{sub 2}) at pressures from 10{sup -3} to 5 Torr in discharge systems with different configurations of electric and magnetic fields revealed a specific type of stable low-voltage discharge that does not transform into an arc. This type of discharge came to be known as a high-current diffuse discharge and, later, a nonsputtering impulse magnetron discharge. This paper presents results from experimental studies of the plasma parameters (the electron temperature, the plasma density, and the temperature of ions and atoms of the plasma-forming gas) of a high-current low-pressure diffuse discharge in crossed E Multiplication-Sign B fields.

  11. Longitudinal discharge laser electrodes

    DOE Patents [OSTI]

    Warner, B.E.; Miller, J.L.; Ault, E.R.

    1994-08-23

    The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window. 2 figs.

  12. Longitudinal discharge laser electrodes

    DOE Patents [OSTI]

    Warner, Bruce E.; Miller, John L.; Ault, Earl R.

    1994-01-01

    The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window.

  13. Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation

    SciTech Connect (OSTI)

    Albertazzi, B.; Chen, S. N.; Fuchs, J.; Antici, P.; Böker, J.; Swantusch, M.; Willi, O.; Borghesi, M.; Breil, J.; Feugeas, J. L.; Nicolaï, Ph.; Tikhonchuk, V. T.; D'Humières, E.; Dervieux, V.; Nakatsutsumi, M.; Romagnagni, L.; Lancia, L.; Shepherd, R.; Sentoku, Y.; Starodubtsev, M.; and others

    2015-12-15

    The dynamics of self-generated magnetic B-fields produced following the interaction of a high contrast, high intensity (I > 10{sup 19 }W cm{sup −2}) laser beam with thin (3 μm thick) solid (Al or Au) targets is investigated experimentally and numerically. Two main sources drive the growth of B-fields on the target surfaces. B-fields are first driven by laser-generated hot electron currents that relax over ∼10–20 ps. Over longer timescales, the hydrodynamic expansion of the bulk of the target into vacuum also generates B-field induced by non-collinear gradients of density and temperature. The laser irradiation of the target front side strongly localizes the energy deposition at the target front, in contrast to the target rear side, which is heated by fast electrons over a much larger area. This induces an asymmetry in the hydrodynamic expansion between the front and rear target surfaces, and consequently the associated B-fields are found strongly asymmetric. The sole long-lasting (>30 ps) B-fields are the ones growing on the target front surface, where they remain of extremely high strength (∼8–10 MG). These B-fields have been recently put by us in practical use for focusing laser-accelerated protons [B. Albertazzi et al., Rev. Sci. Instrum. 86, 043502 (2015)]; here we analyze in detail their dynamics and structure.

  14. Surface composition, microstructure and corrosion resistance of AZ31 magnesium alloy irradiated by high-intensity pulsed ion beam

    SciTech Connect (OSTI)

    Li, P., E-mail: pli@sqnc.edu.cn [Department of Physics and Information Engineering, Shangqiu Normal University, Shangqiu 476000 (China); Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Lei, M.K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhu, X.P. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2011-06-15

    High-intensity pulsed ion beam (HIPIB) irradiation of AZ31 magnesium alloy is performed and electrochemical corrosion experiment of irradiated samples is carried out by using potentiodynamic polarization technology in order to explore the effect of HIPIB irradiation on corrosion resistance of magnesium alloy. The surface composition, cross-sectional morphology and microstructure are characterized by using electron probe microanalyzer, optical microscope and transmission electron microscope, respectively. The results indicated that HIPIB irradiation leads to a significant improvement in corrosion resistance of magnesium alloy, in terms of the considerable increase in both corrosion potential and pitting breakdown potential. The microstructural refinement and surface purification induced by HIPIB irradiation are responsible for the improved corrosion resistance. - Research Highlights: {yields} A modified layer about 30 {mu}m thick is obtained by HIPIB irradiation. {yields} Selective ablation of element/impurity phase having lower melting point is observed. {yields} More importantly, microstructural refinement occurred on the irradiated surface. {yields} The modified layer exhibited a significantly improved corrosion resistance. {yields} Improved corrosion resistance is ascribed to the combined effect induced by HIPIB.

  15. MR-Guided High-Intensity Focused Ultrasound Ablation of Breast Cancer with a Dedicated Breast Platform

    SciTech Connect (OSTI)

    Merckel, Laura G.; Bartels, Lambertus W.; Koehler, Max O.; Bongard, H. J. G. Desiree van den; Deckers, Roel; Mali, Willem P. Th. M.; Binkert, Christoph A.; Moonen, Chrit T.; Gilhuijs, Kenneth G. A. Bosch, Maurice A. A. J. van den

    2013-04-15

    Optimizing the treatment of breast cancer remains a major topic of interest. In current clinical practice, breast-conserving therapy is the standard of care for patients with localized breast cancer. Technological developments have fueled interest in less invasive breast cancer treatment. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a completely noninvasive ablation technique. Focused beams of ultrasound are used for ablation of the target lesion without disrupting the skin and subcutaneous tissues in the beam path. MRI is an excellent imaging method for tumor targeting, treatment monitoring, and evaluation of treatment results. The combination of HIFU and MR imaging offers an opportunity for image-guided ablation of breast cancer. Previous studies of MR-HIFU in breast cancer patients reported a limited efficacy, which hampered the clinical translation of this technique. These prior studies were performed without an MR-HIFU system specifically developed for breast cancer treatment. In this article, a novel and dedicated MR-HIFU breast platform is presented. This system has been designed for safe and effective MR-HIFU ablation of breast cancer. Furthermore, both clinical and technical challenges are discussed, which have to be solved before MR-HIFU ablation of breast cancer can be implemented in routine clinical practice.

  16. Beam Dynamics Studies and the Design, Fabrication and Testing of Superconducting Radiofrequency Cavity for High Intensity Proton Accelerator

    SciTech Connect (OSTI)

    Saini, Arun

    2012-03-01

    The application horizon of particle accelerators has been widening significantly in recent decades. Where large accelerators have traditionally been the tools of the trade for high-energy nuclear and particle physics, applications in the last decade have grown to include large-scale accelerators like synchrotron light sources and spallation neutron sources. Applications like generation of rare isotopes, transmutation of nuclear reactor waste, sub-critical nuclear power, generation of neutrino beams etc. are next area of investigation for accelerator scientific community all over the world. Such applications require high beam power in the range of few mega-watts (MW). One such high intensity proton beam facility is proposed at Fermilab, Batavia, US, named as Project-X. Project-X facility is based on H- linear accelerator (linac), which will operate in continuous wave (CW) mode and accelerate H- ion beam with average current of 1 mA from kinetic energy of 2.5 MeV to 3 GeV to deliver 3MW beam power. One of the most challenging tasks of the Project-X facility is to have a robust design of the CW linac which can provide high quality beam to several experiments simultaneously. Hence a careful design of linac is important to achieve this objective.

  17. Co-axial discharges

    DOE Patents [OSTI]

    Luce, J. S.; Smith, L. P.

    1960-11-22

    An apparatus is described for producing coaxial arc discharges in an evacuated enclosure and within a strong, confining magnetic field. The arcs are maintained at a high potential difference. Electrons diffuse to the more positive arc from the negative arc, and positive ions diffuse from the more positive arc to the negative arc. Coaxial arc discharges have the advantuge that ions that return to strike the positive arc discharge will lose no energy since they do not strike a solid wall or electrode. These discharges are useful in confining an ionized plasma between the discharges and have the advantage of preventing impurities from the walls of the enclosure from entering the plasma area because of the arc barrier set up by the cylindrical outer arc. (auth)

  18. HOLLOW CARBON ARC DISCHARGE

    DOE Patents [OSTI]

    Luce, J.S.

    1960-10-11

    A device is described for producing an energetic, direct current, hollow, carbon-arc discharge in an evacuated container and within a strong magnetic field. Such discharges are particularly useful not only in dissociation and ionization of high energy molecular ion beams, but also in acting as a shield or barrier against the instreaming of lowenergy neutral particles into a plasma formed within the hollow discharge when it is used as a dissociating mechanism for forming the plasma. There is maintained a predetermined ratio of gas particles to carbon particles released from the arc electrodes during operation of the discharge. The carbon particles absorb some of the gas particles and are pumped along and by the discharge out of the device, with the result that smaller diffusion pumps are required than would otherwise be necessary to dispose of the excess gas.

  19. CO-AXIAL DISCHARGES

    DOE Patents [OSTI]

    Luce, J.S.; Smith, L.P.

    1960-11-22

    A method and apparatus are given for producing coaxial arc discharges in an evacuated enclosure and within a strong, confining magnetic field. The arcs are maintained at a high potential difference. Electrons will diffuse to the more positive arc from the negative arc, and positive ions will diffuse from the more positive arc to the negative arc. Coaxial arc discharges have the advantage that ions which return to strike the positive arc discharge will lose no energy since they do not strike a solid wall or electrode. Those discharges are useful in confining an ionized plasma between the discharges, and have the advantage of preventing impurities from the walls of the enclosure from entering ihe plasma area because of the arc barrier set up bv the cylindrical outer arc.

  20. Dynamic T{sub 2}-mapping during magnetic resonance guided high intensity focused ultrasound ablation of bone marrow

    SciTech Connect (OSTI)

    Waspe, Adam C.; Looi, Thomas; Mougenot, Charles; Amaral, Joao; Temple, Michael; Sivaloganathan, Siv; Drake, James M.

    2012-11-28

    Focal bone tumor treatments include amputation, limb-sparing surgical excision with bone reconstruction, and high-dose external-beam radiation therapy. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is an effective non-invasive thermotherapy for palliative management of bone metastases pain. MR thermometry (MRT) measures the proton resonance frequency shift (PRFS) of water molecules and produces accurate (<1 Degree-Sign C) and dynamic (<5s) thermal maps in soft tissues. PRFS-MRT is ineffective in fatty tissues such as yellow bone marrow and, since accurate temperature measurements are required in the bone to ensure adequate thermal dose, MR-HIFU is not indicated for primary bone tumor treatments. Magnetic relaxation times are sensitive to lipid temperature and we hypothesize that bone marrow temperature can be determined accurately by measuring changes in T{sub 2}, since T{sub 2} increases linearly in fat during heating. T{sub 2}-mapping using dual echo times during a dynamic turbo spin-echo pulse sequence enabled rapid measurement of T{sub 2}. Calibration of T{sub 2}-based thermal maps involved heating the marrow in a bovine femur and simultaneously measuring T{sub 2} and temperature with a thermocouple. A positive T{sub 2} temperature dependence in bone marrow of 20 ms/ Degree-Sign C was observed. Dynamic T{sub 2}-mapping should enable accurate temperature monitoring during MR-HIFU treatment of bone marrow and shows promise for improving the safety and reducing the invasiveness of pediatric bone tumor treatments.

  1. Glow discharge detector

    DOE Patents [OSTI]

    Koo, Jackson C.; Yu, Conrad M.

    2002-01-01

    A highly sensitive electronic ion cell for the measurement of trace elements in He carrier gas which involves glow discharge. A constant wave (CW) glow discharge detector which is controlled through a biased resistor, can detect the change of electron density caused by impurities in the He carrier gas by many orders of magnitude larger than that caused by direct ionization or electron capture. The glow discharge detector utilizes a floating pseudo-electrode to form a probe in or near the plasma. By using this probe, the large variation of electron density due to trace amounts of impurities can be directly measured.

  2. Effects of discharge voltage waveform on the discharge characteristics...

    Office of Scientific and Technical Information (OSTI)

    atmospheric plasma jet Citation Details In-Document Search Title: Effects of discharge voltage waveform on the discharge characteristics in a helium atmospheric plasma jet We ...

  3. HILL: The High-Intensity Laser Laboratory Core Team's Reply to Questions from the NNSA Experimental Facilities Panel

    SciTech Connect (OSTI)

    Albright, B J

    2012-08-02

    Question 1 - The type of physics regimes that HILL can access for weapons studies is quite interesting. The question that arises for the proposal team is what priority does this type of experimental data have versus data that can be obtained with NIF, and Z. How does HILL rank in priority compared to MARIE 1.0 in terms of the experimental data it will provide? We reiterate that isochoric heating experiments to be conducted with HILL are complementary to the high energy density physics experiments at NIF and Z and uniquely access states of matter that neither other facility can access. It is our belief that HILL will enable several important questions, e.g., as related to mix morphology, radiation transfer from corrugated surfaces, and equations of state, to be run to ground through carefully diagnosed, 'unit-physics' experiments. Such experiments will substantially improve confidence in our computer models and provide a rigorous science basis for certification. Question 2 - A secondary question relates to the interests of LLNL and SNL in the physics that HILL can address. This should be spelled out clearly. I would like to see the other labs be part of the discussion regarding how important this capability would be if built. Both sister Labs have a keen interest in the physics enabled by high-intensity, high-energy lasers, as evinced by the Z Petawatt and NIF ARC upgrades to their signature facilities. LANL scientists have teamed with scientists from both Laboratories in high-intensity laser 'first experiments' envisioned for HILL and we fully intend to continue these profitable discussions going forward. In the preparation of the HILL proposal, feedback was solicited from the broader HEDP and weapons science communities. The consensus view was that HILL filled a critical gap and that there was a need for a facility like HILL to address outstanding questions in weapons science. It was recognized that co-location of HILL with a facility such as MaRIE 1.0, Z, NIF, or

  4. Stable glow discharge detector

    DOE Patents [OSTI]

    Koo, Jackson C.; Yu, Conrad M.

    2004-05-18

    A highly sensitive electronic ion cell for the measurement of trace elements in He carrier gas which involves glow discharge. A constant wave (CW) stable glow discharge detector which is controlled through a biased resistor, can detect the change of electron density caused by impurities in the He carrier gas by many orders of magnitude larger than that caused by direct ionization or electron capture. The stable glow discharge detector utilizes a floating pseudo-electrode to form a probe in or near the plasma and a solid rod electrode. By using this probe, the large variation of electron density due to trace amounts of impurities can be directly measured. The solid rod electrode provides greater stability and thus easier alignment.

  5. Longitudinal discharge laser baffles

    DOE Patents [OSTI]

    Warner, B.E.; Ault, E.R.

    1994-06-07

    The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam. 1 fig.

  6. Longitudinal discharge laser baffles

    DOE Patents [OSTI]

    Warner, Bruce E.; Ault, Earl R.

    1994-01-01

    The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam.

  7. Powerful glow discharge excilamp

    DOE Patents [OSTI]

    Tarasenko, Victor F.; Panchenko, Aleksey N.; Skakun, Victor S.; Sosnin, Edward A.; Wang, Francis T.; Myers, Booth R.; Adamson, Martyn G.

    2002-01-01

    A powerful glow discharge lamp comprising two coaxial tubes, the outer tube being optically transparent, with a cathode and anode placed at opposite ends of the tubes, the space between the tubes being filled with working gas. The electrodes are made as cylindrical tumblers placed in line to one other in such a way that one end of the cathode is inserted into the inner tube, one end of the anode coaxially covers the end of the outer tube, the inner tube penetrating and extending through the anode. The increased electrodes' surface area increases glow discharge electron current and, correspondingly, average radiation power of discharge plasma. The inner tube contains at least one cooling liquid tube placed along the axis of the inner tube along the entire lamp length to provide cathode cooling. The anode has a circumferential heat extracting radiator which removes heat from the anode. The invention is related to lighting engineering and can be applied for realization of photostimulated processes under the action of powerful radiation in required spectral range.

  8. Microsoft Word - Groundwater Discharge Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    State Renews Groundwater Discharge Permit for WIPP CARLSBAD, N.M., September 11, 2008 - The New Mexico Environment Department (NMED) has renewed the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) groundwater discharge permit until 2013. The permit regulates the discharge of water from WIPP facilities and operations to lined ponds, which protect groundwater resources. The permit allows WIPP to discharge domestic wastewater, non-hazardous wastewater and storm water into 13

  9. Laser activated diffuse discharge switch (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Laser activated diffuse discharge switch Title: Laser activated diffuse discharge switch The invention is a gas mixture for a diffuse discharge switch which is capable of changing ...

  10. Laser-induced incandescence (LII)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Mountain Gondola to see the amazing views of the mountain and the lake at the top. ... folklore, statistics, landmarks, beaches, movies, and secret sports of Lake Tahoe. ...

  11. Incandescent Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These lamps produce visible light by heating a tiny coil or filament of tungsten wire that glows when it is heated by an electrical current. "Long-life" lamps are an example of ...

  12. Continuous pile discharging machine

    DOE Patents [OSTI]

    Smith, Phillips P.

    1976-05-11

    A device for discharging cartridges from tubes under fluid pressure includes a cylindrical housing adapted to be seated in a leak-tight manner on the end of one of the tubes, a chute depending from the cylindrical housing near the end seated on the end of the tube, a rotatable piston having a wrench on the forward end thereof disposed in the cylindrical housing and adapted to manipulate a plug in the end of the tube, and a telescopic hydraulic ram adapted to move the piston toward the plug. In addition the wrench contains a magnet which prevents inadvertent uncoupling of the wrench and the plug.

  13. Oregon Industrial Stormwater Discharge Monitoring Report (DEQ...

    Open Energy Info (EERE)

    discharge. Form Type ApplicationNotice Form Topic Industrial Stormwater Discharge Monitoring Report Organization Oregon Department of Environmental Quality Published...

  14. Searching for minicharged particles via birefringence, dichroism and Raman spectroscopy of the vacuum polarized by a high-intensity laser wave

    SciTech Connect (OSTI)

    Villalba-Chávez, S. Müller, C.

    2013-12-15

    Absorption and dispersion of probe photons in the field of a high-intensity circularly polarized laser wave are investigated. The optical theorem is applied for determining the absorption coefficients in terms of the imaginary part of the vacuum polarization tensor. Compact expressions for the vacuum refraction indices and the photon absorption coefficients are obtained in various asymptotic regimes of interest. The outcomes of this analysis reveal that, far from the region relatively close to the threshold of the two-photon reaction, the birefringence and dichroism of the vacuum are small and, in some cases, strongly suppressed. On the contrary, in a vicinity of the region in which the photo-production of a pair occurs, these optical properties are manifest with lasers of moderate intensities. We take advantage of such a property in the search of minicharged particles by considering high-precision polarimetric experiments. In addition, Raman-like electromagnetic waves resulting from the inelastic part of the vacuum polarization tensor are suggested as an alternative form for finding exclusion limits on these hypothetical charge carriers. The envisaged parameters of upcoming high-intensity laser facilities are used for establishing upper bounds on the minicharged particles. -- Highlights: •Via dichroism and birefringence of the vacuum by a strong laser wave, minicharged particles can be probed. •The discovery potential is the highest in a vicinity of the first pair production threshold. •As alternative observable, Raman scattered waves are put forward.

  15. Lighting In the Library: A Student Energy Audit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Homes & Buildings » Lighting & Daylighting » Lighting Basics Lighting Basics August 15, 2013 - 5:12pm Addthis Text Version There are many different types of artificial lights (formally called "lamps" in the lighting industry,) which have different applications and uses. Types of lighting include: Fluorescent Lighting High-intensity Discharge Lighting Incandescent Lighting LED Lighting. New lamp designs that use energy-efficient technology are now readily available in the

  16. Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes & Buildings » Lighting & Daylighting » Lighting Basics Lighting Basics August 15, 2013 - 5:12pm Addthis Text Version There are many different types of artificial lights (formally called "lamps" in the lighting industry,) which have different applications and uses. Types of lighting include: Fluorescent Lighting High-intensity Discharge Lighting Incandescent Lighting LED Lighting. New lamp designs that use energy-efficient technology are now readily available in the

  17. Historical Liquid Discharges and Outfalls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    liquids were discharged to Pueblo and Los Alamos Canyons. August 1, 2013 Contamination from the Acid Canyon outfall has been clean up to below residential levels...

  18. High-Intensity Proton Accelerator

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2011-12-27

    Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

  19. X-ray polarization spectroscopy to study anisotropic velocity distribution of hot electrons produced by an ultra-high-intensity laser

    SciTech Connect (OSTI)

    Inubushi, Y.; Okano, Y.; Nishimura, H.; Cai, H.; Nagatomo, H.; Kai, T.; Fujioka, S.; Nakamura, T.; Johzaki, T.; Mima, K.; Kawamura, T.; Batani, D.; Morace, A.; Redaelli, R.; Fourment, C.; Santos, J. J.; Malka, G.

    2010-03-15

    The anisotropy of the hot-electron velocity distribution in ultra-high-intensity laser produced plasma was studied with x-ray polarization spectroscopy using multilayer planar targets including x-ray emission tracer in the middle layer. This measurement serves as a diagnostic for hot-electron transport from the laser-plasma interaction region to the overdense region where drastic changes in the isotropy of the electron velocity distribution are observed. These polarization degrees are consistent with analysis of a three-dimensional polarization spectroscopy model coupled with particle-in-cell simulations. Electron velocity distribution in the underdense region is affected by the electric field of the laser and that in the overdense region becomes wider with increase in the tracer depth. A full-angular spread in the overdense region of 22.4 deg.{sub -2.4}{sup +5.4} was obtained from the measured polarization degree.

  20. Differential pressure pin discharge apparatus

    DOE Patents [OSTI]

    Oakley, D.J.

    1984-05-30

    Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pins passageway extending through the assembly.

  1. Capillary discharge source

    DOE Patents [OSTI]

    Bender, III, Howard Albert

    2003-11-25

    Debris generation from an EUV electric discharge plasma source device can be significantly reduced or essentially eliminated by encasing the electrodes with dielectric or electrically insulating material so that the electrodes are shielded from the plasma, and additionally by providing a path for the radiation to exit wherein the electrodes are not exposed to the area where the radiation is collected. The device includes: (a) a body, which is made of an electrically insulating material, that defines a capillary bore that has a proximal end and a distal end and that defines at least one radiation exit; (b) a first electrode that defines a first channel that has a first inlet end that is connected to a source of gas and a first outlet end that is in communication with the capillary bore, wherein the first electrode is positioned at the distal end of the capillary bore; (c) a second electrode that defines a second channel that has a second inlet end that is in communication with the capillary bore and an outlet end, wherein the second electrode is positioned at the proximal end of the capillary bore; and (d) a source of electric potential that is connected across the first and second electrodes, wherein radiation generated within the capillary bore is emitted through the at least one radiation exit and wherein the first electrode and second electrode are shielded from the emitted radiation.

  2. HIGH ENERGY GASEOUS DISCHARGE DEVICES

    DOE Patents [OSTI]

    Josephson, V.

    1960-02-16

    The high-energy electrical discharge device described comprises an envelope, a pair of main discharge electrodes supported in opposition in the envelope, and a metallic shell symmetrically disposed around and spaced from the discharge path between the electrodes. The metallic shell comprises a first element of spaced helical turns of metallic material and a second element of spaced helical turns of methllic material insulatedly supported in superposition outside the first element and with the turns overlapping the gap between the turns of the first element.

  3. Historical Liquid Discharges and Outfalls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This drop-down provides the most current six months and six years of data for the table below. For complete history do one of the following: Click on a cell value in the table for the history of an individual data series. Click on the "Download All History" link for all data series shown in the table. Close Window

    Historical Liquid Discharges and Outfalls Historical Liquid Discharges and Outfalls During the 1940s and 1950s, untreated radioactive liquids were discharged to Pueblo and

  4. DISCHARGE DEVICE FOR RADIOACTIVE MATERIAL

    DOE Patents [OSTI]

    Ohlinger, L.A.

    1958-09-23

    A device is described fur unloading bodies of fissionable material from a neutronic reactor. It is comprised essentially of a wheeled flat car having a receptacle therein containing a liquid coolant fur receiving and cooling the fuel elements as they are discharged from the reactor, and a reciprocating plunger fur supporting the fuel element during discharge thereof prior to its being dropped into the coolant. The flat car is adapted to travel along the face of the reactor adjacent the discharge ends of the coolant tubes.

  5. Discharge cell for ozone generator

    DOE Patents [OSTI]

    Nakatsuka, Suguru

    2000-01-01

    A discharge cell for use in an ozone generator is provided which can suppress a time-related reduction in ozone concentration without adding a catalytic gas such as nitrogen gas to oxygen gas as a raw material gas. The discharge cell includes a pair of electrodes disposed in an opposed spaced relation with a discharge space therebetween, and a dielectric layer of a three-layer structure consisting of three ceramic dielectric layers successively stacked on at least one of the electrodes, wherein a first dielectric layer of the dielectric layer contacting the one electrode contains no titanium dioxide, wherein a second dielectric layer of the dielectric layer exposed to the discharge space contains titanium dioxide in a metal element ratio of not lower than 10 wt %.

  6. Effects of electron recirculation on a hard x-ray source observed during the interaction of a high intensity laser pulse with thin Au targets

    SciTech Connect (OSTI)

    Compant La Fontaine, A.; Courtois, C.; Lefebvre, E.; Bourgade, J. L.; Landoas, O.; Thorp, K.; Stoeckl, C.

    2013-12-15

    The interaction of a high intensity laser pulse on the preplasma of a high-Z solid target produced by the pulse's pedestal generates high-energy electrons. These electrons subsequently penetrate inside the solid target and produce bremsstrahlung photons, generating an x-ray source which can be used for photonuclear studies or to radiograph high area density objects. The source characteristics are compared for targets with thin (20 μm) and thick (100 μm) Au foils on the Omega EP laser at Laboratory for Laser Energetics. Simulations using the particle-in-cell code CALDER show that for a 20 μm thickness Au target, electrons perform multiple round-trips in the target under the effect of the laser ponderomotive potential and the target electrostatic potential. These relativistic electrons have random transverse displacements, with respect to the target normal, attributed to electrostatic fluctuation fields. As a result, the x-ray spot size is increased by a factor 2 for thin target compared to thick targets, in agreement with experimental results. In addition, the computed doses agree with the measured ones provided that electron recirculation in the thin target is taken into account. A dose increase by a factor 1.7 is then computed by allowing for recirculation. In the 100 μm target case, on the other hand, this effect is found to be negligible.

  7. Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography

    SciTech Connect (OSTI)

    Courtois, C.; Compant La Fontaine, A.; Bazzoli, S.; Bourgade, J. L.; Gazave, J.; Lagrange, J. M.; Landoas, O.; Dain, L. Le; Pichoff, N.; Edwards, R.; Aedy, C.; Mastrosimone, D.; Pien, G.; Stoeckl, C.

    2013-08-15

    Results of an experiment to characterise a MeV Bremsstrahlung x-ray emission created by a short (<10 ps) pulse, high intensity (1.4 × 10{sup 19} W/cm{sup 2}) laser are presented. X-ray emission is characterized using several diagnostics; nuclear activation measurements, a calibrated hard x-ray spectrometer, and dosimeters. Results from the reconstructed x-ray energy spectra are consistent with numerical simulations using the PIC and Monte Carlo codes between 0.3 and 30 MeV. The intense Bremsstrahlung x-ray source is used to radiograph an image quality indicator (IQI) heavily filtered with thick tungsten absorbers. Observations suggest that internal features of the IQI can be resolved up to an external areal density of 85 g/cm{sup 2}. The x-ray source size, inferred by the radiography of a thick resolution grid, is estimated to be approximately 400 μm (full width half maximum of the x-ray source Point Spread Function)

  8. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    SciTech Connect (OSTI)

    Habibi, M.; Ghamari, F.

    2014-05-15

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration of the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.

  9. Constricted glow discharge plasma source

    DOE Patents [OSTI]

    Anders, Andre; Anders, Simone; Dickinson, Michael; Rubin, Michael; Newman, Nathan

    2000-01-01

    A constricted glow discharge chamber and method are disclosed. The polarity and geometry of the constricted glow discharge plasma source is set so that the contamination and energy of the ions discharged from the source are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The source is suitable for applying films of nitrides such as gallium nitride and oxides such as tungsten oxide and for enriching other substances in material surfaces such as oxygen and water vapor, which are difficult process as plasma in any known devices and methods. The source can also be used to assist the deposition of films such as metal films by providing low-energy ions such as argon ions.

  10. Ultraviolet radiation induced discharge laser

    DOE Patents [OSTI]

    Gilson, Verle A.; Schriever, Richard L.; Shearer, James W.

    1978-01-01

    An ultraviolet radiation source associated with a suitable cathode-anode electrode structure, disposed in a gas-filled cavity of a high pressure pulsed laser, such as a transverse electric atmosphere (TEA) laser, to achieve free electron production in the gas by photoelectric interaction between ultraviolet radiation and the cathode prior to the gas-exciting cathode-to-anode electrical discharge, thereby providing volume ionization of the gas. The ultraviolet radiation is produced by a light source or by a spark discharge.

  11. Compact monolithic capacitive discharge unit

    DOE Patents [OSTI]

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  12. Mechanism and computational model for Lyman-{alpha}-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas

    SciTech Connect (OSTI)

    Louchev, Oleg A.; Saito, Norihito; Wada, Satoshi; Bakule, Pavel; Yokoyama, Koji; Ishida, Katsuhiko; Iwasaki, Masahiko

    2011-09-15

    We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-{alpha} (Ly-{alpha}) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-{alpha} generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-{alpha} radiation generation can achieve a value of {approx}5x10{sup -4} which is restricted by the total combined absorption of the fundamental and generated radiation.

  13. Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure

    SciTech Connect (OSTI)

    Zhang, Jie; Guo, Ying; Shi, Yuncheng; Zhang, Jing; Shi, J. J.

    2015-08-15

    The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant of pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst.

  14. BERNAS ION SOURCE DISCHARGE SIMULATION

    SciTech Connect (OSTI)

    RUDSKOY,I.; KULEVOY, T.V.; PETRENKO, S.V.; KUIBEDA, R.P.; SELEZNEV, D.N.; PERSHIN, V.I.; HERSHCOVITCH, A.; JOHNSON, B.M.; GUSHENETS, V.I.; OKS, E.M.; POOLE, H.J.

    2007-08-26

    The joint research and development program is continued to develop steady-state ion source of decaborane beam for ion implantation industry. Bemas ion source is the wide used ion source for ion implantation industry. The new simulation code was developed for the Bemas ion source discharge simulation. We present first results of the simulation for several materials interested in semiconductors. As well the comparison of results obtained with experimental data obtained at the ITEP ion source test-bench is presented.

  15. Cold cathode vacuum discharge tube

    DOE Patents [OSTI]

    Boettcher, Gordon E.

    1998-01-01

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

  16. A high intensity 200 mA proton source for the FRANZ-Project (Frankfurt-Neutron-Source at the Stern-Gerlach-Center)

    SciTech Connect (OSTI)

    Schweizer, W. Ratzinger, U.; Klump, B.; Volk, K.

    2014-02-15

    At the University of Frankfurt a high current proton source has been developed and tested for the FRANZ-Project [U. Ratzinger, L. P. Chau, O. Meusel, A. Schempp, K. Volk, M. Heil, F. Kppeler, and R. Stieglitz, Intense pulsed neutron source FRANZ in the 1500 keV range, ICANS-XVIII Proceedings, Dongguan, April 2007, p. 210]. The ion source is a filament driven arc discharge ion source. The new design consists of a plasma generator, equipped with a filter magnet to produce nearly pure proton beams (92 %), and a compact triode extraction system. The beam current density has been enhanced up to 521 mA/cm{sup 2}. Using an emission opening radius of 4 mm, a proton beam current of 240 mA at 50 keV beam energy in continuous wave mode (cw) has been extracted. This paper will present the current status of the proton source including experimental results of detailed investigations of the beam composition in dependence of different plasma parameters. Both, cw and pulsed mode were studied. Furthermore, the performance of the ion source was studied with deuterium as working gas.

  17. State waste discharge permit application for cooling water and condensate discharges

    SciTech Connect (OSTI)

    Haggard, R.D.

    1996-08-12

    The following presents the Categorical State Waste Discharge Permit (SWDP) Application for the Cooling Water and Condensate Discharges on the Hanford Site. This application is intended to cover existing cooling water and condensate discharges as well as similar future discharges meeting the criteria set forth in this document.

  18. Laser activated diffuse discharge switch

    DOE Patents [OSTI]

    Christophorou, Loucas G. (Oak Ridge, TN); Hunter, Scott R. (Oak Ridge, TN)

    1988-01-01

    The invention is a gas mixture for a diffuse discharge switch which is capable of changing from a conducting state to an insulating state in the presence of electrons upon the introduction of laser light. The mixture is composed of a buffer gas such as nitrogen or argon and an electron attaching gas such as C.sub.6 H.sub.5 SH, C.sub.6 H.sub.5 SCH.sub.3, CH.sub.3 CHO and CF.sub.3 CHO wherein the electron attachment is brought on by indirect excitation of molecules to long-lived states by exposure to laser light.

  19. Cold cathode vacuum discharge tube

    DOE Patents [OSTI]

    Boettcher, G.E.

    1998-04-14

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by chemical vapor deposition (CVD) or diamond-like carbon (DLC) deposition are disclosed. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 14 figs.

  20. Cold cathode vacuum discharge tube

    DOE Patents [OSTI]

    Boettcher, G.E.

    1998-03-10

    A cold cathode vacuum discharge tube, and method for making same, are disclosed with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 15 figs.

  1. Multiple discharge cylindrical pump collector

    DOE Patents [OSTI]

    Dunn, Charlton; Bremner, Robert J.; Meng, Sen Y.

    1989-01-01

    A space-saving discharge collector 40 for the rotary pump 28 of a pool-type nuclear reactor 10. An annular collector 50 is located radially outboard for an impeller 44. The annular collector 50 as a closed outer periphery 52 for collecting the fluid from the impeller 44 and producing a uniform circumferential flow of the fluid. Turning means comprising a plurality of individual passageways 54 are located in an axial position relative to the annular collector 50 for receiving the fluid from the annular collector 50 and turning it into a substantially axial direction.

  2. Multiple discharge cylindrical pump collector

    SciTech Connect (OSTI)

    Dunn, C.; Bremmer, R.J.; Meng, S.Y.

    1989-10-17

    This patent describes an improvement in a method for circulating fluid coolant through a reactor core of a pool-type nuclear reactor having a sealed containment vessel containing a reactor core submersed in a body of liquid coolant. The method for circulating coolant including utilization of a rotary pump including an impeller for producing a highly circumferential flow of cooling fluid and a method for collecting and discharging coolant fluid, the improvement to the method of collecting and discharging coolant fluid including the steps of: producing a substantially uniform circumferential flow of the fluid by directing the flow through a plurality of diffuser vanes and into an annular collector located radially outboard from the impeller. The annular collector having an entirely closed outer periphery; and turning the flow of cooling fluid into a substantially axially direction while maintaining a substantially constant average flow velocity by directing the coolant flow from the annular collector into a plurality of individual passageways located in an axial position relative to the annular collector.

  3. Role of secondary emission on discharge dynamics in an atmospheric pressure dielectric barrier discharge

    SciTech Connect (OSTI)

    Tay, W. H.; Kausik, S. S.; Yap, S. L.; Wong, C. S.

    2014-04-15

    The discharge dynamics in an atmospheric pressure dielectric barrier discharge (DBD) is studied in a DBD reactor consisting of a pair of stainless steel parallel plate electrodes. The DBD discharge has been generated by a 50?Hz ac high voltage power source. The high-speed intensified charge coupled device camera is used to capture the images of filaments occurring in the discharge gap. It is observed that frequent synchronous breakdown of micro discharges occurs across the discharge gap in the case of negative current pulse. The experimental results reveal that secondary emissions from the dielectric surface play a key role in the synchronous breakdown of plasma filaments.

  4. DISCHARGE VALVE FOR GRANULAR MATERIAL

    DOE Patents [OSTI]

    Stoughton, L.D.; Robinson, S.T.

    1962-05-15

    A gravity-red dispenser or valve is designed for discharging the fueled spherical elements used in a pebble bed reactor. The dispenser consists of an axially movable tube terminating under a hood having side walls with openings. When the tube is moved so that its top edge is above the tops of the side openings the elements will not flow. As the tube is moved downwardly, the elements flow into the hood through the side openings and over the top edge into the tube at an increasing rate as the tube is lowered further. The tube is spaced at all times from the hood and side walls a distance greater than the diameter of the largest element to prevent damaging of the elements when the dispenser is closed to flow. (AEC)

  5. CDPHE Industrial Individual Wastewater Discharge Permit Application...

    Open Energy Info (EERE)

    ApplicationLegal Abstract Application provided by the Colorado Department of Public Health and Environment (CDPHE) for use by all individual industrial process water dischargers...

  6. Device for generation of pulsed corona discharge

    DOE Patents [OSTI]

    Gutsol, Alexander F.; Fridman, Alexander; Blank, Kenneth; Korobtsev, Sergey; Shiryaevsky, Valery; Medvedev, Dmitry

    2012-05-08

    The invention is a method and system for the generation of high voltage, pulsed, periodic corona discharges capable of being used in the presence of conductive liquid droplets. The method and system can be used, for example, in different devices for cleaning of gaseous or liquid media using pulsed corona discharge. Specially designed electrodes and an inductor increase the efficiency of the system, permit the plasma chemical oxidation of detrimental impurities, and increase the range of stable discharge operations in the presence of droplets of water or other conductive liquids in the discharge chamber.

  7. California Waste Discharge Requirements Website | Open Energy...

    Open Energy Info (EERE)

    Requirements Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: California Waste Discharge Requirements Website Abstract This website contains...

  8. Montana Pollutant Discharge Elimination System (MPDES) Webpage...

    Open Energy Info (EERE)

    System (MPDES) Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Pollutant Discharge Elimination System (MPDES) Webpage Abstract Provides...

  9. Site Discharge Pollution Prevention Plan (SDPPP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SDPPP Individual Permit: Site Discharge Pollution Prevention Plan (SDPPP) The 2014 SDPPP update fully incorporates all changes made during the year and reflects changes projected...

  10. Texas Railroad Commission - Pollution Discharge Regulations ...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Texas Railroad Commission - Pollution Discharge Regulations Citation...

  11. Plasma discharge self-cleaning filtration system

    DOE Patents [OSTI]

    Cho, Young I.; Fridman, Alexander; Gutsol, Alexander F.; Yang, Yong

    2014-07-22

    The present invention is directed to a novel method for cleaning a filter surface using a plasma discharge self-cleaning filtration system. The method involves utilizing plasma discharges to induce short electric pulses of nanoseconds duration at high voltages. These electrical pulses generate strong Shockwaves that disintegrate and dislodge particulate matter located on the surface of the filter.

  12. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  13. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, Scott A. (Oak Ridge, TN); Glish, Gary L. (Oak Ridge, TN)

    1989-01-01

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above.

  14. Discharge lamp with reflective jacket

    DOE Patents [OSTI]

    MacLennan, Donald A.; Turner, Brian P.; Kipling, Kent

    2001-01-01

    A discharge lamp includes an envelope, a fill which emits light when excited disposed in the envelope, a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed around the envelope and defining an opening, the reflector being configured to reflect some of the light emitted by the fill back into the fill while allowing some light to exit through the opening. The reflector may be made from a material having a similar thermal index of expansion as compared to the envelope and which is closely spaced to the envelope. The envelope material may be quartz and the reflector material may be either silica or alumina. The reflector may be formed as a jacket having a rigid structure which does not adhere to the envelope. The lamp may further include an optical clement spaced from the envelope and configured to reflect an unwanted component of light which exited the envelope back into the envelope through the opening in the reflector. Light which can be beneficially recaptured includes selected wavelength regions, a selected polarization, and selected angular components.

  15. Fluid jet electric discharge source

    DOE Patents [OSTI]

    Bender, Howard A.

    2006-04-25

    A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.

  16. Buildings Energy Data Book: 5.6 Lighting

    Buildings Energy Data Book [EERE]

    7 2003 Lighted Floorspace for the Stock of Commercial Buildings, by Type of Lamp (1) Type of Lamp (Billion SF) (2) Standard Fluorescent 59.7 96% Incandescent 38.5 62% Compact Fluorescent 27.6 44% High-Intensity Discharge 20.6 33% Halogen 17.7 29% Note(s): Source(s): EIA, 2003 Commercial Buildings Energy Consumption Survey: Building Characteristics Tables, June 2006, Table B44, p. 220. Lighted Floorspace Percent of Total Lighted Floorspace: 62.06 Billion SF Lighted Floorspace 1) Mall buildings

  17. Ternary gas mixture for diffuse discharge switch (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Ternary gas mixture for diffuse discharge switch Title: Ternary gas mixture for diffuse discharge switch A new diffuse discharge gas switch wherein a mixture of gases is used to ...

  18. Glow discharge plasma deposition of thin films

    DOE Patents [OSTI]

    Weakliem, Herbert A. (Pennington, NJ); Vossen, Jr., John L. (Bridgewater, NJ)

    1984-05-29

    A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.

  19. NMED - Discharge Permit Application | Open Energy Information

    Open Energy Info (EERE)

    Discharge Permit ApplicationLegal Published NA Year Signed or Took Effect 2014 Legal Citation Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online...

  20. Sandia National Laboratories: Electrostatic Discharge (ESD) Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrostatic Discharge (ESD) Laboratory We have field and laboratory capabilities to measure electrostatic environment generation, storage, and charge transfer effects. Non-contact electrostatic field surveillance techniques are available to monitor charge generation of conductors or dielectrics, and induction or physical contact charging of wiring or pin voltage for electrical system components. The Sandia severe personnel electrostatic discharge simulator, with a maximum charge voltage of 25

  1. Site Discharge Pollution Prevention Plan (SDPPP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SDPPP Individual Permit: Site Discharge Pollution Prevention Plan (SDPPP) The 2015 SDPPP Update fully incorporates all changes made during the year and reflects changes projected for 2016. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Site Discharge Pollution Prevention Plan (SDPPP) The 2015 Update to the SDPPP, Revision 1, fulfills the requirements of Part 1.F of the Individual Permit. The first six drop-down items

  2. Surface modified CFx cathode material for ultrafast discharge...

    Office of Scientific and Technical Information (OSTI)

    Surface modified CFx cathode material for ultrafast discharge and high energy density Prev Next Title: Surface modified CFx cathode material for ultrafast discharge and high...

  3. Report of Waste Discharge application (Form 200) | Open Energy...

    Open Energy Info (EERE)

    Waste Discharge application (Form 200) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Report of Waste Discharge application (Form 200) Abstract Persons...

  4. Oregon Air Contaminant Discharge Webpage | Open Energy Information

    Open Energy Info (EERE)

    library Web Site: Oregon Air Contaminant Discharge Webpage Abstract Provides overview of air quality discharge permit process. Author State of Oregon Published State of Oregon,...

  5. OAR 340-216 - Air Contaminant Discharge Permits | Open Energy...

    Open Energy Info (EERE)

    OAR 340-216 - Air Contaminant Discharge PermitsLegal Abstract Regulations for air contaminant discharge permits issued by the Department of Environmental Quality....

  6. Oregon Air Contaminant Discharge Permits Webpage | Open Energy...

    Open Energy Info (EERE)

    Air Contaminant Discharge Permits Webpage Citation Oregon Department of Environmental Quality. Oregon Air Contaminant Discharge Permits Webpage Internet. State of Oregon....

  7. Colorado Discharge Permit System General Permit | Open Energy...

    Open Energy Info (EERE)

    to discharge, as of this date, inaccordance with permit requirements and conditions set forth in Parts I and II hereof. All discharges authorized herein shall be consistent with...

  8. 5 CCR 1002-61 Colorado Discharge Permit System Regulations |...

    Open Energy Info (EERE)

    Discharge Permit System RegulationsLegal Abstract Regulations implementing the Colorado Water Quality Control Act applying to all operations discharging to waters of the state...

  9. Discharge Physics of High Power Impulse Magnetron Sputtering...

    Office of Scientific and Technical Information (OSTI)

    Discharge Physics of High Power Impulse Magnetron Sputtering Citation Details In-Document Search Title: Discharge Physics of High Power Impulse Magnetron Sputtering You are ...

  10. Discharge Physics of High Power Impulse Magnetron Sputtering...

    Office of Scientific and Technical Information (OSTI)

    Discharge Physics of High Power Impulse Magnetron Sputtering Citation Details In-Document Search Title: Discharge Physics of High Power Impulse Magnetron Sputtering High power ...

  11. Hydrothermal Heat Discharge In The Cascade Range, Northwestern...

    Open Energy Info (EERE)

    Heat Discharge In The Cascade Range, Northwestern United States Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Hydrothermal Heat Discharge In...

  12. Performances of BNL high-intensity synchrotrons

    SciTech Connect (OSTI)

    Weng, W.T.

    1998-03-01

    The AGS proton synchrotron was completed in 1960 with initial intensity in the 10 to the 10th power proton per pulse (ppp) range. Over the years, through many upgrades and improvements, the AGS now reached an intensity record of 6.3 {times} 10{sup 13} ppp, the highest world intensity record for a proton synchrotron on a single pulse basis. At the same time, the Booster reached 2.2 {times} 10{sup 13} ppp surpassing the design goal of 1.5 {times} 10{sup 13} ppp due to the introduction of second harmonic cavity during injection. The intensity limitation caused by space charge tune spread and its relationship to injection energy at 50 MeV, 200 MeV, and 1,500 MeV will be presented as well as many critical accelerator manipulations. BNL currently participates in the design of an accumulator ring for the SNS project at Oak Ridge. The status on the issues of halo formation, beam losses and collimation are also presented.

  13. High intensity SRF proton linac workshop (vugraphs)

    SciTech Connect (OSTI)

    Rusnak, B.A.

    1995-11-01

    The meeting is divided into four sections. The first section is the general introduction and included opening remarks and an overview of APT (accelerator product of tritium). The second section contains vugraphs from the cavity-structures working group. The third section is comprised of vugraphs from the couplers and rf working group. And the fourth section contains vugraphs of the system integration group.

  14. High-intensity beam collimation and targetry

    SciTech Connect (OSTI)

    Mokhov, N.V.; /Fermilab

    2006-11-01

    Principles, design criteria and realization of reliable collimation systems for the high-power accelerators and hadron colliders are described. Functionality of collimators as the key elements of the machine protection system are discussed along with the substantial progress on the crystal collimation front. The key issues are considered in design of high-power target systems and achieving their best performance. Simulation code requirements are presented.

  15. combines high intensity and short pulse duration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Cost The high-brightness, rapidly pulsed, multicolor light-emitting diode (LED) driver delivers lighting performance that exceeds that of conventional (laserarc-light) sources ...

  16. Glow discharge based device for solving mazes

    SciTech Connect (OSTI)

    Dubinov, Alexander E. Mironenko, Maxim S.; Selemir, Victor D.; Maksimov, Artem N.; Pylayev, Nikolay A.

    2014-09-15

    A glow discharge based device for solving mazes has been designed and tested. The device consists of a gas discharge chamber and maze-transformer of radial-azimuth type. It allows changing of the maze pattern in a short period of time (within several minutes). The device has been tested with low pressure air. Once switched on, a glow discharge has been shown to find the shortest way through the maze from the very first attempt, even if there is a section with potential barrier for electrons on the way. It has been found that ionization waves (striations) can be excited in the maze along the length of the plasma channel. The dependancy of discharge voltage on the length of the optimal path through the maze has been measured. A reduction in discharge voltage with one or two potential barriers present has been found and explained. The dependency of the magnitude of discharge ignition voltage on the length of the optimal path through the maze has been measured. The reduction of the ignition voltage with the presence of one or two potential barriers has been observed and explained.

  17. Direct current dielectric barrier assistant discharge to get homogeneous plasma in capacitive coupled discharge

    SciTech Connect (OSTI)

    Du, Yinchang; Li, Yangfang; Cao, Jinxiang; Liu, Yu; Wang, Jian; Zheng, Zhe

    2014-06-15

    In this paper, we propose a method to get more homogeneous plasma in the geometrically asymmetric capacitive coupled plasma (CCP) discharge. The dielectric barrier discharge (DBD) is used for the auxiliary discharge system to improve the homogeneity of the geometrically asymmetric CCP discharge. The single Langmuir probe measurement shows that the DBD can increase the electron density in the low density volume, where the DBD electrodes are mounted, when the pressure is higher than 5?Pa. By this manner, we are able to improve the homogeneity of the plasma production and increase the overall density in the target volume. At last, the finite element simulation results show that the DC bias, applied to the DBD electrodes, can increase the homogeneity of the electron density in the CCP discharge. The simulation results show a good agreement with the experiment results.

  18. Electrodynamic force of dielectric barrier discharge

    SciTech Connect (OSTI)

    Shang, J. S.; Roveda, F.; Huang, P. G.

    2011-06-01

    The periodic electrostatic force of dielectric barrier discharge (DBD) in nitrogen for flow control is investigated by a system of physics-based, two-dimensional model equations. The plasma generation process of DBD is mainly the avalanche growth of electrons through the secondary emission from cathode. Therefore, the charged particle motion of a succession of random micro discharges can be approximated by the drift-diffusion model. The force of DBD generated by charge separation and accumulation over the dielectrics is obtained by solving the model equations with the rigorous media interface boundary condition of Maxwell equations in the time domain. The discharge structure and force components by different electrical permittivity and amplitudes of externally applied electrical potential are delineated and quantified.

  19. Amplitude scaling of solar array discharges

    SciTech Connect (OSTI)

    Bogorad, A.; Bowman, C.; Rayadurg, L. . Astro-Space Div.); Sterner, T.; Loman, J.; Armenti, J. . Astro Space Div.)

    1990-12-01

    Sections of solar panel of four different sizes were charged in a 20-keV monoenergetic electron beam. The measured amplitudes of discharge transients coupled into power lines scaled linearly with the length of the rows of parallel-connected solar cells in the solar cell circuits.

  20. Pulse circuit apparatus for gas discharge laser

    DOE Patents [OSTI]

    Bradley, Laird P.

    1980-01-01

    Apparatus and method using a unique pulse circuit for a known gas discharge laser apparatus to provide an electric field for preconditioning the gas below gas breakdown and thereafter to place a maximum voltage across the gas which maximum voltage is higher than that previously available before the breakdown voltage of that gas laser medium thereby providing greatly increased pumping of the laser.

  1. Discharge temperature higher than 30 deg C

    SciTech Connect (OSTI)

    Shari Kelley

    2015-06-16

    This submission includes three files from two sources. One file is derived from USGS data and includes a series of manipulations to evaluate only shallow wells with high estimated geothermal gradients. Two other files are springs and wells with discharge temperatures above 30°C from the NMBGMR Aquifer Mapping database

  2. Discharge temperature higher than 30 deg C

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shari Kelley

    2015-06-16

    This submission includes three files from two sources. One file is derived from USGS data and includes a series of manipulations to evaluate only shallow wells with high estimated geothermal gradients. Two other files are springs and wells with discharge temperatures above 30C from the NMBGMR Aquifer Mapping database

  3. Wire chamber radiation detector with discharge control

    DOE Patents [OSTI]

    Perez-Mendez, Victor; Mulera, Terrence A.

    1984-01-01

    A wire chamber radiation detector (11) has spaced apart parallel electrodes (16) and grids (17, 18, 19) defining an ignition region (21) in which charged particles (12) or other ionizing radiations initiate brief localized avalanche discharges (93) and defining an adjacent memory region (22) in which sustained glow discharges (94) are initiated by the primary discharges (93). Conductors (29, 32) of the grids (18, 19) at each side of the memory section (22) extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles (12) were detected by sequentially transmitting pulses to the conductors (29) of one grid (18) while detecting transmissions of the pulses to the orthogonal conductors (36) of the other grid (19) through glow discharges (94). One of the grids (19) bounding the memory region (22) is defined by an array of conductive elements (32) each of which is connected to the associated readout conductor (36) through a separate resistance (37). The wire chamber (11) avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or near simultaneous charged particles (12) have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced.

  4. Influence of discharge gap on the discharge stability in a short vacuum arc ion source

    SciTech Connect (OSTI)

    Chen, L.; Zhang, G. L.; Jin, D. Z.; Dai, J. Y.; Yang, L.

    2012-02-15

    The influence of the discharge gap between cathode and anode on the discharge stability in a short vacuum arc (SVA) ion source is presented in this paper. Planar cathode and cylindrical hollow anode made of titanium are investigated. There is a great need in present accelerator injection research for SVA source to produce the small deviation of the ion current beam. Current research shows that increasing the short discharge gap can reduce the level of ion current deviation and ion charge deviation from 29% and 31% to 15% and 17%, respectively. A microplasma plume generation mechanism in SVA and scanning electron microscopic results can be used to explain this interesting phenomenon.

  5. Particle growth in silane-hydrogen discharges

    SciTech Connect (OSTI)

    Kujundzic, Damir; Gallagher, Alan

    2006-02-01

    The growth of silicon particles has been measured in silane-hydrogen radio-frequency (rf) discharges using a typical hydrogen/silane dilution ratio (20) and the pressure range (1.2-2.2 Torr) used for the production of amorphous and microcrystalline silicon films and devices. By operating brief discharges without gas flow, the particle size is obtained from the afterglow diffusion and the particle density from the scattered-light intensity. These small-reactor data thus provide the expected particle size and density versus location-in a commercial large-area-isothermal-flowing-gas reactor. Particle growth rate is a strong function of pressure, whereas film growth rate is almost independent of pressure. Both growth rates are sensitive to rf voltage, although particle growth is more sensitive.

  6. Large-Volume Resonant Microwave Discharge for Plasma Cleaning...

    Office of Scientific and Technical Information (OSTI)

    Large-Volume Resonant Microwave Discharge for Plasma Cleaning of a CEBAF 5-Cell SRF Cavity Citation Details In-Document Search Title: Large-Volume Resonant Microwave Discharge for...

  7. Handling and characterization of glow-discharge polymer samples...

    Office of Scientific and Technical Information (OSTI)

    of glow-discharge polymer samples for the light gas gun Citation Details In-Document Search Title: Handling and characterization of glow-discharge polymer samples for the light ...

  8. Gas mixture for diffuse-discharge switch

    DOE Patents [OSTI]

    Christophorou, L.G.; Carter, J.G.; Hunter, S.R.

    1982-08-31

    Gaseous medium in a diffuse-discharge switch of a high-energy pulse generator is formed of argon combined with a compound selected from the group consisting of CF/sub 4/, C/sub 2/F/sub 6/, C/sub 3/F/sub 8/, n-C/sub 4/F/sub 10/, WF/sub 6/, (CF/sub 3/)/sub 2/S and (CF/sub 3/)/sub 2/O.

  9. Gas mixture for diffuse-discharge switch

    DOE Patents [OSTI]

    Christophorou, Loucas G.; Carter, James G.; Hunter, Scott R.

    1984-01-01

    Gaseous medium in a diffuse-discharge switch of a high-energy pulse generator is formed of argon combined with a compound selected from the group consisting of CF.sub.4, C.sub.2 F.sub.6, C.sub.3 F.sub.8, n-C.sub.4 F.sub.10, WF.sub.6, (CF.sub.3).sub.2 S and (CF.sub.3).sub.2 O.

  10. Capacitor discharge process for welding braided cable

    DOE Patents [OSTI]

    Wilson, Rick D.

    1995-01-01

    A capacitor discharge process for welding a braided cable formed from a plurality of individual cable strands to a solid metallic electrically conductive member comprises the steps of: (a) preparing the electrically conductive member for welding by bevelling one of its end portions while leaving an ignition projection extending outwardly from the apex of the bevel; (b) clamping the electrically conductive member in a cathode fixture; (c) connecting the electrically conductive member clamped in the cathode fixture to a capacitor bank capable of being charged to a preselected voltage value; (d) preparing the braided cable for welding by wrapping one of its end portions with a metallic sheet to form a retaining ring operable to maintain the individual strands of the braided cable in fixed position within the retaining ring; (e) clamping the braided cable and the retaining ring as a unit in an anode fixture so that the wrapped end portion of the braided cable faces the ignition projection of the electrically conductive member; and (f) moving the cathode fixture towards the anode fixture until the ignition projection of the electrically conductive member contacts the end portion of the braided cable thereby allowing the capacitor bank to discharge through the electrically conductive member and through the braided cable and causing the electrically conductive member to be welded to the braided cable via capacitor discharge action.

  11. Magnetism in LithiumOxygen Discharge Product

    SciTech Connect (OSTI)

    Lu, Jun; Jung, Hun-Ji; Lau, Kah Chun; Zhang, Zhengcheng; Schlueter, John A.; Du, Peng; Assary, Rajeev S.; Greeley, Jeffrey P.; Ferguson, Glen A.; Wang, Hsien-Hau; Hassoun, Jusef; Iddir, Hakim; Zhou, Jigang; Zuin, Lucia; Hu, Yongfeng; Sun, Yang-Kook; Scrosati, Bruno; Curtiss, Larry A.; Amine, Khalil

    2013-05-13

    Nonaqueous lithiumoxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithiumoxygen batteries. We demonstrate that the major discharge product formed in the lithiumoxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide- type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules.

  12. Surface radicals in silane/hydrogen discharges

    SciTech Connect (OSTI)

    Horvath, Peter; Gallagher, Alan

    2009-01-01

    Using threshold ionization mass spectrometry, radical densities have been measured at the substrate surface of a radio frequency discharge in silane plus hydrogen vapor. The conditions are 100-300 Pa pressure and a ratio (R) of hydrogen flow/silane flow typical of discharges used to produce large area amorphous (R=20) and microcrystalline (R=40) silicon. For comparison, we include measurements in pure-silane vapor. The neutral radicals observed in the mixed gases are H, SiH{sub 3}, Si{sub 2}H{sub 2}, and Si{sub 2}H{sub 5}, with decreasing flux in that order. (Si{sub 2}H{sub 4} is also seen in pure silane and SiH{sub 2} for R=20.) The H flux is sufficient for major film etching and restructuring, particularly for R=40. The ion-bombardment species were also measured, establishing that Si{sub y}H{sub n}{sup +} (y=1-3) ion flux is much larger than the H{sub n}{sup +} (n=1-3) flux. The ion flux provides 15{+-}4% of the total Si flux to the film for R=20 and 37{+-}10% for R=40. This is larger than in pure-silane discharges, and it may be very important to film properties due to the impact energy.

  13. Radioactive Liquid Waste Treatment Facility Discharges in 2014

    SciTech Connect (OSTI)

    Del Signore, John C.

    2015-07-14

    This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2014.

  14. Large-Volume Resonant Microwave Discharge for Plasma Cleaning...

    Office of Scientific and Technical Information (OSTI)

    43 PARTICLE ACCELERATORS; ACCELERATORS; BREAKDOWN; CAVITIES; CEBAF ACCELERATOR; CLEANING; HIGH-FREQUENCY DISCHARGES; IMPURITIES; OXIDES; PERFORMANCE; PLASMA; PRESSURE RANGE;...

  15. Interpretation of high voltage solar array discharge experiments

    SciTech Connect (OSTI)

    Stevens, N.J.; Underwood, C.S.; Jones, M.R. )

    1990-12-01

    High voltage operation of photovoltaic power sources in low Earth orbit is limited by the probability of discharged in the array. These discharges are initiated by an interaction between the negative voltage portions of the array (relative to the space plasma potential) and the space plasma environment. Laboratory experiments have been conducted to characterize these discharges. The authors propose a model that suggests experiments conducted to date have measured transients related to the decharging of the solar cell cover glass as a result of a discharge rather than the discharge itself. The excellent agreement between the experiment data and the analytical predictions argues for the validity of this model.

  16. The transition mechanism from a symmetric single period discharge to a period-doubling discharge in atmospheric helium dielectric-barrier discharge

    SciTech Connect (OSTI)

    Zhang, Dingzong; Wang, Yanhui; Wang, Dezhen [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-06-15

    Period-doubling and chaos phenomenon have been frequently observed in atmospheric-pressure dielectric-barrier discharges. However, how a normal single period discharge bifurcates into period-doubling state is still unclear. In this paper, by changing the driving frequency, we study numerically the transition mechanisms from a normal single period discharge to a period-doubling state using a one-dimensional self-consistent fluid model. The results show that before a discharge bifurcates into a period-doubling state, it first deviates from its normal operation and transforms into an asymmetric single period discharge mode. Then the weaker discharge in this asymmetric discharge will be enhanced gradually with increasing of the frequency until it makes the subsequent discharge weaken and results in the discharge entering a period-doubling state. In the whole transition process, the spatial distribution of the charged particle density and the electric field plays a definitive role. The conclusions are further confirmed by changing the gap width and the amplitude of the applied voltage.

  17. RELATIVISTIC (E > 0.6, > 2.0, AND > 4.0 MeV) ELECTRON ACCELERATION AT GEOSYNCHRONOUS ORBIT DURING HIGH-INTENSITY, LONG-DURATION, CONTINUOUS AE ACTIVITY (HILDCAA) EVENTS

    SciTech Connect (OSTI)

    Hajra, Rajkumar; Echer, Ezequiel; Gonzalez, Walter D.; Tsurutani, Bruce T.; Santolik, Ondrej

    2015-01-20

    Radiation-belt relativistic (E > 0.6, > 2.0, and > 4.0 MeV) electron acceleration is studied for solar cycle 23 (1995-2008). High-intensity, long-duration, continuous AE activity (HILDCAA) events are considered as the basis of the analyses. All of the 35 HILDCAA events under study were found to be characterized by flux enhancements of magnetospheric relativistic electrons of all three energies compared to the pre-event flux levels. For the E > 2.0 MeV electron fluxes, enhancement of >50% occurred during 100% of HILDCAAs. Cluster-4 passes were examined for electromagnetic chorus waves in the 5 < L < 10 and 0 < MLT < 12 region when wave data were available. Fully 100% of these HILDCAA cases were associated with enhanced whistler-mode chorus waves. The enhancements of E > 0.6, > 2.0, and > 4.0 MeV electrons occurred ∼1.0 day, ∼1.5 days, and ∼2.5 days after the statistical HILDCAA onset, respectively. The statistical acceleration rates for the three energy ranges were ∼1.8 × 10{sup 5}, 2.2 × 10{sup 3}, and 1.0 × 10{sup 1} cm{sup –2} s{sup –1} sr{sup –1} d{sup –1}, respectively. The relativistic electron-decay timescales were determined to be ∼7.7, 5.5, and 4.0 days for the three energy ranges, respectively. The HILDCAAs were divided into short-duration (D ≤ 3 days) and long-duration (D > 3 days) events to study the dependence of relativistic electron variation on HILDCAA duration. For long-duration events, the flux enhancements during HILDCAAs with respect to pre-event fluxes were ∼290%, 520%, and 82% for E > 0.6, > 2.0, and > 4.0 MeV electrons, respectively. The enhancements were ∼250%, 400%, and 27% respectively, for short-duration events. The results are discussed with respect to the current understanding of radiation-belt dynamics.

  18. State waste discharge permit application: Hydrotest, maintenance and construction discharges. Revision 0

    SciTech Connect (OSTI)

    1995-11-01

    On December 23, 1991, the US DOE< Richland Operation Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of the Department of Ecology Consent Order No. DE91NM-177 (216 Consent Order) (Ecology and US DOE 1991). The 216 Consent Order list regulatory milestones for liquid effluent streams at the Hanford Site and requires compliance with the permitting requirements of Washington Administrative Code. Hanford Site liquid effluent streams discharging to the soil column have been categorized on the 216 Consent Order as follows: Phase I Streams; Phase II Streams; Miscellaneous Streams. Phase I and Phase II Streams were initially addressed in two report. Miscellaneous Streams are subject to the requirements of several milestones identified in the 216 Consent Order. This document constitutes the Categorical State Waste Discharge Permit application for hydrotest,maintenance and construction discharges throughout the Hanford Site. This categorical permit application form was prepared and approved by Ecology.

  19. Phenomena of oscillations in atmospheric pressure direct current glow discharges

    SciTech Connect (OSTI)

    Liu, Fu-cheng; Yan, Wen; Wang, De-zhen

    2013-12-15

    Self-sustained oscillations in a dc glow discharge with a semiconductor layer at atmospheric pressure were investigated by means of a one-dimensional fluid model. It is found that the dc glow discharge initially becomes unstable in the subnormal glow region and gives rise to oscillations of plasma parameters. A variety of oscillations with one or more frequencies have been observed under different conditions. The discharge oscillates between the glow discharge mode and the Townsend discharge mode in the oscillations with large amplitude while operates in the subnormal glow discharge mode all the while in the oscillations with small amplitude. Fourier Transform spectra of oscillations reveal the transition mechanism between different oscillations. The effects of semiconductor conductivity on the oscillation frequency of the dominant mode, gas voltage, as well as the discharge current have also been analyzed.

  20. Sensitive glow discharge ion source for aerosol and gas analysis

    DOE Patents [OSTI]

    Reilly, Peter T. A. (Knoxville, TN)

    2007-08-14

    A high sensitivity glow discharge ion source system for analyzing particles includes an aerodynamic lens having a plurality of constrictions for receiving an aerosol including at least one analyte particle in a carrier gas and focusing the analyte particles into a collimated particle beam. A separator separates the carrier gas from the analyte particle beam, wherein the analyte particle beam or vapors derived from the analyte particle beam are selectively transmitted out of from the separator. A glow discharge ionization source includes a discharge chamber having an entrance orifice for receiving the analyte particle beam or analyte vapors, and a target electrode and discharge electrode therein. An electric field applied between the target electrode and discharge electrode generates an analyte ion stream from the analyte vapors, which is directed out of the discharge chamber through an exit orifice, such as to a mass spectrometer. High analyte sensitivity is obtained by pumping the discharge chamber exclusively through the exit orifice and the entrance orifice.

  1. Analysis of radiofrequency discharges in plasma

    DOE Patents [OSTI]

    Kumar, D.; McGlynn, S.P.

    1992-08-04

    Separation of laser optogalvanic signals in plasma into two components: (1) an ionization rate change component, and (2) a photoacoustic mediated component. This separation of components may be performed even when the two components overlap in time, by measuring time-resolved laser optogalvanic signals in an rf discharge plasma as the rf frequency is varied near the electrical resonance peak of the plasma and associated driving/detecting circuits. A novel spectrometer may be constructed to make these measurements. Such a spectrometer would be useful in better understanding and controlling such processes as plasma etching and plasma deposition. 15 figs.

  2. Analysis of radiofrequency discharges in plasma

    DOE Patents [OSTI]

    Kumar, Devendra; McGlynn, Sean P.

    1992-01-01

    Separation of laser optogalvanic signals in plasma into two components: (1) an ionization rate change component, and (2) a photoacoustic mediated component. This separation of components may be performed even when the two components overlap in time, by measuring time-resolved laser optogalvanic signals in an rf discharge plasma as the rf frequency is varied near the electrical resonance peak of the plasma and associated driving/detecting circuits. A novel spectrometer may be constructed to make these measurements. Such a spectrometer would be useful in better understanding and controlling such processes as plasma etching and plasma deposition.

  3. Desensitizing nano powders to electrostatic discharge ignition

    SciTech Connect (OSTI)

    Steelman, Ryan; Clark, Billy; Pantoya, Michelle L.; Heaps, Ronald J.; Daniels, Michael A.

    2015-08-01

    Electrostatic discharge (ESD) is a main cause for ignition in powder media ranging from grain silos to fireworks. Nanoscale particles are orders of magnitude more ESD ignition sensitive than their micron scale counterparts. This study shows that at least 13 vol. % carbon nanotubes (CNT) added to nano-aluminum and nano-copper oxide particles (nAl + CuO) eliminates ESD ignition sensitivity. The CNT act as a conduit for electric energy and directs electric charge through the powder to desensitize the reactive mixture to ignition. For nanoparticles, the required CNT concentration for desensitizing ESD ignition acts as a diluent to quench energy propagation.

  4. Electrochemical cell assembled in discharged state

    DOE Patents [OSTI]

    Yao, Neng-Ping; Walsh, William J.

    1976-01-01

    A secondary, electrochemical cell is assembled in a completely discharged state within a sealed containment. As assembled, the cell includes a positive electrode separated from a negative electrode by a molten salt electrolyte. The positive electrode is contained within a porous structure, permitting passage of molten electrolyte, and includes one or more layers of a metallic mesh, e.g. iron, impregnated with an intimate mixture of lithium sulfide and the electrolyte. The negative electrode is a porous plaque of aluminum metal. Prior to using the cell, an electrical charge forms lithium-aluminum alloy within the negative electrode and metal sulfide within the positive electrode.

  5. Electrostatic discharge testing of electroexplosive devices

    SciTech Connect (OSTI)

    Hingorani, S.L.

    1990-01-01

    Electrostatic discharge (ESD) testing of electroexplosive devices has previously been regarded as single pulse, go/no-go testing, the emphasis being on the safety of the devices when exposed to human handling. For some components it has been found to be a destructive test; for others the test is performed 100% in production product-acceptance testing and is considered a nondestructive and nondegrading test if the component does not fire. Recent studies performed by R. J. Fisher at Sandia have resulted in a new model of the worst case human body electrostatic discharge that is more accurate than the model that is currently in use for testing electroexplosive components. In addition, recent requirements for no degradation or loss of reliability after multiple exposures (up to 100) have changed the go/no-go nature of the test. Several components have been tested to the new ESD model; results regarding both safety and reliability will be presented and discussed. 9 refs., 7 figs., 2 tabs.

  6. Low current plasmatron fuel converter having enlarged volume discharges

    DOE Patents [OSTI]

    Rabinovich, Alexander; Alexeev, Nikolai; Bromberg, Leslie; Cohn, Daniel R.; Samokhin, Andrei

    2005-04-19

    A novel apparatus and method is disclosed for a plasmatron fuel converter (""plasmatron"") that efficiently uses electrical energy to produce hydrogen rich gas. The volume and shape of the plasma discharge is controlled by a fluid flow established in a plasma discharge volume. A plasmatron according to this invention produces a substantially large effective plasma discharge volume allowing for substantially greater volumetric efficiency in the initiation of chemical reactions within a volume of bulk fluid reactant flowing through the plasmatron.

  7. Low current plasmatron fuel converter having enlarged volume discharges

    DOE Patents [OSTI]

    Rabinovich, Alexander; Alexeev, Nikolai; Bromberg, Leslie; Cohn, Daniel R.; Samokhin, Andrei

    2009-10-06

    A novel apparatus and method is disclosed for a plasmatron fuel converter ("plasmatron") that efficiently uses electrical energy to produce hydrogen rich gas. The volume and shape of the plasma discharge is controlled by a fluid flow established in a plasma discharge volume. A plasmatron according to this invention produces a substantially large effective plasma discharge volume allowing for substantially greater volumetric efficiency in the initiation of chemical reactions within a volume of bulk fluid reactant flowing through the plasmatron.

  8. LANL achieves milestone on path to zero wastewater discharge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL achieves milestone on wastewater discharge LANL achieves milestone on path to zero wastewater discharge Industrial wastewater will be recycled as the result of a long-term strategy to treat wastewater rather than discharging it into the environment. January 20, 2012 Aerial view of Los Alamos National Laboratory Aerial view of Los Alamos National Laboratory. Contact Colleen Curran Communications Office (505) 664-0344 Email Improved compliance while recycling millions of gallons of industrial

  9. Spark discharge trace element detection system

    DOE Patents [OSTI]

    Adler-Golden, Steven; Bernstein, Lawrence S.; Bien, Fritz

    1988-01-01

    A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas.

  10. Spark discharge trace element detection system

    DOE Patents [OSTI]

    Adler-Golden, S.; Bernstein, L.S.; Bien, F.

    1988-08-23

    A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas. 12 figs.

  11. Electrostatic Discharge testing of propellants and primers

    SciTech Connect (OSTI)

    Berry, R.B.

    1994-02-01

    This report presents the results of testing of selected propellants and primers to Electrostatic Discharge (ESD) characteristic of the human body. It describes the tests and the fixturing built to accommodate loose material (propellants) and the packed energetic material of the primer. The results indicate that all powders passed and some primers, especially the electric primers, failed to pass established requirements which delineate insensitive energetic components. This report details the testing of components and materials to four ESD environments (Standard ESD, Severe ESD, Modified Standard ESD, and Modified Severe ESD). The purpose of this study was to collect data based on the customer requirements as defined in the Sandia Environmental Safety & Health (ES&H) Manual, Chapter 9, and to define static sensitive and insensitive propellants and primers.

  12. Extreme-UV electrical discharge source

    DOE Patents [OSTI]

    Fornaciari, Neal R.; Nygren, Richard E.; Ulrickson, Michael A.

    2002-01-01

    An extreme ultraviolet and soft x-ray radiation electric capillary discharge source that includes a boron nitride housing defining a capillary bore that is positioned between two electrodes one of which is connected to a source of electric potential can generate a high EUV and soft x-ray radiation flux from the capillary bore outlet with minimal debris. The electrode that is positioned adjacent the capillary bore outlet is typically grounded. Pyrolytic boron nitride, highly oriented pyrolytic boron nitride, and cubic boron nitride are particularly suited. The boron nitride capillary bore can be configured as an insert that is encased in an exterior housing that is constructed of a thermally conductive material. Positioning the ground electrode sufficiently close to the capillary bore outlet also reduces bore erosion.

  13. WAC - 173 - 226 - Waste Discharge General Permit Program | Open...

    Open Energy Info (EERE)

    6 - Waste Discharge General Permit Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: WAC - 173 - 226 - Waste...

  14. AZPDES General Permit for Stormwater Discharges Associated with...

    Open Energy Info (EERE)

    OtherOther: AZPDES General Permit for Stormwater Discharges Associated with Construction Activity (Permit No. AZG2013-001)Legal Abstract This Construction General Permit governs...

  15. WAC - 173-216 State Wastewater Discharge Permit Program | Open...

    Open Energy Info (EERE)

    Abstract These rules implement a state permit program, applicable to the discharge of waste materials from industrial, commercial, and municipal operations into ground and...

  16. WSDE Report: Wastewater Discharge Permits in Washington State...

    Open Energy Info (EERE)

    Wastewater Discharge Permits in Washington State Author Washington State Department of Ecology Organization Washington State Department of Ecology Published Washington State...

  17. Plasmas in Multiphase Media: Bubble Enhanced Discharges in Liquids...

    Office of Scientific and Technical Information (OSTI)

    of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use...

  18. EPA - Ground Water Discharges (EPA's Underground Injection Control...

    Open Energy Info (EERE)

    Ground Water Discharges (EPA's Underground Injection Control Program) webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Ground Water...

  19. Oregon Water Quality Permit Program (Stormwater Discharge Permits...

    Open Energy Info (EERE)

    Permits) Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Water Quality Permit Program (Stormwater Discharge Permits) Website...

  20. Qualitative experiment with arc discharges on negatively biased solar cells

    SciTech Connect (OSTI)

    Kuninaka, Hitoshi )

    1990-12-01

    The present ground simulation of arc discharges using heat-sensitive materials in dense Ar plasma can preclude interactions with the vacuum chamber wall due to its plasma shielding. The results obtained suggest that arc discharges occurred only on the surface of the masked model, and on the model with a clean conductor. Discharge frequency depended on substrate temperature, and surface luminosity was observed on the insulator mask; this last feature suggests that electrons are incident from the conductor region onto the mask. It is necessary to construct a new theory for the arc discharge integrating the effects of the surface gas adsorption/desorption and the secondary electrons. 14 refs.

  1. Capacitor discharge pulse analysis. (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    This report summarizes an analysis performed on the discharge current data to extract ... Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of ...

  2. Notice of Intent (NOI) for Storm Water Discharges Associated...

    Open Energy Info (EERE)

    (NOI) for Storm Water Discharges Associated with Construction Activities under TPDES General Permit (TXR150000) Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  3. Notice of Intent for Stormwater Discharges Associated with Constructio...

    Open Energy Info (EERE)

    to library Form: Notice of Intent for Stormwater Discharges Associated with Construction Activity on Moderate Risk Sites Abstract Notice of Intent for required for...

  4. Notice of Intent for Stormwater Discharges Associated with Constructio...

    Open Energy Info (EERE)

    Application: Notice of Intent for Stormwater Discharges Associated with Construction Activity on Low Risk SitesLegal Abstract Notice of Intent for required for...

  5. WAC - 173 - 220 - National Pollutant Discharge Elimination System...

    Open Energy Info (EERE)

    WAC - 173 - 220 - National Pollutant Discharge Elimination System Permit Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  6. Dual-frequency glow discharges in atmospheric helium

    SciTech Connect (OSTI)

    Huang, Xiaojiang; Guo, Ying; Dai, Lu; Zhang, Jing; Shi, J. J.

    2015-10-15

    In this paper, the dual-frequency (DF) glow discharges in atmospheric helium were experimented by electrical and optical measurements in terms of current voltage characteristics and optical emission intensity. It is shown that the waveforms of applied voltages or discharge currents are the results of low frequency (LF) waveforms added to high frequency (HF) waveforms. The HF mainly influences discharge currents, and the LF mainly influences applied voltages. The gas temperatures of DF discharges are mainly affected by HF power rather than LF power.

  7. High power impulse magnetron sputtering and related discharges...

    Office of Scientific and Technical Information (OSTI)

    High power impulse magnetron sputtering and related discharges: Scalable plasma sources ... Citation Details In-Document Search Title: High power impulse magnetron sputtering and ...

  8. File:CDPHE Industrial Individual Wastewater Discharge Permit...

    Open Energy Info (EERE)

    CDPHE Industrial Individual Wastewater Discharge Permit Application.pdf Jump to: navigation, search File File history File usage Metadata File:CDPHE Industrial Individual...

  9. WAC - 173 - 221A - Wastewater Discharge Standards and Effluent...

    Open Energy Info (EERE)

    A - Wastewater Discharge Standards and Effluent Limitations Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: WAC - 173 -...

  10. WAC - 173 - 221 - Discharge Standards and Effluent Limitations...

    Open Energy Info (EERE)

    - Discharge Standards and Effluent Limitations for Domestic Wastewater Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  11. Tracing And Quantifying Magmatic Carbon Discharge In Cold Groundwaters...

    Open Energy Info (EERE)

    Tracing And Quantifying Magmatic Carbon Discharge In Cold Groundwaters- Lessons Learned From Mammoth Mountain, USA Jump to: navigation, search OpenEI Reference LibraryAdd to...

  12. Tracing And Quantifying Magmatic Carbon Discharge In Cold Groundwaters...

    Open Energy Info (EERE)

    Journal Article: Tracing And Quantifying Magmatic Carbon Discharge In Cold Groundwaters- Lessons Learned From Mammoth Mountain, Usa Abstract A major campaign to quantify the...

  13. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOE Patents [OSTI]

    Rice, G.; D'Silva, A.P.; Fassel, V.A.

    1985-04-05

    An apparatus for providing a simple, low-frequency, electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  14. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOE Patents [OSTI]

    Rice, Gary; D'Silva, Arthur P.; Fassel, Velmer A.

    1986-05-06

    An apparatus for providing a simple, low-frequency electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  15. Groundwater Discharge along a Channelized Coastal Plain Stream

    SciTech Connect (OSTI)

    LaSage, Danita M; Sexton, Joshua L; Mukherjee, Abhijit; Fryar, Alan E; Greb, Stephen F

    2015-10-01

    In the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffuse discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel.

  16. Radio frequency discharge with control of plasma potential distribution

    SciTech Connect (OSTI)

    Dudnikov, Vadim; Dudnikov, A.

    2012-02-15

    A RF discharge plasma generator with additional electrodes for independent control of plasma potential distribution is proposed. With positive biasing of this ring electrode relative end flanges and longitudinal magnetic field a confinement of fast electrons in the discharge will be improved for reliable triggering of pulsed RF discharge at low gas density and rate of ion generation will be enhanced. In the proposed discharge combination, the electron energy is enhanced by RF field and the fast electron confinement is improved by enhanced positive plasma potential which improves the efficiency of plasma generation significantly. This combination creates a synergetic effect with a significantly improving the plasma generation performance at low gas density. The discharge parameters can be optimized for enhance plasma generation with acceptable electrode sputtering.

  17. Plasma mixing glow discharge device for analytical applications

    DOE Patents [OSTI]

    Pinnaduwage, Lal A.

    1999-01-01

    An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission.

  18. Parallel vacuum arc discharge with microhollow array dielectric and anode

    SciTech Connect (OSTI)

    Feng, Jinghua; Zhou, Lin; Fu, Yuecheng; Zhang, Jianhua; Xu, Rongkun; Chen, Faxin; Li, Linbo; Meng, Shijian

    2014-07-15

    An electrode configuration with microhollow array dielectric and anode was developed to obtain parallel vacuum arc discharge. Compared with the conventional electrodes, more than 10 parallel microhollow discharges were ignited for the new configuration, which increased the discharge area significantly and made the cathode eroded more uniformly. The vacuum discharge channel number could be increased effectively by decreasing the distances between holes or increasing the arc current. Experimental results revealed that plasmas ejected from the adjacent hollow and the relatively high arc voltage were two key factors leading to the parallel discharge. The characteristics of plasmas in the microhollow were investigated as well. The spectral line intensity and electron density of plasmas in microhollow increased obviously with the decease of the microhollow diameter.

  19. Plasma mixing glow discharge device for analytical applications

    DOE Patents [OSTI]

    Pinnaduwage, L.A.

    1999-04-20

    An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission. 3 figs.

  20. State Waste Discharge Permit application: 400 Area Septic System

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affects groundwater or has the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 400 Area Septic System. The influent to the system is domestic waste water. Although the 400 Area Septic System is not a Public Owned Treatment Works, the Public Owned Treatment Works application is more applicable than the application for industrial waste water. Therefore, the State Waste Discharge Permit application for Public Owned Treatment Works Discharges to Land was used.

  1. Low-voltage gas-discharge device

    DOE Patents [OSTI]

    Kovarik, V.J.; Hershcovitch, A.; Prelec, K.

    1982-06-08

    An electronic device of the type wherein current flow is conducted by an ionized gas comprising a cathode of the type heated by ionic bombardment, an anode, means for maintaining a predetermined pressure in the region between the anode and the cathode and means for maintaining a field in the region is described. The field, which is preferably a combined magnetic and electric field, is oriented so that the mean distance traveled by electrons before reaching the anode is increased. Because of this increased distance traveled electrons moving to the anode will ionize a large number of gas atoms, thus reducing the voltage necessary to initiate gas breakdown. In a preferred embodiment the anode is a main hollow cathode and the cathode is a smaller igniter hollow cathode located within and coaxial with the main hollow cathode. An axial magnetic field is provided in the region between the hollow cathodes in order to facilitate gas breakdown in that region and initiate plasma discharge from the main hollow cathode.

  2. Vacuum ultra-violet emission of plasma discharges with high Xe partial pressure using a cathode protective layer with high secondary electron emission

    SciTech Connect (OSTI)

    Zhu, Di; Song, Le; Zhang, Xiong; Kajiyama, Hiroshi

    2014-02-14

    In this work, the mechanism of the vacuum ultra-violet (VUV) emission of plasma discharges, with high Xe partial pressure and high ion-induced secondary electrons emission protective layer, is studied by measuring the VUV light emission directly and comparing it with two-dimensional simulations. From the panel measurement, we find that the high intensity of excimer VUV mainly contributes to the high luminous efficacy of SrCaO-plasma display panels (PDP) at a low sustain voltage. The unchanged Xe excitation efficiency indicates that the electron temperature is not decreased by the high secondary electrons emission protective layer, even though the sustain voltage is much lower. From the two-dimensional simulations, we can find that the ratio of excimer VUV to resonant VUV, which is determined by the collision rate in the discharge, is only significantly affected by the Xe partial pressure, while it is independent of the sustain voltage and the secondary-electrons-emission capability of protective layer. The unchanged average electron energy at the moment when the electric field becomes maximum confirms that the improvement of the VUV production efficiency mainly is attributed to the increase in electron heating efficiency of a PDP with high ion-induced secondary electrons emission protective layer. Combining the experimental and the simulation results, we conclude about the mechanism by which the VUV production is improved for the plasma display panel with a high Xe partial pressure and a cold cathode with high ion-induced secondary electrons emission.

  3. Detrecting and Locating Partial Discharges in Transformers

    SciTech Connect (OSTI)

    Shourbaji, A.; Richards, R.; Kisner, R. A.; Hardy, J.

    2005-02-04

    A collaborative research between the Oak Ridge National Laboratory (ORNL), the American Electric Power (AEP), the Tennessee Valley Authority (TVA), and the State of Ohio Energy Office (OEO) has been formed to conduct a feasibility study to detect and locate partial discharges (PDs) inside large transformers. The success of early detection of the PDs is necessary to avoid costly catastrophic failures that can occur if the process of PD is ignored. The detection method under this research is based on an innovative technology developed by ORNL researchers using optical methods to sense the acoustical energy produced by the PDs. ORNL researchers conducted experimental studies to detect PD using an optical fiber as an acoustic sensor capable of detecting acoustical disturbances at any point along its length. This technical approach also has the potential to locate the point at which the PD was sensed within the transformer. Several optical approaches were experimentally investigated, including interferometric detection of acoustical disturbances along the sensing fiber, light detection and ranging (LIDAR) techniques using frequency modulation continuous wave (FMCW), frequency modulated (FM) laser with a multimode fiber, FM laser with a single mode fiber, and amplitude modulated (AM) laser with a multimode fiber. The implementation of the optical fiber-based acoustic measurement technique would include installing a fiber inside a transformer allowing real-time detection of PDs and determining their locations. The fibers are nonconductive and very small (core plus cladding are diameters of 125 μm for single-mode fibers and 230 μm for multimode fibers). The research identified the capabilities and limitations of using optical technology to detect and locate sources of acoustical disturbances such as in PDs in large transformers. Amplitude modulation techniques showed the most promising results and deserve further research to better quantify the technique’s sensitivity

  4. Properties of water surface discharge at different pulse repetition rates

    SciTech Connect (OSTI)

    Ruma,; Yoshihara, K.; Hosseini, S. H. R. Sakugawa, T.; Akiyama, H.; Akiyama, M.; Lukeš, P.

    2014-09-28

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H₂O₂) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H₂O₂ and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  5. EPA issues draft general permits for industrial stormwater discharges

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    EPA on Nov. 16, 1990, issued stormwater discharge regulations associated with industrial activity'' under the authority of CWA's National Pollutant Discharge Elimination System (NPDES). Those regulations established NPDES permit application requirements for industrial and certain municipal separate stormwater discharge systems. Three permit application options were made available for industrial stormwater discharges -- filing an individual application, becoming a participant in a group application or filing a notice of intent to be covered under a general permit and its requirements. The Agency of Nov. 19 proposed a draft general permit for group applications. Industrial dischargers choosing the group option previously were required to file in two parts. Part 1 was due by Sept. 30, 1991, and Part 2 was due by Oct. 1, 1992. The proposed permit would apply to industrial facilities, including certain Indian lands, in selected areas of EPA Regions I, II, III, IV, VI, VIII, IX and X. The permit would cover industrial stormwater discharges to US waters, and would include discharges transmitted through large, medium-sized and other municipal separate storm sewer systems.

  6. Plasma Acceleration from RF Discharge in Dielectric Capillary

    SciTech Connect (OSTI)

    A. Dunaevsky; Y. Raitses; N. J. Fisch

    2005-08-09

    Plasma acceleration from rf discharge in dielectric capillary was demonstrated. Observed plasma flow had ion energies of approximately 100 eV and electron energies of approximately 20 eV. The discharge was powered by a MHz-range rf generator and fed by Ar. Experimental results indicate possible validity of assumptions about formation of a potential difference at the open end of the capillary and presence of hot electron fraction in the capillary discharge. Simplicity and small dimensions of the source are attractive for micro-propulsion applications.

  7. Pulsed chemical HF laser with a large discharge gap

    SciTech Connect (OSTI)

    Azarov, M A; Klimuk, Evgenii A; Kutumov, Konstantin A; Troshchinenko, G A; Lacour, Bernard M

    2004-11-30

    The characteristics of the radiation emitted by an electric-discharge pulsed chemical HF laser with a discharge gap of 10 cm are studied. The discharge was stabilised by a semiconducting ferroelectric ceramic layer deposited on plane metal electrodes. The specific energy and technical efficiency were 3 J L{sup -1} and 3.4%, respectively, for a laser operating on a nonchain reaction in SF{sub 6}-H{sub 2} mixture and 25 J L{sup -1} and 26%, respectively, for a laser operating on a chain reaction in F{sub 2}-O{sub 2}-SF{sub 6}-H{sub 2} mixture. (lasers)

  8. Influence of driving frequency on discharge modes in a dielectric-barrier discharge with multiple current pulses

    SciTech Connect (OSTI)

    Jiang, Weiman; Tang, Jie; Wang, Yishan; Zhao, Wei; Duan, Yixiang; Research Center of Analytical Instrumentation, Sichuan University, Chengdu 610064

    2013-07-15

    A one-dimensional self-consistent fluid model was employed to investigate the effect of the driving frequency on the discharge modes in atmospheric-pressure argon discharge with multiple current pulses. The discharge mode was discussed in detail not only at current peaks but also between two adjacent peaks. The simulation results show that different transitions between the Townsend and glow modes during the discharge take place with the driving frequency increased. A complicated transition from the Townsend mode, through glow, Townsend, and glow, and finally back to the Townsend one is found in the discharge with the driving frequency of 8 kHz. There is a tendency of transition from the Townsend to glow mode for the discharge both at the current peaks and troughs with the increasing frequency. The discharge in the half period can all along operate in the glow mode with the driving frequency high enough. This is resulted from the preservation of more electrons in the gas gap and acquisition of more electron energy from the swiftly varying electric field with the increase in driving frequency. Comparison of the spatial and temporal evolutions of the electron density at different driving frequencies indicates that the increment of the driving frequency allows the plasma chemistry to be enhanced. This electrical characteristic is important for the applications, such as surface treatment and biomedical sterilization.

  9. Use of microalgae to remove pollutants from power plant discharges

    DOE Patents [OSTI]

    Wilde, Edward W.; Benemann, John R.; Weissman, Joseph C.; Tillett, David M.

    1991-01-01

    A method and system for removing pollutants dissolved in the aqueous discharge of a plant, such as a power plant, from a body of water having known hydraulogy and physicochemical characteristics, the method comprising (a) modifying the hydraulic system of the body of water including use of physical barriers to define a zone in a portion of the body of water which zone includes the discharge point and where the water has a range of physicochemical characteristics; (b) selecting a large and preferably filamentous, planktonically growing strain of algae adapted to absorb the particular pollutants and genetically dominating algae at the physicochemical characteristics of the zone; (c) establishing a colony of the selected algal strain in the zone; (d) harvesting a portion of the colony; and (e) reinnoculating the zone near the discharge point with a fraction of the harvested portion. The fraction used for reinnoculation can be adjusted to balance the rate of pollutant removal to the rate of pollutant discharge.

  10. Discharging a DC bus capacitor of an electrical converter system

    DOE Patents [OSTI]

    Kajouke, Lateef A; Perisic, Milun; Ransom, Ray M

    2014-10-14

    A system and method of discharging a bus capacitor of a bidirectional matrix converter of a vehicle are presented here. The method begins by electrically shorting the AC interface of the converter after an AC energy source is disconnected from the AC interface. The method continues by arranging a plurality of switching elements of a second energy conversion module into a discharge configuration to establish an electrical current path from a first terminal of an isolation module, through an inductive element, and to a second terminal of the isolation module. The method also modulates a plurality of switching elements of a first energy conversion module, while maintaining the discharge configuration of the second energy conversion module, to at least partially discharge a DC bus capacitor.